WO2023061115A1 - 一种回收磷酸铁锂材料的方法 - Google Patents

一种回收磷酸铁锂材料的方法 Download PDF

Info

Publication number
WO2023061115A1
WO2023061115A1 PCT/CN2022/117763 CN2022117763W WO2023061115A1 WO 2023061115 A1 WO2023061115 A1 WO 2023061115A1 CN 2022117763 W CN2022117763 W CN 2022117763W WO 2023061115 A1 WO2023061115 A1 WO 2023061115A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium iron
heat treatment
temperature heat
current collector
Prior art date
Application number
PCT/CN2022/117763
Other languages
English (en)
French (fr)
Inventor
王嗣慧
柳娜
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023061115A1 publication Critical patent/WO2023061115A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present application relates to the technical field of lithium batteries, in particular to a method for recycling lithium iron phosphate materials, a positive pole piece obtained from the lithium iron phosphate material prepared by the method, and a secondary battery comprising the positive pole piece.
  • lithium-ion batteries have been widely used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields.
  • energy storage power systems such as hydropower, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields.
  • lithium iron phosphate battery is one of the most important power batteries at present.
  • waste positive electrode sheets In the production process of power batteries, it is inevitable to produce waste positive electrode sheets in multiple processes. The generation of waste electrode sheets has caused a lot of waste of positive electrode materials. Under the rising cost of materials and the pressure of environmental protection, these materials should be effectively recycled. It is the general trend.
  • This application is carried out in view of the above-mentioned practical problems, and its purpose is to provide a simple, environmentally friendly, safe, high-yield method for reclaiming lithium iron phosphate materials, so that the obtained lithium iron phosphate materials can be used in the corresponding secondary battery exhibited excellent electrochemical performance, and the method can achieve efficient recycling of aluminum foil.
  • the present application provides a method for recycling lithium iron phosphate material, a positive electrode sheet obtained from the lithium iron phosphate material prepared by the method, and a secondary battery including the positive electrode sheet.
  • the first aspect of the present application provides a method for reclaiming lithium iron phosphate materials from waste lithium iron phosphate pole pieces, the lithium iron phosphate pole pieces are composed of lithium iron phosphate diaphragms and current collectors, and the method comprises the following steps :
  • step (2) Soak the lithium iron phosphate pole piece obtained in step (1) in water, so that the lithium iron phosphate diaphragm is separated from the current collector; recover the current collector, and then filter the remaining solid-liquid mixture to obtain a lithium iron phosphate membrane piece;
  • step (3) drying the lithium iron phosphate diaphragm obtained in step (2);
  • step (3) The lithium iron phosphate diaphragm obtained in step (3) is first subjected to low-temperature heat treatment at 380-600° C., and then mechanically crushed, or the lithium iron phosphate diaphragm obtained in step (3) is first mechanically crushed and then Low-temperature heat treatment at 380-600°C to obtain lithium iron phosphate material powder;
  • step (4) The lithium iron phosphate material powder obtained in step (4) is subjected to high-temperature heat treatment at 650-850° C. to obtain the lithium iron phosphate material.
  • the present application can recover the lithium iron phosphate material in a simple, environmentally friendly, safe and high-yield manner through the method.
  • the method can quickly and simply realize the separation of the lithium iron phosphate material and the current collector; the obtained lithium iron phosphate material has a high recovery rate ( ⁇ 98%), and does not require subsequent treatment of impurities (such as aluminum scraps, etc.), and The interface is repaired by carbon, and can be directly used in the preparation of subsequent electric cores; the safety performance and cycle performance of electric cores made of the lithium iron phosphate material are improved.
  • the porosity of the lithium iron phosphate pole piece before and after extrusion in step (1) satisfies the following formula:
  • the lithium iron phosphate diaphragm After extrusion, the lithium iron phosphate diaphragm is extremely easy to peel off from the current collector, which improves the recovery efficiency, and at the same time allows the pole piece to be soaked loosely, avoiding the introduction of current collector debris due to broken into small pole pieces and subsequent processing steps.
  • soaking in water in step (2) is carried out at a temperature not exceeding 40° C. for 0.05 to 1 hour; the water is domestic water, distilled water, deionized water, industrial water, preferably deionized water. Soaking the pole piece in water at a temperature not exceeding 40°C for 0.05 to 1 hour can reduce the dissolution of metal elements in the lithium iron phosphate material and the destruction of the surface structure, while being safe and environmentally friendly.
  • the current collector is aluminum foil. This makes the lithium iron phosphate material easier to be stripped.
  • step (3) drying is carried out at 100-180° C. in an air atmosphere for 1-12 hours.
  • the obtained lithium iron phosphate material is easier to carry out subsequent mechanical crushing.
  • step (4) the lithium iron phosphate membrane obtained in step (3) is first subjected to low-temperature heat treatment at 380-600° C., and then mechanically crushed. In this way, mechanical crushing can be carried out when the lithium iron phosphate diaphragm is dried more thoroughly, which is easier to crush and more efficient.
  • both the low-temperature heat treatment and the high-temperature heat treatment are performed in an inert atmosphere, and the inert atmosphere is N2, Ar, He, Ne, Kr, Xe, preferably N2 and Ar.
  • Performing the heat treatment in an inert atmosphere can better protect the lithium iron phosphate material from being damaged by oxygen in the air.
  • step (4) the lithium iron phosphate diaphragm is mechanically crushed until the volume average particle diameter Dv50 of the obtained material powder is 0.5-3 ⁇ m.
  • the material powder thus obtained is easier to perform subsequent high-temperature heat treatment, and is conducive to the use of lithium iron phosphate materials.
  • the duration of the high temperature heat treatment in step (5) is 0.5-3 hours, preferably 1-2 hours.
  • the interface of the lithium iron phosphate material is better carbon repaired, and the carbon content is moderate. On the one hand, it ensures the good electronic conductivity of the lithium iron phosphate material, so that its electrochemical performance can be fully exerted and its gram capacity is high.
  • the second aspect of the present application also provides a positive electrode sheet, which includes a current collector and the lithium iron phosphate material obtained by the method described in the first aspect of the present application.
  • the third aspect of the present application provides a secondary battery, which is characterized by comprising the lithium iron phosphate material obtained by the method described in the first aspect of the present application or the positive electrode sheet described in the second aspect of the present application.
  • Fig. 1 is the K value of the full battery of each embodiment and comparative example.
  • Fig. 2 is a schematic flow chart of a method in a preferred embodiment of the present application.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • waste pole pieces In the production process of lithium-ion batteries, waste pole pieces will inevitably be produced. Under the pressure of rising material costs and environmental protection, it is urgent to effectively recycle these waste pole pieces. At present, chemical methods are usually used to recover lithium iron phosphate, which is costly and pollutes seriously. Secondly, during the recycling process by physical methods, the aluminum scrap impurities produced are likely to cause safety risks of battery cells during reuse. If winnowing, sieving, etc. are used to control the content of aluminum scrap, the recovery rate will decrease. If lye is used to clean and remove aluminum shavings, the recovery process is complicated, and the use of lye brings the problem of subsequent waste liquid treatment.
  • lye or organic solvents are also used to soak the pole piece to realize the separation of lithium iron phosphate material and aluminum foil, which can reduce the content of aluminum scrap impurities in recycled materials, but this method also has lye or organic solvents, etc.
  • the problem of waste liquid treatment of chemical reagents, and directly soaking the electrode piece with alkaline solution will generate a large amount of H 2 , which poses a safety risk.
  • the method of the first aspect of the present application achieves a simple, environmentally friendly, safe and high yield of lithium iron phosphate materials by extruding the waste pole piece, then soaking it in water and combining with subsequent specific heat treatment
  • the recovery makes the obtained lithium iron phosphate material exhibit excellent electrochemical performance in the corresponding secondary battery, and at the same time, the method can realize the effective recovery of aluminum foil.
  • the method for recovering lithium iron phosphate material of the present application is applicable to the treatment of waste lithium iron phosphate pole pieces.
  • the waste lithium iron phosphate pole piece refers to the pole piece waste that is not assembled in the battery, such as the waste pole piece and leftover pole piece produced in the process of making battery cells; it does not include secondary batteries that have undergone charge and discharge pole piece.
  • the lithium iron phosphate material includes lithium iron phosphate and carbon.
  • the present application proposes a method for recovering lithium iron phosphate materials from waste lithium iron phosphate pole pieces, the lithium iron phosphate pole piece is composed of a lithium iron phosphate diaphragm and a current collector, and the The method includes the following steps:
  • step (2) Soak the lithium iron phosphate pole piece obtained in step (1) in water, so that the lithium iron phosphate diaphragm is separated from the current collector; recover the current collector, and then filter the remaining solid-liquid mixture to obtain a lithium iron phosphate membrane piece;
  • step (3) drying the lithium iron phosphate diaphragm obtained in step (2);
  • step (3) The lithium iron phosphate diaphragm obtained in step (3) is first subjected to low-temperature heat treatment at 380-600° C., and then mechanically crushed, or the lithium iron phosphate diaphragm obtained in step (3) is first mechanically crushed and then Low-temperature heat treatment at 380-600°C to obtain lithium iron phosphate material powder;
  • step (4) The lithium iron phosphate material powder obtained in step (4) is subjected to high-temperature heat treatment at 650-850° C. to obtain the lithium iron phosphate material.
  • the recovery rate is high, so that the obtained lithium iron phosphate material exhibits excellent electrochemical performance in the corresponding secondary battery, and at the same time, the method can realize the effective recovery of aluminum foil.
  • high-temperature heat treatment can better repair the interface of lithium iron phosphate material, make it have moderate carbon content, high gram capacity, and ensure good electronic conductivity of lithium iron phosphate material.
  • the waste lithium iron phosphate pole piece is prepared by a water-based primer coating process, and the primer layer is composed of a water-based binder and conductive carbon, wherein the water-based binder is sodium carboxymethylcellulose (CMC), poly Tetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylate (PAA), polyacrylamide (PAN), etc., the content of which is 20%-80%.
  • the thickness of the undercoat layer is less than or equal to 5 ⁇ m, and the thickness of the waste lithium iron phosphate pole piece is generally 125 ⁇ m-145 ⁇ m.
  • step (1) the porosity of the lithium iron phosphate pole piece before and after extrusion satisfies the following formula:
  • the porosity of the lithium iron phosphate pole piece before extrusion is usually 35%-45%, and the porosity of the lithium iron phosphate pole piece after extrusion is usually 15%-32%, preferably 19%-28%.
  • the extrusion method is any method generally known to those skilled in the art, preferably rolling.
  • the lithium iron phosphate diaphragm After the porosity of the lithium iron phosphate pole piece reaches a certain level after being squeezed, the lithium iron phosphate diaphragm is extremely easy to peel off from the current collector, which improves the recovery efficiency, and at the same time allows the pole piece to be loosely soaked in the whole piece to avoid broken into pieces. Small pole pieces are introduced into current collector debris and its post-processing steps.
  • step (2) soaking in water is carried out at a temperature not exceeding 40° C., preferably at room temperature, for 0.05 to 1 hour, preferably 0.15-0.35 hour.
  • the temperature should not be too high, otherwise the dissolution of ions will be accelerated, which may affect the element ratio of recycled materials.
  • the immersion time should be appropriate so as to ensure the separation of the lithium iron phosphate diaphragm from the current collector, and at the same time reduce the dissolution of metal elements in the lithium iron phosphate material and the damage to the surface structure of the diaphragm.
  • the water is domestic water, distilled water, deionized water, industrial water, preferably deionized water.
  • the quality of the water is 5-8 times that of the lithium iron phosphate pole piece. This can ensure sufficient immersion of the pole piece by water, and facilitate the separation of the lithium iron phosphate diaphragm from the current collector.
  • the current collector is aluminum foil.
  • the lithium iron phosphate pole piece is usually used as the positive pole piece, and the current collector used for the positive pole can be a metal foil or a composite current collector, preferably a metal foil.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • step (3) drying is carried out at 100-180° C. in an air atmosphere for 1-12 hours.
  • step (4) the lithium iron phosphate membrane obtained in step (3) is mechanically crushed and then subjected to low temperature heat treatment at 380-600°C.
  • the drying in step (3) is carried out for 1-12 hours, preferably 1-6 hours.
