WO2023243440A1 - 比較器、光検出素子および電子機器 - Google Patents

比較器、光検出素子および電子機器 Download PDF

Info

Publication number
WO2023243440A1
WO2023243440A1 PCT/JP2023/020632 JP2023020632W WO2023243440A1 WO 2023243440 A1 WO2023243440 A1 WO 2023243440A1 JP 2023020632 W JP2023020632 W JP 2023020632W WO 2023243440 A1 WO2023243440 A1 WO 2023243440A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pixel
transistors
comparator
section
Prior art date
Application number
PCT/JP2023/020632
Other languages
English (en)
French (fr)
Inventor
晋太郎 岡本
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023243440A1 publication Critical patent/WO2023243440A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • Embodiments according to the present disclosure relate to a comparator, a photodetection element, and an electronic device.
  • the present invention provides a comparator, a photodetection element, and an electronic device that can reduce noise.
  • the channel regions of the first and second transistors do not need to have an uneven shape along the channel length direction.
  • the active load circuit includes third and fourth transistors provided on the surface of the substrate, The channel regions of the third and fourth transistors may have an uneven shape along the channel length direction.
  • the channel length direction of the third and fourth transistors may be substantially perpendicular or substantially parallel to the (100) crystal plane of the substrate.
  • the substrate is a 45 degree notch substrate
  • the channel length direction of the third and fourth transistors may be substantially perpendicular or substantially parallel to the notch surface on the surface of the substrate.
  • the substrate is a 0 degree notch substrate
  • the channel length directions of the third and fourth transistors may be inclined at about 45 degrees or about 135 degrees with respect to the notch surface on the surface of the substrate.
  • the active load circuit includes third and fourth transistors provided on the surface of the substrate,
  • the first and second transistors are p-type transistors,
  • the third and fourth transistors may be n-type transistors.
  • the channel length direction of the first and second transistors may be substantially perpendicular or substantially parallel to the (110) crystal plane of the substrate.
  • the substrate is a 45 degree notch substrate
  • the channel length directions of the first and second transistors may be inclined at about 45 degrees or about 135 degrees with respect to the notch surface on the surface of the substrate.
  • the substrate is a 0 degree notch substrate
  • the channel length direction of the first and second transistors may be substantially perpendicular or substantially parallel to the notch surface on the surface of the substrate.
  • a pixel section including a photoelectric conversion element that photoelectrically converts incident light into a pixel signal; a comparator that compares the pixel signal with a reference signal and outputs a comparison result; Equipped with The comparator is a differential circuit that outputs a difference voltage between the pixel signal and the reference signal; an active load circuit electrically connected to the differential circuit; has The differential circuit includes first and second transistors provided on a surface of a substrate, A photodetecting element is provided in which the first and second transistors have channel regions extending in a direction substantially perpendicular to the surface of the substrate.
  • the pixel section is provided on a first substrate,
  • the comparator is provided on a second substrate different from the first substrate,
  • the first substrate and the second substrate are laminated,
  • the pixel portion and the comparator are electrically connected to each other by a through electrode provided on the first or second substrate, or by a wiring bond between the wiring on the first substrate and the wiring on the second substrate. It's okay.
  • the pixel section and the comparator are provided on the same first substrate,
  • the comparator is provided above the pixel section of the first substrate,
  • the pixel section and the comparator may be electrically connected by a contact plug provided in an interlayer insulating film between the pixel section and the comparator.
  • the differential circuit is provided on a first substrate,
  • the active load circuit is provided on a second substrate different from the first substrate,
  • the first substrate and the second substrate are laminated,
  • the differential circuit and the active load circuit may be electrically connected to each other by joining wiring on the first substrate and wiring on the second substrate.
  • the pixel section and the differential circuit are provided on the same first substrate,
  • the differential circuit is provided above the pixel section of the first substrate,
  • the pixel portion and the differential circuit may be electrically connected by a contact plug provided in an interlayer insulating film between the pixel portion and the differential circuit.
  • the pixel section and the comparator are provided on the same first substrate,
  • the differential circuit is provided in the same layer as the transistor of the pixel portion,
  • the active load circuit is provided above the pixel section of the first substrate,
  • the differential circuit and the active load circuit may be electrically connected by a contact plug provided in an interlayer insulating film between the differential circuit and the active load circuit.
  • FIG. 1 is a block diagram showing an example of a functional configuration of an imaging device according to a first embodiment.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an imaging device.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an imaging device.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a pixel sharing unit, a column signal processing section, and a pixel signal processing section according to the first embodiment.
  • FIG. 3 is an equivalent circuit diagram showing an example of the configuration of a pixel sharing unit and a comparator section.
  • FIG. 1 is a diagram showing an example of the configuration of a p-type transistor according to the first embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of an n-type transistor according to the first embodiment.
  • FIG. 3 is a schematic plan view showing an example of the planar layout of the first substrate.
  • FIG. 7 is a schematic plan view showing an example of the planar layout of the second substrate.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 7 is an equivalent circuit diagram showing an example of the configuration of a pixel sharing unit and a comparator section according to a sixth embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of a p-type transistor according to a sixth embodiment.
  • FIG. 7 is a diagram illustrating an example of the configuration of an n-type transistor according to a sixth embodiment.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor.
  • FIG. 7 is a diagram showing an embodiment in which the third embodiment and the sixth embodiment are combined.
  • FIG. 7 is a diagram showing an embodiment in which the fourth embodiment and the sixth embodiment are combined.
  • FIG. 7 is a diagram showing an embodiment in which the fifth embodiment and the sixth embodiment are combined.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of a pixel sharing unit, a column signal processing section, and a pixel signal processing section according to a seventh embodiment.
  • 2 is an equivalent circuit diagram of the pixel sharing unit shown in FIG. 1.
  • FIG. FIG. 3 is a diagram illustrating an example of a connection mode between a plurality of pixel sharing units and a plurality of vertical signal lines.
  • 4 is a schematic cross-sectional view showing an example of a specific configuration of the imaging device shown in FIG. 3.
  • FIG. FIG. 35 is a schematic diagram illustrating an example of a planar configuration of essential parts of the first substrate illustrated in FIG. 34;
  • FIG. 35A is a schematic diagram illustrating a planar configuration of a pad section as well as the main parts of the first substrate shown in FIG. 35A.
  • 35 is a schematic diagram showing an example of the planar configuration of the second substrate (semiconductor layer) shown in FIG. 34.
  • FIG. 35 is a schematic diagram showing an example of a planar configuration of a pixel circuit and main parts of a first substrate together with the first wiring layer shown in FIG. 34.
  • FIG. FIG. 35 is a schematic diagram showing an example of the planar configuration of the first wiring layer and the second wiring layer shown in FIG. 34;
  • FIG. 35 is a schematic diagram showing an example of the planar configuration of the second wiring layer and the third wiring layer shown in FIG. 34; 35 is a schematic diagram showing an example of the planar configuration of the third wiring layer and the fourth wiring layer shown in FIG. 34.
  • FIG. FIG. 4 is a schematic diagram for explaining a path of an input signal to the imaging device shown in FIG. 3; 4 is a schematic diagram for explaining a signal path of a pixel signal of the imaging device shown in FIG. 3.
  • FIG. FIG. 37 is a schematic diagram showing a modified example of the planar configuration of the second substrate (semiconductor layer) shown in FIG. 36; 44 is a schematic diagram showing the planar configuration of the main parts of the first wiring layer and the first substrate together with the pixel circuit shown in FIG. 43.
  • FIG. 45 is a schematic diagram showing an example of a planar configuration of a second wiring layer together with the first wiring layer shown in FIG. 44.
  • FIG. FIG. 46 is a schematic diagram showing an example of a planar configuration of a third wiring layer together with the second wiring layer shown in FIG. 45;
  • FIG. 47 is a schematic diagram showing an example of a planar configuration of a fourth wiring layer together with the third wiring layer shown in FIG. 46;
  • FIG. 35 is a schematic diagram showing a modified example of the planar configuration of the first substrate shown in FIG. 35A.
  • FIG. 49 is a schematic diagram showing an example of a planar configuration of a second substrate (semiconductor layer) laminated on the first substrate shown in FIG.
  • FIG. 48 50 is a schematic diagram showing an example of the planar configuration of the first wiring layer together with the pixel circuit shown in FIG. 49.
  • FIG. 51 is a schematic diagram showing an example of a planar configuration of a second wiring layer together with the first wiring layer shown in FIG. 50.
  • FIG. 52 is a schematic diagram showing an example of a planar configuration of a third wiring layer together with the second wiring layer shown in FIG. 51.
  • FIG. 53 is a schematic diagram showing an example of the planar configuration of a fourth wiring layer together with the third wiring layer shown in FIG. 52.
  • FIG. 49 is a schematic diagram showing another example of the planar configuration of the first substrate shown in FIG. 48.
  • FIG. 49 is a schematic diagram showing another example of the planar configuration of the first substrate shown in FIG. 48.
  • FIG. 55 is a schematic diagram showing an example of a planar configuration of a second substrate (semiconductor layer) laminated on the first substrate shown in FIG. 54.
  • FIG. 56 is a schematic diagram showing an example of the planar configuration of the first wiring layer together with the pixel circuit shown in FIG. 55.
  • FIG. 57 is a schematic diagram showing an example of a planar configuration of a second wiring layer together with the first wiring layer shown in FIG. 56.
  • FIG. FIG. 58 is a schematic diagram showing an example of a planar configuration of a third wiring layer together with the second wiring layer shown in FIG. 57;
  • FIG. 59 is a schematic diagram showing an example of a planar configuration of a fourth wiring layer together with the third wiring layer shown in FIG.
  • FIG. 61 is a schematic diagram for explaining a path of an input signal to the imaging device shown in FIG. 60;
  • FIG. 61 is a schematic diagram for explaining a signal path of a pixel signal of the imaging device shown in FIG. 60.
  • FIG. 35 is a schematic cross-sectional view showing another example of the imaging device shown in FIG. 34.
  • FIG. 33 is a diagram showing another example of the equivalent circuit shown in FIG. 32.
  • FIG. FIG. 35 is a schematic plan view showing another example of the pixel separation section shown in FIG. 35A and the like.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an imaging system including an imaging device according to the embodiment and its modification.
  • FIG. 67 is a diagram illustrating an example of an imaging procedure of the imaging system shown in FIG. 66.
  • FIG. FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system.
  • FIG. 3 is an explanatory diagram showing an example of installation positions of an outside-vehicle information detection section and an imaging section.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system.
  • FIG. 2 is a block diagram showing an example of the functional configuration of a camera head and a CCU.
  • comparator a comparator, a photodetecting element, and an electronic device
  • the main components of the comparator, photodetector, and electronic device will be mainly explained below, but the comparator, photodetector, and electronic device may have components and functions that are not shown or explained. .
  • the following description does not exclude components or features not shown or described.
  • FIG. 1 is a block diagram showing an example of the functional configuration of an imaging device according to the first embodiment.
  • the imaging device 1 in FIG. 1 includes, for example, an input section 510A, a row drive section 520, a timing control section 530, a pixel array section 540, a column signal processing section 550, an image signal processing section 560, and an output section 510B.
  • the pixel array section 540 in FIG. 1 is provided with a plurality of pixels 541, a plurality of row drive signal lines 542, and a plurality of vertical signal lines (column readout lines) 543.
  • the row drive signal line 542 drives the pixels 541 included in each of the plurality of pixel sharing units 539 arranged in the row direction in the pixel array section 540. Of the pixel sharing unit 539, each pixel arranged in the row direction is driven.
  • the column signal processing section 550 includes, for example, a load circuit section that is connected to the vertical signal line 543 and forms a source follower circuit with the pixel sharing unit 539.
  • the column signal processing section 550 may include an amplifier circuit section that amplifies the pixel signal read out from the pixel sharing unit 539 via the vertical signal line 543.
  • the column signal processing section 550 may include a noise processing section. In the noise processing section, for example, the system noise level is removed from the signal read out from the pixel sharing unit 539 as a result of photoelectric conversion.
  • the timing control unit 530 supplies timing control signals to the row driving unit 520 and column signal processing unit 550 based on the reference clock signal and timing control signal input to the device.
  • the input unit 510A is for inputting, for example, the reference clock signal, timing control signal, characteristic data, etc. to the imaging device 1 from outside the device.
  • the timing control signal is, for example, a vertical synchronization signal and a horizontal synchronization signal.
  • the characteristic data is, for example, to be stored in the data holding section of the image signal processing section 560.
  • the input section 510A includes, for example, an input terminal 511, an input circuit section 512, an input amplitude changing section 513, an input data conversion circuit section 514, and a power supply section (not shown).
  • the input terminal 511 is an external terminal for inputting data.
  • the input circuit section 512 is for taking in the signal input to the input terminal 511 into the imaging device 1 .
  • the input amplitude changing unit 513 changes the amplitude of the signal taken in by the input circuit unit 512 to an amplitude that can be easily used inside the imaging device 1.
  • the input data conversion circuit section 514 is configured by, for example, a serial-parallel conversion circuit. This serial-to-parallel conversion circuit converts a serial signal received as input data into a parallel signal. Note that the input amplitude changing section 513 and the input data converting circuit section 514 may be omitted in the input section 510A.
  • the power supply unit supplies power set to various voltages required inside the imaging device 1 based on the power supplied to the imaging device 1 from the outside.
  • the output unit 510B outputs the image data to the outside of the device.
  • This image data is, for example, image data photographed by the imaging device 1, image data subjected to signal processing by the image signal processing section 560, and the like.
  • the output section 510B includes, for example, an output data conversion circuit section 515, an output amplitude changing section 516, an output circuit section 517, and an output terminal 518.
  • the output data conversion circuit section 515 is composed of, for example, a parallel-to-serial conversion circuit, and in the output data conversion circuit section 515, a parallel signal used inside the imaging device 1 is converted into a serial signal.
  • the output amplitude changing unit 516 changes the amplitude of the signal used inside the imaging device 1.
  • the signal with the changed amplitude can be easily used by an external device connected to the outside of the imaging device 1.
  • the output circuit section 517 is a circuit that outputs data from the inside of the imaging device 1 to the outside of the device, and the output circuit section 517 drives wiring outside the imaging device 1 connected to the output terminal 518. At the output terminal 518, data is output from the imaging device 1 to the outside of the device.
  • the output data conversion circuit section 515 and the output amplitude changing section 516 may be omitted.
  • the output unit 510B may be provided with a memory interface circuit that outputs data to the external memory device.
  • External memory devices include, for example, flash memory, SRAM, and DRAM.
  • the wiring layer side may be referred to as the front surface
  • the semiconductor layer side may be referred to as the back surface. Note that the description in the specification is not limited to the above-mentioned names.
  • the imaging device 1 is, for example, a back-illuminated imaging device in which light enters from the back side of a first substrate 100 having a photodiode.
  • Both the pixel array section 540 and the pixel sharing unit 539 included in the pixel array section 540 are configured using both the first substrate 100 and the second substrate 200.
  • the first substrate 100 is provided with a plurality of pixels 541A, 541B, 541C, and 541D included in the pixel sharing unit 539.
  • Each of these pixels 541 has a photodiode (photodiode PD described later) and a transfer transistor (transfer transistor TG or TR described later).
  • the second substrate 200 is provided with a pixel circuit included in the pixel sharing unit 539.
  • the pixel circuit reads out pixel signals transferred from the photodiodes of the pixels 541A, 541B, 541C, and 541D via transfer transistors, or resets the photodiodes.
  • the second substrate 200 has a plurality of row drive signal lines 542 extending in the row direction and a plurality of vertical signal lines 543 extending in the column direction.
  • the second substrate 200 further includes a power supply line 544 extending in the row direction and a part of a column signal processing section 550.
  • the third substrate 300 includes, for example, an input section 510A, a row drive section 520, a timing control section 530, the remainder of the column signal processing section 550, an image signal processing section 560, and an output section 510B.
  • the row driving section 520 is provided, for example, in a region that partially overlaps the pixel array section 540 in the stacking direction of the first substrate 100, the second substrate 200, and the third substrate 300 (hereinafter simply referred to as the stacking direction). . More specifically, the row driving section 520 is provided in a region that overlaps near the end of the pixel array section 540 in the H direction in the stacking direction (FIG. 2).
  • the third substrate 300 has a contact region 301R in which a plurality of contact parts 301 are provided and a contact region 302R in which a plurality of contact parts 302 are provided.
  • the contact regions 201R and 301R are provided between the pixel array section 540 and the row driving section 520 in the stacking direction (FIG. 3).
  • the contact regions 201R and 301R are provided, for example, in a region where the row driving section 520 (third substrate 300) and the pixel array section 540 (second substrate 200) overlap in the stacking direction, or in a region near this region. ing.
  • the contact regions 201R and 301R are arranged, for example, at the ends of these regions in the H direction (FIG. 2).
  • a contact region 301R is provided at a position overlapping a part of the row driving section 520, specifically, an end of the row driving section 520 in the H direction (FIGS. 2 and 3).
  • the contact sections 201 and 301 connect, for example, the row drive section 520 provided on the third substrate 300 and the row drive line 542 provided on the second substrate 200.
  • the contact portions 201 and 301 may connect, for example, the input portion 510A provided on the third substrate 300, the power supply line 544, and a reference potential line (reference potential line VSS to be described later).
  • the contact regions 202R and 302R are provided between the pixel array section 540 and the column signal processing section 550 in the stacking direction (FIG. 3).
  • the contact regions 202R and 302R are provided, for example, in a region where the column signal processing section 550 (third substrate 300) and the pixel array section 540 (second substrate 200) overlap in the stacking direction, or in a region near this region. ing.
  • the contact regions 202R and 302R are arranged, for example, at the ends of these regions in the V direction (FIG. 2).
  • a contact region 301R is provided at a position overlapping a part of the column signal processing section 550, specifically, an end of the column signal processing section 550 in the V direction (FIGS. 2 and 3). ).
  • FIG. 3 is an example of a cross-sectional view of the imaging device 1.
  • the first substrate 100, the second substrate 200, and the third substrate 300 are electrically connected via wiring layers 100T, 200T, and 300T.
  • the imaging device 1 includes an electrical connection section that electrically connects the second substrate 200 and the third substrate 300.
  • the contact portions 201, 202, 301, and 302 are formed with electrodes made of a conductive material.
  • the conductive material is made of, for example, a metal material such as copper (Cu), aluminum (Al), or gold (Au).
  • the contact regions 201R, 202R, 301R, and 302R electrically connect the second substrate and the third substrate by, for example, directly bonding wirings formed as electrodes, and connect the second substrate 200 and the third substrate 300. Enables input and/or output of signals to and from.
  • the electrical connection portion that electrically connects the second substrate 200 and the third substrate 300 can be provided at a desired location.
  • the electrical connection portion may be provided in a region that does not overlap with the pixel array portion 540 in the stacking direction. Specifically, it may be provided in a region that overlaps in the stacking direction with a peripheral portion located outside the pixel array section 540.
  • FIG. 4 is a schematic cross-sectional view showing the configurations of the pixel sharing unit 539, column signal processing section 550, and pixel signal processing section 560 according to the first embodiment.
  • the pixel sharing unit 539, the column signal processing section 550, and the pixel signal processing section 560 are provided, for example, on the first substrate 100, the second substrate 200, and the third substrate 300, respectively.
  • the first to third substrates 100 to 300 are, for example, silicon substrates, and are stacked on each other.
  • the first to third substrates 100 to 300 are electrically connected to each other using via contacts VIA, through silicon vias (TSV), and/or wiring junctions (Cu--Cu junctions) CCC.
  • the via contact VIA is a contact plug provided penetrating the interlayer insulating film.
  • the through electrode TSV is an electrode that penetrates a substrate and electrically connects a semiconductor element to a semiconductor element on another substrate.
  • the wiring junction CCC is formed by directly joining the wirings provided on each of the first to third substrates 100 to 300 by laminating the substrates.
  • the first substrate 100 is provided with components corresponding to each pixel 541, such as a photodiode PD, a transfer transistor TG, an overflow gate (not shown in FIG. 4), and a floating diffusion FD.
  • the solid-state imaging device in FIG. 4 is a back-illuminated CIS, and an on-chip lens OCL is provided on the light-receiving surface of the first substrate 100.
  • a transfer transistor TG and an overflow gate are provided on the surface of the first substrate 100 opposite to the light receiving surface.
  • the transfer transistor TG and the overflow gate are covered with an interlayer insulating film, and are electrically connected to a via contact VIA embedded in the interlayer insulating film.
  • a portion of the wiring on the second and third substrates 200, 300 is joined to each other by stacking the second and third substrates 200, 300, and the wirings are electrically connected to each other. Thereby, a wiring junction CCC is formed.
  • FIG. 5 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and the comparator section 210.
  • the pixel sharing unit 539 includes a plurality of pixels 541 and one comparator section 210 connected to the plurality of pixels 541.
  • the plurality of pixels 541 are provided on the first substrate 100, and the comparator section 210 is provided on the second substrate 200.
  • the first substrate 100 and the second substrate 200 are electrically connected by a through electrode electrically connected at a wiring bond (Cu--Cu bond) CCC.
  • the pixels 541 have common components. Hereinafter, if there is no need to distinguish the constituent elements of the plurality of pixels 541A, 541B, 541C, and 541D from each other, the identification numbers at the end of the symbols of the constituent elements of the pixels 541A, 541B, 541C, and 541D will be omitted.
  • the pixel 541 includes, for example, a photodiode PD, a transfer transistor TG electrically connected to the photodiode PD, an overflow gate OF electrically connected to the photodiode PD, and an electrically connected transfer transistor TG. It is equipped with a floating diffusion FD.
  • the overflow gates OF (OF1 to OF4) are connected between the photodiode PD and the power supply VDD, and a predetermined voltage is applied to the gate.
  • the overflow gate OF causes the charge exceeding the saturated charge amount of the photodiode PD to flow to the power supply VDD.
  • the overflow gate OF is composed of, for example, an n-type transistor.
  • the comparator section 210 includes a current mirror circuit 210a, which is an active load circuit, a differential circuit 210b, a current source 210c, and a reset transistor 210d.
  • the differential circuit 210b includes n-type transistors Tn1 and Tn2.
  • the drain of transistor Tn1 is connected to the drain and gate of transistor Tp1.
  • the source of the transistor Tn1 is commonly connected to the source of the transistor Tn2 and the drain of the n-type transistor Tn3.
  • the drain of transistor Tn2 is connected to the drain of transistor Tp2.
  • the source of the transistor Tn2 is connected to the drain of the transistor Tn3 in common with the source of the transistor Tn1.
  • the transistors Tn1 and Tn2 each receive a pixel signal and a reference signal from the floating diffusion FD at their gates, and output the voltage difference from the node N210.
  • the current source 210c is composed of an n-type transistor Tn3, and maintains the entire current flowing through the transistors Tn1 and Tn2 at a predetermined value.
  • the drain of the transistor Tn3 is commonly connected to the sources of the transistors Tn1 and Tn2, and the source of the transistor Tn3 is connected to the ground GND.
  • a predetermined voltage Vb is applied to the gate of the transistor Tn3.
  • noise reduction is required in the ADC.
  • the noise characteristics of the ADC are determined, for example, by the balance between the mutual conductance gm of the p-type transistors Tp1 and Tp2 and the mutual conductance gm of the n-type transistors Tn1 and Tn2.
  • the noise characteristics of the ADC are determined, for example, by the balance between the mutual conductance gm of the p-type transistors Tp1 and Tp2 and the mutual conductance gm of the n-type transistors Tn1 and Tn2.
  • the S/N (Signal/Noise) ratio can be improved and the dynamic range can be expanded.
  • the sensor characteristics of the solid-state imaging device (photodetection element) according to this embodiment are improved.
  • the effective channel length L (Leff) is the length along the recess 141. That is, the channel length L can be increased by the distance along the side surfaces Ss1 and Ss2. Thereby, mutual conductance gm of p-type transistors Tp1 and Tp2 can be lowered, and noise can be reduced. Further, since the distance in the depth direction of the substrate is used, the channel length L can be increased without increasing the installation area (gate size) of the transistor. This allows pixel miniaturization with less deterioration of noise characteristics.
  • a gate insulating film (gate oxide film) 150 is provided around the dug portion of the gate electrode Gtp.
  • Insulating films 170 and 180 are provided as sidewall insulating films at the top portion of gate electrode Gtp.
  • An insulating film 160 is provided on the substrate.
  • the insulating film 160 is, for example, STI (Shallow Trench Isolation).
  • the element formation region RA is provided between adjacent contact regions RCNT, and is a region where semiconductor elements such as transistors are formed.
  • the contact region RCNT is a region where a contact such as a TSV is formed.
  • the well contact WCNT is a contact provided to apply a well potential to a well diffusion layer (not shown) formed in the first substrate 100.
  • Such a planar layout of the first and second substrates 100 and 200 enables the circuit configuration of the pixel sharing unit 539 and the comparator section 210 shown in FIG. 5.
  • the pixel sharing unit 539 is provided on the first substrate 100
  • the comparator section 210 is provided on the second substrate 200, which is different from the first substrate 100.
  • the first and second substrates 100 and 200 are stacked, and the pixel sharing unit 539 and the comparator section 210 are electrically connected to each other by a wiring junction CCC between the wiring of the first substrate 100 and the wiring of the second substrate 200. It is connected.
  • the pixel sharing unit 539 and the comparator section 210 may be electrically connected by a through electrode penetrating the first or second substrate 100 or 200.
  • the channel length direction Dcp of the p-type transistors Tp1 and Tp2 and the channel length direction Dcn of the n-type transistors Tn1 and Tn2 are in the left-right direction on the paper surface of FIG. That is, the channel length direction of transistors Tp1, Tp2, Tn1, and Tn2 shown in FIG. 9 is the same as the channel length direction of transistors Tp1, Tp2, Tn1, and Tn2 shown in the plan views of FIGS. 6 and 7.
  • the effective channel length L (Leff) of the p-type transistors Tp1 and Tp2 can be extended with respect to the dimensions on the layout.
  • the effective channel width W (Weff) of the n-type transistors Tn1 and Tn2 can be increased with respect to the dimensions on the layout.
  • the recessed portion 142 may also be provided in the n-type transistors Tn3 and Tn4.
  • n-type transistors Tn3 and Tn4 can be formed in the same process as n-type transistors Tn1 and Tn2.
  • the recess 142 does not necessarily have to be provided in the n-type transistors Tn3 and Tn4.
  • the number of recesses 141 and 142 is not limited to the examples shown in FIGS. 6 and 7. By adjusting the number, depth, etc. of the recesses 141 and 142, the mutual conductance gm can be adjusted.
  • the mutual conductance gm changes depending on the thickness of the gate insulating film 150. For example, the mutual conductance gm becomes smaller as the thickness of the gate insulating film 150 becomes larger.
  • the thickness Tgp2 of the gate insulating film 150 of the p-type transistors Tp1 and Tp2 shown in FIG. 10 is larger than the thickness Tgp of the gate insulating film 150 of the p-type transistors Tp1 and Tp2 shown in FIG.
  • the bottom surface Sb1 or side surfaces Ss1 and Ss2 of the recess 141 in the channel region CHtp of the transistors Tp1 and Tp2 are located on the surface of the substrate W45 in a plane substantially parallel to the (100) crystal plane of the substrate W45.
  • the mutual conductance gm decreases.
  • the mutual conductance gm increases.
  • the mobility of an n-type transistor hardly changes depending on the direction relative to the (100) or (110) crystal plane of the substrate.
  • the mobility of a p-type transistor changes depending on the direction relative to the (100) or (110) crystal plane of the substrate. Therefore, noise can be reduced by reducing the mobility of the p-type transistors Tp1 and Tp2 and reducing the mutual conductance gm.
  • the channel length direction (D1 direction) of the transistors Tp1 and Tp2 is about approximately Tilt at 45 degrees or about 135 degrees.
  • the channel length direction (D1 direction) of the transistors Tp1 and Tp2 is substantially perpendicular to the (110) crystal plane (notch plane) of the substrate W0 on the surface F0 of the substrate W0, or They are almost parallel. In this case, carrier mobility is relatively high.
  • the S/N (Signal/Noise) ratio can be improved and the dynamic range can be expanded. As a result, the sensor characteristics of the solid-state imaging device according to this embodiment are improved.
  • FIG. 20 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and the comparator section 210 according to the fifth embodiment.
  • the comparator 210 is formed on the same first substrate 100 as the photodiode PD. Therefore, a wiring W is formed between the comparator 210 and the photodiode PD. A wiring W electrically connects the comparator 210 and the photodiode PD. A wiring junction CCC between the plurality of substrates 100 and 200 is not formed between the comparator 210 and the photodiode PD. Therefore, it is advantageous for miniaturization of the photodiode PD and the comparator 210.
  • a contact plug PLG is formed between the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2.
  • a contact plug PLG penetrates the interlayer insulating film between the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2 to electrically connect them.
  • the wiring junction CCC between the plurality of substrates 100 and 200 is not formed between the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2. Therefore, it is advantageous for miniaturization of the photodiode PD and the comparator 210.
  • FIG. 21 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and the comparator section 210 according to the sixth embodiment.
  • the current mirror circuit 210a is composed of n-type transistors Tn11 and Tn12
  • the differential circuit 210b is composed of p-type transistors Tp11 and Tp12.
  • the mutual conductance gm of the p-type transistors Tp11 and Tp12 of the differential circuit 210b be large.
  • a voltage VRHW higher than the power supply VDD is applied as a back bias to the transistors Tp11 to Tp14.
  • the n-type transistors Tn11 and Tn12 have a channel region CHtn extending in a direction substantially perpendicular to the surface of the substrate. Further, the channel regions CHtn of the n-type transistors Tn11 and Tn12 have an uneven shape along the channel length direction Dcn. That is, the configurations of n-type transistors Tn11 and Tn12 shown in FIG. 23 are substantially the same as the configurations of p-type transistors Tp1 and Tp2 shown in FIG. 6.
  • the configuration and arrangement of the p-type transistors Tp11, Tp12 and the n-type transistors Tn11, Tn12 make it possible to improve the noise characteristic (S/N) as in the first embodiment, and also to reduce noise. It becomes possible to miniaturize pixels (higher resolution) while suppressing characteristic deterioration.
  • the mobility of the p-type transistor changes depending on the direction with respect to the (100) crystal plane or the (110) crystal plane of the substrate. Therefore, by increasing the mobility of the p-type transistors Tp11 and Tp12 that constitute the differential circuit 210b and increasing the mutual conductance gm, noise can be reduced.
  • transistors Tp11 and Tp12 are provided on a 0 degree notch substrate W0.
  • the bottom surface Sb2 or side surfaces Ss3 and Ss4 of the recess 142 in the channel region CHtp of the transistors Tp11 and Tp12 are located on the surface of the substrate W0 in a plane that is substantially parallel or substantially perpendicular to the (110) crystal plane of the substrate W0.
  • the D1 direction is approximately perpendicular or approximately parallel to the (110) crystal plane of the substrate W0. That is, the channel length direction of the transistors Tp11 and Tp12 is substantially parallel or substantially perpendicular to the (110) crystal plane (notch plane) of the substrate W0 on the surface of the substrate W0.
  • the mutual conductance gm of the transistors Tp11 and Tp12 becomes relatively large.
  • the channel length directions of the transistors Tp11 and Tp12 are inclined at about 45 degrees or about 135 degrees with respect to the (100) crystal plane (notch plane) of the substrate W45 on the surface of the substrate W45.
  • the mutual conductance gm of the transistors Tp11 and Tp12 becomes relatively large.
  • the sixth embodiment may be combined with a modification of the first embodiment.
  • the gate insulating films 150 of the n-type transistors Tn11 and Tn12 are thicker than the gate insulating films 150 of the p-type transistors Tp11 and Tp12.
  • FIG. 31 is a schematic cross-sectional view showing the configurations of a pixel sharing unit 539, a column signal processing section 550, and a pixel signal processing section 560 according to the seventh embodiment.
  • the seventh embodiment differs from the first embodiment in that the electrical connection between the first substrate 100 and the second substrate 200 is performed by a wiring junction CCC instead of a via contact VIA. .
  • the electrical connection between the first substrate 100 and the second substrate 200 may be performed by a wiring junction CCC instead of the via contact VIA. Also in this case, the same effects as in the first embodiment can be obtained.
  • a solid-state imaging device to which any of the above embodiments can be applied will be described below. This embodiment can also be applied to the solid-state imaging device described below.
  • FIG. 32 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539.
  • the pixel sharing unit 539 includes a plurality of pixels 541 (FIG. 32 represents four pixels 541, pixels 541A, 541B, 541C, and 541D), one pixel circuit 210 connected to the plurality of pixels 541, and a pixel circuit 210 connected to the plurality of pixels 541.
  • a vertical signal line 5433 connected to the circuit 210 is included.
  • the comparator section 210 may be considered to be included in the pixel circuit.
  • the pixel circuit 210 includes, for example, four transistors, specifically, an amplification transistor AMP, a selection transistor SEL, a reset transistor RST, and an FD conversion gain switching transistor FD.
  • the pixel sharing unit 539 operates one pixel circuit 210 in a time-division manner to generate pixel signals of each of the four pixels 541 (pixels 541A, 541B, 541C, and 541D) included in the pixel sharing unit 539. are sequentially output to the vertical signal line 543.
  • One pixel circuit 210 is connected to a plurality of pixels 541, and the pixel signals of the plurality of pixels 541 are output by one pixel circuit 210 in a time-sharing manner. "The circuit 210 is shared.”
  • the pixels 541A, 541B, 541C, and 541D have common components.
  • identification number 1 is added to the end of the code of the component of pixel 541A
  • identification number 2 is added to the end of the code of the component of pixel 541B
  • An identification number 3 is given to the end of the code of the component of the pixel 541C
  • an identification number 4 is given to the end of the code of the component of the pixel 541D.
  • the identification numbers at the end of the symbols of the constituent elements of the pixels 541A, 541B, 541C, and 541D are omitted.
  • the pixels 541A, 541B, 541C, and 541D include, for example, a photodiode PD, a transfer transistor TR electrically connected to the photodiode PD, and a floating diffusion FD electrically connected to the transfer transistor TR.
  • the transfer transistor TG is also referred to as the transfer transistor TR.
  • the photodiodes PD (PD1, PD2, PD3, PD4), the cathode is electrically connected to the source of the transfer transistor TR, and the anode is electrically connected to a reference potential line (eg, ground).
  • the photodiode PD photoelectrically converts incident light and generates a charge depending on the amount of received light.
  • the transfer transistors TR are, for example, n-type CMOS (Complementary Metal Oxide Semiconductor) transistors.
  • CMOS Complementary Metal Oxide Semiconductor
  • a drain is electrically connected to the floating diffusion FD, and a gate is electrically connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 (see FIG. 1) connected to one pixel sharing unit 539.
  • Transfer transistor TR transfers the charge generated by photodiode PD to floating diffusion FD.
  • Floating diffusion FD (floating diffusion FD1, FD2, FD3, FD4) is an n-type diffusion layer region formed in a p-type semiconductor layer.
  • the floating diffusion FD is a charge holding means that temporarily holds the charge transferred from the photodiode PD, and is a charge-voltage conversion means that generates a voltage according to the amount of charge.
  • floating diffusions FD floating diffusions FD1, FD2, FD3, FD4 included in one pixel sharing unit 539 are electrically connected to each other, and are connected to the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG. electrically connected to.
  • the drain of the FD conversion gain switching transistor FDG is connected to the source of the reset transistor RST, and the gate of the FD conversion gain switching transistor FDG is connected to a drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539.
  • the drain of the reset transistor RST is connected to the power supply line VDD, and the gate of the reset transistor RST is connected to the drive signal line.
  • the transfer transistor TR When the transfer transistor TR is turned on, the transfer transistor TR transfers the charge of the photodiode PD to the floating diffusion FD.
  • the gate of the transfer transistor TR includes, for example, a so-called vertical electrode, and as shown in FIG. 34 described later, reaches the PD from the surface of the semiconductor layer (semiconductor layer 100S in FIG. 34 described later). It extends to the depth.
  • the reset transistor RST resets the potential of the floating diffusion FD to a predetermined potential. When the reset transistor RST turns on, it resets the potential of the floating diffusion FD to the potential of the power supply line VDD.
  • the selection transistor SEL controls the output timing of pixel signals from the pixel circuit 210.
  • the amplification transistor AMP generates, as a pixel signal, a voltage signal corresponding to the level of charge held in the floating diffusion FD.
  • Amplification transistor AMP is connected to vertical signal line 543 via selection transistor SEL.
  • This amplification transistor AMP constitutes a source follower in the column signal processing section 550 together with a load circuit section (see FIG. 1) connected to the vertical signal line 543.
  • the selection transistor SEL When the selection transistor SEL is turned on, the amplification transistor AMP outputs the voltage of the floating diffusion FD to the column signal processing section 550 via the vertical signal line 543.
  • the reset transistor RST, the amplification transistor AMP, and the selection transistor SEL are, for example, N-type CMOS transistors.
  • the FD conversion gain switching transistor FDG is used to change the charge-voltage conversion gain in the floating diffusion FD.
  • the pixel signal is small.
  • the capacitance of the floating diffusion FD (FD capacitance C)
  • V when converted into voltage by the amplification transistor AMP becomes small.
  • the pixel signal becomes large, so unless the FD capacitance C is large, the floating diffusion FD cannot receive the charge of the photodiode PD.
  • the FD capacitance C needs to be large so that V when converted into voltage by the amplification transistor AMP does not become too large (in other words, becomes small).
  • the FD conversion gain switching transistor FDG when the FD conversion gain switching transistor FDG is turned on, the gate capacitance corresponding to the FD conversion gain switching transistor FDG increases, so the overall FD capacitance C increases. On the other hand, when the FD conversion gain switching transistor FDG is turned off, the overall FD capacitance C becomes smaller. In this way, by switching the FD conversion gain switching transistor FDG on and off, the FD capacitance C can be made variable and the conversion efficiency can be switched.
  • the FD conversion gain switching transistor FDG is, for example, an N-type CMOS transistor.
  • the pixel circuit 210 is configured with three transistors: an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST.
  • the pixel circuit 210 includes, for example, at least one pixel transistor such as an amplification transistor AMP, a selection transistor SEL, a reset transistor RST, and an FD conversion gain switching transistor FDG.
  • the selection transistor SEL may be provided between the power supply line VDD and the amplification transistor AMP.
  • the drain of the reset transistor RST is electrically connected to the power supply line VDD and the drain of the selection transistor SEL.
  • the source of the selection transistor SEL is electrically connected to the drain of the amplification transistor AMP, and the gate of the selection transistor SEL is electrically connected to the row drive signal line 542 (see FIG. 1).
  • the source of the amplification transistor AMP (output end of the pixel circuit 210) is electrically connected to the vertical signal line 543, and the gate of the amplification transistor AMP is electrically connected to the source of the reset transistor RST.
  • the number of pixels 541 that share one pixel circuit 210 may be other than four. For example, two or eight pixels 541 may share one pixel circuit 210.
  • FIG. 33 shows an example of a connection mode between a plurality of pixel sharing units 539 and a vertical signal line 543.
  • four pixel sharing units 539 arranged in the column direction are divided into four groups, and a vertical signal line 543 is connected to each of the four groups.
  • FIG. 33 shows an example in which each of the four groups has one pixel sharing unit 539, but each of the four groups may include a plurality of pixel sharing units 539. .
  • the plurality of pixel sharing units 539 arranged in the column direction may be divided into groups each including one or more pixel sharing units 539.
  • a vertical signal line 543 and a column signal processing circuit 550 are connected to each of these groups, so that pixel signals can be read out from each group simultaneously.
  • one vertical signal line 543 may be connected to a plurality of pixel sharing units 539 arranged in a column direction. At this time, pixel signals are sequentially read out in a time-division manner from a plurality of pixel sharing units 539 connected to one vertical signal line 543.
  • FIG. 34 shows an example of a cross-sectional configuration of the first substrate 100, second substrate 100, and third substrate 300 of the imaging device 1 in a direction perpendicular to the main surface.
  • FIG. 34 is a schematic representation to make it easier to understand the positional relationship of the components, and may differ from the actual cross section.
  • the imaging device 1 further includes a light receiving lens 401 on the back surface side (light incident surface side) of the first substrate 100.
  • a color filter layer (not shown) may be provided between the light receiving lens 401 and the first substrate 100.
  • the light receiving lens 401 is provided, for example, in each of the pixels 541A, 541B, 541C, and 541D.
  • the imaging device 1 is, for example, a back-illuminated imaging device.
  • the imaging device 1 includes a pixel array section 540 arranged at the center and a peripheral section 540B arranged outside the pixel array section 540.
  • the first substrate 100 includes, in order from the light receiving lens 401 side, an insulating film 111, a fixed charge film 112, a semiconductor layer 100S, and a wiring layer 100T.
  • the semiconductor layer 100S is made of, for example, a silicon substrate.
  • the semiconductor layer 100S has, for example, a p-well layer 115 in a part of the surface (the surface on the wiring layer 100T side) and in the vicinity thereof, and in the other region (a region deeper than the p-well layer 115), It has an n-type semiconductor region 114.
  • the n-type semiconductor region 114 and the p-well layer 115 constitute a pn junction type photodiode PD.
  • P-well layer 115 is a p-type semiconductor region.
  • FIG. 35A shows an example of the planar configuration of the first substrate 100.
  • FIG. 35A mainly shows the planar configuration of the pixel isolation section 117, photodiode PD, floating diffusion FD, VSS contact region 118, and transfer transistor TR of the first substrate 100.
  • the configuration of the first substrate 100 will be described using FIG. 35A together with FIG. 34.
  • a floating diffusion FD and a VSS contact region 118 are provided near the surface of the semiconductor layer 100S.
  • Floating diffusion FD is constituted by an n-type semiconductor region provided within p-well layer 115.
  • the floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) of the pixels 541A, 541B, 541C, and 541D are provided close to each other, for example, in the center of the pixel sharing unit 539 (FIG. 35A).
  • the four floating diffusions (floating diffusions FD1, FD2, FD3, FD4) included in this shared unit 539 are electrically connected within the first substrate 100 (more specifically, within the wiring layer 100T).
  • the floating diffusion FD is connected from the first substrate 100 to the second substrate 200 (more specifically, from the wiring layer 100T to the wiring layer 200T) via electrical means (through electrodes 120E, which will be described later). There is.
  • the floating diffusion FD is electrically connected to the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG by this electrical means. There is.
  • the VSS contact region 118 is a region electrically connected to the reference potential line VSS, and is arranged apart from the floating diffusion FD.
  • a floating diffusion FD is arranged at one end in the V direction of each pixel, and a VSS contact region 118 is arranged at the other end (FIG. 35A).
  • the VSS contact region 118 is composed of, for example, a p-type semiconductor region.
  • the VSS contact region 118 is connected to, for example, a ground potential or a fixed potential. Thereby, the reference potential is supplied to the semiconductor layer 100S.
  • the first substrate 100 is provided with a photodiode PD, a floating diffusion FD, a VSS contact region 118, and a transfer transistor TR.
  • the photodiode PD, floating diffusion FD, VSS contact region 118, and transfer transistor TR are provided in each of the pixels 541A, 541B, 541C, and 541D.
  • the transfer transistor TR is provided on the surface side of the semiconductor layer 100S (the side opposite to the light incident surface side, the second substrate 200 side).
  • Transfer transistor TR has a transfer gate TG.
  • the transfer gate TG includes, for example, a horizontal portion TGb facing the surface of the semiconductor layer 100S and a vertical portion TGa provided within the semiconductor layer 100S.
  • the vertical portion TGa extends in the thickness direction of the semiconductor layer 100S. One end of the vertical portion TGa is in contact with the horizontal portion TGb, and the other end is provided within the n-type semiconductor region 114.
  • the horizontal portion TGb of the transfer gate TG extends, for example, toward the center of the pixel sharing unit 539 in the H direction from a position opposite to the vertical portion TGa (FIG. 35A).
  • the position in the H direction of the through electrode (through electrode TGV described later) that reaches the transfer gate TG is changed in the H direction of the through electrode (through electrode 120E, 121E described later) connected to the floating diffusion FD and VSS contact region 118. It is possible to approach the position of
  • the plurality of pixel sharing units 539 provided on the first substrate 100 have the same configuration (FIG. 35A).
  • the semiconductor layer 100S is provided with a pixel separation section 117 that separates the pixels 541A, 541B, 541C, and 541D from each other.
  • the pixel separation section 117 is formed to extend in the normal direction of the semiconductor layer 100S (direction perpendicular to the surface of the semiconductor layer 100S).
  • the pixel separation unit 117 is provided so as to partition the pixels 541A, 541B, 541C, and 541D from each other, and has, for example, a grid-like planar shape (FIGS. 35A and 35B).
  • the pixel separation unit 117 electrically and optically isolates the pixels 541A, 541B, 541C, and 541D from each other, for example.
  • a DTI (Deep Trench Isolation) structure that does not penetrate the semiconductor layer 100S may be used.
  • the pixel separation section 117 extends in the normal direction of the semiconductor layer 100S and is formed in a part of the semiconductor layer 100S.
  • a first pinning region 113 and a second pinning region 116 are provided in the semiconductor layer 100S.
  • the first pinning region 113 is provided near the back surface of the semiconductor layer 100S, and is arranged between the n-type semiconductor region 114 and the fixed charge film 112.
  • the second pinning region 116 is provided on a side surface of the pixel isolation section 117, specifically, between the pixel isolation section 117 and the p-well layer 115 or the n-type semiconductor region 114.
  • the first pinning region 113 and the second pinning region 116 are formed of, for example, a p-type semiconductor region.
  • a light shielding film 117A is provided between the fixed charge film 112 and the insulating film 111.
  • This light shielding film 117A may be provided continuously with the light shielding film 117A that constitutes the pixel separation section 117.
  • the light shielding film 117A between the fixed charge film 112 and the insulating film 111 is selectively provided, for example, at a position facing the pixel separation section 117 in the semiconductor layer 100S.
  • An insulating film 111 is provided to cover this light shielding film 117A.
  • the insulating film 111 is made of silicon oxide, for example.
  • the wiring layer 100T provided between the semiconductor layer 100S and the second substrate 200 includes an interlayer insulating film 119, pad portions 120, 121, a passivation film 122, an interlayer insulating film 123, and a bonding film 124 from the semiconductor layer 100S side. They are in this order.
  • the horizontal portion TGb of the transfer gate TG is provided, for example, in this wiring layer 100T.
  • the interlayer insulating film 119 is provided over the entire surface of the semiconductor layer 100S and is in contact with the semiconductor layer 100S.
  • the interlayer insulating film 119 is made of, for example, a silicon oxide film. Note that the configuration of the wiring layer 100T is not limited to the above-described configuration, and may be any configuration as long as it includes wiring and an insulating film.
  • This pad section 120 is provided so as to straddle the pixel separation section 117, and is arranged to overlap at least a portion of each of the floating diffusions FD1, FD2, FD3, and FD4 (FIGS. 34 and 35B). Specifically, the pad section 120 includes at least a portion of each of a plurality of floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) that share a pixel circuit 210, and a plurality of photodiodes that share the pixel circuit 210.
  • a plurality of floating diffusions FD floating diffusions FD1, FD2, FD3, FD4
  • the pad portion 121 is for connecting the plurality of VSS contact regions 118 to each other.
  • the VSS contact regions 118 provided in the pixels 541C and 541D of one pixel sharing unit 539 adjacent in the V direction and the VSS contact regions 118 provided in the pixels 541A and 541B of the other pixel sharing unit 539 are pads. They are electrically connected by the section 121.
  • the pad section 121 is provided, for example, so as to straddle the pixel separation section 117, and is arranged to overlap at least a portion of each of these four VSS contact regions 118.
  • the pad portion 120 By providing the pad portion 120, it is possible to reduce the number of wiring lines for connecting each floating diffusion FD to the pixel circuit 210 (for example, the gate electrode of the amplification transistor AMP) in the entire chip. Similarly, by providing the pad portion 121, it is possible to reduce the number of wirings for supplying potential to each VSS contact region 118 in the entire chip. This makes it possible to reduce the area of the entire chip, suppress electrical interference between wiring lines in miniaturized pixels, and/or reduce costs by reducing the number of parts.
  • the pad parts 120 and 121 can be provided at desired positions on the first substrate 100 and the second substrate 200. Specifically, the pad portions 120 and 121 can be provided in either the wiring layer 100T or the insulating region 212 of the semiconductor layer 200S. When provided in the wiring layer 100T, the pad portions 120 and 121 may be brought into direct contact with the semiconductor layer 100S. Specifically, the pad portions 120 and 121 may be directly connected to at least a portion of each of the floating diffusion FD and/or the VSS contact region 118. Further, connecting vias 120C and 121C are provided from each of the floating diffusion FD and/or VSS contact regions 118 connected to the pad parts 120 and 121, and the pad parts 120 , 121 may be provided.
  • the pad portions 120 and 121 are provided in the wiring layer 100T, the number of wirings connected to the floating diffusion FD and/or the VSS contact region 118 in the insulating region 212 of the semiconductor layer 200S can be reduced.
  • the area of the insulating region 212 for forming the through wiring for connecting the floating diffusion FD to the pixel circuit 210 can be reduced. Therefore, a large area of the second substrate 200 on which the pixel circuit 210 is formed can be secured. By securing the area of the pixel circuit 210, the pixel transistor can be formed large, which can contribute to improving image quality by reducing noise and the like.
  • the floating diffusion FD and/or VSS contact region 118 be provided in each pixel 541.
  • the amount of wiring connecting the substrate 100 and the second substrate 200 can be significantly reduced.
  • pad portions 120 to which a plurality of floating diffusion FDs are connected and pad portions 121 to which a plurality of VSS contacts 118 are connected are arranged alternately in a straight line in the V direction. Furthermore, the pad portions 120 and 121 are formed at positions surrounded by a plurality of photodiodes PD, a plurality of transfer gates TG, and a plurality of floating diffusions FD.
  • elements other than the floating diffusion FD and the VSS contact region 118 can be freely arranged, and the layout of the entire chip can be made more efficient. Further, symmetry in the layout of elements formed in each pixel sharing unit 539 is ensured, and variations in characteristics of each pixel 541 can be suppressed.
  • the pad portions 120 and 121 are made of, for example, polysilicon (Poly Si), more specifically, doped polysilicon to which impurities are added.
  • the pad portions 120 and 121 are preferably made of a conductive material with high heat resistance, such as polysilicon, tungsten (W), titanium (Ti), and titanium nitride (TiN). This makes it possible to form the pixel circuit 210 after bonding the semiconductor layer 200S of the second substrate 200 to the first substrate 100. The reason for this will be explained below. Note that in the following description, the method of forming the pixel circuit 210 after bonding the semiconductor layer 200S of the first substrate 100 and the second substrate 200 will be referred to as a first manufacturing method.
  • the second manufacturing method it is also conceivable to form the pixel circuit 210 on the second substrate 200 and then bond it to the first substrate 100 (hereinafter referred to as the second manufacturing method).
  • the second manufacturing method electrodes for electrical connection are formed in advance on the surface of the first substrate 100 (the surface of the wiring layer 100T) and the surface of the second substrate 200 (the surface of the wiring layer 200T).
  • the electrodes for electrical connection formed on the surfaces of the first substrate 100 and the second substrate 200 come into contact with each other.
  • an electrical connection is formed between the wiring included in the first substrate 100 and the wiring included in the second substrate 200. Therefore, by configuring the imaging device 1 using the second manufacturing method, for example, the first substrate 100 and the second substrate 200 can be manufactured using an appropriate process depending on their respective configurations. It is possible to manufacture high-quality, high-performance imaging devices.
  • the first substrate 100 and the second substrate 200 when the first substrate 100 and the second substrate 200 are bonded together, an error in alignment may occur due to the bonding manufacturing device.
  • the first substrate 100 and the second substrate 200 have a diameter of about several tens of centimeters, for example, but when bonding the first substrate 100 and the second substrate 200 together, There is a possibility that expansion and contraction of the substrate may occur in microscopic regions of each part of the two substrates 200. This expansion and contraction of the substrate is caused by a slight shift in the timing at which the substrates come into contact with each other. Due to such expansion and contraction of the first substrate 100 and the second substrate 200, errors may occur in the positions of the electrodes for electrical connection formed on the surface of the first substrate 100 and the surface of the second substrate 200, respectively.
  • the second manufacturing method even if such an error occurs, it is preferable to deal with it so that the electrodes of the first substrate 100 and the second substrate 200 are in contact with each other. Specifically, at least one, preferably both, of the electrodes of the first substrate 100 and the second substrate 200 are made large in consideration of the above error. Therefore, when the second manufacturing method is used, for example, the size of the electrode formed on the surface of the first substrate 100 or the second substrate 200 (the size in the substrate plane direction) is The size is larger than the size of the internal electrode extending from the inside of the substrate 200 to the surface in the thickness direction.
  • the pad portions 120 and 121 from a heat-resistant conductive material, it becomes possible to use the first manufacturing method described above.
  • this first substrate 100 and a second substrate 200 are bonded together.
  • the second substrate 200 is in a state where patterns such as active elements and wiring layers constituting the pixel circuit 210 are not formed.
  • the second substrate 200 Since the second substrate 200 is in a state before forming a pattern, even if an error occurs in the bonding position when bonding the first substrate 100 and the second substrate 200, this bonding error will cause There is no error in alignment between the pattern on the first substrate 100 and the pattern on the second substrate 200. This is because the pattern on the second substrate 200 is formed after the first substrate 100 and the second substrate 200 are bonded together. Note that when forming a pattern on the second substrate, the pattern is formed while using the pattern formed on the first substrate as an alignment target, for example, in an exposure apparatus for pattern formation. For the above reason, the error in the bonding position between the first substrate 100 and the second substrate 200 does not pose a problem in manufacturing the imaging device 1 in the first manufacturing method. For the same reason, errors caused by expansion and contraction of the substrate that occur in the second manufacturing method do not pose a problem when manufacturing the imaging device 1 in the first manufacturing method.
  • the first manufacturing method after the first substrate 100 and the second substrate 200 (semiconductor layer 200S) are bonded together in this manner, active elements are formed on the second substrate 200.
  • through electrodes 120E, 121E and through electrode TGV are formed.
  • a pattern of the through electrodes is formed from above the second substrate 200 using reduction projection exposure using an exposure device. Since reduced exposure projection is used, even if an error occurs in the alignment between the second substrate 200 and the exposure apparatus, the magnitude of the error will be smaller than that of the second manufacturing method for the second substrate 200. It becomes only a fraction (the reciprocal of the reduction exposure projection magnification).
  • the elements formed on each of the first substrate 100 and the second substrate 200 can be easily aligned with each other, resulting in high quality and high performance. It is possible to manufacture an imaging device with a wide range of functions.
  • the imaging device 1 manufactured using such a first manufacturing method has different characteristics from the imaging device manufactured using the second manufacturing method.
  • the through electrodes 120E, 121E, and TGV have a substantially constant thickness (substrate thickness) from the second substrate 200 to the first substrate 100. (size in plane direction).
  • the through electrodes 120E, 121E, and TGV have a tapered shape, they have a tapered shape with a constant slope.
  • the pixels 541 can be easily miniaturized.
  • the active element is formed on the second substrate 200 after the first substrate 100 and the second substrate 200 (semiconductor layer 200S) are bonded together.
  • One substrate 100 is also affected by the heat treatment necessary for forming active elements. Therefore, as described above, it is preferable to use a conductive material with high heat resistance for the pad portions 120 and 121 provided on the first substrate 100. For example, it is preferable to use a material having a higher melting point (that is, higher heat resistance) than at least a portion of the wiring material included in the wiring layer 200T of the second substrate 200 for the pad portions 120 and 121.
  • a conductive material with high heat resistance such as doped polysilicon, tungsten, titanium, or titanium nitride is used for the pad portions 120 and 121.
  • a conductive material with high heat resistance such as doped polysilicon, tungsten, titanium, or titanium nitride is used for the pad portions 120 and 121.
  • the passivation film 122 is provided, for example, over the entire surface of the semiconductor layer 100S so as to cover the pad portions 120 and 121 (FIG. 34).
  • the passivation film 122 is made of, for example, a silicon nitride (SiN) film.
  • Interlayer insulating film 123 covers pad parts 120 and 121 with passivation film 122 in between.
  • This interlayer insulating film 123 is provided, for example, over the entire surface of the semiconductor layer 100S.
  • the interlayer insulating film 123 is made of, for example, a silicon oxide (SiO) film.
  • the bonding film 124 is provided on the bonding surface between the first substrate 100 (specifically, the wiring layer 100T) and the second substrate 200. That is, the bonding film 124 is in contact with the second substrate 200.
  • This bonding film 124 is provided over the entire main surface of the first substrate 100.
  • the bonding film 124 is made of, for example, a silicon nitride film
  • the light receiving lens 401 faces the semiconductor layer 100S with the fixed charge film 112 and the insulating film 111 in between (FIG. 34).
  • the light receiving lens 401 is provided, for example, at a position facing the photodiode PD of each of the pixels 541A, 541B, 541C, and 541D.
  • the second substrate 200 has a semiconductor layer 200S and a wiring layer 200T in this order from the first substrate 100 side.
  • the semiconductor layer 200S is made of a silicon substrate.
  • a well region 211 is provided throughout the thickness direction.
  • Well region 211 is, for example, a p-type semiconductor region.
  • the second substrate 20 is provided with pixel circuits 210 arranged for each pixel sharing unit 539. This pixel circuit 210 is provided, for example, on the front surface side (wiring layer 200T side) of the semiconductor layer 200S.
  • the second substrate 200 is bonded to the first substrate 100 such that the back side of the second substrate 200 (semiconductor layer 200S side) faces the front side (wiring layer 100T side) of the first substrate 100. ing. In other words, the second substrate 200 is bonded face-to-back to the first substrate 100.
  • FIG. 36 to 40 schematically represent an example of the planar configuration of the second substrate 200.
  • FIG. 36 shows the configuration of a pixel circuit 210 provided near the surface of the semiconductor layer 200S.
  • FIG. 37 schematically represents the configuration of a wiring layer 200T (specifically, a first wiring layer W1 to be described later), a semiconductor layer 200S connected to the wiring layer 200T, and each part of the first substrate 100.
  • 38 to 40 show examples of planar configurations of the wiring layer 200T.
  • the configuration of the second substrate 200 will be described below using FIGS. 36 to 40 as well as FIG. 34. In FIGS.
  • the outline of the photodiode PD (the boundary between the pixel isolation section 117 and the photodiode PD) is represented by a broken line, and the semiconductor layer 200S overlaps with the gate electrode of each transistor constituting the pixel circuit 210, and the element isolation
  • the boundary with the region 213 or the insulating region 214 is represented by a dotted line.
  • a boundary between the semiconductor layer 200S and the element isolation region 213 and a boundary between the element isolation region 213 and the insulating region 213 are provided on one side in the channel width direction.
  • the second substrate 200 is provided with an insulating region 212 that divides the semiconductor layer 200S and an element isolation region 213 provided in a part of the semiconductor layer 200S in the thickness direction (FIG. 34).
  • the through electrodes 120E and 121E of the two pixel sharing units 539 connected to the two pixel circuits 210 and the through electrodes TGV are arranged (FIG. 37).
  • the insulating region 212 has approximately the same thickness as the semiconductor layer 200S (FIG. 34).
  • the semiconductor layer 200S is divided by this insulating region 212.
  • Insulating region 212 is made of silicon oxide, for example.
  • the through electrodes 120E and 121E are provided to penetrate the insulating region 212 in the thickness direction.
  • the upper ends of the through electrodes 120E and 121E are connected to wirings (first wiring W1, second wiring W2, third wiring W3, and fourth wiring W4, which will be described later) of the wiring layer 200T.
  • the through electrodes 120E, 121E are provided to penetrate the insulating region 212, the bonding film 124, the interlayer insulating film 123, and the passivation film 122, and their lower ends are connected to the pad portions 120, 121 (FIG. 34).
  • the through electrode 120E is for electrically connecting the pad portion 120 and the pixel circuit 210.
  • the floating diffusion FD of the first substrate 100 is electrically connected to the pixel circuit 210 of the second substrate 200 by the through electrode 120E.
  • the through electrode 121E is for electrically connecting the pad portion 121 and the reference potential line VSS of the wiring layer 200T. That is, the VSS contact region 118 of the first substrate 100 is electrically connected to the reference potential line VSS of the second substrate 200 by the through electrode 121E.
  • the through electrode TGV is provided to penetrate the insulating region 212 in the thickness direction.
  • the upper end of the through electrode TGV is connected to the wiring 200T.
  • This through electrode TGV is provided to penetrate through the insulating region 212, the bonding film 124, the interlayer insulating film 123, the passivation film 122, and the interlayer insulating film 119, and its lower end is connected to the transfer gate TG (FIG. 34).
  • Such a through electrode TGV connects the transfer gates TG (transfer gates TG1, TG2, TG3, TG4) of each of the pixels 541A, 541B, 541C, and 541D, and the wiring of the wiring layer 200T (part of the row drive signal line 542, concrete Specifically, it is for electrically connecting wirings TRG1, TRG2, TRG3, TRG4) in FIG. 39, which will be described later. That is, the transfer gate TG of the first substrate 100 is electrically connected to the wiring TRG of the second substrate 200 by the through electrode TGV, and a drive signal is sent to each of the transfer transistors TR (transfer transistors TR1, TR2, TR3, TR4). It is now possible to
  • the insulating region 212 is a region where the through electrodes 120E, 121E and the through electrode TGV for electrically connecting the first substrate 100 and the second substrate 200 are provided insulated from the semiconductor layer 200S.
  • an insulating region 212 provided between two pixel circuits 210 (shared unit 539) adjacent in the H direction, through electrodes 120E and 121E and through electrodes TGV (through electrodes TGV) connected to these two pixel circuits 210 are provided.
  • TGV1, TGV2, TGV3, TGV4 are arranged.
  • the insulating region 212 is provided, for example, extending in the V direction (FIGS. 36 and 37).
  • the position of the through electrode TGV in the H direction is closer to the position of the through electrode 120E, 121E in the H direction than the position of the vertical portion TGa.
  • the through electrode TGV is arranged at substantially the same position as the through electrodes 120E and 120E in the H direction.
  • the through electrodes 120E, 121E and the through electrode TGV can be provided together in the insulating region 212 extending in the V direction.
  • the through electrode TGV is formed almost directly above the vertical portion TGa, and for example, the through electrode TGV is arranged approximately at the center of each pixel 541 in the H direction and the V direction. At this time, the position of the through electrode TGV in the H direction and the position of the through electrodes 120E and 121E in the H direction are significantly shifted.
  • an insulating region 212 is provided around the through electrode TGV and the through electrodes 120E and 121E in order to electrically insulate them from the adjacent semiconductor layer 200S.
  • the semiconductor layer 200S is divided into small pieces.
  • a layout in which the through electrodes 120E, 121E and the through electrode TGV are collectively arranged in the insulating region 212 extending in the V direction can increase the size of the semiconductor layer 200S in the H direction. Therefore, a large area of the semiconductor element formation region in the semiconductor layer 200S can be secured. This makes it possible, for example, to increase the size of the amplification transistor AMP and suppress noise.
  • the pixel sharing unit 539 electrically connects the floating diffusion FD provided in each of the plurality of pixels 541, and these plurality of pixels 541 form one pixel circuit 210. It has a shared structure. Electrical connection between the floating diffusion FDs is made by a pad section 120 provided on the first substrate 100 (FIGS. 34 and 35B). The electrical connection portion (pad portion 120) provided on the first substrate 100 and the pixel circuit 210 provided on the second substrate 200 are electrically connected via one through electrode 120E. As another structural example, it is also conceivable to provide an electrical connection between the floating diffusions FD on the second substrate 200.
  • the pixel sharing unit 539 is provided with four through electrodes connected to each of the floating diffusions FD1, FD2, FD3, and FD4. Therefore, in the second substrate 200, the number of through electrodes that penetrate the semiconductor layer 200S increases, and the insulating region 212 that insulates the periphery of these through electrodes becomes larger.
  • the structure in which the pad portion 120 is provided on the first substrate 100 can reduce the number of through electrodes and make the insulating region 212 smaller. Therefore, a large area of the semiconductor element formation region in the semiconductor layer 200S can be secured. This makes it possible, for example, to increase the size of the amplification transistor AMP and suppress noise.
  • the element isolation region 213 is provided on the surface side of the semiconductor layer 200S.
  • the element isolation region 213 has an STI (Shallow Trench Isolation) structure.
  • the semiconductor layer 200S is dug in the thickness direction (perpendicular to the main surface of the second substrate 200), and an insulating film is embedded in this trench.
  • This insulating film is made of silicon oxide, for example.
  • the element isolation region 213 isolates the plurality of transistors that constitute the pixel circuit 210 according to the layout of the pixel circuit 210.
  • the semiconductor layer 200S (specifically, the well region 211) extends below the element isolation region 213 (deep in the semiconductor layer 200S).
  • the outer shape of the pixel sharing unit 539 on the first substrate 100 (the outer shape in the substrate plane direction) and the outer shape of the pixel sharing unit 539 on the second substrate 200 are shown.
  • the difference from the external shape is shown.
  • a pixel sharing unit 539 is provided over both the first substrate 100 and the second substrate 200.
  • the external shape of the pixel sharing unit 539 provided on the first substrate 100 and the external shape of the pixel sharing unit 539 provided on the second substrate 200 are different from each other.
  • the outlines of the pixels 541A, 541B, 541C, and 541D are represented by dashed lines, and the outline of the pixel sharing unit 539 is represented by thick lines.
  • the pixel sharing unit 539 of the first substrate 100 includes two pixels 541 (pixels 541A, 541B) arranged adjacent to each other in the H direction, and two pixels 541 (pixels 541 (pixels 541B) arranged adjacent to these in the V direction). pixels 541C and 541D). That is, the pixel sharing unit 539 of the first substrate 100 is composed of four adjacent pixels 541 arranged in two rows and two columns, and the pixel sharing unit 539 of the first substrate 100 has a substantially square outer shape. ing.
  • such a pixel sharing unit 539 has a pitch of 2 pixels in the H direction (corresponding to 2 pixels 541) and a pitch of 2 pixels in the V direction (corresponding to 2 pixels 541). They are arranged adjacently with a corresponding pitch).
  • the outlines of the pixels 541A, 541B, 541C, and 541D are represented by dashed lines, and the outline of the pixel sharing unit 539 is represented by thick lines.
  • the external shape of the pixel sharing unit 539 of the second substrate 200 is smaller than the pixel sharing unit 539 of the first substrate 100 in the H direction, and larger than the pixel sharing unit 539 of the first substrate 100 in the V direction.
  • the pixel sharing unit 539 of the second substrate 200 is formed with a size (area) equivalent to one pixel in the H direction, and is formed with a size equivalent to four pixels in the V direction. ing. That is, the pixel sharing unit 539 of the second substrate 200 is formed in a size corresponding to the pixels arranged in adjacent 1 row x 4 columns, and the pixel sharing unit 539 of the second substrate 200 has a substantially rectangular shape. It has an external shape.
  • each pixel circuit 210 the selection transistor SEL, the amplification transistor AMP, the reset transistor RST, and the FD conversion gain switching transistor FDG are arranged in this order in the V direction (FIG. 36).
  • the outer shape of each pixel circuit 210 in a substantially rectangular shape as described above, four transistors (selection transistor SEL, amplification transistor AMP, reset transistor RST, and FD conversion transistor) are arranged in one direction (V direction in FIG. 36).
  • gain switching transistors FDG) can be arranged side by side.
  • the drain of the amplification transistor AMP and the drain of the reset transistor RST can be shared by one diffusion region (diffusion region connected to the power supply line VDD).
  • each pixel circuit 210 it is also possible to provide the formation area of each pixel circuit 210 in a substantially square shape (see FIG. 49 described later). In this case, two transistors are arranged along one direction, making it difficult to share the drain of the amplification transistor AMP and the drain of the reset transistor RST in one diffusion region. Therefore, by providing the formation area of the pixel circuit 210 in a substantially rectangular shape, it becomes easier to arrange the four transistors close to each other, and the formation area of the pixel circuit 210 can be made smaller. That is, pixels can be miniaturized. Further, when it is not necessary to reduce the formation area of the pixel circuit 210, it is possible to increase the formation area of the amplification transistor AMP and suppress noise.
  • a VSS contact region 218 connected to the reference potential line VSS is provided.
  • the VSS contact region 218 is made up of, for example, a p-type semiconductor region.
  • the VSS contact region 218 is electrically connected to the VSS contact region 118 of the first substrate 100 (semiconductor layer 100S) via the wiring of the wiring layer 200T and the through electrode 121E.
  • This VSS contact region 218 is provided, for example, at a position adjacent to the source of the FD conversion gain switching transistor FDG with the element isolation region 213 in between (FIG. 36).
  • one pixel sharing unit 539 (for example, on the upper side of the paper in FIG. 35B) is the same as the two pixel sharing units 539 arranged in the H direction of the second substrate 200. 539 (for example, on the left side of the paper in FIG. 36).
  • the other pixel sharing unit 539 shares two pixel sharing units 539 lined up in the H direction of the second substrate 200. It is connected to the other pixel sharing unit 539 of the units 539 (for example, on the right side of the paper in FIG. 36).
  • the internal layout (arrangement of transistors, etc.) of one pixel sharing unit 539 is different from the internal layout of the other pixel sharing unit 539 in the V direction and the H direction. It is approximately equivalent to the layout reversed in the direction. The effects obtained by this layout will be explained below.
  • each pad portion 120 is located at the center of the external shape of the pixel sharing unit 539, that is, at the center of the pixel sharing unit 539 in the V direction and the H direction. (Fig. 35B).
  • the pixel sharing unit 539 of the second substrate 200 has a substantially rectangular outer shape that is long in the V direction. It is arranged at a position shifted upward from the center of the unit 539 in the V direction.
  • the amplification transistor AMP of one pixel sharing unit 539 and the pad part 120 (for example, The distance between the pixel sharing unit 539 and the pad section 120) is relatively short.
  • the distance between the amplification transistor AMP of the other pixel sharing unit 539 and the pad section 120 (for example, the pad section 120 of the pixel sharing unit 539 on the lower side of the paper in FIG. 35) becomes longer. Therefore, the wiring area required for connecting the amplification transistor AMP and the pad portion 120 becomes large, and the wiring layout of the pixel sharing unit 539 may become complicated. This may affect miniaturization of the imaging device 1.
  • both amplification transistors AMP of these two pixel sharing units 539 and The distance to the pad section 120 can be shortened. Therefore, compared to a configuration in which the two pixel sharing units 539 aligned in the H direction of the second substrate 200 have the same internal layout, it becomes easier to miniaturize the imaging device 1.
  • the planar layout of each of the plurality of pixel sharing units 539 of the second substrate 200 is symmetrical in the range shown in FIG. 36, but if the layout of the first wiring layer W1 shown in FIG. 37, which will be described later, is included, It becomes asymmetrical.
  • the internal layouts of the two pixel sharing units 539 arranged in the H direction of the second substrate 200 are reversed with respect to each other also in the H direction.
  • the two pixel sharing units 539 aligned in the H direction of the second substrate 200 are connected to the pad portions 120 and 121 of the first substrate 100, respectively.
  • the pad portions 120 and 121 are arranged at the center in the H direction of the two pixel sharing units 539 arranged in the H direction of the second substrate 200 (between the two pixel sharing units 539 arranged in the H direction).
  • each of the plurality of pixel sharing units 539 of the second substrate 200 and the pad section 120, 121 can be reduced. That is, it becomes easier to further miniaturize the imaging device 1.
  • the position of the outline of the pixel sharing unit 539 on the second substrate 200 does not have to be aligned with the position of the outline of any of the pixel sharing units 539 on the first substrate 100.
  • one pixel sharing unit 539 (for example, on the left side of the paper in FIG. 37) has an external shape in one of the pixel sharing units 539 in the V direction (for example, on the upper side of the paper in FIG. 37).
  • the line is arranged outside one outline line in the V direction of the pixel sharing unit 539 of the corresponding first substrate 100 (for example, on the upper side of the paper in FIG. 35B).
  • the other pixel sharing unit 539 (for example, on the right side of the paper in FIG. 36) has the same pixel sharing unit 539 as the other pixel sharing unit 539 in the V direction (for example, on the bottom of the paper in FIG. 37).
  • the outline line is arranged outside the other outline line in the V direction of the corresponding pixel sharing unit 539 of the first substrate 100 (for example, on the lower side of the paper in FIG. 35B).
  • the positions of the outlines of the plurality of pixel sharing units 539 on the second substrate 200 do not have to be aligned with each other.
  • the two pixel sharing units 539 aligned in the H direction of the second substrate 200 are arranged with their outlines shifted in the V direction. This makes it possible to shorten the distance between the amplification transistor AMP and the pad section 120. Therefore, it becomes easier to miniaturize the imaging device 1.
  • the repeated arrangement of pixel sharing units 539 in pixel array section 540 will be described with reference to FIGS. 35B and 37.
  • the pixel sharing unit 539 of the first substrate 100 has a size of two pixels 541 in the H direction and a size of two pixels 541 in the V direction (FIG. 35B).
  • the pixel sharing unit 539 with a size corresponding to these four pixels 541 is arranged at a pitch of two pixels in the H direction (a pitch corresponding to two pixels 541), and , are repeatedly arranged adjacent to each other at a two-pixel pitch (a pitch corresponding to two pixels 541) in the V direction.
  • the pixel array section 540 of the first substrate 100 may be provided with a pair of pixel sharing units 539 in which two pixel sharing units 539 are arranged adjacent to each other in the V direction.
  • the pair of pixel sharing units 539 are arranged at a two pixel pitch in the H direction (a pitch corresponding to two pixels 541) and a four pixel pitch in the V direction (a pitch corresponding to two pixels 541). They are repeatedly arranged adjacent to each other at a pitch corresponding to four pixels 541).
  • the pixel sharing unit 539 of the second substrate 200 has a size of one pixel 541 in the H direction and a size of four pixels 541 in the V direction (FIG. 37).
  • the pixel array section 540 of the second substrate 200 is provided with a pair of pixel sharing units 539 including two pixel sharing units 539 of a size corresponding to the four pixels 541.
  • the pixel sharing units 539 are arranged adjacent to each other in the H direction and offset in the V direction.
  • the pair of pixel sharing units 539 are arranged at a two pixel pitch in the H direction (a pitch corresponding to two pixels 541) and a four pixel pitch in the V direction (a pitch corresponding to two pixels 541). They are repeatedly arranged adjacent to each other without any gaps at a pitch corresponding to four pixels 541).
  • the amplification transistor AMP has, for example, a three-dimensional structure such as a Fin type (FIG. 34). This increases the effective gate width, making it possible to suppress noise.
  • the selection transistor SEL, the reset transistor RST, and the FD conversion gain switching transistor FDG have, for example, a planar structure.
  • Amplification transistor AMP may have a planar structure.
  • the selection transistor SEL, the reset transistor RST, or the FD conversion gain switching transistor FDG may have a three-dimensional structure.
  • the wiring layer 200T includes, for example, a passivation film 221, an interlayer insulating film 222, and a plurality of wirings (first wiring layer W1, second wiring layer W2, third wiring layer W3, and fourth wiring layer W4).
  • the passivation film 221 is in contact with the surface of the semiconductor layer 200S, and covers the entire surface of the semiconductor layer 200S.
  • This passivation film 221 covers the gate electrodes of each of the selection transistor SEL, the amplification transistor AMP, the reset transistor RST, and the FD conversion gain switching transistor FDG.
  • Interlayer insulating film 222 is provided between passivation film 221 and third substrate 300. This interlayer insulating film 222 separates a plurality of wirings (first wiring layer W1, second wiring layer W2, third wiring layer W3, and fourth wiring layer W4).
  • the interlayer insulating film 222 is made of silicon oxide, for example.
  • a first wiring layer W1, a second wiring layer W2, a third wiring layer W3, a fourth wiring layer W4, and contact portions 201, 202 are provided in this order from the semiconductor layer 200S side. are insulated from each other by an interlayer insulating film 222.
  • the interlayer insulating film 222 is provided with a plurality of connecting portions that connect the first wiring layer W1, the second wiring layer W2, the third wiring layer W3, or the fourth wiring layer W4 and their lower layers.
  • the connection portion is a portion in which a conductive material is buried in a connection hole provided in the interlayer insulating film 222.
  • the interlayer insulating film 222 is provided with a connecting portion 218V that connects the first wiring layer W1 and the VSS contact region 218 of the semiconductor layer 200S.
  • the hole diameter of the connection portion that connects the elements of the second substrate 200 is different from the hole diameter of the through electrodes 120E, 121E and the through electrode TGV.
  • the hole diameter of the connection hole connecting the elements of the second substrate 200 is preferably smaller than the hole diameter of the through electrodes 120E, 121E and the through electrode TGV. The reason for this will be explained below.
  • the depth of the connection portion (connection portion 218V, etc.) provided in the wiring layer 200T is smaller than the depth of the through electrodes 120E, 121E and the through electrode TGV.
  • connection hole can be filled with a conductive material more easily than the through electrodes 120E, 121E and the through electrode TGV.
  • the through electrode 120E is connected to the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG (specifically, the connection hole reaching the source of the FD conversion gain switching transistor FDG) through the first wiring layer W1.
  • the first wiring layer W1 connects, for example, the through electrode 121E and the connecting portion 218V, thereby electrically connecting the VSS contact region 218 of the semiconductor layer 200S and the VSS contact region 118 of the semiconductor layer 100S. Ru.
  • FIG. 38 shows an example of the planar configuration of the first wiring layer W1 and the second wiring layer W2.
  • FIG. 39 shows an example of the planar configuration of the second wiring layer W2 and the third wiring layer W3.
  • FIG. 40 shows an example of the planar configuration of the third wiring layer W3 and the fourth wiring layer W4.
  • the third wiring layer W3 includes wirings TRG1, TRG2, TRG3, TRG4, SELL, RSTL, and FDGL extending in the H direction (row direction) (FIG. 39). These wirings correspond to the plurality of row drive signal lines 542 described with reference to FIG. 32.
  • Wirings TRG1, TRG2, TRG3, and TRG4 are for sending drive signals to transfer gates TG1, TG2, TG3, and TG4, respectively.
  • Wirings TRG1, TRG2, TRG3, and TRG4 are respectively connected to transfer gates TG1, TG2, TG3, and TG4 via second wiring layer W2, first wiring layer W1, and through electrode 120E.
  • the wiring SELL is for sending a drive signal to the gate of the selection transistor SEL, the wiring RSTL to the gate of the reset transistor RST, and the wiring FDGL to the gate of the FD conversion gain switching transistor FDG.
  • the wirings SELL, RSTL, and FDGL are respectively connected to the gates of the selection transistor SEL, the reset transistor RST, and the FD conversion gain switching transistor FDG via the second wiring layer W2, the first wiring layer W1, and the connecting portion.
  • the fourth wiring layer W4 includes a power supply line VDD, a reference potential line VSS, and a vertical signal line 543 extending in the V direction (column direction) (FIG. 40).
  • the power supply line VDD is connected to the drain of the amplification transistor AMP and the drain of the reset transistor RST via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, and the connection portion.
  • the reference potential line VSS is connected to the VSS contact region 218 via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, and the connection portion 218V.
  • the reference potential line VSS is connected to the VSS contact region 118 of the first substrate 100 via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, the through electrode 121E, and the pad portion 121.
  • the vertical signal line 543 is connected to the source (Vout) of the selection transistor SEL via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, and the connection portion.
  • the contact sections 201 and 202 may be provided at a position overlapping the pixel array section 540 in a plan view (for example, as shown in FIG. 3), or may be provided at a peripheral section 540B outside the pixel array section 540. (For example, FIG. 34).
  • the contact parts 201 and 202 are provided on the surface of the second substrate 200 (the surface on the wiring layer 200T side).
  • the contact parts 201 and 202 are made of metal such as Cu (copper) and Al (aluminum), for example.
  • the contact parts 201 and 202 are exposed on the surface of the wiring layer 200T (the surface on the third substrate 300 side).
  • the contact parts 201 and 202 are used for electrical connection between the second substrate 200 and the third substrate 300 and for bonding the second substrate 200 and the third substrate 300 together.
  • FIG. 34 illustrates an example in which a peripheral circuit is provided in the peripheral portion 540B of the second substrate 200.
  • This peripheral circuit may include a part of the row drive unit 520, a part of the column signal processing unit 550, or the like. Further, as shown in FIG. 3, the peripheral circuit may not be arranged in the peripheral part 540B of the second substrate 200, and the connection hole parts H1 and H2 may be arranged near the pixel array part 540.
  • the third substrate 300 has, for example, a wiring layer 300T and a semiconductor layer 300S in this order from the second substrate 200 side.
  • the surface of the semiconductor layer 300S is provided on the second substrate 200 side.
  • the semiconductor layer 300S is made of a silicon substrate.
  • a circuit is provided on the surface side of this semiconductor layer 300S.
  • the surface side portion of the semiconductor layer 300S includes, for example, an input section 510A, a row drive section 520, a timing control section 530, a column signal processing section 550, an image signal processing section 560, and an output section 510B. At least some of them are provided.
  • the wiring layer 300T provided between the semiconductor layer 300S and the second substrate 200 includes, for example, an interlayer insulating film, a plurality of wiring layers separated by the interlayer insulating film, and contact parts 301 and 302. There is.
  • the contact portions 301 and 302 are exposed on the surface of the wiring layer 300T (the surface on the second substrate 200 side). Each contact portion 202 is in contact with the contact portion 202 .
  • the contact sections 301 and 302 are connected to at least any of the circuits formed in the semiconductor layer 300S (for example, the input section 510A, the row drive section 520, the timing control section 530, the column signal processing section 550, the image signal processing section 560, and the output section 510B).
  • the contact parts 301 and 302 are made of metal such as Cu (copper) and aluminum (Al), for example.
  • the external terminal TA is connected to the input section 510A through the connection hole H1
  • the external terminal TB is connected to the output section 510B through the connection hole H2.
  • an imaging device mainly consists of a photodiode and a pixel circuit.
  • the area of the photodiode is increased, the charge generated as a result of photoelectric conversion will increase, and as a result, the signal/noise ratio (S/N ratio) of the pixel signal will improve, and the imaging device will be able to obtain better image data (image information ) can be output.
  • S/N ratio signal/noise ratio
  • increasing the size of the transistors included in the pixel circuit especially the size of the amplification transistor reduces the noise generated in the pixel circuit, which improves the S/N ratio of the imaging signal, allowing the imaging device to produce better images.
  • Data (image information) can be output.
  • the imaging device 1 of this embodiment has a plurality of pixels 541 sharing one pixel circuit 210, and the shared pixel circuit 210 is superimposed on the photodiode PD.
  • each floating diffusion FD of the plurality of pixels 541 is connected to one pixel circuit 210.
  • Multiple lines extend.
  • a connection wiring can be formed that interconnects a plurality of these extending wirings and brings them together into one.
  • the plurality of wirings extending from the VSS contact region 118 it is possible to form a connection wiring that interconnects the plurality of wirings and integrates them into one.
  • connection wiring that interconnects a plurality of wirings extending from the floating diffusion FD of each of the plurality of pixels 541 is formed on the semiconductor substrate 200 forming the pixel circuit 210, the transistors included in the pixel circuit 210 It is conceivable that the area to be formed becomes smaller. Similarly, if a connection wiring that interconnects and integrates a plurality of wirings extending from the VSS contact region 118 of each of the plurality of pixels 541 is formed on the semiconductor substrate 200 forming the pixel circuit 210, this causes It is conceivable that the area for forming the transistors included in the pixel circuit 210 becomes smaller.
  • a plurality of pixels 541 share one pixel circuit 210, and the shared pixel circuit 210 is arranged so as to be superimposed on the photodiode PD.
  • the structure has a structure in which a connection wiring interconnects the floating diffusion FDs of each of the plurality of pixels 541 and combines them into one, and a connection wiring that interconnects the floating diffusion FDs of each of the plurality of pixels 541 and the VSS contact region 118 provided in each of the plurality of pixels 541.
  • a structure may be provided in which the first substrate 100 is provided with connection wirings that are connected and integrated into one.
  • connection wiring interconnects the floating diffusion FDs of each of the plurality of pixels 541 and combines them into one, and a connection wiring that interconnects the VSS contact regions 118 of each of the plurality of pixels 541 to form one.
  • the second manufacturing method described above is used as a manufacturing method for providing the connection wirings summarized in the first substrate 100, it is possible to It is possible to manufacture a high-quality, high-performance imaging device using a process that is suitable for manufacturing.
  • the connection wiring between the first substrate 100 and the second substrate 200 can be formed through a simple process.
  • a floating diffusion FD is formed on the surface of the first substrate 100 and the surface of the second substrate 200, which are the bonding interface between the first substrate 100 and the second substrate 200.
  • An electrode connected to the VSS contact region 118 and an electrode connected to the VSS contact region 118 are respectively provided. Furthermore, even if a positional shift occurs between the electrodes formed on the surfaces of these two substrates when the first substrate 100 and the second substrate 200 are bonded together, the electrodes formed on the surfaces of these two substrates will be in contact with each other. It is preferable to enlarge the electrodes formed on the surfaces of these two substrates. In this case, it may become difficult to arrange the electrodes within the limited area of each pixel included in the imaging device 1.
  • a plurality of pixels 541 are connected to one pixel circuit 210.
  • the first manufacturing method described above can be used. This makes it easy to align the elements formed on each of the first substrate 100 and the second substrate 200, making it possible to manufacture a high-quality, high-performance imaging device. Furthermore, it can have a unique structure created by using this manufacturing method.
  • the semiconductor layer 100S and wiring layer 100T of the first substrate 100 and the semiconductor layer 200S and wiring layer 200T of the second substrate 200 are laminated in this order, in other words, the first substrate 100 and the second substrate 200 are stacked face-to-face.
  • the surface of the semiconductor layer 100S of the first substrate 100 is provided with a stacked structure in the back, and passes through the semiconductor layer 200S and the wiring layer 100T of the first substrate 100 from the front side of the semiconductor layer 200S of the second substrate 200.
  • Through electrodes 120E and 121E are provided.
  • connection wiring that interconnects the floating diffusion FDs of each of the plurality of pixels 541 to combine them into one, and a connection that interconnects and combines the VSS contact regions 118 of each of the plurality of pixels 541 to each other.
  • the pixel circuit There is a possibility that the above-mentioned connection wiring formed on the first substrate 100 will be affected by the heat treatment required when forming the active element included in the first substrate 210 .
  • the imaging device 1 of the present embodiment provides a floating structure for each of the plurality of pixels 541.
  • the connection wiring that connects the diffusion FDs to each other and combines them into one, and the connection wiring that connects the VSS contact regions 118 of each of the plurality of pixels 541 and combines them into one, have high heat resistance and conductivity. It is desirable to use materials. Specifically, as the highly heat-resistant conductive material, a material having a higher melting point than at least a portion of the wiring material included in the wiring layer 200T of the second substrate 200 can be used.
  • the imaging device 1 of the present embodiment has (1) a structure in which the first substrate 100 and the second substrate 200 are stacked face-to-back (specifically, the semiconductor layer 100S of the first substrate 100 and (2) A structure in which the wiring layer 100T, the semiconductor layer 200S of the second substrate 200, and the wiring layer 200T are laminated in this order; between the structure in which through electrodes 120E and 121E are provided, which penetrate through the wiring layer 100T and reach the surface of the semiconductor layer 100S of the first substrate 100, and (3) the floating diffusion FD provided in each of the plurality of pixels 541.
  • connection wiring that connects the VSS contact regions 118 provided in each of the plurality of pixels 541 to each other and brings them together into one is made of a highly heat-resistant conductive material.
  • By providing the formed structure it is possible to connect between the floating diffusion FDs provided in each of the plurality of pixels 541 on the first substrate 100 without providing a large electrode at the interface between the first substrate 100 and the second substrate 200. It is possible to provide connection wirings that connect each other and combine them into one, and connection wirings that connect the VSS contact regions 118 provided in each of the plurality of pixels 541 to each other and combine them into one.
  • FIGS. 41 and 42 are the same as in FIG. 3 with arrows representing the paths of each signal added.
  • FIG. 41 shows the paths of input signals input to the imaging device 1 from the outside, the power supply potential, and the reference potential by arrows.
  • FIG. 42 signal paths of pixel signals output from the imaging device 1 to the outside are represented by arrows.
  • an input signal for example, a pixel clock and a synchronization signal
  • the row drive unit 520 generates a row drive signal. produced.
  • This row drive signal is sent to the second substrate 200 via the contact parts 301 and 201. Furthermore, this row drive signal reaches each pixel sharing unit 539 of the pixel array section 540 via the row drive signal line 542 in the wiring layer 200T.
  • drive signals other than the transfer gate TG are input to the pixel circuit 210, and each transistor included in the pixel circuit 210 is driven.
  • the drive signal of the transfer gate TG is input to the transfer gates TG1, TG2, TG3, and TG4 of the first substrate 100 via the through-hole electrode TGV, and the pixels 541A, 541B, 541C, and 541D are driven (FIG. 41).
  • the power supply potential and the reference potential supplied from the outside of the imaging device 1 to the input section 510A (input terminal 511) of the third substrate 300 are sent to the second substrate 200 via the contact sections 301 and 201, and the wiring
  • the pixel circuit 210 of each pixel sharing unit 539 is supplied via wiring in the layer 200T.
  • the reference potential is further supplied to the pixels 541A, 541B, 541C, and 541D of the first substrate 100 via the through electrode 121E.
  • pixel signals photoelectrically converted by the pixels 541A, 541B, 541C, and 541D of the first substrate 100 are sent to the pixel circuit 210 of the second substrate 200 for each pixel sharing unit 539 via the through electrode 120E.
  • a pixel signal based on this pixel signal is sent from the pixel circuit 210 to the third substrate 300 via the vertical signal line 543 and the contact sections 202 and 302.
  • This pixel signal is processed by the column signal processing section 550 and the image signal processing section 560 of the third substrate 300, and then outputted to the outside via the output section 510B.
  • pixels 541A, 541B, 541C, and 541D are provided on different substrates (first substrate 100 and second substrate 200).
  • the area of the pixels 541A, 541B, 541C, 541D and the pixel circuit 210 can be expanded compared to the case where the pixels 541A, 541B, 541C, 541D and the pixel circuit 210 are formed on the same substrate.
  • the imaging device 1 can output better pixel data (image information).
  • it is possible to miniaturize the imaging device 1 in other words, to reduce the pixel size and downsize the imaging device 1).
  • the imaging device 1 can increase the number of pixels per unit area by reducing the pixel size, and can output high-quality images.
  • the first substrate 100 and the second substrate 200 are electrically connected to each other by through electrodes 120E and 121E provided in the insulating region 212.
  • a method of connecting the first substrate 100 and the second substrate 200 by bonding pad electrodes, or a method of connecting the first substrate 100 and the second substrate 200 by a through wiring (for example, TSV (Thorough Si Via)) penetrating the semiconductor layer may be considered.
  • TSV Thirough Si Via
  • the resolution can be further increased.
  • the formation area of the pixels 541A, 541B, 541C, 541D and the pixel circuit 210 can be expanded. As a result, it is possible to increase the amount of pixel signals obtained by photoelectric conversion and to reduce the noise of the transistors included in the pixel circuit 210. Thereby, the signal/noise ratio of the pixel signal is improved, and the imaging device 1 can output better pixel data (image information).
  • the pixel circuit 210, the column signal processing section 550, and the image signal processing section 560 are provided on different substrates (the second substrate 200 and the third substrate 300). This reduces the area of the pixel circuit 210 and the area of the column signal processing section 550 and image signal processing section 560 compared to the case where the pixel circuit 210, the column signal processing section 550, and the image signal processing section 560 are formed on the same substrate. and can be expanded. This makes it possible to reduce noise generated in the column signal processing section 550 and to mount a more sophisticated image processing circuit on the image signal processing section 560. Therefore, the signal/noise ratio of the pixel signal is improved, and the imaging device 1 can output better pixel data (image information).
  • the pixel array section 540 is provided on the first substrate 100 and the second substrate 200, and the column signal processing section 550 and the image signal processing section 560 are provided on the third substrate 300. Furthermore, contact portions 201 , 202 , 301 , and 302 that connect the second substrate 200 and the third substrate 300 are formed above the pixel array portion 540 . Therefore, the contact portions 201, 202, 301, and 302 can be freely laid out without being interfered with in layout by various wirings provided in the pixel array. This makes it possible to use the contact portions 201, 202, 301, and 302 for electrical connection between the second substrate 200 and the third substrate 300.
  • the column signal processing section 550 and the image signal processing section 560 have a high degree of freedom in layout. This makes it possible to reduce noise generated in the column signal processing section 550 and to mount a more sophisticated image processing circuit on the image signal processing section 560. Therefore, the signal/noise ratio of the pixel signal is improved, and the imaging device 1 can output better pixel data (image information).
  • the pixel separation section 117 penetrates the semiconductor layer 100S. This prevents color mixture between pixels 541A, 541B, 541C, and 541D even if the distance between adjacent pixels (pixels 541A, 541B, 541C, and 541D) becomes smaller due to miniaturization of the area per pixel. It can be suppressed. Thereby, the signal/noise ratio of the pixel signal is improved, and the imaging device 1 can output better pixel data (image information).
  • a pixel circuit 210 is provided for each pixel sharing unit 539.
  • the transistors amplification transistor AMP, reset transistor RST, selection transistor SEL, FD conversion gain switching transistor FDG .
  • noise can be suppressed by enlarging the formation area of the amplification transistor AMP.
  • the imaging device 1 can output better pixel data (image information).
  • the pad section 120 that electrically connects the floating diffusion FD (floating diffusion FD1, FD2, FD3, FD4) of the four pixels (pixels 541A, 541B, 541C, 541D) is connected to the first substrate 100. It is set in. As a result, the number of through electrodes (through electrodes 120E) connecting the first substrate 100 and the second substrate 200 can be reduced compared to the case where such a pad portion 120 is provided on the second substrate 200. Therefore, the insulating region 212 can be made small, and a sufficient size can be secured for the formation region (semiconductor layer 200S) of the transistor forming the pixel circuit 210. This makes it possible to reduce the noise of the transistor included in the pixel circuit 210, improve the signal/noise ratio of the pixel signal, and enable the imaging device 1 to output better pixel data (image information). Become.
  • Modification example 1> 43 to 47 show a modified example of the planar configuration of the imaging device 1 according to the above embodiment.
  • FIG. 46 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 36 described in the above embodiment.
  • FIG. 44 schematically represents the configuration of the first wiring layer W1, the semiconductor layer 200S connected to the first wiring layer W1, and each part of the first substrate 100, and is similar to FIG. 37 described in the above embodiment. handle.
  • FIG. 45 shows an example of a planar configuration of the first wiring layer W1 and the second wiring layer W2, and corresponds to FIG. 38 described in the above embodiment.
  • FIG. 46 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 36 described in the above embodiment.
  • FIG. 44 schematically represents the configuration of the first wiring layer W1, the semiconductor layer 200S connected to the first wiring layer W1, and each part of the first substrate 100, and is similar to FIG. 37 described in
  • FIG. 46 shows an example of the planar configuration of the second wiring layer W2 and the third wiring layer W3, and corresponds to FIG. 39 described in the above embodiment.
  • FIG. 47 shows an example of the planar configuration of the third wiring layer W3 and the fourth wiring layer W4, and corresponds to FIG. 40 described in the above embodiment.
  • the internal layout of one pixel sharing unit 539 (for example, on the right side of the paper) is different from that of the other (for example, The configuration is such that the internal layout of the pixel sharing unit 539 (on the left side of the paper) is reversed only in the H direction. Further, the deviation in the V direction between the outline of one pixel sharing unit 539 and the outline of the other pixel sharing unit 539 is larger than the deviation described in the above embodiment (FIG. 37).
  • the amplification transistor AMP of the other pixel sharing unit 539 and the pad section 120 connected thereto (the two pixel sharing units 539 aligned in the V direction shown in FIG. 35
  • the distance between the pad portion 120 (the other pad portion 120 on the lower side of the page) can be reduced.
  • the first modification of the imaging device 1 shown in FIGS. 43 to 47 can reduce the area of the two pixel sharing units 539 arranged in the H direction without reversing their planar layouts in the V direction.
  • the area can be made the same as the area of the pixel sharing unit 539 of the second substrate 200 described in the above embodiment.
  • planar layout of the pixel sharing unit 539 of the first substrate 100 is the same as the planar layout (FIGS. 35A and 35B) described in the above embodiment. Therefore, the imaging device 1 of this modification can obtain the same effects as the imaging device 1 described in the above embodiment.
  • the arrangement of the pixel sharing units 539 on the second substrate 200 is not limited to the arrangement described in the above embodiment and this modification.
  • FIG. 48 to 53 show a modified example of the planar configuration of the imaging device 1 according to the above embodiment.
  • FIG. 48 schematically shows the planar configuration of the first substrate 100, and corresponds to FIG. 35A described in the above embodiment.
  • FIG. 49 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 36 described in the above embodiment.
  • FIG. 50 schematically represents the configuration of the first wiring layer W1, the semiconductor layer 200S connected to the first wiring layer W1, and each part of the first substrate 100, and is similar to FIG. 37 described in the above embodiment. handle.
  • FIG. 51 shows an example of the planar configuration of the first wiring layer W1 and the second wiring layer W2, and corresponds to FIG. 38 described in the above embodiment.
  • FIG. 52 shows an example of the planar configuration of the second wiring layer W2 and the third wiring layer W3, and corresponds to FIG. 39 described in the above embodiment.
  • FIG. 53 shows an example of the planar configuration of the third wiring layer W3 and the fourth wiring layer W4, and corresponds to FIG. 40 described in the above embodiment.
  • each pixel circuit 210 has a substantially square planar shape (see FIG. 49, etc.).
  • the planar configuration of the imaging device 1 of this modification differs from the planar configuration of the imaging device 1 described in the above embodiment.
  • the pixel sharing unit 539 of the first substrate 100 is formed over a pixel area of 2 rows and 2 columns, and has a substantially square planar shape ( Figure 48).
  • the horizontal portion TGb of the transfer gates TG1 and TG3 of the pixel 541A and pixel 541C in one pixel column is located at the center of the pixel sharing unit 539 in the H direction from the position where it overlaps with the vertical portion TGa. (more specifically, the direction toward the outer edges of the pixels 541A, 541C and the direction toward the center of the pixel sharing unit 539), and transfer gates of the pixels 541B and 541D of the other pixel column.
  • the direction in which the horizontal portion TGb of TG2 and TG4 is directed toward the outside of the pixel sharing unit 539 in the H direction from the position where it overlaps with the vertical portion TGa (more specifically, the direction toward the outer edge of the pixels 541B and 541D, and the pixel sharing unit 539).
  • the pad section 120 connected to the floating diffusion FD is provided at the center of the pixel sharing unit 539 (the center of the pixel sharing unit 539 in the H and V directions), and the pad section 121 connected to the VSS contact region 118 is , is provided at the end of the pixel sharing unit 539 at least in the H direction (in FIG. 48, in the H direction and the V direction).
  • the horizontal portions TGb of the transfer gates TG1, TG2, TG3, and TG4 are provided in the region facing the vertical portion TGa.
  • the semiconductor layer 200S is likely to be finely divided, as described in the above embodiment. Therefore, it becomes difficult to make the transistors of the pixel circuit 210 large.
  • the horizontal portions TGb of the transfer gates TG1, TG2, TG3, and TG4 are extended in the H direction from the position overlapping the vertical portion TGa as in the above modification, it is similar to that described in the above embodiment. In addition, it becomes possible to increase the width of the semiconductor layer 200S.
  • the positions in the H direction of through electrodes TGV1 and TGV3 connected to transfer gates TG1 and TG3 are arranged close to the position in the H direction of through electrode 120E, and
  • the positions of the through electrodes TGV2 and TGV4 in the H direction can be arranged close to the position of the through electrodes 121E in the H direction (FIG. 50).
  • the width (size in the H direction) of the semiconductor layer 200S extending in the V direction can be increased, as described in the above embodiment. Therefore, it is possible to increase the size of the transistors of the pixel circuit 210, especially the size of the amplification transistor AMP. As a result, the signal/noise ratio of the pixel signal is improved, and the imaging device 1 can output better pixel data (image information).
  • the pixel sharing unit 539 of the second substrate 200 is, for example, approximately the same size in the H direction and the V direction as the pixel sharing unit 539 of the first substrate 100, and corresponds to, for example, a pixel area of approximately 2 rows and 2 columns. It is located throughout the area.
  • a selection transistor SEL and an amplification transistor AMP are arranged side by side in the V direction in one semiconductor layer 200S extending in the V direction, and an FD conversion gain switching transistor FDG and a reset transistor RST are arranged in the V direction. They are arranged in parallel in the V direction in one extending semiconductor layer 200S.
  • the one semiconductor layer 200S in which the selection transistor SEL and the amplification transistor AMP are provided, and the one semiconductor layer 200S in which the FD conversion gain switching transistor FDG and the reset transistor RST are provided are connected to each other in the H direction via an insulating region 212. They are lined up. This insulating region 212 extends in the V direction (FIG. 49).
  • the outline of the pixel sharing unit 539 of the second substrate 200 will be described with reference to FIGS. 49 and 50.
  • the pixel sharing unit 539 of the first substrate 100 shown in FIG. It is connected to the FD conversion gain switching transistor FDG and the reset transistor RST provided on the other side in the H direction (on the right side of the paper in FIG. 50).
  • the outer shape of the shared unit 541 of the second substrate 200 including the amplification transistor AMP, selection transistor SEL, FD conversion gain switching transistor FDG, and reset transistor RST is determined by the following four outer edges.
  • the first outer edge is the outer edge of one end in the V direction (the end on the upper side of the paper in FIG. 50) of the semiconductor layer 200S including the selection transistor SEL and the amplification transistor AMP.
  • This first outer edge is connected to the amplification transistor AMP included in the pixel sharing unit 539 and the selection transistor SEL included in the pixel sharing unit 539 adjacent to one side of this pixel sharing unit 539 in the V direction (upper side of the paper in FIG. 50). is established between. More specifically, the first outer edge is provided at the center in the V direction of the element isolation region 213 between the amplification transistor AMP and the selection transistor SEL.
  • the second outer edge is the outer edge of the other end in the V direction (the lower end of the paper in FIG.
  • This second outer edge is connected to the selection transistor SEL included in the pixel sharing unit 539 and the amplification transistor included in the pixel sharing unit 539 adjacent to the other pixel sharing unit 539 in the V direction (lower side of the paper in FIG. 50). It is provided between the AMP and the AMP. More specifically, the second outer edge is provided at the center in the V direction of the element isolation region 213 between the selection transistor SEL and the amplification transistor AMP.
  • the third outer edge is the outer edge of the other end in the V direction (the lower end of the paper in FIG. 50) of the semiconductor layer 200S including the reset transistor RST and the FD conversion gain switching transistor FDG.
  • This third outer edge is included in the FD conversion gain switching transistor FDG included in the pixel sharing unit 539 and the pixel sharing unit 539 adjacent to the other side of this pixel sharing unit 539 in the V direction (lower side of the paper in FIG. 50). and the reset transistor RST. More specifically, the third outer edge is provided at the center in the V direction of the element isolation region 213 between the FD conversion gain switching transistor FDG and the reset transistor RST.
  • the fourth outer edge is the outer edge of one end in the V direction (the upper end in the paper of FIG. 50) of the semiconductor layer 200S including the reset transistor RST and the FD conversion gain switching transistor FDG.
  • This fourth outer edge is connected to the reset transistor RST included in the pixel sharing unit 539 and the FD conversion gain included in the pixel sharing unit 539 adjacent to one side of this pixel sharing unit 539 in the V direction (upper side of the paper in FIG. 50). It is provided between the switching transistor FDG (not shown). More specifically, the fourth outer edge is provided at the center in the V direction of the element isolation region 213 (not shown) between the reset transistor RST and the FD conversion gain switching transistor FDG.
  • the third and fourth outer edges are larger than the first and second outer edges. It is arranged offset to one side in the V direction (in other words, it is offset to one side in the V direction).
  • VSS contact region 218 is provided between the semiconductor layer 200S including the selection transistor SEL and the amplification transistor AMP, and the semiconductor layer 200S including the reset transistor RST and the FD conversion gain switching transistor FDG.
  • the plurality of pixel circuits 210 have the same arrangement.
  • the imaging device 1 having such a second substrate 200 can also obtain the same effects as described in the above embodiment.
  • the arrangement of the pixel sharing units 539 on the second substrate 200 is not limited to the arrangement described in the above embodiment and this modification.
  • Modification example 3> 54 to 59 show a modified example of the planar configuration of the imaging device 1 according to the above embodiment.
  • FIG. 54 schematically shows the planar configuration of the first substrate 100, and corresponds to FIG. 35B described in the above embodiment.
  • FIG. 55 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 36 described in the above embodiment.
  • FIG. 56 schematically represents the configuration of the first wiring layer W1, the semiconductor layer 200S connected to the first wiring layer W1, and each part of the first substrate 100, and is similar to FIG. 37 described in the above embodiment. handle.
  • FIG. 57 shows an example of a planar configuration of the first wiring layer W1 and the second wiring layer W2, and corresponds to FIG.
  • FIG. 58 shows an example of the planar configuration of the second wiring layer W2 and the third wiring layer W3, and corresponds to FIG. 39 described in the above embodiment.
  • FIG. 59 shows an example of the planar configuration of the third wiring layer W3 and the fourth wiring layer W4, and corresponds to FIG. 40 described in the above embodiment.
  • the semiconductor layer 200S of the second substrate 200 extends in the H direction (FIG. 56). That is, this substantially corresponds to the configuration obtained by rotating the planar configuration of the imaging device 1 shown in FIG. 49 and the like by 90 degrees.
  • the pixel sharing unit 539 of the first substrate 100 is formed over a pixel area of 2 rows and 2 columns, and has a substantially square planar shape ( Figure 54).
  • the transfer gates TG1 and TG2 of the pixels 541A and 541B in one pixel row extend toward the center of the pixel sharing unit 539 in the V direction
  • Transfer gates TG3 and TG4 of the pixel 541C and the pixel 541D extend toward the outside of the pixel sharing unit 539 in the V direction.
  • the pad section 120 connected to the floating diffusion FD is provided at the center of the pixel sharing unit 539, and the pad section 121 connected to the VSS contact region 118 is provided at least in the V direction (in the V direction and the H direction in FIG. 54). ) is provided at the end of the pixel sharing unit 539.
  • the positions in the V direction of the through electrodes TGV1 and TGV2 of the transfer gates TG1 and TG2 approach the position in the V direction of the through electrodes 120E, and the positions in the V direction of the through electrodes TGV3 and TGV4 of the transfer gates TG3 and TG4 become closer to the positions of the through electrodes 120E in the V direction.
  • 121E in the V direction (FIG. 56). Therefore, for the same reason as explained in the above embodiment, the width (size in the V direction) of the semiconductor layer 200S extending in the H direction can be increased. Therefore, it is possible to increase the size of the amplification transistor AMP and suppress noise.
  • each pixel circuit 210 a selection transistor SEL and an amplification transistor AMP are arranged side by side in the H direction, and a reset transistor RST is arranged at a position adjacent to the selection transistor SEL and the insulating region 212 in the V direction.
  • the FD conversion gain switching transistor FDG is arranged in parallel with the reset transistor RST in the H direction.
  • the VSS contact region 218 is provided in the insulating region 212 in an island shape.
  • the third wiring layer W3 extends in the H direction (FIG. 58), and the fourth wiring layer W4 extends in the V direction (FIG. 59).
  • the imaging device 1 having such a second substrate 200 can also obtain the same effects as described in the above embodiment.
  • the arrangement of the pixel sharing units 539 on the second substrate 200 is not limited to the arrangement described in the above embodiment and this modification.
  • the semiconductor layer 200S described in the above embodiment and modification 1 may extend in the H direction.
  • FIG. 60 schematically represents a modified example of the cross-sectional configuration of the imaging device 1 according to the above embodiment.
  • FIG. 60 corresponds to FIG. 3 described in the above embodiment.
  • the imaging device 1 includes contact sections 203, 204, 303, and 304 at positions facing the center of the pixel array section 540 in addition to the contact sections 201, 202, 301, and 302.
  • the imaging device 1 of this modification differs from the imaging device 1 described in the above embodiment.
  • the contact parts 203 and 204 are provided on the second substrate 200, and the bonding surfaces with the third substrate 300 are exposed.
  • the contact portions 303 and 304 are provided on the third substrate 300 and are exposed at the bonding surface with the second substrate 200.
  • Contact portion 203 is in contact with contact portion 303
  • contact portion 204 is in contact with contact portion 304 . That is, in this imaging device 1, the second substrate 200 and the third substrate 300 are connected by contact portions 203, 204, 303, and 304 in addition to contact portions 201, 202, 301, and 302.
  • FIGS. 61 and 62 the paths of input signals input to the imaging device 1 from the outside, the power supply potential, and the reference potential are represented by arrows.
  • FIG. 62 signal paths of pixel signals output from the imaging device 1 to the outside are represented by arrows.
  • an input signal input to the imaging device 1 via the input unit 510A is transmitted to the row drive unit 520 of the third substrate 300, and the row drive unit 520 generates a row drive signal.
  • This row drive signal is sent to the second substrate 200 via the contact parts 303 and 203.
  • this row drive signal reaches each pixel sharing unit 539 of the pixel array section 540 via the row drive signal line 542 in the wiring layer 200T.
  • drive signals other than the transfer gate TG are input to the pixel circuit 210, and each transistor included in the pixel circuit 210 is driven.
  • the drive signal of the transfer gate TG is input to the transfer gates TG1, TG2, TG3, and TG4 of the first substrate 100 via the through-hole electrode TGV, and the pixels 541A, 541B, 541C, and 541D are driven.
  • the power supply potential and the reference potential supplied from the outside of the imaging device 1 to the input section 510A (input terminal 511) of the third substrate 300 are sent to the second substrate 200 via the contact sections 303, 203, and the wiring
  • the pixel circuit 210 of each pixel sharing unit 539 is supplied via wiring in the layer 200T.
  • the reference potential is further supplied to the pixels 541A, 541B, 541C, and 541D of the first substrate 100 via the through electrode 121E.
  • pixel signals photoelectrically converted by the pixels 541A, 541B, 541C, and 541D on the first substrate 100 are sent to the pixel circuit 210 on the second substrate 200 for each pixel sharing unit 539.
  • a pixel signal based on this pixel signal is sent from the pixel circuit 210 to the third substrate 300 via the vertical signal line 543 and the contact sections 204 and 304.
  • This pixel signal is processed by the column signal processing section 550 and the image signal processing section 560 of the third substrate 300, and then outputted to the outside via the output section 510B.
  • the imaging device 1 having such contact portions 203, 204, 303, and 304 can also obtain the same effects as described in the above embodiment.
  • the position, number, etc. of the contact portions can be changed depending on the design of the circuit, etc. of the third substrate 300 to which the wiring is connected via the contact portions 303 and 304.
  • FIG. 63 shows a modified example of the cross-sectional configuration of the imaging device 1 according to the above embodiment.
  • FIG. 63 corresponds to FIG. 34 described in the above embodiment.
  • a transfer transistor TR having a planar structure is provided on the first substrate 100.
  • the imaging device 1 of this modification differs from the imaging device 1 described in the above embodiment.
  • a transfer gate TG is formed only by the horizontal portion TGb. In other words, the transfer gate TG does not have the vertical portion TGa and is provided facing the semiconductor layer 100S.
  • the imaging device 1 having such a planar structure transfer transistor TR can also obtain the same effects as described in the above embodiment. Furthermore, by providing a planar transfer gate TG on the first substrate 100, the photodiode PD can be formed closer to the surface of the semiconductor layer 100S than when a vertical transfer gate TG is provided on the first substrate 100. , it is also conceivable to increase the saturation signal amount (Qs). Furthermore, the method of forming the planar transfer gate TG on the first substrate 100 requires fewer manufacturing steps than the method of forming the vertical transfer gate TG on the first substrate 100, and the It can also be considered that an adverse effect on the diode PD is unlikely to occur.
  • FIG. 64 shows a modified example of the pixel circuit of the imaging device 1 according to the above embodiment.
  • FIG. 64 corresponds to FIG. 32 described in the above embodiment.
  • a pixel circuit 210 is provided for each pixel (pixel 541A). That is, the pixel circuit 210 is not shared by multiple pixels.
  • the imaging device 1 of this modification differs from the imaging device 1 described in the above embodiment.
  • the imaging device 1 of this modification is the same as the imaging device 1 described in the above embodiment in that the pixel 541A and the pixel circuit 210 are provided on different substrates (the first substrate 100 and the second substrate 200). . Therefore, the imaging device 1 according to this modification can also obtain the same effects as described in the above embodiment.
  • FIG. 65 shows a modified example of the planar configuration of the pixel separation section 117 described in the above embodiment.
  • a gap may be provided in the pixel separation section 117 surrounding each of the pixels 541A, 541B, 541C, and 541D. That is, the pixels 541A, 541B, 541C, and 541D do not need to be surrounded by the pixel separating section 117 all around.
  • the gap between the pixel separation section 117 is provided near the pad sections 120 and 121 (see FIG. 35B).
  • the pixel isolation section 117 has an FTI structure penetrating the semiconductor layer 100S (see FIG. 34), but the pixel isolation section 117 may have a structure other than the FTI structure.
  • the pixel isolation section 117 does not need to be provided to completely penetrate the semiconductor layer 100S, and may have a so-called DTI (Deep Trench Isolation) structure.
  • FIG. 66 shows an example of a schematic configuration of an imaging system 7 including an imaging device 1 according to the above embodiment and its modification.
  • the imaging system 7 is, for example, an imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device such as a smartphone or a tablet terminal.
  • the imaging system 7 includes, for example, the imaging device 1 according to the embodiment and its modifications, a DSP circuit 243, a frame memory 244, a display section 245, a storage section 246, an operation section 247, and a power supply section 248.
  • the imaging device 1, the DSP circuit 243, the frame memory 244, the display section 245, the storage section 246, the operation section 247, and the power supply section 248 according to the embodiment and its modifications are connected via a bus line 249. interconnected.
  • the imaging device 1 according to the above embodiment and its modifications outputs image data according to incident light.
  • the DSP circuit 243 is a signal processing circuit that processes signals (image data) output from the imaging device 1 according to the above embodiment and its modifications.
  • the frame memory 244 temporarily holds the image data processed by the DSP circuit 243 in units of frames.
  • the display unit 245 is composed of a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays a moving image or a still image captured by the imaging device 1 according to the above embodiment and its modifications. .
  • the storage unit 246 records image data of a moving image or a still image captured by the imaging device 1 according to the above embodiment and its modification on a recording medium such as a semiconductor memory or a hard disk.
  • the operation unit 247 issues operation commands regarding various functions of the imaging system 7 according to user operations.
  • the power supply section 248 supplies various power sources that serve as operating power sources for the imaging device 1, the DSP circuit 243, the frame memory 244, the display section 245, the storage section 246, and the operation section 247 according to the embodiment and its modifications. Supply the target appropriately.
  • FIG. 67 shows an example of a flowchart of the imaging operation in the imaging system 7.
  • the user instructs to start imaging by operating the operation unit 247 (step S101).
  • the operation unit 247 transmits an imaging command to the imaging device 1 (step S102).
  • the imaging device 1 specifically, the system control circuit 36
  • the imaging device 1 outputs image data obtained by imaging to the DSP circuit 243.
  • the image data is data for all pixels of pixel signals generated based on charges temporarily held in the floating diffusion FD.
  • the DSP circuit 243 performs predetermined signal processing (for example, noise reduction processing) based on the image data input from the imaging device 1 (step S104).
  • the DSP circuit 243 causes the frame memory 244 to hold the image data that has undergone predetermined signal processing, and the frame memory 244 causes the storage unit 246 to store the image data (step S105). In this way, imaging in the imaging system 7 is performed.
  • the imaging device 1 according to the above embodiment and its modification is applied to the imaging system 7.
  • the imaging device 1 can be made smaller or have higher definition, so it is possible to provide a smaller or more precise imaging system 7.
  • the technology according to the present disclosure (this technology) can be applied to various electronic devices.
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. It's okay.
  • FIG. 68 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
  • the body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp.
  • radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
  • the external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted.
  • an imaging section 12031 is connected to the outside-vehicle information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electrical signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040.
  • the driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
  • the microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
  • the audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle.
  • an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 69 is a diagram showing an example of the installation position of the imaging section 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle 12100.
  • An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100.
  • Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100.
  • An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100.
  • the images of the front acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 69 shows an example of the imaging range of the imaging units 12101 to 12104.
  • An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose.
  • the imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. In particular, by determining the three-dimensional object that is closest to the vehicle 12100 on its path and that is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as the vehicle 12100, it is possible to extract the three-dimensional object as the preceding vehicle. can.
  • a predetermined speed for example, 0 km/h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
  • the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether the pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not.
  • the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian.
  • the display unit 12062 is controlled to display the .
  • the audio image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging device 1 according to the above embodiment and its modifications can be applied to the imaging section 12031.
  • FIG. 70 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (present technology) can be applied.
  • FIG. 70 shows an operator (doctor) 11131 performing surgery on a patient 11132 on a patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into a body cavity of a patient 11132 over a predetermined length, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid scope having a rigid tube 11101 is shown, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible tube. good.
  • An opening into which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and the light is guided to the tip of the lens barrel. Irradiation is directed toward an observation target within the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct-viewing mirror, a diagonal-viewing mirror, or a side-viewing mirror.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from an observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to a camera control unit (CCU) 11201.
  • CCU camera control unit
  • the CCU 11201 is configured with a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and centrally controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), for displaying an image based on the image signal.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under control from the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing the surgical site or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • a treatment tool control device 11205 controls driving of an energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, or the like.
  • the pneumoperitoneum device 11206 injects gas into the body cavity of the patient 11132 via the pneumoperitoneum tube 11111 in order to inflate the body cavity of the patient 11132 for the purpose of ensuring a field of view with the endoscope 11100 and a working space for the operator. send in.
  • the recorder 11207 is a device that can record various information regarding surgery.
  • the printer 11208 is a device that can print various types of information regarding surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies irradiation light to the endoscope 11100 when photographing the surgical site can be configured, for example, from a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so the white balance of the captured image is adjusted in the light source device 11203. It can be carried out.
  • the laser light from each RGB laser light source is irradiated onto the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby supporting each of RGB. It is also possible to capture images in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 11203 may be controlled so that the intensity of the light it outputs is changed at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changes in the light intensity to acquire images in a time-division manner and compositing the images, a high dynamic It is possible to generate an image of a range.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band compatible with special light observation.
  • Special light observation uses, for example, the wavelength dependence of light absorption in body tissues to illuminate the mucosal surface layer by irradiating a narrower band of light than the light used for normal observation (i.e., white light). So-called narrow band imaging is performed in which predetermined tissues such as blood vessels are photographed with high contrast.
  • fluorescence observation may be performed in which an image is obtained using fluorescence generated by irradiating excitation light.
  • Fluorescence observation involves irradiating body tissues with excitation light and observing the fluorescence from the body tissues (autofluorescence observation), or locally injecting reagents such as indocyanine green (ICG) into the body tissues and It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be able to supply narrowband light and/or excitation light compatible with such special light observation.
  • FIG. 71 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 71.
  • the camera head 11102 includes a lens unit 11401, an imaging section 11402, a driving section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 includes a communication section 11411, an image processing section 11412, and a control section 11413. Camera head 11102 and CCU 11201 are communicably connected to each other by transmission cable 11400.
  • the lens unit 11401 is an optical system provided at the connection part with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 is composed of an image sensor.
  • the imaging unit 11402 may include one image sensor (so-called single-plate type) or a plurality of image sensors (so-called multi-plate type).
  • image signals corresponding to RGB are generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. By performing 3D display, the operator 11131 can more accurately grasp the depth of the living tissue at the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is constituted by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405. Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 to the CCU 11201 via the transmission cable 11400 as RAW data.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405.
  • the control signal may include, for example, information specifying the frame rate of the captured image, information specifying the exposure value at the time of capturing, and/or information specifying the magnification and focus of the captured image. Contains information about conditions.
  • the above imaging conditions such as the frame rate, exposure value, magnification, focus, etc. may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • the image signal and control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal, which is RAW data, transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site etc. by the endoscope 11100 and the display of the captured image obtained by imaging the surgical site etc. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site, etc., based on the image signal subjected to image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape and color of the edge of an object included in the captured image to detect surgical tools such as forceps, specific body parts, bleeding, mist when using the energy treatment tool 11112, etc. can be recognized.
  • the control unit 11413 may use the recognition result to superimpose and display various types of surgical support information on the image of the surgical site. By displaying the surgical support information in a superimposed manner and presenting it to the surgeon 11131, it becomes possible to reduce the burden on the surgeon 11131 and allow the surgeon 11131 to proceed with the surgery reliably.
  • the transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be suitably applied to the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100 among the configurations described above.
  • the imaging unit 11402 can be made smaller or have higher definition, so it is possible to provide a smaller or higher definition endoscope 11100.
  • a comparator that compares a signal with a reference signal and outputs a comparison result, a differential circuit that outputs a difference voltage between the signal and the reference signal; an active load circuit electrically connected to the differential circuit; Equipped with The differential circuit includes first and second transistors provided on a surface of a substrate, The first and second transistors have channel regions extending generally perpendicular to a surface of the substrate.
  • the comparator according to (1) wherein the channel regions of the first and second transistors have an uneven shape along a direction substantially perpendicular to the channel length direction.
  • the active load circuit includes third and fourth transistors provided on the surface of the substrate, The comparator according to any one of (1) to (3), wherein the channel regions of the third and fourth transistors have an uneven shape along the channel length direction.
  • the active load circuit includes third and fourth transistors provided on the surface of the substrate, The comparator according to any one of (1) to (4), wherein gate insulating films of the third and fourth transistors are thicker than gate insulating films of the first and fourth transistors.
  • the active load circuit includes third and fourth transistors provided on the surface of the substrate, The first and second transistors are n-type transistors, The comparator according to any one of (1) to (5), wherein the third and fourth transistors are p-type transistors.
  • the comparator according to (6), wherein the channel length directions of the third and fourth transistors are substantially perpendicular or substantially parallel to the (100) crystal plane of the substrate.
  • the substrate is a 45 degree notch substrate, The comparator according to (6), wherein the channel length direction of the third and fourth transistors is substantially perpendicular or substantially parallel to the notch surface on the surface of the substrate.
  • the substrate is a 0 degree notch substrate, The comparator according to (6), wherein the channel length direction of the third and fourth transistors is a direction inclined at about 45 degrees or about 135 degrees with respect to the notch surface on the surface of the substrate.
  • the active load circuit includes third and fourth transistors provided on the surface of the substrate, The first and second transistors are p-type transistors, The comparator according to any one of (1) to (5), wherein the third and fourth transistors are n-type transistors.
  • the substrate is a 45 degree notch substrate, The comparator according to (10), wherein the channel length direction of the first and second transistors is a direction inclined at about 45 degrees or about 135 degrees with respect to the notch surface on the surface of the substrate.
  • the substrate is a 0 degree notch substrate
  • a pixel section including a photoelectric conversion element that photoelectrically converts incident light into a pixel signal; a comparator that compares the pixel signal with a reference signal and outputs a comparison result; Equipped with The comparator is a differential circuit that outputs a difference voltage between the pixel signal and the reference signal; an active load circuit electrically connected to the differential circuit; has The differential circuit includes first and second transistors provided on a surface of a substrate, The first and second transistors each have a channel region extending in a direction substantially perpendicular to the surface of the substrate.
  • the pixel section is provided on a first substrate, The comparator is provided on a second substrate different from the first substrate, The first substrate and the second substrate are laminated, The pixel portion and the comparator are electrically connected to each other by a through electrode provided on the first or second substrate, or a wiring bond between the wiring on the first substrate and the wiring on the second substrate.
  • the pixel section and the comparator are provided on the same first substrate, The comparator is provided above the pixel section of the first substrate, The photodetecting element according to (14), wherein the pixel section and the comparator are electrically connected by a contact plug provided in an interlayer insulating film between the pixel section and the comparator.
  • the differential circuit is provided on a first substrate, The active load circuit is provided on a second substrate different from the first substrate, The first substrate and the second substrate are laminated, The photodetecting element according to (14), wherein the differential circuit and the active load circuit are electrically connected to each other by joining the wiring on the first substrate and the wiring on the second substrate.
  • the pixel section and the differential circuit are provided on the same first substrate, The differential circuit is provided above the pixel section of the first substrate, The photodetecting element according to (17), wherein the pixel section and the differential circuit are electrically connected by a contact plug provided in an interlayer insulating film between the pixel section and the differential circuit. .
  • the pixel section and the comparator are provided on the same first substrate,
  • the differential circuit is provided in the same layer as the transistor of the pixel section,
  • the active load circuit is provided above the pixel section of the first substrate,
  • An electronic device comprising the photodetecting element according to any one of (14) to (19).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[課題]ノイズを低減させる比較器、光検出素子および電子機器を提供する。 [解決手段]比較器は、信号を参照信号と比較して比較結果を出力する比較器であって、前記信号と前記参照信号との差電圧を出力する差動回路と、前記差動回路と電気的に接続される能動負荷回路と、を備え、前記差動回路は、基板の表面に設けられる第1および第2トランジスタを有し、前記第1および第2トランジスタは、前記基板の表面に対して略垂直な方向に延伸するチャネル領域を有する。

Description

比較器、光検出素子および電子機器
 本開示による実施形態は、比較器、光検出素子および電子機器に関する。
 CIS(CMOS(Complementary Metal Oxide Semiconductor) Image Sensor)等の固体撮像装置において、画素回路に用いられる比較器およびAD変換回路のノイズの低減が求められている。ノイズを低減するために、比較器の差動対を構成する入力トランジスタのサイズと参照トランジスタのサイズとが異なる構造が提案されている(特許文献1参照)。
特開2019-140531号公報
 しかしながら、この手法ではノイズ特性を充分に低減させることができなかった。
 ノイズを低減させることができる比較器、光検出素子および電子機器を提供するものである。
 上記の課題を解決するために、本開示によれば、
 信号を参照信号と比較して比較結果を出力する比較器であって、
 前記信号と前記参照信号との差電圧を出力する差動回路と、
 前記差動回路と電気的に接続される能動負荷回路と、
 を備え、
 前記差動回路は、基板の表面に設けられる第1および第2トランジスタを有し、
 前記第1および第2トランジスタは、前記基板の表面に対して略垂直な方向に延伸するチャネル領域を有する、比較器が提供される。
 前記第1および第2トランジスタのチャネル領域は、チャネル長方向に対して略垂直な方向に沿って、凹凸形状を有してもよい。
 前記第1および第2トランジスタのチャネル領域は、チャネル長方向に沿って、凹凸形状を有しなくてもよい。
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第3および第4トランジスタのチャネル領域は、チャネル長方向に沿って、凹凸形状を有してもよい。
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第3および第4トランジスタのゲート絶縁膜は、前記第1および第4トランジスタのゲート絶縁膜よりも厚くてもよい。
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第1および第2トランジスタは、n型トランジスタであり、
 前記第3および第4トランジスタは、p型トランジスタであってもよい。
 前記第3および第4トランジスタのチャネル長方向は、前記基板の(100)結晶面に対して略垂直または略平行であってもよい。
 前記基板が45度ノッチ基板であり、
 前記第3および第4トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直または略平行方向であってもよい。
 前記基板が0度ノッチ基板であり、
 前記第3および第4トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向であってもよい。
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第1および第2トランジスタは、p型トランジスタであり、
 前記第3および第4トランジスタは、n型トランジスタであってもよい。
 前記第1および第2トランジスタのチャネル長方向は、前記基板の(110)結晶面に対して略垂直または略平行であってもよい。
 前記基板が45度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向であってもよい。
 前記基板が0度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直度または略平行方向であってもよい。
 本開示によれば、入射光を画素信号に光電変換する光電変換素子を含む画素部と、
 前記画素信号を参照信号と比較して比較結果を出力する比較器と、
 を備え、
 前記比較器は、
 前記画素信号と前記参照信号との差電圧を出力する差動回路と、
 前記差動回路と電気的に接続される能動負荷回路と、
 を有し、
 前記差動回路は、基板の表面に設けられる第1および第2トランジスタを有し、
 前記第1および第2トランジスタは、前記基板の表面に対して略垂直な方向に延伸するチャネル領域を有する、光検出素子が提供される。
 前記画素部は、第1基板に設けられており、
 前記比較器は、前記第1基板とは別の第2基板に設けられており、
 前記第1基板と前記第2基板とは積層されており、
 前記画素部と前記比較器とは、前記第1または第2基板に設けられた貫通電極、または、前記第1基板の配線と前記第2基板の配線との配線接合によって電気的に接続されていてもよい。
 前記画素部および前記比較器は、同一の第1基板に設けられ、
 前記比較器は、前記第1基板の前記画素部の上方に設けられ、
 前記画素部と前記比較器とは、前記画素部と前記比較器との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されていてもよい。
 前記差動回路は、第1基板に設けられており、
 前記能動負荷回路は、前記第1基板とは別の第2基板に設けられており、
 前記第1基板と前記第2基板とは積層されており、
 前記差動回路と前記能動負荷回路とは、前記第1基板の配線と前記第2基板の配線との接合によって電気的に接続されていてもよい。
 前記画素部および前記差動回路は、同一の第1基板に設けられ、
 前記差動回路は、前記第1基板の前記画素部の上方に設けられ、
 前記画素部と前記差動回路とは、前記画素部と前記差動回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されていてもよい。
 前記画素部および前記比較器は、同一の第1基板に設けられ、
 前記差動回路は、前記画素部のトランジスタと同一層に設けられており、
 前記能動負荷回路は、前記第1基板の前記画素部の上方に設けられ、
 前記差動回路と前記能動負荷回路とは、前記差動回路と前記能動負荷回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されていてもよい。
 本開示によれば、光検出素子を備える電子機器が提供される。
第1実施形態に係る撮像装置の機能構成の一例を示すブロック図。 撮像装置の概略構成の一例を表した図。 撮像装置の概略構成の一例を表した図。 第1実施形態による画素共有ユニット、列信号処理部および画素信号処理部の構成を示す概略断面図。 画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第1実施形態によるp型トランジスタの構成の一例を示す図。 第1実施形態によるn型トランジスタの構成の一例を示す図。 第1基板の平面レイアウトの一例を示す概略平面図。 第2基板の平面レイアウトの一例を示す概略平面図。 第1実施形態の変形例によるp型トランジスタの構成の一例を示す図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 第3実施形態による固体撮像装置の構成例を示す概念図。 第3実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第4実施形態による固体撮像装置の構成例を示す概念図。 第4実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第5実施形態による固体撮像装置の構成例を示す概念図。 第5実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第6実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第6実施形態によるp型トランジスタの構成の一例を示す図。 第6実施形態によるn型トランジスタの構成の一例を示す図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 第3実施形態に第6実施形態を組み合わせた実施形態を示す図。 第4実施形態に第6実施形態を組み合わせた実施形態を示す図。 第5実施形態に第6実施形態を組み合わせた実施形態を示す図。 第7実施形態による画素共有ユニット、列信号処理部および画素信号処理部の構成を示す概略断面図。 図1に示した画素共有ユニットの等価回路図。 複数の画素共有ユニットと複数の垂直信号線との接続態様の一例を表す図。 図3に示した撮像装置の具体的な構成の一例を表す断面模式図。 図34に示した第1基板の要部の平面構成の一例を表す模式図。 図35Aに示した第1基板の要部とともにパッド部の平面構成を表す模式図。 図34に示した第2基板(半導体層)の平面構成の一例を表す模式図。 図34に示した第1配線層とともに、画素回路および第1基板の要部の平面構成の一例を表す模式図。 図34に示した第1配線層および第2配線層の平面構成の一例を表す模式図。 図34に示した第2配線層および第3配線層の平面構成の一例を表す模式図。 図34に示した第3配線層および第4配線層の平面構成の一例を表す模式図。 図3に示した撮像装置への入力信号の経路について説明するための模式図。 図3に示した撮像装置の画素信号の信号経路について説明するための模式図。 図36に示した第2基板(半導体層)の平面構成の一変形例を表す模式図。 図43に示した画素回路とともに、第1配線層および第1基板の要部の平面構成を表す模式図。 図44に示した第1配線層とともに、第2配線層の平面構成の一例を表す模式図。 図45に示した第2配線層とともに、第3配線層の平面構成の一例を表す模式図。 図46に示した第3配線層とともに、第4配線層の平面構成の一例を表す模式図。 図35Aに示した第1基板の平面構成の一変形例を表す模式図。 図48に示した第1基板に積層される第2基板(半導体層)の平面構成の一例を表す模式図。 図49に示した画素回路とともに、第1配線層の平面構成の一例を表す模式図。 図50に示した第1配線層とともに、第2配線層の平面構成の一例を表す模式図。 図51に示した第2配線層とともに、第3配線層の平面構成の一例を表す模式図。 図52に示した第3配線層とともに、第4配線層の平面構成の一例を表す模式図。 図48に示した第1基板の平面構成の他の例を表す模式図。 図54に示した第1基板に積層される第2基板(半導体層)の平面構成の一例を表す模式図。 図55に示した画素回路とともに、第1配線層の平面構成の一例を表す模式図。 図56に示した第1配線層とともに、第2配線層の平面構成の一例を表す模式図。 図57に示した第2配線層とともに、第3配線層の平面構成の一例を表す模式図。 図58に示した第3配線層とともに、第4配線層の平面構成の一例を表す模式図。 図3に示した撮像装置の他の例を表す断面模式図。 図60に示した撮像装置への入力信号の経路について説明するための模式図。 図60に示した撮像装置の画素信号の信号経路について説明するための模式図。 図34に示した撮像装置の他の例を表す断面模式図。 図32に示した等価回路の他の例を表す図。 図35A等に示した画素分離部の他の例を表す平面模式図。 上記実施の形態およびその変形例に係る撮像装置を備えた撮像システムの概略構成の一例を表す図。 図66に示した撮像システムの撮像手順の一例を表す図。 車両制御システムの概略的な構成の一例を示すブロック図。 車外情報検出部及び撮像部の設置位置の一例を示す説明図。 内視鏡手術システムの概略的な構成の一例を示す図。 カメラヘッド及びCCUの機能構成の一例を示すブロック図。
 以下、図面を参照して、比較器、光検出素子および電子機器の実施形態について説明する。以下では、比較器、光検出素子および電子機器の主要な構成部分を中心に説明するが、比較器、光検出素子および電子機器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
(第1実施形態)
(撮像装置1の構成)
 図1は、第1実施形態に係る撮像装置の機能構成の一例を示すブロック図である。
 図1の撮像装置1は、例えば、入力部510A、行駆動部520、タイミング制御部530、画素アレイ部540、列信号処理部550、画像信号処理部560および出力部510Bを含んでいる。
 画素アレイ部540には、画素541がアレイ状に繰り返し配置されている。より具体的には、複数の画素を含んだ画素共有ユニット539が繰り返し単位となり、これが、行方向と列方向とからなるアレイ状に繰り返し配置されている。なお、本明細書では、便宜上、行方向をH方向、行方向と直交する列方向をV方向、と呼ぶ場合がある。本実施形態では、図2に示すように、1つの画素共有ユニット539は、8つの画素541を含んでいる。画素541は各々、フォトダイオードPDを有している。画素共有ユニット539は、1つの画素回路を共有する単位である。換言すれば、8つの画素541毎に、1つの画素回路(例えば、図2のコンパレータ部210)を有している。この画素回路を時分割で動作させることにより、画素541の各々の画素信号が順次読み出されるようになっている。画素541は、例えば2行×2列で配置されている。図1の画素アレイ部540には、複数の画素541とともに、複数の行駆動信号線542および複数の垂直信号線(列読出し線)543が設けられている。行駆動信号線542は、画素アレイ部540において行方向に並んで配列された、複数の画素共有ユニット539各々に含まれる画素541を駆動する。画素共有ユニット539のうち、行方向に並んで配列された各画素を駆動する。画素共有ユニット539には、複数のトランジスタが設けられている。これら複数のトランジスタをそれぞれ駆動するために、1つの画素共有ユニット539には複数の行駆動信号線542が接続されている。垂直信号線(列読出し線)543には、画素共有ユニット539が接続されている。画素共有ユニット539に含まれる画素541の各々から、垂直信号線(列読出し線)543を介して画素信号が読み出される。
 行駆動部520は、例えば、画素駆動するための行の位置を決める行アドレス制御部、言い換えれば、行デコーダ部と、画素541を駆動するための信号を発生させる行駆動回路部とを含んでいる。
 列信号処理部550は、例えば、垂直信号線543に接続され、画素共有ユニット539とソースフォロア回路を形成する負荷回路部を備える。列信号処理部550は、垂直信号線543を介して画素共有ユニット539から読み出された画素信号を増幅する増幅回路部を有していてもよい。列信号処理部550は、ノイズ処理部を有していてもよい。ノイズ処理部では、例えば、光電変換の結果として画素共有ユニット539から読み出された信号から、系のノイズレベルが取り除かれる。
 列信号処理部550は、例えば、アナログデジタルコンバータ(ADC)を有している。アナログデジタルコンバータでは、画素共有ユニット539から読み出された信号もしくは上記ノイズ処理されたアナログ信号がデジタル信号に変換される。ADCは、例えば、コンパレータ部(図5の210)およびカウンタ部を含んでもよい。コンパレータ部210では、変換対象となるアナログ信号(画素信号)と、これと比較対象となる参照信号とが比較される。コンパレータ部210については、図5を参照して後で説明する。カウンタ部では、コンパレータ部210での比較結果が反転するまでの時間が計測されるようになっている。カウンタ部からのカウント値は、CDS(Correlated Double Sampling)処理されてAD変換された画素信号となる。列信号処理部550は、画素信号を出力するために読出し列を走査する制御を行う水平走査回路部を含んでいてもよい。
 タイミング制御部530は、装置へ入力された基準クロック信号やタイミング制御信号を基にして、行駆動部520および列信号処理部550へ、タイミングを制御する信号を供給する。
 画像信号処理部560は、光電変換の結果得られたデータ、言い換えれば、撮像装置1における撮像動作の結果得られたデータに対して、各種の信号処理を施す回路である。画像信号処理部560は、例えば、画像信号処理回路部およびデータ保持部を含んでいる。画像信号処理部560は、プロセッサ部を含んでいてもよい。
 画像信号処理部560において実行される信号処理の一例は、AD変換された撮像データが、暗い被写体を撮影したデータである場合には階調を多く持たせ、明るい被写体を撮影したデータである場合には階調を少なくするトーンカーブ補正処理である。この場合、撮像データの階調をどのようなトーンカーブに基づいて補正するか、トーンカーブの特性データを予め画像信号処理部560のデータ保持部に記憶させておくことが望ましい。
 入力部510Aは、例えば、上記基準クロック信号、タイミング制御信号および特性データなどを装置外部から撮像装置1へ入力するためのものである。タイミング制御信号は、例えば、垂直同期信号および水平同期信号などである。特性データは、例えば、画像信号処理部560のデータ保持部へ記憶させるためのものである。入力部510Aは、例えば、入力端子511、入力回路部512、入力振幅変更部513、入力データ変換回路部514および電源供給部(不図示)を含んでいる。
 入力端子511は、データを入力するための外部端子である。入力回路部512は、入力端子511へ入力された信号を撮像装置1の内部へと取り込むためのものである。入力振幅変更部513では、入力回路部512で取り込まれた信号の振幅が、撮像装置1の内部で利用しやすい振幅へと変更される。入力データ変換回路部514では、入力データのデータ列の並びが変更される。入力データ変換回路部514は、例えば、シリアルパラレル変換回路により構成されている。このシリアルパラレル変換回路では、入力データとして受け取ったシリアル信号がパラレル信号へと変換される。なお、入力部510Aでは、入力振幅変更部513および入力データ変換回路部514が、省略されていてもよい。電源供給部は、外部から撮像装置1へ供給された電源をもとにして、撮像装置1の内部で必要となる各種の電圧に設定された電源を供給する。
 撮像装置1が外部のメモリデバイスと接続されるとき、入力部510Aには、外部のメモリデバイスからのデータを受け取るメモリインタフェース回路が設けられていてもよい。外部のメモリデバイスは、例えば、フラッシュメモリ、SRAMおよびDRAM等である。
 出力部510Bは、画像データを装置外部へと出力する。この画像データは、例えば、撮像装置1で撮影された画像データ、および、画像信号処理部560で信号処理された画像データ等である。出力部510Bは、例えば、出力データ変換回路部515、出力振幅変更部516、出力回路部517および出力端子518を含んでいる。
 出力データ変換回路部515は、例えば、パラレルシリアル変換回路により構成されており、出力データ変換回路部515では、撮像装置1内部で使用したパラレル信号がシリアル信号へと変換される。出力振幅変更部516は、撮像装置1の内部で用いた信号の振幅を変更する。変更された振幅の信号は、撮像装置1の外部に接続される外部デバイスで利用しやすくなる。出力回路部517は、撮像装置1の内部から装置外部へとデータを出力する回路であり、出力回路部517により、出力端子518に接続された撮像装置1外部の配線が駆動される。出力端子518では、撮像装置1から装置外部へとデータが出力される。出力部510Bでは、出力データ変換回路部515および出力振幅変更部516が、省略されていてもよい。
 撮像装置1が外部のメモリデバイスと接続されるとき、出力部510Bには、外部のメモリデバイスへとデータを出力するメモリインタフェース回路が設けられていてもよい。外部のメモリデバイスは、例えば、フラッシュメモリ、SRAMおよびDRAM等である。
(撮像装置1の概略構成)
 図2および図3は、撮像装置1の概略構成の一例を表した図である。撮像装置1は、3つの基板(第1基板100、第2基板200、第3基板300)を備えている。図2は、第1基板100、第2基板200、第3基板300各々の平面構成を模式的に表したものであり、図3は、互いに積層された第1基板100、第2基板200および第3基板300の断面構成を模式的に表している。図3は、図2に示したIII-III’線に沿った断面構成に対応する。撮像装置1は、3つの基板(第1基板100、第2基板200、第3基板300)を貼り合わせて構成された3次元構造の撮像装置である。第1基板100は、半導体層100Sおよび配線層100Tを含む。第2基板200は、半導体層200Sおよび配線層200Tを含む。第3基板300は、半導体層300Sおよび配線層300Tを含む。ここで、第1基板100、第2基板200および第3基板300の各基板に含まれる配線とその周囲の層間絶縁膜を合せたものを、便宜上、それぞれの基板(第1基板100、第2基板200および第3基板300)に設けられた配線層(100T、200T、300T)と呼ぶ。第1基板100、第2基板200および第3基板300は、この順に積層されており、積層方向に沿って、半導体層100S、配線層100T、半導体層200S、配線層200T、配線層300Tおよび半導体層300Sの順に配置されている。第1基板100、第2基板200および第3基板300の具体的な構成については後述する。図3に示した矢印は、撮像装置1への光Lの入射方向を表す。本明細書では、便宜上、以降の断面図で、撮像装置1における光入射側を「下」「下側」「下方」、光入射側と反対側を「上」「上側」「上方」と呼ぶ場合がある。また、本明細書では、便宜上、半導体層と配線層を備えた基板に関して、配線層の側を表面、半導体層の側を裏面と呼ぶ場合がある。なお、明細書の記載は、上記の呼び方に限定されない。撮像装置1は、例えば、フォトダイオードを有する第1基板100の裏面側から光が入射する、裏面照射型撮像装置となっている。
 画素アレイ部540および画素アレイ部540に含まれる画素共有ユニット539は、ともに、第1基板100および第2基板200の双方を用いて構成されている。第1基板100には、画素共有ユニット539が有する複数の画素541A,541B,541C,541Dが設けられている。これらの画素541のそれぞれが、フォトダイオード(後述のフォトダイオードPD)および転送トランジスタ(後述の転送トランジスタTGまたはTR)を有している。第2基板200には、画素共有ユニット539が有する画素回路が設けられている。画素回路は、画素541A,541B,541C,541D各々のフォトダイオードから転送トランジスタを介して転送された画素信号を読み出し、あるいは、フォトダイオードをリセットする。この第2基板200は、このような画素回路に加えて、行方向に延在する複数の行駆動信号線542および列方向に延在する複数の垂直信号線543を有している。第2基板200は、更に、行方向に延在する電源線544および列信号処理部550の一部を有している。第3基板300は、例えば、入力部510A,行駆動部520、タイミング制御部530、列信号処理部550の残部、画像信号処理部560および出力部510Bを有している。行駆動部520は、例えば、第1基板100、第2基板200および第3基板300の積層方向(以下、単に積層方向という)において、一部が画素アレイ部540に重なる領域に設けられている。より具体的には、行駆動部520は、積層方向において、画素アレイ部540のH方向の端部近傍に重なる領域に設けられている(図2)。列信号処理部550は、例えば、積層方向において、一部が画素アレイ部540に重なる領域に設けられている。より具体的には、列信号処理部550は、積層方向において、画素アレイ部540のV方向の端部近傍に重なる領域に設けられている(図2)。図示は省略するが、入力部510Aおよび出力部510Bは、第3基板300以外の部分に配置されていてもよく、例えば、第2基板200に配置されていてもよい。あるいは、第1基板100の裏面(光入射面)側に入力部510Aおよび出力部510Bを設けるようにしてもよい。なお、上記第2基板200に設けられた画素回路は、別の呼称として、画素トランジスタ回路、画素トランジスタ群、画素トランジスタ、画素読み出し回路または読出回路と呼ばれることもある。本明細書では、画素回路との呼称を用いる。
 第1基板100と第2基板200とは、例えば、貫通電極により電気的に接続されている。第2基板200と第3基板300とは、例えば、コンタクト部201,202,301,302を介して電気的に接続されている。第2基板200にコンタクト部201,202が設けられ、第3基板300にコンタクト部301,302が設けられている。第2基板200のコンタクト部201が第3基板300のコンタクト部301に接し、第2基板200のコンタクト部202が第3基板300のコンタクト部302に接している。第2基板200は、複数のコンタクト部201が設けられたコンタクト領域201Rと、複数のコンタクト部202が設けられたコンタクト領域202Rとを有している。第3基板300は、複数のコンタクト部301が設けられたコンタクト領域301Rと、複数のコンタクト部302が設けられたコンタクト領域302Rとを有している。コンタクト領域201R,301Rは、積層方向において、画素アレイ部540と行駆動部520との間に設けられている(図3)。換言すれば、コンタクト領域201R,301Rは、例えば、行駆動部520(第3基板300)と、画素アレイ部540(第2基板200)とが積層方向に重なる領域、もしくはこの近傍領域に設けられている。コンタクト領域201R,301Rは、例えば、このような領域のうち、H方向の端部に配置されている(図2)。第3基板300では、例えば、行駆動部520の一部、具体的には行駆動部520のH方向の端部に重なる位置にコンタクト領域301Rが設けられている(図2,図3)。コンタクト部201,301は、例えば、第3基板300に設けられた行駆動部520と、第2基板200に設けられた行駆動線542とを接続するものである。コンタクト部201,301は、例えば、第3基板300に設けられた入力部510Aと電源線544および基準電位線(後述の基準電位線VSS)とを接続していてもよい。コンタクト領域202R,302Rは、積層方向において、画素アレイ部540と列信号処理部550との間に設けられている(図3)。換言すれば、コンタクト領域202R,302Rは、例えば、列信号処理部550(第3基板300)と画素アレイ部540(第2基板200)とが積層方向に重なる領域、もしくはこの近傍領域に設けられている。コンタクト領域202R,302Rは、例えば、このような領域のうち、V方向の端部に配置されている(図2)。第3基板300では、例えば、列信号処理部550の一部、具体的には列信号処理部550のV方向の端部に重なる位置にコンタクト領域301Rが設けられている(図2,図3)。コンタクト部202,302は、例えば、画素アレイ部540が有する複数の画素共有ユニット539各々から出力された画素信号(フォトダイオードでの光電変換の結果発生した電荷の量に対応した信号)を、第3基板300に設けられた列信号処理部550へと接続するためのものである。画素信号は、第2基板200から第3基板300に送られるようになっている。
 図3は、上記のように、撮像装置1の断面図の一例である。第1基板100、第2基板200、第3基板300は、配線層100T、200T、300Tを介して電気的に接続される。例えば、撮像装置1は、第2基板200と第3基板300とを電気的に接続する電気的接続部を有する。具体的には、導電材料で形成された電極でコンタクト部201,202,301,302を形成する。導電材料は、例えば、銅(Cu)、アルミニウム(Al)、金(Au)、などの金属材料で形成される。コンタクト領域201R、202R、301R、302Rは、例えば電極として形成された配線同士を直接接合することで、第2基板と第3基板とを電気的に接続し、第2基板200と第3基板300との信号の入力及び/又は出力を可能にする。
 第2基板200と第3基板300とを電気的に接続する電気的接続部は、所望の箇所に設けることができる。例えば、図3においてコンタクト領域201R、202R、301R、302Rとして述べたように、画素アレイ部540と積層方向に重なる領域に設けても良い。また、電気的接続部を画素アレイ部540と積層方向に重ならない領域に設けても良い。具体的には、画素アレイ部540の外側に配置された周辺部と、積層方向に重なる領域に設けても良い。
 第1基板100および第2基板200には、例えば、接続孔部H1,H2が設けられている。接続孔部H1,H2は、第1基板100および第2基板200を貫通している(図3)。接続孔部H1,H2は、画素アレイ部540(または画素アレイ部540に重なる部分)の外側に設けられている(図2)。例えば、接続孔部H1は、H方向において画素アレイ部540より外側に配置されており、接続孔部H2は、V方向において画素アレイ部540よりも外側に配置されている。例えば、接続孔部H1は、第3基板300に設けられた入力部510Aに達しており、接続孔部H2は、第3基板300に設けられた出力部510Bに達している。接続孔部H1,H2は、空洞でもよく、少なくとも一部に導電材料を含んでいても良い。例えば、入力部510A及び/又は出力部510Bとして形成された電極に、ボンディングワイヤを接続する構成がある。または、入力部510A及び/又は出力部510Bとして形成された電極と、接続孔部H1,H2に設けられた導電材料とを接続する構成がある。接続孔部H1,H2に設けられた導電材料は、接続孔部H1,H2の一部または全部に埋め込まれていても良く、導電材料が接続孔部H1,H2の側壁に形成されていても良い。
 なお、図3では第3基板300に入力部510A、出力部510Bを設ける構造としたが、これに限定されない。例えば、配線層200T、300Tを介して第3基板300の信号を第2基板200へ送ることで、入力部510A及び/又は出力部510Bを第2基板200に設けることもできる。同様に、配線層100T、200Tを介して、第2基板200の信号を第1基板1000へ送ることで、入力部510A及び/又は出力部510Bを第1基板100に設けることもできる。
 図4は、第1実施形態による画素共有ユニット539、列信号処理部550および画素信号処理部560の構成を示す概略断面図である。画素共有ユニット539、列信号処理部550および画素信号処理部560は、例えば、それぞれ、第1基板100、第2基板200および第3基板300に設けられている。第1~第3基板100~300は、例えば、シリコン基板であり、互いに積層されている。第1~第3基板100~300は、ビアコンタクトVIA、貫通電極(TSV(Through Silicon Via))および/または配線接合(Cu-Cu接合)CCCを用いて、互いに電気的に接続されている。ビアコンタクトVIAは、層間絶縁膜を貫通して設けられてコンタクトプラグである。貫通電極TSVは、基板を貫通して、半導体素子を他の基板の半導体素子と電気的に接続する電極である。配線接合CCCは、第1~第3基板100~300のそれぞれに設けられた配線同士を、基板の積層によって直接接合することによって形成される。
 第1基板100には、例えば、フォトダイオードPD、転送トランジスタTG、オーバーフローゲート(図4では図示せず)、フローティングディフュージョンFD等の各画素541に対応した構成要素が設けられている。図4の固体撮像装置は、裏面照射型CISであり、第1基板100の受光面には、オンチップレンズOCLが設けられている。第1基板100の受光面とは反対側の面には、転送トランジスタTGおよびオーバーフローゲートが設けられている。転送トランジスタTGおよびオーバーフローゲートは層間絶縁膜で被覆されており、層間絶縁膜に埋め込まれたビアコンタクトVIAと電気的に接続されている。第2基板200には、例えば、列信号処理部550のコンパレータ部210が設けられている。列信号処理部550は、第2基板200を貫通する貫通電極TSVおよびビアコンタクトVIAを介して第1基板100のフローティングディフュージョンFD等と電気的に接続されている。列信号処理部550も、層間絶縁膜で被覆されており、層間絶縁膜に埋め込まれた配線と電気的に接続されている。配線の一部は、層間絶縁膜の表面に露出されている。第3基板300には、例えば、列信号処理部550のコンパレータ部210以降のロジック回路および画素信号処理部560等が設けられている。ロジック回路および画素信号処理部560等も層間絶縁膜で被覆されており、層間絶縁膜に埋め込まれた配線と電気的に接続されている。配線の一部は、層間絶縁膜の表面に露出されている。
 第2および第3基板200、300の配線の一部は、第2および第3基板200、300の積層によって互いに接合され、配線同士が電気的に接続される。これにより、配線接合CCCが形成される。
 図5は、画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。画素共有ユニット539は、複数の画素541と、複数の画素541に接続された1つのコンパレータ部210と、を含んでいる。複数の画素541は、第1基板100に設けられており、コンパレータ部210は、第2基板200に設けられている。第1基板100と第2基板200とは、配線接合(Cu-Cu接合)CCCにおいて電気的に接続された貫通電極により電気的に接続されている。
(画素共有ユニット539の構成)
 画素共有ユニット539は、1のコンパレータ部210を時分割で動作させることにより、画素共有ユニット539に含まれる複数の画素541(画素541A,541B,541C,541D)それぞれの画素信号を順次垂直信号線543へ出力するようになっている。複数の画素541に1のコンパレータ部210が接続されており、この複数の画素541の画素信号が、1のコンパレータ部210により時分割で出力される態様を、「複数の画素541が1のコンパレータ部210を共有する」という。図5では、8個の画素541が1のコンパレータ部210を共有しているが、その数は特に限定しない。
 画素541は、互いに共通の構成要素を有している。以降、複数の画素541A,541B,541C,541Dの構成要素を互いに区別する必要のない場合には、画素541A,541B,541C,541Dの構成要素の符号の末尾の識別番号を省略する。
 画素541は、例えば、フォトダイオードPDと、フォトダイオードPDと電気的に接続された転送トランジスタTGと、フォトダイオードPDと電気的に接続されたオーバーフローゲートOFと、転送トランジスタTGに電気的に接続されたフローティングディフュージョンFDとを備えている。
 フォトダイオードPD(PD1~PD4)では、カソードが転送トランジスタTGおよびオーバーフローゲートOFのソースまたはドレインに電気的に接続されており、アノードが基準電位線(例えばグラウンド)に電気的に接続されている。フォトダイオードPDは、入射した光を画素信号に光電変換し、その受光量に応じた電荷を発生する光電変換素子である。
 転送トランジスタTG(TG1~TG4)は、例えば、CMOS(Complementary Metal Oxide Semiconductor)トランジスタである。転送トランジスタTGでは、ドレインがフローティングディフュージョンFDに電気的に接続され、ゲートが駆動信号線に電気的に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542(図1参照)のうちの一部である。転送トランジスタTGは、フォトダイオードPDで発生した電荷をフローティングディフュージョンFDへと転送する。
 フローティングディフュージョンFDは、p型半導体層中に形成されたn型拡散層領域である。フローティングディフュージョンFDは、フォトダイオードPDから転送された電荷を一時的に保持する電荷保持手段であり、かつ、その電荷量に応じた電圧を発生させる、電荷―電圧変換手段である。フローティングディフュージョンFDは、複数の画素541に共有されている。
 オーバーフローゲートOF(OF1~OF4)は、フォトダイオードPDと電源VDDとの間に接続されており、ゲートには、所定電圧が印加されている。オーバーフローゲートOFは、フォトダイオードPDの飽和電荷量を超えた電荷を電源VDDへ流す。オーバーフローゲートOFは、例えば、n型トランジスタで構成されている。
(コンパレータ部210の構成および機能)
 コンパレータ部210は、能動負荷回路であるカレントミラー回路210aと、差動回路210bと、電流源210cと、リセットトランジスタ210dとを備える。
 カレントミラー回路210aは、p型トランジスタTp1、Tp2を備えている。トランジスタTp1のソースは、電源VDDに接続されており、そのドレインは、n型トランジスタTn1のドレインに接続されている。トランジスタTp1のゲートは、トランジスタTp2のゲートと共通にトランジスタTp1のドレインに接続されている。トランジスタTp2のソースは、電源VDDに接続されており、そのドレインは、n型トランジスタTn2のドレインに接続されている。トランジスタTp2のゲートは、トランジスタTp1のゲートと共通にトランジスタTp1のドレインに接続されている。
 トランジスタTp1、Tp2のゲートは、トランジスタTp1のドレインに共通に接続されているので、カレントミラー回路を構成し、トランジスタTn1、Tn2に所定のミラー比に対応する電流をそれぞれに流す。トランジスタTp1、Tp2のより詳細な構成については後述する。
 差動回路210bは、n型トランジスタTn1、Tn2を備えている。トランジスタTn1のドレインは、トランジスタTp1のドレインおよびゲートに接続されている。トランジスタTn1のソースは、トランジスタTn2のソースと共通にn型トランジスタTn3のドレインに接続されている。トランジスタTn2のドレインは、トランジスタTp2のドレインに接続されている。トランジスタTn2のソースは、トランジスタTn1のソースと共通にトランジスタTn3のドレインに接続されている。
 トランジスタTn1、Tn2は、それぞれフローティングディフュージョンFDからの画素信号および参照信号をゲートで受けて、その電圧差をノードN210から出力する。
 電流源210cは、n型トランジスタTn3で構成されており、トランジスタTn1、Tn2に流れる全体の電流を所定値に維持する。トランジスタTn3のドレインは、トランジスタTn1、Tn2のソースに共通に接続されており、トランジスタTn3のソースは、グランドGNDに接続されている。トランジスタTn3のゲートには、所定電圧Vbが印加されている。
 n型トランジスタTn4は、ノードN210とトランジスタTn2のゲート(フローティングディフュージョンFD)との間に接続されている。n型トランジスタTn4のゲートは、リセット信号RSTを受ける。n型トランジスタTn4は、AZトランジスタとして機能し、出力信号の検出前にフローティングディフュージョンFDとノードN210とを電気的に接続してオートゼロ動作を行う。
 トランジスタTn1~Tn4には、負電圧VRLWがバックバイアスとして印加されている。
(相互コンダクタンスとノイズ)
 ここで、ADCにおいて、ノイズの低減が求められる。ADCのノイズ特性は、例えば、p型トランジスタTp1,Tp2の相互コンダクタンスgmと、n型トランジスタTn1,Tn2の相互コンダクタンスgmと、のバランスによって決まる。カレントミラー回路210aを構成するp型トランジスタTp1、Tp2の相互コンダクタンスgmを低下させることによって、ノイズが低減し、ノイズ特性が改善する。一方、差動回路210bを構成するn型トランジスタTn1、Tn2の相互コンダクタンスgmを増大させることによって、ノイズが低減し、ノイズ特性が改善する。例えば、S/N(Signal/Noise)比が向上し、ダイナミックレンジを拡大することができる。その結果、本実施形態による固体撮像装置(光検出素子)のセンサ特性が改善する。
 相互コンダクタンスgmは、トランジスタのチャネル長Lとチャネル幅Wとの関係に応じて変化する。相互コンダクタンスgmは、例えば、チャネル長Lが大きくなるにつれて小さくなり、チャネル幅Wが大きくなるにつれて大きくなる。
(p型トランジスタTp1、Tp2の構成)
 図6は、第1実施形態によるp型トランジスタTp1,Tp2の構成の一例を示す図である。図6の上段は、平面図を示す。図6の中段は、図6の平面図のB-B’線の断面に対応する断面図を示す。図6の下段は、図6の平面図のA-A’線の断面に対応する断面図を示す。
 p型トランジスタTp1,Tp2は、基板の表面に対して略垂直な方向に延伸するチャネル領域CHtpを有する。また、p型トランジスタTp1,Tp2のチャネル領域CHtpは、チャネル長方向Dcpに沿って、凹凸形状を有する。すなわち、p型トランジスタTp1,Tp2のチャネル領域CHtpは、チャネル長方向Dcpに沿って、基板の表面に対して略垂直な少なくとも1つの凹部(溝又は掘り込み)141を有する。図6に示す例では、3つの凹部141が設けられる。
 凹部141は、2つの側面Ss1、Ss2と、底面Sb1と、を含む。側面Ss1,Ss2は、基板の表面に対して略垂直な面である。底面Sb1は、基板の表面に対して略平行な面である。
 実効的なチャネル長L(Leff)は、側面Ss1、底面Sb1、および、側面Ss2に亘って延伸する。したがって、電荷(ホール)は、ソース領域Sからドレイン領域Dまでの間に、側面Ss1、底面Sb1、側面Ss2に沿って順に移動する。すなわち、ホールは、凹部141に沿って、基板の表面に対して略垂直方向、基板の表面に対して略水平方向、基板の表面に対して略垂直方向に移動する。
 実効的なチャネル長L(Leff)は、凹部141に沿った長さになる。すなわち、側面Ss1、Ss2に沿った距離の分、チャネル長Lを伸ばすことができる。これにより、p型トランジスタTp1,Tp2の相互コンダクタンスgmを低下させることができ、ノイズを低減することができる。また、基板の深さ方向の距離を利用するため、トランジスタの設置面積(ゲートサイズ)を大きくすることなく、チャネル長Lを伸ばすことができる。これにより、ノイズ特性劣化の少ない、画素微細化が可能となる。
 図6に示すように、p型トランジスタTp1,Tp2のチャネル幅Wが表される。p型トランジスタTp1,Tp2のチャネル領域CHtpは、チャネル長方向Dcpに対して略垂直な方向に沿って、凹凸形状を有しない。すなわち、凹部141によるチャネル幅Wの伸びは、チャネル長Lの伸びと比較して、小さい。
 また、ゲート電極Gtpの掘り込み部の周囲には、ゲート絶縁膜(ゲート酸化膜)150が設けられる。ゲート電極Gtpのトップ部の側壁絶縁膜として、絶縁膜170,180が設けられる。基板には、絶縁膜160が設けられる。絶縁膜160は、例えば、STI(Shallow Trench Isolation)である。
(n型トランジスタTn1、Tn2の構成)
 図7は、第1実施形態によるn型トランジスタTn1,Tn2の構成の一例を示す図である。図7の上段は、平面図を示す。図7の中段は、図7の平面図のB-B’線の断面に対応する断面図を示す。図7の下段は、図7の平面図のA-A’線の断面に対応する断面図を示す。
 n型トランジスタTn1,Tn2は、基板の表面に対して略垂直な方向に延伸するチャネル領域CHtnを有する。また、n型トランジスタTn1,Tn2のチャネル領域CHtnは、チャネル長方向Dcnに対して略垂直な方向に沿って、凹凸形状を有する。すなわち、n型トランジスタTn1,Tn2のチャネル領域CHtnは、チャネル長方向Dcnに対して略垂直な方向に沿って、基板の表面に対して略垂直な少なくとも1つの凹部(溝又は掘り込み)142を有する。図7に示す例では、3つの凹部142が設けられる。
 凹部142は、2つの側面Ss3、Ss4と、底面Sb2と、を含む。側面Ss3,Ss4は、基板の表面に対して略垂直な面である。底面Sb2は、基板の表面に対して略平行な面である。
 実効的なチャネル幅W(Weff)は、凹部142に沿った長さになる。すなわち、側面Ss3、Ss4に沿った距離の分、チャネル幅Wを伸ばすことができる。これにより、n型トランジスタTn1,Tn2の相互コンダクタンスgmを増大させることができ、ノイズを低減することができる。また、基板の深さ方向の距離を利用するため、トランジスタの設置面積(ゲートサイズ)を大きくすることなく、チャネル幅Wを伸ばすことができる。これにより、ノイズ特性劣化の少ない、画素微細化が可能となる。
 図7に示すように、n型トランジスタTn1,Tn2のチャネル長Lが表される。n型トランジスタTn1,Tn2のチャネル領域CHtnは、チャネル長方向Dcnに沿って、凹凸形状を有しない。すなわち、凹部142によるチャネル長Lの伸びは、チャネル幅Wの伸びと比較して、小さい。
 また、ゲート電極Gtnの掘り込み部の周囲には、ゲート絶縁膜(ゲート酸化膜)150が設けられる。ゲート電極Gtpのトップ部の側壁絶縁膜として、絶縁膜170,180が設けられる。基板には、絶縁膜160が設けられる。絶縁膜160は、例えば、STI(Shallow Trench Isolation)である。
 第1実施形態では、p型トランジスタTp1,Tp2のゲート絶縁膜150の厚さTgpは、n型トランジスタTn1,Tn2のゲート絶縁膜150の厚さTgnと略同じである。
 図8は、第1基板100の平面レイアウトの一例を示す概略平面図である。フォトダイオードPDは、第1基板100を貫通する素子分離部DTI(Deep Trench Isolation)によって区画されている。図8では、4つのフォトダイオードPDが表示されているが、これに限定されない。フォトダイオードPDは、素子形成領域RAに設けられている。
 素子形成領域RAは、隣接するコンタクト領域RCNT間に設けられており、トランジスタ等の半導体素子を形成する領域である。コンタクト領域RCNTは、TSV等のコンタクトを形成する領域である。
 フォトダイオードPDの一方側には、転送トランジスタTGが設けられており、その他方側には、オーバーフローゲートOFが設けられている。
 ウェルコンタクトWCNTは、第1基板100に形成されたウェル拡散層(図示せず)にウェル電位を与えるために設けられているコンタクトである。
 図9は、第2基板200の平面レイアウトの一例を示す概略平面図である。なお、図9は、トランジスタTn1~Tn4、Tp1、Tp2を含む第2基板200を、図8の第1基板100に重複して示す図でもある。第2基板200は、素子形成領域RAn、RApおよびコンタクト領域RCNTを備える。第2基板200の素子形成領域RAn、RApおよびコンタクト領域RCNTは、第1基板100と第2基板200とを積層したときに、それぞれ第1基板100の素子形成領域RAおよびコンタクト領域RCNTに対応するように配置されている。また、図9では、n型トランジスタTn4は省略されている。
 n型トランジスタTn1~Tn4は、素子形成領域RAnに形成され、p型トランジスタTp1,Tp2は、素子形成領域RApに形成される。このように、n型トランジスタTn1~Tn4とp型トランジスタTp1,Tp2とは、互いに異なる素子形成領域RAn、RApにそれぞれ設けられている。トランジスタTn1~Tn4、Tp1、Tp2は、第1基板100のフォトダイオードPDの上方に設けられ、第2基板200の表面から見たときに、フォトダイオードPDに重複する。
 第2基板200と第1基板100において、コンタクト領域RCNTの各コンタクトは、それぞれ対応して設けられている。これらのコンタクトCNTは、例えば、TSVで構成されている。第1基板100のコンタクトCNTと第2基板200のコンタクトCNTとは、例えば、CCCを用いて配線接合されている。
 このような第1および第2基板100、200の平面レイアウトによって、図5に示す画素共有ユニット539およびコンパレータ部210の回路構成が可能となる。画素共有ユニット539は、第1基板100に設けられ、コンパレータ部210は第1基板100とは異なる第2基板200に設けられている。第1および第2基板100、200は積層されており、画素共有ユニット539とコンパレータ部210とは、第1基板100の配線と第2基板200の配線との間の配線接合CCCによって電気的に接続されている。尚、画素共有ユニット539とコンパレータ部210とは、第1または第2基板100、200を貫通する貫通電極によって電気的に接続されていてもよい。
 ここで、p型トランジスタTp1,Tp2のチャネル長方向Dcp、および、n型トランジスタTn1,Tn2のチャネル長方向Dcnは、図9の紙面左右方向である。すなわち、図9に示すトランジスタTp1,Tp2,Tn1,Tn2のチャネル長方向は、図6および図7の平面図に示すトランジスタTp1,Tp2,Tn1,Tn2のチャネル長方向と同じである。図6を参照して説明したように、凹部141を設けることにより、レイアウト上での寸法に対して、p型トランジスタTp1,Tp2の実効的なチャネル長L(Leff)を伸ばすことができる。図7を参照して説明したように、凹部142を設けることにより、レイアウト上での寸法に対して、n型トランジスタTn1,Tn2の実効的なチャネル幅W(Weff)を伸ばすことができる。
 また、n型トランジスタTn3,Tn4にも、凹部142が設けられていてもよい。これにより、n型トランジスタTn1,Tn2と同じプロセスでn型トランジスタTn3,Tn4形成することができる。しかし、凹部142は、必ずしもn型トランジスタTn3,Tn4に設けられていなくてもよい。
 以上のように、第1実施形態によれば、n型トランジスタTn1,Tn2は、基板の表面に対して略垂直な方向に延伸するチャネル領域CHtnを有する。より詳細には、n型トランジスタTn1,Tn2のチャネル領域CHtnは、チャネル長方向Dcnに対して略垂直な方向に沿って、凹凸形状を有する。基板の表面に対して略垂直な方向を利用することにより、トランジスタの設置面積(ゲートサイズ)によらず、チャネル幅Wを伸ばすことができる。これにより、トランジスタの設置面積(ゲートサイズ)の増大を抑制しつつ、n型トランジスタTn1,Tn2の相互コンダクタンスgmを増大させてノイズを低減することができる。また、ノイズ特性劣化を抑制した画素微細化(高解像度化)が可能になる。
 さらに、第1実施形態では、p型トランジスタTp1,Tp2は、基板の表面に対して略垂直な方向に延伸するチャネル領域CHtpを有する。より詳細には、p型トランジスタTp1,Tp2のチャネル領域CHtpは、チャネル長方向Dcpに沿って、凹凸形状を有する。基板の表面に対して略垂直な方向を利用することにより、トランジスタの設置面積(ゲートサイズ)によらず、チャネル長Lを伸ばすことができる。これにより、トランジスタの設置面積(ゲートサイズ)の増大を抑制しつつ、p型トランジスタTp1,Tp2の相互コンダクタンスgmを低下させてノイズを低減することができる。また、ノイズ特性劣化を抑制した画素微細化(高解像度化)が可能になる。
 なお、n型トランジスタTn1,Tn2におけるチャネル領域CHtnの凹凸形状(凹部141)、および、p型トランジスタTp1,Tp2におけるチャネル領域CHtpの凹凸形状(凹部142)のいずれか一方が設けられてもよい。しかし、凹部141,142の両方を設けることにより、ノイズ特性をさらに向上させることができる。
 凹部141,142の数は、図6および図7に示す例に限られない。凹部141,142の数および深さ等を調整することにより、相互コンダクタンスgmを調整することができる。
(第1実施形態の変形例)
 図10は、第1実施形態の変形例によるp型トランジスタTp1,Tp2の構成の一例を示す図である。第1実施形態の変形例は、第1実施形態と比較して、ゲート絶縁膜150の厚さTgp,Tgnの関係が異なっている。
 相互コンダクタンスgmは、ゲート絶縁膜150の厚さに応じて変化する。相互コンダクタンスgmは、例えば、ゲート絶縁膜150の厚さが大きくなるにつれて小さくなる。
 図10に示すp型トランジスタTp1,Tp2のゲート絶縁膜150の厚さTgp2は、図6に示すp型トランジスタTp1,Tp2のゲート絶縁膜150の厚さTgpよりも大きい。
 第1実施形態の変形例の撮像装置1のその他の構成は、第1実施形態による撮像装置1に対応する構成と同様であるため、その詳細な説明を省略する。
 第1実施形態の変形例では、p型トランジスタTp1,Tp2とn型トランジスタTn1,Tn2との間で、ゲート絶縁膜150の厚さが異なっている。より詳細には、p型トランジスタTp1,Tp2のゲート絶縁膜150は、n型トランジスタTn1,Tn2のゲート絶縁膜150よりも厚い。すなわち、図10に示すp型トランジスタTp1,Tp2のゲート絶縁膜150の厚さTgp2は、図7に示すn型トランジスタTn1,Tn2のゲート絶縁膜150の厚さTgnよりも大きい。これにより、差動回路210bを構成するn型トランジスタTn1,Tn2の相互コンダクタンスgmに対する、カレントミラー回路210aを構成するp型トランジスタTp1,Tp2の相互コンダクタンスgmの比率を低下させることができる。
 第1実施形態の変形例では、ゲート絶縁膜150の厚さを利用することにより、トランジスタの設置面積(ゲートサイズ)によらず、相互コンダクタンスgmの大きさを調整することができる。これにより、トランジスタの設置面積(ゲートサイズ)の増大を抑制しつつ、n型トランジスタTn1,Tn2の相互コンダクタンスgmに対する、p型トランジスタTp1,Tp2の相互コンダクタンスgmの比率を低下させてノイズを低減することができる。また、ノイズ特性劣化を抑制した画素微細化(高解像度化)が可能になる。
 第1実施形態の変形例のように、p型トランジスタTp1,Tp2とn型トランジスタTn1,Tn2との間で、ゲート絶縁膜150の厚さが異なっていてもよい。この場合にも、第1実施形態と同様の効果を得ることができる。なお、第1実施形態の変形例において、凹部141,142は必ずしも設けられていなくてもよい。しかし、凹部141,142の構成、および、ゲート絶縁膜150の厚さの調整の両方により、ノイズ特性をさらに向上させることができる。
(第2実施形態)
 図11~図14は、p型トランジスタTp1,Tp2の構成例を示す平面図である。図11~図14には、トランジスタTp1、Tp2のいずれか一方を示し、他方の構成の図示は省略している。トランジスタTp1、Tp2は、同じ構成を有していてもよい。また、トランジスタTp1、Tp2は、図11~図14に示す構成のいずれかの2つの組み合わせであってもよい。
 図11および図12では、45度ノッチ基板W45を示している。45度ノッチ基板W45は、結晶方位(100)の面((100)結晶面)を有するシリコン基板である。トランジスタTp1、Tp2は、45度ノッチ基板W45上に設けられており、ソース領域S、ドレイン領域Dおよびゲート電極Gtpを備えている。チャネル領域CHtpは、ソース領域Sとドレイン領域Dとの間に設けられている。ゲート電極Gtpは、ゲート絶縁膜(図示せず)を介してチャネル領域CHtpにおける凹部141の底面Sb1および側面Ss1,Ss2を被覆している。ゲート電極Gtpは、ゲート絶縁膜によってチャネル領域CHtpから電極的に絶縁されている。トランジスタTp1、Tp2のチャネル領域CHtpにおける凹部141の底面Sb1または側面Ss1,Ss2は、基板W45の表面上において、基板W45の(100)結晶面と略平行な面内にある。
 ゲート電極Gtpに電圧を印加することによって、チャネル領域CHtpにおける凹部141の底面Sb1および側面Ss1,Ss2が反転して、ソース領域Sとドレイン領域Dとの間が電気的に導通状態となる。これにより、チャネル領域CHtpをD1方向に電流が流れる。D1方向は、トランジスタTp1、Tp2において電流が流れる方向であり、かつ、トランジスタTp1、Tp2のチャネル長方向でもある。D1方向は、基板W45の(100)結晶面に対して略垂直または略平行方向である。即ち、トランジスタTp1、Tp2のチャネル長方向は、基板W45の表面上において、基板W45の(100)結晶面(ノッチ面)に対して略平行または略垂直方向となっている。
 図13および図14では、結晶方位(100)の面を有する0度ノッチ基板W0を示している。トランジスタTp1、Tp2は、0度ノッチ基板W0上に設けられており、ソース領域S、ドレイン領域Dおよびゲート電極Gtpを備えている。チャネル領域CHtpは、ソース領域Sとドレイン領域Dとの間に設けられている。ゲート電極Gtpは、ゲート絶縁膜(図示せず)を介してチャネル領域CHtpにおける凹部141の底面Sb1および側面Ss1,Ss2を被覆している。ゲート電極Gtpは、ゲート絶縁膜によってチャネル領域CHtpから電極的に絶縁されている。トランジスタTp1、Tp2のチャネル領域CHtpにおける凹部141の底面Sb1または側面Ss1,Ss2は、基板W0の表面上において、基板W0の(110)結晶面(ノッチ面)に対して、約45度または約135度に傾斜した面内にある。
 ゲート電極Gtpに電圧を印加することによって、チャネル領域CHtpにおける凹部141の底面Sb1および側面Ss1,Ss2が反転して、ソース領域Sとドレイン領域Dとの間が電気的に導通状態となる。これにより、チャネル領域CHtpをD2方向に電流が流れる。D2方向は、トランジスタTp1、Tp2において電流が流れる方向であり、かつ、トランジスタTp1、Tp2のチャネル長方向でもある。D2方向は、基板W0の(100)結晶面に対して略垂直または略平行方向である。即ち、トランジスタTp1、Tp2のチャネル長方向は、基板W0の表面上において、基板W45の(110)結晶面(ノッチ面)に対して、約45度または約135度方向となっている。
 ここで、トランジスタのキャリア移動度が低下するほど、相互コンダクタンスgmは低下する。一方、トランジスタのキャリア移動度が増大するほど、相互コンダクタンスgmは増大する。n型トランジスタの移動度は、基板の(100)結晶面または(110)結晶面に対する方向によって、ほとんど変化しない。一方、p型トランジスタの移動度は、基板の(100)結晶面または(110)結晶面に対する方向によって、変化する。したがって、p型トランジスタTp1,Tp2の移動度を低下させて相互コンダクタンスgmを低下させることにより、ノイズを低減することができる。
45度ノッチ基板W45の場合には、図11または図12に示すように、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W45の表面F45上において、基板W45の(100)結晶面(ノッチ面)に対して略垂直または略平行である。0度ノッチ基板W0の場合には、図13または図14に示すように、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W0の表面F0上において、基板W0の(110)結晶面(ノッチ面)に対して約45度または約135度に傾斜する。この場合、キャリア移動度が比較的低い。
 一方、45度ノッチ基板W45の場合には、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W45の表面F45上において、基板W45の(100)結晶面(ノッチ面)に対して約45度または約135度に傾斜する。0度ノッチ基板W0の場合には、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W0の表面F0上において、基板W0の(110)結晶面(ノッチ面)に対して略垂直または略平行である。この場合、キャリア移動度が比較的高い。
 このように、p型トランジスタTp1,Tp2は、チャネル長方向が基板W45の(100)結晶面(ノッチ面)に対して略垂直または略平行である場合、チャネル長方向が基板W45の(100)結晶面(ノッチ面)に対して約45度または約135度に傾斜する場合よりもキャリア移動度において非常に低くなる。即ち、p型トランジスタTp1、Tp2の相互コンダクタンスgmを低下させることができる。
 p型トランジスタTp1、Tp2の相互コンダクタンスgmを低下させることによって、ノイズが低減し、ノイズ特性が改善する。例えば、S/N(Signal/Noise)比が向上し、ダイナミックレンジを拡大することができる。その結果、本実施形態による固体撮像装置のセンサ特性が改善する。
 n型トランジスタTn1,Tn2において、基板の結晶面に対するチャネル領域における凹部142の底面Sb2および側面Ss3,Ss4の傾斜角は、n型トランジスタTn1、Tn2の相互コンダクタンスgmをあまり変化させない。n型トランジスタTn1、Tn2の相互コンダクタンスgmは、高い方がノイズ特性の改善に繋がる。しかし、n型トランジスタTn1、Tn2の相互コンダクタンスgmは、基板の結晶面に対するチャネル領域の上面または側面の傾斜角によってあまり変化しない。よって、基板の結晶面に対するn型トランジスタTn1、Tn2のチャネル長方向(D1)の変更は、例えば、S/N比やダイナミックレンジの改善にあまり寄与しない。
 本実施形態では、上記知見のもと、p型トランジスタTp1、Tp2のみのチャネル長方向を、基板W45の(100)結晶面に対して略平行または略垂直な面にする。これにより、p型トランジスタTp1、Tp2の相互コンダクタンスgmを低下させノイズ特性を効率良く改善することができる。その結果、ノイズ特性の劣化が少ない、高解像度の画像が得られる。
(第3実施形態)
 図15は、第3実施形態による固体撮像装置の構成例を示す概念図である。第2実施形態では、コンパレータ部210のn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2は、同一基板上に設けられている点で第1実施形態と同様である。しかし、第1実施形態では、フォトダイオードPDは第1基板100に形成され、コンパレータ部210は、第1基板100とは異なる第2基板200に形成されている。これに対し、第3実施形態では、コンパレータ部210は、フォトダイオードPDと同じ第1基板100に形成され、フォトダイオードPDの上方に積層するように形成されている。尚、ここでは、第1基板100の受光面を“下”として上下方向を表現している。よって、図15では、+Z方向が“上方向”となる。
 これにより、フォトダイオードPDとコンパレータ部210までの接続は、CCCを介することなく、図16に示すようにコンタクトプラグPLGで構成され得る。図16は、第3実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。コンパレータ部210は、フォトダイオードPDと同じ第1基板100に形成されている。よって、コンパレータ部210とフォトダイオードPDとの間には、コンタクトプラグPLGが形成されている。コンタクトプラグPLGは、コンパレータ部210とフォトダイオードPDとの間の層間絶縁膜を貫通してそれらの間を電気的に接続している。コンパレータ部210とフォトダイオードPDとの間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ部210の微細化に有利である。また、フォトダイオードPDからコンパレータ部210以降のロジック回路(列信号処理部550)までの接続には、第1基板100と第2基板200との間の1つの配線接合CCCで足りる。したがって、ノイズ特性の改善に繋がる。
(第4実施形態)
 図17は、第4実施形態による固体撮像装置の構成例を示す概念図である。第4実施形態では、コンパレータ部210のn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2は、互いに異なる基板上に設けられている点で第1~第3実施形態と異なる。例えば、コンパレータ部210のn型トランジスタTn1~Tn4は、フォトダイオードPDと同じ第1基板100に形成され、フォトダイオードPDの上方の半導体層に形成されている。一方、コンパレータ部210のp型トランジスタTp1、Tp2は、第1基板100とは異なる第2基板200に形成されている。
 図18は、第4実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。コンパレータ部210のうち差動回路210bを含むn型トランジスタTn1~Tn4は、フォトダイオードPDと同じ第1基板100に形成されている。n型トランジスタTn1~Tn4は、フォトダイオードPDの上方に設けられている。よって、コンパレータ部210の差動回路210bとフォトダイオードPDとの間には、コンタクトプラグPLGが形成されている。コンタクトプラグPLGは、コンパレータ部210とフォトダイオードPDとの間の層間絶縁膜を貫通してそれらの間を電気的に接続している。コンパレータ210とフォトダイオードPDとの間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ210の微細化に有利である。
 一方、コンパレータ部210のうちカレントミラー回路210aを構成するp型トランジスタTp1、Tp2は、第1基板100とは異なる第2基板200に形成されている。よって、コンパレータ210内の差動回路210bとカレントミラー回路210aとは別々の基板100、200にそれぞれ設けられている。カレントミラー回路210aと差動回路210bとの間には、2つの配線接合CCCが設けられている。即ち、第1基板100と第2基板200との間の1つの界面において、複数の配線接合CCCが用いられている。
 フォトダイオードPDからコンパレータ210以降のロジック回路(列信号処理部550)までの接続には、第2基板200と第3基板300との間の1つの界面は、1つの配線接合CCCが用いられている。
 このように、第4実施形態では、コンパレータ210のp型トランジスタTp1、Tp2をn型トランジスタTn1~Tn4とは別々の基板100、200に形成する。よって、n型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2とを別々の半導体製造工程で形成することができる。これにより、半導体製造工程を簡素化することができる。
(第5実施形態)
 図19は、第5実施形態による固体撮像装置の構成例を示す概念図である。第5実施形態では、コンパレータ210のn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2は、同一基板上に設けられている。しかし、コンパレータ210のうちn型トランジスタTn1~Tn4は、フォトダイオードPD、転送トランジスタTG、オーバーフローゲートOFと同じ半導体製造工程において、第1基板100上に形成され、転送トランジスタTG、オーバーフローゲートOFと同一半導体層に設けられている。一方、コンパレータ210のうちカレントミラー回路210aを構成するp型トランジスタTp1、Tp2は、フォトダイオードPD、転送トランジスタTG、オーバーフローゲートOFおよびn型トランジスタTn1~Tn4(差動回路210b)の上方の他の半導体層に積層するように形成されている。
 これにより、フォトダイオードPDとコンパレータ210のn型トランジスタTn1~Tn4までの接続は、図20に示すように、通常の配線Wおよびコンタクト(図示せず)で構成され得る。図20は、第5実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。コンパレータ210は、フォトダイオードPDと同じ第1基板100に形成されている。よって、コンパレータ210とフォトダイオードPDとの間には、配線Wが形成されている。配線Wがコンパレータ210とフォトダイオードPDとの間を電気的に接続している。コンパレータ210とフォトダイオードPDとの間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ210の微細化に有利である。
 また、フローティングディフュージョンFDと差動回路210bの入力との間の配線Wの長さが短縮され、その配線の容量が低減する。これにより、フローティングディフュージョンFDの電位の変換効率が向上され、ノイズ特性が改善される。
 コンパレータ210において、n型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2との間には、コンタクトプラグPLGが形成されている。コンタクトプラグPLGがn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2との間の層間絶縁膜を貫通してそれらの間を電気的に接続している。尚、n型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2との間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ210の微細化に有利である。
(第6実施形態)
 図21は、第6実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。第6実施形態では、カレントミラー回路210aがn型トランジスタTn11、Tn12で構成され、差動回路210bがp型トランジスタTp11,Tp12で構成されている。この場合、ノイズ特性を改善するためには、差動回路210bのp型トランジスタTp11、Tp12の相互コンダクタンスgmは大きい方が好ましい。なお、トランジスタTp11~Tp14には、電源VDD以上の電圧VRHWがバックバイアスとして印加されている。
 第6実施形態では、カレントミラー回路210aを構成するn型トランジスタTn11,Tn12の相互コンダクタンスgmを低下させることによって、ノイズが低減し、ノイズ特性が改善する。一方、差動回路210bを構成するp型トランジスタTp11,Tp12の相互コンダクタンスgmを増大させることによって、ノイズが低減し、ノイズ特性が改善する。
 図22は、第6実施形態によるp型トランジスタTp11,Tp12の構成の一例を示す図である。図22の上段は、平面図を示す。図22の中段は、図22の平面図のB-B’線の断面に対応する断面図を示す。図22の下段は、図22の平面図のA-A’線の断面に対応する断面図を示す。
 p型トランジスタTp11,Tp12は、基板の表面に対して略垂直な方向に延伸するチャネル領域CHtpを有する。また、p型トランジスタTp11,Tp12のチャネル領域CHtpは、チャネル長方向Dcpに対して略垂直な方向に沿って、凹凸形状を有する。すなわち、図22に示すp型トランジスタTp11,Tp12の構成は、図7に示すn型トランジスタTn1,Tn2の構成と略同じである。
 図23は、第6実施形態によるn型トランジスタTn11,Tn12の構成の一例を示す図である。図23の上段は、平面図を示す。図23の中段は、図23の平面図のB-B’線の断面に対応する断面図を示す。図23の下段は、図23の平面図のA-A’線の断面に対応する断面図を示す。
 n型トランジスタTn11,Tn12は、基板の表面に対して略垂直な方向に延伸するチャネル領域CHtnを有する。また、n型トランジスタTn11,Tn12のチャネル領域CHtnは、チャネル長方向Dcnに沿って、凹凸形状を有する。すなわち、図23に示すn型トランジスタTn11,Tn12の構成は、図6に示すp型トランジスタTp1,Tp2の構成と略同じである。
 第6実施形態では、p型トランジスタTp11,Tp12およびn型トランジスタTn11,Tn12の構成および配置により、第1実施形態と同様に、ノイズ特性(S/N)の向上が可能になり、また、ノイズ特性劣化を抑制した画素微細化(高解像度化)が可能になる。
 ここで、第2実施形態において説明したように、p型トランジスタの移動度は、基板の(100)結晶面または(110)結晶面に対する方向によって、変化する。したがって、差動回路210bを構成するp型トランジスタTp11,Tp12の移動度を増大させて相互コンダクタンスgmを増大させることにより、ノイズを低減することができる。
 図24~図27は、p型トランジスタTp11,Tp12の構成例を示す平面図である。図24~図27には、トランジスタTp11、Tp12のいずれか一方を示し、他方の構成の図示は省略している。トランジスタTp11、Tp12は、同じ構成を有していてもよい。また、トランジスタTp11、Tp12は、図24~図27に示す構成のいずれかの2つの組み合わせであってもよい。
 図24および図25では、トランジスタTp11、Tp12は、0度ノッチ基板W0上に設けられている。トランジスタTp11、Tp12のチャネル領域CHtpにおける凹部142の底面Sb2または側面Ss3,Ss4は、基板W0の表面上において、基板W0の(110)結晶面と略平行または略垂直な面内にある。D1方向は、基板W0の(110)結晶面に対して略垂直または略平行方向である。即ち、トランジスタTp11、Tp12のチャネル長方向は、基板W0の表面上において、基板W0の(110)結晶面(ノッチ面)に対して略平行または略垂直方向となっている。これにより、トランジスタTp11、Tp12の相互コンダクタンスgmは比較的大きくなる。
 図26および図27では、トランジスタTp11、Tp12は、45度ノッチ基板W45上に設けられている。トランジスタTp11、Tp12のチャネル領域CHtpにおける凹部142の底面Sb2または側面Ss3,Ss4は、基板W45の表面上において、基板W45の(100)結晶面に対して約45度または約135度に傾斜した面内にある。D1方向は、基板W45の(100)結晶面に対して約45度または約135度に傾斜した方向である。即ち、トランジスタTp11、Tp12のチャネル長方向は、基板W45の表面上において、基板W45の(100)結晶面(ノッチ面)に対して約45度または約135度に傾斜した方向となっている。これにより、トランジスタTp11、Tp12の相互コンダクタンスgmは比較的大きくなる。
 これにより、カレントミラー回路210aおよび差動回路210bを構成するトランジスタの導電型が第1実施形態のそれらの導電型とは逆である場合でも、第2実施形態と同様の効果を得ることができる。
 図28~図30は、それぞれ第3~第5実施形態に第6実施形態を組み合わせた実施形態を示す図である。第3~第5実施形態のカレントミラー回路210aおよび差動回路210bを構成するトランジスタの導電型が逆になっている。差動回路210bのp型トランジスタTp11,Tp12は、第6実施形態のそれらと同じ構成でよい。
 これにより、カレントミラー回路210aおよび差動回路210bを構成するトランジスタの導電型が第3~第5実施形態のそれらの導電型とは逆である場合でも、第3~第5実施形態のそれぞれと同様の効果を得ることができる。
 なお、第6実施形態に、第1実施形態の変形例を組み合わせてもよい。この場合、n型トランジスタTn11,Tn12のゲート絶縁膜150が、p型トランジスタTp11,Tp12のゲート絶縁膜150よりも厚くなる。
(第7実施形態)
 図31は、第7実施形態による画素共有ユニット539、列信号処理部550および画素信号処理部560の構成を示す概略断面図である。第7実施形態は、第1基板100と第2基板200との電気的な接続が、ビアコンタクトVIAに代えて、配線接合CCCにより行われている点で、第1実施形態とは異なっている。
 第7実施形態のように、第1基板100と第2基板200との電気的な接続が、ビアコンタクトVIAに代えて、配線接合CCCにより行われてもよい。この場合にも、第1実施形態と同様の効果を得ることができる。
(その他の変形例)
 以下、上記いずれかの実施形態を適用可能な固体撮像装置について説明する。本実施形態は、下記固体撮像装置にも適用することができる。
 図32は、画素共有ユニット539の構成の一例を表す等価回路図である。画素共有ユニット539は、複数の画素541(図32では、画素541A,541B,541C,541Dの4つの画素541を表す)と、この複数の画素541に接続された1の画素回路210と、画素回路210に接続された垂直信号線5433とを含んでいる。以下、コンパレータ部210は、画素回路に含まれるものとして考えてよい。画素回路210は、コンパレータ部のほか、例えば、4つのトランジスタ、具体的には、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDを含んでいる。上述のように、画素共有ユニット539は、1の画素回路210を時分割で動作させることにより、画素共有ユニット539に含まれる4つの画素541(画素541A,541B,541C,541D)それぞれの画素信号を順次垂直信号線543へ出力するようになっている。複数の画素541に1の画素回路210が接続されており、この複数の画素541の画素信号が、1の画素回路210により時分割で出力される態様を、「複数の画素541が1の画素回路210を共有する」という。
 画素541A,541B,541C,541Dは、互いに共通の構成要素を有している。以降、画素541A,541B,541C,541Dの構成要素を互いに区別するために、画素541Aの構成要素の符号の末尾には識別番号1、画素541Bの構成要素の符号の末尾には識別番号2、画素541Cの構成要素の符号の末尾には識別番号3、画素541Dの構成要素の符号の末尾には識別番号4を付与する。画素541A,541B,541C,541Dの構成要素を互いに区別する必要のない場合には、画素541A,541B,541C,541Dの構成要素の符号の末尾の識別番号を省略する。
 画素541A,541B,541C,541Dは、例えば、フォトダイオードPDと、フォトダイオードPDと電気的に接続された転送トランジスタTRと、転送トランジスタTRに電気的に接続されたフローティングディフュージョンFDとを有している。以下、転送トランジスタTGは、転送トランジスタTRとも呼ぶ。フォトダイオードPD(PD1,PD2,PD3,PD4)では、カソードが転送トランジスタTRのソースに電気的に接続されており、アノードが基準電位線(例えばグラウンド)に電気的に接続されている。フォトダイオードPDは、入射した光を光電変換し、その受光量に応じた電荷を発生する。転送トランジスタTR(転送トランジスタTR1,TR2,TR3,TR4)は、例えば、n型のCMOS(Complementary Metal Oxide Semiconductor)トランジスタである。転送トランジスタTRでは、ドレインがフローティングディフュージョンFDに電気的に接続され、ゲートが駆動信号線に電気的に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542(図1参照)のうちの一部である。転送トランジスタTRは、フォトダイオードPDで発生した電荷をフローティングディフュージョンFDへと転送する。フローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)は、p型半導体層中に形成されたn型拡散層領域である。フローティングディフュージョンFDは、フォトダイオードPDから転送された電荷を一時的に保持する電荷保持手段であり、かつ、その電荷量に応じた電圧を発生させる、電荷―電圧変換手段である。
 1の画素共有ユニット539に含まれる4つのフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)は、互いに電気的に接続されるとともに、増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソースに電気的に接続されている。FD変換ゲイン切替トランジスタFDGのドレインはリセットトランジスタRSTのソースに接続され、FD変換ゲイン切替トランジスタFDGのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。リセットトランジスタRSTのドレインは電源線VDDに接続され、リセットトランジスタRSTのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。増幅トランジスタAMPのゲートはフローティングディフュージョンFDに接続され、増幅トランジスタAMPのドレインは電源線VDDに接続され、増幅トランジスタAMPのソースは選択トランジスタSELのドレインに接続されている。選択トランジスタSELのソースは垂直信号線543に接続され、選択トランジスタSELのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。
 転送トランジスタTRは、転送トランジスタTRがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。転送トランジスタTRのゲート(転送ゲートTG)は、例えば、いわゆる縦型電極を含んでおり、後述の図34に示すように、半導体層(後述の図34の半導体層100S)の表面からPDに達する深さまで延在して設けられている。リセットトランジスタRSTは、フローティングディフュージョンFDの電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、フローティングディフュージョンFDの電位を電源線VDDの電位にリセットする。選択トランジスタSELは、画素回路210からの画素信号の出力タイミングを制御する。増幅トランジスタAMPは、画素信号として、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、選択トランジスタSELを介して垂直信号線543に接続されている。この増幅トランジスタAMPは、列信号処理部550において、垂直信号線543に接続された負荷回路部(図1参照)とともにソースフォロアを構成している。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョンFDの電圧を、垂直信号線543を介して列信号処理部550に出力する。リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELは、例えば、N型のCMOSトランジスタである。
 FD変換ゲイン切替トランジスタFDGは、フローティングディフュージョンFDでの電荷―電圧変換のゲインを変更する際に用いられる。一般に、暗い場所での撮影時には画素信号が小さい。Q=CVに基づき、電荷電圧変換を行う際に、フローティングディフュージョンFDの容量(FD容量C)が大きければ、増幅トランジスタAMPで電圧に変換した際のVが小さくなってしまう。一方、明るい場所では、画素信号が大きくなるので、FD容量Cが大きくなければ、フローティングディフュージョンFDで、フォトダイオードPDの電荷を受けきれない。さらに、増幅トランジスタAMPで電圧に変換した際のVが大きくなりすぎないように(言い換えると、小さくなるように)、FD容量Cが大きくなっている必要がある。これらを踏まえると、FD変換ゲイン切替トランジスタFDGをオンにしたときには、FD変換ゲイン切替トランジスタFDG分のゲート容量が増えるので、全体のFD容量Cが大きくなる。一方、FD変換ゲイン切替トランジスタFDGをオフにしたときには、全体のFD容量Cが小さくなる。このように、FD変換ゲイン切替トランジスタFDGをオンオフ切り替えることで、FD容量Cを可変にし、変換効率を切り替えることができる。FD変換ゲイン切替トランジスタFDGは、例えば、N型のCMOSトランジスタである。
 なお、FD変換ゲイン切替トランジスタFDGを設けない構成も可能である。このとき、例えば、画素回路210は、例えば増幅トランジスタAMP、選択トランジスタSELおよびリセットトランジスタRSTの3つのトランジスタで構成される。画素回路210は、例えば、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGなどの画素トランジスタの少なくとも1つを有する。
 選択トランジスタSELは、電源線VDDと増幅トランジスタAMPとの間に設けられていてもよい。この場合、リセットトランジスタRSTのドレインが電源線VDDおよび選択トランジスタSELのドレインに電気的に接続されている。選択トランジスタSELのソースが増幅トランジスタAMPのドレインに電気的に接続されており、選択トランジスタSELのゲートが行駆動信号線542(図1参照)に電気的に接続されている。増幅トランジスタAMPのソース(画素回路210の出力端)が垂直信号線543に電気的に接続されており、増幅トランジスタAMPのゲートがリセットトランジスタRSTのソースに電気的に接続されている。なお、図示は省略するが、1の画素回路210を共有する画素541の数は、4以外であってもよい。例えば、2つまたは8つの画素541が1の画素回路210を共有してもよい。
 図33は、複数の画素共有ユニット539と、垂直信号線543との接続態様の一例を表したものである。例えば、列方向に並ぶ4つの画素共有ユニット539が4つのグループに分けられており、この4つのグループ各々に垂直信号線543が接続されている。図33には、説明を簡単にするため、4つのグループが各々、1つの画素共有ユニット539を有する例を示したが、4つのグループが各々、複数の画素共有ユニット539を含んでいてもよい。このように、撮像装置1では、列方向に並ぶ複数の画素共有ユニット539が、1つまたは複数の画素共有ユニット539を含むグループに分けられていてもよい。例えば、このグループそれぞれに、垂直信号線543および列信号処理回路550が接続されており、それぞれのグループから画素信号を同時に読み出すことができるようになっている。あるいは、撮像装置1では、列方向に並ぶ複数の画素共有ユニット539に1つの垂直信号線543が接続されていてもよい。このとき、1つの垂直信号線543に接続された複数の画素共有ユニット539から、時分割で順次画素信号が読み出されるようになっている。
[撮像装置1の具体的構成]
 図34は、撮像装置1の第1基板100、第2基板100および第3基板300の主面に対して垂直方向の断面構成の一例を表したものである。図34は、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の断面と異なっていてもよい。撮像装置1では、第1基板100、第2基板200および第3基板300がこの順に積層されている。撮像装置1は、さらに、第1基板100の裏面側(光入射面側)に受光レンズ401を有している。受光レンズ401と第1基板100との間に、カラーフィルタ層(図示せず)が設けられていてもよい。受光レンズ401は、例えば、画素541A,541B,541C,541D各々に設けられている。撮像装置1は、例えば、裏面照射型の撮像装置である。撮像装置1は、中央部に配置された画素アレイ部540と、画素アレイ部540の外側に配置された周辺部540Bとを有している。
 第1基板100は、受光レンズ401側から順に、絶縁膜111、固定電荷膜112、半導体層100Sおよび配線層100Tを有している。半導体層100Sは、例えばシリコン基板により構成されている。半導体層100Sは、例えば、表面(配線層100T側の面)の一部およびその近傍に、pウェル層115を有しており、それ以外の領域(pウェル層115よりも深い領域)に、n型半導体領域114を有している。例えば、このn型半導体領域114およびpウェル層115によりpn接合型のフォトダイオードPDが構成されている。pウェル層115は、p型半導体領域である。
 図35Aは、第1基板100の平面構成の一例を表したものである。図35Aは、主に、第1基板100の画素分離部117、フォトダイオードPD、フローティングディフュージョンFD、VSSコンタクト領域118および転送トランジスタTRの平面構成を表している。図34とともに、図35Aを用いて第1基板100の構成について説明する。
 半導体層100Sの表面近傍には、フローティングディフュージョンFDおよびVSSコンタクト領域118が設けられている。フローティングディフュージョンFDは、pウェル層115内に設けられたn型半導体領域により構成されている。画素541A,541B,541C,541D各々のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)は、例えば、画素共有ユニット539の中央部に互いに近接して設けられている(図35A)。詳細は後述するが、この共有ユニット539に含まれる4つのフローティングディフュージョン(フローティングディフュージョンFD1,FD2,FD3,FD4)は、第1基板100内(より具体的には配線層100Tの内)で、電気的接続手段(後述のパッド部120)を介して互いに電気的に接続されている。更に、フローティングディフュージョンFDは、第1基板100から第2基板200へ(より具体的には、配線層100Tから配線層200Tへ)と電気的手段(後述の貫通電極120E)を介して接続されている。第2基板200(より具体的には配線層200Tの内部)では、この電気的手段により、フローティングディフュージョンFDが、増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソースに電気的に接続されている。
 VSSコンタクト領域118は、基準電位線VSSに電気的に接続される領域であり、フローティングディフュージョンFDと離間して配置されている。例えば、画素541A,541B,541C,541Dでは、各画素のV方向の一端にフローティングディフュージョンFDが配置され、他端にVSSコンタクト領域118が配置されている(図35A)。VSSコンタクト領域118は、例えば、p型半導体領域により構成されている。VSSコンタクト領域118は、例えば接地電位や固定電位に接続されている。これにより、半導体層100Sに基準電位が供給される。
 第1基板100には、フォトダイオードPD、フローティングディフュージョンFDおよびVSSコンタクト領域118とともに、転送トランジスタTRが設けられている。このフォトダイオードPD、フローティングディフュージョンFD、VSSコンタクト領域118および転送トランジスタTRは、画素541A,541B,541C,541D各々に設けられている。転送トランジスタTRは、半導体層100Sの表面側(光入射面側とは反対側、第2基板200側)に設けられている。転送トランジスタTRは、転送ゲートTGを有している。転送ゲートTGは、例えば、半導体層100Sの表面に対向する水平部分TGbと、半導体層100S内に設けられた垂直部分TGaとを含んでいる。垂直部分TGaは、半導体層100Sの厚み方向に延在している。垂直部分TGaの一端は水平部分TGbに接し、他端はn型半導体領域114内に設けられている。転送トランジスタTRを、このような縦型トランジスタにより構成することにより、画素信号の転送不良が生じにくくなり、画素信号の読み出し効率を向上させることができる。
 転送ゲートTGの水平部分TGbは、垂直部分TGaに対向する位置から例えば、H方向において画素共有ユニット539の中央部に向かって延在している(図35A)。これにより、転送ゲートTGに達する貫通電極(後述の貫通電極TGV)のH方向の位置を、フローティングディフュージョンFD、VSSコンタクト領域118に接続される貫通電極(後述の貫通電極120E,121E)のH方向の位置に近づけることができる。例えば、第1基板100に設けられた複数の画素共有ユニット539は、互いに同じ構成を有している(図35A)。
 半導体層100Sには、画素541A,541B,541C,541Dを互いに分離する画素分離部117が設けられている。画素分離部117は、半導体層100Sの法線方向(半導体層100Sの表面に対して垂直な方向)に延在して形成されている。画素分離部117は、画素541A,541B,541C,541Dを互いに仕切るように設けられており、例えば格子状の平面形状を有している(図35A,図35B)。画素分離部117は、例えば、画素541A,541B,541C,541Dを互いに電気的および光学的に分離する。画素分離部117は、例えば、遮光膜117Aおよび絶縁膜117Bを含んでいる。遮光膜117Aには、例えば、タングステン(W)等が用いられる。絶縁膜117Bは、遮光膜117Aとpウェル層115またはn型半導体領域114との間に設けられている。絶縁膜117Bは、例えば、酸化シリコン(SiO)によって構成されている。画素分離部117は、例えば、FTI(Full Trench Isolation)構造を有しており、半導体層100Sを貫通している。図示しないが、画素分離部117は半導体層100Sを貫通するFTI構造に限定されない。例えば、半導体層100Sを貫通しないDTI(Deep Trench Isolation)構造であっても良い。画素分離部117は、半導体層100Sの法線方向に延在して、半導体層100Sの一部の領域に形成される。
 半導体層100Sには、例えば、第1ピニング領域113および第2ピニング領域116が設けられている。第1ピニング領域113は、半導体層100Sの裏面近傍に設けられており、n型半導体領域114と固定電荷膜112との間に配置されている。第2ピニング領域116は、画素分離部117の側面、具体的には、画素分離部117とpウェル層115またはn型半導体領域114との間に設けられている。第1ピニング領域113および第2ピニング領域116は、例えば、p型半導体領域により構成されている。
 半導体層100Sと絶縁膜111との間には、負の固定電荷を有する固定電荷膜112が設けられている。固定電荷膜112が誘起する電界により、半導体層100Sの受光面(裏面)側の界面に、ホール蓄積層の第1ピニング領域113が形成される。これにより、半導体層100Sの受光面側の界面準位に起因した暗電流の発生が抑えられる。固定電荷膜112は、例えば、負の固定電荷を有する絶縁膜によって形成されている。この負の固定電荷を有する絶縁膜の材料としては、例えば、酸化ハフニウム、酸化ジルコン、酸化アルミニウム、酸化チタンまたは酸化タンタルが挙げられる。
 固定電荷膜112と絶縁膜111との間には、遮光膜117Aが設けられている。この遮光膜117Aは、画素分離部117を構成する遮光膜117Aと連続して設けられていてもよい。この固定電荷膜112と絶縁膜111との間の遮光膜117Aは、例えば、半導体層100S内の画素分離部117に対向する位置に選択的に設けられている。絶縁膜111は、この遮光膜117Aを覆うように設けられている。絶縁膜111は、例えば、酸化シリコンにより構成されている。
 半導体層100Sと第2基板200との間に設けられた配線層100Tは、半導体層100S側から、層間絶縁膜119、パッド部120,121、パッシベーション膜122、層間絶縁膜123および接合膜124をこの順に有している。転送ゲートTGの水平部分TGbは、例えば、この配線層100Tに設けられている。層間絶縁膜119は、半導体層100Sの表面全面にわたって設けられており、半導体層100Sに接している。層間絶縁膜119は、例えば酸化シリコン膜により構成されている。なお、配線層100Tの構成は上述の限りでなく、配線と絶縁膜とを有する構成であれば良い。
 図35Bは、図35Aに示した平面構成とともに、パッド部120,121の構成を表している。パッド部120,121は、層間絶縁膜119上の選択的な領域に設けられている。パッド部120は、画素541A,541B,541C,541D各々のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)を互いに接続するためのものである。パッド部120は、例えば、画素共有ユニット539毎に、平面視で画素共有ユニット539の中央部に配置されている(図35B)。このパッド部120は、画素分離部117を跨ぐように設けられており、フローティングディフュージョンFD1,FD2,FD3,FD4各々の少なくとも一部に重畳して配置されている(図34,図35B)。具体的には、パッド部120は、画素回路210を共有する複数のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)各々の少なくとも一部と、その画素回路210を共有する複数のフォトダイオードPD(フォトダイオードPD1,PD2,PD3,PD4)の間に形成された画素分離部117の少なくとも一部とに対して、半導体層100Sの表面に対して垂直な方向に重なる領域に形成される。層間絶縁膜119には、パッド部120とフローティングディフュージョンFD1,FD2,FD3,FD4とを電気的に接続するための接続ビア120Cが設けられている。接続ビア120Cは、画素541A,541B,541C,541D各々に設けられている。例えば、接続ビア120Cにパッド部120の一部が埋め込まれることにより、パッド部120とフローティングディフュージョンFD1,FD2,FD3,FD4とが電気的に接続されている。
 パッド部121は、複数のVSSコンタクト領域118を互いに接続するためのものである。例えば、V方向に隣り合う一方の画素共有ユニット539の画素541C,541Dに設けられたVSSコンタクト領域118と、他方の画素共有ユニット539の画素541A,541Bに設けられたVSSコンタクト領域118とがパッド部121により電気的に接続されている。パッド部121は、例えば、画素分離部117を跨ぐように設けられており、これら4つのVSSコンタクト領域118各々の少なくとも一部に重畳して配置されている。具体的には、パッド部121は、複数のVSSコンタクト領域118各々の少なくとも一部と、その複数のVSSコンタクト118の間に形成された画素分離部117の少なくとも一部とに対して、半導体層100Sの表面に対して垂直な方向に重なる領域に形成される。層間絶縁膜119には、パッド部121とVSSコンタクト領域118とを電気的に接続するための接続ビア121Cが設けられている。接続ビア121Cは、画素541A,541B,541C,541D各々に設けられている。例えば、接続ビア121Cにパッド部121の一部が埋め込まれることにより、パッド部121とVSSコンタクト領域118とが電気的に接続されている。例えば、V方向に並ぶ複数の画素共有ユニット539各々のパッド部120およびパッド部121は、H方向において略同じ位置に配置されている(図35B)。
 パッド部120を設けることで、チップ全体において、各フローティングディフュージョンFDから画素回路210(例えば増幅トランジスタAMPのゲート電極)へ接続するための配線を減らすことができる。同様に、パッド部121を設けることで、チップ全体において、各VSSコンタクト領域118への電位を供給する配線を減らすことができる。これにより、チップ全体の面積の縮小、微細化された画素における配線間の電気的干渉の抑制、及び/又は部品点数の削減によるコスト削減などが可能になる。
 パッド部120、121は、第1基板100、第2基板200の所望の位置に設けることができる。具体的には、パッド部120、121を配線層100T、半導体層200Sの絶縁領域212のいずれかに設けることができる。配線層100Tに設ける場合には、パッド部120、121を半導体層100Sに直接接触させても良い。具体的には、パッド部120、121が、フローティングディフュージョンFD及び/又はVSSコンタクト領域118の各々の少なくとも一部と直接接続される構成でも良い。また、パッド部120、121に接続するフローティングディフュージョンFD及び/又はVSSコンタクト領域118の各々から接続ビア120C,121Cを設け、配線層100T、半導体層200Sの絶縁領域2112の所望の位置にパッド部120、121を設ける構成でも良い。
 特に、パッド部120、121を配線層100Tに設ける場合には、半導体層200Sの絶縁領域212におけるフローティングディフュージョンFD及び/又はVSSコンタクト領域118に接続される配線を減らすことができる。これにより、画素回路210を形成する第2基板200のうち、フローティングディフュージョンFDから画素回路210に接続するための貫通配線を形成するための絶縁領域212の面積を削減することができる。よって、画素回路210を形成する第2基板200の面積を大きく確保することができる。画素回路210の面積を確保することで、画素トランジスタを大きく形成することができ、ノイズ低減などによる画質向上に寄与することができる。
 特に、画素分離部117にFTI構造を用いた場合、フローティングディフュージョンFD及び/又はVSSコンタクト領域118は、各画素541に設けることが好ましいため、パッド部120、121の構成を用いることで、第1基板100と第2基板200とを接続する配線を大幅に削減することができる。
 また、図35Bのように、例えば複数のフローティングディフュージョンFDが接続されるパッド部120と、複数のVSSコンタクト118が接続されるパッド部121とは、V方向において直線状に交互に配置される。また、パッド部120、121は、複数のフォトダイオードPDや、複数の転送ゲートTGや、複数のフローティングディフュージョンFDに囲まれる位置に形成される。これにより、複数の素子を形成する第1基板100において、フローティングディフュージョンFDとVSSコンタクト領域118以外の素子を自由に配置することができ、チップ全体のレイアウトの効率化を図ることができる。また、各画素共有ユニット539に形成される素子のレイアウトにおける対称性が確保され、各画素541の特性のばらつきを抑えることができる。
 パッド部120,121は、例えば、ポリシリコン(Poly Si)、より具体的には、不純物が添加されたドープドポリシリコンにより構成されている。パッド部120,121はポリシリコン、タングステン(W)、チタン(Ti)および窒化チタン(TiN)等の耐熱性の高い導電性材料により構成されていることが好ましい。これにより、第1基板100に第2基板200の半導体層200Sを貼り合わせた後に、画素回路210を形成することが可能となる。以下、この理由について説明する。なお、以下の説明において、第1基板100と第2基板200の半導体層200Sを貼り合わせた後に、画素回路210を形成する方法を、第1の製造方法と呼ぶ。
 ここで、第2基板200に画素回路210を形成した後に、これを第1基板100に貼り合わせることも考え得る(以下第2の製造方法という)。この第2の製造方法では、第1基板100の表面(配線層100Tの表面)および第2基板200の表面(配線層200Tの表面)それぞれに、電気的接続用の電極を予め形成しておく。第1基板100と第2基板200を貼り合わせると、これと同時に、第1基板100の表面と第2基板200の表面のそれぞれに形成された電気的接続用の電極同士が接触する。これにより、第1基板100に含まれる配線と第2基板200に含まれる配線との間で電気的接続が形成される。よって、第2の製造方法を用いた撮像装置1の構成とすることで、例えば第1基板100と第2基板200の各々の構成に応じて適切なプロセスを用いて製造することができ、高品質、高性能な撮像装置を製造することができる。
 このような第2の製造方法では、第1基板100と第2基板200とを貼り合わせる際に、貼り合せ用の製造装置に起因して、位置合わせの誤差が生じることがある。また、第1基板100および第2基板200は、例えば、直径数十cm程度の大きさを有するが、第1基板100と第2基板200とを貼り合わせる際に、この第1基板100、第2基板200各部の微視的領域で、基板の伸び縮みが発生するおそれがある。この基板の伸び縮みは、基板同士が接触するタイミングが多少ずれることに起因する。このような第1基板100および第2基板200の伸び縮みに起因して、第1基板100の表面および第2基板200の表面それぞれに形成された電気的接続用の電極の位置に、誤差が生じることがある。第2の製造方法では、このような誤差が生じても、第1基板100および第2基板200それぞれの電極同士が接触するように対処しておくことが好ましい。具体的には、第1基板100および第2基板200の電極の少なくとも一方、好ましくは両方を、上記誤差を考慮して大きくしておく。このため、第2の製造方法を用いると、例えば、第1基板100または第2基板200の表面に形成された電極の大きさ(基板平面方向の大きさ)が、第1基板100または第2基板200の内部から表面に厚み方向へ延在する内部電極の大きさよりも大きくなる。
 一方、パッド部120,121を耐熱性の導電材料により構成することで、上記第1の製造方法を用いることが可能となる。第1の製造方法では、フォトダイオードPDおよび転送トランジスタTRなどを含む第1基板100を形成した後、この第1基板100と第2基板200(半導体層2000S)とを貼り合わせる。このとき、第2基板200は、画素回路210を構成する能動素子および配線層などのパターンは未形成の状態である。第2基板200はパターンを形成する前の状態であるため、仮に、第1基板100と第2基板200を貼り合わせる際、その貼り合せ位置に誤差が生じたとしても、この貼り合せ誤差によって、第1基板100のパターンと第2基板200のパターンとの間の位置合わせに誤差が生じることはない。なぜならば、第2基板200のパターンは、第1基板100と第2基板200を貼り合わせた後に、形成するからである。なお、第2基板にパターンを形成する際には、例えば、パターン形成のための露光装置において、第1基板に形成されたパターンを位置合わせの対象としながらパターン形成する。上記理由により、第1基板100と第2基板200との貼り合せ位置の誤差は、第1の製造方法においては、撮像装置1を製造する上で問題とならない。同様の理由で、第2の製造方法で生じる基板の伸び縮みに起因した誤差も、第1の製造方法においては、撮像装置1を製造する上で問題とならない。
 第1の製造方法では、このようにして第1基板100と第2基板200(半導体層200S)とを貼り合せた後、第2基板200上に能動素子を形成する。この後、貫通電極120E,121Eおよび貫通電極TGV(図34)を形成する。この貫通電極120E,121E,TGVの形成では、例えば、第2基板200の上方から、露光装置による縮小投影露光を用いて貫通電極のパターンを形成する。縮小露光投影を用いるため、仮に、第2基板200と露光装置との位置合わせに誤差が生じても、その誤差の大きさは、第2基板200においては、上記第2の製造方法の誤差の数分の一(縮小露光投影倍率の逆数)にしかならない。よって、第1の製造方法を用いた撮像装置1の構成とすることで、第1基板100と第2基板200の各々に形成される素子同士の位置合わせが容易になり、高品質、高性能な撮像装置を製造することができる。
 このような第1の製造方法を用いて製造された撮像装置1は、第2の製造方法で製造された撮像装置と異なる特徴を有する。具体的には、第1の製造方法により製造された撮像装置1では、例えば、貫通電極120E,121E,TGVが、第2基板200から第1基板100に至るまで、略一定の太さ(基板平面方向の大きさ)となっている。あるいは、貫通電極120E,121E,TGVがテーパー形状を有するときには、一定の傾きのテーパー形状を有している。このような貫通電極120E,121E,TGVを有する撮像装置1は、画素541を微細化しやすい。
 ここで、第1の製造方法により撮像装置1を製造すると、第1基板100と第2基板200(半導体層200S)とを貼り合わせた後に、第2基板200に能動素子を形成するので、第1基板100にも、能動素子の形成の際に必要な加熱処理の影響が及ぶことになる。このため、上記のように、第1基板100に設けられたパッド部120,121には、耐熱性の高い導電材料を用いることが好ましい。例えば、パッド部120,121には、第2基板200の配線層200Tに含まれる配線材の少なくとも一部よりも、融点の高い(すなわち耐熱性の高い)材料を用いていることが好ましい。例えば、パッド部120,121にドープトポリシリコン、タングステン、チタンあるいは窒化チタン等の耐熱性の高い導電材を用いる。これにより、上記第1の製造方法を用いて撮像装置1を製造することが可能となる。
 パッシベーション膜122は、例えば、パッド部120,121を覆うように、半導体層100Sの表面全面にわたって設けられている(図34)。パッシベーション膜122は、例えば、窒化シリコン(SiN)膜により構成されている。層間絶縁膜123は、パッシベーション膜122を間にしてパッド部120,121を覆っている。この層間絶縁膜123は、例えば、半導体層100Sの表面全面にわたって設けられている。層間絶縁膜123は、例えば酸化シリコン(SiO)膜により構成されている。接合膜124は、第1基板100(具体的には配線層100T)と第2基板200との接合面に設けられている。即ち、接合膜124は、第2基板200に接している。この接合膜124は、第1基板100の主面全面にわたって設けられている。接合膜124は、例えば、窒化シリコン膜により構成されている。
 受光レンズ401は、例えば、固定電荷膜112および絶縁膜111を間にして半導体層100Sに対向している(図34)。受光レンズ401は、例えば画素541A,541B,541C,541D各々のフォトダイオードPDに対向する位置に設けられている。
 第2基板200は、第1基板100側から、半導体層200Sおよび配線層200Tをこの順に有している。半導体層200Sは、シリコン基板で構成されている。半導体層200Sでは、厚み方向にわたって、ウェル領域211が設けられている。ウェル領域211は、例えば、p型半導体領域である。第2基板20には、画素共有ユニット539毎に配置された画素回路210が設けられている。この画素回路210は、例えば、半導体層200Sの表面側(配線層200T側)に設けられている。撮像装置1では、第1基板100の表面側(配線層100T側)に第2基板200の裏面側(半導体層200S側)が向かうようにして、第2基板200が第1基板100に貼り合わされている。つまり、第2基板200は、第1基板100に、フェイストゥーバックで貼り合わされている。
 図36~図40は、第2基板200の平面構成の一例を模式的に表している。図36には、半導体層200Sの表面近傍に設けられた画素回路210の構成を表す。図37は、配線層200T(具体的には後述の第1配線層W1)と、配線層200Tに接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表している。図38~図40は、配線層200Tの平面構成の一例を表している。以下、図34とともに、図36~図40を用いて第2基板200の構成について説明する。図36および図37ではフォトダイオードPDの外形(画素分離部117とフォトダイオードPDとの境界)を破線で表し、画素回路210を構成する各トランジスタのゲート電極に重なる部分の半導体層200Sと素子分離領域213または絶縁領域214との境界を点線で表す。増幅トランジスタAMPのゲート電極に重なる部分では、チャネル幅方向の一方に、半導体層200Sと素子分離領域213との境界、および素子分離領域213と絶縁領域213との境界が設けられている。
 第2基板200には、半導体層200Sを分断する絶縁領域212と、半導体層200Sの厚み方向の一部に設けられた素子分離領域213とが設けられている(図34)。例えば、H方向に隣り合う2つの画素回路210の間に設けられた絶縁領域212に、この2つの画素回路210に接続された2つの画素共有ユニット539の貫通電極120E,121Eおよび貫通電極TGV(貫通電極TGV1,TGV2,TGV3,TGV4)が配置されている(図37)。
 絶縁領域212は、半導体層200Sの厚みと略同じ厚みを有している(図34)。半導体層200Sは、この絶縁領域212により分断されている。この絶縁領域212に、貫通電極120E,121Eおよび貫通電極TGVが配置されている。絶縁領域212は、例えば酸化シリコンにより構成されている。
 貫通電極120E,121Eは、絶縁領域212を厚み方向に貫通して設けられている。貫通電極120E,121Eの上端は、配線層200Tの配線(後述の第1配線W1,第2配線W2,第3配線W3,第4配線W4)に接続されている。この貫通電極120E,121Eは、絶縁領域212、接合膜124、層間絶縁膜123およびパッシベーション膜122を貫通して設けられ、その下端はパッド部120,121に接続されている(図34)。貫通電極120Eは、パッド部120と画素回路210とを電気的に接続するためのものである。即ち、貫通電極120Eにより、第1基板100のフローティングディフュージョンFDが第2基板200の画素回路210に電気的に接続される。貫通電極121Eは、パッド部121と配線層200Tの基準電位線VSSとを電気的に接続するためのものである。即ち、貫通電極121Eにより、第1基板100のVSSコンタクト領域118が第2基板200の基準電位線VSSに電気的に接続される。
 貫通電極TGVは、絶縁領域212を厚み方向に貫通して設けられている。貫通電極TGVの上端は、配線200Tの配線に接続されている。この貫通電極TGVは、絶縁領域212、接合膜124、層間絶縁膜123、パッシベーション膜122および層間絶縁膜119を貫通して設けられ、その下端は転送ゲートTGに接続されている(図34)。このような貫通電極TGVは、画素541A,541B,541C,541D各々の転送ゲートTG(転送ゲートTG1,TG2,TG3,TG4)と、配線層200Tの配線(行駆動信号線542の一部、具体的には、後述の図39の配線TRG1,TRG2,TRG3,TRG4)とを電気的に接続するためのものである。即ち、貫通電極TGVにより、第1基板100の転送ゲートTGが第2基板200の配線TRGに電気的に接続され、転送トランジスタTR(転送トランジスタTR1,TR2,TR3,TR4)各々に駆動信号が送られるようになっている。
 絶縁領域212は、第1基板100と第2基板200とを電気的に接続するための前記貫通電極120E,121Eおよび貫通電極TGVを、半導体層200Sと絶縁して設けるための領域である。例えば、H方向に隣り合う2つの画素回路210(共有ユニット539)の間に設けられた絶縁領域212に、この2つの画素回路210に接続された貫通電極120E,121Eおよび貫通電極TGV(貫通電極TGV1,TGV2,TGV3,TGV4)が配置されている。絶縁領域212は、例えば、V方向に延在して設けられている(図36,図37)。ここでは、転送ゲートTGの水平部分TGbの配置を工夫することにより、垂直部分TGaの位置に比べて、貫通電極TGVのH方向の位置が貫通電極120E,121EのH方向の位置に近づくように配置されている(図35A,図37)。例えば、貫通電極TGVは、H方向において、貫通電極120E,120Eと略同じ位置に配置されている。これにより、V方向に延在する絶縁領域212に、貫通電極120E,121Eおよび貫通電極TGVをまとめて設けることができる。別の配置例として、垂直部分TGaに重畳する領域のみに水平部分TGbを設けることも考え得る。この場合には、垂直部分TGaの略直上に貫通電極TGVが形成され、例えば、各画素541のH方向およびV方向の略中央部に貫通電極TGVが配置される。このとき、貫通電極TGVのH方向の位置と貫通電極120E,121EのH方向の位置とが大きくずれる。貫通電極TGVおよび貫通電極120E,121Eの周囲には、近接する半導体層200Sから電気的に絶縁するため、例えば、絶縁領域212を設ける。貫通電極TGVのH方向の位置と貫通電極120E,121EのH方向の位置とが大きく離れる場合には、貫通電極120E,121E,TGV各々の周囲に絶縁領域212を独立して設けることが必要となる。これにより、半導体層200Sが細かく分断されることになる。これに比べ、V方向に延在する絶縁領域212に、貫通電極120E,121Eおよび貫通電極TGVをまとめて配置するレイアウトは、半導体層200SのH方向の大きさを大きくすることができる。よって、半導体層200Sにおける半導体素子形成領域の面積を大きく確保することができる。これにより、例えば、増幅トランジスタAMPのサイズを大きくし、ノイズを抑えることが可能となる。
 画素共有ユニット539は、図32を参照して説明したように、複数の画素541のそれぞれに設けられたフローティングディフュージョンFDの間を電気的に接続し、これら複数の画素541が1つの画素回路210を共有する構造を有している。そして、前記フローティングディフュージョンFD間の電気的接続は、第1基板100に設けられたパッド部120によってなされている(図34、図35B)。第1基板100に設けられた電気的接続部(パッド部120)と第2基板200に設けられた画素回路210は、1つの貫通電極120Eを介して電気的に接続されている。別の構造例として、フローティングディフュージョンFD間の電気的接続部を第2基板200に設けることも考え得る。この場合、画素共有ユニット539には、フローティングディフュージョンFD1,FD2,FD3,FD4各々に接続される4つの貫通電極が設けられる。したがって、第2基板200において、半導体層200Sを貫通する貫通電極の数が増え、これら貫通電極の周囲を絶縁する絶縁領域212が大きくなる。これに比べ、第1基板100にパッド部120を設ける構造(図34,図35B)は、貫通電極の数を減らし、絶縁領域212を小さくすることができる。よって、半導体層200Sにおける半導体素子形成領域の面積を大きく確保することができる。これにより、例えば、増幅トランジスタAMPのサイズを大きくし、ノイズを抑えることが可能となる。
 素子分離領域213は、半導体層200Sの表面側に設けられている。素子分離領域213は、STI(Shallow Trench Isolation)構造を有している。この素子分離領域213では、半導体層200Sが厚み方向(第2基板200の主面に対して垂直方向)に掘り込まれており、この掘り込みに絶縁膜が埋め込まれている。この絶縁膜は、例えば、酸化シリコンにより構成されている。素子分離領域213は、画素回路210を構成する複数のトランジスタ間を、画素回路210のレイアウトに応じて素子分離するものである。素子分離領域213の下方(半導体層200Sの深部)には、半導体層200S(具体的には、ウエル領域211)が延在している。
 ここで、図35A,図35Bおよび図36を参照して、第1基板100での画素共有ユニット539の外形形状(基板平面方向の外形形状)と、第2基板200での画素共有ユニット539の外形形状との違いを説明する。
 撮像装置1では、第1基板100および第2基板200の両方にわたり、画素共有ユニット539が設けられている。例えば、第1基板100に設けられた画素共有ユニット539の外形形状と、第2基板200に設けられた画素共有ユニット539の外形形状とは互いに異なっている。
 図35A,図35Bでは、画素541A,541B,541C,541Dの外形線を一点鎖線で表し、画素共有ユニット539の外形形状を太線で表している。例えば、第1基板100の画素共有ユニット539は、H方向に隣接して配置された2つの画素541(画素541A,541B)と、これにV方向に隣接して配置された2つの画素541(画素541C,541D)により構成されている。即ち、第1基板100の画素共有ユニット539は、隣接する2行×2列の4つの画素541により構成されており、第1基板100の画素共有ユニット539は、略正方形の外形形状を有している。画素アレイ部540では、このような画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2個分に相当するピッチ)、かつ、V方向へ2画素ピッチ(画素541の2個分に相当するピッチ)、で隣接して配列されている。
 図36および図37では、画素541A,541B,541C,541Dの外形線を一点鎖線で表し、画素共有ユニット539の外形形状を太線で表している。例えば、第2基板200の画素共有ユニット539の外形形状は、H方向において第1基板100の画素共有ユニット539よりも小さく、V方向において第1基板100の画素共有ユニット539よりも大きくなっている。例えば、第2基板200の画素共有ユニット539は、H方向には画素1個分に相当する大きさ(領域)で形成され、V方向には、画素4個分に相当する大きさで形成されている。即ち、第2基板200の画素共有ユニット539は、隣接する1行×4列に配列された画素に相当する大きさで形成されており、第2基板200の画素共有ユニット539は、略長方形の外形形状を有している。
 例えば、各画素回路210では、選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGがこの順にV方向に並んで配置されている(図36)。各画素回路210の外形形状を、上記のように、略長方形状に設けることにより、一方向(図36ではV方向)に4つのトランジスタ(選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDG)を並べて配置することができる。これにより、増幅トランジスタAMPのドレインと、リセットトランジスタRSTのドレインとを一の拡散領域(電源線VDDに接続される拡散領域)で共有することができる。例えば、各画素回路210の形成領域を略正方形状に設けることも可能である(後述の図49参照)。この場合には、一方向に沿って2つのトランジスタが配置され、増幅トランジスタAMPのドレインと、リセットトランジスタRSTのドレインとを一の拡散領域で共有することが困難となる。よって、画素回路210の形成領域を略長方形状に設けることにより、4つのトランジスタを近接して配置しやすくなり、画素回路210の形成領域を小さくすることができる。即ち、画素の微細化を行うことができる。また、画素回路210の形成領域を小さくすることが不要であるときには、増幅トランジスタAMPの形成領域を大きくし、ノイズを抑えることが可能となる。
 例えば、半導体層200Sの表面近傍には、選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGに加えて、基準電位線VSSに接続されるVSSコンタクト領域218が設けられている。VSSコンタクト領域218は、例えば、p型半導体領域により構成されている。VSSコンタクト領域218は、配線層200Tの配線および貫通電極121Eを介して第1基板100(半導体層100S)のVSSコンタクト領域118に電気的に接続されている。このVSSコンタクト領域218は、例えば、素子分離領域213を間にして、FD変換ゲイン切替トランジスタFDGのソースと隣り合う位置に設けられている(図36)。
 次に、図35Bおよび図36を参照して、第1基板100に設けられた画素共有ユニット539と第2基板200に設けられた画素共有ユニット539との位置関係を説明する。例えば、第1基板100のV方向に並ぶ2つの画素共有ユニット539のうち、一方(例えば図35Bの紙面上側)の画素共有ユニット539は、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうちの一方(例えば、図36の紙面左側)の画素共有ユニット539に接続されている。例えば、第1基板100のV方向に並ぶ2つの画素共有ユニット539のうち、他方(例えば図35Bの紙面下側)の画素共有ユニット539は、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうちの他方(例えば、図36の紙面右側)の画素共有ユニット539に接続されている。
 例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539では、一方の画素共有ユニット539の内部レイアウト(トランジスタ等の配置)が、他方の画素共有ユニット539の内部レイアウトをV方向およびH方向に反転させたレイアウトに略等しくなっている。以下、このレイアウトによって得られる効果を説明する。
 第1基板100のV方向に並ぶ2つの画素共有ユニット539では、各々のパッド部120が、画素共有ユニット539の外形形状の中央部、即ち、画素共有ユニット539のV方向およびH方向の中央部に配置される(図35B)。一方、第2基板200の画素共有ユニット539は、上記のように、V方向に長い略長方形の外形形状を有しているので、例えば、パッド部120に接続される増幅トランジスタAMPは、画素共有ユニット539のV方向の中央から紙面上方にずれた位置に配置されている。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトが同じであるとき、一方の画素共有ユニット539の増幅トランジスタAMPと、パッド部120(例えば、図35の紙面上側の画素共有ユニット539のパッド部120)との距離は比較的短くなる。しかし、他方の画素共有ユニット539の増幅トランジスタAMPと、パッド部120(例えば、図35の紙面下側の画素共有ユニット539のパッド部120)との距離が長くなる。このため、この増幅トランジスタAMPとパッド部120との接続に要する配線の面積が大きくなり、画素共有ユニット539の配線レイアウトが複雑になるおそれがある。このことは、撮像装置1の微細化に影響を及ぼす可能性がある。
 これに対して、第2基板200のH方向に並ぶ2つの画素共有ユニット539で、互いの内部レイアウトを少なくともV方向に反転させることにより、これら2つの画素共有ユニット539の両方の増幅トランジスタAMPとパッド部120との距離を短くすることができる。したがって、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトを同じにした構成と比べて、撮像装置1の微細化を行いやすくなる。なお、第2基板200の複数の画素共有ユニット539各々の平面レイアウトは、図36に記載の範囲では左右対称であるが、後述する図37に記載の第1配線層W1のレイアウトまで含めると、左右非対称のものとなる。
 また、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトは、互いに、H方向にも反転されていることが好ましい。以下、この理由について説明する。図37に示したように、第2基板200のH方向に並ぶ2つの画素共有ユニット539はそれぞれ、第1基板100のパッド部120,121に接続されている。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539のH方向の中央部(H方向に並ぶ2つの画素共有ユニット539の間)にパッド部120,121が配置されている。したがって、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトを、互いに、H方向にも反転させることにより、第2基板200の複数の画素共有ユニット539それぞれとパッド部120,121との距離を小さくすることができる。即ち、撮像装置1の微細化を更に行いやすくなる。
 また、第2基板200の画素共有ユニット539の外形線の位置は、第1基板100の画素共有ユニット539のいずれかの外形線の位置に揃っていなくてもよい。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうち、一方(例えば図37の紙面左側)の画素共有ユニット539では、V方向の一方(例えば図37の紙面上側)の外形線が、対応する第1基板100の画素共有ユニット539(例えば図35Bの紙面上側)のV方向の一方の外形線の外側に配置されている。また、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうち、他方(例えば図36の紙面右側)の画素共有ユニット539では、V方向の他方(例えば図37の紙面下側)の外形線が、対応する第1基板100の画素共有ユニット539(例えば図35Bの紙面下側)のV方向の他方の外形線の外側に配置されている。このように、第2基板200の画素共有ユニット539と、第1基板100の画素共有ユニット539とを互いに配置することにより、増幅トランジスタAMPとパッド部120との距離を短くすることが可能となる。したがって、撮像装置1の微細化を行いやすくなる。
 また、第2基板200の複数の画素共有ユニット539の間で、互いの外形線の位置は揃っていなくてもよい。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539は、V方向の外形線の位置がずれて配置されている。これにより、増幅トランジスタAMPとパッド部120との距離を短くすることが可能となる。したがって、撮像装置1の微細化を行いやすくなる。
 図35Bおよび図37を参照して、画素アレイ部540での画素共有ユニット539の繰り返し配置について説明する。第1基板100の画素共有ユニット539は、H方向に2つ分の画素541の大きさ、およびV方向に2つ分の画素541の大きさを有している(図35B)。例えば、第1基板100の画素アレイ部540では、この4つの画素541に相当する大きさの画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2つ分に相当するピッチ)、かつ、V方向へ2画素ピッチ(画素541の2つ分に相当するピッチ)、で隣接して繰り返し配列されている。あるいは、第1基板100の画素アレイ部540に、画素共有ユニット539がV方向に2つ隣接して配置された一対の画素共有ユニット539が設けられていてもよい。第1基板100の画素アレイ部540では、例えば、この一対の画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2つ分に相当するピッチ)、かつ、V方向へ4画素ピッチ(画素541の4つ分に相当するピッチ)、で隣接して繰り返し配列している。第2基板200の画素共有ユニット539は、H方向に1つ分の画素541の大きさ、およびV方向に4つ分の画素541の大きさを有している(図37)。例えば、第2基板200の画素アレイ部540には、この4つの画素541に相当する大きさの画素共有ユニット539を2つ含む、一対の画素共有ユニット539が設けられている。この画素共有ユニット539は、H方向に隣接して配置され、かつ、V方向にはずらして配置されている。第2基板200の画素アレイ部540では、例えば、この一対の画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2個分に相当するピッチ)、かつ、V方向へ4画素ピッチ(画素541の4個分に相当するピッチ)、で隙間なく隣接して繰り返し配列されている。このような画素共有ユニット539の繰り返し配置により、画素共有ユニット539を隙間なく配置することが可能となる。したがって、撮像装置1の微細化を行いやすくなる。
 増幅トランジスタAMPは、例えば、Fin型等の三次元構造を有していることが好ましい(図34)。これにより、実効のゲート幅の大きさが大きくなり、ノイズを抑えることが可能となる。選択トランジスタSEL、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGは、例えば、プレーナー構造を有している。増幅トランジスタAMPがプレーナー構造を有していてもよい。あるいは、選択トランジスタSEL、リセットトランジスタRSTまたはFD変換ゲイン切替トランジスタFDGが、三次元構造を有していてもよい。
 配線層200Tは、例えば、パッシベーション膜221、層間絶縁膜222および複数の配線(第1配線層W1,第2配線層W2,第3配線層W3,第4配線層W4)を含んでいる。パッシベーション膜221は、例えば、半導体層200Sの表面に接しており、半導体層200Sの表面全面を覆っている。このパッシベーション膜221は、選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDG各々のゲート電極を覆っている。層間絶縁膜222は、パッシベーション膜221と第3基板300との間に設けられている。この層間絶縁膜222により、複数の配線(第1配線層W1,第2配線層W2,第3配線層W3,第4配線層W4)が分離されている。層間絶縁膜222は、例えば、酸化シリコンにより構成されている。
 配線層200Tには、例えば、半導体層200S側から、第1配線層W1、第2配線層W2、第3配線層W3、第4配線層W4およびコンタクト部201,202がこの順に設けられ、これらが互いに層間絶縁膜222により絶縁されている。層間絶縁膜222には、第1配線層W1、第2配線層W2、第3配線層W3または第4配線層W4と、これらの下層とを接続する接続部が複数設けられている。接続部は、層間絶縁膜222に設けた接続孔に、導電材料を埋設した部分である。例えば、層間絶縁膜222には、第1配線層W1と半導体層200SのVSSコンタクト領域218とを接続する接続部218Vが設けられている。例えば、このような第2基板200の素子同士を接続する接続部の孔径は、貫通電極120E,121Eおよび貫通電極TGVの孔径と異なっている。具体的には、第2基板200の素子同士を接続する接続孔の孔径は、貫通電極120E,121Eおよび貫通電極TGVの孔径よりも小さくなっていることが好ましい。以下、この理由について説明する。配線層200T内に設けられた接続部(接続部218V等)の深さは、貫通電極120E,121Eおよび貫通電極TGVの深さよりも小さい。このため接続部は、貫通電極120E,121Eおよび貫通電極TGVに比べて、容易に接続孔へ導電材を埋めることができる。この接続部の孔径を、貫通電極120E,121Eおよび貫通電極TGVの孔径よりも小さくすることにより、撮像装置1の微細化を行いやすくなる。
 例えば、第1配線層W1により、貫通電極120Eと増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソース(具体的にはFD変換ゲイン切替トランジスタFDGのソースに達する接続孔)とが接続されている。第1配線層W1は、例えば、貫通電極121Eと接続部218Vとを接続しており、これにより、半導体層200SのVSSコンタクト領域218と半導体層100SのVSSコンタクト領域118とが電気的に接続される。
 次に、図38~図40を用いて、配線層200Tの平面構成について説明する。図38は、第1配線層W1および第2配線層W2の平面構成の一例を表したものである。図39は、第2配線層W2および第3配線層W3の平面構成の一例を表したものである。図40は、第3配線層W3および第4配線層W4の平面構成の一例を表したものである。
 例えば、第3配線層W3は、H方向(行方向)に延在する配線TRG1,TRG2,TRG3,TRG4,SELL,RSTL,FDGLを含んでいる(図39)。これらの配線は、図32を参照して説明した複数の行駆動信号線542に該当する。配線TRG1,TRG2,TRG3,TRG4は各々、転送ゲートTG1,TG2,TG3,TG4に駆動信号を送るためのものである。配線TRG1,TRG2,TRG3,TRG4は各々、第2配線層W2、第1配線層W1および貫通電極120Eを介して転送ゲートTG1,TG2,TG3,TG4に接続されている。配線SELLは選択トランジスタSELのゲートに、配線RSTLはリセットトランジスタRSTのゲートに、配線FDGLは、FD変換ゲイン切替トランジスタFDGのゲートに各々駆動信号を送るためのものである。配線SELL,RSTL,FDGLは各々、第2配線層W2、第1配線層W1および接続部を介して、選択トランジスタSEL,リセットトランジスタRST,FD変換ゲイン切替トランジスタFDG各々のゲートに接続されている。
 例えば、第4配線層W4は、V方向(列方向)に延在する電源線VDD、基準電位線VSSおよび垂直信号線543を含んでいる(図40)。電源線VDDは、第3配線層W3、第2配線層W2、第1配線層W1および接続部を介して増幅トランジスタAMPのドレインおよびリセットトランジスタRSTのドレインに接続されている。基準電位線VSSは、第3配線層W3、第2配線層W2、第1配線層W1および接続部218Vを介してVSSコンタクト領域218に接続されている。また、基準電位線VSSは、第3配線層W3、第2配線層W2、第1配線層W1、貫通電極121Eおよびパッド部121を介して第1基板100のVSSコンタクト領域118に接続されている。垂直信号線543は、第3配線層W3、第2配線層W2、第1配線層W1および接続部を介して選択トランジスタSELのソース(Vout)に接続されている。
 コンタクト部201,202は、平面視で画素アレイ部540に重なる位置に設けられていてもよく(例えば、図3)、あるいは、画素アレイ部540の外側の周辺部540Bに設けられていてもよい(例えば、図34)。コンタクト部201,202は、第2基板200の表面(配線層200T側の面)に設けられている。コンタクト部201,202は、例えば、Cu(銅)およびAl(アルミニウム)などの金属により構成されている。コンタクト部201,202は、配線層200Tの表面(第3基板300側の面)に露出している。コンタクト部201,202は、第2基板200と第3基板300との電気的な接続および、第2基板200と第3基板300との貼り合わせに用いられる。
 図34には、第2基板200の周辺部540Bに周辺回路を設けた例を図示した。この周辺回路は、行駆動部520の一部または列信号処理部550の一部等を含んでいてもよい。また、図3に記載のように、第2基板200の周辺部540Bには周辺回路を配置せず、接続孔部H1,H2を画素アレイ部540の近傍に配置するようにしてもよい。
 第3基板300は、例えば、第2基板200側から配線層300Tおよび半導体層300Sをこの順に有している。例えば、半導体層300Sの表面は、第2基板200側に設けられている。半導体層300Sは、シリコン基板で構成されている。この半導体層300Sの表面側の部分には、回路が設けられている。具体的には、半導体層300Sの表面側の部分には、例えば、入力部510A、行駆動部520、タイミング制御部530、列信号処理部550、画像信号処理部560および出力部510Bのうちの少なくとも一部が設けられている。半導体層300Sと第2基板200との間に設けられた配線層300Tは、例えば、層間絶縁膜と、この層間絶縁膜により分離された複数の配線層と、コンタクト部301,302とを含んでいる。コンタクト部301,302は、配線層300Tの表面(第2基板200側の面)に露出されており、コンタクト部301は第2基板200のコンタクト部201に、コンタクト部302は第2基板200のコンタクト部202に各々接している。コンタクト部301,302は、半導体層300Sに形成された回路(例えば、入力部510A、行駆動部520、タイミング制御部530、列信号処理部550、画像信号処理部560および出力部510Bの少なくともいずれか)に電気的に接続されている。コンタクト部301,302は、例えば、Cu(銅)およびアルミニウム(Al)等の金属により構成されている。例えば、接続孔部H1を介して外部端子TAが入力部510Aに接続されており、接続孔部H2を介して外部端子TBが出力部510Bに接続されている。
 ここで、撮像装置1の特徴について説明する。
 一般に、撮像装置は、主な構成として、フォトダイオードと画素回路とからなる。ここで、フォトダイオードの面積を大きくすると光電変換の結果発生する電荷が増加し、その結果画素信号のシグナル/ノイズ比(S/N比)が改善し、撮像装置はよりよい画像データ(画像情報)を出力することができる。一方、画素回路に含まれるトランジスタのサイズ(特に増幅トランジスタのサイズ)を大きくすると、画素回路で発生するノイズが減少し、その結果撮像信号のS/N比が改善し、撮像装置はよりよい画像データ(画像情報)を出力することができる。
 しかし、フォトダイオードと画素回路とを同一の半導体基板に設けた撮像装置において、半導体基板の限られた面積の中でフォトダイオードの面積を大きくすると、画素回路に備わるトランジスタのサイズが小さくなってしまうことが考えられる。また、画素回路に備わるトランジスタのサイズを大きくすると、フォトダイオードの面積が小さくなってしまうことが考えられる。
 これらの課題を解決するために、例えば、本実施の形態の撮像装置1は、複数の画素541が1つの画素回路210を共有し、かつ、共有した画素回路210をフォトダイオードPDに重畳して配置する構造を用いる。これにより、半導体基板の限られた面積の中で、フォトダイオードPDの面積をできるだけ大きくすることと、画素回路210に備わるトランジスタのサイズをできるだけ大きくすることとを実現することができる。これにより、画素信号のS/N比を改善し、撮像装置1がよりよい画像データ(画像情報)を出力することができる。
 複数の画素541が1つの画素回路210を共有し、これをフォトダイオードPDに重畳して配置する構造を実現する際、複数の画素541各々のフローティングディフュージョンFDから1つの画素回路210に接続される複数の配線が延在する。画素回路210を形成する半導体基板200の面積を大きく確保するためには、例えばこれらの延在する複数の配線の間を相互に接続し、1つにまとめる接続配線を形成することができる。VSSコンタクト領域118から延在する複数の配線についても同様に、延在する複数の配線の間を相互に接続し、1つにまとめる接続配線を形成することができる。
 例えば、複数の画素541各々のフローティングディフュージョンFDから延在する複数の配線の間を相互に接続する接続配線を、画素回路210を形成する半導体基板200において形成すると、画素回路210に含まれるトランジスタを形成する面積が小さくなってしまうことが考えられる。同様に、複数の画素541各々のVSSコンタクト領域118から延在する複数の配線の間を相互接続して1つにまとめる接続配線を、画素回路210を形成する半導体基板200に形成すると、これにより画素回路210に含まれるトランジスタを形成する面積が小さくなってしまうことが考えられる。
 これらの課題を解決するために、例えば本実施の形態の撮像装置1は、複数の画素541が1つの画素回路210を共有し、かつ、共有した画素回路210をフォトダイオードPDに重畳して配置する構造であって、前記複数の画素541各々のフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、前記複数の画素541のそれぞれに備わるVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を第1基板100に設けた構造を備えることができる。
 ここで、前記複数の画素541各々のフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、前記複数の画素541各々のVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線とを、第1基板100に設けるための製造方法として、先に述べた第2の製造方法を用いると、例えば、第1基板100および第2基板200各々の構成に応じて適切なプロセスを用いて製造することができ、高品質、高性能な撮像装置を製造することができる。また、容易なプロセスで第1基板100および第2基板200の接続配線を形成することができる。具体的には、上記第2の製造方法を用いる場合、第1基板100と第2基板200の貼り合せ境界面となる第1基板100の表面と第2基板200の表面とに、フローティングディフュージョンFDに接続する電極とVSSコンタクト領域118に接続する電極とをそれぞれ設ける。さらに、第1基板100と第2基板200を貼り合せた際にこれら2つの基板表面に設けた電極間で位置ずれが発生してもこれら2つの基板表面に形成した電極同士が接触するように、これら2つの基板表面に形成する電極を大きくすることが好ましい。この場合、撮像装置1に備わる各画素の限られた面積の中に上記電極を配置することが難しくなってしまうことが考えられる。
 第1基板100と第2基板200の貼り合せ境界面に大きな電極が必要となる課題を解決するために、例えば本実施の形態の撮像装置1は、複数の画素541が1つの画素回路210を共有し、かつ、共有した画素回路210をフォトダイオードPDに重畳して配置する製造方法として、先に述べた第1の製造方法を用いることができる。これにより、第1基板100および第2基板200各々に形成される素子同士の位置合わせが容易になり、高品質、高性能な撮像装置を製造することができる。さらに、この製造方法を用いることによって生じる固有の構造を備えることができる。すなわち、第1基板100の半導体層100Sと配線層100Tと第2基板200の半導体層200Sと配線層200Tをこの順で積層した構造、言い換えれば、第1基板100と第2基板200をフェイストゥーバックで積層した構造を備え、かつ、第2基板200の半導体層200Sの表面側から、半導体層200Sと第1基板100の配線層100Tを貫通して、第1基板100の半導体層100Sの表面へと至る、貫通電極120E,121Eを備える。
 前記複数の画素541各々のフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、前記複数の画素541各々のVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を第1基板100に設けた構造において、この構造と第2の基板200とを前記第1の製造方法を用いて積層し第2の基板200に画素回路210を形成すると、画素回路210に備わる能動素子を形成する際に必要となる加熱処理の影響が、第1基板100に形成した上記接続配線に及んでしまう可能性がある。
 そこで、上記接続配線に対して、上記能動素子を形成する際の加熱処理の影響が及んでしまう課題を解決するために、本実施の形態の撮像装置1は、前記複数の画素541各々のフローティングディフュージョンFD同士を相互に接続して1つにまとめる接続配線と、前記複数の画素541各々のVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、に耐熱性の高い導電材料を用いることが望ましい。具体的には、耐熱性の高い導電材料は、第2基板200の配線層200Tに含まれる配線材の少なくとも一部よりも、融点の高い材料を用いることができる。
 このように、例えば本実施の形態の撮像装置1は、(1)第1基板100と第2基板200をフェイストゥーバックで積層した構造(具体的には、第1基板100の半導体層100Sと配線層100Tと第2基板200の半導体層200Sと配線層200Tをこの順で積層する構造)と、(2)第2基板200の半導体層200Sの表面側から、半導体層200Sと第1基板100の配線層100Tを貫通して、第1基板100の半導体層100Sの表面へと至る、貫通電極120E,121Eを設けた構造と、(3)複数の画素541のそれぞれに備わるフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、複数の画素541のそれぞれに備わるVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を耐熱性の高い導電材料で形成した構造と、を備えることで、第1基板100と第2基板200との界面に大きな電極を備えることなく、第1基板100に、複数の画素541のそれぞれに備わるフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、複数の画素541のそれぞれに備わるVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を設けることを可能としている。
[撮像装置1の動作]
 次に、図41および図42を用いて撮像装置1の動作について説明する。図41および図42は、図3に各信号の経路を表す矢印を追記したものである。図41は、外部から撮像装置1に入力される入力信号と、電源電位および基準電位の経路を矢印で表したものである。図42は、撮像装置1から外部に出力される画素信号の信号経路を矢印で表している。例えば、入力部510Aを介して撮像装置1に入力された入力信号(例えば、画素クロックおよび同期信号)は、第3基板300の行駆動部520へ伝送され、行駆動部520で行駆動信号が作り出される。この行駆動信号は、コンタクト部301,201を介して第2基板200に送られる。更に、この行駆動信号は、配線層200T内の行駆動信号線542を介して、画素アレイ部540の画素共有ユニット539各々に到達する。第2基板200の画素共有ユニット539に到達した行駆動信号のうち、転送ゲートTG以外の駆動信号は画素回路210に入力されて、画素回路210に含まれる各トランジスタが駆動される。転送ゲートTGの駆動信号は貫通電極TGVを介して第1基板100の転送ゲートTG1,TG2,TG3,TG4に入力され、画素541A,541B,541C,541Dが駆動される(図41)。また、撮像装置1の外部から、第3基板300の入力部510A(入力端子511)に供給された電源電位および基準電位は、コンタクト部301,201を介して第2基板200に送られ、配線層200T内の配線を介して、画素共有ユニット539各々の画素回路210に供給される。基準電位は、さらに貫通電極121Eを介して、第1基板100の画素541A,541B,541C,541Dへも供給される。一方、第1基板100の画素541A,541B,541C,541Dで光電変換された画素信号は、貫通電極120Eを介して画素共有ユニット539毎に第2基板200の画素回路210に送られる。この画素信号に基づく画素信号は、画素回路210から垂直信号線543およびコンタクト部202,302を介して第3基板300に送られる。この画素信号は、第3基板300の列信号処理部550および画像信号処理部560で処理された後、出力部510Bを介して外部に出力される。
[効果]
 本実施の形態では、画素541A,541B,541C,541D(画素共有ユニット539)と画素回路210とが互いに異なる基板(第1基板100および第2基板200)に設けられている。これにより、画素541A,541B,541C,541Dおよび画素回路210を同一基板に形成した場合と比べて、画素541A,541B,541C,541Dおよび画素回路210の面積を拡大することができる。その結果、光電変換により得られる画素信号の量を増大させ、かつ、画素回路210のトランジスタノイズを低減することが可能となる。これらにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1は、よりよい画素データ(画像情報)を出力することが可能となる。また、撮像装置1の微細化(言い換えれば、画素サイズの縮小および撮像装置1の小型化)が可能となる。撮像装置1は、画素サイズの縮小により、単位面積当たりの画素数を増加させることができ、高画質の画像を出力することができる。
 また、撮像装置1では、第1基板100および第2基板200が、絶縁領域212に設けられた貫通電極120E,121Eによって互いに電気的に接続されている。例えば、第1基板100と第2基板200とをパッド電極同士の接合により接続する方法や、半導体層を貫通する貫通配線(例えばTSV(Thorough Si Via))により接続する方法も考え得る。このような方法に比べて、絶縁領域212に貫通電極120E,121Eを設けることにより、第1基板100および第2基板200の接続に要する面積を小さくすることができる。これにより、画素サイズを縮小し、撮像装置1をより小型化することができる。また、1画素あたりの面積の更なる微細化により、解像度をより高くすることができる。チップサイズの小型化が不要なときには、画素541A,541B,541C,541Dおよび画素回路210の形成領域を拡大することができる。その結果、光電変換により得られる画素信号の量を増大させ、かつ、画素回路210に備わるトランジスタのノイズを低減することが可能となる。これにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素回路210と列信号処理部550および画像信号処理部560とが互いに異なる基板(第2基板200および第3基板300)に設けられている。これにより、画素回路210と列信号処理部550および画像信号処理部560とを同一基板に形成した場合と比べて、画素回路210の面積と、列信号処理部550および画像信号処理部560の面積とを拡大することができる。これにより、列信号処理部550で生じるノイズを低減したり、画像信号処理部560により高度な画像処理回路を搭載することが可能となる。よって、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素アレイ部540が、第1基板100および第2基板200に設けられ、かつ、列信号処理部550および画像信号処理部560が第3基板300に設けられている。また、第2基板200と第3基板300とを接続するコンタクト部201,202,301,302は、画素アレイ部540の上方に形成されている。このため、コンタクト部201,202,301,302は、画素アレイに備わる各種配線からレイアウト上の干渉を受けずに自由にレイアウトにすることが可能となる。これにより、第2基板200と第3基板300との電気的な接続に、コンタクト部201,202,301,302を用いることが可能となる。コンタクト部201,202,301,302を用いることにより、例えば、列信号処理部550および画像信号処理部560はレイアウトの自由度が高くなる。これにより、列信号処理部550で生じるノイズを低減したり、画像信号処理部560により高度な画像処理回路を搭載することが可能となる。したがって、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素分離部117が半導体層100Sを貫通している。これにより、1画素あたりの面積の微細化によって隣り合う画素(画素541A,541B,541C,541D)の距離が近づいた場合であっても、画素541A,541B,541C,541Dの間での混色を抑制できる。これにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素共有ユニット539毎に画素回路210が設けられている。これにより、画素541A,541B,541C,541D各々に画素回路210を設けた場合に比べて、画素回路210を構成するトランジスタ(増幅トランジスタAMP,リセットトランジスタRST,選択トランジスタSEL,FD変換ゲイン切替トランジスタFDG)の形成領域を大きくすることが可能となる。例えば、増幅トランジスタAMPの形成領域を大きくすることにより、ノイズを抑えることが可能となる。これにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 更に、撮像装置1では、4つの画素(画素541A,541B,541C,541D)のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)を電気的に接続するパッド部120が、第1基板100に設けられている。これにより、このようなパッド部120を第2基板200に設ける場合に比べて、第1基板100と第2基板200とを接続する貫通電極(貫通電極120E)の数を減らすことができる。したがって、絶縁領域212を小さくし、画素回路210を構成するトランジスタの形成領域(半導体層200S)を十分な大きさで確保することができる。これにより、画素回路210に備わるトランジスタのノイズを低減することが可能となり、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 以下、上記実施の形態に係る撮像装置1の変形例について説明する。以下の変形例では、上記実施の形態と共通の構成に同一の符号を付して説明する。
<1. 変形例1>
 図43~図47は、上記実施の形態に係る撮像装置1の平面構成の一変形例を表したものである。図46は、第2基板200の半導体層200Sの表面近傍の平面構成を模式的に表しており、上記実施の形態で説明した図36に対応する。図44は、第1配線層W1と、第1配線層W1に接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表しており、上記実施の形態で説明した図37に対応する。図45は、第1配線層W1および第2配線層W2の平面構成の一例を表しており、上記実施の形態で説明した図38に対応する。図46は、第2配線層W2および第3配線層W3の平面構成の一例を表しており、上記実施の形態で説明した図39に対応する。図47は、第3配線層W3および第4配線層W4の平面構成の一例を表しており、上記実施の形態で説明した図40に対応する。
 本変形例では、図44に示したように、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうち、一方(例えば紙面右側)の画素共有ユニット539の内部レイアウトが、他方(例えば紙面左側)の画素共有ユニット539の内部レイアウトをH方向にのみ反転させた構成となっている。また、一方の画素共有ユニット539の外形線と他方の画素共有ユニット539の外形線との間のV方向のずれが、上記実施の形態で説明したずれ(図37)よりも大きくなっている。このように、V方向のずれを大きくすることにより、他方の画素共有ユニット539の増幅トランジスタAMPと、これに接続されたパッド部120(図35に記載のV方向に並ぶ2つの画素共有ユニット539のうちの他方(紙面下側)のパッド部120)との間の距離を小さくすることができる。このようなレイアウトにより、図43~図47に記載の撮像装置1の変形例1は、H方向に並ぶ2つの画素共有ユニット539の平面レイアウトを互いにV方向に反転させることなく、その面積を、上記実施の形態で説明した第2基板200の画素共有ユニット539の面積と同じにすることができる。なお、第1基板100の画素共有ユニット539の平面レイアウトは、上記実施の形態で説明した平面レイアウト(図35A,図35B)と同じである。したがって、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と同様の効果を得ることができる。第2基板200の画素共有ユニット539の配置は、上記実施の形態および本変形例で説明した配置に限定されるものではない。
<3.変形例2>
 図48~図53は、上記実施の形態に係る撮像装置1の平面構成の一変形例を表したものである。図48は、第1基板100の平面構成を模式的に表しており、上記実施の形態で説明した図35Aに対応する。図49は、第2基板200の半導体層200Sの表面近傍の平面構成を模式的に表しており、上記実施の形態で説明した図36に対応する。図50は、第1配線層W1と、第1配線層W1に接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表しており、上記実施の形態で説明した図37に対応する。図51は、第1配線層W1および第2配線層W2の平面構成の一例を表しており、上記実施の形態で説明した図38に対応する。図52は、第2配線層W2および第3配線層W3の平面構成の一例を表しており、上記実施の形態で説明した図39に対応する。図53は、第3配線層W3および第4配線層W4の平面構成の一例を表しており、上記実施の形態で説明した図40に対応する。
 本変形例では、各画素回路210の外形が、略正方形の平面形状を有している(図49等)。この点において、本変形例の撮像装置1の平面構成は、上記実施の形態で説明した撮像装置1の平面構成と異なっている。
 例えば、第1基板100の画素共有ユニット539は、上記実施の形態で説明したのと同様に、2行×2列の画素領域にわたって形成されており、略正方形の平面形状を有している(図48)。例えば、各々の画素共有ユニット539では、一方の画素列の画素541Aおよび画素541Cの転送ゲートTG1,TG3の水平部分TGbが、垂直部分TGaに重畳する位置からH方向において画素共有ユニット539の中央部に向かう方向(より具体的には、画素541A,541Cの外縁に向かう方向、かつ画素共有ユニット539の中央部に向かう方向)に延在し、他方の画素列の画素541Bおよび画素541Dの転送ゲートTG2,TG4の水平部分TGbが、垂直部分TGaに重畳する位置からH方向において画素共有ユニット539の外側に向かう方向(より具体的には、画素541B,541Dの外縁に向かう方向、かつ画素共有ユニット539の外側に向かう方向)に延在している。フローティングディフュージョンFDに接続されたパッド部120は、画素共有ユニット539の中央部(画素共有ユニット539のH方向およびV方向の中央部)に設けられ、VSSコンタクト領域118に接続されたパッド部121は、少なくともH方向において(図48ではH方向およびV方向において)画素共有ユニット539の端部に設けられている。
 別の配置例として、転送ゲートTG1,TG2,TG3,TG4の水平部分TGbを垂直部分TGaに対向する領域のみに設けることも考え得る。このときには、上記実施の形態で説明したのと同様に、半導体層200Sが細かく分断されやすい。したがって、画素回路210のトランジスタを大きく形成することが困難となる。一方、転送ゲートTG1,TG2,TG3,TG4の水平部分TGbを、上記変形例のように、垂直部分TGaに重畳する位置からH方向に延在させると、上記実施の形態で説明したのと同様に、半導体層200Sの幅を大きくすることが可能となる。具体的には、転送ゲートTG1,TG3に接続された貫通電極TGV1,TGV3のH方向の位置を、貫通電極120EのH方向の位置に近接させて配置し、転送ゲートTG2,TG4に接続された貫通電極TGV2,TGV4のH方向の位置を、貫通電極121EのH方向の位置に近接して配置することが可能となる(図50)。これにより、上記実施の形態で説明したのと同様に、V方向に延在する半導体層200Sの幅(H方向の大きさ)を大きくすることができる。よって、画素回路210のトランジスタのサイズ、特に増幅トランジスタAMPのサイズを大きくすることが可能となる。その結果、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 第2基板200の画素共有ユニット539は、例えば、第1基板100の画素共有ユニット539のH方向およびV方向の大きさと略同じであり、例えば、略2行×2列の画素領域に対応する領域にわたって設けられている。例えば、各画素回路210では、V方向に延在する1の半導体層200Sに選択トランジスタSELおよび増幅トランジスタAMPがV方向に並んで配置され、FD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTがV方向に延在する1の半導体層200Sに、V方向に並んで配置されている。この選択トランジスタSELおよび増幅トランジスタAMPが設けられた1の半導体層200Sと、FD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTが設けられた1の半導体層200Sとは、絶縁領域212を介してH方向に並んでいる。この絶縁領域212はV方向に延在している(図49)。
 ここで、第2基板200の画素共有ユニット539の外形について、図49および図50を参照して説明する。例えば、図48に示した第1基板100の画素共有ユニット539は、パッド部120のH方向の一方(図50の紙面左側)に設けられた増幅トランジスタAMPおよび選択トランジスタSELと、パッド部120のH方向の他方(図50の紙面右側)に設けられたFD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTとに接続されている。この増幅トランジスタAMP、選択トランジスタSEL、FD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTを含む第2基板200の共有ユニット541の外形は、次の4つの外縁により決まる。
 第1の外縁は、選択トランジスタSELおよび増幅トランジスタAMPを含む半導体層200SのV方向の一端(図50の紙面上側の端)の外縁である。この第1の外縁は、当該画素共有ユニット539に含まれる増幅トランジスタAMPと、この画素共有ユニット539のV方向の一方(図50の紙面上側)に隣り合う画素共有ユニット539に含まれる選択トランジスタSELとの間に設けられている。より具体的には、第1の外縁は、これら増幅トランジスタAMPと選択トランジスタSELとの間の素子分離領域213のV方向の中央部に設けられている。第2の外縁は、選択トランジスタSELおよび増幅トランジスタAMPを含む半導体層200SのV方向の他端(図50の紙面下側の端)の外縁である。この第2の外縁は、当該画素共有ユニット539に含まれる選択トランジスタSELと、この画素共有ユニット539のV方向の他方(図50の紙面下側)に隣り合う画素共有ユニット539に含まれる増幅トランジスタAMPとの間に設けられている。より具体的には、第2の外縁は、これら選択トランジスタSELと増幅トランジスタAMPとの間の素子分離領域213のV方向の中央部に設けられている。第3の外縁は、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGを含む半導体層200SのV方向の他端(図50の紙面下側の端)の外縁である。この第3の外縁は、当該画素共有ユニット539に含まれるFD変換ゲイン切替トランジスタFDGと、この画素共有ユニット539のV方向の他方(図50の紙面下側)に隣り合う画素共有ユニット539に含まれるリセットトランジスタRSTとの間に設けられている。より具体的には、第3の外縁は、これらFD変換ゲイン切替トランジスタFDGとリセットトランジスタRSTとの間の素子分離領域213のV方向の中央部に設けられている。第4の外縁は、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGを含む半導体層200SのV方向の一端(図50の紙面上側の端)の外縁である。この第4の外縁は、当該画素共有ユニット539に含まれるリセットトランジスタRSTと、この画素共有ユニット539のV方向の一方(図50の紙面上側)に隣り合う画素共有ユニット539に含まれるFD変換ゲイン切替トランジスタFDG(不図示)との間に設けられている。より具体的には、第4の外縁は、これらリセットトランジスタRSTとFD変換ゲイン切替トランジスタFDGとの間の素子分離領域213(不図示)のV方向の中央部に設けられている。
 このような第1,第2,第3,第4の外縁を含む第2基板200の画素共有ユニット539の外形では、第1,第2の外縁に対して、第3,第4の外縁がV方向の一方側にずれて配置されている(言い換えればV方向の一方側にオフセットされている)。このようなレイアウトを用いることにより、増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソースをともに、パッド部120にできるだけ近接して配置することが可能となる。したがって、これらを接続する配線の面積を小さくし、撮像装置1の微細化を行いやすくなる。なおVSSコンタクト領域218は、選択トランジスタSELおよび増幅トランジスタAMPを含む半導体層200Sと、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGを含む半導体層200Sとの間に設けられている。例えば、複数の画素回路210は、互いに同じ配置を有している。
 このような第2基板200を有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。第2基板200の画素共有ユニット539の配置は、上記実施の形態および本変形例で説明した配置に限定されるものではない。
<4.変形例3>
 図54~図59は、上記実施の形態に係る撮像装置1の平面構成の一変形例を表したものである。図54は、第1基板100の平面構成を模式的に表しており、上記実施の形態で説明した図35Bに対応する。図55は、第2基板200の半導体層200Sの表面近傍の平面構成を模式的に表しており、上記実施の形態で説明した図36に対応する。図56は、第1配線層W1と、第1配線層W1に接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表しており、上記実施の形態で説明した図37に対応する。図57は、第1配線層W1および第2配線層W2の平面構成の一例を表しており、上記実施の形態で説明した図38に対応する。図58は、第2配線層W2および第3配線層W3の平面構成の一例を表しており、上記実施の形態で説明した図39に対応する。図59は、第3配線層W3および第4配線層W4の平面構成の一例を表しており、上記実施の形態で説明した図40に対応する。
 本変形例では、第2基板200の半導体層200Sが、H方向に延在している(図56)。即ち、上記図49等に示した撮像装置1の平面構成を90度回転させた構成に略対応している。
 例えば、第1基板100の画素共有ユニット539は、上記実施の形態で説明したのと同様に、2行×2列の画素領域にわたって形成されており、略正方形の平面形状を有している(図54)。例えば、各々の画素共有ユニット539では、一方の画素行の画素541Aおよび画素541Bの転送ゲートTG1,TG2が、V方向において画素共有ユニット539の中央部に向かって延在し、他方の画素行の画素541Cおよび画素541Dの転送ゲートTG3,TG4が、V方向において画素共有ユニット539の外側方向に延在している。フローティングディフュージョンFDに接続されたパッド部120は、画素共有ユニット539の中央部に設けられ、VSSコンタクト領域118に接続されたパッド部121は、少なくともV方向において(図54ではV方向およびH方向において)画素共有ユニット539の端部に設けられている。このとき、転送ゲートTG1,TG2の貫通電極TGV1,TGV2のV方向の位置が貫通電極120EのV方向の位置に近づき、転送ゲートTG3,TG4の貫通電極TGV3,TGV4のV方向の位置が貫通電極121EのV方向の位置に近づく(図56)。したがって、上記実施の形態で説明したのと同様の理由により、H方向に延在する半導体層200Sの幅(V方向の大きさ)を大きくすることができる。よって、増幅トランジスタAMPのサイズを大きくし、ノイズを抑えることが可能となる。
 各々の画素回路210では、選択トランジスタSELおよび増幅トランジスタAMPがH方向に並んで配置され、選択トランジスタSELと絶縁領域212を間にしてV方向に隣り合う位置にリセットトランジスタRSTが配置されている(図55)。FD変換ゲイン切替トランジスタFDGは、リセットトランジスタRSTとH方向に並んで配置されている。VSSコンタクト領域218は、絶縁領域212に島状に設けられている。例えば、第3配線層W3はH方向に延在し(図58)、第4配線層W4はV方向に延在している(図59)。
 このような第2基板200を有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。第2基板200の画素共有ユニット539の配置は、上記実施の形態および本変形例で説明した配置に限定されるものではない。例えば、上記実施の形態および変形例1で説明した半導体層200Sが、H方向に延在していてもよい。
<5.変形例4>
 図60は、上記実施の形態に係る撮像装置1の断面構成の一変形例を模式的に表したものである。図60は、上記実施の形態で説明した図3に対応する。本変形例では、撮像装置1が、コンタクト部201,202,301,302に加えて、画素アレイ部540の中央部に対向する位置にコンタクト部203,204,303,304を有している。この点において、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と異なっている。
 コンタクト部203,204は、第2基板200に設けられており、第3基板300との接合面の露出されている。コンタクト部303,304は、第3基板300に設けられており、第2基板200との接合面に露出されている。コンタクト部203は、コンタクト部303と接しており、コンタクト部204は、コンタクト部304と接している。即ち、この撮像装置1では、第2基板200と第3基板300とが、コンタクト部201,202,301,302に加えてコンタクト部203,204,303,304により接続されている。
 次に、図61および図62を用いてこの撮像装置1の動作について説明する。図61には、外部から撮像装置1に入力される入力信号と、電源電位および基準電位の経路を矢印で表す。図62には、撮像装置1から外部に出力される画素信号の信号経路を矢印で表している。例えば、入力部510Aを介して撮像装置1に入力された入力信号は、第3基板300の行駆動部520へ伝送され、行駆動部520で行駆動信号が作り出される。この行駆動信号は、コンタクト部303,203を介して第2基板200に送られる。更に、この行駆動信号は、配線層200T内の行駆動信号線542を介して、画素アレイ部540の画素共有ユニット539各々に到達する。第2基板200の画素共有ユニット539に到達した行駆動信号のうち、転送ゲートTG以外の駆動信号は画素回路210に入力されて、画素回路210に含まれる各トランジスタが駆動される。転送ゲートTGの駆動信号は貫通電極TGVを介して第1基板100の転送ゲートTG1,TG2,TG3,TG4に入力され、画素541A,541B,541C,541Dが駆動される。また、撮像装置1の外部から、第3基板300の入力部510A(入力端子511)に供給された電源電位および基準電位は、コンタクト部303,203を介して第2基板200に送られ、配線層200T内の配線を介して、画素共有ユニット539各々の画素回路210に供給される。基準電位は、さらに貫通電極121Eを介して、第1基板100の画素541A,541B,541C,541Dへも供給される。一方、第1基板100の画素541A,541B,541C,541Dで光電変換された画素信号は、画素共有ユニット539毎に第2基板200の画素回路210に送られる。この画素信号に基づく画素信号は、画素回路210から垂直信号線543およびコンタクト部204,304を介して第3基板300に送られる。この画素信号は、第3基板300の列信号処理部550および画像信号処理部560で処理された後、出力部510Bを介して外部に出力される。
 このようなコンタクト部203,204,303,304を有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。コンタクト部303,304を介した配線の接続先である、第3基板300の回路等の設計に応じてコンタクト部の位置および数等を変えることができる。
<6.変形例5>
 図63は、上記実施の形態に係る撮像装置1の断面構成の一変形例を表したものである。図63は、上記実施の形態で説明した図34に対応する。本変形例では、第1基板100にプレーナー構造を有する転送トランジスタTRが設けられている。この点において、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と異なっている。
 この転送トランジスタTRは、水平部分TGbのみにより転送ゲートTGが構成されている。換言すれば、転送ゲートTGは、垂直部分TGaを有しておらず、半導体層100Sに対向して設けられている。
 このようなプレーナー構造の転送トランジスタTRを有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。更に、第1基板100にプレーナー型の転送ゲートTGを設けることにより、縦型の転送ゲートTGを第1基板100に設ける場合に比べて、より半導体層100Sの表面近くまでフォトダイオードPDを形成し、これにより、飽和信号量(Qs)を増加させることも考え得る。また、第1基板100にプレーナー型の転送ゲートTGを形成する方法は、第1基板100に縦型の転送ゲートTGを形成する方法に比べて、製造工程数が少なく、製造工程に起因したフォトダイオードPDへの悪影響が生じにくい、とも考え得る。
<7.変形例6>
 図64は、上記実施の形態に係る撮像装置1の画素回路の一変形例を表したものである。図64は、上記実施の形態で説明した図32に対応する。本変形例では、1つの画素(画素541A)毎に画素回路210が設けられている。即ち、画素回路210は、複数の画素で共有されていない。この点において、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と異なっている。
 本変形例の撮像装置1は、画素541Aと画素回路210とを互いに異なる基板(第1基板100および第2基板200)に設ける点では、上記実施の形態で説明した撮像装置1と同じである。このため、本変形例に係る撮像装置1も、上記実施の形態で説明したのと同様の効果を得ることができる。
<8.変形例7>
 図65は、上記実施の形態で説明した画素分離部117の平面構成の一変形例を表したものである。画素541A,541B,541C,541D各々を囲む画素分離部117に、隙間が設けられていてもよい。即ち、画素541A,541B,541C,541Dの全周が画素分離部117に囲まれていなくてもよい。例えば、画素分離部117の隙間は、パッド部120,121近傍に設けられている(図35B参照)。
 上記実施の形態では、画素分離部117が半導体層100Sを貫通するFTI構造を有する例(図34参照)を説明したが、画素分離部117はFTI構造以外の構成を有していてもよい。例えば、画素分離部117は、半導体層100Sを完全に貫通するように設けられていなくてもよく、いわゆる、DTI(Deep Trench Isolation)構造を有していてもよい。
 <9.適用例>
 図66は、上記実施の形態およびその変形例に係る撮像装置1を備えた撮像システム7の概略構成の一例を表したものである。
 撮像システム7は、例えば、デジタルスチルカメラやビデオカメラ等の撮像装置や、スマートフォンやタブレット型端末等の携帯端末装置などの電子機器である。撮像システム7は、例えば、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246、操作部247および電源部248を備えている。撮像システム7において、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246、操作部247および電源部248は、バスライン249を介して相互に接続されている。
 上記実施の形態およびその変形例に係る撮像装置1は、入射光に応じた画像データを出力する。DSP回路243は、上記実施の形態およびその変形例に係る撮像装置1から出力される信号(画像データ)を処理する信号処理回路である。フレームメモリ244は、DSP回路243により処理された画像データを、フレーム単位で一時的に保持する。表示部245は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、上記実施の形態およびその変形例に係る撮像装置1で撮像された動画又は静止画を表示する。記憶部246は、上記実施の形態およびその変形例に係る撮像装置1で撮像された動画又は静止画の画像データを、半導体メモリやハードディスク等の記録媒体に記録する。操作部247は、ユーザによる操作に従い、撮像システム7が有する各種の機能についての操作指令を発する。電源部248は、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246および操作部247の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 次に、撮像システム7における撮像手順について説明する。
 図67は、撮像システム7における撮像動作のフローチャートの一例を表す。ユーザは、操作部247を操作することにより撮像開始を指示する(ステップS101)。すると、操作部247は、撮像指令を撮像装置1に送信する(ステップS102)。撮像装置1(具体的にはシステム制御回路36)は、撮像指令を受けると、所定の撮像方式での撮像を実行する(ステップS103)。
 撮像装置1は、撮像により得られた画像データをDSP回路243に出力する。ここで、画像データとは、フローティングディフュージョンFDに一時的に保持された電荷に基づいて生成された画素信号の全画素分のデータである。DSP回路243は、撮像装置1から入力された画像データに基づいて所定の信号処理(例えばノイズ低減処理など)を行う(ステップS104)。DSP回路243は、所定の信号処理がなされた画像データをフレームメモリ244に保持させ、フレームメモリ244は、画像データを記憶部246に記憶させる(ステップS105)。このようにして、撮像システム7における撮像が行われる。
 本適用例では、上記実施の形態およびその変形例に係る撮像装置1が撮像システム7に適用される。これにより、撮像装置1を小型化もしくは高精細化することができるので、小型もしくは高精細な撮像システム7を提供することができる。
 <10.応用例>
[応用例1]
 本開示に係る技術(本技術)は、様々な電子機器へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図68は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図68に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図68の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図69は、撮像部12031の設置位置の例を示す図である。
 図69では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図69には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上記実施の形態およびその変形例に係る撮像装置1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、ノイズの少ない高精細な撮影画像を得ることができるので、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
[応用例2]
 図70は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図70では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図71は、図71に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、撮像部11402を小型化もしくは高精細化することができるので、小型もしくは高精細な内視鏡11100を提供することができる。
 以上、実施の形態およびその変形例、適用例ならびに応用例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
 なお、本技術は以下のような構成を取ることができる。
 (1)
 信号を参照信号と比較して比較結果を出力する比較器であって、
 前記信号と前記参照信号との差電圧を出力する差動回路と、
 前記差動回路と電気的に接続される能動負荷回路と、
 を備え、
 前記差動回路は、基板の表面に設けられる第1および第2トランジスタを有し、
 前記第1および第2トランジスタは、前記基板の表面に対して略垂直な方向に延伸するチャネル領域を有する、比較器。
 (2)
 前記第1および第2トランジスタのチャネル領域は、チャネル長方向に対して略垂直な方向に沿って、凹凸形状を有する、(1)に記載の比較器。
 (3)
 前記第1および第2トランジスタのチャネル領域は、チャネル長方向に沿って、凹凸形状を有しない、(2)に記載の比較器。
 (4)
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第3および第4トランジスタのチャネル領域は、チャネル長方向に沿って、凹凸形状を有する、(1)から(3)のいずれか一項に記載の比較器。
 (5)
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第3および第4トランジスタのゲート絶縁膜は、前記第1および第4トランジスタのゲート絶縁膜よりも厚い、(1)から(4)のいずれか一項に記載の比較器。
 (6)
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第1および第2トランジスタは、n型トランジスタであり、
 前記第3および第4トランジスタは、p型トランジスタである、(1)から(5)のいずれか一項に記載の比較器。
 (7)
 前記第3および第4トランジスタのチャネル長方向は、前記基板の(100)結晶面に対して略垂直または略平行である、(6)に記載の比較器。
 (8)
 前記基板が45度ノッチ基板であり、
 前記第3および第4トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直または略平行方向である、(6)に記載の比較器。
 (9)
 前記基板が0度ノッチ基板であり、
 前記第3および第4トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、(6)に記載の比較器。
 (10)
 前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
 前記第1および第2トランジスタは、p型トランジスタであり、
 前記第3および第4トランジスタは、n型トランジスタである、(1)から(5)のいずれか一項に記載の比較器。
 (11)
 前記第1および第2トランジスタのチャネル長方向は、前記基板の(110)結晶面に対して略垂直または略平行である、(10)に記載の比較器。
 (12)
 前記基板が45度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、(10)に記載の比較器。
 (13)
 前記基板が0度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直度または略平行方向である、(10)に記載の比較器。
 (14)
 入射光を画素信号に光電変換する光電変換素子を含む画素部と、
 前記画素信号を参照信号と比較して比較結果を出力する比較器と、
 を備え、
 前記比較器は、
 前記画素信号と前記参照信号との差電圧を出力する差動回路と、
 前記差動回路と電気的に接続される能動負荷回路と、
 を有し、
 前記差動回路は、基板の表面に設けられる第1および第2トランジスタを有し、
 前記第1および第2トランジスタは、前記基板の表面に対して略垂直な方向に延伸するチャネル領域を有する、光検出素子。
 (15)
 前記画素部は、第1基板に設けられており、
 前記比較器は、前記第1基板とは別の第2基板に設けられており、
 前記第1基板と前記第2基板とは積層されており、
 前記画素部と前記比較器とは、前記第1または第2基板に設けられた貫通電極、または、前記第1基板の配線と前記第2基板の配線との配線接合によって電気的に接続されている、(14)に記載の光検出素子。
 (16)
 前記画素部および前記比較器は、同一の第1基板に設けられ、
 前記比較器は、前記第1基板の前記画素部の上方に設けられ、
 前記画素部と前記比較器とは、前記画素部と前記比較器との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、(14)に記載の光検出素子。
 (17)
 前記差動回路は、第1基板に設けられており、
 前記能動負荷回路は、前記第1基板とは別の第2基板に設けられており、
 前記第1基板と前記第2基板とは積層されており、
 前記差動回路と前記能動負荷回路とは、前記第1基板の配線と前記第2基板の配線との接合によって電気的に接続されている、(14)に記載の光検出素子。
 (18)
 前記画素部および前記差動回路は、同一の第1基板に設けられ、
 前記差動回路は、前記第1基板の前記画素部の上方に設けられ、
 前記画素部と前記差動回路とは、前記画素部と前記差動回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、(17)に記載の光検出素子。
 (19)
 前記画素部および前記比較器は、同一の第1基板に設けられ、
 前記差動回路は、前記画素部のトランジスタと同一層に設けられており、
 前記能動負荷回路は、前記第1基板の前記画素部の上方に設けられ、
 前記差動回路と前記能動負荷回路とは、前記差動回路と前記能動負荷回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、(14)に記載の光検出素子。
 (20)
 (14)から(19)のいずれか一項に記載の光検出素子を備える電子機器。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
100 第1基板、200 第2基板、300 第3基板、210 コンパレータ、539 画素共有ユニット、210a カレントミラー回路、210b 差動回路、210c 電流源、Tp1,Tp2 p型トランジスタ、Tn1~Tn4 n型トランジスタ、PD フォトダイオード、FD フローティングディフュージョン、TR 転送トランジスタ、OF オーバーフローゲート、CCC 配線接合、VIA ビアコンタクト、PLG コンタクトプラグ、W0 0度ノッチ基板、W45 45度ノッチ基板、CHtp チャネル領域、Gtp ゲート電極、D1,D2 チャネル長方向、CHtp,CHtn チャネル領域

Claims (20)

  1.  信号を参照信号と比較して比較結果を出力する比較器であって、
     前記信号と前記参照信号との差電圧を出力する差動回路と、
     前記差動回路と電気的に接続される能動負荷回路と、
     を備え、
     前記差動回路は、基板の表面に設けられる第1および第2トランジスタを有し、
     前記第1および第2トランジスタは、前記基板の表面に対して略垂直な方向に延伸するチャネル領域を有する、比較器。
  2.  前記第1および第2トランジスタのチャネル領域は、チャネル長方向に対して略垂直な方向に沿って、凹凸形状を有する、請求項1に記載の比較器。
  3.  前記第1および第2トランジスタのチャネル領域は、チャネル長方向に沿って、凹凸形状を有しない、請求項2に記載の比較器。
  4.  前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
     前記第3および第4トランジスタのチャネル領域は、チャネル長方向に沿って、凹凸形状を有する、請求項1に記載の比較器。
  5.  前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
     前記第3および第4トランジスタのゲート絶縁膜は、前記第1および第4トランジスタのゲート絶縁膜よりも厚い、請求項1に記載の比較器。
  6.  前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
     前記第1および第2トランジスタは、n型トランジスタであり、
     前記第3および第4トランジスタは、p型トランジスタである、請求項1に記載の比較器。
  7.  前記第3および第4トランジスタのチャネル長方向は、前記基板の(100)結晶面に対して略垂直または略平行である、請求項6に記載の比較器。
  8.  前記基板が45度ノッチ基板であり、
     前記第3および第4トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直または略平行方向である、請求項6に記載の比較器。
  9.  前記基板が0度ノッチ基板であり、
     前記第3および第4トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、請求項6に記載の比較器。
  10.  前記能動負荷回路は、前記基板の表面に設けられる第3および第4トランジスタを有し、
     前記第1および第2トランジスタは、p型トランジスタであり、
     前記第3および第4トランジスタは、n型トランジスタである、請求項1に記載の比較器。
  11.  前記第1および第2トランジスタのチャネル長方向は、前記基板の(110)結晶面に対して略垂直または略平行である、請求項10に記載の比較器。
  12.  前記基板が45度ノッチ基板であり、
     前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、請求項10に記載の比較器。
  13.  前記基板が0度ノッチ基板であり、
     前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直度または略平行方向である、請求項10に記載の比較器。
  14.  入射光を画素信号に光電変換する光電変換素子を含む画素部と、
     前記画素信号を参照信号と比較して比較結果を出力する比較器と、
     を備え、
     前記比較器は、
     前記画素信号と前記参照信号との差電圧を出力する差動回路と、
     前記差動回路と電気的に接続される能動負荷回路と、
     を有し、
     前記差動回路は、基板の表面に設けられる第1および第2トランジスタを有し、
     前記第1および第2トランジスタは、前記基板の表面に対して略垂直な方向に延伸するチャネル領域を有する、光検出素子。
  15.  前記画素部は、第1基板に設けられており、
     前記比較器は、前記第1基板とは別の第2基板に設けられており、
     前記第1基板と前記第2基板とは積層されており、
     前記画素部と前記比較器とは、前記第1または第2基板に設けられた貫通電極、または、前記第1基板の配線と前記第2基板の配線との配線接合によって電気的に接続されている、請求項14に記載の光検出素子。
  16.  前記画素部および前記比較器は、同一の第1基板に設けられ、
     前記比較器は、前記第1基板の前記画素部の上方に設けられ、
     前記画素部と前記比較器とは、前記画素部と前記比較器との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、請求項14に記載の光検出素子。
  17.  前記差動回路は、第1基板に設けられており、
     前記能動負荷回路は、前記第1基板とは別の第2基板に設けられており、
     前記第1基板と前記第2基板とは積層されており、
     前記差動回路と前記能動負荷回路とは、前記第1基板の配線と前記第2基板の配線との接合によって電気的に接続されている、請求項14に記載の光検出素子。
  18.  前記画素部および前記差動回路は、同一の第1基板に設けられ、
     前記差動回路は、前記第1基板の前記画素部の上方に設けられ、
     前記画素部と前記差動回路とは、前記画素部と前記差動回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、請求項17に記載の光検出素子。
  19.  前記画素部および前記比較器は、同一の第1基板に設けられ、
     前記差動回路は、前記画素部のトランジスタと同一層に設けられており、
     前記能動負荷回路は、前記第1基板の前記画素部の上方に設けられ、
     前記差動回路と前記能動負荷回路とは、前記差動回路と前記能動負荷回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、請求項14に記載の光検出素子。
  20.  請求項14に記載の光検出素子を備える電子機器。
PCT/JP2023/020632 2022-06-15 2023-06-02 比較器、光検出素子および電子機器 WO2023243440A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-096837 2022-06-15
JP2022096837 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243440A1 true WO2023243440A1 (ja) 2023-12-21

Family

ID=89191026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020632 WO2023243440A1 (ja) 2022-06-15 2023-06-02 比較器、光検出素子および電子機器

Country Status (1)

Country Link
WO (1) WO2023243440A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140531A (ja) * 2018-02-09 2019-08-22 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
WO2021084959A1 (ja) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2021186969A1 (ja) * 2020-03-17 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140531A (ja) * 2018-02-09 2019-08-22 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
WO2021084959A1 (ja) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2021186969A1 (ja) * 2020-03-17 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器

Similar Documents

Publication Publication Date Title
US11985443B2 (en) Solid-state image sensor
WO2020262559A1 (ja) 撮像装置
KR20220023764A (ko) 촬상 장치
JP2023169424A (ja) 固体撮像素子
KR20220023760A (ko) 촬상 장치
WO2022138467A1 (ja) 固体撮像装置
WO2022085722A1 (ja) 撮像装置および受光素子
WO2020262502A1 (ja) 固体撮像装置
WO2020262323A1 (ja) 撮像装置
WO2020262199A1 (ja) 半導体装置および撮像装置
WO2020262501A1 (ja) 撮像装置
US20220239853A1 (en) Solid-state imaging device and electronic device
WO2020262558A1 (ja) 撮像装置
WO2023243440A1 (ja) 比較器、光検出素子および電子機器
WO2023157627A1 (ja) 比較器、光検出素子および電子機器
WO2023223743A1 (ja) 光検出素子
WO2023136174A1 (ja) 固体撮像装置および電子機器
WO2024090081A1 (ja) 増幅回路、コンパレータおよび固体撮像装置
WO2023058484A1 (ja) 撮像装置
WO2024014209A1 (ja) 撮像装置
WO2023249016A1 (ja) 撮像素子および撮像装置
TW202422858A (zh) 光檢測元件
CN113940058A (zh) 摄像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823733

Country of ref document: EP

Kind code of ref document: A1