WO2023065208A1 - 用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法 - Google Patents

用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法 Download PDF

Info

Publication number
WO2023065208A1
WO2023065208A1 PCT/CN2021/125252 CN2021125252W WO2023065208A1 WO 2023065208 A1 WO2023065208 A1 WO 2023065208A1 CN 2021125252 W CN2021125252 W CN 2021125252W WO 2023065208 A1 WO2023065208 A1 WO 2023065208A1
Authority
WO
WIPO (PCT)
Prior art keywords
new energy
energy vehicle
power battery
vehicle power
cooling plate
Prior art date
Application number
PCT/CN2021/125252
Other languages
English (en)
French (fr)
Inventor
张云舒
金舟
喻学韬
吴爽
Original Assignee
3M创新有限公司
张云舒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M创新有限公司, 张云舒 filed Critical 3M创新有限公司
Priority to PCT/CN2021/125252 priority Critical patent/WO2023065208A1/zh
Publication of WO2023065208A1 publication Critical patent/WO2023065208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of new energy vehicle power batteries for electric vehicles. Specifically, the invention provides a packaging sheet suitable for new energy vehicle power batteries, a new energy vehicle power battery assembly, and a new energy vehicle power battery assembly for disassembling new energy vehicles. A method for an energy vehicle power battery assembly.
  • a battery pack includes a container and several battery modules, wherein one battery module includes several battery cells.
  • the box body of the container is provided with beams, longitudinal beams, side beams and a bottom plate, which tightly fix the battery modules together.
  • the above package designs exhibit the following obvious disadvantages: the presence of beams makes the volumetric efficiency of the box at most 40%, which limits the number of battery modules housed inside, thereby further limiting the driving range of electric vehicles; a large number of fastening Fasteners (such as screws) fix the battery module on the beam, and these fasteners, beams, longitudinal beams, side beams and bottom plates increase the weight of the box; the design and manufacturing process of the battery pack is complex.
  • the technology gradually adopted at present is to directly fix the battery or battery module on the cooling plate by using thermally conductive structural glue.
  • thermally conductive structural adhesive which also acts as an organic structural adhesive, provides a significant weight savings and is easier to handle compared to metal-mechanical fasteners. According to this process, the volumetric efficiency of the box body can be increased to over 60%.
  • the disadvantage of the above method is that the battery pack is difficult to disassemble. This is because the thermally conductive structural adhesives currently used all have very high bond strengths to bond the individual cells of the battery pack together firmly enough to withstand all potential failure modes. During use, once a certain battery unit fails, it is difficult to disassemble the battery pack to remove the failed battery unit.
  • the purpose of the present invention is to provide a packaging sheet for new energy vehicle power batteries with simple structure and easy disassembly, a simple structure, light weight, high battery volume ratio and especially An easily disassembled new energy vehicle power battery assembly, and a method for disassembling the new energy vehicle power battery assembly.
  • the inventors of the present invention have completed the present invention through intensive studies.
  • an encapsulation sheet for a power battery of a new energy vehicle includes a functional layer, the functional layer contains a thermoplastic polymer, and the vitrification of the thermoplastic polymer
  • the transition temperature is in the range of 40°C to 67°C and the number average molecular weight is in the range of 10000 to 23000.
  • a new energy vehicle power battery assembly includes:
  • thermally conductive structural adhesive layer in contact with the battery module
  • the functional layer includes a thermoplastic polymer, and the thermoplastic polymer has a glass transition temperature in a range of 40°C to 67°C and a number average molecular weight in a range of 10,000 to 23,000.
  • the thermally conductive structural adhesive layer is separated from the cooling plate.
  • the packaging sheet for new energy vehicle power batteries has a simple structure and is easy to disassemble, and can be used to package new energy vehicle power batteries, and the obtained
  • the new energy vehicle power battery assembly has simple structure, light weight, and high battery volume ratio, and in particular, the new energy vehicle power battery assembly according to the present invention can be disassembled through a very simple process, thereby greatly improving the performance of the new energy vehicle. Renewal and repair efficiency of power batteries.
  • Fig. 1 shows a schematic cross-sectional view of a packaging sheet for a new energy vehicle power battery according to an embodiment of the present invention
  • Figure 2 shows a schematic cross-sectional view of a part of a new energy vehicle power battery assembly according to an embodiment of the present invention.
  • Fig. 3 shows a schematic cross-sectional view of a part of a new energy vehicle power battery assembly according to another embodiment of the present invention.
  • the inventors of the present invention have found through research that by introducing a functional layer with specific structural characteristics between the thermally conductive structural adhesive that plays the role of bonding and heat conduction in the new energy vehicle power battery pack and the cooling plate, the power of the new energy vehicle can be realized. Easy disassembly of the battery.
  • the thermoplastic polymer in the functional layer has good adhesion and high modulus between the thermally conductive structural adhesive and the cooling plate below the normal operating temperature (about 55°C) of the new energy vehicle power battery , can realize the firm assembly of the new energy vehicle power battery.
  • the functional layer when the functional layer is heated to a certain temperature, the functional layer undergoes a transition from a glass state to a rubber state, cohesively breaks and becomes soft, which facilitates the separation of the thermally conductive structural adhesive layer from the cooling plate, thereby enabling easily disassemble the new energy vehicle power battery assembly.
  • a packaging sheet for new energy vehicle power batteries includes a functional layer, the functional layer contains a thermoplastic polymer, and the thermoplastic polymer
  • the glass transition temperature is in the range of 40°C to 67°C and the number average molecular weight is in the range of 10,000 to 23,000.
  • the packaging sheet for the power battery of new energy vehicles includes a functional layer.
  • the packaging sheet is used to package the power battery, by introducing a functional layer between the thermally conductive structural adhesive layer and the cooling plate in the power battery pack, the power battery pack can be easily disassembled when faulty battery components need to be removed .
  • the thermoplastic polymer in the functional layer has good adhesion and high modulus at room temperature and below the normal operating temperature of the power battery (about 55°C) with the thermally conductive structural adhesive and the cooling plate, A firm assembly of the power battery pack can be realized.
  • the functional layer comprises a thermoplastic polymer, and the glass transition temperature of the thermoplastic polymer is in the range of 40° C. to 67° C. and the number average molecular weight is in the range of 10,000 to 23,000.
  • the inventors of the present invention have found that when the glass transition temperature of the thermoplastic polymer is lower than 40°C, the adhesiveness of the thermoplastic polymer at room temperature and the conventional operating temperature (about 55°C) of the power battery of a new energy vehicle is insufficient to achieve Effective and firm adhesive assembly of various components in the power battery assembly of new energy vehicles.
  • the glass transition temperature of the thermoplastic polymer is higher than 67°C, the adhesion of the thermoplastic polymer becomes too high, even Heating the cooling plate to a disassembly temperature higher than 80°C cannot achieve effective separation between the thermally conductive structural adhesive layer and the cooling plate, and a disassembly temperature higher than 80°C, especially higher than 100°C, may cause internal The battery module is damaged by heat.
  • the inventors of the present invention found that when the number-average molecular weight of the thermoplastic polymer is lower than 10000, even if its glass transition temperature is in the range of 40°C to 67°C, the thermoplastic polymer is stable at room temperature and in new energy vehicle power batteries.
  • the conventional working temperature (about 55°C) has insufficient adhesion, and it is impossible to achieve effective adhesion and assembly of various components in the new energy vehicle power battery assembly.
  • the number average molecular weight of the thermoplastic polymer is higher than 23000 , even if its glass transition temperature is in the range of 40°C to 67°C, the adhesiveness of the thermoplastic polymer is too high, and heating the cooling plate to a temperature higher than 80°C cannot achieve a thermally conductive structural adhesive layer and cooling plate Effective separation between.
  • the thickness of the functional layer is in the range of 10 ⁇ m to 100 ⁇ m.
  • the thermoplastic polymer comprises one or more of thermoplastic copolyester, thermoplastic polyacrylate, thermoplastic polyamide, thermoplastic polyimide, thermoplastic polyether and thermoplastic rubber.
  • the thermoplastic polymer comprises one or more of thermoplastic copolyesters and thermoplastic polyacrylates.
  • thermoplastic copolyester is a polymer compound produced by polycondensation reaction of polyol and polyacid
  • thermoplastic polyacrylate is a polymer compound produced by polyaddition reaction of one or more acrylate monomers compound.
  • the thermoplastic copolyesters and thermoplastic polyacrylates that can be used in the present invention can be prepared according to known synthesis methods or can be directly obtained commercially.
  • the packaging sheet further includes an insulating layer laminated with the functional layer.
  • the insulating layer can provide an excellent electrical insulation effect for the new energy vehicle power battery assembly obtained through the packaging sheet.
  • the specific material constituting the insulating layer which can be properly selected from the insulating materials commonly used in the field of new energy vehicle power batteries, as long as the material has excellent electrical insulation properties and has excellent resistance to functional layers and cooling plates. Adhesiveness is sufficient.
  • the insulating material constituting the insulating layer is epoxy resin insulating material.
  • the thickness of the insulating layer is in the range of 25 ⁇ m to 50 ⁇ m.
  • the encapsulating sheet further includes a thermosetting polymer layer laminated with the insulating layer on a side opposite to the functional layer.
  • the thermosetting polymer layer is used to adhere to the cooling plate through a hot pressing process when encapsulating the power battery of a new energy vehicle.
  • thermosetting polymer there is no particular limitation on the specific type of thermosetting polymer that can be used, and it can be conventionally selected from various thermosetting materials commonly used in the field of new energy vehicle power batteries.
  • there is no requirement on the thickness of the thermosetting polymer layer as long as it can ensure the firm adhesion of the packaging sheet to the cooling plate.
  • the packaging sheet further includes a release layer laminated with the functional layer on a side opposite to the insulating layer.
  • said encapsulating sheet further comprises a cooling plate laminated with said thermosetting polymer layer on the side opposite to said functional layer.
  • the packaging sheet according to the present invention may include a cooling plate as an outermost structure.
  • the cooling plate can provide heat dissipation and protection for the internal components of the battery pack.
  • the cooling plate is directly attached to the functional layer.
  • the cooling plate is laminated with the insulating layer on the side opposite to the functional layer.
  • the cooling plate is laminated to the thermosetting polymer layer on the side opposite to the functional layer.
  • the cooling plate is a metal plate. More preferably, the cooling plate is an aluminum plate. According to a preferred embodiment of the invention, said cooling plate comprises one or more ducts.
  • the one or more pipes can be circulated by a circulating medium (for example, water), so that the power battery assembly can be cooled by circulating cooling water when heat dissipation is required, and hot water can be circulated to soften the power battery assembly when it is necessary to disassemble the power battery assembly.
  • said one or more conduits are circulation conduits located inside said cooling plate.
  • the packaging sheet for new energy vehicle power batteries according to the present invention only includes the functional layer.
  • the encapsulation sheet for a power battery of a new energy vehicle includes a functional layer and a cooling plate stacked together.
  • the encapsulation sheet for a power battery of a new energy vehicle includes a functional layer and an insulating layer stacked together.
  • the packaging sheet for new energy vehicle power batteries according to the present invention includes a functional layer, an insulating layer and a cooling plate stacked together in sequence.
  • the packaging sheet for new energy vehicle power batteries according to the present invention includes a functional layer, an insulating layer and a thermosetting polymer layer stacked in sequence.
  • the packaging sheet for new energy vehicle power batteries according to the present invention includes a release layer, a functional layer, an insulating layer and a thermosetting polymer layer stacked in sequence.
  • the packaging sheet for new energy vehicle power batteries includes a release layer, a functional layer, an insulating layer, a thermosetting polymer layer and a cooling plate stacked in sequence.
  • the insulating layer and the thermosetting polymer layer may also be located on the side of the functional layer opposite to the cooling plate.
  • the packaging sheet for new energy vehicle power batteries according to the present invention includes sequentially stacked release layers, insulating layers, thermosetting polymer layers, functional layers, and cooling plates, or includes sequentially stacked release layers, thermosetting Polymer layer, insulating layer, functional layer and cooling plate.
  • the insulating layer is located on the side of the functional layer close to the cooling plate, so as to provide a good insulating effect for each component of the internal overall package.
  • the thermosetting polymer layer is also located on the side of the functional layer close to the cooling plate, so that the entire internal packaging structure can be attached to the cooling plate through the thermosetting polymer layer through a hot pressing process during the manufacturing process. .
  • Fig. 1 shows a schematic cross-sectional view of a packaging sheet 1 for a power battery of a new energy vehicle according to a preferred embodiment of the present invention.
  • a packaging sheet 1 for a power battery of a new energy vehicle includes a release layer 2 , a functional layer 3 , an insulating layer 4 , a thermosetting polymer layer 5 and a cooling plate 6 stacked in sequence.
  • a new energy vehicle power battery assembly includes:
  • thermally conductive structural adhesive layer in contact with the battery module
  • the functional layer includes a thermoplastic polymer, and the thermoplastic polymer has a glass transition temperature in a range of 40°C to 67°C and a number average molecular weight in a range of 10,000 to 23,000.
  • the new energy vehicle power battery assembly according to the present invention may include one or more battery modules, the one battery module is encapsulated by a thermally conductive structural adhesive, or the plurality of battery modules are separated from each other by a thermally conductive structural adhesive And the whole package.
  • the new energy vehicle power battery assembly according to the present invention includes a thermally conductive structural adhesive layer in contact with the battery module.
  • One purpose of using the thermally conductive structural adhesive layer is to act as a structural adhesive to firmly bond adjacent battery modules together, and another purpose is to effectively conduct heat generated by the battery between adjacent battery modules.
  • thermally conductive structural glue there is no particular limitation on the specific type of thermally conductive structural glue that can be used in the new energy vehicle power battery assembly according to the present invention, and it can be prepared according to a known method or directly commercially available.
  • exemplary products of thermally conductive structural adhesives that may be employed include: TC 7000 Thermally Conductive Structural Adhesive manufactured by 3M Company.
  • the thickness of the thermally conductive structural adhesive layer is in the range of 0.5 mm to 2 mm. When the thickness of the thermally conductive structural adhesive layer is less than 0.5mm, effective bonding between adjacent battery modules cannot be achieved, and when the thickness of the thermally conductive structural adhesive layer is greater than 2mm, it will cause thermal conductivity between adjacent battery modules Obvious reduction.
  • the new energy vehicle power battery assembly according to the present invention includes a functional layer that contacts the thermally conductive structural adhesive layer and is adjacent to the cooling plate.
  • a functional layer between the thermally conductive structural adhesive layer and the cooling plate in the power battery pack, the power battery pack can be easily disassembled when faulty battery components need to be removed.
  • the thermoplastic polymer in the functional layer and the thermally conductive structural adhesive and the cooling plate there is good adhesion and high The modulus can realize the firm assembly of the power battery pack.
  • the functional layer comprises a thermoplastic polymer, and the glass transition temperature of the thermoplastic polymer is in the range of 40° C. to 67° C. and the number average molecular weight is in the range of 10,000 to 23,000.
  • the inventors of the present invention have found that when the glass transition temperature of the thermoplastic polymer is lower than 40°C, the adhesiveness of the thermoplastic polymer at room temperature and the conventional operating temperature (about 55°C) of the power battery of a new energy vehicle is insufficient to achieve Effective and firm adhesive assembly of various components in the power battery assembly of new energy vehicles.
  • the glass transition temperature of the thermoplastic polymer is higher than 67°C, the adhesion of the thermoplastic polymer becomes too high, even Heating the cooling plate to a disassembly temperature higher than 80°C cannot achieve effective separation between the thermally conductive structural adhesive layer and the cooling plate, and a disassembly temperature higher than 80°C, especially higher than 100°C, may cause internal The battery module is damaged by heat.
  • the inventors of the present invention found that when the number-average molecular weight of the thermoplastic polymer is lower than 10000, even if its glass transition temperature is in the range of 40°C to 67°C, the thermoplastic polymer is stable at room temperature and in new energy vehicle power batteries.
  • the conventional working temperature (about 55°C) has insufficient adhesion, and it is impossible to achieve effective adhesion and assembly of various components in the new energy vehicle power battery assembly.
  • the number average molecular weight of the thermoplastic polymer is higher than 23000 , even if its glass transition temperature is in the range of 40°C to 67°C, the adhesiveness of the thermoplastic polymer is too high, and heating the cooling plate to a temperature higher than 80°C cannot achieve a thermally conductive structural adhesive layer and cooling plate Effective separation between.
  • the thickness of the functional layer is in the range of 10 ⁇ m to 100 ⁇ m.
  • the thermoplastic polymer comprises one or more of thermoplastic copolyester, thermoplastic polyacrylate, thermoplastic polyamide, thermoplastic polyimide, thermoplastic polyether and thermoplastic rubber.
  • the thermoplastic polymer comprises one or more of thermoplastic copolyesters and thermoplastic polyacrylates.
  • thermoplastic copolyester is a polymer compound produced by polycondensation reaction of polyol and polyacid
  • thermoplastic polyacrylate is a polymer compound produced by polyaddition reaction of one or more acrylate monomers compound.
  • the thermoplastic copolyesters and thermoplastic polyacrylates that can be used in the present invention can be prepared according to known synthesis methods or can be directly obtained commercially.
  • the functional layer directly contacts the cooling plate.
  • the new energy vehicle power battery assembly of the present invention includes a cooling plate as the outermost structure.
  • the cooling plate provides heat dissipation and protection for internal components.
  • the cooling plate is a metal plate. More preferably, the cooling plate is an aluminum plate.
  • said cooling plate comprises one or more ducts.
  • the one or more pipes can be circulated by a circulating medium (for example, water), so that the cooling water can be circulated to cool the new energy vehicle power battery assembly when heat dissipation is required, and the heat can be circulated when the power battery assembly needs to be disassembled. water to soften the functional layer.
  • said one or more conduits are circulation conduits located inside said cooling plate.
  • Fig. 2 shows a schematic cross-sectional view of a part of a new energy vehicle power battery assembly 7 according to an embodiment of the present invention.
  • the new energy vehicle power battery assembly 7 includes: a battery module 8; a thermally conductive structural adhesive layer 9 in contact with the battery module 8; a functional layer 3 in contact with the thermally conductive structural adhesive layer 9; and adjacent to the functional layer 3
  • the cooling plate 6 6.
  • the new energy vehicle power battery assembly further includes an insulating layer located between the functional layer and the cooling plate and/or between the functional layer and the battery module.
  • the insulating layer can provide excellent electrical insulation effect for the power battery assembly of the new energy vehicle.
  • the specific material constituting the insulating layer which can be properly selected from the insulating materials commonly used in the field of new energy vehicle power batteries, as long as the material has excellent electrical insulation properties and has excellent resistance to functional layers and cooling plates. Adhesiveness is sufficient.
  • the insulating material constituting the insulating layer is epoxy resin insulating material.
  • the thickness of the insulating layer is in the range of 25 ⁇ m to 50 ⁇ m.
  • Fig. 3 shows a schematic cross-sectional view of a part of a new energy vehicle power battery assembly 7 according to another embodiment of the present invention.
  • the new energy vehicle power battery assembly 7 includes sequentially contacting each other: a battery module 8 , a thermally conductive structural adhesive layer 9 , a functional layer 3 , an insulating layer 4 and a cooling plate 6 .
  • cooling plate heating the cooling plate to a range of 70°C-100°C, preferably 70°C-80°C;
  • the thermally conductive structural adhesive layer is separated from the cooling plate.
  • the step of heating the cooling plate to the range of 70°C-100°C includes: pumping a heating fluid through the circulation pipe, preferably, pumping the heating fluid through the One or more circulation pipes inside the plate.
  • the heating fluid is water.
  • Embodiment 1 is an encapsulation sheet for a power battery of a new energy vehicle, the encapsulation sheet includes a functional layer, the functional layer includes a thermoplastic polymer, and the glass transition temperature of the thermoplastic polymer is 40 °C to 67 °C and the number average molecular weight is in the range of 10000 to 23000.
  • Embodiment 2 is the packaging sheet for new energy vehicle power batteries according to Embodiment 1, wherein the thickness of the functional layer is in the range of 10 ⁇ m to 100 ⁇ m.
  • Embodiment 3 is the packaging sheet for new energy vehicle power batteries according to Embodiment 1, wherein the thermoplastic polymer comprises thermoplastic copolyester, thermoplastic polyacrylate, thermoplastic polyamide, thermoplastic polyimide One or more of amines, thermoplastic polyethers and thermoplastic rubbers.
  • the thermoplastic polymer comprises thermoplastic copolyester, thermoplastic polyacrylate, thermoplastic polyamide, thermoplastic polyimide One or more of amines, thermoplastic polyethers and thermoplastic rubbers.
  • Embodiment 4 is the packaging sheet for new energy vehicle power batteries according to Embodiment 3, wherein the thermoplastic polymer comprises one or more of thermoplastic copolyester and thermoplastic polyacrylate.
  • Embodiment 5 is the encapsulation sheet for a power battery of a new energy vehicle according to embodiment 1, wherein the encapsulation sheet further includes an insulating layer laminated with the functional layer.
  • Embodiment 6 is the packaging sheet for new energy vehicle power batteries according to Embodiment 5, the thickness of the insulating layer is in the range of 25 ⁇ m to 50 ⁇ m.
  • Embodiment 7 is the encapsulation sheet for new energy vehicle power batteries according to embodiment 5, the encapsulation sheet also includes a thermosetting layer laminated with the insulating layer on the side opposite to the functional layer. polymer layer.
  • Embodiment 8 is the encapsulation sheet for new energy vehicle power batteries according to embodiment 5, the encapsulation sheet further includes an insulating layer laminated with the functional layer on the side opposite to the insulating layer. type layer.
  • Embodiment 9 is the packaging sheet for new energy vehicle power batteries according to Embodiment 1, the packaging sheet further includes a cooling plate, and the cooling plate is directly bonded to the functional layer.
  • Embodiment 10 is the encapsulation sheet for new energy vehicle power batteries according to embodiment 5, the encapsulation sheet also includes a cooling plate, and the cooling plate is on the opposite side to the functional layer.
  • the insulating layers are laminated.
  • Embodiment 11 is the encapsulation sheet for new energy vehicle power battery according to embodiment 7, the encapsulation sheet also includes a cooling plate, and the cooling plate is on the side opposite to the functional layer Laminated with the thermosetting polymer layer.
  • Embodiment 12 is the packaging sheet for new energy vehicle power batteries according to any one of Embodiments 9, 10 and 11, wherein the cooling plate is a metal plate.
  • Embodiment 13 is the packaging sheet for a power battery of a new energy vehicle according to Embodiment 12, wherein the cooling plate is an aluminum plate.
  • Embodiment 14 is the packaging sheet for new energy vehicle power batteries according to any one of Embodiments 9, 10 and 11, wherein the cooling plate includes one or more pipes.
  • Embodiment 15 is the packaging sheet for new energy vehicle power batteries according to Embodiment 14, wherein the one or more pipes are circulation pipes located inside the cooling plate.
  • Embodiment 16 is a new energy vehicle power battery assembly, the new energy vehicle power battery assembly comprising:
  • thermally conductive structural adhesive layer in contact with the battery module
  • the functional layer includes a thermoplastic polymer, and the thermoplastic polymer has a glass transition temperature in a range of 40°C to 67°C and a number average molecular weight in a range of 10,000 to 23,000.
  • Embodiment 17 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the thickness of the functional layer is in the range of 10 ⁇ m to 100 ⁇ m.
  • Embodiment 18 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the thermoplastic polymer comprises thermoplastic copolyester, thermoplastic polyacrylate, thermoplastic polyamide, thermoplastic polyimide, thermoplastic poly One or more of ether and thermoplastic rubber
  • Embodiment 19 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the thermoplastic polymer comprises one or more of thermoplastic copolyester and thermoplastic polyacrylate.
  • Embodiment 20 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the functional layer directly contacts the cooling plate.
  • Embodiment 21 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the thickness of the thermally conductive structural adhesive layer is in the range of 0.5 mm to 2 mm.
  • Embodiment 22 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the cooling plate is a metal plate.
  • Embodiment 23 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the cooling plate is an aluminum plate.
  • Embodiment 24 is the new energy vehicle power battery assembly according to Embodiment 16, wherein the cooling plate includes one or more pipes.
  • Embodiment 25 is the new energy vehicle power battery assembly according to Embodiment 24, wherein the one or more pipes are circulation pipes located inside the cooling plate.
  • Embodiment 26 is the new energy vehicle power battery assembly according to embodiment 16, wherein the new energy vehicle power battery assembly further includes an insulating layer or/or between the functional layer and the cooling plate and including an insulating layer between the functional layer and the battery module.
  • Embodiment 27 is the new energy vehicle power battery assembly according to Embodiment 26, wherein the thickness of the insulating layer is in the range of 25 ⁇ m to 50 ⁇ m.
  • Specific embodiment 28 is a method for disassembling a power battery assembly of a new energy vehicle, the method comprising:
  • the thermally conductive structural adhesive layer is separated from the cooling plate.
  • Embodiment 29 is the method for disassembling a power battery assembly of a new energy vehicle according to Embodiment 28, wherein the step of heating the cooling plate to the range of 70°C-100°C includes:
  • a heating fluid is pumped through the circulation conduit.
  • Embodiment 30 is the method for disassembling a power battery assembly of a new energy vehicle according to Embodiment 29, wherein the heating fluid is water.
  • the dynamic shear properties of the assembly samples obtained in the following Examples and Comparative Examples were tested. Specifically, each of the assembly samples obtained in the following examples and comparative examples was equally divided into three parts, and according to the GB/T 33332-2016 standard, a pulley produced by Instron Company (Instron Company) was used.
  • the tensile testing machine (model Instron 5942) measures the dynamic shear of the sample at 25°C (i.e., room temperature), 55°C (i.e., the general operating temperature of new energy vehicle power batteries), and 80°C (i.e., disassembly temperature). Strength (MPa).
  • the test results are shown in Table 2 below.
  • the dynamic shear strength (MPa) measured at different temperatures in order to ensure that the functional layer has good adhesion to the thermally conductive structural adhesive layer and the cooling plate at the same time, so that the various components of the battery pack are firmly adhered to each other during use
  • the dynamic shear strength at 25°C (ie, room temperature) and the dynamic shear strength at 55°C (ie, the general use temperature of new energy vehicle power batteries) need to be greater than 2.2MPa at the same time.
  • the dynamic shear strength at 80° C. ie, disassembly temperature
  • the dynamic shear strength at 80° C. ie, disassembly temperature
  • thermoplastic polymer AH 645 was dissolved in 70g of methyl ketene to prepare a thermoplastic polymer solution. Then, the thermoplastic polymer solution was dropped onto the surface of an aluminum plate (dimensions: 4 inches by 1 inch by 0.0625 inches), flow spread out, and dry at room temperature. The thickness of the functional layer formed on the aluminum plate was 30 ⁇ m.
  • the high-strength thermally conductive structural adhesive TC 7000 produced by 3M was evenly coated on the functional layer of the aluminum plate prepared above. Subsequently, another aluminum plate (dimensions: 4 inches ⁇ 1 inch ⁇ 0.0625 inches) was covered on the formed thermally conductive structural adhesive layer, so that the overlapping area was 0.5 square inches and the thickness of the thermally conductive structural adhesive layer was controlled. The resulting assembly was cured at room temperature for 3 days to obtain Assembly Sample 1. The thickness of the thermally conductive structural adhesive layer in the assembly sample 1 cured at room temperature was 1 mm.
  • thermoplastic polymer AH 645 was replaced by a mixture of AH 645 and AH 441 in an equal weight ratio of 7:3.
  • thermoplastic polymer AH 645 was replaced by a mixture of AH 645 and AH 441 in an equal weight ratio of 3:7.
  • thermoplastic polymer AH 645 was replaced by a mixture of AH 645 and AH 750 in an equal weight ratio of 6:4.
  • a mixture of AH 441 and AH 353 in a weight ratio of 8:2 by equal weight was used instead of thermoplastic polymer AH 645.
  • the obtained assembly samples have a simple structure and can be used at room temperature (i.e., 25°C) and new energy vehicle power batteries.
  • the adhesion between the functional layer and the thermally conductive structural adhesive layer and the cooling plate is strong at the general use temperature (i.e., 55°C), and it can be disassembled very easily at the disassembly temperature (i.e., 80°C), so that Greatly improve the update and repair efficiency of new energy vehicle power batteries.
  • Comparative Example 5 By the results of Comparative Example 5 (C5), it can be seen that when the number-average molecular weight of the thermoplastic polymer in the functional layer was too large (greater than 23000), the adhesion between the functional layer and the thermally conductive structural adhesive layer and the cooling plate was too large, When disassembling the assembly, even if the cooling plate is heated to a disassembly temperature of 80°C, the thermally conductive structural adhesive layer cannot be separated from the cooling plate.
  • Comparative Example 6 From the results of Comparative Example 6 (C6), it can be seen that when the number average molecular weight of the thermoplastic polymer in the functional layer is too small (less than 10,000), at room temperature (that is, 25°C) and the general use temperature of new energy vehicle power batteries ( That is, the adhesion between the functional layer and the thermally conductive structural adhesive layer and the cooling plate at 55°C) is insufficient, and the power battery pack may have structural failure during use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种用于新能源汽车动力电池的封装片材、一种新能源汽车动力电池组装体(7)以及一种用于拆解新能源汽车动力电池组装体(7)的方法。该封装片材包括功能层(3),该功能层(3)包含热塑性聚合物,并且该热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。根据本方案的用于新能源汽车动力电池封装的封装片材结构简单且容易拆解,并且所得到的新能源汽车动力电池组装体(7)的结构简单、重量轻、电池容积率高,并且尤其是,可以通过非常简便的工艺进行拆解,从而大幅提高电动汽车新能源汽车动力电池的更新和修复效率。

Description

用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法 技术领域
本发明涉及电动汽车新能源汽车动力电池领域,具体而言,本发明提供一种适用于新能源汽车动力电池的封装片材、一种新能源汽车动力电池组装体以及一种用于拆解新能源汽车动力电池组装体的方法。
背景技术
随着全球电动汽车市场的快速发展,新能源汽车动力电池封装技术逐渐成为旨在提高电动汽车的行驶里程和安全性的研究热点。目前,电池包的主流设计包括一个容器和若干个电池模块,其中一个电池模块包括若干个电芯。容器的箱体内设有横梁、纵梁、边梁和底板,将各电池模组紧密固定在一起。然而,以上封装设计显示出下列明显的缺点:横梁的存在使得箱体的体积效率至多为40%,这限制了内部容纳的电池模块数量,从而进一步限制了电动汽车的行驶里程;大量的紧固件(如螺钉)将电池模块固定在横梁上,而这些紧固件以及横梁、纵梁、边梁和底板增加了箱体的重量;该电池包的设计制造工艺复杂。
为了克服上述缺点,目前逐渐采用的工艺是采用导热结构胶将电池或电池模块直接固定在冷却板上。与金属机械紧固件相比,同时作为有机结构粘合剂的导热结构胶的使用大大减轻了重量并且更容易操作。根据这种工艺可以将箱体的体积效率提高到60%以上。
然而,以上设计虽然提高了电池包的体积效率并且减轻了其重量,以上方法的缺陷在于这种电池包难以拆卸。这是因为目前采用的导热结构胶均具有非常高的粘合强度,以将电池包的各个单元牢固地粘合在一起,从而足以承受所有潜在的故障模式。在使用过程中,一旦某个电池单元发生故障,就很难将电池包拆卸以剔除掉产生故障的电池单元。
因此,开发出一种结构简单、容易拆解的用于新能源汽车动力电池的封装片材以及一种结构简单、重量轻、电池容积率高并且尤其是容易拆解的新能源汽车动力电池包产品具有重要的意义。
发明内容
从以上阐述的技术问题出发,本发明的目的是提供一种结构简单、容易拆解的用于新能源汽车动力电池的封装片材、一种结构简单、重量轻、电池容积率高并且尤其是容易拆解的新能源汽车动力电池组装体,以及一种用于拆解新能源汽车动力电池组装体的方法。
本发明的发明人经过深入细致的研究,完成了本发明。
根据本发明的一个方面,提供了一种用于新能源汽车动力电池的封装片材,所述封装片材包括功能层,所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
根据本发明的另一个方面,提供了一种新能源汽车动力电池组装体,所述新能源汽车动力电池组装体包括:
电池模块;
与所述电池模块接触的导热结构胶层;
与所述导热结构胶层接触的功能层;和
临近所述功能层的冷却板,其中
所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
根据本发明的再一个方面,提供了一种用于拆解如上所述的新能源汽车动力电池组装体的方法,所述方法包括:
将所述冷却板加热到70℃-100℃的范围内;和
将所述导热结构胶层与所述冷却板分离。
与本领域中的现有技术相比,本发明的优点在于:该用于新能源汽车动力电池的封装片材结构简单且容易拆解,可以用于封装新能源汽车动力电池,并且所得到的新能源汽车动力电池组装体的结构简单、重量轻、电池容积率高,并且尤其是,根据本发明的新能源汽车动力电池组装体可以通过非常简便的工艺进行拆解,从而大幅提高新能源汽车动力电池的更新和修复效率。
附图说明
结合在此并且构成本说明书的一部分的附图示出本发明的示例性实施方案,并且与以上提供的一般描述和以下提供的详细描述一起起到解释本发明的特征的作用。
图1显示根据本发明的一个实施方案的用于新能源汽车动力电池的封装片材的横截面示意图;
图2显示根据本发明的一个实施方案的新能源汽车动力电池组装体的一部分的横截面示意图;和
图3显示根据本发明的另一个实施方案的新能源汽车动力电池组装体的一部分的横截面示意图。
具体实施方式
应当理解,在不脱离本公开的范围或精神的情况下,本领域技术人员能够根据本说明书的教导设想其他各种实施方案并能够对其进行修改。因此,以下的具体实施方式不具有限制性意义。
除非另外指明,否则本说明书和权利要求中使用的表示特征尺寸、数量和物化特性的所有数字均应该理解为在所有情况下均是由术语“约”来修饰的。因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
本发明的发明人通过研究发现,通过在新能源汽车动力电池包中的起到粘合和导热作用的导热结构胶与冷却板之间引入具有特定结构特征的功能层,可以实现新能源汽车动力电池的简便拆解。具体地,所述功能层中的热塑性聚合物与导热结构胶和冷却板之间在新能源汽车动力电池的常规工作温度(约55℃)以下均具有良好的粘合性和较高的模量,能够实现对新能源汽车动力电池的牢固组装。另一方面,当将所述功能层加热到一定温度时,该功能层经历从玻璃态到橡胶态的转变,发生内聚破坏从而变软,便于将导热结构胶层与冷却板分离,从而可以简便地拆解新能源汽车动力电池组装体。
具体地,根据本发明的一个方面,提供了一种用于新能源汽车动力电池的 封装片材,所述封装片材包括功能层,所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
根据本发明的用于新能源汽车动力电池的封装片材包括功能层。当将所述封装片材用于封装动力电池时,通过在动力电池包中的导热结构胶层与冷却板之间引入功能层,可以在需要剔除故障电池部件时实现动力电池包的简便拆解。具体地,所述功能层中的热塑性聚合物与导热结构胶和冷却板之间在室温和动力电池的常规工作温度(约55℃)以下均具有良好的粘合性和较高的模量,能够实现对动力电池包的牢固组装。另一方面,当将所述功能层加热到一定温度时,该功能层经历从玻璃态到橡胶态的转变,发生内聚破坏从而变软,便于将导热结构胶层与冷却板分离,从而便利地拆解动力电池组装体。根据本发明的技术方案,所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。本发明的发明人发现,当热塑性聚合物的玻璃化转变温度低于40℃时,热塑性聚合物在室温以及新能源汽车动力电池的常规工作温度(约55℃)的粘合性不足,无法实现对新能源汽车动力电池组装体中各个部件的有效牢固粘合组装,另一方面,当热塑性聚合物的玻璃化转变温度高于67℃时,热塑性聚合物的粘合性变得过高,即使将冷却板加热到高于80℃的拆解温度也无法实现导热结构胶层与冷却板之间的有效分离,而高于80℃,尤其是高于100℃的拆解温度则有可能导致内部的电池模块受热损坏。此外,本发明的发明人发现,当热塑性聚合物的数均分子量低于10000时,即使其玻璃化转变温度在40℃至67℃的范围内,该热塑性聚合物在室温以及新能源汽车动力电池的常规工作温度(约55℃)的粘合性也不足,无法实现对新能源汽车动力电池组装体中各个部件的有效粘合组装,另一方面,当热塑性聚合物的数均分子量高于23000时,即使其玻璃化转变温度在40℃至67℃的范围内,热塑性聚合物的粘合性也过高,将冷却板加热到高于80℃的温度也无法实现导热结构胶层与冷却板之间的有效分离。根据本发明的技术方案,所述功能层的厚度在10μm至100μm的范围内。当功能层的厚度小于10μm时,无法实现对相邻导热结构胶层和冷却板的有效粘合,另一方面,当功能层的厚度大于100μm时,相邻的电池模块之 间的导热系数明显降低。优选地,所述热塑性聚合物包含热塑性共聚酯、热塑性聚丙烯酸酯、热塑性聚酰胺、热塑性聚酰亚胺、热塑性聚醚和热塑性橡胶中等的一种或多种。优选地,所述热塑性聚合物包含热塑性共聚酯和热塑性聚丙烯酸酯中的一种或多种。优选地,所述热塑性共聚酯为由多元醇和多元酸通过缩聚反应生成的高分子化合物,而所述热塑性聚丙烯酸酯为由一种或多种丙烯酸酯单体通过加聚反应生成的高分子化合物。可以在本发明中使用的热塑性共聚酯和热塑性聚丙烯酸酯可根据已知的合成方法制备或者可以直接商购获得。例如,可以在本发明中使用的热塑性共聚酯和热塑性聚丙烯酸酯的具体实例包括:由苏州瀚海新材料有限公司生产的AH 645(Tg=67℃;M n=15000)、AH 441(Tg=40℃;M n=12000)、AH 550(Tg=53℃;M n=21000)、AH 469(Tg=48℃;M n=23000)以及由上海博立尔化工有限公司生产的BM 52(Tg=60℃;M n=23000)。
优选地,所述封装片材还包括与所述功能层层叠的绝缘层。该绝缘层能够对通过该封装片材得到的新能源汽车动力电池组装体提供优良的电绝缘效果。对构成绝缘层的具体材料没有特别限制,其可以在新能源汽车动力电池领域中通常采用的绝缘材料中进行适当选择,只要该材料具有优良的电绝缘性质并且对功能层和冷却板具有优良的粘合性即可。优选地,构成绝缘层的绝缘材料为环氧树脂类绝缘材料。优选地,绝缘层的厚度在25μm至50μm的范围内。
优选地,所述封装片材还包括在与所述功能层相反一侧上与所述绝缘层层叠的热固性聚合物层。所述热固性聚合物层用于在封装新能源汽车动力电池时通过热压工艺粘附到冷却板。对可以采用的热固性聚合物的具体类型没有特别限制,可以在新能源汽车动力电池领域中常规使用的各种热固性材料中进行常规选择。此外,对该热固性聚合物层的厚度没有要求,只要其能够保证封装片材对冷却板的牢固贴合即可。
根据本发明的优选实施方案,所述封装片材还包括在与所述绝缘层相反一侧上与所述功能层层叠的离型层。
根据本发明的优选实施方案,所述封装片材还包括与冷却板,所述冷却板在与所述功能层相反一侧上与所述热固性聚合物层层叠。
根据本发明的封装片材可以包括作为最外层结构的冷却板。冷却板能够对 电池包内部部件提供散热和保护作用。根据本发明的优选实施方案,所述冷却板与所述功能层直接贴合。根据本发明的优选实施方案,所述冷却板在与所述功能层相反一侧上与所述绝缘层层叠。根据本发明的优选实施方案,所述冷却板在与所述功能层相反一侧上与所述热固性聚合物层层叠。
优选地,所述冷却板为金属板。更优选地,所述冷却板为铝板。根据本发明的优选实施方案,所述冷却板包括一个或多个管道。所述一个或多个管道可供循环介质(例如,水)循环通过,以在需要散热时循环冷却水对动力电池组装体加以冷却,并且在需要拆解动力电池组装体时循环热水来软化功能层。优选地,所述一个或多个管道为位于所述冷却板内部的循环管道。
优选地,根据本发明的用于新能源汽车动力电池的封装片材仅包括所述功能层。
优选地,根据本发明的用于新能源汽车动力电池的封装片材包括彼此层叠在一起的功能层和冷却板。
优选地,根据本发明的用于新能源汽车动力电池的封装片材包括彼此层叠在一起的功能层和绝缘层。
优选地,根据本发明的用于新能源汽车动力电池的封装片材包括依次层叠在一起的功能层、绝缘层和冷却板。
优选地,根据本发明的用于新能源汽车动力电池的封装片材包括依次层叠的功能层、绝缘层和热固性聚合物层。
优选地,根据本发明的用于新能源汽车动力电池的封装片材包括依次层叠的离型层、功能层、绝缘层和热固性聚合物层。
优选地,根据本发明的用于新能源汽车动力电池的封装片材包括依次层叠的离型层、功能层、绝缘层、热固性聚合物层和冷却板。
任选地,所述绝缘层和热固性聚合物层还可以位于所述功能层的与所述冷却板相反的一侧。例如,根据本发明的用于新能源汽车动力电池的封装片材包括依次层叠的离型层、绝缘层、热固性聚合物层、功能层和冷却板,或者,包括依次层叠的离型层、热固性聚合物层、绝缘层、功能层和冷却板。然而,优选地,所述绝缘层位于所述功能层的接近冷却板的一侧,以对内部整体封装的各个部件提供良好的绝缘效果。此外,所述热固性聚合物层也位于所述功能层 的接近冷却板的一侧,以在制造过程中将内部的整个封装结构通过所述热固性聚合物层经由热压工艺贴附到冷却板上。
图1显示了根据本发明的一个优选实施方案的用于新能源汽车动力电池的封装片材1的横截面示意图。如图1中所示,用于新能源汽车动力电池的封装片材1包括依次层叠的离型层2、功能层3、绝缘层4、热固性聚合物层5和冷却板6。
根据本发明的另一个方面,提供了一种新能源汽车动力电池组装体,所述新能源汽车动力电池组装体包括:
电池模块;
与所述电池模块接触的导热结构胶层;
与所述导热结构胶层接触的功能层;和
临近所述功能层的冷却板,其中
所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
对可以在根据本发明的新能源汽车动力电池组装体中使用的电池模块的类型没有特别限制,其可以是当前电动汽车领域中采用的任一类型的电池模块,包括锂离子动力电池、磷酸铁锂动力电池等。任选地,根据本发明的新能源汽车动力电池组装体可以包括一个或多个电池模块,所述一个电池模块由导热结构胶包封,或者所述多个电池模块由导热结构胶彼此间隔开并且整体包封。
根据本发明的新能源汽车动力电池组装体包括与所述电池模块接触的导热结构胶层。使用该导热结构胶层的一个目的是作为结构粘合剂以将相邻的电池模块牢固地粘合在一起,其另一个目的是在相邻的电池模块之间有效地传导电池产生的热量。对可以在根据本发明的新能源汽车动力电池组装体中使用的导热结构胶的具体类型没有特别限制,其可以根据已知的方法制备或者可以直接商购获得。例如,可以采用的导热结构胶的示例性产品包括:由3M公司生产的TC 7000导热结构胶。所述导热结构胶层的厚度在0.5mm至2mm的范围内。当该导热结构胶层的厚度小于0.5mm时无法实现相邻的电池模块之间的有效粘合,而当该导热结构胶层的厚度大于2mm时会导致相邻的电池模块之间的导热系数明显降低。
根据本发明的新能源汽车动力电池组装体包括接触导热结构胶层并且临近冷却板的功能层。通过在动力电池包中的导热结构胶层与冷却板之间引入功能层,可以在需要剔除故障电池部件时实现动力电池包的简便拆解。具体地,所述功能层中的热塑性聚合物与导热结构胶和冷却板之间在室温和新能源汽车动力电池的常规工作温度(约55℃)以下均具有良好的粘合性和较高的模量,能够实现对动力电池包的牢固组装。另一方面,当将所述功能层加热到一定温度时,该功能层经历从玻璃态到橡胶态的转变,发生内聚破坏从而变软,便于将导热结构胶层与冷却板分离,从而便利地拆解新能源汽车动力电池组装体。根据本发明的技术方案,所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。本发明的发明人发现,当热塑性聚合物的玻璃化转变温度低于40℃时,热塑性聚合物在室温以及新能源汽车动力电池的常规工作温度(约55℃)的粘合性不足,无法实现对新能源汽车动力电池组装体中各个部件的有效牢固粘合组装,另一方面,当热塑性聚合物的玻璃化转变温度高于67℃时,热塑性聚合物的粘合性变得过高,即使将冷却板加热到高于80℃的拆解温度也无法实现导热结构胶层与冷却板之间的有效分离,而高于80℃,尤其是高于100℃的拆解温度则有可能导致内部的电池模块受热损坏。此外,本发明的发明人发现,当热塑性聚合物的数均分子量低于10000时,即使其玻璃化转变温度在40℃至67℃的范围内,该热塑性聚合物在室温以及新能源汽车动力电池的常规工作温度(约55℃)的粘合性也不足,无法实现对新能源汽车动力电池组装体中各个部件的有效粘合组装,另一方面,当热塑性聚合物的数均分子量高于23000时,即使其玻璃化转变温度在40℃至67℃的范围内,热塑性聚合物的粘合性也过高,将冷却板加热到高于80℃的温度也无法实现导热结构胶层与冷却板之间的有效分离。根据本发明的技术方案,所述功能层的厚度在10μm至100μm的范围内。当功能层的厚度小于10μm时,无法实现对相邻导热结构胶层和冷却板的有效粘合,另一方面,当功能层的厚度大于100μm时,相邻的电池模块之间的导热系数明显降低。优选地,所述热塑性聚合物包含热塑 性共聚酯、热塑性聚丙烯酸酯、热塑性聚酰胺、热塑性聚酰亚胺、热塑性聚醚和热塑性橡胶中等的一种或多种。优选地,所述热塑性聚合物包含热塑性共聚酯和热塑性聚丙烯酸酯中的一种或多种。优选地,所述热塑性共聚酯为由多元醇和多元酸通过缩聚反应生成的高分子化合物,而所述热塑性聚丙烯酸酯为由一种或多种丙烯酸酯单体通过加聚反应生成的高分子化合物。可以在本发明中使用的热塑性共聚酯和热塑性聚丙烯酸酯可根据已知的合成方法制备或者可以直接商购获得。例如,可以在本发明中使用的热塑性共聚酯和热塑性聚丙烯酸酯的具体实例包括:由苏州瀚海新材料有限公司生产的AH 645(Tg=67℃;M n=15000)、AH 441(Tg=40℃;M n=12000)、AH 550(Tg=53℃;M n=21000)、AH 469(Tg=48℃;M n=23000)以及由上海博立尔化工有限公司生产的BM 52(Tg=60℃;M n=23000)。
优选地,当构成功能层的热塑性聚合物具有优良的电绝缘性质时,所述功能层直接接触所述冷却板。
本发明的新能源汽车动力电池组装体包括作为最外层结构的冷却板。冷却板能够对内部部件提供散热和保护作用。优选地,所述冷却板为金属板。更优选地,所述冷却板为铝板。根据本发明的优选实施方案,所述冷却板包括一个或多个管道。所述一个或多个管道可供循环介质(例如,水)循环通过,以在需要散热时循环冷却水对新能源汽车动力电池组装体加以冷却,并且在需要拆解动力电池组装体时循环热水来软化功能层。优选地,所述一个或多个管道为位于所述冷却板内部的循环管道。
图2显示了根据本发明的一个实施方案的新能源汽车动力电池组装体7的一部分的横截面示意图。该新能源汽车动力电池组装体7包括:电池模块8;与所述电池模块8接触的导热结构胶层9;与所述导热结构胶层9接触的功能层3;和临近所述功能层3的冷却板6。
根据本发明的优选实施方案,所述新能源汽车动力电池组装体还包括位于所述功能层和所述冷却板之间和/或位于所述功能层和所述电池模块之间的绝缘层。该绝缘层能够对新能源汽车动力电池组装体提供优良的电绝缘效果。对构成绝缘层的具体材料没有特别限制,其可以在新能源汽车动力电池领域中通 常采用的绝缘材料中进行适当选择,只要该材料具有优良的电绝缘性质并且对功能层和冷却板具有优良的粘合性即可。优选地,构成绝缘层的绝缘材料为环氧树脂类绝缘材料。优选地,绝缘层的厚度在25μm至50μm的范围内。
图3显示了根据本发明的另一个实施方案的新能源汽车动力电池组装体7的一部分的横截面示意图。该新能源汽车动力电池组装体7包括依次彼此接触的:电池模块8、导热结构胶层9、功能层3、绝缘层4和冷却板6。
根据本发明的再一个方面,提供了一种用于拆解以上所述的新能源汽车动力电池组装体的方法,所述方法包括:
将所述冷却板加热到70℃-100℃、优选70℃-80℃的范围内;和
将所述导热结构胶层与所述冷却板分离。
根据本发明的某些实施方案,将所述冷却板加热到70℃-100℃的范围内的步骤包括:泵送加热流体通过所述循环管道,优选地,泵送加热流体通过位于所述冷却板内部的一个或多个循环管道。优选地,所述加热流体为水。
通过以下实施方案的列表来进一步说明本发明的各种示例性实施方案,其不应被解释为不适当地限制本发明:
具体实施方案1是一种用于新能源汽车动力电池的封装片材,所述封装片材包括功能层,所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
具体实施方案2是根据具体实施方案1所述的用于新能源汽车动力电池的封装片材,其中所述功能层的厚度在10μm至100μm的范围内。
具体实施方案3是根据具体实施方案1所述的用于新能源汽车动力电池的封装片材,其中所述热塑性聚合物包含热塑性共聚酯、热塑性聚丙烯酸酯、热塑性聚酰胺、热塑性聚酰亚胺、热塑性聚醚和热塑性橡胶中的一种或多种。
具体实施方案4是根据具体实施方案3所述的用于新能源汽车动力电池的封装片材,其中所述热塑性聚合物包含热塑性共聚酯和热塑性聚丙烯酸酯中的一种或多种。
具体实施方案5是根据具体实施方案1所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括与所述功能层层叠的绝缘层。
具体实施方案6是根据具体实施方案5所述的用于新能源汽车动力电池的封装片材,所述绝缘层的厚度在25μm至50μm的范围内。
具体实施方案7是根据具体实施方案5所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括在与所述功能层相反一侧上与所述绝缘层层叠的热固性聚合物层。
具体实施方案8是根据具体实施方案5所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括在与所述绝缘层相反一侧上与所述功能层层叠的离型层。
具体实施方案9是根据具体实施方案1所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括冷却板,所述冷却板与所述功能层直接贴合。
具体实施方案10是根据具体实施方案5所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括冷却板,所述冷却板在与所述功能层相反一侧上与所述绝缘层层叠。
具体实施方案11是根据具体实施方案7所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括与冷却板,所述冷却板在与所述功能层相反一侧上与所述热固性聚合物层层叠。
具体实施方案12是根据具体实施方案9、10和11中任一项所述的用于新能源汽车动力电池的封装片材,其中所述冷却板为金属板。
具体实施方案13是根据具体实施方案12所述的用于新能源汽车动力电池的封装片材,其中所述冷却板为铝板。
具体实施方案14是根据具体实施方案9、10和11中任一项所述的用于新能源汽车动力电池的封装片材,其中所述冷却板包括一个或多个管道。
具体实施方案15是根据具体实施方案14所述的用于新能源汽车动力电池的封装片材,其中所述一个或多个管道为位于所述冷却板内部的循环管道。
具体实施方案16是一种新能源汽车动力电池组装体,所述新能源汽车动力电池组装体包括:
电池模块;
与所述电池模块接触的导热结构胶层;
与所述导热结构胶层接触的功能层;和
临近所述功能层的冷却板,其中
所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
具体实施方案17是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述功能层的厚度在10μm至100μm的范围内。
具体实施方案18是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述热塑性聚合物包含热塑性共聚酯、热塑性聚丙烯酸酯、热塑性聚酰胺、热塑性聚酰亚胺、热塑性聚醚和热塑性橡胶中的一种或多种
具体实施方案19是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述热塑性聚合物包含热塑性共聚酯和热塑性聚丙烯酸酯中的一种或多种。
具体实施方案20是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述功能层直接接触所述冷却板。
具体实施方案21是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述导热结构胶层的厚度在0.5mm至2mm的范围内。
具体实施方案22是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述冷却板为金属板。
具体实施方案23是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述冷却板为铝板。
具体实施方案24是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述冷却板包括一个或多个管道。
具体实施方案25是根据具体实施方案24所述的新能源汽车动力电池组装体,其中所述一个或多个管道为位于所述冷却板内部的循环管道。
具体实施方案26是根据具体实施方案16所述的新能源汽车动力电池组装体,其中所述新能源汽车动力电池组装体还包括位于所述功能层和所述冷却板之间的绝缘层或/和包括位于所述功能层和所述电池模块之间的绝缘层。
具体实施方案27是根据具体实施方案26所述的新能源汽车动力电池组装体,其中所述绝缘层的厚度在25μm至50μm的范围内。
具体实施方案28是一种用于拆解新能源汽车动力电池组装体的方法,所 述方法包括:
将所述冷却板加热到70℃-100℃的范围内;和
将所述导热结构胶层与所述冷却板分离。
具体实施方案29是根据具体实施方案28所述的用于拆解新能源汽车动力电池组装体的方法,其中将所述冷却板加热到70℃-100℃的范围内的步骤包括:
泵送加热流体通过所述循环管道。
具体实施方案30是根据具体实施方案29所述的用于拆解新能源汽车动力电池组装体的方法,其中所述加热流体为水。
下面结合实施例对本发明进行更详细的描述。需要指出,这些描述和实施例都是为了使本发明便于理解,而非对本发明的限制。本发明的保护范围以所附的权利要求书为准。
实施例
在本发明中,除非另外指出,所采用的试剂均为商购产品,直接使用而没有进一步纯化处理。此外,所提及的“份”为“重量份”。
测试方法
动态剪切强度(MPa)
对在以下各项实施例和比较例中得到的组装体样品的动态剪切性质进行测试。具体地,将在以下各项实施例和比较例中得到的组装体样品各自平均分为三份,并且根据GB/T 33332-2016标准,采用由英斯特朗公司(Instron Company)生产的拉伸试验机(型号Instron 5942)分别在25℃(即,室温)、55℃(即,新能源汽车动力电池的一般使用温度)、80℃(即,拆解温度)下测量样品的动态剪切强度(MPa)。测试结果显示在以下表2中。
关于在不同温度下测量得到的动态剪切强度(MPa),为了保证功能层对导热结构胶层和冷却板同时具有良好的粘附性以使得电池包在使用过程中各个部件彼此稳固地粘附在一起,在25℃(即,室温)的动态剪切强度和在55℃(即,新能源汽车动力电池的一般使用温度)的动态剪切强度需要同时大于2.2MPa。 另外,为了实现容易拆解组装体的目的,在80℃(即,拆解温度)的动态剪切强度需要小于0.8MPa。
在以下实施例和比较例中采用的试剂具体列于下表1中:
表1
Figure PCTCN2021125252-appb-000001
实施例1(E1)
将30g热塑性聚合物AH 645溶解在70g甲基乙烯酮中以配制热塑性聚合物溶液。然后,将该热塑性聚合物溶液滴加到铝板(尺寸:4英寸×1英寸×0.0625英寸)的表面上,流动铺平,并且室温干燥。铝板上所形成的功能层的厚度为30μm。
另外,将由3M公司生产的高强度导热结构胶TC 7000均匀涂布到以上制备的铝板的功能层上。随后,在所形成的导热结构胶层上覆盖另一块铝板(尺寸:4英寸×1英寸×0.0625英寸),使得重叠面积为0.5平方英寸且控制导热结构胶层的厚度。将得到的组装体在室温固化3天,以得到组装体样品1。经室温固化后的组装体样品1中的导热结构胶层的厚度为1mm。
然后,根据如上详细描述的用于测量动态剪切强度(MPa)的方法对组装体样品1进行测试。测试结果显示在以下表2中。
实施例2-14(E2-E14)和比较例1-6(CE1-CE6)
以与实施例1类似的方式制备组装体样品2-14和比较组装体样品1-6,不同之处仅仅在于如以下表2中所示改变热塑性聚合物的具体类型以及所形成 的功能层的厚度。在实施例3中采用的是同等重量的重量比为7∶3的AH 645和AH 441的混合物来代替热塑性聚合物AH 645。在实施例4中采用的是同等重量的重量比为3∶7的AH 645和AH 441的混合物来代替热塑性聚合物AH 645。在比较例3中采用的是同等重量的重量比为6∶4的AH 645和AH 750的混合物来代替热塑性聚合物AH 645。在比较例4中采用的是同等重量的重量比为8∶2的AH 441和AH 353的混合物来代替热塑性聚合物AH 645。
然后,根据如上详细描述的用于测量动态剪切强度(MPa)的方法对组装体样品2-14和比较组装体样品1-6各自进行测试。测试结果显示在以下表2中。
Figure PCTCN2021125252-appb-000002
由以上表2中所示的测试结果可知,当根据本发明的技术方案制备组装体样品E1-E14时,所得到组装体样品结构简单,在室温(即,25℃)以及新能源汽车动力电池的一般使用温度(即,55℃)下功能层与导热结构胶层和冷却板之间的粘合性强,并且能够在拆解温度(即,80℃)下非常简便地进行拆解,从而大幅提高新能源汽车动力电池的更新和修复效率。
通过比较例1(C1)和比较例4(C4)的结果可知,当功能层中的热塑性聚合物的玻璃化温度低于40℃时,在新能源汽车动力电池的一般使用温度(即,55℃)下功能层与导热结构胶层和冷却板之间的粘合性不足,新能源汽车动力电池包在使用过程中有可能产生结构故障。
通过比较例2(C2)和比较例3(C3)的结果可知,当功能层中的热塑性聚合物的玻璃化温度高于67℃时,功能层与导热结构胶层和冷却板之间的粘合性过大,在对组装体进行拆解时,即使将冷却板加热到80℃的拆解温度也无法将导热结构胶层与冷却板分离。
通过比较例5(C5)的结果可知,当功能层中的热塑性聚合物的数均分子量过大(大于23000)时,功能层与导热结构胶层和冷却板之间的粘合性过大,在对组装体进行拆解时,即使将冷却板加热到80℃的拆解温度也无法将导热结构胶层与冷却板分离。
通过比较例6(C6)的结果可知,当功能层中的热塑性聚合物的数均分子量过小(小于10000)时,在室温(即,25℃)以及新能源汽车动力电池的一般使用温度(即,55℃)下功能层与导热结构胶层和冷却板之间的粘合性不足,动力电池包在使用过程中有可能产生结构故障。
需要说明的是,虽然本发明的主题名称之一为一种用于新能源汽车动力电池的封装片材,而且说明书的描述也是以新能源汽车动力电池为例来说明,但可以理解的是本发明的封装片材的使用并不限于用于新能源汽车动力电池,也可以用于类似要求的其他产品上。
尽管本发明中已经示出和描述了具体的实施方式,但本领域技术人员将懂得,可以用各种替代的和/或等同的实施方式代替所示和所描述的具体实施方式,而不脱离本发明的范围。本申请意欲包括对本发明中讨论的具体实施方式的任何改进或更改。因此,本发明仅受限于权利要求及其等同物。
本领域技术人员应当理解,在不背离本发明范围的情况下,可以进行多种修改和改变。这样的修改和改变意欲落入如后附权利要求所限定的本发明的范围之内。

Claims (30)

  1. 一种用于新能源汽车动力电池的封装片材,所述封装片材包括功能层,所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
  2. 根据权利要求1所述的用于新能源汽车动力电池的封装片材,其中所述功能层的厚度在10μm至100μm的范围内。
  3. 根据权利要求1所述的用于新能源汽车动力电池的封装片材,其中所述热塑性聚合物包含热塑性共聚酯、热塑性聚丙烯酸酯、热塑性聚酰胺、热塑性聚酰亚胺、热塑性聚醚和热塑性橡胶中的一种或多种。
  4. 根据权利要求3所述的用于新能源汽车动力电池的封装片材,其中所述热塑性聚合物包含热塑性共聚酯和热塑性聚丙烯酸酯中的一种或多种。
  5. 根据权利要求1所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括与所述功能层层叠的绝缘层。
  6. 根据权利要求5所述的用于新能源汽车动力电池的封装片材,所述绝缘层的厚度在25μm至50μm的范围内。
  7. 根据权利要求5所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括在与所述功能层相反一侧上与所述绝缘层层叠的热固性聚合物层。
  8. 根据权利要求5所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括在与所述绝缘层相反一侧上与所述功能层层叠的离型层。
  9. 根据权利要求1所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括冷却板,所述冷却板与所述功能层直接贴合。
  10. 根据权利要求5所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括冷却板,所述冷却板在与所述功能层相反一侧上与所述绝缘层层叠。
  11. 根据权利要求7所述的用于新能源汽车动力电池的封装片材,所述封装片材还包括冷却板,所述冷却板在与所述功能层相反一侧上与所述热固性聚合物层层叠。
  12. 根据权利要求9、10和11中任一项所述的用于新能源汽车动力电池的 封装片材,其中所述冷却板为金属板。
  13. 根据权利要求12所述的用于新能源汽车动力电池的封装片材,其中所述冷却板为铝板。
  14. 根据权利要求9、10和11中任一项所述的用于新能源汽车动力电池的封装片材,其中所述冷却板包括一个或多个管道。
  15. 根据权利要求14所述的用于新能源汽车动力电池的封装片材,其中所述一个或多个管道为位于所述冷却板内部的循环管道。
  16. 一种新能源汽车动力电池组装体,所述新能源汽车动力电池组装体包括:
    电池模块;
    与所述电池模块接触的导热结构胶层;
    与所述导热结构胶层接触的功能层;和
    临近所述功能层的冷却板,其中
    所述功能层包含热塑性聚合物,并且所述热塑性聚合物的玻璃化转变温度在40℃至67℃的范围内且数均分子量在10000至23000的范围内。
  17. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述功能层的厚度在10μm至100μm的范围内。
  18. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述热塑性聚合物包含热塑性共聚酯、热塑性聚丙烯酸酯、热塑性聚酰胺、热塑性聚酰亚胺、热塑性聚醚和热塑性橡胶中的一种或多种。
  19. 根据权利要求18所述的新能源汽车动力电池组装体,其中所述热塑性聚合物包含热塑性共聚酯和热塑性聚丙烯酸酯中的一种或多种。
  20. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述功能层直接接触所述冷却板。
  21. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述导热结构胶层的厚度在0.5mm至2mm的范围内。
  22. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述冷却板为金属板。
  23. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述冷却板 为铝板。
  24. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述冷却板包括一个或多个管道。
  25. 根据权利要求24所述的新能源汽车动力电池组装体,其中所述一个或多个管道为位于所述冷却板内部的循环管道。
  26. 根据权利要求16所述的新能源汽车动力电池组装体,其中所述新能源汽车动力电池组装体还包括位于所述功能层和所述冷却板之间的绝缘层和/或包括位于所述功能层和所述电池模块之间的绝缘层。
  27. 根据权利要求26所述的新能源汽车动力电池组装体,其中所述绝缘层的厚度在25μm至50μm的范围内。
  28. 一种用于拆解根据前述权利要求16至27中任一项所述新能源汽车动力电池组装体的方法,所述方法包括:
    将所述冷却板加热到70℃-100℃的范围内;和
    将所述导热结构胶层与所述冷却板分离。
  29. 根据权利要求28所述的用于拆解新能源汽车动力电池组装体的方法,其中将所述冷却板加热到70℃-100℃的范围内的步骤包括:
    泵送加热流体通过所述循环管道。
  30. 根据权利要求29所述的用于拆解新能源汽车动力电池组装体的方法,其中所述加热流体为水。
PCT/CN2021/125252 2021-10-21 2021-10-21 用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法 WO2023065208A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125252 WO2023065208A1 (zh) 2021-10-21 2021-10-21 用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125252 WO2023065208A1 (zh) 2021-10-21 2021-10-21 用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法

Publications (1)

Publication Number Publication Date
WO2023065208A1 true WO2023065208A1 (zh) 2023-04-27

Family

ID=86058652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125252 WO2023065208A1 (zh) 2021-10-21 2021-10-21 用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法

Country Status (1)

Country Link
WO (1) WO2023065208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116683092A (zh) * 2023-07-28 2023-09-01 赣州吉锐新能源科技股份有限公司 新能源汽车电池的拆解系统及其方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056134A (ja) * 2004-08-20 2006-03-02 Dainippon Printing Co Ltd 熱転写シート及び被転写体
JP2009038236A (ja) * 2007-08-02 2009-02-19 Toppan Printing Co Ltd 太陽電池裏面封止用シート及びこれを用いた太陽電池モジュール
WO2009041581A1 (ja) * 2007-09-27 2009-04-02 Toppan Printing Co., Ltd. 太陽電池裏面封止用シート及びこれを用いた太陽電池モジュール
JP2012119364A (ja) * 2010-11-29 2012-06-21 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
JP2012129427A (ja) * 2010-12-17 2012-07-05 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
WO2013018459A1 (ja) * 2011-08-01 2013-02-07 株式会社クレハ 樹脂積層体フィルム、樹脂積層体フィルムの製造方法、及び太陽電池モジュール用シート
JP2013075517A (ja) * 2011-09-16 2013-04-25 Dainippon Printing Co Ltd 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
JP2013149560A (ja) * 2012-01-23 2013-08-01 Dexerials Corp 電池ケース用包材及び非水電解液二次電池
EP3034558A1 (en) * 2014-12-19 2016-06-22 Samsung SDI Co., Ltd. Thermoplastic resin composition and molded part for automobiles using the same
JP2018147578A (ja) * 2017-03-01 2018-09-20 旭化成株式会社 蓄電デバイス用セパレータ
JP2020170590A (ja) * 2019-04-01 2020-10-15 旭化成株式会社 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056134A (ja) * 2004-08-20 2006-03-02 Dainippon Printing Co Ltd 熱転写シート及び被転写体
JP2009038236A (ja) * 2007-08-02 2009-02-19 Toppan Printing Co Ltd 太陽電池裏面封止用シート及びこれを用いた太陽電池モジュール
WO2009041581A1 (ja) * 2007-09-27 2009-04-02 Toppan Printing Co., Ltd. 太陽電池裏面封止用シート及びこれを用いた太陽電池モジュール
JP2012119364A (ja) * 2010-11-29 2012-06-21 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
JP2012129427A (ja) * 2010-12-17 2012-07-05 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
WO2013018459A1 (ja) * 2011-08-01 2013-02-07 株式会社クレハ 樹脂積層体フィルム、樹脂積層体フィルムの製造方法、及び太陽電池モジュール用シート
JP2013075517A (ja) * 2011-09-16 2013-04-25 Dainippon Printing Co Ltd 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
JP2013149560A (ja) * 2012-01-23 2013-08-01 Dexerials Corp 電池ケース用包材及び非水電解液二次電池
EP3034558A1 (en) * 2014-12-19 2016-06-22 Samsung SDI Co., Ltd. Thermoplastic resin composition and molded part for automobiles using the same
JP2018147578A (ja) * 2017-03-01 2018-09-20 旭化成株式会社 蓄電デバイス用セパレータ
JP2020170590A (ja) * 2019-04-01 2020-10-15 旭化成株式会社 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116683092A (zh) * 2023-07-28 2023-09-01 赣州吉锐新能源科技股份有限公司 新能源汽车电池的拆解系统及其方法
CN116683092B (zh) * 2023-07-28 2023-11-24 赣州吉锐新能源科技股份有限公司 新能源汽车电池的拆解系统及其方法

Similar Documents

Publication Publication Date Title
Zhang et al. A bioinspired polymer‐based composite displaying both strong adhesion and anisotropic thermal conductivity
WO2023065208A1 (zh) 用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法
CN205609583U (zh) 电池模组
CN105977578A (zh) 一种液冷扁管灌封结构及电源装置
WO2017073727A1 (ja) 熱伝導性シート及び半導体モジュール
CN102709618A (zh) 一种用于锂电池散热的微通道冷却均温系统
WO2017092066A1 (zh) 一种橡胶改性的相变导热界面材料及制备方法
CN105820569A (zh) 一种石墨烯/聚酰亚胺复合材料的制备方法
CN109830774A (zh) 自冷却散热集流体及动力电池电芯
CN110437762A (zh) 一种压敏导电胶条及其在光伏电池片贴合中的应用
CN217035874U (zh) 模组无损拆解结构及电池包
WO2020088418A1 (zh) 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件
CN214706056U (zh) 一种运用于新能源汽车电芯的新型相变储热隔热毡
CN108183146A (zh) 一种散热型光伏背板及其制备方法
CN216850134U (zh) 用于新能源汽车动力电池的封装片材和新能源汽车动力电池组装体
CN110336097A (zh) 一种基于电加热复合相变材料的串联结构电池加热系统
CN110978696B (zh) 一种相变控温薄膜及其制备方法
CN113904049A (zh) 用于新能源汽车动力电池的封装片材、新能源汽车动力电池组装体及其拆解方法
CN102469685A (zh) 导热双面软硬结合基板及其制作方法
WO2018129899A1 (zh) 防爆易拆解安全的胶带及其制备方法
CN111890774A (zh) 电池包的热贴膜工艺
CN106785190A (zh) 用于动力电池散热的导热结构及其制备方法
CN115595080A (zh) 一种双面粘结型无初粘边框膜及其制备方法
CN207426083U (zh) Ptc电池加热器
CN205723871U (zh) 一种铝板蚀刻芯片电池加热片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021960958

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021960958

Country of ref document: EP

Effective date: 20240521