  • the obtained lithium iron phosphate material powder is directly subjected to the high-temperature heat treatment of step (5) after the low-temperature heat treatment, which is more conducive to the interface repair of the lithium iron phosphate material, that is, the carbon coating layer of the lithium iron phosphate material is damaged. be repaired more effectively.
  • step (4) the lithium iron phosphate membrane obtained in step (3) is first subjected to low-temperature heat treatment at 380-600° C., and then mechanically crushed, as shown in FIG. 2 .
  • the drying in step (3) is carried out for 1-12 hours, preferably 1-3 hours.
  • the drying time of step (3) can be shortened, and the crushing efficiency can be improved.
  • both the low temperature heat treatment and the high temperature heat treatment are performed in an inert atmosphere.
  • the inert atmosphere is N2, Ar, He, Ne, Kr, Xe, preferably N2 and Ar.
  • the low temperature heat treatment is carried out at a temperature of 380-600°C, preferably 450-550°C for 0.5-5h, preferably 1-2h; the high temperature heat treatment is carried out at a temperature of 650-850°C, preferably 680-780°C for 0.5 - 3 hours, preferably 1-2 hours.
  • the low-temperature heat treatment and high-temperature heat treatment of the lithium iron phosphate material are all in an inert atmosphere to prevent the lithium iron phosphate material from being damaged by oxygen in the air.
  • the lithium iron phosphate diaphragm is mechanically crushed until the volume average particle diameter Dv50 of the obtained material powder is 0.5-3 ⁇ m.
  • the mechanical crushing is carried out by means known to those skilled in the art, such as ball milling, etc., in any suitable commercially available equipment, such as ball mills and the like.
  • the volume average particle diameter of the obtained material powder is 0.5-3 ⁇ m, preferably 0.8-2.0 ⁇ m.
  • the material powder thus obtained is easier to perform subsequent high-temperature heat treatment, and is conducive to the use of lithium iron phosphate materials.
  • the duration of the high temperature heat treatment in step (5) is 0.5-3 hours, preferably 1-2 hours.
  • the carbon content of the obtained lithium iron phosphate material is 1.8%-2.6%.
  • the high-temperature heat treatment can repair the interfacial carbon damage of the lithium iron phosphate material, thereby improving the electrochemical performance of the obtained material.
  • a positive electrode sheet which includes a current collector and the lithium iron phosphate material obtained by the above method.
  • a secondary battery which includes the lithium iron phosphate material obtained by the above method or the above positive electrode sheet.
  • a secondary battery typically includes a positive pole piece, a negative pole piece, an electrolyte, and a separator.
  • active ions are intercalated and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode membrane arranged on at least one surface of the positive electrode current collector, and the positive electrode membrane includes a positive electrode active material, wherein the positive electrode active material comprises iron phosphate obtained by the method of the first aspect of the present application lithium material.
  • the positive current collector has two opposing surfaces in its own thickness direction, and the positive electrode membrane is disposed on any one or both of the two opposing surfaces of the positive current collector.
  • the positive electrode current collector is a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the current collector is aluminum foil.
  • the positive electrode active material is the lithium iron phosphate material obtained by the method of the first aspect of the present application.
  • the positive electrode membrane also optionally includes a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode membrane also optionally includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode collector and a negative electrode film arranged on at least one surface of the negative electrode collector, and the negative electrode film includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode membrane is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode current collector can use a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material may be selected from at least one of simple tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode membrane optionally further includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode membrane may also optionally include a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode membrane may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the present application has no specific limitation on the type of electrolyte, which can be selected according to requirements.
  • electrolytes can be liquid, gel or all solid.
  • the electrolyte is an electrolytic solution.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorodifluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the solvent may be selected from ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte may optionally include additives.
  • additives can include negative film-forming additives, positive film-forming additives, and additives that can improve certain performances of batteries, such as additives that improve battery overcharge performance, additives that improve high-temperature or low-temperature performance of batteries, and the like.
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • the present application has no special limitation on the shape of the secondary battery, which may be cylindrical, square or any other shape.
  • the outer package may include a housing and a cover.
  • the casing may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the casing has an opening communicating with the accommodating cavity, and the cover plate can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly through a winding process or a lamination process.
  • the electrode assembly is packaged in the accommodating chamber. Electrolyte soaks in the electrode assembly.
  • the number of electrode assemblies contained in the secondary battery can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the secondary battery, the battery module, or the battery pack can be used as a power source of an electric device, and can also be used as an energy storage unit of the electric device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • Exemplary devices may also be cell phones, tablets, laptops, and the like.
  • the device is generally required to be light and thin, and a secondary battery can be used as a power source.
  • the obtained iron phosphate material powder was then collected into an alumina sagger, and subjected to high-temperature heat treatment at 750° C. for 1 h in a sintering furnace in a N2 atmosphere to obtain 4.17 kg of lithium iron phosphate material.
  • step (1) the waste lithium iron phosphate pole pieces were respectively rolled to porosity of 35.2%, 30.9% and 19.6%. 4.16kg, 4.16kg and 4.18kg of lithium iron phosphate materials were obtained respectively.
  • step (2) the electrode piece is soaked in deionized water for 1 hour. Obtain 4.18kg of lithium iron phosphate material.
  • step (5) is not performed. Obtain 4.18kg of lithium iron phosphate material.
  • Example 2 Proceed in the same manner as Comparative Example 4, except that the step (5) in Example 1 is continued. Obtain 3.32kg of lithium iron phosphate material.
  • the reference example adopts a secondary battery prepared from fresh lithium iron phosphate material.
  • the lithium iron phosphate material obtained in the above-mentioned Examples 1-8, Comparative Examples 1-5 and the Reference Example, the conductive agent SP and the binder PVDF were mixed in a mass ratio of 90:5:5, and N-methylpyrrolidone ( NMP) is a dispersant, ground into a slurry evenly, and coated on an aluminum foil to make a positive electrode sheet.
  • NMP N-methylpyrrolidone
  • the negative electrode is made of lithium metal sheet, and the button battery is assembled.
  • the cell that has completed the first formation-capacity step is charged to 3V at 0.05C, and the cell voltage V1 is tested at room temperature for 24 hours, and the cell voltage V2 is tested after standing for 48 hours.
  • the k value of the cell (V1- V2)*1000/48, unit mV/h. If the k value is less than or equal to 0.1mV/h, it is considered that the battery is normal. In theory, the closer the k value is to 0, the higher the safety of the battery.
  • comparative examples 1, 3, and 4 are relatively low in material recovery rate, especially in comparative examples 3 and 4, the material recovery rate is only 78%.
  • the gram capacity of the material is low.
  • the gram capacity of the comparative examples 2 and 3 is low because the surface structure of the material cannot be repaired without high temperature treatment.
  • the 5 gram capacity of the comparative example is low because the metal elements are dissolved due to the treatment of lye , material surface damage.
  • metal aluminum scraps could not be completely removed by vibrating sieving after the pole piece was broken. After the material was processed into a battery cell, there was a local internal short circuit that caused the battery cell to leak, and the k value was abnormally large.
  • the method for recycling lithium iron phosphate materials of the present invention realizes simple, environmentally friendly, safe, and high-yield recycling of lithium iron phosphate materials, so that secondary batteries containing the obtained lithium iron phosphate materials exhibit Excellent safety and cycle performance.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供了一种回收磷酸铁锂材料的方法,所述磷酸铁锂极片由磷酸铁锂膜片和集流体组成,所述方法包含以下步骤: (1)将磷酸铁锂极片进行挤压; (2)将步骤(1)中获得的磷酸铁锂极片用水浸泡,使得磷酸铁锂膜片与集流体剥离;将集流体回收,然后将剩余的固液混合物进行过滤,获得磷酸铁锂膜片; (3)将步骤(2)中获得的磷酸铁锂膜片烘干; (4)将步骤(3)中获得的磷酸铁锂膜片先在380-600℃下进行低温热处理,然后进行机械破碎,或者将步骤(3)获得的磷酸铁锂膜片先进行机械破碎然后在380-600℃下进行低温热处理,得到磷酸铁锂材料粉末; (5)将步骤(4)获得的磷酸铁锂材料粉末在650-850℃下进行高温热处理,获得磷酸铁锂材料。

Description

一种回收磷酸铁锂材料的方法 技术领域
本申请涉及锂电池技术领域,尤其涉及一种回收磷酸铁锂材料的方法、由所述方法制备的磷酸铁锂材料获得的正极极片,以及包含所述正极极片的二次电池。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。其中磷酸铁锂电池是目前最重要的动力电池之一。在动力电池的生产过程中的多个工序不可避免会产生废正极极片,废极片的产生造成了大量正极材料的浪费,在材料成本攀升和环保压力下,对这些材料进行有效地回收利用乃大势所趋。
发明内容
本申请是鉴于上述实际问题而进行的,其目的在于,提供一种简单、环保、安全、高收率的回收磷酸铁锂材料的方法,使得所获得的磷酸铁锂材料在相应的二次电池中表现出优异的电化学性能,同时所述方法可实现铝箔的有效回收。
为了达到上述目的,本申请提供了一种回收磷酸铁锂材料的方法、由所述方法制备的磷酸铁锂材料获得的正极极片,以及包含所述正极极片的二次电池。
本申请的第一方面提供了一种从废磷酸铁锂极片中回收磷酸铁锂材料的方法,所述磷酸铁锂极片由磷酸铁锂膜片和集流体组成,所述方法包含以下步骤:
(1)将磷酸铁锂极片进行挤压;
(2)将步骤(1)中获得的磷酸铁锂极片用水浸泡,使得磷酸铁锂膜 片与集流体剥离;将集流体回收,然后将剩余的固液混合物进行过滤,获得磷酸铁锂膜片;
(3)将步骤(2)中获得的磷酸铁锂膜片烘干;
(4)将步骤(3)中获得的磷酸铁锂膜片先在380-600℃下进行低温热处理,然后进行机械破碎,或者将步骤(3)获得的磷酸铁锂膜片先进行机械破碎然后在380-600℃下进行低温热处理,得到磷酸铁锂材料粉末;
(5)将步骤(4)获得的磷酸铁锂材料粉末在650-850℃下进行高温热处理,获得磷酸铁锂材料。
由此,本申请通过所述方法,可以简单、环保、安全、高收率地回收磷酸铁锂材料。具体而言,所述方法能够快速简单地实现磷酸铁锂材料和集流体的分离;所得的磷酸铁锂材料回收率高(≥98%),无需后续除杂(例如铝屑等)处理,并且其界面得以碳修复,可以直接用于后续电芯的制备;由所述磷酸铁锂材料制得的电芯安全性能和循环性能得以改善。
在任意实施方式中,在步骤(1)中挤压前后磷酸铁锂极片的孔隙率满足下式:
1.05≤挤压前的孔隙率与挤压后的孔隙率的比值≤3。
经过挤压后,磷酸铁锂膜片极其容易从集流体上剥离,提高了回收效率,同时使得极片可松散地整片浸泡,避免因破碎成小极片而引入集流体碎屑及其后处理步骤。
在任意实施方式中,在步骤(2)中用水浸泡在不超过40℃的温度下进行0.05至1小时;所述水为生活用水、蒸馏水、去离子水、工业用水,优选去离子水。将极片在不超过40℃的温度下用水浸泡0.05至1小时,可以减少磷酸铁锂材料中金属元素的溶出和表面结构的破坏,同时安全环保。
在任意实施方式中,所述集流体为铝箔。由此使得磷酸铁锂材料更容易被剥离。
在任意实施方式中,在步骤(3)中,烘干在100-180℃下在空气气氛中进行1-12小时。由此获得磷酸铁锂材料更容易进行后续的机械破碎。
在任意实施方式中,在步骤(4)中将步骤(3)中获得的磷酸铁锂膜片先在380-600℃下进行低温热处理,然后进行机械破碎。由此可以在磷 酸铁锂膜片干燥得更彻底的情况下进行机械破碎,更容易破碎而且效率更高。
在任意实施方式中,所述低温热处理和高温热处理均在惰性气氛中进行所述惰性气氛为N2、Ar、He、Ne、Kr、Xe,优选N2和Ar。在惰性气氛中进行所述热处理,可以更好地保护磷酸铁锂材料不被空气中的氧气破坏。
在任意实施方式中,在步骤(4)中,将磷酸铁锂膜片通过机械破碎至所得材料粉末的体积平均粒径Dv50为0.5-3μm。由此获得材料粉末更容易进行后续高温热处理,并有利于磷酸铁锂材料的使用。
在任意实施方式中,在步骤(5)中高温热处理的持续时间为0.5-3小时,优选1-2小时。经过高温热处理,磷酸铁锂材料的界面得到更好地碳修复,且含碳量适中,一方面保证磷酸铁锂材料良好的电子电导性能,使其电化学性能发挥充分,克容量高。
本申请的第二方面还提供一种正极极片,其包含集流体和通过本申请的第一方面所述的方法获得的磷酸铁锂材料。
本申请的第三方面提供一种二次电池,其特征在于,包括通过本申请的第一方面所述的方法获得的磷酸铁锂材料或本申请的第二方面所述的正极极片。
附图说明
图1为各实施例和对比例的全电池的K值。
图2是本申请一优选的实施方式的方法的流程示意图。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的回收磷酸铁锂材料的方法以及包含所述磷酸铁锂材料的正极极片、二次电池的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
在锂离子电池的生产过程中,会不可避免产生废极片,在材料成本攀 升和环保压力下,急需对这些废极片进行有效地回收利用。目前,通常采用化学法对磷酸铁锂进行回收,成本高,污染严重。其次,在物理法回收过程中,产生的铝屑杂质容易引发再利用时的电芯安全风险,若采用风选、分筛等控制铝屑含量又导致回收率降低。若采用碱液清洗除铝屑,回收过程复杂,同时碱液的使用带来后续废液处理的问题。在一些现有技术中还采用碱液或者有机溶剂浸泡极片来实现磷酸铁锂材料和铝箔的分离,这可以减少回收材料中铝屑杂质含量,但这种方法同样存在碱液或者有机溶剂等化学试剂废液处理的问题,并且碱液直接浸泡极片会产生大量H 2,存在安全风险。
发明人在经过大量研究后发现,本申请第一方面的方法通过将废极片挤压,然后用水浸泡并结合后续特定的热处理实现了对磷酸铁锂材料的简单、环保、安全、高收率的回收,使得所获得的磷酸铁锂材料在相应的二次电池中表现出优异的电化学性能,同时所述方法可实现铝箔的有效回收。
本申请的回收磷酸铁锂材料的方法适用于废磷酸铁锂极片的处理。所述废磷酸铁锂极片是指未组装在电池中的极片废料,例如电池电芯制成过程产生的废极片和边角料极片;不包括存在于经历过充放电的二次电池中的极片。
所述磷酸铁锂材料包含磷酸铁锂和碳。
回收磷酸铁锂材料的方法
本申请的一个实施方式中,本申请提出了一种从废磷酸铁锂极片中回收磷酸铁锂材料的方法,所述磷酸铁锂极片由磷酸铁锂膜片和集流体组成,所述方法包含以下步骤:
(1)将磷酸铁锂极片进行挤压;
(2)将步骤(1)中获得的磷酸铁锂极片用水浸泡,使得磷酸铁锂膜片与集流体剥离;将集流体回收,然后将剩余的固液混合物进行过滤,获得磷酸铁锂膜片;
(3)将步骤(2)中获得的磷酸铁锂膜片烘干;
(4)将步骤(3)中获得的磷酸铁锂膜片先在380-600℃下进行低温热处理,然后进行机械破碎,或者将步骤(3)获得的磷酸铁锂膜片先进行机械破碎然后在380-600℃下进行低温热处理,得到磷酸铁锂材料粉末;
(5)将步骤(4)获得的磷酸铁锂材料粉末在650-850℃下进行高温热处理,获得磷酸铁锂材料。
虽然机理尚不明确,但本申请人意外地发现:通过将废磷酸铁锂极片挤压,然后用水浸泡并结合后续特定的热处理实现了对磷酸铁锂材料的简单、环保、安全、高收率的回收,使得所获得的磷酸铁锂材料在相应的二次电池中表现出优异的电化学性能,同时所述方法可实现铝箔的有效回收。而且高温热处理可以更好地修复磷酸铁锂材料界面,使其含碳量适中,克容量高,保证磷酸铁锂材料良好的电子电导性能。
所述方法中所述废磷酸铁锂极片采用水性底涂工艺制备,其底涂层由水性粘结剂和导电碳组成,其中水性粘结剂为羧甲基纤维素钠(CMC)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)、聚丙烯酸酯(PAA)、聚丙烯酰胺(PAN)等,其含量20%-80%。底涂层厚度≤5μm,通常所述废磷酸铁锂极片厚度为125μm-145μm。
在一些实施方式中,在步骤(1)中,挤压前后磷酸铁锂极片的孔隙率满足下式:
1.05≤挤压前的孔隙率与挤压后的孔隙率的比值≤3;
优选地,1.1≤挤压前的孔隙率与挤压后的孔隙率的比值≤2。
挤压前磷酸铁锂极片的孔隙率通常为35%-45%,挤压后磷酸铁锂极片的孔隙率通常为15%-32%,优选19%-28%。
所述挤压的方式是本领域技术人员通常已知的任何方式,优选辊压。
经过挤压使得磷酸铁锂极片的孔隙率达到特定程度之后,磷酸铁锂膜片极其容易从集流体上剥离,提高了回收效率,同时使得极片可松散地整片浸泡,避免因破碎成小极片而引入集流体碎屑及其后处理步骤。
在一些实施方式中,在步骤(2)中,用水浸泡在不超过40℃的温度,优选室温下进行0.05至1小时,优选0.15-0.35小时。用水浸泡时温度不宜过高,否则使离子溶解加速,可能会影响回收材料元素比例。浸泡时间要适当,使得既能保证磷酸铁锂膜片与集流体分离,同时又减少磷酸铁锂材料中金属元素的溶出以及膜片表面结构的破坏。
所述水为生活用水、蒸馏水、去离子水、工业用水,优选去离子水。所述水的质量为磷酸铁锂极片质量的5-8倍。由此可保证水对极片的充分浸泡,便于磷酸铁锂膜片从集流体上分离。
在一些实施方式中,所述集流体为铝箔。磷酸铁锂极片通常用作正极极片,正极所用的集流体可采用金属箔片或复合集流体,优选金属箔片。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,在步骤(3)中,烘干在100-180℃下在空气气氛中进行1-12小时。
在一些实施方式中,在步骤(4)中,将步骤(3)获得的磷酸铁锂膜片先进行机械破碎然后在380-600℃下进行低温热处理。在这种情况下,步骤(3)的烘干进行1-12小时,优选1-6小时。在该实施方式下,得到的磷酸铁锂材料粉末在低温热处理之后直接进行步骤(5)的高温热处理,更有利于磷酸铁锂材料的界面修复,即使得磷酸铁锂材料的碳包覆层损伤得以更有效地修复。
在一些优选的实施方式中,在步骤(4)中,将步骤(3)中获得的磷酸铁锂膜片先在380-600℃下进行低温热处理,然后进行机械破碎,如图2所示。在这种情况下,步骤(3)的烘干进行1-12小时,优选1-3小时。在该实施方式中,可以缩短步骤(3)烘干的时间,提高破碎效率。
在一些实施方式中,所述低温热处理和高温热处理均在惰性气氛中进行。所述惰性气氛为N2、Ar、He、Ne、Kr、Xe,优选N2和Ar。
所述低温热处理是在380-600℃,优选450-550℃的温度下进行0.5-5h,优选1-2h;所述高温热处理是在650-850℃,优选680-780℃的温度下进行0.5-3小时,优选1-2小时。
磷酸铁锂材料的低温热处理和高温热处理均在惰性气氛中,以免磷酸铁锂材料被空气中的氧破坏。
在一些实施方式中,在步骤(4)中,将磷酸铁锂膜片通过机械破碎至所得材料粉末的体积平均粒径Dv50为0.5-3μm。所述机械破碎通过本领域技术人员已知的方式,例如球磨等,在任何合适的市售设备例如球磨机等中进行。所得材料粉末的体积平均粒径为0.5-3μm,优选0.8-2.0μm。 由此获得材料粉末更容易进行后续高温热处理,并有利于磷酸铁锂材料的使用。
在一些实施方式中,在步骤(5)中高温热处理的持续时间为0.5-3小时,优选1-2小时。通过所述高温热处理,所得磷酸铁锂材料的含碳量1.8%-2.6%。同时所述高温热处理可对磷酸铁锂材料的界面碳损伤进行修复,从而提升所得材料的电化学性能。
本申请的一个实施方式中,提供一种正极极片,其包含集流体和通过上述方法获得的磷酸铁锂材料。
本申请的一个实施方式中,提供一种二次电池,其包括通过上述方法获得的磷酸铁锂材料或上述正极极片。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜片,所述正极膜片包括正极活性材料,其中所述正极活性材料包含通过本申请第一方面的方法获得的磷酸铁锂材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜片设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。在一个优选的实施方式中,所述集流体为铝箔。
在一些实施方式中,正极活性材料为通过本申请第一方面的方法获得的磷酸铁锂材料。
在一些实施方式中,正极膜片还可选地包括粘结剂。作为示例,所述 粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜片还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜片,所述负极膜片包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜片设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜片还可选地包括粘结剂。所述粘结剂可选 自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜片还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜片还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低 温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。
在一些实施方式中,外包装可包括壳体和盖板。其中,壳体可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体具有与容纳腔连通的开口,盖板能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件。电极组件封装于所述容纳腔内。电解液浸润于电极组件中。二次电池所含电极组件的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电 池包的应用和容量进行选择。
所述二次电池、电池模块、或电池包可以用作用电装置的电源,也可以用作用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为示例的装置还可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一、磷酸铁锂材料的回收
实施例1
(1)将5kg孔隙率为39%的在极片涂布工序中回收获得的底涂层为PAA的废磷酸铁锂极片(理论可回收的磷酸铁锂材料的质量=磷酸铁锂极片质量-导电剂质量-粘结剂质量-集流体质量=4.245kg)进行辊压至孔隙率为26.8%。
(2)然后将辊压后的磷酸铁锂极片置于25kg去离子水中室温浸泡0.5小时,使得磷酸铁锂膜片与集流体铝箔充分分离。然后将膜片剥离后表面洁净的铝箔取出。将剩余的固液混合物经40目滤网滤,滤出物为含有磷酸铁锂、导电剂导电炭黑以及粘结剂PVDF的正极磷酸铁锂膜片,滤液含有少量导电剂。
(3)将得到的正极磷酸铁锂膜片转移至鼓风干燥箱中在150℃下烘干4小时。
(4i)将膜片烘干后装入氧化铝匣钵中,放入烧结炉中在N2气氛中在550℃下低温热处理1h。
(4ii)然后将烧结后的磷酸铁锂膜片放入破壁机中破碎至磷酸铁锂材料粉末的Dv50达到1.5μm。
(5)然后将获得的磷酸铁材料粉末收集到氧化铝匣钵中,在烧结炉中在N2气氛中在750℃下高温热处理1h,获得4.17kg的磷酸铁锂材料。
实施例2-4
以与实施例1相同的方式进行,区别在于在步骤(1)中,将废磷酸铁锂极片分别辊压至孔隙率为35.2%、30.9%和19.6%。分别获得4.16kg、4.16kg和4.18kg的磷酸铁锂材料。
实施例5
以与实施例1相同的方式进行,区别在于在步骤(2)将极片置于去离子水中浸泡1小时。获得4.18kg的磷酸铁锂材料。
实施例6
以与实施例1相同的方式进行,区别在于将烘干时间改为12小时,同时将步骤(4ii)与(4i)顺序互换,即先进行步骤(4ii),然后进行步骤(4i)。获得4.17kg的磷酸铁锂材料。
实施例7-8
以与实施例1相同的方式进行,区别在于将步骤(5)的高温热处理时间分别改为1.5h、2h。分别获得4.17kg的、4.17kg磷酸铁锂材料。
对比例1
以与实施例1相同的方式进行,区别在于对废磷酸铁锂极片不进行辊压。获得3.82kg的磷酸铁锂材料。
对比例2
以与实施例1相同的方式进行,区别在于不进行步骤(5)。获得4.18kg的磷酸铁锂材料。
对比例3
将5kg废磷酸铁锂极片破碎成约2*2cm大小碎片。按实施例1中的(4i)进行处理,然后将热处理后的极片转移至磨料机中进行研磨,材料与铝箔分离,震动分筛除去铝箔(40目筛网);然后进行实施例1中步骤(4ii)。获得3.33kg的磷酸铁锂材料。
对比例4
以与对比例4相同的方式进行,区别在于继续进行实施例1中的步骤(5)。获得3.32kg的磷酸铁锂材料。
对比例5
为降低产氢引入的安全问题,将200g废磷酸铁锂极片(理论上可回收的磷酸铁锂材料的质量为170g)置于2L 0.5M NaOH溶液中,正极膜片与铝箔分离后取出铝箔,过滤获得磷酸铁锂膜片。将膜片用大量的去离子水进行洗涤,直至滤液pH为中性。然后进行实施例1的第(3)、(4)和(5)步骤,获得164g磷酸铁锂材料。
参照例
参照例采用新鲜的磷酸铁锂材料制备的二次电池。
将上述实施例1-8、对比例1-5和参照例中获得的磷酸铁锂材料分别如下所示制备成扣式电池,实施例1-8、对比例1-4和参照例制成全电池,对全电池k值进行对比,并且进行高温循环性能测试。测试结果如图1和表1所示。
(1)扣式电池的制备
将上述实施例1-8、对比例1-5和参照例中获得的磷酸铁锂材料、导电剂SP以及粘结剂PVDF按90:5:5的质量比混合,以N-甲基吡咯烷酮(NMP)为分散剂,研磨均匀成浆料,涂覆在铝箔上制成正极片。负极采用锂金属片,组装扣式电池。
(2)扣电容量测试
扣式电池在蓝电测试仪上进行,0.1C充电至3.75V,然后3.75V恒压充电至0.01C,静置5分钟后0.1C放电至2.0V,其中1C=170mA/g。
(3)全电池的制备
将上述实施例1-8、对比例1-6和参照例中获得的磷酸铁锂材料、导电剂SP以及粘结剂PVDF按95:2:3的质量比进行混合,以NMP为溶剂,进行充分分散;将制备浆料双面涂覆在铝箔上,经过烘干、冷压、分切、裁片等工艺获得正极片。将石墨、导电碳黑、CMC以97:2:1比例混合,以水为溶剂进行分散,得到负极浆料。将负极浆料双面涂覆在铜箔上,烘干、冷压、分切、裁片后获得负极片。正极片和负极片间加入 隔膜进行卷绕,再经过热冷压、极耳焊接后封装到铝塑袋中。电芯经过彻底烘干后注入电解液真空封装,得到全电池。
(4)全电池的k值测试
完成首次化成-容量步骤的电芯,以0.05C充电至3V,室温条件下静置24小时测试电芯电压V1,继续静置48小时,测试电芯电压V2,电芯k值=(V1-V2)*1000/48,单位mV/h。k值小于等于0.1mV/h视为电池无异常。理论上,k值越接近0,代表电池安全性越高。
(5)全电池在45℃循环性能测试
将电芯在45℃高低温箱中测试循环性能,恒温2h后开始测试。0.5C充电至3.65V,然后3.65V恒压充电至0.05C,静置5分钟后,1C放电至2.5V,以此充放电制度重复,获得循环性能数据。
Figure PCTCN2022117763-appb-000001
根据表1和图1可知,实施例1-8材料收率超过98%,扣电放电克容量为152.8-154.2mAh/g,全电池制成中k值无异常,并且在45℃循环500圈,容量保持率维持在93.5%以上,与参照组相比,仅在材料扣电放电克容量上略有降低,取得了良好的效果。
而相对于此,对比例1、3、4在材料回收率方面偏低,尤其时对比例3和4,材料收率仅有78%。对比例2、3、5中材料克容量偏低,对比例2、3克容量低是因为材料表面结构未经过高温处理无法修复,对比例5克容量低因为碱液的处理导致金属元素有溶解,材料表面破坏。同时,对比例3和4因为在极片破碎后采用震动分筛的方式无法完全去除金属铝屑,材料加工成电芯后有局部内短路导致电芯漏电,k值异常偏大。
综上所述,本发明的回收磷酸铁锂材料的方法实现了对磷酸铁锂材料的简单、环保、安全、高收率的回收,使得包含所获得的磷酸铁锂材料的二次电池表现出优异的安全性和循环性能。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (11)

  1. 一种从废磷酸铁锂极片中回收磷酸铁锂材料的方法,所述磷酸铁锂极片由磷酸铁锂膜片和集流体组成,所述方法包含以下步骤:
    (1)将磷酸铁锂极片进行挤压;
    (2)将步骤(1)中获得的磷酸铁锂极片用水浸泡,使得磷酸铁锂膜片与集流体剥离;将集流体回收,然后将剩余的固液混合物进行过滤,获得磷酸铁锂膜片;
    (3)将步骤(2)中获得的磷酸铁锂膜片烘干;
    (4)将步骤(3)中获得的磷酸铁锂膜片先在380-600℃下进行低温热处理,然后进行机械破碎,或者将步骤(3)获得的磷酸铁锂膜片先进行机械破碎然后在380-600℃下进行低温热处理,得到磷酸铁锂材料粉末;
    (5)将步骤(4)获得的磷酸铁锂材料粉末在650-850℃下进行高温热处理,获得磷酸铁锂材料。
  2. 根据权利要求1所述的方法,其特征在于,在步骤(1)中,挤压前后磷酸铁锂极片的孔隙率满足下式:
    1.05≤挤压前的孔隙率与挤压后的孔隙率的比值≤3。
  3. 根据权利要求1或2所述的方法,其特征在于,在步骤(2)中,用水浸泡在不超过40℃的温度下进行0.05至1小时;所述水为生活用水、蒸馏水、去离子水、工业用水,优选去离子水。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述集流体为铝箔。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,在步骤(3)中,烘干在100-180℃下在空气气氛中进行1-12小时。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,在步骤(4)中,将步骤(3)中获得的磷酸铁锂膜片先在380-600℃下进行低温热处理,然后进行机械破碎。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述低温热处理和高温热处理均在惰性气氛中进行所述惰性气氛为N2、Ar、He、Ne、Kr、Xe,优选N2和Ar。
  8. 根据权利要求1-8中任一项所述的方法,其特征在于,在步骤(4)中,将磷酸铁锂膜片通过机械破碎至所得材料粉末的体积平均粒径Dv50 为0.5-3μm。
  9. 根据权利要求1-9中任一项所述的方法,其特征在于,在步骤(5)中高温热处理的持续时间为0.5-3小时,优选1-2小时。
  10. 一种正极极片,其包含集流体和通过权利要求1-10任一项所述的方法获得的磷酸铁锂材料。
  11. 一种二次电池,其特征在于,包括通过权利要求1-10任一项所述的方法获得的磷酸铁锂材料或权利要求11所述的正极极片。
PCT/CN2022/117763 2021-10-11 2022-09-08 一种回收磷酸铁锂材料的方法 WO2023061115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111181904.5 2021-10-11
CN202111181904.5A CN115818607B (zh) 2021-10-11 2021-10-11 一种回收磷酸铁锂材料的方法

Publications (1)

Publication Number Publication Date
WO2023061115A1 true WO2023061115A1 (zh) 2023-04-20

Family

ID=85515412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117763 WO2023061115A1 (zh) 2021-10-11 2022-09-08 一种回收磷酸铁锂材料的方法

Country Status (2)

Country Link
CN (1) CN115818607B (zh)
WO (1) WO2023061115A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117577991A (zh) * 2024-01-16 2024-02-20 深圳市杰成镍钴新能源科技有限公司 不良正极材料的湿式回收方法、正极材料及磷酸铁锂电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453897A (zh) * 2003-05-29 2003-11-05 南开大学 锂离子二次电池正极边角料及残片回收方法
CN1585180A (zh) * 2004-06-09 2005-02-23 南开大学 锂离子二次电池正极残料的回收方法
CN106299524A (zh) * 2016-08-24 2017-01-04 合肥国轩高科动力能源有限公司 一种易于粉料与箔材分离的碳涂覆集流体及应用与回收方法
CN107069078A (zh) * 2017-03-24 2017-08-18 中航锂电(洛阳)有限公司 一种锂离子电池极片材料的回收方法
CN110828888A (zh) * 2019-11-15 2020-02-21 武汉瑞杰特材料有限责任公司 锂离子电池正极材料的全干法提纯方法及提纯得到的锂离子电池正极材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383441B (zh) * 2007-09-06 2011-10-26 深圳市比克电池有限公司 一种磷酸铁锂电池正极废片的综合回收方法
CN105489960A (zh) * 2015-10-20 2016-04-13 李佳坤 一种锂电池集流体及活性材料的分离方法及其应用
US10205200B2 (en) * 2016-07-07 2019-02-12 Grst International Limited Method for recycling lithium-ion battery
CN106505273A (zh) * 2017-01-11 2017-03-15 湘潭大学 一种磷酸铁锂电池生产环节正极废旧材料的回收修复和再利用的方法
CN107190150A (zh) * 2017-07-14 2017-09-22 湘潭大学 一种回收废旧磷酸铁锂电池正极材料中锂,铁,集流体‑铝箔的方法
CN109704300A (zh) * 2018-12-20 2019-05-03 成都新柯力化工科技有限公司 一种磷酸铁锂电池正极材料回收再利用的方法
CN111270072B (zh) * 2020-01-19 2021-09-03 广西师范大学 一种废旧磷酸铁锂电池正极材料的回收利用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453897A (zh) * 2003-05-29 2003-11-05 南开大学 锂离子二次电池正极边角料及残片回收方法
CN1585180A (zh) * 2004-06-09 2005-02-23 南开大学 锂离子二次电池正极残料的回收方法
CN106299524A (zh) * 2016-08-24 2017-01-04 合肥国轩高科动力能源有限公司 一种易于粉料与箔材分离的碳涂覆集流体及应用与回收方法
CN107069078A (zh) * 2017-03-24 2017-08-18 中航锂电(洛阳)有限公司 一种锂离子电池极片材料的回收方法
CN110828888A (zh) * 2019-11-15 2020-02-21 武汉瑞杰特材料有限责任公司 锂离子电池正极材料的全干法提纯方法及提纯得到的锂离子电池正极材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117577991A (zh) * 2024-01-16 2024-02-20 深圳市杰成镍钴新能源科技有限公司 不良正极材料的湿式回收方法、正极材料及磷酸铁锂电池
CN117577991B (zh) * 2024-01-16 2024-05-28 深圳市杰成镍钴新能源科技有限公司 不良正极材料的湿式回收方法、正极材料及磷酸铁锂电池

Also Published As

Publication number Publication date
CN115818607B (zh) 2023-10-31
CN115818607A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US10826130B2 (en) Negative active material and preparation method thereof and secondary battery
CN109845004B (zh) 包括碳基材料的装置以及其制造
WO2016090977A1 (zh) 一种锂离子电容器的新型预嵌锂方法
WO2023142340A1 (zh) 一种极片及具备其的二次电池
WO2018036309A1 (zh) 正极添加剂及其制备方法、正极片及锂离子二次电池
CN111146421A (zh) 负极材料及包含其的电化学装置和电子装置
WO2023061115A1 (zh) 一种回收磷酸铁锂材料的方法
CN114649591A (zh) 一种电化学装置及包含其的电器
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
CN116706422A (zh) 一种TiN表面修饰的玻璃纤维隔膜的制备方法和应用
WO2023071807A1 (zh) 隔膜及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023088078A1 (zh) 金属锂负极、二次电池、电池模块、电池包及用电装置
CN117154022A (zh) 负极活性材料复合物、负极极片、二次电池、电池模块、电池包及用电装置
CN115101731A (zh) 一种负极材料及其制备方法、负极片和二次电池
CN115832183A (zh) 正极极片及其制备方法、二次电池、电池模块、电池包及用电装置
WO2021174480A1 (zh) 正极材料和包括其的电化学装置及电子装置
KR102248310B1 (ko) 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법
CN112408328A (zh) 一种新型锂离子电池ZrMn基氢化物复合负极材料及制备方法
WO2023141954A1 (zh) 锂离子电池、电池模块、电池包和用电装置
WO2023102917A1 (zh) 负极活性材料及其制备方法、二次电池、电池模组、电池包、用电装置
JP7476419B2 (ja) 正極ペースト、正極シート、リチウムイオン電池、電池モジュール、電池パックおよび電力使用装置
WO2022188163A1 (zh) 电解液、二次电池、电池模块、电池包和装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
CN115663166B (zh) 金属锂复合材料及其制备方法、负极极片、锂电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE