WO2023058484A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2023058484A1
WO2023058484A1 PCT/JP2022/035667 JP2022035667W WO2023058484A1 WO 2023058484 A1 WO2023058484 A1 WO 2023058484A1 JP 2022035667 W JP2022035667 W JP 2022035667W WO 2023058484 A1 WO2023058484 A1 WO 2023058484A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
insulating film
conductor
pixel
pixels
Prior art date
Application number
PCT/JP2022/035667
Other languages
English (en)
French (fr)
Inventor
和哉 杉村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023058484A1 publication Critical patent/WO2023058484A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present disclosure relates to imaging devices.
  • a solid-state imaging device including a semiconductor substrate having an element formation portion, a signal charge accumulation portion formed inside the element formation portion, and a gate electrode for controlling transfer of a signal charge group accumulated in the signal charge accumulation portion. known (see, for example, Patent Document 1).
  • the present disclosure has been made in view of such circumstances, and aims to provide an imaging device capable of reducing the capacitance of the transfer gate electrode.
  • An imaging device includes a first substrate and a plurality of pixels provided on the first substrate.
  • Each of the plurality of pixels includes a photoelectric conversion portion provided in the first substrate, a charge storage portion provided in the first substrate, and a first surface side of the first substrate, and the a transfer transistor that transfers charges from the photoelectric conversion unit to the charge storage unit.
  • the transfer transistor has a transfer gate electrode provided on the first surface of the first substrate with an insulating film interposed therebetween.
  • the insulating film has a first insulating film positioned on a channel region formed on the first substrate, and a second insulating film positioned on a region other than the channel region on the first substrate. The second insulating film is thicker than the first insulating film.
  • An imaging device includes a first substrate and a plurality of pixels provided on the first substrate.
  • Each of the plurality of pixels includes a photoelectric conversion portion provided in the first substrate, a charge storage portion provided in the first substrate, and a first surface side of the first substrate, and the a transfer transistor that transfers charges from the photoelectric conversion unit to the charge storage unit.
  • the transfer transistor has a transfer gate electrode provided on the first surface of the first substrate with an insulating film interposed therebetween.
  • the transfer gate electrode has a first conductor and a second conductor connected to the first conductor.
  • the insulating film includes a first insulating film positioned between the first substrate and the first conductor, and a second insulating film positioned between the first substrate and the second conductor. have.
  • the second insulating film is thicker than the first insulating film.
  • the capacitance between the second conductor portion and the first substrate which is part of the capacitance generated between the transfer gate electrode and the first substrate, can be reduced.
  • the capacitance of the transfer gate electrode can be reduced as compared with the case where the first insulating film and the second insulating film have the same film thickness.
  • FIG. 1 is a plan view showing a schematic configuration example of an imaging device according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing a schematic configuration example of an imaging device according to an embodiment of the present disclosure.
  • FIG. 3 is an equivalent circuit diagram showing a configuration example of a pixel sharing unit according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view showing a configuration example of an imaging device according to an embodiment of the present disclosure.
  • FIG. 5 is a plan view showing a configuration example of a pixel sharing unit according to an embodiment of the present disclosure.
  • FIG. 6 is a plan view showing an example arrangement of multiple pixel sharing units according to an embodiment of the present disclosure.
  • FIG. 7A is a plan view showing a configuration example of a pixel according to an embodiment of the present disclosure
  • FIG. FIG. 7B is a cross-sectional view showing a configuration example of a pixel according to the embodiment of the present disclosure
  • FIG. 8 is a cross-sectional view showing a configuration example of a pixel according to a comparative example of the present disclosure.
  • FIG. 9 is a plan view showing Modification 1 of the pixel according to the embodiment of the present disclosure.
  • FIG. 10 is a plan view showing Modification 2 of the pixel according to the embodiment of the present disclosure.
  • 11A is a plan view showing Modification 3 of the pixel according to the embodiment of the present disclosure.
  • FIG. 11B is a cross-sectional view showing Modification 3 of the pixel according to the embodiment of the present disclosure.
  • 12A is a plan view showing Modification 4 of the pixel according to the embodiment of the present disclosure.
  • FIG. 12B is a cross-sectional view showing Modification 4 of the pixel according to the embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an example of a schematic configuration of an imaging system 7 including the imaging device 1 according to the above embodiment and its modification.
  • FIG. 14 is a flow chart showing an example of an imaging operation in the imaging system 7.
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
  • FIG. 17 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique (the present technique) according to the present disclosure can be applied.
  • FIG. 18 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
  • FIG. 1 is a plan view showing a schematic configuration example of an imaging device 1 according to an embodiment of the present disclosure, and is a diagram schematically showing a plane configuration of each of a first substrate 100, a second substrate 200, and a third substrate 300.
  • FIG. 2 is a cross-sectional view showing a schematic configuration example of the imaging device 1 according to the embodiment of the present disclosure.
  • FIG. 3 is a diagram schematically showing a cross section of a three-dimensional structure formed by bonding along line III-III';
  • the imaging device 1 includes three substrates (first substrate 100, second substrate 200, and third substrate 300).
  • the first substrate 100 includes a semiconductor layer 100S and a wiring layer 100T.
  • the second substrate 200 includes a semiconductor layer 200S and a wiring layer 200T.
  • the third substrate 300 includes a semiconductor layer 300S and a wiring layer 300T.
  • each substrate the first substrate 100, the second substrate 300.
  • They are referred to as wiring layers (100T, 200T, 300T) provided on the substrate 200 and the third substrate 300).
  • the first substrate 100, the second substrate 200, and the third substrate 300 are stacked in this order, and along the stacking direction (Z direction), the semiconductor layer 100S, the wiring layer 100T, the semiconductor layer 200S, the wiring layer 200T, the wiring Layer 300T and semiconductor layer 300S are arranged in this order.
  • the semiconductor layer 100S, the wiring layer 100T, the semiconductor layer 200S, the wiring layer 200T, the wiring Layer 300T and semiconductor layer 300S are arranged in this order.
  • Detailed configurations of the first substrate 100, the second substrate 200, and the third substrate 300 will be described later.
  • the arrow shown in FIG. 2 represents the incident direction of light L to the imaging device 1 .
  • the light incident side of the imaging device 1 will be referred to as “bottom”, “lower side”, and “lower”, and the side opposite to the light incident side will be referred to as “upper”, “upper”, and “upper” in subsequent cross-sectional views.
  • the wiring layer side may be referred to as the front surface
  • the semiconductor layer side may be referred to as the back surface. Note that the description in the specification is not limited to the above-mentioned names.
  • the imaging device 1 is, for example, a back-illuminated imaging device in which light is incident from the back side of the first substrate 100 having photodiodes.
  • the pixel array section 540 is configured using the first substrate 100 and the second substrate 200 .
  • a plurality of pixels 541 are repeatedly arranged in an array in the pixel array section 540 .
  • a pixel sharing unit 539 including a plurality of pixels 541 is a repeating unit, which is repeatedly arranged in an array in the row direction and the column direction.
  • the row direction may be called the H direction
  • the column direction orthogonal to the row direction may be called the V direction.
  • one pixel sharing unit 539 includes four pixels (pixels 541A, 541B, 541C, 541D). Pixels 541A, 541B, 541C, and 541D each have a photodiode PD (illustrated in FIG. 4 and the like, which will be described later).
  • the pixel sharing unit 539 is a unit that shares one pixel circuit (the pixel circuit 210 in FIG. 3, which will be described later). In other words, each of the four pixels (pixels 541A, 541B, 541C, 541D) has one pixel circuit (pixel circuit 210 described later).
  • the pixel signals of the pixels 541A, 541B, 541C, and 541D are sequentially read out by operating the pixel circuits in a time division manner.
  • the pixels 541A, 541B, 541C, and 541D are arranged, for example, in 2 rows ⁇ 2 columns.
  • the pixel array section 540 is provided with a plurality of row drive signal lines 542 and a plurality of vertical signal lines (column readout lines) 543 along with pixels 541A, 541B, 541C, and 541D.
  • the row drive signal line 542 drives the pixels 541 included in each of the plurality of pixel sharing units 539 arranged side by side in the row direction in the pixel array section 540 .
  • the pixel sharing unit 539 is provided with a plurality of transistors.
  • a plurality of row drive signal lines 542 are connected to one pixel sharing unit 539 in order to drive these transistors respectively.
  • Pixel signals are read out through vertical signal lines (column readout lines) 543 from each of the pixels 541A, 541B, 541C, and 541D included in the pixel sharing unit 539 .
  • the first substrate 100 is provided with a plurality of pixels 541A, 541B, 541C, and 541D that the pixel sharing unit 539 has.
  • the second substrate 200 includes pixel circuits (pixel circuits 210 to be described later) included in the pixel sharing unit 539, a plurality of row driving signal lines 542 extending in the row direction, a plurality of vertical signal lines 543 extending in the column direction, A power supply line 544 extending in the row direction is provided.
  • the third substrate 300 is provided with, for example, an input section 510A, a row driving section 520, a timing control section 530, a column signal processing section 550, an image signal processing section 560, and an output section 510B.
  • the row driving section 520 is provided, for example, in a region partially overlapping the pixel array section 540 in the stacking direction (Z direction) of the first substrate 100 , the second substrate 200 and the third substrate 300 .
  • the pixel circuits provided on the second substrate 200 are also called pixel transistor circuits, pixel transistor groups, pixel transistors, pixel readout circuits, or readout circuits.
  • the term "pixel circuit" is used.
  • the first substrate 100 and the second substrate 200 are electrically connected by, for example, through electrodes (through electrodes 120E and 121E in FIG. 4, which will be described later).
  • the second substrate 200 and the third substrate 300 are electrically connected via contact portions 201, 202, 301 and 302, for example.
  • Contact portions 201 and 202 are provided on the second substrate 200
  • contact portions 301 and 302 are provided on the third substrate 300 .
  • the contact portion 201 of the second substrate 200 is in contact with the contact portion 301 of the third substrate 300
  • the contact portion 202 of the second substrate 200 is in contact with the contact portion 302 of the third substrate 300 .
  • the second substrate 200 has a contact region 201R provided with a plurality of contact portions 201 and a contact region 202R provided with a plurality of contact portions 202 .
  • the third substrate 300 has a contact region 301R provided with a plurality of contact portions 301 and a contact region 302R provided with a plurality of contact portions 302 .
  • the contact regions 201R and 301R are provided between the pixel array section 540 and the row driving section 520 in the stacking direction (Z direction).
  • the contact portions 201 and 301 in the contact regions 201R and 301R connect, for example, the row driving portion 520 provided on the third substrate 300 and the row driving signal line 542 provided on the second substrate 200.
  • the contact portions 201 and 301 may connect, for example, the input portion 510A provided on the third substrate 300 to the power supply line 544 and the reference potential line (reference potential line VSS to be described later).
  • the contact regions 202R and 302R are provided between the pixel array section 540 and the column signal processing section 550 in the stacking direction (Z direction).
  • the contact portions 202 and 302 in the contact regions 202R and 302R receive, for example, pixel signals output from each of the plurality of pixel sharing units 539 included in the pixel array portion 540 (the amount of charge generated as a result of photoelectric conversion in the photodiodes). ) are connected to the column signal processing unit 550 provided on the third substrate 300 . Pixel signals are sent from the second substrate 200 to the third substrate 300 .
  • the contact portions 201, 202, 301, 302 are made of metal materials such as copper (Cu), aluminum (Al), and gold (Au).
  • connection holes H1 and H2 are provided in the first substrate 100 and the second substrate 200 .
  • the connection holes H1 and H2 penetrate through the first substrate 100 and the second substrate 200 .
  • the connection hole portions H1 and H2 are provided outside the pixel array portion 540 (or a portion overlapping the pixel array portion 540).
  • the connection hole portion H1 is arranged outside the pixel array portion 540 in the H direction
  • the connection hole portion H2 is arranged outside the pixel array portion 540 in the V direction.
  • the connection hole portion H1 reaches the input portion 510A provided on the third substrate 300
  • the connection hole portion H2 reaches the output portion 510B provided on the third substrate 300.
  • connection holes H1 and H2 may be hollow, and may at least partially contain a conductive material.
  • a conductive material For example, there is a configuration in which bonding wires are connected to electrodes formed as the input section 510A and/or the output section 510B.
  • the electrodes formed as the input section 510A and/or the output section 510B are connected to the conductive material provided in the connection holes H1 and H2.
  • the conductive material provided in the connection holes H1 and H2 may be partially or entirely embedded in the connection holes H1 and H2, and the conductive material may be formed on the sidewalls of the connection holes H1 and H2. good.
  • FIG. 3 is an equivalent circuit diagram representing a configuration example of the pixel sharing unit 539 according to the embodiment of the present disclosure.
  • the pixel sharing unit 539 includes a plurality of pixels 541 (FIG. 3 represents four pixels 541: pixels 541A, 541B, 541C, and 541D), one pixel circuit 210 connected to the plurality of pixels 541, and a pixel circuit and a vertical signal line 543 connected to 210 .
  • the pixel circuit 210 includes, for example, four transistors, specifically an amplification transistor AMP, a selection transistor SEL, a reset transistor RST, and an FD conversion gain switching transistor FDG.
  • the pixel sharing unit 539 operates one pixel circuit 210 in a time-sharing manner to generate pixel signals of the four pixels 541 (pixels 541A, 541B, 541C, and 541D) included in the pixel sharing unit 539. are sequentially output to the vertical signal line 543 .
  • a mode in which one pixel circuit 210 is connected to a plurality of pixels 541 and pixel signals of the plurality of pixels 541 are output by the one pixel circuit 210 in a time-sharing manner is referred to as "a pixel circuit in which the plurality of pixels 541 are one.” We share 210.”
  • the pixels 541A, 541B, 541C, and 541D have components common to each other.
  • the identification number 1 is added to the end of the code for the components of the pixel 541A
  • the identification number 2 is added to the end of the code for the components of the pixel 541B
  • the identification number 3 is added to the end of the code for the constituent elements of the pixel 541C
  • the identification number 4 is added to the end of the reference numerals for the constituent elements of the pixel 541D.
  • the identification numbers at the end of the reference numerals of the components of the pixels 541A, 541B, 541C, and 541D are omitted.
  • the pixels 541A, 541B, 541C, and 541D have, for example, a photodiode PD, a transfer transistor TR electrically connected to the photodiode PD, and a floating diffusion FD electrically connected to the transfer transistor TR.
  • the photodiodes PD (PD1, PD2, PD3, PD4) have their cathodes electrically connected to the sources of the transfer transistors TR, and their anodes electrically connected to a reference potential line (for example, ground).
  • the photodiode PD photoelectrically converts the incident light and generates an electric charge according to the amount of light received.
  • the transfer transistors TR (transfer transistors TR1, TR2, TR3, TR4) are, for example, n-type MOS (Metal Oxide Semiconductor) transistors.
  • the transfer transistor TR has a drain electrically connected to the floating diffusion FD and a gate electrically connected to the drive signal line. This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539 .
  • the transfer transistor TR transfers charges generated in the photodiode PD to the floating diffusion FD.
  • the floating diffusions FD are n-type diffusion layer regions formed in the p-type semiconductor layer.
  • the floating diffusion FD is charge holding means for temporarily holding charges transferred from the photodiode PD, and is charge-voltage conversion means for generating a voltage corresponding to the charge amount.
  • the four floating diffusions FD (floating diffusions FD1, FD2, FD3, and FD4) included in one pixel sharing unit 539 are electrically connected to each other and serve as the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG. is electrically connected to The drain of the FD conversion gain switching transistor FDG is connected to the source of the reset transistor RST, and the gate of the FD conversion gain switching transistor FDG is connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539 .
  • the drain of the reset transistor RST is connected to the power supply line VDD, and the gate of the reset transistor RST is connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539 .
  • the gate of the amplification transistor AMP is connected to the floating diffusion FD, the drain of the amplification transistor AMP is connected to the power supply line VDD, and the source of the amplification transistor AMP is connected to the drain of the selection transistor SEL.
  • the source of the select transistor SEL is connected to the vertical signal line 543, and the gate of the select transistor SEL is connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539 .
  • the transfer transistor TR transfers the charge of the photodiode PD to the floating diffusion FD when the transfer transistor TR is turned on.
  • the gate of the transfer transistor TR includes, for example, a so-called vertical electrode, and as shown in FIG. It is provided to extend to the depth to be reached.
  • the reset transistor RST resets the potential of the floating diffusion FD to a predetermined potential.
  • the reset transistor RST is turned on, the potential of the floating diffusion FD is reset to the potential of the power supply line VDD.
  • the selection transistor SEL controls the output timing of pixel signals from the pixel circuit 210 .
  • the amplification transistor AMP generates a voltage signal corresponding to the level of the charge held in the floating diffusion FD as a pixel signal.
  • the amplification transistor AMP is connected to the vertical signal line 543 via the selection transistor SEL.
  • the amplification transistor AMP outputs the voltage of the floating diffusion FD to the vertical signal line 543 when the selection transistor SEL is turned on.
  • the reset transistor RST, amplification transistor AMP, and selection transistor SEL are, for example, n-type MOS transistors.
  • the FD conversion gain switching transistor FDG is used when changing the gain of charge-voltage conversion in the floating diffusion FD.
  • pixel signals are small when shooting in a dark place.
  • the FD capacitance C needs to be large so that V when converted into voltage by the amplification transistor AMP does not become too large (in other words, so that it becomes small).
  • the FD conversion gain switching transistor FDG when the FD conversion gain switching transistor FDG is turned on, the gate capacitance of the FD conversion gain switching transistor FDG increases, and the overall FD capacitance C increases. On the other hand, when the FD conversion gain switching transistor FDG is turned off, the overall FD capacitance C becomes smaller. In this way, by switching on and off the FD conversion gain switching transistor FDG, the FD capacitance C can be made variable and the conversion efficiency can be switched.
  • the FD conversion gain switching transistor FDG is, for example, an n-type MOS transistor.
  • the imaging device 1 can also be configured without the FD conversion gain switching transistor FDG.
  • the pixel circuit 210 is composed of three transistors, for example, an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST.
  • the pixel circuit 210 has, for example, at least one of pixel transistors such as an amplification transistor AMP, a selection transistor SEL, a reset transistor RST, and an FD conversion gain switching transistor FDG.
  • the selection transistor SEL may be provided between the power supply line VDD and the amplification transistor AMP.
  • the drain of the reset transistor RST is electrically connected to the power line VDD and the drain of the select transistor SEL.
  • a source of the selection transistor SEL is electrically connected to a drain of the amplification transistor AMP, and a gate of the selection transistor SEL is electrically connected to the row drive signal line 542 .
  • the source of the amplification transistor AMP (the output terminal of the pixel circuit 210) is electrically connected to the vertical signal line 543, and the gate of the amplification transistor AMP is electrically connected to the source of the reset transistor RST.
  • the number of pixels 541 sharing one pixel circuit 210 may be other than four. For example, two or eight pixels 541 may share one pixel circuit 210 .
  • FIG. 4 is a cross-sectional view showing a configuration example of the imaging device 1 according to the embodiment of the present disclosure. It is a figure which shows an example. FIG. 4 is a schematic representation to facilitate understanding of the positional relationship of the constituent elements, and may differ from the actual cross section.
  • the imaging device 1 the first substrate 100, the second substrate 200 and the third substrate 300 are laminated in this order.
  • the imaging device 1 further has a light receiving lens 401 on the rear surface side (light incident surface side) of the first substrate 100 .
  • a color filter layer (not shown) may be provided between the light receiving lens 401 and the first substrate 100 .
  • the light receiving lens 401 is provided, for example, in each of the pixels 541A, 541B, 541C, and 541D.
  • the imaging device 1 is, for example, a back-illuminated imaging device.
  • the imaging device 1 has a pixel array portion 540 arranged in the central portion and a peripheral portion 540B arranged outside the pixel array portion 540 .
  • the first substrate 100 has an insulating film 111, a fixed charge film 112, a semiconductor layer 100S and a wiring layer 100T in this order from the light receiving lens 401 side.
  • the semiconductor layer 100S is composed of, for example, a silicon substrate.
  • the semiconductor layer 100S has, for example, a P-well layer 115 on a part of the surface (the surface on the side of the wiring layer 100T) and its vicinity, and in other regions (regions deeper than the P-well layer 115), It has an n-type semiconductor region 114 .
  • the n-type semiconductor region 114 and the P-well layer 115 constitute a pn-junction photodiode PD.
  • the P-well layer 115 is a p-type semiconductor region.
  • a floating diffusion FD and a VSS contact region 118 are provided near the surface of the semiconductor layer 100S.
  • the floating diffusion FD is composed of an n-type semiconductor region provided within the P-well layer 115 .
  • Floating diffusions FD floating diffusions FD1, FD2, FD3, and FD4 of pixels 541A, 541B, 541C, and 541D are provided close to each other in the central portion of pixel sharing unit 539, for example. This point will be explained in more detail later with reference to FIG.
  • the VSS contact region 118 is a region electrically connected to the reference potential line VSS, and is arranged apart from the floating diffusion FD.
  • the floating diffusion FD is arranged at one end of each pixel in the V direction, and the VSS contact region 118 is arranged at the other end.
  • the VSS contact region 118 is composed of, for example, a p-type semiconductor region.
  • the VSS contact region 118 is connected to, for example, ground potential or fixed potential. Thereby, the reference potential is supplied to the semiconductor layer 100S.
  • a transfer transistor TR is provided on the first substrate 100 together with a photodiode PD, a floating diffusion FD and a VSS contact region 118 .
  • a photodiode PD, a floating diffusion FD, a VSS contact region 118, and a transfer transistor TR are provided for each of the pixels 541A, 541B, 541C, and 541D.
  • the transfer transistor TR is provided on the surface side of the semiconductor layer 100S (the side opposite to the light incident surface side, the second substrate 200 side).
  • the transfer transistor TR has a transfer gate electrode TG as a gate electrode.
  • the transfer gate electrode TG has, for example, a first conductor and a second conductor connected to the first conductor. The configuration of the transfer gate electrode TG will be described later in detail with reference to FIGS. 7A and 7B.
  • the semiconductor layer 100S is provided with a pixel separation section 117 that separates the pixels 541A, 541B, 541C, and 541D from each other.
  • the pixel separation portion 117 is formed extending in the normal direction of the semiconductor layer 100S (the direction perpendicular to the surface of the semiconductor layer 100S).
  • the pixel separation section 117 is provided so as to partition the pixels 541A, 541B, 541C, and 541D from each other, and has, for example, a grid-like planar shape (see FIG. 5 described later).
  • the pixel separation unit 117 electrically and optically separates the pixels 541A, 541B, 541C, and 541D from each other, for example.
  • the pixel separation section 117 includes, for example, a light shielding film 117A and an insulating film 117B.
  • tungsten (W) or the like is used for the light shielding film 117A.
  • the insulating film 117B is provided between the light shielding film 117A and the P-well layer 115 or the n-type semiconductor region 114. As shown in FIG.
  • the insulating film 117B is made of, for example, silicon oxide (SiO).
  • the pixel separation section 117 has, for example, an FTI (Full Trench Isolation) structure and penetrates the semiconductor layer 100S.
  • FTI Full Trench Isolation
  • the pixel separation section 117 is not limited to the FTI structure penetrating the semiconductor layer 100S.
  • a DTI Deep Trench Isolation
  • the pixel separation portion 117 extends in the normal direction of the semiconductor layer 100S and is formed in a partial region of the semiconductor layer 100S.
  • a first pinning region 113 and a second pinning region 116 are provided in the semiconductor layer 100S.
  • the first pinning region 113 is provided near the back surface of the semiconductor layer 100S and arranged between the n-type semiconductor region 114 and the fixed charge film 112 .
  • the second pinning region 116 is provided on the side surface of the pixel isolation portion 117 , specifically between the pixel isolation portion 117 and the P-well layer 115 or the n-type semiconductor region 114 .
  • the first pinning region 113 and the second pinning region 116 are composed of, for example, p-type semiconductor regions.
  • a fixed charge film 112 having negative fixed charges is provided between the semiconductor layer 100S and the insulating film 111 . Due to the electric field induced by the fixed charge film 112, a first pinning region 113 of the hole accumulation layer is formed at the interface of the semiconductor layer 100S on the light receiving surface (back surface) side. This suppresses the generation of dark current due to the interface level on the light receiving surface side of the semiconductor layer 100S.
  • the fixed charge film 112 is formed of, for example, an insulating film having negative fixed charges. Examples of materials for the insulating film having negative fixed charges include hafnium oxide, zirconium oxide, aluminum oxide, titanium oxide, and tantalum oxide.
  • a light shielding film 117A is provided between the fixed charge film 112 and the insulating film 111 .
  • 117 A of light shielding films may be provided continuously with 117 A of light shielding films which comprise the pixel isolation
  • the light shielding film 117A between the fixed charge film 112 and the insulating film 111 is selectively provided, for example, at a position facing the pixel separation section 117 in the semiconductor layer 100S.
  • the insulating film 111 is provided so as to cover the light shielding film 117A.
  • the insulating film 111 is made of, for example, silicon oxide.
  • the wiring layer 100T provided between the semiconductor layer 100S and the second substrate 200 includes, from the semiconductor layer 100S side, an interlayer insulating film 119, a pad portion 120 (an example of a “shared conductor” of the present disclosure), 121, a passivation film. 122, an interlayer insulating film 123, and a bonding film 124 in this order.
  • the transfer gate electrode TG is provided, for example, in the wiring layer 100T.
  • the interlayer insulating film 119 is provided over the entire surface of the semiconductor layer 100S and is in contact with the semiconductor layer 100S.
  • the interlayer insulating film 119 is composed of, for example, a silicon oxide film.
  • the configuration of the wiring layer 100T is not limited to that described above, and may be any configuration having wiring and an insulating film.
  • the pad section 120 is selectively provided on the interlayer insulating film 119 .
  • the pad section 120 connects the floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) of the pixels 541A, 541B, 541C, 541D to each other.
  • connection vias 120C for electrically connecting the pad section 120 and the floating diffusions FD1, FD2, FD3, and FD4.
  • a connection via 120C is provided in each of the pixels 541A, 541B, 541C, and 541D.
  • the pad section 120 and the floating diffusions FD1, FD2, FD3, and FD4 are electrically connected by partially embedding the pad section 120 in the connection via 120C.
  • the pad section 121 is selectively provided on the interlayer insulating film 119 .
  • Pad portion 121 connects a plurality of VSS contact regions 118 to each other.
  • the VSS contact regions 118 provided in the pixels 541C and 541D of one pixel sharing unit 539 adjacent in the V direction and the VSS contact regions 118 provided in the pixels 541A and 541B of the other pixel sharing unit 539 are pads. They are electrically connected by the portion 121 .
  • the pad section 121 is provided, for example, so as to straddle the pixel separation section 117 and is arranged to overlap at least a part of each of these four VSS contact regions 118 .
  • the pad section 121 is a semiconductor pad for at least a portion of each of the plurality of VSS contact regions 118 and at least a portion of the pixel isolation portion 117 formed between the plurality of VSS contact regions 118. It is formed in a region overlapping in a direction perpendicular to the surface of the layer 100S.
  • a connection via 121C for electrically connecting the pad portion 121 and the VSS contact region 118 is provided in the interlayer insulating film 119 .
  • a connection via 121C is provided in each of the pixels 541A, 541B, 541C, and 541D.
  • the pad portion 121 and the VSS contact region 118 are electrically connected by partially embedding the pad portion 121 in the connection via 121C.
  • the pad portions 120 and the pad portions 121 of each of the plurality of pixel sharing units 539 arranged in the V direction are arranged at substantially the same position in the H direction.
  • the pad section 120 By providing the pad section 120, the wiring for connecting each floating diffusion FD to the pixel circuit 210 (for example, the gate electrode of the amplification transistor AMP) can be reduced in the entire chip. Similarly, by providing the pad section 121, the wiring for supplying the potential to each VSS contact region 118 can be reduced in the entire chip. This makes it possible to reduce the area of the entire chip, suppress electrical interference between wirings in miniaturized pixels, and/or reduce costs by reducing the number of parts.
  • the pad portions 120 and 121 can be provided at desired positions on the first substrate 100 and the second substrate 200 . Specifically, the pad portions 120 and 121 can be provided in either the wiring layer 100T or the insulating region 212 of the semiconductor layer 200S. When provided in the wiring layer 100T, the pad portions 120 and 121 may be brought into direct contact with the semiconductor layer 100S. Specifically, the pad portions 120 and 121 may be directly connected to at least part of each of the floating diffusion FD and/or the VSS contact region 118 .
  • Connection vias 120C and 121C are provided from the floating diffusion FD and/or the VSS contact region 118 connected to the pad portions 120 and 121, respectively, and the pad portions 120 and 120 are provided at desired positions in the insulating regions 212 of the wiring layer 100T and the semiconductor layer 200S. , 121 may be provided.
  • the wiring for connecting the first substrate 100 and the second substrate 200 can be greatly reduced.
  • a large area of the second substrate 200 forming the pixel circuit 210 can be secured.
  • the pixel transistor can be formed large, which can contribute to the improvement of image quality due to noise reduction or the like.
  • the pad portions 120 and 121 are made of, for example, polysilicon (PolySi), more specifically, doped polysilicon to which impurities are added. Pads 120 and 121 are preferably made of a highly heat-resistant conductive material such as polysilicon, tungsten (W), titanium (Ti), and titanium nitride (TiN). This makes it possible to form the pixel circuit 210 after the semiconductor layer 200 ⁇ /b>S of the second substrate 200 is attached to the first substrate 100 .
  • PolySi polysilicon
  • Pads 120 and 121 are preferably made of a highly heat-resistant conductive material such as polysilicon, tungsten (W), titanium (Ti), and titanium nitride (TiN). This makes it possible to form the pixel circuit 210 after the semiconductor layer 200 ⁇ /b>S of the second substrate 200 is attached to the first substrate 100 .
  • the passivation film 122 is provided over the entire surface of the semiconductor layer 100S so as to cover the pad portions 120 and 121, for example.
  • the passivation film 122 is composed of, for example, a silicon nitride (SiN) film.
  • An interlayer insulating film 123 covers the pad portions 120 and 121 with a passivation film 122 interposed therebetween.
  • the interlayer insulating film 123 is provided, for example, over the entire surface of the semiconductor layer 100S.
  • the interlayer insulating film 123 is composed of, for example, a silicon oxide (SiO) film.
  • the bonding film 124 is provided on the bonding surface between the first substrate 100 (specifically, the wiring layer 100T) and the second substrate 200 . That is, the bonding film 124 is in contact with the second substrate 200 .
  • the bonding film 124 is provided over the entire main surface of the first substrate 100 .
  • the bonding film 124 is composed of, for example, a silicon nit
  • the light receiving lens 401 faces the semiconductor layer 100S with the fixed charge film 112 and the insulating film 111 interposed therebetween, for example.
  • the light receiving lens 401 is provided, for example, at a position facing the photodiode PD of each of the pixels 541A, 541B, 541C, and 541D.
  • the second substrate 200 has a semiconductor layer 200S and a wiring layer 200T in this order from the first substrate 100 side.
  • the semiconductor layer 200S is composed of a silicon substrate.
  • a well region 211 is provided over the thickness direction.
  • Well region 211 is, for example, a p-type semiconductor region.
  • a pixel circuit 210 arranged for each pixel sharing unit 539 is provided on the second substrate 200 .
  • the pixel circuit 210 is provided, for example, on the surface side (wiring layer 200T side) of the semiconductor layer 200S.
  • the second substrate 200 is bonded to the first substrate 100 such that the back surface side (semiconductor layer 200S side) of the second substrate 200 faces the front surface side (wiring layer 100T side) of the first substrate 100. ing. That is, the second substrate 200 is bonded to the first substrate 100 face-to-back.
  • the third substrate 300 has, for example, a wiring layer 300T and a semiconductor layer 300S in this order from the second substrate 200 side.
  • the surface of the semiconductor layer 300S is provided on the second substrate 200 side.
  • the semiconductor layer 300S is composed of a silicon substrate.
  • a circuit is provided on the surface side portion of the semiconductor layer 300S.
  • the portion on the surface side of the semiconductor layer 300S includes, for example, the input unit 510A, the row driving unit 520, the timing control unit 530, the column signal processing unit 550, the image signal processing unit 560, and the output unit 510B. at least partially provided.
  • a wiring layer 300T provided between the semiconductor layer 300S and the second substrate 200 includes, for example, an interlayer insulating film, a plurality of wiring layers separated by the interlayer insulating film, and contact portions 301 and 302. there is
  • the contact portions 301 and 302 are exposed on the surface of the wiring layer 300T (the surface on the side of the second substrate 200). They are in contact with the contact portions 202 respectively.
  • the contact portions 301 and 302 are connected to circuits formed in the semiconductor layer 300S (for example, at least one of the input portion 510A, the row driving portion 520, the timing control portion 530, the column signal processing portion 550, the image signal processing portion 560, and the output portion 510B). or ) is electrically connected.
  • the contact portions 301 and 302 are made of metal such as Cu (copper) and aluminum (Al).
  • the external terminal TA is connected to the input section 510A through the connection hole H1
  • the external terminal TB is connected to the output section 510B through the connection hole H2.
  • FIG. 5 is a plan view showing a configuration example of the pixel sharing unit 539 according to the embodiment of the present disclosure, and is a plan view from the normal direction of the surface of the semiconductor layer 100S (see FIG. 4) included in the first substrate 100.
  • FIG. A cross section taken along line ab in the plan view of FIG. 5 corresponds to the region of line ab in the cross section shown in FIG.
  • one pixel sharing unit 539 includes four pixels 541 (pixels 541A, 541B, 541C, 541D). Pixels 541A, 541B, 541C, 541D each have a photodiode PD.
  • a pixel sharing unit 539 is a unit that shares one pixel circuit 210 . Pixel signals are sequentially read from each of the pixels 541A, 541B, 541C, and 541D by operating the pixel circuit 210 in a time-division manner.
  • the pixels 541A, 541B, 541C, and 541D are arranged, for example, in 2 rows ⁇ 2 columns.
  • the four floating diffusions FD (floating diffusions FD1, FD2, FD3, and FD4) included in one pixel sharing unit 539 are arranged near the center of the pixel sharing unit 539 in plan view.
  • the floating diffusions FD1, FD2, FD3, and FD4 arranged near the center of one pixel sharing unit 539 are electrically connected to each other via one pad section 120.
  • the pad section 120 is arranged in the central portion of each pixel sharing unit 539 in plan view.
  • the pad section 120 is provided so as to straddle the pixel separation section 117 provided between the pixels 541A, 541B, 541C, and 541D, and overlaps at least a part of each of the floating diffusions FD1, FD2, FD3, and FD4. are placed.
  • a through electrode 120E is provided on the pad section 120 for each pixel sharing unit 539 .
  • the floating diffusions FD1, FD2, FD3, and FD4 connect the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG provided on the second substrate 200 (see FIG. 4) through the pad portion 120 and the through electrode 120E. is electrically connected to
  • FIG. 6 is a plan view showing an arrangement example of a plurality of pixel sharing units 539 according to the embodiment of the present disclosure. As shown in FIG. 6, the plurality of pixel sharing units 539 are arranged side by side in the row direction (H direction) and the column direction (V direction).
  • pad portions 120 to which a plurality of floating diffusions FD are connected and pad portions 121 to which a plurality of VSS contact regions 118 are connected are linearly alternately arranged in the V direction. Also, in the H direction, the plurality of pad portions 120 and the plurality of pad portions 121 are arranged linearly.
  • the pad portions 120 and 121 are arranged at positions surrounded by a plurality of photodiodes PD, a plurality of transfer gate electrodes TG, and a plurality of floating diffusions FD.
  • elements other than the floating diffusion FD and the VSS contact region 118 can be freely arranged on the first substrate 100 forming a plurality of elements, and the efficiency of the layout of the entire chip can be improved.
  • symmetry in the layout of the elements formed in each pixel sharing unit 539 is ensured, and variations in the characteristics of each pixel 541 can be suppressed.
  • FIGS. 7A and 7B are a plan view and a cross-sectional view showing a configuration example of the pixel 541 according to the embodiment of the present disclosure.
  • a cross section taken along line A'-BA in FIG. 7A corresponds to the cross-sectional view of FIG. 7B.
  • the pixel 541 is provided on the surface side of the semiconductor layer 100S and includes a transfer transistor TR that transfers the charge e ⁇ from the photodiode PD to the floating diffusion FD.
  • the transfer transistor TR has a transfer gate electrode TG provided on the surface of the semiconductor layer 100S with an insulating film 150 interposed therebetween.
  • the insulating film 150 has an insulating film 151 and an insulating film 152 stacked on the insulating film 151 .
  • the film thickness of the insulating film 152 is thicker than the film thickness of the insulating film 151 .
  • the insulating films 151 and 152 are silicon oxide (SiO) films.
  • the thickness T1 of the insulating film 151 is 6.5 nm, and the thickness T2 of the insulating film 152 is 180 nm.
  • the insulating film 151 is a thermal oxide film formed by thermally oxidizing the semiconductor layer 100S.
  • the insulating film 152 is a CVD film formed by a CVD (Chemical Vapor Deposition) method.
  • Insulating film 151 is located directly above the channel region 140 formed in the semiconductor layer 100S.
  • Insulating films 151 and 152 that is, laminated films in which an insulating film 152 is laminated on an insulating film 151 are located on regions other than directly above the channel region 140 in the semiconductor layer 100S.
  • the transfer gate electrode TG has a first conductor portion TG1 and a second conductor portion TG2 electrically connected to the first conductor portion TG1.
  • the first conductor part TG1 is located on the insulating film 151 .
  • the second conductor part TG2 is located on a laminated film in which the insulating film 152 is laminated on the insulating film 151 .
  • the insulating film 151 is positioned between the semiconductor layer 100S and the first conductor TG1, and the laminated film is positioned between the semiconductor layer 100S and the second conductor TG2.
  • the first conductor part TG1 and the first conductor part TG2 are made of a conductive material, for example, doped polysilicon to which impurities are added.
  • the first conductor portion TG1 and the second conductor portion TG2 may be formed simultaneously in the same process (that is, formed collectively), or may be formed separately (that is, the first conductor portion TG1 is formed first and then formed. , the second conductor portion TG2 may be formed).
  • the channel region 140 is formed in a region of the semiconductor layer 100S facing the first conductor portion TG1 with the insulating film 151 interposed therebetween and in the vicinity thereof. It is formed.
  • the first conductor part TG1 is located between the semiconductor layer 100S and the second conductor part TG2.
  • the second conductor TG2 has a larger area than the first conductor TG1.
  • L1 be the length of the first conductor portion TG1 in the gate length direction of the transfer gate electrode TG (that is, the direction parallel to the straight line A′-B), and L2 be the length of the second conductor portion TG2 in the gate length direction.
  • the length L2 of the second conductor portion TG2 is longer than the length L1 of the first conductor portion TG1.
  • the center CL2 of the second conductor portion TG2 is closer to the first conductor than the center CL2 of the second conductor portion TG2.
  • the center CL1 of the portion TG1 is positioned closer to the floating diffusion. This facilitates formation of the channel region 140 near the floating diffusion.
  • the first conductor portion TG1 is symmetrical with respect to a straight line (that is, a straight line A'-B) that is parallel to the gate length direction of the transfer gate electrode TG and passes through the center of the transfer gate electrode TG in the gate width direction. It has become. This facilitates widening the width of the channel region 140 formed directly under the first conductor portion TG1, and facilitates increasing the transfer efficiency of the charge e ⁇ from the photodiode PD to the floating diffusion FD.
  • the P-type region 130 may be partially provided in the pixel separation section 117.
  • the P-type region 130 electrically connects the P-well layer 115 located on the surface side of one of the adjacent pixels 541 and the P-well layer 115 located on the surface side of the other pixel 541 .
  • the P-type concentration in P-type region 130 is lower than the P-type concentration in P-well layer 115 .
  • the potential barrier between the adjacent pixels 541 can be lowered, and the charge e ⁇ can be easily transferred from one adjacent pixel to the other.
  • a pair of pixels 541 adjacent in the row direction (H direction) may be used as one pixel of the same color.
  • the outputs of the pair of pixels 541 adjacent in the H direction are combined to form the output of one pixel.
  • the P-type region 130 lowers the potential barrier between a pair of pixels 541, allowing charge e ⁇ to migrate from one pixel 541 to the other pixel 541 before the charge e ⁇ overflows in one pixel 541. It becomes possible. This makes it possible to make the output of one pixel output from the pair of pixels 541 more linear with respect to the amount of received light.
  • FIG. 8 is a cross-sectional view showing a configuration example of a pixel 541' according to a comparative example of the present disclosure.
  • a pixel 541' according to the comparative example has a transfer transistor TR'.
  • the transfer gate electrode TG' of the transfer transistor TR' is composed only of a flat conductor portion (for example, the second conductor portion TG2).
  • An insulating film 151' is arranged between the transfer gate electrode TG' and the semiconductor layer 100S.
  • the present inventor has found that the capacitance of the transfer gate electrode TG of the transfer transistor TR according to the embodiment shown in FIGS. 7A and 7B and the capacitance of the transfer gate electrode TG' of the transfer transistor TR' according to the comparative example shown in FIG. compared with
  • the film thickness T1 of the insulating film 151 is set to 6.5 nm
  • the film thickness T2 of the insulating film 152 is set to 180 nm
  • the dielectric constants of the insulating films 151 and 152 are set to 3.9.
  • the area of the first conductor portion TG1 in plan view was set to 0.02 ⁇ m 2
  • the area of the second conductor portion TG2 in plan view was set to 0.112 ⁇ m 2 .
  • the semiconductor layer 100S is a Si substrate and is a conductor. A simple calculation of the capacitance of the transfer gate electrode TG under these conditions yielded a value of 0.124 fF.
  • the film thickness T′ of the insulating film 151′ is set to 6.5 nm
  • the dielectric constant of the insulating film 151 is set to 3.9
  • the area of the transfer gate electrode TG′ in plan view is was set to 0.112 ⁇ m 2 .
  • the capacitance of the transfer gate electrode TG' according to the comparative example is 1, the capacitance of the transfer gate electrode TG according to the embodiment is 0.21. From this result, it was confirmed that the transfer gate electrode TG according to the embodiment has a lower capacitance than the transfer gate electrode TG' according to the comparative example.
  • the imaging device 1 includes the semiconductor layer 100S (an example of the “first substrate” of the present disclosure) and the plurality of pixels 541 provided on the semiconductor layer 100S. .
  • Each of the plurality of pixels 541 includes a photodiode PD (an example of a “photoelectric conversion unit” of the present disclosure) provided in the semiconductor layer 100S, and a floating diffusion FD (a “charge and a transfer transistor TR that is provided on the surface side of the semiconductor layer 100S (an example of the “surface” in the present disclosure) and transfers the charge e ⁇ from the photodiode PD to the floating diffusion FD.
  • the transfer transistor TR has a transfer gate electrode TG provided on the surface of the semiconductor layer 100S with an insulating film 150 interposed therebetween.
  • the insulating film 150 has a first insulating film positioned over the channel region 140 formed in the semiconductor layer 100S, and a second insulating film positioned over a region other than the channel region 140 in the semiconductor layer 100S.
  • the first insulating film is the insulating film 151 .
  • the second insulating film is a laminated film in which an insulating film 152 is laminated on an insulating film 151 .
  • the second insulating film is thicker than the first insulating film.
  • the capacitance generated between the transfer gate electrode TG and the semiconductor layer 100S which is located on the second insulating film (for example, the second conductor part TG2) and the semiconductor layer 100S.
  • the capacitance between them can be reduced.
  • the capacitance of the transfer gate electrode TG can be reduced compared to the case where the first insulating film and the second insulating film have the same film thickness (for example, the comparative example shown in FIG. 8).
  • the settling time of the transfer transistor TR can be reduced, and the speed of the transfer transistor TR can be increased.
  • the transfer gate electrode TG it is possible to reduce the capacitance of the transfer gate electrode TG while securing a large connection area with the through electrode TGV. More specifically, as shown in FIG. 4, in the imaging device 1 having a laminated structure in which the second substrate 200 is laminated on the first substrate 100, a through hole having a small diameter is formed in the interlayer insulating film 123 and the insulating region 212. In addition, it is very difficult in terms of manufacturing technology to embed an electrode material in a small-diameter through-hole without gaps.
  • the connection area between the transfer gate electrode TG and the through electrode TGV also needs to be larger than a certain size.
  • the transfer gate electrode TG has the first conductor portion TG1 and the second conductor portion TG2.
  • the capacitance per unit area of the second conductor TG is smaller than the capacitance per unit area of the first conductor TG1. This makes it possible to reduce the capacitance of the transfer gate electrode TG while securing a large connection area between the transfer gate electrode TG and the through electrode TGV.
  • the pad section 120 is positioned closer to the semiconductor layer 100S than the second conductor section TG2 of the transfer gate electrode TG. is preferred. As a result, the distance between the second conductor TG2 and the pad 120 can be increased compared to the case where the second conductor TG2 and the pad 120 are positioned at the same height. and the pad section 120 can be reduced.
  • FIG. 9 is a plan view showing Modification 1 of the pixel 541 according to the embodiment of the present disclosure.
  • the pixel 541 has a transfer transistor TRA.
  • the transfer transistor TRA is asymmetric with respect to the straight line A'-B, unlike the transfer transistor TR shown in FIGS. 7A and 7B.
  • the distance D between the first conductor portion and the P-type region 130 is longer than in the transfer transistor TR. Thereby, it is possible to suppress the potential of the first conductor part TG1 from affecting the potential of the P-type region 130 . Fluctuations in charge transfer characteristics through the P-type region 130 can be suppressed.
  • FIG. 10 is a plan view showing Modification 2 of the pixel 541 according to the embodiment of the present disclosure.
  • the pixel 541 has a transfer transistor TRB.
  • the first conductor portion TG1 of the transfer transistor TRB has a tapered shape in which the diameter gradually decreases from the second conductor portion TG2 toward the semiconductor layer 100S. Accordingly, the contact area between the first conductor TG1 and the insulating film 151 can be reduced, and the capacitance between the first conductor TG1 and the semiconductor layer 100S can be further reduced. Further, the first conductor TG1 can be smoothly connected to the second conductor TG2 while reducing the capacitance between the first conductor TG1 and the semiconductor layer 100S.
  • the tapered first conductor part TG1 is formed by, for example, etching the insulating film 152 using a mask so as to cause side etching to form a connection via having a tapered inner surface. It is easy to manufacture because it can be formed by depositing a conductive material (eg, doped doped polysilicon) therein.
  • a conductive material eg, doped doped polysilicon
  • Modification 3 11A and 11B are a plan view and a cross-sectional view showing Modification 3 of the pixel 541 according to the embodiment of the present disclosure.
  • the pixel 541 has a transfer transistor TRC.
  • the transfer transistor TRC has a longer length L1 in the gate length direction of the first conductor portion TG1 than the transfer transistor TR shown in FIGS. 7A and 7B. According to this, compared with the transfer transistor TR shown in FIGS. 7A and 7B, the capacitance of the transfer gate electrode TG is increased, but the current can be easily turned on/off by gate modulation.
  • Modification 4 of the pixel 541 is plan and cross-sectional views showing Modification 4 of the pixel 541 according to the embodiment of the present disclosure.
  • the shape of the pixel 541 in plan view is square or nearly square.
  • the pixel 541 has a transfer transistor TRD. 7A and 7B, also in the transfer transistor TRD shown in FIGS. 12A and 12B, the transfer gate electrode TG has the first conductor portion TG1 and the second conductor portion TG2. The capacitance of the gate electrode TG can be reduced.
  • the shape of the pixel 541 in plan view is a square or a square-like shape.
  • the shape of the pixel 541 is a normal type, and it is easy to increase the number of pixels.
  • pixels may not have a shared pixel structure.
  • one pixel includes one photodiode PD, one transfer transistor TR, one floating diffusion FD, one reset transistor RST, and one amplification transistor AMP.
  • one select transistor SEL may be added to these.
  • the imaging device 1 has the first substrate 100 and the second substrate 200 bonded to the surface side of the first substrate 100, and the photodiode PD and the floating diffusion are provided on the first substrate 100.
  • the FD, the transfer transistor TR, etc. are formed, and the pixel circuit 210 including the amplification transistor AMP, etc. is formed on the second substrate 200
  • the present technology is not limited to this.
  • the first substrate 100 and the second substrate 200 may be configured as one substrate.
  • the photodiode PD, floating diffusion FD, transfer transistor TR, pixel circuit 210, etc. may be formed on one substrate.
  • the third substrate 300 having the image signal processing section 560 and the like formed thereon may be bonded to this one substrate.
  • FIG. 13 is a diagram showing an example of a schematic configuration of an imaging system 7 including the imaging device 1 according to the above embodiment and its modification.
  • the imaging system 7 is, for example, an imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device such as a smart phone or a tablet terminal.
  • the imaging system 7 includes, for example, the imaging device 1 according to the above embodiment and its modification, a DSP circuit 243, a frame memory 244, a display section 245, a storage section 246, an operation section 247, and a power supply section 248.
  • the imaging device 1, the DSP circuit 243, the frame memory 244, the display unit 245, the storage unit 246, the operation unit 247, and the power supply unit 248 according to the above embodiment and its modification are connected via a bus line 249. interconnected.
  • the imaging device 1 according to the above embodiment and its modification outputs image data corresponding to incident light.
  • the DSP circuit 243 is a signal processing circuit that processes a signal (image data) output from the imaging device 1 according to the above embodiment and its modification.
  • the frame memory 244 temporarily holds the image data processed by the DSP circuit 243 on a frame-by-frame basis.
  • the display unit 245 is, for example, a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays a moving image or a still image captured by the imaging device 1 according to the above embodiment and its modification. .
  • the storage unit 246 records image data of a moving image or a still image captured by the imaging device 1 according to the above-described embodiment and its modifications in a recording medium such as a semiconductor memory or a hard disk.
  • the operation unit 247 issues operation commands for various functions of the imaging system 7 in accordance with user's operations.
  • the power source unit 248 supplies various power sources that serve as operating power sources for the imaging device 1, the DSP circuit 243, the frame memory 244, the display unit 245, the storage unit 246, and the operation unit 247 according to the above-described embodiment and modifications thereof. Appropriate supply to the target.
  • FIG. 14 is a flowchart showing an example of imaging operation in the imaging system 7.
  • the user instructs to start imaging by operating the operation unit 247 (step S101). Then, the operation unit 247 transmits an imaging command to the imaging device 1 (step S102). When the imaging device 1 (specifically, the system control circuit 36) receives the imaging command, it performs imaging in a predetermined imaging method (step S103).
  • the imaging device 1 outputs image data obtained by imaging to the DSP circuit 243 .
  • the image data is data for all pixels of pixel signals generated based on the charges temporarily held in the floating diffusion FD.
  • the DSP circuit 243 performs predetermined signal processing (for example, noise reduction processing) based on the image data input from the imaging device 1 (step S104).
  • the DSP circuit 243 causes the frame memory 244 to hold the image data subjected to the predetermined signal processing, and the frame memory 244 causes the storage unit 246 to store the image data (step S105). In this manner, imaging in the imaging system 7 is performed.
  • the imaging device 1 according to the above embodiment and its modification is applied to the imaging system 7 .
  • the capacity of the transfer gate electrode in the imaging device 1 can be reduced, and the transfer characteristics of the image signal can be improved, so that the high-performance imaging system 7 can be provided.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 .
  • integrated control unit 12050 As the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • Forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 16 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging device 1 according to the above embodiments and modifications thereof can be applied to the imaging unit 12031 .
  • the technology according to the present disclosure can be applied to the imaging unit 12031, the capacity of the transfer gate electrode in the imaging unit 12031 can be reduced, and the transfer characteristics of the image signal can be improved. High-precision control can be performed using images.
  • FIG. 17 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique (the present technique) according to the present disclosure can be applied.
  • an operator (physician) 11131 uses an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133 .
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 .
  • an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
  • the tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 .
  • the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
  • An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system.
  • the imaging device photoelectrically converts the observation light to generate an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light for photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light for photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 .
  • the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in.
  • the recorder 11207 is a device capable of recording various types of information regarding surgery.
  • the printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the observation target is irradiated with laser light from each of the RGB laser light sources in a time-division manner, and by controlling the drive of the imaging element of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging device.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time.
  • the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, the wavelength dependence of light absorption in body tissues is used to irradiate a narrower band of light than the irradiation light (i.e., white light) used during normal observation, thereby observing the mucosal surface layer.
  • narrow band imaging in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light.
  • the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is A fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
  • FIG. 18 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 .
  • the camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
  • a lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 .
  • a lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 is composed of an imaging device.
  • the imaging device constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 .
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 .
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 .
  • the communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 .
  • Image signals and control signals can be transmitted by electric communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
  • the control unit 11413 performs various controls related to imaging of the surgical site and the like by the endoscope 11100 and display of the captured image obtained by imaging the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 .
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize.
  • the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
  • a transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be preferably applied to the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100 among the configurations described above.
  • the technology according to the present disclosure can be applied to the imaging unit 11402, the capacity of the transfer gate electrode in the imaging unit 11402 can be reduced, and the transfer characteristics of the image signal can be improved. 11100 can be provided.
  • the present technology can perform at least one of various omissions, replacements, and modifications of components without departing from the gist of the above-described embodiments.
  • the effects described in this specification are only examples and are not limited, and other effects may also occur.
  • the present disclosure can also take the following configurations.
  • the transfer transistor is a transfer gate electrode provided on the first surface of the first substrate via an insulating film;
  • the insulating film is a first insulating film located on a channel region formed on the first substrate; a second insulating film located on a region other than the channel region in the first substrate;
  • the imaging device wherein the second insulating film is thicker than the first insulating film.
  • the transfer gate electrode is a first conductor located on the first insulating film;
  • the transfer transistor is a transfer gate electrode provided on the first surface of the first substrate via an insulating film;
  • the transfer gate electrode is a first conductor; a second conductor connected to the first conductor;
  • the insulating film is a first insulating film positioned between the first substrate and the first conductor; a second insulating film positioned between the first substrate and the second conductor;
  • the imaging device wherein the second insulating film is thicker than the first insulating
  • an interlayer insulating film provided on the first surface side of the first substrate; a second substrate facing the first substrate with the interlayer insulating film interposed therebetween;
  • the image pickup device according to (6) further comprising an amplification transistor provided on the second substrate for amplifying electric charges transferred from the first substrate to the second substrate through the shared conductor.
  • the imaging device according to (6) or (7) wherein the shared conductor is positioned closer to the first substrate than the second conductor.
  • imaging device 7 imaging system 36 system control circuit 100 first substrate 100S, 200S, 300S semiconductor layers 100T, 200T, 300T wiring layers 111, 117B, 150, 151, 152 insulating film 112 fixed charge film 113 first pinning region 114 n type semiconductor region 115 P-well layer 116 second pinning region 117 pixel separation portion 117A light shielding film 118 VSS contact regions 119 and 123 interlayer insulating films 120 and 121 pad portions 120C and 121C connection vias 120E and 121E through electrode 121 pad portion 122 passivation film 124 bonding film 130 P-type region 140 channel region 200 second substrate 200S, 300S semiconductor layers 200T, 300T wiring layers 201, 202, 301, 302 contact portions 201R, 202R, 301R, 302R contact region 210 pixel circuit 211 well region 212 insulation Area 243 DSP circuit 244 Frame memory 245 Display unit 246 Storage unit 247 Operation unit 248 Power supply unit 249 Bus line 300 Third substrate 401

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

転送ゲート電極の容量を低減可能な撮像装置を提供する。撮像装置は、第1基板と、第1基板に設けられた複数の画素と、を有する。複数の画素の各々は、第1基板内に設けられた光電変換部と、第1基板内に設けられた電荷蓄積部と、第1基板の第1面側に設けられ、光電変換部から電荷蓄積部へ電荷を転送する転送トランジスタと、を有する。転送トランジスタは、第1基板の第1面上に絶縁膜を介して設けられた転送ゲート電極を有する。絶縁膜は、第1基板に形成されるチャネル領域上に位置する第1絶縁膜と、第1基板においてチャネル領域以外の領域上に位置する第2絶縁膜と、を有する。第2絶縁膜は第1絶縁膜よりも膜厚が厚い。

Description

撮像装置
 本開示は、撮像装置に関する。
 素子形成部を有する半導体基板と、素子形成部の内部に形成された信号電荷蓄積部と、信号電荷蓄積部に蓄積された信号電荷群の転送を制御するゲート電極と、を含む固体撮像装置が知られている(例えば、特許文献1参照)。
特開2006-286848号公報
 信号電荷群の転送を制御するゲート電極(以下、転送ゲート電極ともいう)と半導体基板との間の容量が大きいと、転送ゲート電極を有するトランジスタ(以下、転送トランジスタともいう)のセトリングタイムが増大し、転送トランジスタの高速化が難しくなる。
 本開示はこのような事情に鑑みてなされたもので、転送ゲート電極の容量を低減可能な撮像装置を提供することを目的とする。
 本開示の一態様に係る撮像装置は、第1基板と、前記第1基板に設けられた複数の画素と、を有する。前記複数の画素の各々は、前記第1基板内に設けられた光電変換部と、前記第1基板内に設けられた電荷蓄積部と、前記第1基板の第1面側に設けられ、前記光電変換部から前記電荷蓄積部へ電荷を転送する転送トランジスタと、を有する。前記転送トランジスタは、前記第1基板の前記第1面上に絶縁膜を介して設けられた転送ゲート電極を有する。前記絶縁膜は、前記第1基板に形成されるチャネル領域上に位置する第1絶縁膜と、前記第1基板において前記チャネル領域以外の領域上に位置する第2絶縁膜と、を有する。前記第2絶縁膜は前記第1絶縁膜よりも膜厚が厚い。
 これによれば、転送ゲート電極と第1基板との間に生じる容量の一部であって、第2絶縁膜上に位置する部分(例えば、第2導体部)と第1基板との間の容量を小さくすることができる。これにより、第1絶縁膜と第2絶縁膜とが互いに同じ膜厚である場合と比べて、転送ゲート電極の容量を低減することができる。
 本開示の別の態様に係る撮像装置は、第1基板と、前記第1基板に設けられた複数の画素と、を有する。前記複数の画素の各々は、前記第1基板内に設けられた光電変換部と、前記第1基板内に設けられた電荷蓄積部と、前記第1基板の第1面側に設けられ、前記光電変換部から前記電荷蓄積部へ電荷を転送する転送トランジスタと、を有する。前記転送トランジスタは、前記第1基板の前記第1面上に絶縁膜を介して設けられた転送ゲート電極を有する。前記転送ゲート電極は、第1導体部と、前記第1導体部に接続する第2導体部と、を有する。前記絶縁膜は、前記第1基板と前記第1導体部との間に位置する第1絶縁膜と、前記第1基板と前記第2導体部との間に位置する第2絶縁膜と、を有する。前記第2絶縁膜は前記第1絶縁膜よりも膜厚が厚い。
 これによれば、転送ゲート電極と第1基板との間に生じる容量の一部であって、第2導体部と第1基板との間の容量を小さくすることができる。これにより、第1絶縁膜と第2絶縁膜とが互いに同じ膜厚である場合と比べて、転送ゲート電極の容量を低減することができる。
図1は、本開示の実施形態に係る撮像装置の概略構成例を示す平面図である。 図2は、本開示の実施形態に係る撮像装置の概略構成例を示す断面図である。 図3は、本開示の実施形態に係る画素共有ユニットの構成例を表す等価回路図である。 図4は、本開示の実施形態に係る撮像装置の構成例を示す断面図である。 図5は、本開示の実施形態に係る画素共有ユニットの構成例を示す平面図である。 図6は、本開示の実施形態に係る複数の画素共有ユニットの配置例を示す平面図である。 図7Aは、本開示の実施形態に係る画素の構成例を示す平面図である。 図7Bは、本開示の実施形態に係る画素の構成例を示す断面図である。 図8は、本開示の比較例に係る画素の構成例を示す断面図である。 図9は、本開示の実施形態に係る画素の変形例1を示す平面図である。 図10は、本開示の実施形態に係る画素の変形例2を示す平面図である。 図11Aは、本開示の実施形態に係る画素の変形例3を示す平面図である。 図11Bは、本開示の実施形態に係る画素の変形例3を示す断面図である。 図12Aは、本開示の実施形態に係る画素の変形例4を示す平面図である。 図12Bは、本開示の実施形態に係る画素の変形例4を示す断面図である。 図13は、上記実施の形態およびその変形例に係る撮像装置1を備えた撮像システム7の概略構成の一例を示す図である。 図14は、撮像システム7における撮像動作の一例を示すフローチャートである。 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 図16は、撮像部12031の設置位置の例を示す図である。 図17は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 図18は、図17に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 以下において、図面を参照して本開示の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚さと平面寸法との関係、各層の厚さの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚さや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(撮像装置の概略構成例)
 図1は、本開示の実施形態に係る撮像装置1の概略構成例を示す平面図であり、第1基板100、第2基板200、第3基板300各々の平面構成を模式的に示す図である。図2は、本開示の実施形態に係る撮像装置1の概略構成例を示す断面図であり、図1に示した3つの基板(第1基板100、第2基板200、第3基板300)を貼り合わせて構成された3次元構造体をIII-III’線に沿って切断した断面を模式的に示す図である。
 図1及び図2に示すように、撮像装置1は、3つの基板(第1基板100、第2基板200、第3基板300)を備える。第1基板100は、半導体層100S及び配線層100Tを含む。第2基板200は、半導体層200S及び配線層200Tを含む。第3基板300は、半導体層300S及び配線層300Tを含む。ここで、第1基板100、第2基板200及び第3基板300の各基板に含まれる配線とその周囲の層間絶縁膜を合せたものを、便宜上、それぞれの基板(第1基板100、第2基板200及び第3基板300)に設けられた配線層(100T、200T、300T)と呼ぶ。
 第1基板100、第2基板200及び第3基板300は、この順に積層されており、積層方向(Z方向)に沿って、半導体層100S、配線層100T、半導体層200S、配線層200T、配線層300T及び半導体層300Sの順に配置されている。第1基板100、第2基板200及び第3基板300の具体的な構成については後述する。
 図2に示した矢印は、撮像装置1への光Lの入射方向を表す。本明細書では、便宜上、以降の断面図で、撮像装置1における光入射側を「下」「下側」「下方」、光入射側と反対側を「上」「上側」「上方」と呼ぶ場合がある。また、本明細書では、便宜上、半導体層と配線層を備えた基板に関して、配線層の側を表面、半導体層の側を裏面と呼ぶ場合がある。なお、明細書の記載は、上記の呼び方に限定されない。撮像装置1は、例えば、フォトダイオードを有する第1基板100の裏面側から光が入射する、裏面照射型撮像装置となっている。
 画素アレイ部540は、第1基板100及び第2基板200を用いて構成されている。画素アレイ部540には、複数の画素541がアレイ状に繰り返し配置されている。より具体的には、複数の画素541を含んだ画素共有ユニット539が繰り返し単位となり、これが、行方向と列方向とからなるアレイ状に繰り返し配置されている。なお、本明細書では、便宜上、行方向をH方向、行方向と直交する列方向をV方向、と呼ぶ場合がある。
 図1に示す例では、1つの画素共有ユニット539が、4つの画素(画素541A、541B、541C、541D)を含んでいる。画素541A、541B、541C、541Dは各々、フォトダイオードPD(後述の図4等に図示)を有する。画素共有ユニット539は、1つの画素回路(後述の図3の画素回路210)を共有する単位である。換言すれば、4つの画素(画素541A、541B、541C、541D)毎に、1つの画素回路(後述の画素回路210)を有する。この画素回路を時分割で動作させることにより、画素541A、541B、541C、541D各々の画素信号が順次読み出されるようになっている。
 画素541A、541B、541C、541Dは、例えば2行×2列で配置されている。画素アレイ部540には、画素541A、541B、541C、541Dとともに、複数の行駆動信号線542及び複数の垂直信号線(列読出し線)543が設けられている。行駆動信号線542は、画素アレイ部540において行方向に並んで配列された、複数の画素共有ユニット539の各々に含まれる画素541を駆動する。後に図3を参照して詳しく説明するが、画素共有ユニット539には、複数のトランジスタが設けられている。これら複数のトランジスタをそれぞれ駆動するために、1つの画素共有ユニット539には複数の行駆動信号線542が接続されている。画素共有ユニット539に含まれる画素541A、541B、541C、541Dの各々から、垂直信号線(列読出し線)543を介して画素信号が読み出される。
 例えば、第1基板100には、画素共有ユニット539が有する複数の画素541A、541B、541C、541Dが設けられている。第2基板200には、画素共有ユニット539が有する画素回路(後述の画素回路210)、行方向に延在する複数の行駆動信号線542、列方向に延在する複数の垂直信号線543、行方向に延在する電源線544が設けられている。第3基板300には、例えば、入力部510A、行駆動部520、タイミング制御部530、列信号処理部550、画像信号処理部560、出力部510Bが設けられている。行駆動部520は、例えば、第1基板100、第2基板200及び第3基板300の積層方向(Z方向)において、一部が画素アレイ部540に重なる領域に設けられている。
 なお、上記第2基板200に設けられた画素回路は、別の呼称として、画素トランジスタ回路、画素トランジスタ群、画素トランジスタ、画素読み出し回路又は読出回路と呼ばれることもある。本明細書では、画素回路との呼称を用いる。
 第1基板100と第2基板200とは、例えば、貫通電極(後述の図4の貫通電極120E、121E)により電気的に接続されている。第2基板200と第3基板300とは、例えば、コンタクト部201、202、301、302を介して電気的に接続されている。第2基板200にコンタクト部201、202が設けられ、第3基板300にコンタクト部301、302が設けられている。第2基板200のコンタクト部201が第3基板300のコンタクト部301に接し、第2基板200のコンタクト部202が第3基板300のコンタクト部302に接している。第2基板200は、複数のコンタクト部201が設けられたコンタクト領域201Rと、複数のコンタクト部202が設けられたコンタクト領域202Rとを有する。第3基板300は、複数のコンタクト部301が設けられたコンタクト領域301Rと、複数のコンタクト部302が設けられたコンタクト領域302Rとを有する。
 コンタクト領域201R、301Rは、積層方向(Z方向)において、画素アレイ部540と行駆動部520との間に設けられている。コンタクト領域201R、301R内のコンタクト部201、301は、例えば、第3基板300に設けられた行駆動部520と、第2基板200に設けられた行駆動信号線542とを接続する。コンタクト部201、301は、例えば、第3基板300に設けられた入力部510Aと電源線544及び基準電位線(後述の基準電位線VSS)とを接続していてもよい。
 コンタクト領域202R、302Rは、積層方向(Z方向)において、画素アレイ部540と列信号処理部550との間に設けられている。コンタクト領域202R、302R内のコンタクト部202、302は、例えば、画素アレイ部540が有する複数の画素共有ユニット539の各々から出力された画素信号(フォトダイオードでの光電変換の結果発生した電荷の量に対応した信号)を、第3基板300に設けられた列信号処理部550へと接続する。画素信号は、第2基板200から第3基板300に送られるようになっている。
 コンタクト部201、202、301、302は、例えば、銅(Cu)、アルミニウム(Al)、金(Au)、などの金属材料で形成される。
 第1基板100及び第2基板200には、例えば、接続孔部H1、H2が設けられている。接続孔部H1、H2は、第1基板100及び第2基板200を貫通している。接続孔部H1、H2は、画素アレイ部540(または画素アレイ部540に重なる部分)の外側に設けられている。例えば、接続孔部H1は、H方向において画素アレイ部540より外側に配置されており、接続孔部H2は、V方向において画素アレイ部540よりも外側に配置されている。例えば、接続孔部H1は、第3基板300に設けられた入力部510Aに達しており、接続孔部H2は、第3基板300に設けられた出力部510Bに達している。接続孔部H1、H2は、空洞でもよく、少なくとも一部に導電材料を含んでいても良い。例えば、入力部510A及び/又は出力部510Bとして形成された電極に、ボンディングワイヤを接続する構成がある。または、入力部510A及び/又は出力部510Bとして形成された電極と、接続孔部H1、H2に設けられた導電材料とを接続する構成がある。接続孔部H1、H2に設けられた導電材料は、接続孔部H1、H2の一部又は全部に埋め込まれていても良く、導電材料が接続孔部H1、H2の側壁に形成されていても良い。
 図3は、本開示の実施形態に係る画素共有ユニット539の構成例を表す等価回路図である。画素共有ユニット539は、複数の画素541(図3では、画素541A、541B、541C、541Dの4つの画素541を表す)と、複数の画素541に接続された1の画素回路210と、画素回路210に接続された垂直信号線543とを含んでいる。画素回路210は、例えば、4つのトランジスタ、具体的には、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRST及びFD変換ゲイン切替トランジスタFDGを含んでいる。
 上述のように、画素共有ユニット539は、1の画素回路210を時分割で動作させることにより、画素共有ユニット539に含まれる4つの画素541(画素541A、541B、541C、541D)それぞれの画素信号を垂直信号線543へ順次出力するようになっている。複数の画素541に1の画素回路210が接続されており、複数の画素541の画素信号が、1の画素回路210により時分割で出力される態様を、「複数の画素541が1の画素回路210を共有する」という。
 画素541A、541B、541C、541Dは、互いに共通の構成要素を有する。以降、画素541A、541B、541C、541Dの構成要素を互いに区別するために、画素541Aの構成要素の符号の末尾には識別番号1、画素541Bの構成要素の符号の末尾には識別番号2、画素541Cの構成要素の符号の末尾には識別番号3、画素541Dの構成要素の符号の末尾には識別番号4を付与する。画素541A、541B、541C、541Dの構成要素を互いに区別する必要のない場合には、画素541A、541B、541C、541Dの構成要素の符号の末尾の識別番号を省略する。
 画素541A、541B、541C、541Dは、例えば、フォトダイオードPDと、フォトダイオードPDと電気的に接続された転送トランジスタTRと、転送トランジスタTRに電気的に接続されたフローティングディフュージョンFDとを有する。フォトダイオードPD(PD1、PD2、PD3、PD4)では、カソードが転送トランジスタTRのソースに電気的に接続されており、アノードが基準電位線(例えばグラウンド)に電気的に接続されている。
 フォトダイオードPDは、入射した光を光電変換し、その受光量に応じた電荷を発生する。転送トランジスタTR(転送トランジスタTR1、TR2、TR3、TR4)は、例えば、n型のMOS(Metal Oxide Semiconductor)トランジスタである。転送トランジスタTRでは、ドレインがフローティングディフュージョンFDに電気的に接続され、ゲートが駆動信号線に電気的に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。転送トランジスタTRは、フォトダイオードPDで発生した電荷をフローティングディフュージョンFDへと転送する。フローティングディフュージョンFD(フローティングディフュージョンFD1、FD2、FD3、FD4)は、p型半導体層中に形成されたn型拡散層領域である。フローティングディフュージョンFDは、フォトダイオードPDから転送された電荷を一時的に保持する電荷保持手段であり、かつ、その電荷量に応じた電圧を発生させる、電荷―電圧変換手段である。
 1の画素共有ユニット539に含まれる4つのフローティングディフュージョンFD(フローティングディフュージョンFD1、FD2、FD3、FD4)は、互いに電気的に接続されるとともに、増幅トランジスタAMPのゲート及びFD変換ゲイン切替トランジスタFDGのソースに電気的に接続されている。FD変換ゲイン切替トランジスタFDGのドレインはリセットトランジスタRSTのソースに接続され、FD変換ゲイン切替トランジスタFDGのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。
 リセットトランジスタRSTのドレインは電源線VDDに接続され、リセットトランジスタRSTのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。増幅トランジスタAMPのゲートはフローティングディフュージョンFDに接続され、増幅トランジスタAMPのドレインは電源線VDDに接続され、増幅トランジスタAMPのソースは選択トランジスタSELのドレインに接続されている。選択トランジスタSELのソースは垂直信号線543に接続され、選択トランジスタSELのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。
 転送トランジスタTRは、転送トランジスタTRがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。転送トランジスタTRのゲート(転送ゲート電極TG)は、例えば、いわゆる縦型電極を含んでおり、後述の図4に示すように、半導体層(後述の図4の半導体層100S)の表面からPDに達する深さまで延在して設けられている。
 リセットトランジスタRSTは、フローティングディフュージョンFDの電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、フローティングディフュージョンFDの電位を電源線VDDの電位にリセットする。選択トランジスタSELは、画素回路210からの画素信号の出力タイミングを制御する。増幅トランジスタAMPは、画素信号として、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧の信号を生成する。
 増幅トランジスタAMPは、選択トランジスタSELを介して垂直信号線543に接続されている。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョンFDの電圧を、垂直信号線543に出力する。リセットトランジスタRST、増幅トランジスタAMP及び選択トランジスタSELは、例えば、n型のMOSトランジスタである。
 FD変換ゲイン切替トランジスタFDGは、フローティングディフュージョンFDでの電荷―電圧変換のゲインを変更する際に用いられる。一般に、暗い場所での撮影時には画素信号が小さい。Q=CVに基づき、電荷電圧変換を行う際に、フローティングディフュージョンFDの容量(FD容量C)が大きければ、増幅トランジスタAMPで電圧に変換した際のVが小さくなってしまう。一方、明るい場所では、画素信号が大きくなるので、FD容量Cが大きくなければ、フローティングディフュージョンFDで、フォトダイオードPDの電荷を受けきれない。さらに、増幅トランジスタAMPで電圧に変換した際のVが大きくなりすぎないように(言い換えると、小さくなるように)、FD容量Cが大きくなっている必要がある。
 撮像装置1では、FD変換ゲイン切替トランジスタFDGをオンにすると、FD変換ゲイン切替トランジスタFDG分のゲート容量が増え、全体のFD容量Cが大きくなる。一方、FD変換ゲイン切替トランジスタFDGをオフにすると、全体のFD容量Cが小さくなる。このように、FD変換ゲイン切替トランジスタFDGをオンオフ切り替えることで、FD容量Cを可変にし、変換効率を切り替えることができる。FD変換ゲイン切替トランジスタFDGは、例えば、n型のMOSトランジスタである。
 なお、撮像装置1では、FD変換ゲイン切替トランジスタFDGを設けない構成も可能である。このとき、例えば、画素回路210は、例えば増幅トランジスタAMP、選択トランジスタSEL及びリセットトランジスタRSTの3つのトランジスタで構成される。画素回路210は、例えば、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRST及びFD変換ゲイン切替トランジスタFDGなどの画素トランジスタの少なくとも1つを有する。
 選択トランジスタSELは、電源線VDDと増幅トランジスタAMPとの間に設けられていてもよい。この場合、リセットトランジスタRSTのドレインが電源線VDD及び選択トランジスタSELのドレインに電気的に接続されている。選択トランジスタSELのソースが増幅トランジスタAMPのドレインに電気的に接続されており、選択トランジスタSELのゲートが行駆動信号線542に電気的に接続されている。増幅トランジスタAMPのソース(画素回路210の出力端)が垂直信号線543に電気的に接続されており、増幅トランジスタAMPのゲートがリセットトランジスタRSTのソースに電気的に接続されている。なお、図示は省略するが、1の画素回路210を共有する画素541の数は、4以外であってもよい。例えば、2つ又は8つの画素541が1の画素回路210を共有してもよい。
(撮像装置の構成例)
 図4は、本開示の実施形態に係る撮像装置1の構成例を示す断面図であり、第1基板100、第2基板200及び第3基板300の主面に対して垂直方向の断面構成の一例を示す図である。図4は、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の断面と異なっていてもよい。撮像装置1では、第1基板100、第2基板200及び第3基板300がこの順に積層されている。撮像装置1は、さらに、第1基板100の裏面側(光入射面側)に受光レンズ401を有する。受光レンズ401と第1基板100との間に、カラーフィルタ層(図示せず)が設けられていてもよい。受光レンズ401は、例えば、画素541A、541B、541C、541Dの各々に設けられている。撮像装置1は、例えば、裏面照射型の撮像装置である。撮像装置1は、中央部に配置された画素アレイ部540と、画素アレイ部540の外側に配置された周辺部540Bとを有する。
 第1基板100は、受光レンズ401側から順に、絶縁膜111、固定電荷膜112、半導体層100S及び配線層100Tを有する。半導体層100Sは、例えばシリコン基板により構成されている。半導体層100Sは、例えば、表面(配線層100T側の面)の一部及びその近傍に、Pウェル層115を有しており、それ以外の領域(Pウェル層115よりも深い領域)に、n型半導体領域114を有する。例えば、n型半導体領域114及びPウェル層115によりpn接合型のフォトダイオードPDが構成されている。Pウェル層115は、p型半導体領域である。
 半導体層100Sの表面近傍には、フローティングディフュージョンFD及びVSSコンタクト領域118が設けられている。フローティングディフュージョンFDは、Pウェル層115内に設けられたn型半導体領域により構成されている。画素541A、541B、541C、541D各々のフローティングディフュージョンFD(フローティングディフュージョンFD1、FD2、FD3、FD4)は、例えば、画素共有ユニット539の中央部に互いに近接して設けられている。この点については、後で図5を参照しながらより詳細に説明する。
 VSSコンタクト領域118は、基準電位線VSSに電気的に接続される領域であり、フローティングディフュージョンFDと離間して配置されている。例えば、画素541A、541B、541C、541Dでは、各画素のV方向の一端にフローティングディフュージョンFDが配置され、他端にVSSコンタクト領域118が配置されている。VSSコンタクト領域118は、例えば、p型半導体領域により構成されている。VSSコンタクト領域118は、例えば接地電位や固定電位に接続されている。これにより、半導体層100Sに基準電位が供給される。
 第1基板100には、フォトダイオードPD、フローティングディフュージョンFD及びVSSコンタクト領域118とともに、転送トランジスタTRが設けられている。フォトダイオードPD、フローティングディフュージョンFD、VSSコンタクト領域118及び転送トランジスタTRは、画素541A、541B、541C、541Dの各々に設けられている。
 転送トランジスタTRは、半導体層100Sの表面側(光入射面側とは反対側、第2基板200側)に設けられている。転送トランジスタTRは、ゲート電極として、転送ゲート電極TGを有する。転送ゲート電極TGは、例えば、第1導体部と、第1導体部に接続する第2導体部とを有する。転送ゲート電極TGの構成については、後で図7A及び図7Bを参照しながらより詳細に説明する。
 半導体層100Sには、画素541A、541B、541C、541Dを互いに分離する画素分離部117が設けられている。画素分離部117は、半導体層100Sの法線方向(半導体層100Sの表面に対して垂直な方向)に延在して形成されている。画素分離部117は、画素541A、541B、541C、541Dを互いに仕切るように設けられており、例えば格子状の平面形状を有する(後述の図5参照)。
 画素分離部117は、例えば、画素541A、541B、541C、541Dを互いに電気的及び光学的に分離する。画素分離部117は、例えば、遮光膜117A及び絶縁膜117Bを含んでいる。遮光膜117Aには、例えば、タングステン(W)等が用いられる。絶縁膜117Bは、遮光膜117AとPウェル層115又はn型半導体領域114との間に設けられている。絶縁膜117Bは、例えば、酸化シリコン(SiO)によって構成されている。
 画素分離部117は、例えば、FTI(Full Trench Isolation)構造を有しており、半導体層100Sを貫通している。図示しないが、画素分離部117は半導体層100Sを貫通するFTI構造に限定されない。例えば、半導体層100Sを貫通しないDTI(Deep Trench Isolation)構造であっても良い。画素分離部117は、半導体層100Sの法線方向に延在して、半導体層100Sの一部の領域に形成される。
 半導体層100Sには、例えば、第1ピニング領域113及び第2ピニング領域116が設けられている。第1ピニング領域113は、半導体層100Sの裏面近傍に設けられており、n型半導体領域114と固定電荷膜112との間に配置されている。第2ピニング領域116は、画素分離部117の側面、具体的には、画素分離部117とPウェル層115又はn型半導体領域114との間に設けられている。第1ピニング領域113及び第2ピニング領域116は、例えば、p型半導体領域により構成されている。
 半導体層100Sと絶縁膜111との間には、負の固定電荷を有する固定電荷膜112が設けられている。固定電荷膜112が誘起する電界により、半導体層100Sの受光面(裏面)側の界面に、ホール蓄積層の第1ピニング領域113が形成される。これにより、半導体層100Sの受光面側の界面準位に起因した暗電流の発生が抑えられる。固定電荷膜112は、例えば、負の固定電荷を有する絶縁膜によって形成されている。この負の固定電荷を有する絶縁膜の材料としては、例えば、酸化ハフニウム、酸化ジルコン、酸化アルミニウム、酸化チタン又は酸化タンタルが挙げられる。
 固定電荷膜112と絶縁膜111との間には、遮光膜117Aが設けられている。遮光膜117Aは、画素分離部117を構成する遮光膜117Aと連続して設けられていてもよい。固定電荷膜112と絶縁膜111との間の遮光膜117Aは、例えば、半導体層100S内の画素分離部117に対向する位置に選択的に設けられている。絶縁膜111は、遮光膜117Aを覆うように設けられている。絶縁膜111は、例えば、酸化シリコンにより構成されている。
 半導体層100Sと第2基板200との間に設けられた配線層100Tは、半導体層100S側から、層間絶縁膜119、パッド部120(本開示の「共有導体」の一例)、121、パッシベーション膜122、層間絶縁膜123及び接合膜124をこの順に有する。転送ゲート電極TGは、例えば、配線層100Tに設けられている。層間絶縁膜119は、半導体層100Sの表面全面にわたって設けられており、半導体層100Sに接している。層間絶縁膜119は、例えば酸化シリコン膜により構成されている。なお、配線層100Tの構成は上述の限りでなく、配線と絶縁膜とを有する構成であれば良い。
 パッド部120は、層間絶縁膜119上に選択的に設けられている。パッド部120は、画素541A、541B、541C、541D各々のフローティングディフュージョンFD(フローティングディフュージョンFD1、FD2、FD3、FD4)を互いに接続する。
 層間絶縁膜119には、パッド部120とフローティングディフュージョンFD1、FD2、FD3、FD4とを電気的に接続するための接続ビア120Cが設けられている。接続ビア120Cは、画素541A、541B、541C、541Dの各々に設けられている。例えば、接続ビア120Cにパッド部120の一部が埋め込まれることにより、パッド部120とフローティングディフュージョンFD1、FD2、FD3、FD4とが電気的に接続されている。
 パッド部121は、層間絶縁膜119上に選択的に設けられている。パッド部121は、複数のVSSコンタクト領域118を互いに接続する。例えば、V方向に隣り合う一方の画素共有ユニット539の画素541C、541Dに設けられたVSSコンタクト領域118と、他方の画素共有ユニット539の画素541A、541Bに設けられたVSSコンタクト領域118とがパッド部121により電気的に接続されている。パッド部121は、例えば、画素分離部117を跨ぐように設けられており、これら4つのVSSコンタクト領域118各々の少なくとも一部に重畳して配置されている。具体的には、パッド部121は、複数のVSSコンタクト領域118各々の少なくとも一部と、その複数のVSSコンタクト領域118の間に形成された画素分離部117の少なくとも一部とに対して、半導体層100Sの表面に対して垂直な方向に重なる領域に形成される。
 層間絶縁膜119には、パッド部121とVSSコンタクト領域118とを電気的に接続するための接続ビア121Cが設けられている。接続ビア121Cは、画素541A、541B、541C、541Dの各々に設けられている。例えば、接続ビア121Cにパッド部121の一部が埋め込まれることにより、パッド部121とVSSコンタクト領域118とが電気的に接続されている。例えば、V方向に並ぶ複数の画素共有ユニット539各々のパッド部120及びパッド部121は、H方向において略同じ位置に配置されている。
 パッド部120を設けることで、チップ全体において、各フローティングディフュージョンFDから画素回路210(例えば増幅トランジスタAMPのゲート電極)へ接続するための配線を減らすことができる。同様に、パッド部121を設けることで、チップ全体において、各VSSコンタクト領域118への電位を供給する配線を減らすことができる。これにより、チップ全体の面積の縮小、微細化された画素における配線間の電気的干渉の抑制、及び/又は部品点数の削減によるコスト削減などが可能になる。
 パッド部120、121は、第1基板100、第2基板200の所望の位置に設けることができる。具体的には、パッド部120、121を配線層100T、半導体層200Sの絶縁領域212のいずれかに設けることができる。配線層100Tに設ける場合には、パッド部120、121を半導体層100Sに直接接触させても良い。具体的には、パッド部120、121が、フローティングディフュージョンFD及び/又はVSSコンタクト領域118の各々の少なくとも一部と直接接続される構成でも良い。また、パッド部120、121に接続するフローティングディフュージョンFD及び/又はVSSコンタクト領域118の各々から接続ビア120C、121Cを設け、配線層100T、半導体層200Sの絶縁領域212の所望の位置にパッド部120、121を設ける構成でも良い。
 パッド部120、121の構成を用いることで、第1基板100と第2基板200とを接続する配線を大幅に削減することができる。配線を削減することにより、画素回路210を形成する第2基板200の面積を大きく確保することができる。画素回路210の面積を確保することで、画素トランジスタを大きく形成することができ、ノイズ低減などによる画質向上に寄与することができる。
 パッド部120、121は、例えば、ポリシリコン(Poly Si)、より具体的には、不純物が添加されたドープドポリシリコンにより構成されている。パッド部120、121はポリシリコン、タングステン(W)、チタン(Ti)及び窒化チタン(TiN)等の耐熱性の高い導電性材料により構成されていることが好ましい。これにより、第1基板100に第2基板200の半導体層200Sを貼り合わせた後に、画素回路210を形成することが可能となる。
 パッシベーション膜122は、例えば、パッド部120、121を覆うように、半導体層100Sの表面全面にわたって設けられている。パッシベーション膜122は、例えば、窒化シリコン(SiN)膜により構成されている。層間絶縁膜123は、パッシベーション膜122を間にしてパッド部120、121を覆っている。層間絶縁膜123は、例えば、半導体層100Sの表面全面にわたって設けられている。層間絶縁膜123は、例えば酸化シリコン(SiO)膜により構成されている。接合膜124は、第1基板100(具体的には配線層100T)と第2基板200との接合面に設けられている。即ち、接合膜124は、第2基板200に接している。接合膜124は、第1基板100の主面全面にわたって設けられている。接合膜124は、例えば、窒化シリコン膜により構成されている。
 受光レンズ401は、例えば、固定電荷膜112及び絶縁膜111を間にして半導体層100Sに対向している。受光レンズ401は、例えば画素541A、541B、541C、541D各々のフォトダイオードPDに対向する位置に設けられている。
 第2基板200は、第1基板100側から、半導体層200S及び配線層200Tをこの順に有する。半導体層200Sは、シリコン基板で構成されている。半導体層200Sでは、厚み方向にわたって、ウェル領域211が設けられている。ウェル領域211は、例えば、p型半導体領域である。第2基板200には、画素共有ユニット539毎に配置された画素回路210が設けられている。画素回路210は、例えば、半導体層200Sの表面側(配線層200T側)に設けられている。撮像装置1では、第1基板100の表面側(配線層100T側)に第2基板200の裏面側(半導体層200S側)が向かうようにして、第2基板200が第1基板100に貼り合わされている。つまり、第2基板200は、第1基板100に、フェイストゥーバックで貼り合わされている。
 第3基板300は、例えば、第2基板200側から配線層300T及び半導体層300Sをこの順に有する。例えば、半導体層300Sの表面は、第2基板200側に設けられている。半導体層300Sは、シリコン基板で構成されている。この半導体層300Sの表面側の部分には、回路が設けられている。具体的には、半導体層300Sの表面側の部分には、例えば、入力部510A、行駆動部520、タイミング制御部530、列信号処理部550、画像信号処理部560及び出力部510Bのうちの少なくとも一部が設けられている。半導体層300Sと第2基板200との間に設けられた配線層300Tは、例えば、層間絶縁膜と、この層間絶縁膜により分離された複数の配線層と、コンタクト部301、302とを含んでいる。
 コンタクト部301、302は、配線層300Tの表面(第2基板200側の面)に露出されており、コンタクト部301は第2基板200のコンタクト部201に、コンタクト部302は第2基板200のコンタクト部202に各々接している。コンタクト部301、302は、半導体層300Sに形成された回路(例えば、入力部510A、行駆動部520、タイミング制御部530、列信号処理部550、画像信号処理部560及び出力部510Bの少なくともいずれか)に電気的に接続されている。コンタクト部301、302は、例えば、Cu(銅)及びアルミニウム(Al)等の金属により構成されている。例えば、接続孔部H1を介して外部端子TAが入力部510Aに接続されており、接続孔部H2を介して外部端子TBが出力部510Bに接続されている。
(画素共有ユニットの構成例)
 図5は、本開示の実施形態に係る画素共有ユニット539の構成例を示す平面図であり、第1基板100に含まれる半導体層100S(図4参照)の表面の法線方向からの平面視による図である。図5の平面図をa-b線で切断した断面が、図4に示した断面図のa-b線の領域に対応している。
 図5に示すように、1つの画素共有ユニット539は、4つの画素541(画素541A、541B、541C、541D)を含んでいる。画素541A、541B、541C、541Dは各々、フォトダイオードPDを有する。画素共有ユニット539は、1つの画素回路210を共有する単位である。画素回路210を時分割で動作させることにより、画素541A、541B、541C、541Dの各々から画素信号が順次読み出される。画素541A、541B、541C、541Dは、例えば2行×2列で配置されている。
 1つの画素共有ユニット539に含まれる4つのフローティングディフュージョンFD(フローティングディフュージョンFD1、FD2、FD3、FD4)は、平面視で画素共有ユニット539の中央部に寄せて配置されている。1つの画素共有ユニット539の中央部に寄せて配置されたフローティングディフュージョンFD1、FD2、FD3、FD4は、1つのパッド部120を介して互いに電気的に接続されている。
 パッド部120は、画素共有ユニット539毎に、平面視で画素共有ユニット539の中央部に配置されている。パッド部120は、画素541A、541B、541C、541D間に設けられた画素分離部117を跨ぐように設けられており、フローティングディフュージョンFD1、FD2、FD3、FD4の各々の少なくとも一部に重畳して配置されている。
 また、画素共有ユニット539毎に、パッド部120上に貫通電極120Eが設けられている。フローティングディフュージョンFD1、FD2、FD3、FD4は、パッド部120と貫通電極120Eとを介して、第2基板200(図4参照)に設けられた増幅トランジスタAMPのゲートとFD変換ゲイン切替トランジスタFDGのソースとに電気的に接続されている。
 図6は、本開示の実施形態に係る複数の画素共有ユニット539の配置例を示す平面図である。図6に示すように、複数の画素共有ユニット539は、行方向(H方向)及び列方向(V方向)にそれぞれ並んで配置されている。
 例えば、複数のフローティングディフュージョンFDが接続されるパッド部120と、複数のVSSコンタクト領域118が接続されるパッド部121とは、V方向において直線状に交互に配置される。また、H方向においては、複数のパッド部120と、複数のパッド部121とがそれぞれ直線状に配置される。パッド部120、121は、複数のフォトダイオードPDや、複数の転送ゲート電極TGや、複数のフローティングディフュージョンFDに囲まれる位置に配置される。
 これにより、複数の素子を形成する第1基板100において、フローティングディフュージョンFDとVSSコンタクト領域118以外の素子を自由に配置することができ、チップ全体のレイアウトの効率化を図ることができる。また、各画素共有ユニット539に形成される素子のレイアウトにおける対称性が確保され、各画素541の特性のばらつきを抑えることができる。
(転送トランジスタの構成例)
 図7A及び図7Bは、本開示の実施形態に係る画素541の構成例を示す平面図と断面図である。図7Aを、A´-B-A線で切断した断面が、図7Bの断面図に対応している。図7A及び図7Bに示すように、画素541は、半導体層100Sの表面側に設けられ、フォトダイオードPDからフローティングディフュージョンFDへ電荷e-を転送する転送トランジスタTRを備える。転送トランジスタTRは、半導体層100Sの表面上に絶縁膜150を介して設けられた転送ゲート電極TGを有する。
 例えば、絶縁膜150は、絶縁膜151と、絶縁膜151上に積層された絶縁膜152とを有する。絶縁膜152の膜厚は、絶縁膜151の膜厚よりも厚い。一例を挙げると、絶縁膜151、152はそれぞれ酸化シリコン(SiO)膜である。絶縁膜151の厚さT1は6.5nmであり、絶縁膜152の厚さT2は180nmである。絶縁膜151は、半導体層100Sを熱酸化することにより形成された熱酸化膜である。絶縁膜152は、CVD(Chemical Vapor Deposition)法で形成されたCVD膜である。
 半導体層100Sに形成されるチャネル領域140の直上に絶縁膜151が位置する。半導体層100Sにおいてチャネル領域140の直上以外の領域上に、絶縁膜151、152(すなわち、絶縁膜151上に絶縁膜152が積層された積層膜)が位置する。
 転送ゲート電極TGは、第1導体部TG1と、第1導体部TG1に電気的に接続する第2導体部TG2とを有する。第1導体部TG1は、絶縁膜151上に位置する。第2導体部TG2は、絶縁膜151上に絶縁膜152が積層された積層膜上に位置する。換言すると、半導体層100Sと第1導体部TG1との間に絶縁膜151が位置し、半導体層100Sと第2導体部TG2との間に上記の積層膜が位置する。
 第1導体部TG1及び第1導体部TG2は、導電性の材料で構成されており、例えば、不純物が添加されたドープドポリシリコンで構成されている。第1導体部TG1と第2導体部TG2は、同一工程で同時に形成(すなわち、一括で形成)されていてもよいし、別々に形成(すなわち、第1導体部TG1が先に形成され、その後で第2導体部TG2が形成)されていてもよい。
 第2導体部TG2よりも第1導体部TG1の方が半導体層100Sに近いため、半導体層100Sにおいて絶縁膜151を挟んで第1導体部TG1と対向する領域とその近傍に、チャネル領域140が形成される。
 第1導体部TG1は、半導体層100Sと第2導体部TG2との間に位置する。半導体層100Sの法線方向からの平面視で、第2導体部TG2は第1導体部TG1よりも面積が大きい。これにより、転送ゲート電極TGにおいて貫通電極TGVとの接続面積を広く確保することができ、転送ゲート電極TG上に貫通電極TGVを配置することが容易となっている。
 転送ゲート電極TGのゲート長方向(すなわち、直線A´-Bに平行な方向)における第1導体部TG1の長さをL1とし、ゲート長方向における第2導体部TG2の長さをL2とすると、第2導体部TG2の長さL2は第1導体部TG1の長さL1よりも長い。転送ゲート電極TGのゲート長方向における第1導体部TG1の中心をCL1とし、ゲート長方向における第2導体部TG2の中心をCL2とすると、第2導体部TG2の中心CL2よりも、第1導体部TG1の中心CL1の方が、フローティングディフュージョンに近い側に位置する。これにより、フローティングディフュージョンの近くにチャネル領域140を形成することが容易となっている。
 また、転送ゲート電極TGのゲート長方向に平行で、かつ、転送ゲート電極TGのゲート幅方向の中心を通る直線(すなわち、直線A´-B)に対して、第1導体部TG1は線対称となっている。これにより、第1導体部TG1の直下に形成されるチャネル領域140の幅を広くすることが容易となり、フォトダイオードPDからフローティングディフュージョンFDへの電荷e-の転送効率を高めることが容易となっている。
 なお、図7Aに示すように、本実施形態に係る撮像装置1では、画素分離部117にP型領域130が部分的に設けられていてもよい。例えば、P型領域130は、隣り合う一方の画素541の表面側に位置するPウェル層115と、他方の画素541の表面側に位置するPウェル層115とを電気的に接続する。P型領域130におけるP型濃度は、Pウェル層115におけるP型濃度よりも低濃度である。
 これによれば、隣接する画素541間の電位障壁を低くすることができ、隣接する一方の画素から他方の画素との間で電荷e-が移動し易くなる。例えば、行方向(H方向)で隣り合う一対の画素541を同色の一画素として使用してよく、この場合、H方向で隣り合う一対の画素541の出力が合成されて一画素の出力となる。P型領域130により、一対の画素541間の電位障壁が低くなり、一方の画素541で電荷e-がオーバフローする前に、一方の画素541から他方の画素541へ電荷e-が移動することが可能となる。これにより、一対の画素541から出力される一画素の出力を、受光量に対して、より線形に近づけることが可能となる。
(比較例)
 図8は、本開示の比較例に係る画素541´の構成例を示す断面図である。図8に示すように、比較例に係る画素541´は転送トランジスタTR´を有する。転送トランジスタTR´の転送ゲート電極TG´は、実施形態の転送ゲート電極TGとは異なり、平坦な導体部(例えば、第2導体部TG2)のみで構成されている。また、転送ゲート電極TG´と半導体層100Sとの間には絶縁膜151´が配置されている。
(転送ゲート電極の容量の比較)
 本開示者は、図7A及び図7Bに示した実施形態に係る転送トランジスタTRの転送ゲート電極TGの容量と、図8に示した比較例に係る転送トランジスタTR´の転送ゲート電極TG´の容量とを比較した。
 この比較では、実施形態に係る転送トランジスタTRについて、絶縁膜151の膜厚T1を6.5nmとし、絶縁膜152の膜厚T2を180nmとし、絶縁膜151、152の比誘電率を3.9とした。また、転送トランジスタTRにおいて、第1導体部TG1の平面視による面積を0.02μm2とし、第2導体部TG2の平面視による面積を0.112μm2とした。半導体層100SはSi基板であり、導体であると仮定した。この条件のもとで、転送ゲート電極TGの容量を簡易計算すると、0.124fFであった。
 また、比較例に係る転送トランジスタTR´について、絶縁膜151´の膜厚T´を6.5nmとし、絶縁膜151の比誘電率を3.9とし、転送ゲート電極TG´の平面視による面積を0.112μm2とした。この条件のもとで、転送ゲート電極TG´の容量を簡易計算すると、0.595fFであった。
 比較例に係る転送ゲート電極TG´の容量を1とすると、実施形態に係る転送ゲート電極TGの容量は0.21となる。この結果から、実施形態に係る転送ゲート電極TGは、比較例に係る転送ゲート電極TG´よりも容量が低いことが確認された。
(実施形態の効果)
 以上説明したように、本開示の実施形態に係る撮像装置1は、半導体層100S(本開示の「第1基板」の一例)と、半導体層100Sに設けられた複数の画素541と、を有する。複数の画素541の各々は、半導体層100S内に設けられたフォトダイオードPD(本開示の「光電変換部」の一例)と、半導体層100S内に設けられたフローティングディフュージョンFD(本開示の「電荷蓄積部」の一例)と、半導体層100Sの表面(本開示の「表面」の一例)側に設けられ、フォトダイオードPDからフローティングディフュージョンFDへ電荷e-を転送する転送トランジスタTRと、を有する。転送トランジスタTRは、半導体層100Sの表面上に絶縁膜150を介して設けられた転送ゲート電極TGを有する。絶縁膜150は、半導体層100Sに形成されるチャネル領域140上に位置する第1絶縁膜と、半導体層100Sにおいてチャネル領域140以外の領域上に位置する第2絶縁膜とを有する。例えば、第1絶縁膜は、絶縁膜151である。第2絶縁膜は、絶縁膜151上に絶縁膜152が積層された積層膜である。第2絶縁膜は、第1絶縁膜よりも膜厚が厚い。
 これによれば、転送ゲート電極TGと半導体層100Sとの間に生じる容量の一部であって、第2絶縁膜上に位置する部分(例えば、第2導体部TG2)と半導体層100Sとの間の容量を小さくすることができる。これにより、第1絶縁膜と第2絶縁膜とが互いに同じ膜厚である場合(例えば、図8に示した比較例)と比べて、転送ゲート電極TGの容量を低減することができる。これにより、例えば、転送トランジスタTRのセトリングタイムを低減することができ、転送トランジスタTRの高速化が可能となる。
 また、転送ゲート電極TGにおいて、貫通電極TGVとの接続面積を広く確保しつつ、転送ゲート電極TGの容量を低減することが可能となる。詳しく説明すると、図4に示したように、第1基板100に第2基板200が積層された積層構造の撮像装置1において、層間絶縁膜123や絶縁領域212に径の小さい貫通穴を形成したり、径の小さい貫通穴に電極材を隙間なく埋め込んだりすることは、製造技術上の難易度が高い。このため、層間絶縁膜123等を貫通する貫通電極TGVの径を小さくすることには限界があり、貫通電極TGVの径は一定以上の大きさに形成される。このため、転送ゲート電極TGにおける貫通電極TGVとの接続面積も、一定以上の大きさが必要となる。比較例では、貫通電極TGVとの接続面積を確保する必要から、転送ゲート電極TG´を大きく形成する必要があり、転送ゲート電極TG´の容量も大きかった。
 これに対し、本開示の実施形態に係る撮像装置1では、転送ゲート電極TGが第1導体部TG1と第2導体部TG2とを有する。第2導体部TGの単位面積当たりの容量は、第1導体部TG1の単位面積当たりの容量よりも小さい。これにより、転送ゲート電極TGと貫通電極TGVとの接続面積を広く確保しつつ、転送ゲート電極TGの容量を低減することが可能となる。
 また、本開示の実施形態に係る撮像装置1では、図7Bに示したように、転送ゲート電極TGの第2導体部TG2よりもパッド部120の方が、半導体層100Sに近い側に位置することが好ましい。これにより、第2導体部TG2とパッド部120とが同じ高さに位置する場合と比べて、第2導体部TG2とパッド部120との距離を長くすることができるので、第2導体部TG2とパッド部120との間に生じる容量を低減することができる。
(変形例1)
 図9は、本開示の実施形態に係る画素541の変形例1を示す平面図である。図9に示す変形例1において、画素541は転送トランジスタTRAを有する。転送トランジスタTRAは、図7A及び図7Bに示した転送トランジスタTRとは異なり、直線A´-Bに対して非対称となっている。転送トランジスタTRAでは、転送トランジスタTRと比べて、第1導体部とP型領域130との距離Dが長くなっている。これにより、第1導体部TG1の電位がP型領域130の電位に影響することを抑制することができる。P型領域130を介した電荷移動特性の変動を抑制することができる。
(変形例2)
 図10は、本開示の実施形態に係る画素541の変形例2を示す平面図である。図10に示す変形例2において、画素541は転送トランジスタTRBを有する。転送トランジスタTRBの第1導体部TG1は、第2導体部TG2から半導体層100Sに向けて径が徐々に小さくなる、テーパ形状を有する。これによれば、第1導体部TG1と絶縁膜151との接触面積を小さくすることができ、第1導体部TG1と半導体層100Sの間の容量をさらに低減することが可能である。また、第1導体部TG1と半導体層100Sの間の容量を低減しつつ、第1導体部TG1を第2導体部TG2になだらかに接続することができる。
 テーパ形状の第1導体部TG1は、例えば、マスクを用いて絶縁膜152に、サイドエッチが進行するようなエッチング処理を施して、内側面がテーパ形状の接続ビアを形成し、形成した接続ビア内に導電材料(例えば、不純物が添加されたドープドポリシリコン)を堆積することによって形成することができるので、製造が容易である。
(変形例3)
 図11A及び図11Bは、本開示の実施形態に係る画素541の変形例3を示す平面図及び断面図である。図11A及び図11Bに示す変形例3において、画素541は転送トランジスタTRCを有する。転送トランジスタTRCは、図7A及び図7Bに示した転送トランジスタTRと比較して、第1導体部TG1のゲート長方向の長さL1が長くなっている。これによれば、図7A及び図7Bに示した転送トランジスタTRと比較して、転送ゲート電極TGの容量は増えてしまうが、ゲート変調による電流のオン/オフは容易となる。
(変形例4)
 図12A及び図12Bは、本開示の実施形態に係る画素541の変形例4を示す平面図及び断面図である。図12A及び図12Bに示す変形例4において、画素541の平面視による形状は正方形、または正方形に近い形を有する。また、画素541は、転送トランジスタTRDを有する。図7A及び図7Bに示した転送トランジスタTRと同様に、図12A及び図12Bに示す転送トランジスタTRDにおいても、転送ゲート電極TGは第1導体部TG1と第2導体部TG2とを有するため、転送ゲート電極TGの容量を低減することができる。また、画素541の平面視による形状は、正方形、または正方形に近い形である。画素541の形は通常型であり、多画素化が容易である。
<その他の実施形態>
 上記のように、本開示は実施形態及び変形例によって記載したが、この開示の一部をなす論述及び図面は本開示を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。本開示に係る技術(本技術)はここでは記載していない様々な実施形態等を含むことは勿論である。
 例えば、上記の実施形態では、4つの画素が1つの共有画素構造を構成していることを説明したが、本技術はこれに限定されない。本技術において、画素は共有画素構造でなくてもよい。具体的には、1つの画素が、1つのフォトダイオードPDと、1つの転送トランジスタTRと、1つのフローティングディフュージョンFDと、1つのリセットトランジスRSTと、1つの増幅トランジスタAMPとで構成されていてもよく、さらに、これらに1つの選択トランジスタSELを追加して構成されていてもよい。
 また、上記の実施形態では、撮像装置1が、第1基板100と、第1基板100の表面側に貼り合わせた第2基板200とを有し、第1基板100にフォトダイオードPD、フローティングディフュージョンFD、転送トランジスタTR等が形成され、第2基板200に増幅トランジスタAMP等を含む画素回路210が形成されていることを説明したが、本技術はこれに限定されない。本技術では、第1基板100と第2基板200とが1つの基板で構成されていてもよい。1つの基板にフォトダイオードPD、フローティングディフュージョンFD、転送トランジスタTR、画素回路210等が形成されていてもよい。そして、この1つの基板に、画像信号処理部560等が形成された第3基板300を貼り合わせるようにしてもよい。
 また、本技術は、一例として、以下の適用例、応用例を含む。
 <適用例>
 図13は、上記実施の形態およびその変形例に係る撮像装置1を備えた撮像システム7の概略構成の一例を示す図である。
 撮像システム7は、例えば、デジタルスチルカメラやビデオカメラ等の撮像装置や、スマートフォンやタブレット型端末等の携帯端末装置などの電子機器である。撮像システム7は、例えば、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246、操作部247および電源部248を備えている。撮像システム7において、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246、操作部247および電源部248は、バスライン249を介して相互に接続されている。
 上記実施の形態およびその変形例に係る撮像装置1は、入射光に応じた画像データを出力する。DSP回路243は、上記実施の形態およびその変形例に係る撮像装置1から出力される信号(画像データ)を処理する信号処理回路である。フレームメモリ244は、DSP回路243により処理された画像データを、フレーム単位で一時的に保持する。表示部245は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、上記実施の形態およびその変形例に係る撮像装置1で撮像された動画又は静止画を表示する。記憶部246は、上記実施の形態およびその変形例に係る撮像装置1で撮像された動画又は静止画の画像データを、半導体メモリやハードディスク等の記録媒体に記録する。操作部247は、ユーザによる操作に従い、撮像システム7が有する各種の機能についての操作指令を発する。電源部248は、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246および操作部247の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 次に、撮像システム7における撮像手順について説明する。
 図14は、撮像システム7における撮像動作の一例を示すフローチャートである。ユーザは、操作部247を操作することにより撮像開始を指示する(ステップS101)。すると、操作部247は、撮像指令を撮像装置1に送信する(ステップS102)。撮像装置1(具体的にはシステム制御回路36)は、撮像指令を受けると、所定の撮像方式での撮像を実行する(ステップS103)。
 撮像装置1は、撮像により得られた画像データをDSP回路243に出力する。ここで、画像データとは、フローティングディフュージョンFDに一時的に保持された電荷に基づいて生成された画素信号の全画素分のデータである。DSP回路243は、撮像装置1から入力された画像データに基づいて所定の信号処理(例えばノイズ低減処理など)を行う(ステップS104)。DSP回路243は、所定の信号処理がなされた画像データをフレームメモリ244に保持させ、フレームメモリ244は、画像データを記憶部246に記憶させる(ステップS105)。このようにして、撮像システム7における撮像が行われる。
 本適用例では、上記実施の形態およびその変形例に係る撮像装置1が撮像システム7に適用される。これにより、撮像装置1における転送ゲート電極の容量を低減することができ、画像信号の転送特性を向上させることができるので、高性能な撮像システム7を提供することができる。
 <応用例>
[応用例1]
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。この例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図16は、撮像部12031の設置位置の例を示す図である。
 図16では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図16には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上記実施の形態およびその変形例に係る撮像装置1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、撮像部12031における転送ゲート電極の容量を低減することができ、画像信号の転送特性を向上させることができるので、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
[応用例2]
 図17は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図17では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図18は、図17に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、撮像部11402における転送ゲート電極の容量を低減することができ、画像信号の転送特性を向上させることができるので、高性能な内視鏡11100を提供することができる。
 このように、本技術は、上述した実施形態の要旨を逸脱しない範囲で、構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。また、本明細書に記載された効果はあくまでも例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本開示は以下のような構成も取ることができる。
(1)
 第1基板と、
 前記第1基板に設けられた複数の画素と、を有し、
 前記複数の画素の各々は、
 前記第1基板内に設けられた光電変換部と、
 前記第1基板内に設けられた電荷蓄積部と、
 前記第1基板の第1面側に設けられ、前記光電変換部から前記電荷蓄積部へ電荷を転送する転送トランジスタと、を有し、
 前記転送トランジスタは、
 前記第1基板の前記第1面上に絶縁膜を介して設けられた転送ゲート電極を有し、
 前記絶縁膜は、
 前記第1基板に形成されるチャネル領域上に位置する第1絶縁膜と、
 前記第1基板において前記チャネル領域以外の領域上に位置する第2絶縁膜と、を有し、
 前記第2絶縁膜は前記第1絶縁膜よりも膜厚が厚い、撮像装置。
(2)
 前記転送ゲート電極は、
 前記第1絶縁膜上に位置する第1導体部と、
 前記第1導体部に接続し、前記第2絶縁膜上に位置する第2導体部と、を有する前記(1)に記載の撮像装置。
(3)
 第1基板と、
 前記第1基板に設けられた複数の画素と、を有し、
 前記複数の画素の各々は、
 前記第1基板内に設けられた光電変換部と、
 前記第1基板内に設けられた電荷蓄積部と、
 前記第1基板の第1面側に設けられ、前記光電変換部から前記電荷蓄積部へ電荷を転送する転送トランジスタと、を有し、
 前記転送トランジスタは、
 前記第1基板の前記第1面上に絶縁膜を介して設けられた転送ゲート電極を有し、
 前記転送ゲート電極は、
 第1導体部と、
 前記第1導体部に接続する第2導体部と、を有し、
 前記絶縁膜は、
 前記第1基板と前記第1導体部との間に位置する第1絶縁膜と、
 前記第1基板と前記第2導体部との間に位置する第2絶縁膜と、を有し、
 前記第2絶縁膜は前記第1絶縁膜よりも膜厚が厚い、撮像装置。
(4)
 前記第1基板と前記第2導体部との間に前記第1導体部が位置する、前記(2)又は(3)に記載の撮像装置。
(5)
 前記転送ゲート電極のゲート長方向における前記第2導体部の中心よりも、前記ゲート長方向における前記第1導体部の中心の方が、前記電荷蓄積部に近い側に位置する前記(4)に記載の撮像装置。
(6)
 前記第1基板の前記第1面側に設けられ、前記複数の画素のうち隣接する画素間で共有される共有導体、をさらに有し、
 前記共有導体は、前記隣接する画素の一方の前記電荷蓄積部と他方の前記電荷蓄積部とにそれぞれ接続する、前記(2)から(5)のいずれか1項に記載の撮像装置。
(7)
 前記第1基板の前記第1面側に設けられた層間絶縁膜と、
 前記層間絶縁膜を介して前記第1基板と向かい合う第2基板と、
 前記第2基板に設けられ、前記共有導体を通して前記第1基板から前記第2基板に転送される電荷を増幅する増幅トランジスタと、をさらに有する前記(6)に記載の撮像装置。
(8)
 前記第2導体部よりも前記共有導体の方が、前記第1基板に近い側に位置する、前記(6)又は(7)に記載の撮像装置。
(9)
 前記層間絶縁膜を貫通して前記第2導体部に接続する貫通電極、をさらに有する前記(7)又は(8)に記載の撮像装置。
1 撮像装置
7 撮像システム
36 システム制御回路
100 第1基板
100S、200S、300S 半導体層
100T、200T、300T 配線層
111、117B、150、151、152 絶縁膜
112 固定電荷膜
113 第1ピニング領域
114 n型半導体領域
115 Pウェル層
116 第2ピニング領域
117 画素分離部
117A 遮光膜
118 VSSコンタクト領域
119、123 層間絶縁膜
120、121 パッド部
120C、121C 接続ビア
120E、121E 貫通電極
121 パッド部
122 パッシベーション膜
124 接合膜
130 P型領域
140 チャネル領域
200 第2基板
200S、300S 半導体層
200T、300T 配線層
201、202、301、302 コンタクト部
201R、202R、301R、302R コンタクト領域
210 画素回路
211 ウェル領域
212 絶縁領域
243 DSP回路
244 フレームメモリ
245 表示部
246 記憶部
247 操作部
248 電源部
249 バスライン
300 第3基板
401 受光レンズ
510A 入力部
510B 出力部
520 行駆動部
530 タイミング制御部
539 画素共有ユニット
540 画素アレイ部
540B 周辺部
541、541A、541B、541C、541D 画素
542 行駆動信号線
543 垂直信号線(列読出し線)
544 電源線
550 列信号処理部
560 画像信号処理部
11000 内視鏡手術システム
11100 内視鏡
11101 鏡筒
11102 カメラヘッド
11110 術具
11111 気腹チューブ
11112 エネルギー処置具
11120 支持アーム装置
11131 術者(医師)
11132 患者
11133 患者ベッド
11200 カート
11201 カメラコントロールユニット(CCU)
11202 表示装置
11203 光源装置
11204 入力装置
11205 処置具制御装置
11206 気腹装置
11207 レコーダ
11208 プリンタ
11400 伝送ケーブル
11401 レンズユニット
11402、12031、12101、12102、12103、12104、12105 撮像部
11403 駆動部
11404 通信部
11405 カメラヘッド制御部
11411 通信部
11412 画像処理部
11413 制御部
12000 車両制御システム
12001 通信ネットワーク
12010 駆動系制御ユニット
12020 ボディ系制御ユニット
12030 車外情報検出ユニット
12040 車内情報検出ユニット
12041 運転者状態検出部
12050 統合制御ユニット
12051 マイクロコンピュータ
12052 音声画像出力部
12061 オーディオスピーカ
12062 表示部
12063 インストルメントパネル
12100 車両
12111、12112、12113、12114 撮像範囲
AMP 増幅トランジスタ
CL1、CL2 中心
FD、FD1、FD2、FD3、FD4 フローティングディフュージョン
FDG FD変換ゲイン切替トランジスタ
H1、H2 接続孔部
L 光
PD、PD1、PD2、PD3、PD4 フォトダイオード
RST リセットトランジスタ
SEL 選択トランジスタ
T´、T1、T2 膜厚
TA、TB 外部端子
TG 転送ゲート電極
TG1 第1導体部
TG2 第2導体部
TGV 貫通電極
TR、TR1、TR2、TR3、TR4、TRA、TRB、TRC、TRD 転送トランジスタ
VDD 電源線
VSS 基準電位線

Claims (9)

  1.  第1基板と、
     前記第1基板に設けられた複数の画素と、を有し、
     前記複数の画素の各々は、
     前記第1基板内に設けられた光電変換部と、
     前記第1基板内に設けられた電荷蓄積部と、
     前記第1基板の第1面側に設けられ、前記光電変換部から前記電荷蓄積部へ電荷を転送する転送トランジスタと、を有し、
     前記転送トランジスタは、
     前記第1基板の前記第1面上に絶縁膜を介して設けられた転送ゲート電極を有し、
     前記絶縁膜は、
     前記第1基板に形成されるチャネル領域上に位置する第1絶縁膜と、
     前記第1基板において前記チャネル領域以外の領域上に位置する第2絶縁膜と、を有し、
     前記第2絶縁膜は前記第1絶縁膜よりも膜厚が厚い、撮像装置。
  2.  前記転送ゲート電極は、
     前記第1絶縁膜上に位置する第1導体部と、
     前記第1導体部に接続し、前記第2絶縁膜上に位置する第2導体部と、を有する請求項1に記載の撮像装置。
  3.  第1基板と、
     前記第1基板に設けられた複数の画素と、を有し、
     前記複数の画素の各々は、
     前記第1基板内に設けられた光電変換部と、
     前記第1基板内に設けられた電荷蓄積部と、
     前記第1基板の第1面側に設けられ、前記光電変換部から前記電荷蓄積部へ電荷を転送する転送トランジスタと、を有し、
     前記転送トランジスタは、
     前記第1基板の前記第1面上に絶縁膜を介して設けられた転送ゲート電極を有し、
     前記転送ゲート電極は、
     第1導体部と、
     前記第1導体部に接続する第2導体部と、を有し、
     前記絶縁膜は、
     前記第1基板と前記第1導体部との間に位置する第1絶縁膜と、
     前記第1基板と前記第2導体部との間に位置する第2絶縁膜と、を有し、
     前記第2絶縁膜は前記第1絶縁膜よりも膜厚が厚い、撮像装置。
  4.  前記第1基板と前記第2導体部との間に前記第1導体部が位置する、請求項2に記載の撮像装置。
  5.  前記転送ゲート電極のゲート長方向における前記第2導体部の中心よりも、前記ゲート長方向における前記第1導体部の中心の方が、前記電荷蓄積部に近い側に位置する請求項4に記載の撮像装置。
  6.  前記第1基板の前記第1面側に設けられ、前記複数の画素のうち隣接する画素間で共有される共有導体、をさらに有し、
     前記共有導体は、前記隣接する画素の一方の前記電荷蓄積部と他方の前記電荷蓄積部とにそれぞれ接続する、請求項2に記載の撮像装置。
  7.  前記第1基板の前記第1面側に設けられた層間絶縁膜と、
     前記層間絶縁膜を介して前記第1基板と向かい合う第2基板と、
     前記第2基板に設けられ、前記共有導体を通して前記第1基板から前記第2基板に転送される電荷を増幅する増幅トランジスタと、をさらに有する請求項6に記載の撮像装置。
  8.  前記第2導体部よりも前記共有導体の方が、前記第1基板に近い側に位置する、請求項6に記載の撮像装置。
  9.  前記層間絶縁膜を貫通して前記第2導体部に接続する貫通電極、をさらに有する請求項7に記載の撮像装置。
PCT/JP2022/035667 2021-10-05 2022-09-26 撮像装置 WO2023058484A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021163900 2021-10-05
JP2021-163900 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023058484A1 true WO2023058484A1 (ja) 2023-04-13

Family

ID=85804241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035667 WO2023058484A1 (ja) 2021-10-05 2022-09-26 撮像装置

Country Status (1)

Country Link
WO (1) WO2023058484A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181588A1 (en) * 2011-01-13 2012-07-19 International Business Machines Corporation Pixel sensor cells with a split-dielectric transfer gate
WO2013027524A1 (ja) * 2011-08-24 2013-02-28 シャープ株式会社 固体撮像素子
WO2016027682A1 (ja) * 2014-08-19 2016-02-25 ソニー株式会社 固体撮像素子および電子機器
JP2016115855A (ja) * 2014-12-16 2016-06-23 キヤノン株式会社 固体撮像装置
WO2019220810A1 (ja) * 2018-05-16 2019-11-21 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および固体撮像装置
US20200266223A1 (en) * 2019-02-15 2020-08-20 Taiwan Semiconductor Manufacturing Co., Ltd. Low noise vertical gate device structure
WO2020262643A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181588A1 (en) * 2011-01-13 2012-07-19 International Business Machines Corporation Pixel sensor cells with a split-dielectric transfer gate
WO2013027524A1 (ja) * 2011-08-24 2013-02-28 シャープ株式会社 固体撮像素子
WO2016027682A1 (ja) * 2014-08-19 2016-02-25 ソニー株式会社 固体撮像素子および電子機器
JP2016115855A (ja) * 2014-12-16 2016-06-23 キヤノン株式会社 固体撮像装置
WO2019220810A1 (ja) * 2018-05-16 2019-11-21 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および固体撮像装置
US20200266223A1 (en) * 2019-02-15 2020-08-20 Taiwan Semiconductor Manufacturing Co., Ltd. Low noise vertical gate device structure
WO2020262643A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Similar Documents

Publication Publication Date Title
WO2020189534A1 (ja) 撮像素子および半導体素子
WO2020262559A1 (ja) 撮像装置
JP2023169424A (ja) 固体撮像素子
WO2022138467A1 (ja) 固体撮像装置
WO2022085722A1 (ja) 撮像装置および受光素子
WO2020262502A1 (ja) 固体撮像装置
US20220262832A1 (en) Semiconductor device and imaging device
WO2020262323A1 (ja) 撮像装置
WO2022172711A1 (ja) 光電変換素子および電子機器
WO2022202127A1 (ja) 撮像素子及び撮像装置
JP2021005619A (ja) 撮像装置
US20230378219A1 (en) Imaging device and electronic apparatus
US20220367539A1 (en) Imaging device
US20220239853A1 (en) Solid-state imaging device and electronic device
WO2023058484A1 (ja) 撮像装置
WO2023223743A1 (ja) 光検出素子
WO2024014209A1 (ja) 撮像装置
WO2023249016A1 (ja) 撮像素子および撮像装置
WO2023243440A1 (ja) 比較器、光検出素子および電子機器
WO2023136174A1 (ja) 固体撮像装置および電子機器
WO2024127853A1 (ja) 光検出装置及び電子機器
WO2024111457A1 (ja) 光検出装置、その製造方法、及び電子機器
WO2023106308A1 (ja) 受光装置
WO2024090081A1 (ja) 増幅回路、コンパレータおよび固体撮像装置
WO2022254824A1 (ja) 撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE