WO2023136174A1 - 固体撮像装置および電子機器 - Google Patents

固体撮像装置および電子機器 Download PDF

Info

Publication number
WO2023136174A1
WO2023136174A1 PCT/JP2022/048602 JP2022048602W WO2023136174A1 WO 2023136174 A1 WO2023136174 A1 WO 2023136174A1 JP 2022048602 W JP2022048602 W JP 2022048602W WO 2023136174 A1 WO2023136174 A1 WO 2023136174A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pixel
imaging device
section
transistors
Prior art date
Application number
PCT/JP2022/048602
Other languages
English (en)
French (fr)
Inventor
和生 野本
慎一 三宅
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023136174A1 publication Critical patent/WO2023136174A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present disclosure relates to solid-state imaging devices and electronic devices.
  • a solid-state imaging device includes a pixel section including a photoelectric conversion element that photoelectrically converts incident light into a pixel signal, and a comparison section that compares the pixel signal from the pixel section with a reference signal and outputs a comparison result. and an AD conversion unit that converts a pixel signal into a digital signal based on a comparison result, and the comparison unit inputs the pixel signal and the reference signal and outputs a difference voltage between the pixel signal and the reference signal. and a current mirror circuit for supplying a current corresponding to a predetermined mirror ratio to the differential circuit. It includes first and second transistors in planes that are substantially parallel or substantially perpendicular to the (100) crystal plane.
  • the first and second transistors are p-type transistors.
  • the substrate is a 45-degree notch substrate, and the channel length directions of the first and second transistors are substantially perpendicular or substantially parallel to the notch plane on the surface of the substrate.
  • the substrate is a 0-degree notch substrate, and the channel length directions of the first and second transistors are directions that are inclined by about 45 degrees or about 135 degrees with respect to the notch plane on the surface of the substrate.
  • the first and second transistors each have a channel region having a top surface substantially parallel to the surface of the substrate and side surfaces substantially perpendicular to the surface of the substrate, the top surface and side surfaces of the channel region 100) in a crystal plane that is substantially parallel or substantially perpendicular to the crystal plane;
  • the pixel portion is provided on a first substrate
  • the comparison portion is provided on a second substrate different from the first substrate
  • the first substrate and the second substrate are laminated
  • the pixel portion and the comparison portion are provided on a second substrate.
  • the comparison section is electrically connected by a through-electrode provided in the second substrate or by wiring connection between the wiring of the first substrate and the wiring of the second substrate.
  • the pixel portion and the comparing portion are provided on the same first substrate, the comparing portion is provided above the pixel portion on the first substrate, and the pixel portion and the comparing portion are provided between the pixel portion and the comparing portion. They are electrically connected by contact plugs provided in the insulating film.
  • the differential circuit is provided on a first substrate, the current mirror circuit is provided on a second substrate different from the first substrate, and the first substrate and the second substrate are laminated to form a differential circuit.
  • the active circuit and the current mirror circuit are electrically connected by bonding the wiring of the first substrate and the wiring of the second substrate.
  • the pixel portion and the differential circuit are provided on the same first substrate, and the differential circuit is provided above the pixel portion on the first substrate. are electrically connected by a contact plug provided in the interlayer insulating film between them.
  • the pixel section and the comparison section are provided on the same first substrate, the differential circuit is provided on the same layer as the transistors of the pixel section, and the current mirror circuit is provided above the pixel section on the first substrate. , the differential circuit and the current mirror circuit are electrically connected by a contact plug provided in an interlayer insulating film between the differential circuit and the current mirror circuit.
  • the first and second transistors are n-type transistors.
  • the substrate is a 45-degree notch substrate, and the channel length directions of the first and second transistors are directions that are inclined by about 45 degrees or about 135 degrees with respect to the notch plane on the surface of the substrate.
  • the substrate is a 0-degree notch substrate, and the channel length directions of the first and second transistors are substantially perpendicular or substantially parallel to the notch plane on the surface of the substrate.
  • the first and second transistors each have a channel region having a top surface substantially parallel to the surface of the substrate and side surfaces substantially perpendicular to the surface of the substrate, the top surface and side surfaces of the channel region 110) in a crystal plane that is substantially parallel or substantially perpendicular to the crystal plane;
  • An electronic device comprising the solid-state imaging device according to any one of claims 1 to 14.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the imaging device according to the first embodiment;
  • FIG. 2 The figure showing an example of the schematic structure of an imaging device.
  • FIG. 2 is a schematic cross-sectional view showing configurations of a pixel sharing unit, a column signal processing section, and a pixel signal processing section according to the first embodiment;
  • FIG. 2 is an equivalent circuit diagram showing an example of the configuration of a pixel sharing unit and a comparator section;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • 4 is a perspective view showing a source region, a drain region, and a channel region of a transistor;
  • FIG. 5 is a graph showing the relationship between carrier mobility and carrier concentration;
  • FIG. 2 is a schematic plan view showing an example of a planar layout of the first substrate;
  • FIG. 4 is a schematic plan view showing an example of a planar layout of a second substrate;
  • FIG. 2 is a conceptual diagram showing a configuration example of a solid-state imaging device according to a second embodiment;
  • FIG. 11 is an equivalent circuit diagram showing an example of configurations of a pixel sharing unit and a comparator section according to the second embodiment;
  • FIG. 11 is a conceptual diagram showing a configuration example of a solid-state imaging device according to a third embodiment;
  • FIG. 11 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit and the comparator section according to the third embodiment;
  • FIG. 11 is a conceptual diagram showing a configuration example of a solid-state imaging device according to a fourth embodiment;
  • FIG. 11 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit and the comparator section according to the fourth embodiment;
  • FIG. 11 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit and the comparator section according to the fifth embodiment;
  • FIG. 11 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit and the comparator section according to the fifth embodiment;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 2 is a plan view showing a configuration example of a p-type transistor;
  • FIG. 4 is a cross-sectional view showing an example of a method for manufacturing the solid-state imaging device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing an example of a method for manufacturing the solid-state imaging device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing an example of a method for manufacturing the solid-
  • FIG. 4 is a cross-sectional view showing an example of a method for manufacturing the solid-state imaging device according to the first embodiment
  • FIG. 4 is a cross-sectional view showing an example of a method for manufacturing the solid-state imaging device according to the first embodiment
  • FIG. 2 is an equivalent circuit diagram of the pixel sharing unit shown in FIG. 1
  • FIG. 3 is a diagram showing an example of a connection mode between a plurality of pixel sharing units and a plurality of vertical signal lines
  • FIG. 4 is a schematic cross-sectional view showing an example of a specific configuration of the imaging device shown in FIG. 3
  • FIG. 32 is a schematic diagram showing an example of a planar configuration of a main part of the first substrate shown in FIG. 31;
  • FIG. 32B is a schematic diagram showing a planar configuration of a pad portion together with a main portion of the first substrate shown in FIG. 32A;
  • FIG. 32 is a schematic diagram showing an example of a planar configuration of the second substrate (semiconductor layer) shown in FIG. 31;
  • FIG. 32 is a schematic diagram showing an example of the planar configuration of the main part of the pixel circuit and the first substrate together with the first wiring layer shown in FIG. 31 ;
  • FIG. 32 is a schematic diagram showing an example of planar configurations of the first wiring layer and the second wiring layer shown in FIG. 31;
  • FIG. 32 is a schematic diagram showing an example of a planar configuration of the second wiring layer and the third wiring layer shown in FIG. 31;
  • FIG. 31 is a schematic diagram showing a planar configuration of a pad portion together with a main portion of the first substrate shown in FIG. 32A;
  • FIG. 32 is a schematic diagram showing an example of a planar configuration of the second substrate (semicon
  • FIG. 32 is a schematic diagram showing an example of a planar configuration of the third wiring layer and the fourth wiring layer shown in FIG. 31;
  • FIG. 4 is a schematic diagram for explaining paths of input signals to the imaging device shown in FIG. 3 ;
  • FIG. 4 is a schematic diagram for explaining signal paths of pixel signals of the imaging device shown in FIG. 3 ;
  • FIG. 34 is a schematic diagram showing a modification of the planar configuration of the second substrate (semiconductor layer) shown in FIG. 33;
  • FIG. 41 is a schematic diagram showing the planar configuration of the main parts of the first wiring layer and the first substrate together with the pixel circuit shown in FIG. 40 ;
  • FIG. 42 is a schematic diagram showing an example of a planar configuration of a second wiring layer together with the first wiring layer shown in FIG.
  • FIG. 43 is a schematic diagram showing an example of a planar configuration of a third wiring layer together with the second wiring layer shown in FIG. 42 ;
  • FIG. 44 is a schematic diagram showing an example of a planar configuration of a fourth wiring layer together with the third wiring layer shown in FIG. 43 ;
  • FIG. 32B is a schematic diagram showing a modified example of the planar configuration of the first substrate shown in FIG. 32A.
  • FIG. 46 is a schematic diagram showing an example of a planar configuration of a second substrate (semiconductor layer) laminated on the first substrate shown in FIG. 45;
  • FIG. 47 is a schematic diagram showing an example of a planar configuration of a first wiring layer together with the pixel circuit shown in FIG. 46;
  • FIG. 46 is a schematic diagram showing an example of a planar configuration of a first wiring layer together with the pixel circuit shown in FIG. 46;
  • FIG. 48 is a schematic diagram showing an example of a planar configuration of a second wiring layer along with the first wiring layer shown in FIG. 47;
  • FIG. 49 is a schematic diagram showing an example of a planar configuration of a third wiring layer together with the second wiring layer shown in FIG. 48 ;
  • FIG. 50 is a schematic diagram showing an example of a planar configuration of a fourth wiring layer together with the third wiring layer shown in FIG. 49 ;
  • FIG. 46 is a schematic diagram showing another example of the planar configuration of the first substrate shown in FIG. 45;
  • FIG. 52 is a schematic diagram showing an example of a planar configuration of a second substrate (semiconductor layer) laminated on the first substrate shown in FIG. 51;
  • FIG. 53 is a schematic diagram showing an example of the planar configuration of the first wiring layer together with the pixel circuit shown in FIG. 52 ;
  • FIG. 54 is a schematic diagram showing an example of a planar configuration of a second wiring layer together with the first wiring layer shown in FIG. 53;
  • FIG. 55 is a schematic diagram showing an example of a planar configuration of a third wiring layer together with the second wiring layer shown in FIG. 54;
  • FIG. 56 is a schematic diagram showing an example of a planar configuration of a fourth wiring layer together with the third wiring layer shown in FIG. 55;
  • FIG. 4 is a schematic cross-sectional view showing another example of the imaging device shown in FIG. 3 ;
  • FIG. 58 is a schematic diagram for explaining paths of input signals to the imaging device shown in FIG. 57;
  • FIG. 58 is a schematic diagram for explaining signal paths of pixel signals of the imaging device shown in FIG. 57 ;
  • FIG. 32 is a schematic cross-sectional view showing another example of the imaging device shown in FIG. 31;
  • FIG. 30 is a diagram showing another example of the equivalent circuit shown in FIG. 29;
  • FIG. 32B is a schematic plan view showing another example of the pixel separating portion shown in FIG. 32A and the like;
  • 1 is a diagram showing an example of a schematic configuration of an imaging system including an imaging device according to the above embodiment and its modification;
  • FIG. 64 is a diagram showing an example of an imaging procedure of the imaging system shown in FIG. 63;
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. 2 is an explanatory diagram showing an example of installation positions of an information detection unit outside the vehicle and an imaging unit; 1 is a diagram showing an example of a schematic configuration of an endoscopic surgery system; FIG. FIG. 2 is a block diagram showing an example of functional configurations of a camera head and a CCU;
  • FIG. 1 is a block diagram showing an example of the functional configuration of an imaging device according to the first embodiment.
  • the imaging device 1 in FIG. 1 includes, for example, an input section 510A, a row driving section 520, a timing control section 530, a pixel array section 540, a column signal processing section 550, an image signal processing section 560 and an output section 510B.
  • pixels 541 are repeatedly arranged in an array. More specifically, a pixel sharing unit 539 including a plurality of pixels is a repeating unit, which is repeatedly arranged in an array in the row direction and the column direction. In this specification, for convenience, the row direction may be called the H direction, and the column direction orthogonal to the row direction may be called the V direction.
  • one pixel sharing unit 539 includes eight pixels 541, as shown in FIG. Each pixel 541 has a photodiode PD.
  • the pixel sharing unit 539 is a unit that shares one pixel circuit. In other words, each eight pixels 541 has one pixel circuit (for example, the comparator section 210 in FIG. 2).
  • a pixel array section 540 in FIG. 1 is provided with a plurality of pixels 541 as well as a plurality of row drive signal lines 542 and a plurality of vertical signal lines (column readout lines) 543 .
  • the row driving signal line 542 drives the pixels 541 included in each of the plurality of pixel sharing units 539 arranged side by side in the row direction in the pixel array section 540 .
  • each pixel arranged in the row direction is driven.
  • the pixel sharing unit 539 is provided with a plurality of transistors.
  • a plurality of row drive signal lines 542 are connected to one pixel sharing unit 539 in order to drive these transistors respectively.
  • a pixel sharing unit 539 is connected to the vertical signal line (column readout line) 543 .
  • a pixel signal is read out from each pixel 541 included in the pixel sharing unit 539 via a vertical signal line (column readout line) 543 .
  • the row driving section 520 includes, for example, a row address control section that determines the row position for driving the pixels, in other words, a row decoder section, and a row driving circuit section that generates a signal for driving the pixels 541 .
  • the column signal processing section 550 includes, for example, a load circuit section connected to the vertical signal line 543 and forming a source follower circuit together with the pixel sharing unit 539 .
  • the column signal processing section 550 may have an amplifier circuit section that amplifies the pixel signal read out from the pixel sharing unit 539 via the vertical signal line 543 .
  • the column signal processor 550 may have a noise processor. In the noise processor, for example, the system noise level is removed from the signal read out from the pixel sharing unit 539 as a result of photoelectric conversion.
  • the column signal processing unit 550 has, for example, an analog-to-digital converter (ADC).
  • the analog-to-digital converter converts the signal read from the pixel sharing unit 539 or the noise-processed analog signal into a digital signal.
  • the ADC may include, for example, a comparator portion (210 in FIG. 5) and a counter portion.
  • the comparator unit 210 compares the analog signal (pixel signal) to be converted with the reference signal to be compared. Comparator unit 210 will be described later with reference to FIG.
  • the counter section measures the time until the comparison result of the comparator section 210 is inverted.
  • the count value from the counter section becomes a pixel signal that has undergone CDS (Correlated Double Sampling) processing and has been AD-converted.
  • the column signal processing section 550 may include a horizontal scanning circuit section that controls scanning of readout columns to output pixel signals.
  • the timing control section 530 supplies timing control signals to the row driving section 520 and the column signal processing section 550 based on the reference clock signal and the timing control signal input to the device.
  • the image signal processing unit 560 is a circuit that performs various signal processing on data obtained as a result of photoelectric conversion, in other words, data obtained as a result of the imaging operation of the imaging device 1 .
  • the image signal processing section 560 includes, for example, an image signal processing circuit section and a data holding section.
  • the image signal processing section 560 may include a processor section.
  • An example of the signal processing executed in the image signal processing unit 560 is that if the AD-converted imaging data is data obtained by photographing a dark subject, it is given a large number of gradations, and if it is data obtained by photographing a bright subject. is tone curve correction processing for reducing gradation. In this case, it is desirable to store characteristic data of the tone curve in advance in the data holding unit of the image signal processing unit 560 as to what kind of tone curve the gradation of the imaging data is to be corrected based on.
  • the input unit 510A is for inputting, for example, the reference clock signal, the timing control signal, the characteristic data, and the like to the imaging device 1 from the outside of the device.
  • Timing control signals are, for example, vertical synchronization signals and horizontal synchronization signals.
  • the characteristic data is to be stored in the data holding unit of the image signal processing unit 560, for example.
  • the input section 510A includes, for example, an input terminal 511, an input circuit section 512, an input amplitude changing section 513, an input data conversion circuit section 514, and a power supply section (not shown).
  • the input terminal 511 is an external terminal for inputting data.
  • the input circuit unit 512 is for taking in the signal input to the input terminal 511 into the inside of the imaging apparatus 1 .
  • the input amplitude changing unit 513 changes the amplitude of the signal captured by the input circuit unit 512 to an amplitude that can be easily used inside the imaging apparatus 1 .
  • the input data conversion circuit unit 514 changes the arrangement of the data strings of the input data.
  • the input data conversion circuit unit 514 is configured by, for example, a serial/parallel conversion circuit. This serial/parallel conversion circuit converts a serial signal received as input data into a parallel signal. Note that the input amplitude changing section 513 and the input data conversion circuit section 514 may be omitted from the input section 510A.
  • the power supply unit supplies power set to various voltages required inside the imaging apparatus 1 based on the power supplied to the imaging apparatus 1 from the outside.
  • the input section 510A may be provided with a memory interface circuit that receives data from the external memory device.
  • External memory devices are, for example, flash memory, SRAM and DRAM.
  • the output unit 510B outputs the image data to the outside of the device.
  • This image data is, for example, image data captured by the imaging device 1, image data signal-processed by the image signal processing unit 560, and the like.
  • the output section 510B includes, for example, an output data conversion circuit section 515, an output amplitude change section 516, an output circuit section 517 and an output terminal 518.
  • the output data conversion circuit unit 515 is configured by, for example, a parallel-serial conversion circuit, and in the output data conversion circuit unit 515, parallel signals used inside the imaging apparatus 1 are converted into serial signals.
  • the output amplitude changing unit 516 changes the amplitude of the signal used inside the imaging device 1 .
  • a signal with the changed amplitude can be easily used by an external device connected to the outside of the imaging apparatus 1 .
  • the output circuit unit 517 is a circuit that outputs data from the inside of the imaging device 1 to the outside of the device.
  • the output terminal 518 outputs data from the imaging device 1 to the outside of the device.
  • the output data conversion circuit section 515 and the output amplitude changing section 516 may be omitted.
  • the output section 510B may be provided with a memory interface circuit that outputs data to the external memory device.
  • External memory devices are, for example, flash memory, SRAM and DRAM.
  • FIG. 1 is an imaging device having a three-dimensional structure configured by bonding together three substrates (first substrate 100, second substrate 200, and third substrate 300).
  • the first substrate 100 includes a semiconductor layer 100S and a wiring layer 100T.
  • the second substrate 200 includes a semiconductor layer 200S and a wiring layer 200T.
  • the third substrate 300 includes a semiconductor layer 300S and a wiring layer 300T.
  • the combination of the wiring included in each substrate of the first substrate 100, the second substrate 200 and the third substrate 300 and the interlayer insulating film therearound is referred to as the respective substrates (the first substrate 100 and the second substrate 300). They are referred to as wiring layers (100T, 200T, 300T) provided on the substrate 200 and the third substrate 300).
  • the first substrate 100, the second substrate 200 and the third substrate 300 are stacked in this order, and along the stacking direction, the semiconductor layer 100S, the wiring layer 100T, the semiconductor layer 200S, the wiring layer 200T, the wiring layer 300T and the semiconductor Layers 300S are arranged in order. Specific configurations of the first substrate 100, the second substrate 200, and the third substrate 300 will be described later.
  • the arrow shown in FIG. 3 represents the incident direction of the light L to the imaging device 1 .
  • the light incident side of the imaging device 1 will be referred to as "bottom", “lower side”, and “lower”, and the side opposite to the light incident side will be referred to as "upper”, “upper”, and “upper” in subsequent cross-sectional views.
  • the light incident side of the imaging device 1 will be referred to as "bottom", “lower side”, and “lower”
  • the side opposite to the light incident side will be referred to as "upper”, “upper”, and “upper” in subsequent cross-sectional views.
  • the imaging device 1 is, for example, a back-illuminated imaging device in which light is incident from the back side of the first substrate 100 having photodiodes.
  • Both the pixel array section 540 and the pixel sharing unit 539 included in the pixel array section 540 are configured using both the first substrate 100 and the second substrate 200 .
  • a plurality of pixels 541A, 541B, 541C, and 541D included in the pixel sharing unit 539 are provided on the first substrate 100 .
  • Each of these pixels 541 has a photodiode (photodiode PD described later) and a transfer transistor (transfer transistor TG or TR described later).
  • a pixel circuit included in the pixel sharing unit 539 is provided on the second substrate 200 .
  • the pixel circuit reads pixel signals transferred from the photodiodes of the pixels 541A, 541B, 541C, and 541D via transfer transistors, or resets the photodiodes.
  • the second substrate 200 has a plurality of row driving signal lines 542 extending in the row direction and a plurality of vertical signal lines 543 extending in the column direction.
  • the second substrate 200 further has a power supply line 544 extending in the row direction and part of the column signal processing section 550 .
  • the third substrate 300 has, for example, an input section 510A, a row driving section 520, a timing control section 530, the remainder of the column signal processing section 550, an image signal processing section 560 and an output section 510B.
  • the row driving section 520 is provided, for example, in a region partially overlapping the pixel array section 540 in the stacking direction of the first substrate 100, the second substrate 200, and the third substrate 300 (hereinafter simply referred to as the stacking direction). . More specifically, the row driving section 520 is provided in a region overlapping the vicinity of the H-direction end of the pixel array section 540 in the stacking direction (FIG. 2).
  • the column signal processing section 550 is provided, for example, in a region partially overlapping the pixel array section 540 in the stacking direction. More specifically, the column signal processing section 550 is provided in a region overlapping the vicinity of the V-direction end of the pixel array section 540 in the stacking direction (FIG. 2).
  • the input section 510A and the output section 510B may be arranged on a portion other than the third substrate 300, and may be arranged on the second substrate 200, for example.
  • the input section 510A and the output section 510B may be provided on the rear surface (light incident surface) side of the first substrate 100 .
  • the pixel circuits provided on the second substrate 200 are also called pixel transistor circuits, pixel transistor groups, pixel transistors, pixel readout circuits, or readout circuits. In this specification, the term "pixel circuit" is used.
  • the first substrate 100 and the second substrate 200 are electrically connected by, for example, through electrodes.
  • the second substrate 200 and the third substrate 300 are electrically connected via contact portions 201, 202, 301 and 302, for example.
  • Contact portions 201 and 202 are provided on the second substrate 200
  • contact portions 301 and 302 are provided on the third substrate 300 .
  • the contact portion 201 of the second substrate 200 is in contact with the contact portion 301 of the third substrate 300
  • the contact portion 202 of the second substrate 200 is in contact with the contact portion 302 of the third substrate 300 .
  • the second substrate 200 has a contact region 201R provided with a plurality of contact portions 201 and a contact region 202R provided with a plurality of contact portions 202 .
  • the third substrate 300 has a contact region 301R in which a plurality of contact portions 301 are provided and a contact region 302R in which a plurality of contact portions 302 are provided.
  • the contact regions 201R and 301R are provided between the pixel array section 540 and the row driving section 520 in the stacking direction (FIG. 3).
  • the contact regions 201R and 301R are provided, for example, in a region where the row driving section 520 (third substrate 300) and the pixel array section 540 (second substrate 200) overlap in the stacking direction, or in a neighboring region. ing.
  • the contact regions 201R and 301R are arranged, for example, at the ends in the H direction among such regions (FIG. 2).
  • a contact region 301R is provided at a position overlapping a part of the row driving section 520, specifically, an end portion of the row driving section 520 in the H direction (FIGS. 2 and 3).
  • the contact portions 201 and 301 connect, for example, the row driving portion 520 provided on the third substrate 300 and the row driving line 542 provided on the second substrate 200 .
  • the contact portions 201 and 301 may connect, for example, the input portion 510A provided on the third substrate 300 to the power supply line 544 and the reference potential line (reference potential line VSS to be described later).
  • the contact regions 202R and 302R are provided between the pixel array section 540 and the column signal processing section 550 in the stacking direction (FIG. 3).
  • the contact regions 202R, 302R are provided, for example, in regions where the column signal processing section 550 (third substrate 300) and the pixel array section 540 (second substrate 200) overlap in the stacking direction, or in regions in the vicinity thereof. ing.
  • the contact regions 202R and 302R are arranged, for example, at the ends of such regions in the V direction (FIG. 2).
  • a contact region 301R is provided at a position overlapping a part of the column signal processing section 550, specifically, an end portion of the column signal processing section 550 in the V direction (see FIGS. 2 and 3). ).
  • the contact portions 202 and 302 for example, convert pixel signals (signals corresponding to the amount of charge generated as a result of photoelectric conversion in the photodiodes) output from each of the plurality of pixel sharing units 539 included in the pixel array portion 540 into second It is for connecting to the column signal processing section 550 provided on the 3 substrate 300 . Pixel signals are sent from the second substrate 200 to the third substrate 300 .
  • FIG. 3 is an example of a cross-sectional view of the imaging device 1 as described above.
  • the first substrate 100, the second substrate 200, and the third substrate 300 are electrically connected via wiring layers 100T, 200T, and 300T.
  • the imaging device 1 has an electrical connection portion that electrically connects the second substrate 200 and the third substrate 300 .
  • the contact portions 201, 202, 301, and 302 are formed of electrodes made of a conductive material.
  • the conductive material is made of, for example, a metal material such as copper (Cu), aluminum (Al), gold (Au).
  • the contact regions 201R, 202R, 301R, and 302R electrically connect the second substrate and the third substrate by directly connecting wirings formed as electrodes, for example, so that the second substrate 200 and the third substrate 300 are electrically connected. allows the input and/or output of signals from
  • An electrical connection portion that electrically connects the second substrate 200 and the third substrate 300 can be provided at a desired location.
  • the electrical connection portion may be provided in a region that does not overlap with the pixel array portion 540 in the stacking direction. Specifically, it may be provided in a region that overlaps the peripheral portion arranged outside the pixel array portion 540 in the stacking direction.
  • connection holes H1 and H2 are provided with connection holes H1 and H2, for example.
  • the connection holes H1 and H2 penetrate through the first substrate 100 and the second substrate 200 (FIG. 3).
  • the connection hole portions H1 and H2 are provided outside the pixel array portion 540 (or a portion overlapping the pixel array portion 540) (FIG. 2).
  • the connection hole portion H1 is arranged outside the pixel array portion 540 in the H direction
  • the connection hole portion H2 is arranged outside the pixel array portion 540 in the V direction.
  • the connection hole portion H1 reaches the input portion 510A provided on the third substrate 300
  • the connection hole portion H2 reaches the output portion 510B provided on the third substrate 300.
  • connection holes H1 and H2 may be hollow, and may at least partially contain a conductive material.
  • a conductive material For example, there is a configuration in which bonding wires are connected to electrodes formed as the input section 510A and/or the output section 510B.
  • the electrodes formed as the input section 510A and/or the output section 510B are connected to the conductive material provided in the connection holes H1 and H2.
  • the conductive material provided in the connection holes H1 and H2 may be partially or entirely embedded in the connection holes H1 and H2, and the conductive material may be formed on the sidewalls of the connection holes H1 and H2. good.
  • FIG. 3 shows a structure in which the input section 510A and the output section 510B are provided on the third substrate 300
  • the present invention is not limited to this.
  • the input section 510A and/or the output section 510B can be provided on the second substrate 200 by sending the signal of the third substrate 300 to the second substrate 200 via the wiring layers 200T, 300T.
  • the input section 510A and/or the output section 510B can be provided on the first substrate 100 by sending the signal of the second substrate 200 to the first substrate 1000 via the wiring layers 100T and 200T.
  • FIG. 4 is a schematic cross-sectional view showing configurations of the pixel sharing unit 539, the column signal processing section 550, and the pixel signal processing section 560 according to the first embodiment.
  • the pixel sharing unit 539, the column signal processing section 550, and the pixel signal processing section 560 are provided, for example, on the first substrate 100, the second substrate 200, and the third substrate 300, respectively.
  • the first to third substrates 100 to 300 are, for example, silicon substrates, and are laminated together.
  • the first to third substrates 100 to 300 are electrically connected to each other using via contacts VIA, through electrodes (TSV (Through Silicon Via)) and/or wiring junctions (Cu—Cu junctions) CCC.
  • the via contact VIA is a contact plug provided through the interlayer insulating film.
  • the through electrode TSV is an electrode that penetrates the substrate and electrically connects the semiconductor element to the semiconductor element on another substrate.
  • the wiring connection CCC is formed by directly bonding the wiring provided on each of the first to third substrates 100 to 300 by laminating the substrates.
  • the first substrate 100 is provided with components corresponding to each pixel 541, such as a photodiode PD, a transfer transistor TG, an overflow gate (not shown in FIG. 4), and a floating diffusion FD.
  • the solid-state imaging device in FIG. 4 is a back-illuminated CIS, and the light receiving surface of the first substrate 100 is provided with an on-chip lens OCL.
  • a transfer transistor TG and an overflow gate are provided on the surface of the first substrate 100 opposite to the light receiving surface.
  • the transfer transistor TG and the overflow gate are covered with an interlayer insulating film and electrically connected to via contacts VIA embedded in the interlayer insulating film.
  • the comparator section 210 of the column signal processing section 550 is provided on the second substrate 200 .
  • the column signal processing unit 550 is electrically connected to the floating diffusion FD and the like of the first substrate 100 through the through electrodes TSV and via contacts VIA penetrating the second substrate 200 .
  • the column signal processing unit 550 is also covered with an interlayer insulating film and electrically connected to the wiring embedded in the interlayer insulating film. A part of the wiring is exposed on the surface of the interlayer insulating film.
  • the third substrate 300 is provided with, for example, logic circuits after the comparator section 210 of the column signal processing section 550, the pixel signal processing section 560, and the like.
  • the logic circuit, the pixel signal processing unit 560, and the like are also covered with an interlayer insulating film, and are electrically connected to wiring embedded in the interlayer insulating film. A part of the wiring is exposed on the surface of the interlayer insulating film.
  • Some of the wirings of the second and third substrates 200, 300 are joined together by lamination of the second and third substrates 200, 300, and the wirings are electrically connected to each other. Thereby, the wiring joint CCC is formed.
  • FIG. 5 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and the comparator section 210.
  • the pixel sharing unit 539 includes multiple pixels 541 and one comparator section 210 connected to the multiple pixels 541 .
  • a plurality of pixels 541 are provided on the first substrate 100
  • the comparator section 210 is provided on the second substrate 200 .
  • the first substrate 100 and the second substrate 200 are electrically connected by a through-electrode that is electrically connected at a wiring connection (Cu—Cu connection) CCC.
  • the pixel sharing unit 539 operates one comparator section 210 in a time-sharing manner to sequentially transmit pixel signals of a plurality of pixels 541 (pixels 541A, 541B, 541C, and 541D) included in the pixel sharing unit 539 to vertical signal lines. 543 for output.
  • a mode in which one comparator unit 210 is connected to a plurality of pixels 541 and the pixel signals of the plurality of pixels 541 are output by the one comparator unit 210 in a time-sharing manner is referred to as "a plurality of pixels 541 are connected to one comparator. share part 210". In FIG. 5, eight pixels 541 share one comparator unit 210, but the number is not particularly limited.
  • the pixels 541 have components in common with each other. Henceforth, when it is not necessary to distinguish between the components of the plurality of pixels 541A, 541B, 541C, and 541D, the identification numbers at the end of the reference numerals of the components of the pixels 541A, 541B, 541C, and 541D are omitted.
  • the pixel 541 is electrically connected to, for example, the photodiode PD, the transfer transistor TG electrically connected to the photodiode PD, the overflow gate OF electrically connected to the photodiode PD, and the transfer transistor TG. and a floating diffusion FD.
  • the photodiodes PD (PD1 to PD4) have their cathodes electrically connected to the transfer transistor TG and the source or drain of the overflow gate OF, and their anodes electrically connected to a reference potential line (eg, ground).
  • the photodiode PD is a photoelectric conversion element that photoelectrically converts incident light into pixel signals and generates electric charges according to the amount of light received.
  • the transfer transistors TG are, for example, CMOS (Complementary Metal Oxide Semiconductor) transistors.
  • the transfer transistor TG has a drain electrically connected to the floating diffusion FD and a gate electrically connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 (see FIG. 1) connected to one pixel sharing unit 539 .
  • the transfer transistor TG transfers charges generated in the photodiode PD to the floating diffusion FD.
  • a floating diffusion FD is an n-type diffusion layer region formed in a p-type semiconductor layer.
  • the floating diffusion FD is charge holding means for temporarily holding charges transferred from the photodiode PD, and is charge-voltage conversion means for generating a voltage corresponding to the charge amount.
  • the floating diffusion FD is shared by multiple pixels 541 .
  • the overflow gates OF (OF1 to OF4) are connected between the photodiode PD and the power supply VDD, and a predetermined voltage is applied to the gate.
  • the overflow gate OF allows charges exceeding the saturation charge amount of the photodiode PD to flow to the power supply VDD.
  • the overflow gate OF is composed of, for example, an n-type transistor.
  • the comparator section 210 includes a current mirror circuit 210a, which is an active load circuit, a differential circuit 210b, a current source 210c, and a reset transistor 210d.
  • the current mirror circuit 210a includes p-type transistors Tp1 and Tp2.
  • the source of the transistor Tp1 is connected to the power supply VDD, and its drain is connected to the drain of the n-type transistor Tn1.
  • the gate of the transistor Tp1 is connected to the drain of the transistor Tp1 in common with the gate of the transistor Tp2.
  • the source of the transistor Tp2 is connected to the power supply VDD, and its drain is connected to the drain of the n-type transistor Tn2.
  • the gate of the transistor Tp2 is connected to the drain of the transistor Tp1 in common with the gate of the transistor Tp1.
  • the gates of the transistors Tp1 and Tp2 are commonly connected to the drain of the transistor Tp1, they form a current mirror circuit, and currents corresponding to a predetermined mirror ratio flow through the transistors Tn1 and Tn2. A more detailed configuration of the transistors Tp1 and Tp2 will be described later.
  • the differential circuit 210b includes n-type transistors Tn1 and Tn2.
  • the drain of transistor Tn1 is connected to the drain and gate of transistor Tp1.
  • the source of the transistor Tn1 and the source of the transistor Tn2 are commonly connected to the drain of the n-type transistor Tn3.
  • the drain of the transistor Tn2 is connected to the drain of the transistor Tp2.
  • the source of the transistor Tn2 is connected to the drain of the transistor Tn3 in common with the source of the transistor Tn1.
  • the transistors Tn1 and Tn2 each receive the pixel signal and the reference signal from the floating diffusion FD at their gates, and output the voltage difference from the node N210.
  • the current source 210c is composed of an n-type transistor Tn3, and maintains the entire current flowing through the transistors Tn1 and Tn2 at a predetermined value.
  • the drain of the transistor Tn3 is commonly connected to the sources of the transistors Tn1 and Tn2, and the source of the transistor Tn3 is connected to the ground GND.
  • a predetermined voltage Vb is applied to the gate of the transistor Tn3.
  • the n-type transistor Tn4 is connected between the node N210 and the gate (floating diffusion FD) of the transistor Tn2.
  • the gate of n-type transistor Tn4 receives reset signal RST.
  • the n-type transistor Tn4 functions as an AZ transistor and electrically connects the floating diffusion FD and the node N210 to perform an auto-zero operation before detection of the output signal.
  • a negative voltage VRLW is applied as a back bias to the transistors Tn1 to Tn4.
  • FIGS. 1 and Tp2 are plan views showing configuration examples of the p-type transistors Tp1 and Tp2. 6 to 9 show one of the transistors Tp1 and Tp2, and the illustration of the configuration of the other is omitted.
  • the transistors Tp1 and Tp2 may have the same configuration. Also, the transistors Tp1 and Tp2 may be a combination of any two of the configurations shown in FIGS.
  • the 45-degree notch substrate W45 is a silicon substrate having a crystal orientation (100) plane ((100) crystal plane).
  • the transistors Tp1 and Tp2 are provided on the 45-degree notch substrate W45 and have a source region S, a drain region D and a gate electrode Gtp.
  • the channel region CHtp is provided between the source region S and the drain region D.
  • the gate electrode Gtp covers the upper and side surfaces of the channel region CHtp via a gate insulating film (not shown).
  • the gate electrode Gtp is electrically insulated from the channel region CHtp by a gate insulating film.
  • the top surface or side surface of the channel region CHtp of the transistors Tp1 and Tp2 is in a plane substantially parallel to the (100) crystal plane of the substrate W45 on the surface of the substrate W45.
  • the D1 direction is the direction in which current flows in the transistors Tp1 and Tp2, and is also the channel length direction of the transistors Tp1 and Tp2.
  • the D1 direction is substantially perpendicular or substantially parallel to the (100) crystal plane of the substrate W45. That is, the channel length directions of the transistors Tp1 and Tp2 are substantially parallel or substantially perpendicular to the (100) crystal plane (notch plane) of the substrate W45 on the surface of the substrate W45.
  • the transistors Tp1 and Tp2 are provided on the 0 degree notch substrate W0 and have a source region S, a drain region D and a gate electrode Gtp.
  • the channel region CHtp is provided between the source region S and the drain region D.
  • the gate electrode Gtp covers the upper and side surfaces of the channel region CHtp via a gate insulating film (not shown).
  • the gate electrode Gtp is electrically insulated from the channel region CHtp by a gate insulating film.
  • the upper surface or side surface of the channel region CHtp of the transistors Tp1 and Tp2 is in a plane inclined at about 45 degrees or about 135 degrees with respect to the (110) crystal plane (notch plane) of the substrate W0 on the surface of the substrate W0. be.
  • the D2 direction is the direction in which current flows in the transistors Tp1 and Tp2, and is also the channel length direction of the transistors Tp1 and Tp2.
  • the D2 direction is substantially perpendicular or substantially parallel to the (100) crystal plane of the substrate W0. That is, the channel length direction of the transistors Tp1 and Tp2 is about 45 degrees or about 135 degrees with respect to the (110) crystal plane (notch plane) of the substrate W45 on the surface of the substrate W0.
  • FIG. 10 is a perspective view showing source regions S, drain regions D, and channel regions CHtp of transistors Tp1 and Tp2.
  • the transistors Tp1 and Tp2 are, for example, Fin-type FETs (Field Effect Transistors) formed on the substrate W45 or W0.
  • the channel region CHtp is formed vertically (fin-shaped) on the substrate W45 or W0, as shown in FIG.
  • Fin channel region CHtp has a top surface St substantially parallel to surface F45 or F0 of substrate W45 or W0 and a side surface Ss substantially perpendicular to surface F45 or F0.
  • the top surface St and side surfaces Ss of the channel region CHtp are in crystal planes substantially parallel or substantially perpendicular to the (100) crystal plane of the substrate W45.
  • the top surface St is substantially parallel to the XY plane, and the side surface Ss is substantially perpendicular to the XY plane.
  • FIG. 11 is a graph showing the relationship between carrier mobility and carrier concentration.
  • the right side of FIG. 11 shows a graph for p-type transistors and the left side shows a graph for n-type transistors.
  • the horizontal axis indicates carrier concentration
  • the vertical axis indicates carrier mobility (hole mobility).
  • the carrier concentration increases from right to left.
  • the horizontal axis indicates carrier concentration
  • the vertical axis indicates carrier mobility (electron mobility).
  • the carrier concentration increases from left to right.
  • the line Lp (100) is a p-type transistor in which the top surface St or the side surface Ss of the channel region CHtp is in a plane substantially parallel or substantially perpendicular to the (100) crystal plane of the substrate W45, as shown in FIGS. Characteristics of Tp1 and Tp2 are shown.
  • the channel length direction (D1 direction) of the transistors Tp1 and Tp2 is (100 ) substantially perpendicular or substantially parallel to the crystal plane (notch plane).
  • the 0-degree notch substrate W0 as shown in FIG.
  • the channel length direction (D1 direction) of the transistors Tp1 and Tp2 is the (110) crystal plane of the substrate W0 on the surface F0 of the substrate W0. (the notch plane) at an angle of about 45 degrees or about 135 degrees. In this case, carrier mobility is relatively low.
  • line Lp(110) shows the characteristics of p-type transistors Tp1 and Tp2 in which the top surface St or side surface Ss of the channel region CHtp is in a plane substantially parallel or substantially perpendicular to the (110) crystal plane of the substrate.
  • the channel length direction (D1 direction) of the transistors Tp1 and Tp2 is on the surface F45 of the substrate W45 with respect to the (100) crystal plane (notch plane) of the substrate W45. Tilt at about 45 degrees or about 135 degrees.
  • the channel length direction (D1 direction) of the transistors Tp1 and Tp2 is substantially perpendicular to the (110) crystal plane (notch plane) of the substrate W0 on the surface F0 of the substrate W0. Almost parallel. In this case, carrier mobility is relatively high.
  • the p-type transistors Tp1 and Tp2 corresponding to line Lp (100) have much lower carrier mobility than the p-type transistor corresponding to line Lp (110). That is, as indicated by the line Lp (100), the top surface St or the side surface Ss of the channel region CHtp is substantially parallel or substantially perpendicular to the (100) crystal plane of the substrate W45, thereby forming the p-type transistor Tp1. , Tp2 can be reduced.
  • the S/N (Signal/Noise) ratio can be improved and the dynamic range can be expanded. As a result, the sensor characteristics of the solid-state imaging device according to this embodiment are improved.
  • a line Ln(100) represents the characteristics of n-type transistors Tn1 and Tn2 in which the top surface or side surface of the channel region lies in a plane substantially parallel or substantially perpendicular to the (100) crystal plane of the substrate W45.
  • the channel length direction (D1 direction) of the transistors Tn1 and Tn2 is on the surface F45 of the substrate W45 with respect to the (100) crystal plane (notch plane) of the substrate W45. substantially perpendicular or substantially parallel.
  • the channel length direction (D1 direction) of the transistors Tn1 and Tn2 is about 45 degrees with respect to the (110) crystal plane (notch plane) of the substrate W0 on the surface F0 of the substrate W0. Or tilt about 135 degrees.
  • line Ln(110) shows the characteristics of n-type transistors Tn1 and Tn2 in which the top surface or side surface of the channel region is in a plane substantially parallel or substantially perpendicular to the (110) crystal plane of the substrate.
  • the channel length direction (D1 direction) of the transistors Tn1 and Tn2 is on the surface F45 of the substrate W45 with respect to the (100) crystal plane (notch plane) of the substrate W45. Tilt at about 45 degrees or about 135 degrees.
  • the channel length direction (D1 direction) of the transistors Tn1 and Tn2 is substantially perpendicular to the (110) crystal plane (notch plane) of the substrate W0 on the surface F0 of the substrate W0. Almost parallel.
  • the n-type transistors Tn1 and Tn2 corresponding to such lines Ln(100) and Ln(110) do not change much in carrier mobility. That is, the inclination angle of the top surface or side surface of the channel region with respect to the crystal plane of the substrate does not change the mutual conductance gm of the n-type transistors Tn1 and Tn2. A higher mutual conductance gm of the n-type transistors Tn1 and Tn2 leads to an improvement in noise characteristics. However, the mutual conductance gm of the n-type transistors Tn1 and Tn2 does not change much depending on the inclination angle of the top surface or side surface of the channel region with respect to the crystal plane of the substrate. Therefore, changing the channel length direction (D1) of the n-type transistors Tn1 and Tn2 with respect to the crystal plane of the substrate does not contribute much to improving the S/N ratio and the dynamic range, for example.
  • the top surface St or the side surface Ss of the channel region CHtp of only the p-type transistors Tp1 and Tp2 are made substantially parallel or substantially perpendicular to the (100) crystal plane of the substrate W45. .
  • the mutual conductance gm of the p-type transistors Tp1 and Tp2 can be lowered to efficiently improve the noise characteristics.
  • a high-resolution image with little deterioration in noise characteristics can be obtained.
  • FIG. 12 is a schematic plan view showing an example of the planar layout of the first substrate 100.
  • the photodiode PD is partitioned by an element isolation portion DTI (Deep Trench Isolation) penetrating the first substrate 100 .
  • DTI Deep Trench Isolation
  • FIG. 12 Although four photodiodes PD are shown in FIG. 12, the present invention is not limited to this.
  • the photodiode PD is provided in the element formation area RA.
  • the element formation region RA is provided between adjacent contact regions RCNT and is a region in which semiconductor elements such as transistors are formed.
  • the contact region RCNT is a region for forming a contact such as a TSV.
  • a transfer transistor TG is provided on one side of the photodiode PD, and an overflow gate OF is provided on the other side.
  • a well contact WCNT is a contact provided to apply a well potential to a well diffusion layer (not shown) formed in the first substrate 100.
  • FIG. 13 is a schematic plan view showing an example of the planar layout of the second substrate 200.
  • the second substrate 200 includes element formation regions RAn, RAp and contact regions RCNT. Element formation regions RAn, RAp and contact region RCNT of second substrate 200 correspond to element formation region RA and contact region RCNT of first substrate 100, respectively, when first substrate 100 and second substrate 200 are stacked. are arranged as
  • the n-type transistors Tn1 to Tn4 are formed in the element formation region RAn, and the p-type transistors Tp1 and Pp4 are formed in the element formation region RAp. In this way, the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2 are provided in different element formation regions RAn and RAp, respectively.
  • the transistors Tn1 to Tn4, Tp1, and Tp2 are provided above the photodiode PD of the first substrate 100 and overlap the photodiode PD when viewed from the surface of the second substrate 200.
  • each contact of the contact region RCNT is provided correspondingly.
  • These contact CNTs are composed of TSVs, for example.
  • the contact CNTs of the first substrate 100 and the contact CNTs of the second substrate 200 are wire-connected using, for example, CCC.
  • Such a planar layout of the first and second substrates 100 and 200 enables the circuit configuration of the pixel sharing unit 539 and the comparator section 210 shown in FIG.
  • the pixel sharing unit 539 is provided on the first substrate 100
  • the comparator section 210 is provided on the second substrate 200 different from the first substrate 100 .
  • the first and second substrates 100 and 200 are laminated, and the pixel sharing unit 539 and the comparator section 210 are electrically connected by the wiring connection CCC between the wiring of the first substrate 100 and the wiring of the second substrate 200. It is connected.
  • the pixel sharing unit 539 and the comparator section 210 may be electrically connected by a through electrode penetrating through the first or second substrates 100 and 200 .
  • FIG. 14 is a conceptual diagram showing a configuration example of a solid-state imaging device according to the second embodiment.
  • the second embodiment is similar to the first embodiment in that the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2 of the comparator section 210 are provided on the same substrate.
  • the photodiode PD is formed on the first substrate 100 and the comparator section 210 is formed on the second substrate 200 different from the first substrate 100 .
  • the comparator section 210 is formed on the same first substrate 100 as the photodiode PD, and is formed so as to be stacked above the photodiode PD.
  • the vertical direction is expressed with the light-receiving surface of the first substrate 100 as "bottom". Therefore, in FIG. 14, the +Z direction is the "upward direction".
  • FIG. 15 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and comparator section 210 according to the second embodiment.
  • the comparator section 210 is formed on the same first substrate 100 as the photodiode PD. Therefore, a contact plug PLG is formed between the comparator section 210 and the photodiode PD.
  • the contact plug PLG penetrates the interlayer insulating film between the comparator section 210 and the photodiode PD to electrically connect them.
  • No wiring connection CCC between the plurality of substrates 100 and 200 is formed between the comparator section 210 and the photodiode PD. Therefore, it is advantageous for miniaturization of the photodiode PD and the comparator section 210 . Also, one wiring connection CCC between the first substrate 100 and the second substrate 200 is sufficient for connection from the photodiode PD to the logic circuit (column signal processing section 550) after the comparator section 210. FIG. Therefore, it leads to an improvement in noise characteristics.
  • FIG. 16 is a conceptual diagram showing a configuration example of a solid-state imaging device according to the third embodiment.
  • the third embodiment differs from the first and second embodiments in that the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2 of the comparator section 210 are provided on different substrates.
  • the n-type transistors Tn1 to Tn4 of the comparator section 210 are formed on the same first substrate 100 as the photodiode PD, and are formed in the semiconductor layer above the photodiode PD.
  • the p-type transistors Tp ⁇ b>1 and Tp ⁇ b>2 of the comparator section 210 are formed on the second substrate 200 different from the first substrate 100 .
  • FIG. 17 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and the comparator section 210 according to the third embodiment.
  • the n-type transistors Tn1 to Tn4 including the differential circuit 210b in the comparator section 210 are formed on the same first substrate 100 as the photodiode PD.
  • the n-type transistors Tn1-Tn4 are provided above the photodiode PD. Therefore, a contact plug PLG is formed between the differential circuit 210b of the comparator section 210 and the photodiode PD.
  • the contact plug PLG penetrates the interlayer insulating film between the comparator section 210 and the photodiode PD to electrically connect them.
  • No wiring connection CCC between the substrates 100 and 200 is formed between the comparator 210 and the photodiode PD. Therefore, it is advantageous for miniaturization of the photodiode PD and the comparator 210 .
  • the p-type transistors Tp1 and Tp2 forming the current mirror circuit 210a in the comparator section 210 are formed on the second substrate 200 different from the first substrate 100.
  • FIG. Therefore, the differential circuit 210b and the current mirror circuit 210a in the comparator 210 are provided on separate substrates 100 and 200, respectively.
  • Two wiring junctions CCC are provided between the current mirror circuit 210a and the differential circuit 210b. That is, at one interface between the first substrate 100 and the second substrate 200, a plurality of wiring joints CCC are used.
  • one interface between the second substrate 200 and the third substrate 300 uses one wiring junction CCC.
  • the p-type transistors Tp1 and Tp2 of the comparator 210 are formed on the substrates 100 and 200 separate from the n-type transistors Tn1 to Tn4. Therefore, the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2 can be formed in separate semiconductor manufacturing steps. Thereby, the semiconductor manufacturing process can be simplified.
  • FIG. 18 is a conceptual diagram showing a configuration example of a solid-state imaging device according to the fourth embodiment.
  • the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2 of the comparator 210 are provided on the same substrate.
  • the n-type transistors Tn1 to Tn4 of the comparator 210 are formed on the first substrate 100 in the same semiconductor manufacturing process as the photodiode PD, the transfer transistor TG, and the overflow gate OF, and are the same as the transfer transistor TG and the overflow gate OF. It is provided in the semiconductor layer.
  • the p-type transistors Tp1 and Tp2 forming the current mirror circuit 210a of the comparator 210 include the photodiode PD, the transfer transistor TG, the overflow gate OF, and the other transistors above the n-type transistors Tn1 to Tn4 (differential circuit 210b). It is formed so as to be stacked on the semiconductor layer.
  • FIG. 19 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and the comparator section 210 according to the fourth embodiment.
  • the comparator 210 is formed on the same first substrate 100 as the photodiode PD. Therefore, a wiring W is formed between the comparator 210 and the photodiode PD. A wiring W electrically connects the comparator 210 and the photodiode PD. No wiring connection CCC between the substrates 100 and 200 is formed between the comparator 210 and the photodiode PD. Therefore, it is advantageous for miniaturization of the photodiode PD and the comparator 210 .
  • the length of the wiring W between the floating diffusion FD and the input of the differential circuit 210b is shortened, and the capacitance of the wiring is reduced. Thereby, the conversion efficiency of the potential of the floating diffusion FD is improved, and the noise characteristic is improved.
  • contact plugs PLG are formed between the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2.
  • a contact plug PLG penetrates the interlayer insulating film between the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2 to electrically connect them.
  • No wiring junction CCC between the substrates 100 and 200 is formed between the n-type transistors Tn1 to Tn4 and the p-type transistors Tp1 and Tp2. Therefore, it is advantageous for miniaturization of the photodiode PD and the comparator 210 .
  • FIG. 20 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539 and comparator section 210 according to the fifth embodiment.
  • the current mirror circuit 210a is composed of n-type transistors Tn11 and Tn12
  • the differential circuit 210b is composed of p-type transistors Tp11 and Tp12.
  • the mutual conductance gm of the p-type transistors Tp11 and Tp12 of the differential circuit 210b is large.
  • 21 to 24 are plan views showing configuration examples of the p-type transistors Tp11 and Tp12.
  • 21 to 24 show one of the transistors Tp11 and Tp12, and the illustration of the configuration of the other is omitted.
  • the transistors Tp11 and Tp12 may have the same configuration. Also, the transistors Tp11 and Tp12 may be a combination of any two of the configurations shown in FIGS.
  • the transistors Tp11 and Tp12 are provided on the 0 degree notch substrate W0.
  • the top surface or side surface of the channel region CHtp of the transistors Tp11 and Tp12 is on the surface of the substrate W0 and lies in a plane substantially parallel or substantially perpendicular to the (110) crystal plane of the substrate W0.
  • the D1 direction is substantially perpendicular or substantially parallel to the (110) crystal plane of the substrate W0. That is, the channel length directions of the transistors Tp11 and Tp12 are substantially parallel or substantially perpendicular to the (110) crystal plane (notch plane) of the substrate W0 on the surface of the substrate W0.
  • the mutual conductance gm of the transistors Tnp11 and Tp12 becomes relatively large, as indicated by line Lp (110) in FIG.
  • the transistors Tp11 and Tp12 are provided on the 45-degree notch substrate W45.
  • the upper surface or side surface of the channel region CHtp of the transistors Tp11 and Tp12 lies within a plane inclined at about 45 degrees or about 135 degrees with respect to the (100) crystal plane of the substrate W45 on the surface of the substrate W45.
  • the D1 direction is a direction inclined at about 45 degrees or about 135 degrees with respect to the (100) crystal plane of the substrate W45. That is, the channel length directions of the transistors Tp11 and Tp12 are inclined at about 45 degrees or about 135 degrees with respect to the (100) crystal plane (notch plane) of the substrate W45 on the surface of the substrate W45.
  • the mutual conductance gm of the transistors Tnp11 and Tp12 becomes relatively large, as indicated by line Lp (110) in FIG.
  • 25 to 27 are diagrams showing embodiments in which the fifth embodiment is combined with the second to fourth embodiments, respectively.
  • the conductivity types of the transistors forming the current mirror circuit 210a and the differential circuit 210b of the second to fourth embodiments are reversed.
  • the p-type transistors Tp11 and Tp12 of the differential circuit 210b may have the same configuration as those of the fifth embodiment.
  • 28A to 28C are cross-sectional views showing an example of the method for manufacturing the solid-state imaging device according to the first embodiment.
  • the first substrate 100 may be, for example, a bulk silicon substrate.
  • a DTI is formed on the first substrate 100 to partition the pixels.
  • an impurity is introduced into the first substrate 100 to form a photodiode PD.
  • a floating diffusion FD, a transfer transistor TG, and an overflow gate OF are formed on the surface of the first substrate 100 .
  • the floating diffusion FD, transfer transistor TG, and overflow gate OF are covered with an interlayer insulating film ILD. This results in the structure shown in FIG. 28A.
  • an SOI (Silicon On Insulator) layer 251 of the second substrate 200 is attached on the interlayer insulating film ILD on the surface F2 of the first substrate 100 opposite to the light receiving surface F1.
  • the second substrate 200 is, for example, an SOI substrate.
  • the silicon layer 252 of the second substrate 200 is thinned. This results in the structure shown in FIG. 28B.
  • a semiconductor element (for example, the comparator 210) of the column signal processing section 550 is formed on the silicon layer 252. For convenience, only one transistor is shown in FIG. 28C.
  • An interlayer insulating film ILD is formed on the comparator 210 .
  • contact plugs PLG, through electrodes TSV, and wirings W are formed on the second substrate 200 and the interlayer insulating film ILD. 210 and other semiconductor elements are electrically connected. This results in the structure shown in FIG. 28C.
  • the third substrate 300 formed with the logic circuit and the pixel signal processing section 560 is attached to the second substrate 200 .
  • a portion of the wiring exposed from the interlayer insulating film of the third substrate 300 is directly bonded to a portion of the wiring exposed from the interlayer insulating film of the second substrate 200 to form a wiring connection CCC.
  • the second and third substrates 200 and 300 are electrically connected.
  • the solid-state imaging device of FIG. 4 is formed.
  • FIG. 29 is an equivalent circuit diagram showing an example of the configuration of the pixel sharing unit 539.
  • the pixel sharing unit 539 includes a plurality of pixels 541 (FIG. 29 represents four pixels 541 of pixels 541A, 541B, 541C, and 541D), one pixel circuit 210 connected to the plurality of pixels 541, and a pixel and a vertical signal line 5433 connected to the circuit 210 .
  • the comparator section 210 may be considered as being included in the pixel circuit.
  • the pixel circuit 210 includes, for example, four transistors, specifically an amplification transistor AMP, a selection transistor SEL, a reset transistor RST, and an FD conversion gain switching transistor FD.
  • the pixel sharing unit 539 operates one pixel circuit 210 in a time-sharing manner to generate pixel signals of the four pixels 541 (pixels 541A, 541B, 541C, and 541D) included in the pixel sharing unit 539. are sequentially output to the vertical signal line 543 .
  • One pixel circuit 210 is connected to a plurality of pixels 541, and pixel signals of the plurality of pixels 541 are output by the one pixel circuit 210 in a time-sharing manner. share the circuit 210".
  • the pixels 541A, 541B, 541C, and 541D have common components.
  • the identification number 1 is added to the end of the code of the component of the pixel 541A
  • the identification number 2 is added to the end of the code of the component of the pixel 541B
  • the identification number 3 is added to the end of the code for the constituent elements of the pixel 541C
  • the identification number 4 is added to the end of the reference numerals for the constituent elements of the pixel 541D.
  • the identification numbers at the end of the reference numerals of the components of the pixels 541A, 541B, 541C and 541D are omitted.
  • the pixels 541A, 541B, 541C, and 541D have, for example, a photodiode PD, a transfer transistor TR electrically connected to the photodiode PD, and a floating diffusion FD electrically connected to the transfer transistor TR.
  • the transfer transistor TG is also called a transfer transistor TR.
  • the photodiodes PD (PD1, PD2, PD3, PD4) have their cathodes electrically connected to the sources of the transfer transistors TR, and their anodes electrically connected to a reference potential line (eg, ground).
  • the photodiode PD photoelectrically converts the incident light and generates an electric charge corresponding to the amount of light received.
  • the transfer transistors TR are, for example, n-type CMOS (Complementary Metal Oxide Semiconductor) transistors.
  • the transfer transistor TR has a drain electrically connected to the floating diffusion FD and a gate electrically connected to the drive signal line. This drive signal line is part of a plurality of row drive signal lines 542 (see FIG. 1) connected to one pixel sharing unit 539 .
  • the transfer transistor TR transfers charges generated in the photodiode PD to the floating diffusion FD.
  • the floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) are n-type diffusion layer regions formed in the p-type semiconductor layer.
  • the floating diffusion FD is charge holding means for temporarily holding charges transferred from the photodiode PD, and is charge-voltage conversion means for generating a voltage corresponding to the charge amount.
  • the four floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) included in one pixel sharing unit 539 are electrically connected to each other and serve as the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG. is electrically connected to The drain of the FD conversion gain switching transistor FDG is connected to the source of the reset transistor RST, and the gate of the FD conversion gain switching transistor FDG is connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539 .
  • a drain of the reset transistor RST is connected to the power supply line VDD, and a gate of the reset transistor RST is connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539 .
  • the gate of the amplification transistor AMP is connected to the floating diffusion FD, the drain of the amplification transistor AMP is connected to the power supply line VDD, and the source of the amplification transistor AMP is connected to the drain of the selection transistor SEL.
  • the source of the select transistor SEL is connected to the vertical signal line 543, and the gate of the select transistor SEL is connected to the drive signal line.
  • This drive signal line is part of a plurality of row drive signal lines 542 connected to one pixel sharing unit 539 .
  • the transfer transistor TR transfers the charge of the photodiode PD to the floating diffusion FD when the transfer transistor TR is turned on.
  • the gate of the transfer transistor TR includes, for example, a so-called vertical electrode, and reaches PD from the surface of the semiconductor layer (semiconductor layer 100S in FIG. 31 described later) as shown in FIG. It extends to the depth.
  • the reset transistor RST resets the potential of the floating diffusion FD to a predetermined potential. When the reset transistor RST is turned on, the potential of the floating diffusion FD is reset to the potential of the power supply line VDD.
  • the selection transistor SEL controls the output timing of pixel signals from the pixel circuit 210 .
  • the amplification transistor AMP generates a voltage signal corresponding to the level of the charge held in the floating diffusion FD as a pixel signal.
  • the amplification transistor AMP is connected to the vertical signal line 543 via the selection transistor SEL.
  • the amplification transistor AMP constitutes a source follower together with the load circuit section (see FIG. 1) connected to the vertical signal line 543.
  • FIG. 1 The amplification transistor AMP outputs the voltage of the floating diffusion FD to the column signal processing section 550 via the vertical signal line 543 when the selection transistor SEL is turned on.
  • the reset transistor RST, amplification transistor AMP, and selection transistor SEL are, for example, N-type CMOS transistors.
  • the FD conversion gain switching transistor FDG is used when changing the gain of charge-voltage conversion in the floating diffusion FD.
  • pixel signals are small when shooting in a dark place.
  • the FD capacitance C needs to be large so that V when converted into voltage by the amplification transistor AMP does not become too large (in other words, so that it becomes small).
  • the FD conversion gain switching transistor FDG is, for example, an N-type CMOS transistor.
  • the pixel circuit 210 is composed of three transistors, for example, an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST.
  • the pixel circuit 210 has, for example, at least one of pixel transistors such as an amplification transistor AMP, a selection transistor SEL, a reset transistor RST, and an FD conversion gain switching transistor FDG.
  • the selection transistor SEL may be provided between the power supply line VDD and the amplification transistor AMP.
  • the drain of the reset transistor RST is electrically connected to the power supply line VDD and the drain of the select transistor SEL.
  • the source of the selection transistor SEL is electrically connected to the drain of the amplification transistor AMP, and the gate of the selection transistor SEL is electrically connected to the row drive signal line 542 (see FIG. 1).
  • the source of the amplification transistor AMP (the output terminal of the pixel circuit 210) is electrically connected to the vertical signal line 543, and the gate of the amplification transistor AMP is electrically connected to the source of the reset transistor RST.
  • the number of pixels 541 sharing one pixel circuit 210 may be other than four. For example, two or eight pixels 541 may share one pixel circuit 210 .
  • FIG. 30 shows an example of a connection mode between a plurality of pixel sharing units 539 and vertical signal lines 543.
  • FIG. 30 shows an example in which four pixel sharing units 539 arranged in the column direction are divided into four groups, and vertical signal lines 543 are connected to each of these four groups.
  • FIG. 30 shows an example in which each of the four groups has one pixel sharing unit 539 for ease of explanation, but each of the four groups may include multiple pixel sharing units 539. .
  • the plurality of pixel sharing units 539 arranged in the column direction may be divided into groups each including one or more pixel sharing units 539 .
  • a vertical signal line 543 and a column signal processing circuit 550 are connected to each of these groups so that pixel signals can be read out simultaneously from each group.
  • one vertical signal line 543 may be connected to a plurality of pixel sharing units 539 arranged in the column direction. At this time, pixel signals are sequentially read out in a time-sharing manner from a plurality of pixel sharing units 539 connected to one vertical signal line 543 .
  • FIG. 31 shows an example of a cross-sectional configuration in a direction perpendicular to the main surfaces of the first substrate 100, the second substrate 100 and the third substrate 300 of the imaging device 1.
  • FIG. FIG. 31 is a schematic representation for easy understanding of the positional relationship of the components, and may differ from the actual cross section.
  • the imaging device 1 further has a light receiving lens 401 on the back surface side (light incident surface side) of the first substrate 100 .
  • a color filter layer (not shown) may be provided between the light receiving lens 401 and the first substrate 100 .
  • the light receiving lens 401 is provided, for example, in each of the pixels 541A, 541B, 541C, and 541D.
  • the imaging device 1 is, for example, a back-illuminated imaging device.
  • the imaging device 1 has a pixel array section 540 arranged in the central portion and a peripheral section 540B arranged outside the pixel array section 540 .
  • the first substrate 100 has an insulating film 111, a fixed charge film 112, a semiconductor layer 100S and a wiring layer 100T in this order from the light receiving lens 401 side.
  • the semiconductor layer 100S is composed of, for example, a silicon substrate.
  • the semiconductor layer 100S has, for example, a p-well layer 115 on a part of the surface (the surface on the side of the wiring layer 100T) and its vicinity, and in other regions (regions deeper than the p-well layer 115), It has an n-type semiconductor region 114 .
  • the n-type semiconductor region 114 and the p-well layer 115 constitute a pn junction photodiode PD.
  • the p-well layer 115 is a p-type semiconductor region.
  • FIG. 32A shows an example of the planar configuration of the first substrate 100.
  • FIG. FIG. 32A mainly shows a planar configuration of the pixel separation portion 117, the photodiode PD, the floating diffusion FD, the VSS contact region 118, and the transfer transistor TR of the first substrate 100.
  • FIG. The configuration of the first substrate 100 will be described using FIG. 32A together with FIG. 31 .
  • a floating diffusion FD and a VSS contact region 118 are provided near the surface of the semiconductor layer 100S.
  • the floating diffusion FD is composed of an n-type semiconductor region provided within the p-well layer 115 .
  • the floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) of the pixels 541A, 541B, 541C, 541D are provided close to each other, for example, in the center of the pixel sharing unit 539 (FIG. 32A). Although details will be described later, the four floating diffusions (floating diffusions FD1, FD2, FD3, and FD4) included in this shared unit 539 are electrically connected within the first substrate 100 (more specifically, within the wiring layer 100T).
  • the floating diffusion FD is connected from the first substrate 100 to the second substrate 200 (more specifically, from the wiring layer 100T to the wiring layer 200T) via electrical means (through electrodes 120E described later).
  • this electrical means electrically connects the floating diffusion FD to the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG.
  • the VSS contact region 118 is a region electrically connected to the reference potential line VSS, and is arranged apart from the floating diffusion FD.
  • the floating diffusion FD is arranged at one end of each pixel in the V direction, and the VSS contact region 118 is arranged at the other end (FIG. 32A).
  • the VSS contact region 118 is composed of, for example, a p-type semiconductor region.
  • the VSS contact region 118 is connected to, for example, ground potential or fixed potential. Thereby, the reference potential is supplied to the semiconductor layer 100S.
  • a transfer transistor TR is provided on the first substrate 100 together with a photodiode PD, a floating diffusion FD and a VSS contact region 118 .
  • the photodiode PD, floating diffusion FD, VSS contact region 118 and transfer transistor TR are provided for each of the pixels 541A, 541B, 541C and 541D.
  • the transfer transistor TR is provided on the surface side of the semiconductor layer 100S (the side opposite to the light incident surface side, the second substrate 200 side).
  • the transfer transistor TR has a transfer gate TG.
  • the transfer gate TG includes, for example, a horizontal portion TGb facing the surface of the semiconductor layer 100S and a vertical portion TGa provided within the semiconductor layer 100S.
  • the vertical portion TGa extends in the thickness direction of the semiconductor layer 100S. One end of the vertical portion TGa is in contact with the horizontal portion TGb, and the other end is provided within the n-type semiconductor region 114 .
  • the horizontal portion TGb of the transfer gate TG extends from a position facing the vertical portion TGa toward the central portion of the pixel sharing unit 539 in the H direction, for example (FIG. 32A).
  • the position in the H direction of the through electrode (through electrode TGV described later) reaching the transfer gate TG is changed to the H direction of the through electrode (through electrodes 120E and 121E described later) connected to the floating diffusion FD and the VSS contact region 118. position can be approached.
  • the plurality of pixel sharing units 539 provided on the first substrate 100 have the same configuration (FIG. 32A).
  • the semiconductor layer 100S is provided with a pixel separation section 117 that separates the pixels 541A, 541B, 541C, and 541D from each other.
  • the pixel separation portion 117 is formed extending in the normal direction of the semiconductor layer 100S (the direction perpendicular to the surface of the semiconductor layer 100S).
  • the pixel separation section 117 is provided so as to separate the pixels 541A, 541B, 541C, and 541D from each other, and has, for example, a grid-like planar shape (FIGS. 32A and 32B).
  • the pixel separation unit 117 electrically and optically separates the pixels 541A, 541B, 541C, and 541D from each other, for example.
  • the pixel separation section 117 includes, for example, a light shielding film 117A and an insulating film 117B.
  • tungsten (W) or the like is used for the light shielding film 117A.
  • the insulating film 117B is provided between the light shielding film 117A and the p-well layer 115 or the n-type semiconductor region 114. As shown in FIG.
  • the insulating film 117B is made of, for example, silicon oxide (SiO).
  • the pixel separation section 117 has, for example, an FTI (Full Trench Isolation) structure and penetrates the semiconductor layer 100S. Although not shown, the pixel separation section 117 is not limited to the FTI structure penetrating the semiconductor layer 100S.
  • a DTI (Deep Trench Isolation) structure that does not penetrate the semiconductor layer 100S may be used.
  • the pixel separation portion 117 extends in the normal direction of the semiconductor layer 100S and is formed in a partial region of the semiconductor layer 100S.
  • a first pinning region 113 and a second pinning region 116 are provided in the semiconductor layer 100S.
  • the first pinning region 113 is provided near the back surface of the semiconductor layer 100S and arranged between the n-type semiconductor region 114 and the fixed charge film 112 .
  • the second pinning region 116 is provided on the side surface of the pixel isolation portion 117 , specifically between the pixel isolation portion 117 and the p-well layer 115 or the n-type semiconductor region 114 .
  • the first pinning region 113 and the second pinning region 116 are composed of, for example, p-type semiconductor regions.
  • a fixed charge film 112 having negative fixed charges is provided between the semiconductor layer 100S and the insulating film 111 . Due to the electric field induced by the fixed charge film 112, the first pinning region 113 of the hole accumulation layer is formed at the interface of the semiconductor layer 100S on the light receiving surface (back surface) side. This suppresses the generation of dark current due to the interface level on the light receiving surface side of the semiconductor layer 100S.
  • the fixed charge film 112 is formed of, for example, an insulating film having negative fixed charges. Examples of materials for the insulating film having negative fixed charges include hafnium oxide, zirconium oxide, aluminum oxide, titanium oxide, and tantalum oxide.
  • a light shielding film 117A is provided between the fixed charge film 112 and the insulating film 111 .
  • the light shielding film 117A may be provided continuously with the light shielding film 117A that constitutes the pixel separation section 117 .
  • the light shielding film 117A between the fixed charge film 112 and the insulating film 111 is selectively provided, for example, at a position facing the pixel separation section 117 in the semiconductor layer 100S.
  • the insulating film 111 is provided so as to cover the light shielding film 117A.
  • the insulating film 111 is made of, for example, silicon oxide.
  • the wiring layer 100T provided between the semiconductor layer 100S and the second substrate 200 includes an interlayer insulating film 119, pads 120 and 121, a passivation film 122, an interlayer insulating film 123, and a bonding film 124 from the semiconductor layer 100S side. have in this order.
  • a horizontal portion TGb of the transfer gate TG is provided, for example, in this wiring layer 100T.
  • the interlayer insulating film 119 is provided over the entire surface of the semiconductor layer 100S and is in contact with the semiconductor layer 100S.
  • the interlayer insulating film 119 is composed of, for example, a silicon oxide film.
  • the configuration of the wiring layer 100T is not limited to that described above, and may be any configuration having wiring and an insulating film.
  • FIG. 32B shows the configuration of the pad portions 120 and 121 together with the planar configuration shown in FIG. 32A.
  • Pad portions 120 and 121 are provided in selective regions on interlayer insulating film 119 .
  • the pad section 120 is for connecting the floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) of the pixels 541A, 541B, 541C, 541D to each other.
  • the pad section 120 is arranged, for example, in the central portion of the pixel sharing unit 539 in plan view for each pixel sharing unit 539 (FIG. 32B).
  • the pad section 120 is provided so as to straddle the pixel separating section 117, and is arranged so as to overlap at least part of each of the floating diffusions FD1, FD2, FD3, and FD4 (FIGS. 31 and 32B). Specifically, the pad section 120 includes at least a portion of each of the plurality of floating diffusions FD (floating diffusions FD1, FD2, FD3, and FD4) sharing the pixel circuit 210, and the plurality of photodiodes sharing the pixel circuit 210.
  • connection vias 120C for electrically connecting the pad section 120 and the floating diffusions FD1, FD2, FD3 and FD4.
  • a connection via 120C is provided for each of the pixels 541A, 541B, 541C, and 541D. For example, by partially embedding the pad section 120 in the connection via 120C, the pad section 120 and the floating diffusions FD1, FD2, FD3, and FD4 are electrically connected.
  • the pad portion 121 is for connecting the plurality of VSS contact regions 118 to each other.
  • the VSS contact regions 118 provided in the pixels 541C and 541D of one pixel sharing unit 539 adjacent in the V direction and the VSS contact regions 118 provided in the pixels 541A and 541B of the other pixel sharing unit 539 are pads. They are electrically connected by the portion 121 .
  • the pad section 121 is provided, for example, so as to straddle the pixel separation section 117 and is arranged to overlap at least a part of each of these four VSS contact regions 118 .
  • the pad section 121 is provided in the semiconductor layer with respect to at least a portion of each of the plurality of VSS contact regions 118 and at least a portion of the pixel separation portion 117 formed between the plurality of VSS contacts 118. It is formed in a region overlapping in a direction perpendicular to the surface of 100S.
  • Interlayer insulating film 119 is provided with connection via 121C for electrically connecting pad portion 121 and VSS contact region 118 .
  • a connection via 121C is provided for each of the pixels 541A, 541B, 541C, and 541D.
  • the pad portion 121 and the VSS contact region 118 are electrically connected by partially embedding the pad portion 121 in the connection via 121C.
  • the pad portions 120 and the pad portions 121 of each of the plurality of pixel sharing units 539 arranged in the V direction are arranged at approximately the same position in the H direction (FIG. 32B).
  • the pad section 120 By providing the pad section 120, the wiring for connecting each floating diffusion FD to the pixel circuit 210 (for example, the gate electrode of the amplification transistor AMP) can be reduced in the entire chip. Similarly, by providing the pad section 121, the wiring for supplying the potential to each VSS contact region 118 can be reduced in the entire chip. This makes it possible to reduce the area of the entire chip, suppress electrical interference between wirings in miniaturized pixels, and/or reduce costs by reducing the number of parts.
  • the pad portions 120 and 121 can be provided at desired positions on the first substrate 100 and the second substrate 200 . Specifically, the pad portions 120 and 121 can be provided in either the wiring layer 100T or the insulating region 212 of the semiconductor layer 200S. When provided in the wiring layer 100T, the pad portions 120 and 121 may be brought into direct contact with the semiconductor layer 100S. Specifically, the pad portions 120 and 121 may be directly connected to at least part of each of the floating diffusion FD and/or the VSS contact region 118 .
  • Connection vias 120C and 121C are provided from the floating diffusion FD and/or the VSS contact region 118 connected to the pad portions 120 and 121, respectively, and the pad portions 120 and 120 are provided at desired positions in the insulating regions 2112 of the wiring layer 100T and the semiconductor layer 200S. , 121 may be provided.
  • the wiring connected to the floating diffusion FD and/or the VSS contact region 118 in the insulating region 212 of the semiconductor layer 200S can be reduced.
  • the pixel transistor can be formed large, which can contribute to the improvement of image quality by reducing noise.
  • the floating diffusion FD and/or the VSS contact region 118 are preferably provided in each pixel 541. Wiring that connects the substrate 100 and the second substrate 200 can be greatly reduced.
  • pad portions 120 to which a plurality of floating diffusions FD are connected and pad portions 121 to which a plurality of VSS contacts 118 are connected are linearly alternately arranged in the V direction.
  • the pad portions 120 and 121 are formed at positions surrounded by the plurality of photodiodes PD, the plurality of transfer gates TG, and the plurality of floating diffusions FD.
  • elements other than the floating diffusion FD and the VSS contact region 118 can be freely arranged on the first substrate 100 forming a plurality of elements, and the efficiency of the layout of the entire chip can be improved.
  • symmetry in the layout of elements formed in each pixel sharing unit 539 is ensured, and variation in characteristics of each pixel 541 can be suppressed.
  • the pad portions 120 and 121 are made of, for example, polysilicon (PolySi), more specifically, doped polysilicon to which impurities are added.
  • Pad portions 120 and 121 are preferably made of a highly heat-resistant conductive material such as polysilicon, tungsten (W), titanium (Ti), and titanium nitride (TiN). This makes it possible to form the pixel circuit 210 after the semiconductor layer 200 ⁇ /b>S of the second substrate 200 is attached to the first substrate 100 . The reason for this will be explained below. In the following description, the method of forming the pixel circuit 210 after bonding the semiconductor layers 200S of the first substrate 100 and the second substrate 200 is called a first manufacturing method.
  • the second manufacturing method After forming the pixel circuit 210 on the second substrate 200, it is also conceivable to bond this to the first substrate 100 (hereinafter referred to as a second manufacturing method).
  • this second manufacturing method electrodes for electrical connection are previously formed on the surface of the first substrate 100 (the surface of the wiring layer 100T) and the surface of the second substrate 200 (the surface of the wiring layer 200T).
  • the electrical connection electrodes formed on the surfaces of the first substrate 100 and the second substrate 200 are simultaneously brought into contact with each other. Thereby, an electrical connection is formed between the wiring included in the first substrate 100 and the wiring included in the second substrate 200 . Therefore, by configuring the imaging device 1 using the second manufacturing method, for example, it is possible to manufacture using an appropriate process according to the configuration of each of the first substrate 100 and the second substrate 200. A high-quality, high-performance imaging device can be manufactured.
  • first substrate 100 and the second substrate 200 each have a diameter of about several tens of centimeters, for example, when the first substrate 100 and the second substrate 200 are bonded together, the first substrate 100 and the second substrate 200 may be separated from each other. In the microscopic area of each part of the two substrates 200, expansion and contraction of the substrates may occur. This expansion and contraction of the substrates is caused by a slight shift in the timing at which the substrates come into contact with each other.
  • the electrodes of the first substrate 100 and the electrodes of the second substrate 200 are in contact with each other even if such an error occurs. Specifically, at least one, preferably both, of the electrodes of the first substrate 100 and the second substrate 200 are increased in consideration of the above error. Therefore, if the second manufacturing method is used, for example, the size of the electrodes formed on the surface of the first substrate 100 or the second substrate 200 (the size in the plane direction of the substrate) is the same as that of the first substrate 100 or the second substrate. It is larger than the internal electrodes extending from the inside of the substrate 200 to the surface in the thickness direction.
  • the pad portions 120 and 121 from a heat-resistant conductive material, it is possible to use the first manufacturing method.
  • the first manufacturing method after forming the first substrate 100 including the photodiode PD and the transfer transistor TR, the first substrate 100 and the second substrate 200 (semiconductor layer 2000S) are bonded together.
  • the second substrate 200 is in a state in which patterns such as active elements and wiring layers constituting the pixel circuits 210 are not yet formed. Since the second substrate 200 is in a state before pattern formation, even if an error occurs in the bonding position when bonding the first substrate 100 and the second substrate 200 together, this bonding error will There is no alignment error between the pattern of the first substrate 100 and the pattern of the second substrate 200 .
  • the pattern of the second substrate 200 is formed after bonding the first substrate 100 and the second substrate 200 together.
  • the pattern formed on the first substrate is aligned with the pattern formed on the first substrate in an exposure apparatus for pattern formation.
  • the error in the bonding position between the first substrate 100 and the second substrate 200 does not pose a problem in manufacturing the imaging device 1 in the first manufacturing method.
  • the error due to expansion and contraction of the substrate that occurs in the second manufacturing method does not pose a problem in manufacturing the imaging device 1 in the first manufacturing method.
  • the first manufacturing method after bonding the first substrate 100 and the second substrate 200 (semiconductor layer 200S) in this way, active elements are formed on the second substrate 200.
  • FIG. After that, through electrodes 120E and 121E and through electrodes TGV (FIG. 31) are formed.
  • a pattern of the through electrodes is formed from above the second substrate 200 using reduction projection exposure using an exposure device. Since the reduction exposure projection is used, even if an error occurs in the alignment between the second substrate 200 and the exposure apparatus, the size of the error in the second substrate 200 is as large as the error in the second manufacturing method. It is only a fraction (the reciprocal of the reduction exposure projection magnification). Therefore, by configuring the imaging device 1 using the first manufacturing method, it becomes easy to align the elements formed on the first substrate 100 and the second substrate 200, and high quality and high performance can be achieved. image pickup device can be manufactured.
  • the imaging device 1 manufactured using such a first manufacturing method has characteristics different from those of the imaging device manufactured using the second manufacturing method.
  • the through electrodes 120E, 121E, and TGVs have substantially constant thickness (substrate thickness) from the second substrate 200 to the first substrate 100. size in the plane direction).
  • the through electrodes 120E, 121E, and TGV have a tapered shape, they have a tapered shape with a constant inclination.
  • the pixels 541 can be easily miniaturized.
  • the active elements are formed on the second substrate 200 after bonding the first substrate 100 and the second substrate 200 (semiconductor layer 200S) together.
  • One substrate 100 will also be affected by the heat treatment required during the formation of active elements. Therefore, as described above, it is preferable to use a highly heat-resistant conductive material for the pads 120 and 121 provided on the first substrate 100 .
  • the pads 120 and 121 use a material having a higher melting point (that is, a higher heat resistance) than at least part of the wiring material included in the wiring layer 200T of the second substrate 200 .
  • the pads 120 and 121 are made of a highly heat-resistant conductive material such as doped polysilicon, tungsten, titanium, or titanium nitride. This makes it possible to manufacture the imaging device 1 using the first manufacturing method.
  • the passivation film 122 is provided over the entire surface of the semiconductor layer 100S so as to cover the pad portions 120 and 121, for example (FIG. 31).
  • the passivation film 122 is composed of, for example, a silicon nitride (SiN) film.
  • Interlayer insulating film 123 covers pad portions 120 and 121 with passivation film 122 interposed therebetween. This interlayer insulating film 123 is provided, for example, over the entire surface of the semiconductor layer 100S.
  • the interlayer insulating film 123 is composed of, for example, a silicon oxide (SiO) film.
  • the bonding film 124 is provided on the bonding surface between the first substrate 100 (specifically, the wiring layer 100T) and the second substrate 200 . That is, the bonding film 124 is in contact with the second substrate 200 .
  • the bonding film 124 is provided over the entire main surface of the first substrate 100 .
  • the bonding film 124 is composed of, for example, a silicon nitrid
  • the light receiving lens 401 faces the semiconductor layer 100S with the fixed charge film 112 and the insulating film 111 interposed therebetween (FIG. 31).
  • the light receiving lens 401 is provided, for example, at a position facing the photodiode PD of each of the pixels 541A, 541B, 541C, and 541D.
  • the second substrate 200 has a semiconductor layer 200S and a wiring layer 200T in this order from the first substrate 100 side.
  • the semiconductor layer 200S is composed of a silicon substrate.
  • a well region 211 is provided over the thickness direction.
  • Well region 211 is, for example, a p-type semiconductor region.
  • a pixel circuit 210 arranged for each pixel sharing unit 539 is provided on the second substrate 20 .
  • the pixel circuit 210 is provided, for example, on the surface side (wiring layer 200T side) of the semiconductor layer 200S.
  • the second substrate 200 is bonded to the first substrate 100 such that the back surface side (semiconductor layer 200S side) of the second substrate 200 faces the front surface side (wiring layer 100T side) of the first substrate 100. ing. That is, the second substrate 200 is bonded to the first substrate 100 face-to-back.
  • FIG. 33 to 37 schematically show an example of the planar configuration of the second substrate 200.
  • FIG. FIG. 33 shows the configuration of the pixel circuit 210 provided near the surface of the semiconductor layer 200S.
  • FIG. 34 schematically shows the configuration of each part of a wiring layer 200T (specifically, a first wiring layer W1 described later), a semiconductor layer 200S connected to the wiring layer 200T, and the first substrate 100.
  • FIG. 35 to 37 show an example of the planar configuration of the wiring layer 200T.
  • the configuration of the second substrate 200 will be described below with reference to FIGS. 33 to 37 together with FIG.
  • the outer shape of the photodiode PD (boundary between the pixel isolation portion 117 and the photodiode PD) is indicated by a dashed line, and the semiconductor layer 200S and the element isolation portion overlapping the gate electrodes of the transistors constituting the pixel circuit 210 are shown.
  • a boundary with the region 213 or the insulating region 214 is represented by a dotted line.
  • a boundary between the semiconductor layer 200S and the element isolation region 213 and a boundary between the element isolation region 213 and the insulating region 213 are provided on one side in the channel width direction in the portion overlapping the gate electrode of the amplification transistor AMP.
  • the second substrate 200 is provided with an insulating region 212 that divides the semiconductor layer 200S, and an element isolation region 213 that is provided partially in the thickness direction of the semiconductor layer 200S (FIG. 31).
  • an insulating region 212 provided between two pixel circuits 210 adjacent in the H direction, through electrodes 120E and 121E and through electrodes TGV ( Through electrodes TGV1, TGV2, TGV3, TGV4) are arranged (FIG. 34).
  • the insulating region 212 has substantially the same thickness as the semiconductor layer 200S (FIG. 31).
  • the semiconductor layer 200S is divided by this insulating region 212 .
  • Through electrodes 120E and 121E and through electrodes TGV are arranged in this insulating region 212 .
  • the insulating region 212 is made of silicon oxide, for example.
  • the through electrodes 120E and 121E are provided so as to penetrate the insulating region 212 in the thickness direction.
  • the upper ends of the through electrodes 120E and 121E are connected to wirings (first wiring W1, second wiring W2, third wiring W3, and fourth wiring W4, which will be described later) of the wiring layer 200T.
  • the through electrodes 120E and 121E are provided through the insulating region 212, the bonding film 124, the interlayer insulating film 123 and the passivation film 122, and their lower ends are connected to the pad portions 120 and 121 (FIG. 31).
  • the through electrode 120E is for electrically connecting the pad section 120 and the pixel circuit 210 .
  • the floating diffusion FD of the first substrate 100 is electrically connected to the pixel circuit 210 of the second substrate 200 by the through electrode 120E.
  • the through electrode 121E is for electrically connecting the pad portion 121 and the reference potential line VSS of the wiring layer 200T. That is, the VSS contact region 118 of the first substrate 100 is electrically connected to the reference potential line VSS of the second substrate 200 by the through electrode 121E.
  • the through electrodes TGV are provided so as to penetrate the insulating region 212 in the thickness direction.
  • the upper end of the through electrode TGV is connected to the wiring of the wiring 200T.
  • the through electrode TGV is provided through the insulating region 212, the bonding film 124, the interlayer insulating film 123, the passivation film 122 and the interlayer insulating film 119, and its lower end is connected to the transfer gate TG (FIG. 31).
  • Such a through electrode TGV includes the transfer gates TG (transfer gates TG1, TG2, TG3 and TG4) of the pixels 541A, 541B, 541C and 541D and the wiring of the wiring layer 200T (part of the row drive signal line 542, specifically Specifically, it is for electrically connecting to wirings TRG1, TRG2, TRG3 and TRG4 in FIG. 36 which will be described later. That is, the transfer gate TG of the first substrate 100 is electrically connected to the wiring TRG of the second substrate 200 by the through electrode TGV, and a drive signal is sent to each of the transfer transistors TR (transfer transistors TR1, TR2, TR3, TR4). It is designed to be
  • the insulating region 212 is a region for providing the through electrodes 120E and 121E and the through electrode TGV for electrically connecting the first substrate 100 and the second substrate 200 while being insulated from the semiconductor layer 200S.
  • the insulating region 212 is provided, for example, extending in the V direction (FIGS. 33 and 34).
  • the position of the through electrode TGV in the H direction is closer to the position of the through electrodes 120E and 121E in the H direction than the position of the vertical portion TGa. are placed (FIGS. 32A, 34).
  • the through electrodes TGV are arranged at substantially the same positions as the through electrodes 120E, 120E in the H direction.
  • the through electrodes 120E and 121E and the through electrodes TGV can be collectively provided in the insulating region 212 extending in the V direction.
  • the through electrode TGV is formed substantially directly above the vertical portion TGa, and, for example, the through electrode TGV is arranged substantially at the center of each pixel 541 in the H direction and the V direction.
  • the position of the through electrode TGV in the H direction and the position of the through electrodes 120E and 121E in the H direction are largely deviated.
  • an insulating region 212 is provided around the through electrodes TGV and the through electrodes 120E and 121E in order to electrically insulate them from the adjacent semiconductor layer 200S.
  • the layout in which the through electrodes 120E and 121E and the through electrodes TGV are collectively arranged in the insulating region 212 extending in the V direction can increase the size of the semiconductor layer 200S in the H direction. Therefore, a large area can be secured for the semiconductor element forming region in the semiconductor layer 200S. As a result, for example, it is possible to increase the size of the amplification transistor AMP and suppress noise.
  • the pixel sharing unit 539 electrically connects between the floating diffusions FD provided in each of the plurality of pixels 541, and the plurality of pixels 541 form one pixel circuit 210.
  • have a structure that shares Electrical connection between the floating diffusions FD is made by a pad portion 120 provided on the first substrate 100 (FIGS. 31 and 32B).
  • the electrical connection portion (pad portion 120) provided on the first substrate 100 and the pixel circuit 210 provided on the second substrate 200 are electrically connected via one through electrode 120E.
  • the pixel sharing unit 539 is provided with four through-electrodes connected to each of the floating diffusions FD1, FD2, FD3, and FD4. Therefore, in the second substrate 200, the number of through electrodes penetrating the semiconductor layer 200S is increased, and the insulating region 212 for insulating the periphery of these through electrodes is increased.
  • the structure (FIGS. 31 and 32B) in which the pad section 120 is provided on the first substrate 100 can reduce the number of through electrodes and the insulating region 212 . Therefore, a large area can be secured for the semiconductor element forming region in the semiconductor layer 200S. As a result, for example, it is possible to increase the size of the amplification transistor AMP and suppress noise.
  • the element isolation region 213 is provided on the surface side of the semiconductor layer 200S.
  • the element isolation region 213 has an STI (Shallow Trench Isolation) structure.
  • the semiconductor layer 200S is dug in the thickness direction (perpendicular to the main surface of the second substrate 200), and an insulating film is embedded in this dug.
  • This insulating film is made of, for example, silicon oxide.
  • the element isolation region 213 isolates a plurality of transistors forming the pixel circuit 210 according to the layout of the pixel circuit 210 .
  • a semiconductor layer 200S (specifically, a well region 211) extends below the element isolation region 213 (a deep portion of the semiconductor layer 200S).
  • FIGS. 32A, 32B and 33 the external shape of the pixel sharing unit 539 on the first substrate 100 (the external shape in the plane direction of the substrate) and the shape of the pixel sharing unit 539 on the second substrate 200 are shown. The difference from the outer shape will be explained.
  • a pixel sharing unit 539 is provided over both the first substrate 100 and the second substrate 200 .
  • the outer shape of the pixel sharing unit 539 provided on the first substrate 100 and the outer shape of the pixel sharing unit 539 provided on the second substrate 200 are different from each other.
  • the outlines of the pixels 541A, 541B, 541C, and 541D are indicated by dashed lines, and the outline of the pixel sharing unit 539 is indicated by thick lines.
  • the pixel sharing unit 539 of the first substrate 100 includes two pixels 541 (pixels 541A and 541B) arranged adjacent to each other in the H direction, and two pixels 541 (pixels 541A and 541B) arranged adjacent to each other in the V direction. pixels 541C and 541D). That is, the pixel sharing unit 539 of the first substrate 100 is composed of four adjacent pixels 541 arranged in two rows and two columns, and the pixel sharing unit 539 of the first substrate 100 has an approximately square outer shape. ing.
  • such a pixel sharing unit 539 has a pitch of two pixels in the H direction (a pitch equivalent to two pixels 541) and a pitch of two pixels in the V direction (a pitch equivalent to two pixels 541). corresponding pitch), and are arranged adjacent to each other.
  • the outlines of the pixels 541A, 541B, 541C, and 541D are indicated by dashed lines, and the outline of the pixel sharing unit 539 is indicated by thick lines.
  • the external shape of the pixel sharing unit 539 of the second substrate 200 is smaller than the pixel sharing unit 539 of the first substrate 100 in the H direction and larger than the pixel sharing unit 539 of the first substrate 100 in the V direction.
  • the pixel sharing unit 539 of the second substrate 200 is formed with a size (region) corresponding to one pixel in the H direction, and formed with a size (region) corresponding to four pixels in the V direction. ing. That is, the pixel sharing unit 539 of the second substrate 200 is formed in a size corresponding to pixels arranged in adjacent 1 row ⁇ 4 columns, and the pixel sharing unit 539 of the second substrate 200 has a substantially rectangular shape. It has an external shape.
  • each pixel circuit 210 the selection transistor SEL, amplification transistor AMP, reset transistor RST, and FD conversion gain switching transistor FDG are arranged in this order in the V direction (FIG. 33).
  • the selection transistor SEL, the amplification transistor AMP, the reset transistor RST, and the FD conversion transistor are arranged in one direction (the V direction in FIG. 33).
  • gain switching transistors FDG can be arranged side by side.
  • the drain of the amplification transistor AMP and the drain of the reset transistor RST can be shared by one diffusion region (diffusion region connected to the power supply line VDD).
  • each pixel circuit 210 formation region can be provided in a substantially square shape (see FIG. 46 described later).
  • two transistors are arranged along one direction, and it becomes difficult to share the drain of the amplification transistor AMP and the drain of the reset transistor RST in one diffusion region. Therefore, by providing the formation region of the pixel circuit 210 in a substantially rectangular shape, four transistors can be easily arranged close to each other, and the formation region of the pixel circuit 210 can be reduced. That is, pixels can be miniaturized. Further, when it is not necessary to reduce the formation area of the pixel circuit 210, it is possible to increase the formation area of the amplification transistor AMP and suppress noise.
  • a VSS contact region 218 connected to the reference potential line VSS is provided in addition to the selection transistor SEL, amplification transistor AMP, reset transistor RST, and FD conversion gain switching transistor FDG. .
  • the VSS contact region 218 is composed of, for example, a p-type semiconductor region.
  • the VSS contact region 218 is electrically connected to the VSS contact region 118 of the first substrate 100 (semiconductor layer 100S) via the wiring of the wiring layer 200T and the through electrode 121E.
  • This VSS contact region 218 is provided, for example, at a position adjacent to the source of the FD conversion gain switching transistor FDG with the element isolation region 213 therebetween (FIG. 33).
  • FIG. For example, of the two pixel sharing units 539 aligned in the V direction of the first substrate 100, the pixel sharing unit 539 on one side (for example, the upper side of the paper surface of FIG. 32B) is the two pixel sharing units aligned in the H direction of the second substrate 200. 539 (for example, the left side of the page of FIG. 33).
  • the other pixel sharing unit 539 for example, the lower side of the paper surface of FIG. 32B
  • the internal layout (arrangement of transistors and the like) of one pixel sharing unit 539 changes the internal layout of the other pixel sharing unit 539 in the V and H directions. It is roughly equivalent to the layout reversed in direction. The effects obtained by this layout will be described below.
  • each pad portion 120 is located at the center of the outer shape of the pixel sharing unit 539, that is, the center of the pixel sharing unit 539 in the V direction and the H direction. (FIG. 32B).
  • the pixel sharing unit 539 of the second substrate 200 has a substantially rectangular outer shape elongated in the V direction as described above. It is arranged at a position shifted upward from the center of the unit 539 in the V direction.
  • the amplifying transistor AMP of one pixel sharing unit 539 and the pad section 120 (for example, the The distance from the pad portion 120) of the pixel sharing unit 539 is relatively short.
  • the distance between the amplifying transistor AMP of the other pixel sharing unit 539 and the pad section 120 (for example, the pad section 120 of the pixel sharing unit 539 on the lower side of the page of FIG. 32) becomes longer. Therefore, the wiring area required for connection between the amplification transistor AMP and the pad section 120 increases, and the wiring layout of the pixel sharing unit 539 may become complicated. This may affect miniaturization of the imaging device 1 .
  • the planar layout of each of the plurality of pixel sharing units 539 of the second substrate 200 is symmetrical within the range shown in FIG. 33, but including the layout of the first wiring layer W1 shown in FIG. Left-right asymmetry.
  • the internal layouts of the two pixel sharing units 539 arranged in the H direction of the second substrate 200 are also inverted in the H direction.
  • two pixel sharing units 539 aligned in the H direction of the second substrate 200 are connected to the pad portions 120 and 121 of the first substrate 100, respectively.
  • the pad portions 120 and 121 are arranged in the H-direction central portion of the two pixel sharing units 539 aligned in the H direction of the second substrate 200 (between the two pixel sharing units 539 aligned in the H direction).
  • each of the plurality of pixel sharing units 539 of the second substrate 200 and the pad section 120, 121 can be reduced. That is, it becomes easier to miniaturize the imaging device 1 .
  • the position of the outline of the pixel sharing unit 539 of the second substrate 200 does not have to be aligned with the position of any outline of the pixel sharing unit 539 of the first substrate 100 .
  • one pixel sharing unit 539 (for example, the left side of the paper surface of FIG. 34) has an outer shape of one of the V direction (for example, the upper side of the paper surface of FIG. 34).
  • the lines are arranged outside one outline in the V direction of the corresponding pixel sharing unit 539 of the first substrate 100 (eg, the upper side of the page of FIG. 32B).
  • the other pixel sharing unit 539 (for example, the right side of the paper surface of FIG. 34) has the other pixel sharing unit 539 in the V direction (for example, the lower side of the paper surface of FIG. 34).
  • the contour line is arranged outside the other contour line in the V direction of the corresponding pixel sharing unit 539 of the first substrate 100 (for example, the lower side of the page of FIG. 32B).
  • the outlines of the plurality of pixel sharing units 539 on the second substrate 200 do not have to be aligned with each other.
  • two pixel sharing units 539 aligned in the H direction of the second substrate 200 are arranged such that the outlines in the V direction are shifted. This makes it possible to shorten the distance between the amplification transistor AMP and the pad section 120 . Therefore, it becomes easier to miniaturize the imaging device 1 .
  • FIG. The pixel sharing unit 539 of the first substrate 100 has the size of two pixels 541 in the H direction and the size of two pixels 541 in the V direction (FIG. 32B).
  • the pixel sharing unit 539 having a size corresponding to the four pixels 541 is arranged at a pitch of two pixels in the H direction (a pitch corresponding to two pixels 541), and , in the V direction (a pitch corresponding to two pixels 541).
  • the pixel array section 540 of the first substrate 100 may be provided with a pair of pixel sharing units 539 in which two pixel sharing units 539 are arranged adjacent to each other in the V direction.
  • the pair of pixel sharing units 539 have a pitch of two pixels in the H direction (a pitch corresponding to two pixels 541) and a pitch of four pixels in the V direction ( are arranged repeatedly adjacent to each other at a pitch corresponding to four pixels 541 .
  • the pixel sharing unit 539 of the second substrate 200 has the size of one pixel 541 in the H direction and the size of four pixels 541 in the V direction (FIG. 34).
  • the pixel array section 540 of the second substrate 200 is provided with a pair of pixel sharing units 539 including two pixel sharing units 539 each having a size corresponding to the four pixels 541 .
  • the pixel-sharing units 539 are arranged adjacent to each other in the H direction, and are arranged to be offset in the V direction.
  • the pair of pixel sharing units 539 have a pitch of two pixels in the H direction (a pitch corresponding to two pixels 541) and a pitch of four pixels in the V direction ( They are repeatedly arranged adjacent to each other without gaps at a pitch corresponding to four pixels 541 .
  • Such repeated arrangement of the pixel sharing units 539 enables the pixel sharing units 539 to be arranged without gaps. Therefore, it becomes easier to miniaturize the imaging device 1 .
  • the amplification transistor AMP preferably has a three-dimensional structure such as a Fin type (FIG. 31). As a result, the effective gate width is increased, and noise can be suppressed.
  • the selection transistor SEL, reset transistor RST, and FD conversion gain switching transistor FDG have, for example, a planar structure.
  • the amplification transistor AMP may have a planar structure.
  • the select transistor SEL, reset transistor RST, or FD conversion gain switching transistor FDG may have a three-dimensional structure.
  • the wiring layer 200T includes, for example, a passivation film 221, an interlayer insulating film 222, and a plurality of wirings (first wiring layer W1, second wiring layer W2, third wiring layer W3, fourth wiring layer W4).
  • the passivation film 221 is, for example, in contact with the surface of the semiconductor layer 200S and covers the entire surface of the semiconductor layer 200S. This passivation film 221 covers the gate electrodes of the selection transistor SEL, amplification transistor AMP, reset transistor RST, and FD conversion gain switching transistor FDG.
  • An interlayer insulating film 222 is provided between the passivation film 221 and the third substrate 300 .
  • a plurality of wirings (first wiring layer W1, second wiring layer W2, third wiring layer W3, and fourth wiring layer W4) are separated by this interlayer insulating film 222 .
  • the interlayer insulating film 222 is made of silicon oxide, for example.
  • a first wiring layer W1, a second wiring layer W2, a third wiring layer W3, a fourth wiring layer W4, and contact portions 201 and 202 are provided in this order from the semiconductor layer 200S side. are insulated from each other by an interlayer insulating film 222 .
  • the interlayer insulating film 222 is provided with a plurality of connection portions for connecting the first wiring layer W1, the second wiring layer W2, the third wiring layer W3, or the fourth wiring layer W4 and the lower layers thereof.
  • the connection portion is a portion in which a connection hole provided in the interlayer insulating film 222 is filled with a conductive material.
  • the interlayer insulating film 222 is provided with a connection portion 218V that connects the first wiring layer W1 and the VSS contact region 218 of the semiconductor layer 200S.
  • the hole diameter of the connection portion that connects the elements of the second substrate 200 is different from the hole diameters of the through electrodes 120E, 121E and the through electrode TGV.
  • the hole diameter of the connection holes that connect the elements of the second substrate 200 is smaller than the hole diameters of the through electrodes 120E and 121E and the through electrodes TGV. The reason for this will be explained below.
  • the depth of the connecting portion (connecting portion 218V, etc.) provided in the wiring layer 200T is smaller than the depth of the through electrodes 120E, 121E and the through electrode TGV. Therefore, in the connection portion, the connection hole can be filled with the conductive material more easily than in the through electrodes 120E, 121E and the through electrode TGV. By making the hole diameter of this connecting part smaller than the hole diameters of the through electrodes 120E and 121E and the through electrode TGV, it becomes easier to miniaturize the imaging device 1 .
  • the first wiring layer W1 connects the through electrode 120E to the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG (specifically, a connection hole reaching the source of the FD conversion gain switching transistor FDG).
  • the first wiring layer W1 connects, for example, the through electrode 121E and the connection portion 218V, thereby electrically connecting the VSS contact region 218 of the semiconductor layer 200S and the VSS contact region 118 of the semiconductor layer 100S. be.
  • FIG. 35 shows an example of the planar configuration of the first wiring layer W1 and the second wiring layer W2.
  • FIG. 36 shows an example of the planar configuration of the second wiring layer W2 and the third wiring layer W3.
  • FIG. 37 shows an example of the planar configuration of the third wiring layer W3 and the fourth wiring layer W4.
  • the third wiring layer W3 includes wirings TRG1, TRG2, TRG3, TRG4, SELL, RSTL, and FDGL extending in the H direction (row direction) (FIG. 36). These wirings correspond to the plurality of row drive signal lines 542 described with reference to FIG.
  • the wirings TRG1, TRG2, TRG3 and TRG4 are for sending drive signals to the transfer gates TG1, TG2, TG3 and TG4, respectively.
  • the wirings TRG1, TRG2, TRG3 and TRG4 are respectively connected to the transfer gates TG1, TG2, TG3 and TG4 via the second wiring layer W2, the first wiring layer W1 and the through electrodes 120E.
  • the wiring SELL is for sending a drive signal to the gate of the select transistor SEL, the wiring RSTL to the gate of the reset transistor RST, and the wiring FDGL to the gate of the FD conversion gain switching transistor FDG.
  • the wirings SELL, RSTL, and FDGL are connected to the gates of the selection transistor SEL, the reset transistor RST, and the FD conversion gain switching transistor FDG, respectively, via the second wiring layer W2, the first wiring layer W1, and the connecting portion.
  • the fourth wiring layer W4 includes power supply lines VDD extending in the V direction (column direction), reference potential lines VSS, and vertical signal lines 543 (FIG. 37).
  • the power supply line VDD is connected to the drain of the amplification transistor AMP and the drain of the reset transistor RST via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, and the connecting portion.
  • the reference potential line VSS is connected to the VSS contact region 218 via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, and the connecting portion 218V.
  • the reference potential line VSS is connected to the VSS contact region 118 of the first substrate 100 via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, the through electrode 121E and the pad portion 121.
  • the vertical signal line 543 is connected to the source (Vout) of the selection transistor SEL via the third wiring layer W3, the second wiring layer W2, the first wiring layer W1, and the connecting portion.
  • the contact portions 201 and 202 may be provided at positions overlapping the pixel array portion 540 in a plan view (eg, FIG. 3), or may be provided in a peripheral portion 540B outside the pixel array portion 540. (eg, FIG. 31).
  • the contact portions 201 and 202 are provided on the surface of the second substrate 200 (the surface on the wiring layer 200T side).
  • the contact portions 201 and 202 are made of metal such as Cu (copper) and Al (aluminum).
  • the contact portions 201 and 202 are exposed on the surface of the wiring layer 200T (the surface on the side of the third substrate 300).
  • the contact portions 201 and 202 are used for electrical connection between the second substrate 200 and the third substrate 300 and bonding between the second substrate 200 and the third substrate 300 .
  • FIG. 31 shows an example in which a peripheral circuit is provided in the peripheral portion 540B of the second substrate 200.
  • This peripheral circuit may include part of the row driver 520, part of the column signal processor 550, or the like. Further, as shown in FIG. 3, the connection holes H1 and H2 may be arranged in the vicinity of the pixel array section 540 without arranging the peripheral circuits in the peripheral section 540B of the second substrate 200.
  • FIG. 31 shows an example in which a peripheral circuit is provided in the peripheral portion 540B of the second substrate 200.
  • This peripheral circuit may include part of the row driver 520, part of the column signal processor 550, or the like.
  • the connection holes H1 and H2 may be arranged in the vicinity of the pixel array section 540 without arranging the peripheral circuits in the peripheral section 540B of the second substrate 200.
  • the third substrate 300 has, for example, a wiring layer 300T and a semiconductor layer 300S in this order from the second substrate 200 side.
  • the surface of the semiconductor layer 300S is provided on the second substrate 200 side.
  • the semiconductor layer 300S is composed of a silicon substrate.
  • a circuit is provided on the surface side portion of the semiconductor layer 300S.
  • the portion on the surface side of the semiconductor layer 300S includes, for example, the input unit 510A, the row driving unit 520, the timing control unit 530, the column signal processing unit 550, the image signal processing unit 560, and the output unit 510B. at least partially provided.
  • a wiring layer 300T provided between the semiconductor layer 300S and the second substrate 200 includes, for example, an interlayer insulating film, a plurality of wiring layers separated by the interlayer insulating film, and contact portions 301 and 302. there is The contact portions 301 and 302 are exposed on the surface of the wiring layer 300T (the surface on the side of the second substrate 200). They are in contact with the contact portions 202 respectively.
  • the contact portions 301 and 302 are connected to circuits formed in the semiconductor layer 300S (for example, at least one of the input portion 510A, the row driving portion 520, the timing control portion 530, the column signal processing portion 550, the image signal processing portion 560, and the output portion 510B). or ) is electrically connected.
  • the contact portions 301 and 302 are made of metal such as Cu (copper) and aluminum (Al).
  • the external terminal TA is connected to the input section 510A through the connection hole H1
  • the external terminal TB is connected to the output section 510B through the connection hole H2.
  • an imaging device mainly consists of a photodiode and a pixel circuit.
  • the area of the photodiode is increased, the charge generated as a result of photoelectric conversion increases, and as a result, the signal/noise ratio (S/N ratio) of the pixel signal is improved, and the imaging device produces better image data (image information). ) can be output.
  • increasing the size of the transistors included in the pixel circuit (especially the size of the amplifying transistor) reduces the noise generated in the pixel circuit, thereby improving the S/N ratio of the imaging signal and improving the image quality of the imaging device. Data (image information) can be output.
  • the size of the transistor provided in the pixel circuit is reduced. can be considered. Further, if the size of the transistor included in the pixel circuit is increased, the area of the photodiode may be reduced.
  • a plurality of pixels 541 share one pixel circuit 210, and the shared pixel circuit 210 is superimposed on the photodiode PD.
  • the floating diffusion FD of each of the plurality of pixels 541 is connected to the one pixel circuit 210.
  • a plurality of wiring extends.
  • a plurality of wirings extending from the VSS contact region 118 can be connected to each other to form a single connection wiring.
  • connection wiring interconnecting a plurality of wirings extending from the floating diffusion FD of each of the plurality of pixels 541 is formed in the semiconductor substrate 200 forming the pixel circuit 210, the transistor included in the pixel circuit 210 is formed. It is conceivable that the area to be formed becomes small. Similarly, when a connection wiring is formed in the semiconductor substrate 200 that forms the pixel circuit 210 to interconnect and integrate a plurality of wirings extending from the VSS contact regions 118 of the plurality of pixels 541, this results in It is conceivable that the area for forming the transistors included in the pixel circuit 210 is reduced.
  • a plurality of pixels 541 share one pixel circuit 210, and the shared pixel circuit 210 is arranged to overlap the photodiode PD.
  • connection wiring that connects the floating diffusions FD of the plurality of pixels 541 to each other and integrates them into one
  • a connection wiring that connects the VSS contact regions 118 of each of the plurality of pixels 541 to one another.
  • a floating diffusion FD is formed on the surface of the first substrate 100 and the surface of the second substrate 200 that serve as the bonding interface between the first substrate 100 and the second substrate 200. and an electrode connected to the VSS contact region 118 are provided. Furthermore, even if the electrodes formed on the surfaces of the two substrates are misaligned when the first substrate 100 and the second substrate 200 are bonded together, the electrodes formed on the surfaces of the two substrates are brought into contact with each other. , it is preferable to increase the size of the electrodes formed on the surfaces of these two substrates. In this case, it may become difficult to dispose the electrodes in the limited area of each pixel provided in the imaging device 1 .
  • the imaging device 1 of the present embodiment has a pixel circuit 210 in which a plurality of pixels 541 are arranged.
  • the first manufacturing method described above can be used as a manufacturing method for sharing and arranging the shared pixel circuit 210 so as to overlap the photodiode PD. This makes it easy to align the elements formed on the first substrate 100 and the second substrate 200, so that a high-quality, high-performance imaging device can be manufactured. Furthermore, it is possible to have a unique structure resulting from using this manufacturing method.
  • connection wiring that connects the floating diffusions FD of each of the plurality of pixels 541 to one another, and a connection that connects the VSS contact regions 118 of each of the plurality of pixels 541 to one another.
  • this structure and the second substrate 200 are laminated by using the first manufacturing method to form the pixel circuit 210 on the second substrate 200, thereby forming the pixel circuit.
  • the connection wiring formed on the first substrate 100 may be affected by the heat treatment that is required when forming the active elements provided on the substrate 210 .
  • the imaging device 1 of the present embodiment provides floating A connection wiring that connects the diffusion FDs to each other and integrates them into one, and a connection wiring that connects the VSS contact regions 118 of the plurality of pixels 541 to each other and integrates them into one. It is desirable to use materials.
  • the conductive material with high heat resistance can use a material having a higher melting point than at least part of the wiring material included in the wiring layer 200T of the second substrate 200 .
  • the imaging device 1 of the present embodiment has (1) a structure in which the first substrate 100 and the second substrate 200 are laminated face-to-back (specifically, the semiconductor layer 100S of the first substrate 100 and the (2) a structure in which the wiring layer 100T, the semiconductor layer 200S of the second substrate 200, and the wiring layer 200T are stacked in this order); and (3) between the floating diffusion FD provided in each of the plurality of pixels 541, and , and a connection wiring that interconnects and integrates the VSS contact regions 118 provided in each of the plurality of pixels 541 with a highly heat-resistant conductive material.
  • the floating diffusion FD provided in each of the plurality of pixels 541 can be formed on the first substrate 100. It is possible to provide a connection wiring that connects the pixels 541 to one another and a connection wiring that connects the VSS contact regions 118 provided in each of the plurality of pixels 541 to one another.
  • FIG. 38 and 39 are obtained by adding arrows representing the paths of each signal to FIG.
  • FIG. 38 shows, with arrows, paths of an input signal input to the imaging device 1 from the outside, power supply potential, and reference potential.
  • FIG. 39 shows signal paths of pixel signals output from the imaging device 1 to the outside by arrows.
  • an input signal for example, a pixel clock and a synchronization signal
  • an input signal for example, a pixel clock and a synchronization signal
  • the row driving section 520 outputs the row driving signal. produced.
  • This row driving signal is sent to the second substrate 200 via the contact portions 301 and 201 . Furthermore, this row drive signal reaches each pixel sharing unit 539 of the pixel array section 540 via the row drive signal line 542 in the wiring layer 200T.
  • drive signals other than the transfer gate TG are input to the pixel circuit 210, and each transistor included in the pixel circuit 210 is driven.
  • a drive signal for the transfer gate TG is input to the transfer gates TG1, TG2, TG3 and TG4 of the first substrate 100 via the through electrode TGV to drive the pixels 541A, 541B, 541C and 541D (FIG. 38).
  • the power source potential and the reference potential supplied to the input section 510A (input terminal 511) of the third substrate 300 from the outside of the imaging device 1 are sent to the second substrate 200 via the contact portions 301 and 201, and are routed. It is supplied to the pixel circuit 210 of each pixel sharing unit 539 via wiring in layer 200T.
  • the reference potential is also supplied to the pixels 541A, 541B, 541C, and 541D of the first substrate 100 via the through electrode 121E.
  • the pixel signals photoelectrically converted by the pixels 541A, 541B, 541C, and 541D of the first substrate 100 are sent to the pixel circuits 210 of the second substrate 200 for each pixel sharing unit 539 via the through electrodes 120E.
  • a pixel signal based on this pixel signal is sent from the pixel circuit 210 to the third substrate 300 via the vertical signal line 543 and the contact portions 202 and 302 .
  • the pixel signals are processed by the column signal processing section 550 and the image signal processing section 560 of the third substrate 300, and then output to the outside via the output section 510B.
  • the pixels 541A, 541B, 541C, 541D (pixel sharing unit 539) and the pixel circuit 210 are provided on different substrates (first substrate 100 and second substrate 200). Accordingly, the areas of the pixels 541A, 541B, 541C, 541D and the pixel circuit 210 can be increased compared to the case where the pixels 541A, 541B, 541C, 541D and the pixel circuit 210 are formed on the same substrate. As a result, it is possible to increase the amount of pixel signals obtained by photoelectric conversion and reduce the transistor noise of the pixel circuit 210 . As a result, the signal/noise ratio of pixel signals is improved, and the imaging apparatus 1 can output better pixel data (image information). In addition, miniaturization of the imaging device 1 (in other words, reduction in pixel size and miniaturization of the imaging device 1) becomes possible. The imaging device 1 can increase the number of pixels per unit area by reducing the pixel size, and can output high-quality images.
  • the first substrate 100 and the second substrate 200 are electrically connected to each other by the through electrodes 120E and 121E provided in the insulating region 212 .
  • a method of connecting the first substrate 100 and the second substrate 200 by bonding pad electrodes, or a method of connecting by a through wiring (for example, TSV (Thorough Si Via)) penetrating the semiconductor layer can be considered.
  • TSV Thirough Si Via
  • resolution can be further increased by further miniaturizing the area per pixel.
  • the formation area of the pixels 541A, 541B, 541C, 541D and the pixel circuit 210 can be enlarged.
  • the signal/noise ratio of pixel signals is improved, and the imaging apparatus 1 can output better pixel data (image information).
  • the pixel circuit 210, the column signal processing section 550, and the image signal processing section 560 are provided on different substrates (the second substrate 200 and the third substrate 300).
  • the area of the pixel circuit 210, the area of the column signal processing unit 550 and the image signal processing unit 560 are reduced compared to the case where the pixel circuit 210, the column signal processing unit 550 and the image signal processing unit 560 are formed on the same substrate. and can be expanded. This makes it possible to reduce noise generated in the column signal processing section 550 and to mount a more advanced image processing circuit than the image signal processing section 560 . Therefore, by improving the signal/noise ratio of the pixel signal, the imaging apparatus 1 can output better pixel data (image information).
  • the pixel array section 540 is provided on the first substrate 100 and the second substrate 200
  • the column signal processing section 550 and the image signal processing section 560 are provided on the third substrate 300 .
  • Contact portions 201 , 202 , 301 and 302 connecting the second substrate 200 and the third substrate 300 are formed above the pixel array portion 540 . Therefore, the contact portions 201, 202, 301, and 302 can be laid out freely without interference in layout from various wirings provided in the pixel array. Thereby, the contact portions 201 , 202 , 301 and 302 can be used for electrical connection between the second substrate 200 and the third substrate 300 .
  • the column signal processing portion 550 and the image signal processing portion 560 have a higher degree of layout freedom. This makes it possible to reduce noise generated in the column signal processing section 550 and to mount a more advanced image processing circuit than the image signal processing section 560 . Therefore, by improving the signal/noise ratio of the pixel signal, the imaging apparatus 1 can output better pixel data (image information).
  • the pixel separation section 117 penetrates the semiconductor layer 100S.
  • the distance between adjacent pixels pixels 541A, 541B, 541C, and 541D
  • color mixture between the pixels 541A, 541B, 541C, and 541D can be prevented.
  • the signal/noise ratio of the pixel signal is improved, and the imaging apparatus 1 can output better pixel data (image information).
  • a pixel circuit 210 is provided for each pixel sharing unit 539 .
  • the transistors amplifying transistor AMP, reset transistor RST, selection transistor SEL, FD conversion gain switching transistor FDG .
  • noise can be suppressed by enlarging the formation region of the amplification transistor AMP.
  • the imaging apparatus 1 can output better pixel data (image information).
  • the pad portion 120 electrically connecting the floating diffusions FD (floating diffusions FD1, FD2, FD3, FD4) of the four pixels (pixels 541A, 541B, 541C, 541D) is provided on the first substrate 100.
  • the number of through electrodes (through electrodes 120E) connecting the first substrate 100 and the second substrate 200 can be reduced compared to the case where such pad portions 120 are provided on the second substrate 200.
  • the insulating region 212 can be made small, and a sufficient size of the formation region (semiconductor layer 200S) of the transistor forming the pixel circuit 210 can be secured. This makes it possible to reduce the noise of the transistors included in the pixel circuit 210, improve the signal/noise ratio of the pixel signal, and enable the imaging device 1 to output better pixel data (image information). Become.
  • FIG. 40 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 33 described in the above embodiment.
  • FIG. 41 schematically shows the configuration of each part of the first wiring layer W1, the semiconductor layer 200S connected to the first wiring layer W1, and the first substrate 100, and FIG. handle.
  • FIG. 42 shows an example of the planar configuration of the first wiring layer W1 and the second wiring layer W2, and corresponds to FIG. 35 described in the above embodiment.
  • FIG. 43 shows an example of the planar configuration of the second wiring layer W2 and the third wiring layer W3, and corresponds to FIG. 36 described in the above embodiment.
  • FIG. 44 shows an example of planar configurations of the third wiring layer W3 and the fourth wiring layer W4, and corresponds to FIG. 37 described in the above embodiment.
  • the internal layout of one pixel sharing unit 539 (for example, the right side of the paper surface) is different from that of the other (for example, The internal layout of the pixel sharing unit 539 on the left side of the page) is reversed only in the H direction. Also, the deviation in the V direction between the outline of one pixel sharing unit 539 and the outline of the other pixel sharing unit 539 is larger than the deviation (FIG. 34) described in the above embodiment.
  • the amplification transistor AMP of the other pixel sharing unit 539 and the pad section 120 connected thereto are connected.
  • the distance between the other (pad portion 120 on the lower side of the paper surface) of the two can be reduced.
  • the first modification of the imaging device 1 shown in FIGS. 40 to 44 can reduce the area of the two pixel sharing units 539 arranged in the H direction without reversing each other in the V direction.
  • the area can be the same as that of the pixel sharing unit 539 of the second substrate 200 described in the above embodiment.
  • the planar layout of the pixel sharing unit 539 of the first substrate 100 is the same as the planar layout (FIGS. 32A and 32B) described in the above embodiments. Therefore, the imaging device 1 of this modified example can obtain the same effect as the imaging device 1 described in the above embodiment.
  • the arrangement of the pixel sharing units 539 on the second substrate 200 is not limited to the arrangement described in the above embodiment and this modified example.
  • FIG. 45 schematically shows a planar configuration of the first substrate 100, and corresponds to FIG. 32A described in the above embodiment.
  • FIG. 46 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 33 described in the above embodiment.
  • FIG. 47 schematically shows the configuration of each part of the first wiring layer W1, the semiconductor layer 200S connected to the first wiring layer W1, and the first substrate 100, and FIG. handle.
  • FIG. 48 shows an example of the planar configuration of the first wiring layer W1 and the second wiring layer W2, and corresponds to FIG. 35 described in the above embodiment.
  • FIG. 45 schematically shows a planar configuration of the first substrate 100, and corresponds to FIG. 32A described in the above embodiment.
  • FIG. 46 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 33 described in the above embodiment.
  • FIG. 47 schematically shows the configuration of each part of the first wiring layer W1, the semiconductor layer 200
  • FIG. 49 shows an example of planar configurations of the second wiring layer W2 and the third wiring layer W3, and corresponds to FIG. 36 described in the above embodiment.
  • FIG. 50 shows an example of the planar configuration of the third wiring layer W3 and the fourth wiring layer W4, and corresponds to FIG. 37 described in the above embodiment.
  • each pixel circuit 210 has a substantially square planar shape (FIG. 46, etc.).
  • the planar configuration of the imaging device 1 of this modified example differs from the planar configuration of the imaging device 1 described in the above embodiment.
  • the pixel sharing unit 539 of the first substrate 100 is formed over a pixel region of 2 rows ⁇ 2 columns and has a substantially square planar shape ( Figure 45).
  • the horizontal portions TGb of the transfer gates TG1 and TG3 of the pixels 541A and 541C of one pixel column are positioned at the center of the pixel-sharing unit 539 in the H direction from the position overlapping the vertical portion TGa. (more specifically, the direction toward the outer edges of the pixels 541A and 541C and the direction toward the center of the pixel sharing unit 539), and the transfer gates of the pixels 541B and 541D of the other pixel column.
  • the horizontal portion TGb of TG2 and TG4 extends in the H direction from the position where the horizontal portion TGb overlaps the vertical portion TGa toward the outside of the pixel sharing unit 539 (more specifically, the direction toward the outer edges of the pixels 541B and 541D and the pixel sharing unit 539).
  • the pad portion 120 connected to the floating diffusion FD is provided in the central portion of the pixel sharing unit 539 (the central portion of the pixel sharing unit 539 in the H direction and the V direction), and the pad portion 121 connected to the VSS contact region 118 is , are provided at the ends of the pixel sharing unit 539 at least in the H direction (in the H direction and the V direction in FIG. 45).
  • the semiconductor layer 200S is likely to be finely divided as described in the above embodiment. Therefore, it becomes difficult to form a large transistor in the pixel circuit 210 .
  • the horizontal portions TGb of the transfer gates TG1, TG2, TG3, and TG4 are extended in the H direction from the positions overlapping the vertical portions TGa as in the above modification, the same as described in the above embodiment. Moreover, the width of the semiconductor layer 200S can be increased.
  • the positions in the H direction of the through electrodes TGV1 and TGV3 connected to the transfer gates TG1 and TG3 are arranged close to the positions in the H direction of the through electrodes 120E, and the positions of the through electrodes TGV1 and TGV3 connected to the transfer gates TG2 and TG4 are arranged in the H direction.
  • the positions of the through electrodes TGV2 and TGV4 in the H direction can be arranged close to the position of the through electrode 121E in the H direction (FIG. 47). This makes it possible to increase the width (size in the H direction) of the semiconductor layer 200S extending in the V direction, as described in the above embodiment.
  • the imaging apparatus 1 can output better pixel data (image information).
  • the pixel sharing unit 539 of the second substrate 200 has, for example, substantially the same size in the H direction and the V direction as the pixel sharing unit 539 of the first substrate 100, and corresponds to, for example, a pixel area of approximately 2 rows ⁇ 2 columns. provided over the area.
  • the selection transistor SEL and the amplification transistor AMP are arranged side by side in the V direction in one semiconductor layer 200S extending in the V direction
  • the FD conversion gain switching transistor FDG and the reset transistor RST are arranged in the V direction. They are arranged side by side in the V direction in one extending semiconductor layer 200S.
  • One semiconductor layer 200S provided with the selection transistor SEL and the amplification transistor AMP and one semiconductor layer 200S provided with the FD conversion gain switching transistor FDG and the reset transistor RST are arranged in the H direction via the insulating region 212. Lined up. This insulating region 212 extends in the V direction (FIG. 46).
  • FIG. For example, the pixel sharing unit 539 of the first substrate 100 shown in FIG. It is connected to the FD conversion gain switching transistor FDG and the reset transistor RST provided on the other side in the H direction (on the right side of the paper surface of FIG. 47).
  • the external shape of the shared unit 541 of the second substrate 200 including the amplification transistor AMP, selection transistor SEL, FD conversion gain switching transistor FDG and reset transistor RST is determined by the following four outer edges.
  • the first outer edge is the outer edge of one end in the V direction of the semiconductor layer 200S including the selection transistor SEL and the amplification transistor AMP (the end on the upper side of the paper surface of FIG. 47).
  • the first outer edge consists of the amplification transistor AMP included in the pixel sharing unit 539 and the selection transistor SEL included in the pixel sharing unit 539 adjacent to one side of the pixel sharing unit 539 in the V direction (upper side of the paper surface of FIG. 47). is provided between More specifically, the first outer edge is provided in the central portion in the V direction of the isolation region 213 between the amplification transistor AMP and the selection transistor SEL.
  • the second outer edge is the outer edge of the other end in the V direction of the semiconductor layer 200S including the selection transistor SEL and the amplification transistor AMP (the end on the lower side of the paper surface of FIG. 47).
  • the second outer edge consists of the selection transistor SEL included in the pixel sharing unit 539 and the amplifying transistor included in the pixel sharing unit 539 adjacent to the pixel sharing unit 539 on the other side in the V direction (lower side of the paper surface of FIG. 47).
  • AMP More specifically, the second outer edge is provided in the central portion in the V direction of the element isolation region 213 between the selection transistor SEL and the amplification transistor AMP.
  • the third outer edge is the outer edge of the other end in the V direction of the semiconductor layer 200S including the reset transistor RST and the FD conversion gain switching transistor FDG (the end on the lower side of the paper surface of FIG. 47).
  • the third outer edge is included in the FD conversion gain switching transistor FDG included in the pixel sharing unit 539 and the pixel sharing unit 539 adjacent to the other side of the pixel sharing unit 539 in the V direction (lower side of the paper surface of FIG. 47). and the reset transistor RST. More specifically, the third outer edge is provided in the central portion in the V direction of the isolation region 213 between the FD conversion gain switching transistor FDG and the reset transistor RST.
  • the fourth outer edge is the outer edge of one end in the V direction of the semiconductor layer 200S including the reset transistor RST and the FD conversion gain switching transistor FDG (the end on the upper side of the paper surface of FIG. 47).
  • the fourth outer edge is the reset transistor RST included in the pixel sharing unit 539 and the FD conversion gain included in the pixel sharing unit 539 adjacent to one side of the pixel sharing unit 539 in the V direction (upper side of the paper surface of FIG. 47). It is provided between the switching transistor FDG (not shown). More specifically, the fourth outer edge is provided in the central portion in the V direction of the isolation region 213 (not shown) between the reset transistor RST and the FD conversion gain switching transistor FDG.
  • the third and fourth outer edges are larger than the first and second outer edges. Displaced to one side in the V direction (in other words, offset to one side in the V direction).
  • both the gate of the amplification transistor AMP and the source of the FD conversion gain switching transistor FDG can be arranged as close to the pad section 120 as possible. Therefore, the area of the wiring that connects them can be reduced, making it easier to miniaturize the imaging device 1 .
  • VSS contact region 218 is provided between the semiconductor layer 200S including the selection transistor SEL and the amplification transistor AMP and the semiconductor layer 200S including the reset transistor RST and the FD conversion gain switching transistor FDG.
  • the multiple pixel circuits 210 have the same layout.
  • the imaging device 1 having such a second substrate 200 can also obtain the same effect as described in the above embodiment.
  • the arrangement of the pixel sharing units 539 on the second substrate 200 is not limited to the arrangement described in the above embodiment and this modified example.
  • FIG. 51 to 56 show a modified example of the planar configuration of the imaging device 1 according to the above embodiment.
  • FIG. 51 schematically shows a planar configuration of the first substrate 100, and corresponds to FIG. 32B described in the above embodiment.
  • FIG. 52 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 8 described in the above embodiment.
  • FIG. 53 schematically shows the configuration of each part of the first wiring layer W1, the semiconductor layer 200S connected to the first wiring layer W1, and the first substrate 100, and FIG. handle.
  • FIG. 54 shows an example of the planar configuration of the first wiring layer W1 and the second wiring layer W2, and corresponds to FIG. 35 described in the above embodiment.
  • FIG. 51 schematically shows a planar configuration of the first substrate 100, and corresponds to FIG. 32B described in the above embodiment.
  • FIG. 52 schematically shows a planar configuration near the surface of the semiconductor layer 200S of the second substrate 200, and corresponds to FIG. 8 described in
  • FIG. 55 shows an example of planar configurations of the second wiring layer W2 and the third wiring layer W3, and corresponds to FIG. 36 described in the above embodiment.
  • FIG. 56 shows an example of planar configurations of the third wiring layer W3 and the fourth wiring layer W4, and corresponds to FIG. 37 described in the above embodiment.
  • the semiconductor layer 200S of the second substrate 200 extends in the H direction (FIG. 53). That is, it substantially corresponds to the configuration obtained by rotating the planar configuration of the imaging apparatus 1 shown in FIG. 46 and the like by 90 degrees.
  • the pixel sharing unit 539 of the first substrate 100 is formed over a pixel region of 2 rows ⁇ 2 columns and has a substantially square planar shape ( Figure 51).
  • the transfer gates TG1 and TG2 of the pixels 541A and 541B of one pixel row extend toward the center of the pixel sharing unit 539 in the V direction
  • Transfer gates TG3 and TG4 of pixel 541C and pixel 541D extend outward from pixel sharing unit 539 in the V direction.
  • the pad portion 120 connected to the floating diffusion FD is provided in the central portion of the pixel sharing unit 539, and the pad portion 121 connected to the VSS contact region 118 is provided at least in the V direction (in the V direction and the H direction in FIG. 51). ) is provided at the end of the pixel sharing unit 539 .
  • the V direction positions of the through electrodes TGV1 and TGV2 of the transfer gates TG1 and TG2 approach the V direction position of the through electrode 120E, and the V direction positions of the through electrodes TGV3 and TGV4 of the transfer gates TG3 and TG4 are the through electrodes.
  • the position in the V direction of 121E is approached (FIG. 53). Therefore, for the same reason as described in the above embodiment, the width (size in the V direction) of the semiconductor layer 200S extending in the H direction can be increased. Therefore, it is possible to increase the size of the amplification transistor AMP and suppress noise.
  • each pixel circuit 210 a selection transistor SEL and an amplification transistor AMP are arranged side by side in the H direction, and a reset transistor RST is arranged at a position adjacent to the selection transistor SEL in the V direction with an insulating region 212 interposed therebetween ( Figure 52).
  • the FD conversion gain switching transistor FDG is arranged side by side with the reset transistor RST in the H direction.
  • the VSS contact region 218 is provided in the insulating region 212 in an island shape.
  • the third wiring layer W3 extends in the H direction (FIG. 55)
  • the fourth wiring layer W4 extends in the V direction (FIG. 56).
  • the imaging device 1 having such a second substrate 200 can also obtain the same effect as described in the above embodiment.
  • the arrangement of the pixel sharing units 539 on the second substrate 200 is not limited to the arrangement described in the above embodiment and this modified example.
  • the semiconductor layer 200S described in the above embodiment and modification 1 may extend in the H direction.
  • FIG. 57 schematically shows a modified example of the cross-sectional configuration of the imaging device 1 according to the above embodiment.
  • FIG. 57 corresponds to FIG. 3 described in the above embodiment.
  • the imaging device 1 has contact portions 203 , 204 , 303 and 304 at positions facing the central portion of the pixel array portion 540 in addition to the contact portions 201 , 202 , 301 and 302 .
  • the imaging device 1 of this modified example is different from the imaging device 1 described in the above embodiment.
  • the contact portions 203 and 204 are provided on the second substrate 200, and the joint surface with the third substrate 300 is exposed.
  • the contact portions 303 and 304 are provided on the third substrate 300 and exposed on the joint surface with the second substrate 200 .
  • the contact portion 203 is in contact with the contact portion 303
  • the contact portion 204 is in contact with the contact portion 304 . That is, in the imaging device 1, the second substrate 200 and the third substrate 300 are connected by the contact portions 203, 204, 303, and 304 in addition to the contact portions 201, 202, 301, and 302, respectively.
  • FIG. 58 the paths of the input signal input to the imaging device 1 from the outside, the power supply potential, and the reference potential are indicated by arrows.
  • FIG. 59 the signal paths of the pixel signals output from the imaging device 1 to the outside are indicated by arrows.
  • an input signal input to the imaging device 1 via the input section 510A is transmitted to the row driving section 520 of the third substrate 300, and the row driving section 520 generates a row driving signal.
  • This row driving signal is sent to the second substrate 200 via the contact portions 303 and 203 .
  • this row drive signal reaches each pixel sharing unit 539 of the pixel array section 540 via the row drive signal line 542 in the wiring layer 200T.
  • drive signals other than the transfer gate TG are input to the pixel circuit 210, and each transistor included in the pixel circuit 210 is driven.
  • Drive signals for the transfer gates TG are input to the transfer gates TG1, TG2, TG3 and TG4 of the first substrate 100 via the through electrodes TGV, and the pixels 541A, 541B, 541C and 541D are driven.
  • the power source potential and the reference potential supplied to the input section 510A (input terminal 511) of the third substrate 300 from the outside of the imaging device 1 are sent to the second substrate 200 via the contact portions 303 and 203, and are routed. It is supplied to the pixel circuit 210 of each pixel sharing unit 539 via wiring in layer 200T.
  • the reference potential is also supplied to the pixels 541A, 541B, 541C, and 541D of the first substrate 100 via the through electrode 121E.
  • pixel signals photoelectrically converted by the pixels 541A, 541B, 541C, and 541D of the first substrate 100 are sent to the pixel circuits 210 of the second substrate 200 for each pixel sharing unit 539 .
  • a pixel signal based on this pixel signal is sent from the pixel circuit 210 to the third substrate 300 via the vertical signal line 543 and the contact portions 204 and 304 .
  • the pixel signals are processed by the column signal processing section 550 and the image signal processing section 560 of the third substrate 300, and then output to the outside via the output section 510B.
  • the imaging device 1 having such contact portions 203, 204, 303, and 304 can also obtain the same effect as described in the above embodiment.
  • the position, number, etc. of the contact portions can be changed according to the design of the circuit of the third substrate 300 to which the wiring is connected via the contact portions 303 and 304 .
  • FIG. 60 shows a modified example of the cross-sectional configuration of the imaging device 1 according to the above embodiment.
  • FIG. 60 corresponds to FIG. 31 described in the above embodiment.
  • a transfer transistor TR having a planar structure is provided on the first substrate 100 .
  • the imaging device 1 of this modified example is different from the imaging device 1 described in the above embodiment.
  • a transfer gate TG is formed only by the horizontal portion TGb. In other words, the transfer gate TG does not have the vertical portion TGa and is provided to face the semiconductor layer 100S.
  • the imaging device 1 having such a planar-structured transfer transistor TR can also obtain the same effect as described in the above embodiment. Furthermore, by providing the planar transfer gate TG on the first substrate 100, the photodiode PD can be formed closer to the surface of the semiconductor layer 100S than when the vertical transfer gate TG is provided on the first substrate 100. , thereby increasing the saturation signal amount (Qs). Further, the method of forming the planar type transfer gate TG on the first substrate 100 requires fewer manufacturing steps than the method of forming the vertical type transfer gate TG on the first substrate 100. It can also be considered that the diode PD is less likely to be adversely affected.
  • FIG. 61 shows a modified example of the pixel circuit of the imaging device 1 according to the above embodiment.
  • FIG. 61 corresponds to FIG. 29 described in the above embodiment.
  • a pixel circuit 210 is provided for each pixel (pixel 541A). That is, the pixel circuit 210 is not shared by multiple pixels.
  • the imaging device 1 of this modified example is different from the imaging device 1 described in the above embodiment.
  • the imaging device 1 of this modification is the same as the imaging device 1 described in the above embodiment in that the pixels 541A and the pixel circuits 210 are provided on different substrates (the first substrate 100 and the second substrate 200). . Therefore, the imaging device 1 according to this modified example can also obtain the same effect as described in the above embodiment.
  • FIG. 62 shows a modified example of the planar configuration of the pixel separating section 117 described in the above embodiment.
  • a gap may be provided in the pixel separating portion 117 surrounding each of the pixels 541A, 541B, 541C, and 541D. That is, the pixels 541A, 541B, 541C, and 541D do not have to be surrounded by the pixel separation section 117 all around.
  • the gap of the pixel separation section 117 is provided in the vicinity of the pad sections 120 and 121 (see FIG. 32B).
  • the pixel separation section 117 may have a configuration other than the FTI structure.
  • the pixel separation section 117 may not be provided so as to completely penetrate the semiconductor layer 100S, and may have a so-called DTI (Deep Trench Isolation) structure.
  • FIG. 63 shows an example of a schematic configuration of an imaging system 7 including the imaging device 1 according to the above embodiments and modifications thereof.
  • the imaging system 7 is, for example, an imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device such as a smart phone or a tablet terminal.
  • the imaging system 7 includes, for example, the imaging device 1 according to the above embodiment and its modification, a DSP circuit 243, a frame memory 244, a display section 245, a storage section 246, an operation section 247 and a power supply section 248.
  • the imaging device 1, the DSP circuit 243, the frame memory 244, the display unit 245, the storage unit 246, the operation unit 247, and the power supply unit 248 according to the above embodiment and its modification are connected via a bus line 249. interconnected.
  • the imaging device 1 according to the above embodiment and its modification outputs image data corresponding to incident light.
  • the DSP circuit 243 is a signal processing circuit that processes a signal (image data) output from the imaging device 1 according to the above embodiment and its modification.
  • the frame memory 244 temporarily holds the image data processed by the DSP circuit 243 on a frame-by-frame basis.
  • the display unit 245 is, for example, a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays a moving image or a still image captured by the imaging device 1 according to the above embodiments and modifications thereof. .
  • the storage unit 246 records image data of a moving image or a still image captured by the imaging device 1 according to the above-described embodiment and its modifications in a recording medium such as a semiconductor memory or a hard disk.
  • the operation unit 247 issues operation commands for various functions of the imaging system 7 in accordance with user's operations.
  • the power source unit 248 supplies various power sources that serve as operating power sources for the imaging device 1, the DSP circuit 243, the frame memory 244, the display unit 245, the storage unit 246, and the operation unit 247 according to the above-described embodiment and modifications thereof. Appropriate supply to the target.
  • FIG. 64 shows an example of a flowchart of imaging operation in the imaging system 7.
  • the user instructs to start imaging by operating the operation unit 247 (step S101). Then, the operation unit 247 transmits an imaging command to the imaging device 1 (step S102). When the imaging device 1 (specifically, the system control circuit 36) receives the imaging command, it performs imaging in a predetermined imaging method (step S103).
  • the imaging device 1 outputs image data obtained by imaging to the DSP circuit 243 .
  • the image data is data for all pixels of pixel signals generated based on the charges temporarily held in the floating diffusion FD.
  • the DSP circuit 243 performs predetermined signal processing (for example, noise reduction processing) based on the image data input from the imaging device 1 (step S104).
  • the DSP circuit 243 causes the frame memory 244 to hold the image data subjected to the predetermined signal processing, and the frame memory 244 causes the storage unit 246 to store the image data (step S105). In this manner, imaging in the imaging system 7 is performed.
  • the imaging device 1 according to the above embodiment and its modification is applied to the imaging system 7 .
  • the imaging device 1 can be miniaturized or made high-definition, so that a small-sized or high-definition imaging system 7 can be provided.
  • the technology (the present technology) according to the present disclosure can be applied to various electronic devices.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 65 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a driving system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062 and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 66 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • Forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 66 shows an example of the imaging range of the imaging units 12101 to 12104.
  • FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided in the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging device 1 according to the above embodiments and modifications thereof can be applied to the imaging unit 12031 .
  • FIG. 67 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique (the present technique) according to the present disclosure can be applied.
  • FIG. 67 shows a state in which an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 .
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 .
  • an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
  • the tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 .
  • the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
  • An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system.
  • the imaging device photoelectrically converts the observation light to generate an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light for photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light for photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 .
  • the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in.
  • the recorder 11207 is a device capable of recording various types of information regarding surgery.
  • the printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the observation target is irradiated with laser light from each of the RGB laser light sources in a time division manner, and by controlling the drive of the imaging device of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging device.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time.
  • the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissues, by irradiating light with a narrower band than the irradiation light (i.e., white light) during normal observation, the mucosal surface layer So-called narrow band imaging is performed, in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light.
  • the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is A fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
  • FIG. 68 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 .
  • the camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
  • a lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 .
  • a lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 is composed of an imaging device.
  • the imaging device constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 .
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 .
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 .
  • the communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 .
  • Image signals and control signals can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
  • the control unit 11413 performs various controls related to imaging of the surgical site and the like by the endoscope 11100 and display of the captured image obtained by imaging the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 .
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize.
  • the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
  • a transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be preferably applied to the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100 among the configurations described above.
  • the imaging unit 11402 can be miniaturized or made high-definition, so the small-sized or high-definition endoscope 11100 can be provided.
  • this technique can take the following structures.
  • a pixel unit including a photoelectric conversion element that photoelectrically converts incident light into a pixel signal; a comparison unit that compares the pixel signal from the pixel unit with a reference signal and outputs a comparison result, and an AD conversion unit that converts the pixel signal into a digital signal based on the comparison result
  • the comparison unit includes a differential circuit that inputs the pixel signal and the reference signal and outputs a differential voltage between the pixel signal and the reference signal, and an active current that flows through the differential circuit according to a predetermined mirror ratio.
  • the current mirror circuit is provided on a substrate and includes first and second transistors in which the top surface or side surface of the channel region lies in a plane substantially parallel or substantially perpendicular to the (100) crystal plane of the substrate.
  • Imaging device (2) The solid-state imaging device according to (1), wherein the first and second transistors are p-type transistors.
  • the substrate is a 45 degree notch substrate, The solid-state imaging device according to (1) or (2), wherein the channel length directions of the first and second transistors are substantially perpendicular or substantially parallel to the notch plane on the surface of the substrate.
  • the substrate is a 0 degree notch substrate
  • the first and second transistors each having a channel region having a top surface substantially parallel to the surface of the substrate and side surfaces substantially perpendicular to the surface of the substrate;
  • the pixel portion is provided on a first substrate,
  • the comparison section is provided on a second substrate different from the first substrate,
  • the first substrate and the second substrate are laminated,
  • the pixel section and the comparison section are electrically connected by a through electrode provided in the first or second substrate, or by a wiring connection between the wiring of the first substrate and the wiring of the second substrate.
  • the solid-state imaging device according to any one of (1) to (5).
  • the pixel section and the comparison section are provided on the same first substrate,
  • the comparison section is provided above the pixel section of the first substrate, Any one of (1) to (5), wherein the pixel section and the comparison section are electrically connected by a contact plug provided in an interlayer insulating film between the pixel section and the comparison section. 10.
  • the solid-state imaging device according to claim 1.
  • the differential circuit is provided on a first substrate, The current mirror circuit is provided on a second substrate different from the first substrate, The first substrate and the second substrate are laminated, The differential circuit and the current mirror circuit according to any one of (1) to (5), wherein the differential circuit and the current mirror circuit are electrically connected by joining the wiring of the first substrate and the wiring of the second substrate.
  • the solid-state imaging device described. (9) The pixel section and the differential circuit are provided on the same first substrate, The differential circuit is provided above the pixel portion of the first substrate, The solid-state imaging device according to (8), wherein the pixel section and the differential circuit are electrically connected by a contact plug provided in an interlayer insulating film between the pixel section and the differential circuit. .
  • the pixel section and the comparison section are provided on the same first substrate,
  • the differential circuit is provided in the same layer as the transistor of the pixel section,
  • the current mirror circuit is provided above the pixel portion of the first substrate, (1) to (5), wherein the differential circuit and the current mirror circuit are electrically connected by a contact plug provided in an interlayer insulating film between the differential circuit and the current mirror circuit;
  • the solid-state imaging device according to any one of 1.
  • (11) The solid-state imaging device according to (1), wherein the first and second transistors are n-type transistors.
  • the substrate is a 45 degree notch substrate, The solid-state imaging device according to (11), wherein the channel length directions of the first and second transistors are inclined at about 45 degrees or about 135 degrees with respect to the notch plane on the surface of the substrate.
  • the substrate is a 0 degree notch substrate, The solid-state imaging device according to (11), wherein the channel length directions of the first and second transistors are substantially perpendicular or substantially parallel to the notch plane on the surface of the substrate.
  • the first and second transistors each having a channel region having a top surface substantially parallel to the surface of the substrate and side surfaces substantially perpendicular to the surface of the substrate;
  • Imaging device (15) An electronic device comprising the solid-state imaging device according to any one of (1) to (14).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[課題]ノイズ特性を充分に低減させることができる固体撮像装置および電子機器を提供する。 [解決手段]本技術の固体撮像装置は、入射光を画素信号に光電変換する光電変換素子を含む画素部と、画素部からの画素信号を参照信号と比較して比較結果を出力する比較部を含み、比較結果に基づいて画素信号をデジタル信号へ変換するAD変換部と、を備え、比較部は、画素信号および参照信号を入力し該画素信号と該参照信号との差電圧を出力する差動回路と、差動回路に所定のミラー比に応じた電流を流すカレントミラー回路とを含み、能動負荷回路としてのカレントミラー回路は、基板上に設けられ、チャネル領域の上面または側面が基板の(100)結晶面に対して略平行または略垂直な面内にある第1および第2トランジスタを含む。

Description

固体撮像装置および電子機器
 本開示は、固体撮像装置および電子機器に関する。
 CIS(CMOS(Complementary Metal Oxide Semiconductor) Image Sensor)等の固体撮像装置において、画素回路に用いられる比較器およびAD変換回路のノイズ特性の低減が求められている。ノイズ特性を低減するために、比較器の差動対を構成する入力トランジスタと参照トランジスタのサイズを相違させることが提案されている(特許文献1参照)。
 しかしながら、この手法ではノイズ特性を充分に低減させることができなかった。
特開2019-140531号公報
 ノイズ特性を充分に低減させることができる固体撮像装置および電子機器を提供する。
 本開示の一側面の固体撮像装置は、入射光を画素信号に光電変換する光電変換素子を含む画素部と、画素部からの画素信号を参照信号と比較して比較結果を出力する比較部を含み、比較結果に基づいて画素信号をデジタル信号へ変換するAD変換部と、を備え、比較部は、画素信号および参照信号を入力し該画素信号と該参照信号との差電圧を出力する差動回路と、差動回路に所定のミラー比に応じた電流を流すカレントミラー回路とを含み、能動負荷回路としてのカレントミラー回路は、基板上に設けられ、チャネル領域の上面または側面が基板の(100)結晶面に対して略平行または略垂直な面内にある第1および第2トランジスタを含む。
 第1および第2トランジスタは、p型トランジスタである。
 基板が45度ノッチ基板であり、第1および第2トランジスタのチャネル長方向は、基板の表面において、ノッチ面に対して略垂直または略平行方向である。
 基板が0度ノッチ基板であり、第1および第2トランジスタのチャネル長方向は、基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である。
 第1および第2トランジスタは、基板の表面に対して略平行な上面と、基板の表面に対して略垂直な側面とを有するチャネル領域を有し、チャネル領域の上面および側面は、基板の(100)結晶面に対して略平行または略垂直な結晶面内にある。
 画素部は、第1基板に設けられており、比較部は、第1基板とは別の第2基板に設けられており、第1基板と第2基板とは積層されており、画素部と比較部とは、第2基板に設けられた貫通電極、または、第1基板の配線と第2基板の配線との配線接合によって電気的に接続されている。
 画素部および比較部は、同一の第1基板に設けられ、比較部は、第1基板の画素部の上方に設けられ、画素部と比較部とは、画素部と比較部との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている。
 差動回路は、第1基板に設けられており、カレントミラー回路は、第1基板とは別の第2基板に設けられており、第1基板と第2基板とは積層されており、差動回路とカレントミラー回路とは、第1基板の配線と第2基板の配線との接合によって電気的に接続されている。
 画素部および差動回路は、同一の第1基板に設けられ、差動回路は、第1基板の画素部の上方に設けられ、画素部と差動回路とは、画素部と差動回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている。
 画素部および比較部は、同一の第1基板に設けられ、差動回路は、画素部のトランジスタと同一層に設けられており、カレントミラー回路は、第1基板の画素部の上方に設けられ、差動回路とカレントミラー回路とは、差動回路とカレントミラー回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている。
 第1および第2トランジスタは、n型トランジスタである。
 基板が45度ノッチ基板であり、第1および第2トランジスタのチャネル長方向は、基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である。
 基板が0度ノッチ基板であり、第1および第2トランジスタのチャネル長方向は、基板の表面において、ノッチ面に対して略垂直度または略平行方向である。
 第1および第2トランジスタは、基板の表面に対して略平行な上面と、基板の表面に対して略垂直な側面とを有するチャネル領域を有し、チャネル領域の上面および側面は、基板の(110)結晶面に対して略平行または略垂直な結晶面内にある。
 請求項1から請求項14のいずれかの固体撮像装置を備える電子機器。
第1実施形態に係る撮像装置の機能構成の一例を示すブロック図。 撮像装置の概略構成の一例を表した図。 撮像装置の概略構成の一例を表した図。 第1実施形態による画素共有ユニット、列信号処理部および画素信号処理部の構成を示す概略断面図。 画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 トランジスタのソース領域、ドレイン領域、チャネル領域を示す斜視図。 キャリア移動度とキャリア濃度との関係を示すグラフ。 第1基板の平面レイアウトの一例を示す概略平面図。 第2基板の平面レイアウトの一例を示す概略平面図。 第2実施形態による固体撮像装置の構成例を示す概念図。 第2実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第3実施形態による固体撮像装置の構成例を示す概念図。 第3実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第4実施形態による固体撮像装置の構成例を示す概念図。 第4実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 第5実施形態による画素共有ユニットおよびコンパレータ部の構成の一例を表す等価回路図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 p型トランジスタの構成例を示す平面図。 第2実施形態に第5実施形態を組み合わせた実施形態を示す図。 第3実施形態に第5実施形態を組み合わせた実施形態を示す図。 第4実施形態に第5実施形態を組み合わせた実施形態を示す図。 第1実施形態による固体撮像装置の製造方法の一例を示す断面図。 第1実施形態による固体撮像装置の製造方法の一例を示す断面図。 第1実施形態による固体撮像装置の製造方法の一例を示す断面図。 図1に示した画素共有ユニットの等価回路図。 複数の画素共有ユニットと複数の垂直信号線との接続態様の一例を表す図。 図3に示した撮像装置の具体的な構成の一例を表す断面模式図。 図31に示した第1基板の要部の平面構成の一例を表す模式図。 図32Aに示した第1基板の要部とともにパッド部の平面構成を表す模式図。 図31に示した第2基板(半導体層)の平面構成の一例を表す模式図。 図31に示した第1配線層とともに、画素回路および第1基板の要部の平面構成の一例を表す模式図。 図31に示した第1配線層および第2配線層の平面構成の一例を表す模式図。 図31に示した第2配線層および第3配線層の平面構成の一例を表す模式図。 図31に示した第3配線層および第4配線層の平面構成の一例を表す模式図。 図3に示した撮像装置への入力信号の経路について説明するための模式図。 図3に示した撮像装置の画素信号の信号経路について説明するための模式図。 図33に示した第2基板(半導体層)の平面構成の一変形例を表す模式図。 図40に示した画素回路とともに、第1配線層および第1基板の要部の平面構成を表す模式図。 図41に示した第1配線層とともに、第2配線層の平面構成の一例を表す模式図。 図42に示した第2配線層とともに、第3配線層の平面構成の一例を表す模式図。 図43に示した第3配線層とともに、第4配線層の平面構成の一例を表す模式図。 図32Aに示した第1基板の平面構成の一変形例を表す模式図。 図45に示した第1基板に積層される第2基板(半導体層)の平面構成の一例を表す模式図。 図46に示した画素回路とともに、第1配線層の平面構成の一例を表す模式図。 図47に示した第1配線層とともに、第2配線層の平面構成の一例を表す模式図。 図48に示した第2配線層とともに、第3配線層の平面構成の一例を表す模式図。 図49に示した第3配線層とともに、第4配線層の平面構成の一例を表す模式図。 図45に示した第1基板の平面構成の他の例を表す模式図。 図51に示した第1基板に積層される第2基板(半導体層)の平面構成の一例を表す模式図。 図52に示した画素回路とともに、第1配線層の平面構成の一例を表す模式図。 図53に示した第1配線層とともに、第2配線層の平面構成の一例を表す模式図。 図54に示した第2配線層とともに、第3配線層の平面構成の一例を表す模式図。 図55に示した第3配線層とともに、第4配線層の平面構成の一例を表す模式図。 図3に示した撮像装置の他の例を表す断面模式図。 図57に示した撮像装置への入力信号の経路について説明するための模式図。 図57に示した撮像装置の画素信号の信号経路について説明するための模式図。 図31に示した撮像装置の他の例を表す断面模式図。 図29に示した等価回路の他の例を表す図。 図32A等に示した画素分離部の他の例を表す平面模式図。 上記実施の形態およびその変形例に係る撮像装置を備えた撮像システムの概略構成の一例を表す図。 図63に示した撮像システムの撮像手順の一例を表す図。 車両制御システムの概略的な構成の一例を示すブロック図。 車外情報検出部及び撮像部の設置位置の一例を示す説明図。 内視鏡手術システムの概略的な構成の一例を示す図。 カメラヘッド及びCCUの機能構成の一例を示すブロック図。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
(撮像装置1の構成)
 図1は、第1実施形態に係る撮像装置の機能構成の一例を示すブロック図である。
 図1の撮像装置1は、例えば、入力部510A、行駆動部520、タイミング制御部530、画素アレイ部540、列信号処理部550、画像信号処理部560および出力部510Bを含んでいる。
 画素アレイ部540には、画素541がアレイ状に繰り返し配置されている。より具体的には、複数の画素を含んだ画素共有ユニット539が繰り返し単位となり、これが、行方向と列方向とからなるアレイ状に繰り返し配置されている。なお、本明細書では、便宜上、行方向をH方向、行方向と直交する列方向をV方向、と呼ぶ場合がある。本実施形態では、図2に示すように、1つの画素共有ユニット539は、8つの画素541を含んでいる。画素541は各々、フォトダイオードPDを有している。画素共有ユニット539は、1つの画素回路を共有する単位である。換言すれば、8つの画素541毎に、1つの画素回路(例えば、図2のコンパレータ部210)を有している。この画素回路を時分割で動作させることにより、画素541の各々の画素信号が順次読み出されるようになっている。画素541は、例えば2行×2列で配置されている。図1の画素アレイ部540には、複数の画素541とともに、複数の行駆動信号線542および複数の垂直信号線(列読出し線)543が設けられている。行駆動信号線542は、画素アレイ部540において行方向に並んで配列された、複数の画素共有ユニット539各々に含まれる画素541を駆動する。画素共有ユニット539のうち、行方向に並んで配列された各画素を駆動する。画素共有ユニット539には、複数のトランジスタが設けられている。これら複数のトランジスタをそれぞれ駆動するために、1つの画素共有ユニット539には複数の行駆動信号線542が接続されている。垂直信号線(列読出し線)543には、画素共有ユニット539が接続されている。画素共有ユニット539に含まれる画素541の各々から、垂直信号線(列読出し線)543を介して画素信号が読み出される。
 行駆動部520は、例えば、画素駆動するための行の位置を決める行アドレス制御部、言い換えれば、行デコーダ部と、画素541を駆動するための信号を発生させる行駆動回路部とを含んでいる。
 列信号処理部550は、例えば、垂直信号線543に接続され、画素共有ユニット539とソースフォロア回路を形成する負荷回路部を備える。列信号処理部550は、垂直信号線543を介して画素共有ユニット539から読み出された画素信号を増幅する増幅回路部を有していてもよい。列信号処理部550は、ノイズ処理部を有していてもよい。ノイズ処理部では、例えば、光電変換の結果として画素共有ユニット539から読み出された信号から、系のノイズレベルが取り除かれる。
 列信号処理部550は、例えば、アナログデジタルコンバータ(ADC)を有している。アナログデジタルコンバータでは、画素共有ユニット539から読み出された信号もしくは上記ノイズ処理されたアナログ信号がデジタル信号に変換される。ADCは、例えば、コンパレータ部(図5の210)およびカウンタ部を含んでもよい。コンパレータ部210では、変換対象となるアナログ信号(画素信号)と、これと比較対象となる参照信号とが比較される。コンパレータ部210については、図5を参照して後で説明する。カウンタ部では、コンパレータ部210での比較結果が反転するまでの時間が計測されるようになっている。カウンタ部からのカウント値は、CDS(Correlated Double Sampling)処理されてAD変換された画素信号となる。列信号処理部550は、画素信号を出力するために読出し列を走査する制御を行う水平走査回路部を含んでいてもよい。
 タイミング制御部530は、装置へ入力された基準クロック信号やタイミング制御信号を基にして、行駆動部520および列信号処理部550へ、タイミングを制御する信号を供給する。
 画像信号処理部560は、光電変換の結果得られたデータ、言い換えれば、撮像装置1における撮像動作の結果得られたデータに対して、各種の信号処理を施す回路である。画像信号処理部560は、例えば、画像信号処理回路部およびデータ保持部を含んでいる。画像信号処理部560は、プロセッサ部を含んでいてもよい。
 画像信号処理部560において実行される信号処理の一例は、AD変換された撮像データが、暗い被写体を撮影したデータである場合には階調を多く持たせ、明るい被写体を撮影したデータである場合には階調を少なくするトーンカーブ補正処理である。この場合、撮像データの階調をどのようなトーンカーブに基づいて補正するか、トーンカーブの特性データを予め画像信号処理部560のデータ保持部に記憶させておくことが望ましい。
 入力部510Aは、例えば、上記基準クロック信号、タイミング制御信号および特性データなどを装置外部から撮像装置1へ入力するためのものである。タイミング制御信号は、例えば、垂直同期信号および水平同期信号などである。特性データは、例えば、画像信号処理部560のデータ保持部へ記憶させるためのものである。入力部510Aは、例えば、入力端子511、入力回路部512、入力振幅変更部513、入力データ変換回路部514および電源供給部(不図示)を含んでいる。
 入力端子511は、データを入力するための外部端子である。入力回路部512は、入力端子511へ入力された信号を撮像装置1の内部へと取り込むためのものである。入力振幅変更部513では、入力回路部512で取り込まれた信号の振幅が、撮像装置1の内部で利用しやすい振幅へと変更される。入力データ変換回路部514では、入力データのデータ列の並びが変更される。入力データ変換回路部514は、例えば、シリアルパラレル変換回路により構成されている。このシリアルパラレル変換回路では、入力データとして受け取ったシリアル信号がパラレル信号へと変換される。なお、入力部510Aでは、入力振幅変更部513および入力データ変換回路部514が、省略されていてもよい。電源供給部は、外部から撮像装置1へ供給された電源をもとにして、撮像装置1の内部で必要となる各種の電圧に設定された電源を供給する。
 撮像装置1が外部のメモリデバイスと接続されるとき、入力部510Aには、外部のメモリデバイスからのデータを受け取るメモリインタフェース回路が設けられていてもよい。外部のメモリデバイスは、例えば、フラッシュメモリ、SRAMおよびDRAM等である。
 出力部510Bは、画像データを装置外部へと出力する。この画像データは、例えば、撮像装置1で撮影された画像データ、および、画像信号処理部560で信号処理された画像データ等である。出力部510Bは、例えば、出力データ変換回路部515、出力振幅変更部516、出力回路部517および出力端子518を含んでいる。
 出力データ変換回路部515は、例えば、パラレルシリアル変換回路により構成されており、出力データ変換回路部515では、撮像装置1内部で使用したパラレル信号がシリアル信号へと変換される。出力振幅変更部516は、撮像装置1の内部で用いた信号の振幅を変更する。変更された振幅の信号は、撮像装置1の外部に接続される外部デバイスで利用しやすくなる。出力回路部517は、撮像装置1の内部から装置外部へとデータを出力する回路であり、出力回路部517により、出力端子518に接続された撮像装置1外部の配線が駆動される。出力端子518では、撮像装置1から装置外部へとデータが出力される。出力部510Bでは、出力データ変換回路部515および出力振幅変更部516が、省略されていてもよい。
 撮像装置1が外部のメモリデバイスと接続されるとき、出力部510Bには、外部のメモリデバイスへとデータを出力するメモリインタフェース回路が設けられていてもよい。外部のメモリデバイスは、例えば、フラッシュメモリ、SRAMおよびDRAM等である。
(撮像装置1の概略構成)
 図2および図3は、撮像装置1の概略構成の一例を表した図である。撮像装置1は、3つの基板(第1基板100、第2基板200、第3基板300)を備えている。図2は、第1基板100、第2基板200、第3基板300各々の平面構成を模式的に表したものであり、図3は、互いに積層された第1基板100、第2基板200および第3基板300の断面構成を模式的に表している。図3は、図2に示したIII-III’線に沿った断面構成に対応する。撮像装置1は、3つの基板(第1基板100、第2基板200、第3基板300)を貼り合わせて構成された3次元構造の撮像装置である。第1基板100は、半導体層100Sおよび配線層100Tを含む。第2基板200は、半導体層200Sおよび配線層200Tを含む。第3基板300は、半導体層300Sおよび配線層300Tを含む。ここで、第1基板100、第2基板200および第3基板300の各基板に含まれる配線とその周囲の層間絶縁膜を合せたものを、便宜上、それぞれの基板(第1基板100、第2基板200および第3基板300)に設けられた配線層(100T、200T、300T)と呼ぶ。第1基板100、第2基板200および第3基板300は、この順に積層されており、積層方向に沿って、半導体層100S、配線層100T、半導体層200S、配線層200T、配線層300Tおよび半導体層300Sの順に配置されている。第1基板100、第2基板200および第3基板300の具体的な構成については後述する。図3に示した矢印は、撮像装置1への光Lの入射方向を表す。本明細書では、便宜上、以降の断面図で、撮像装置1における光入射側を「下」「下側」「下方」、光入射側と反対側を「上」「上側」「上方」と呼ぶ場合がある。また、本明細書では、便宜上、半導体層と配線層を備えた基板に関して、配線層の側を表面、半導体層の側を裏面と呼ぶ場合がある。なお、明細書の記載は、上記の呼び方に限定されない。撮像装置1は、例えば、フォトダイオードを有する第1基板100の裏面側から光が入射する、裏面照射型撮像装置となっている。
 画素アレイ部540および画素アレイ部540に含まれる画素共有ユニット539は、ともに、第1基板100および第2基板200の双方を用いて構成されている。第1基板100には、画素共有ユニット539が有する複数の画素541A,541B,541C,541Dが設けられている。これらの画素541のそれぞれが、フォトダイオード(後述のフォトダイオードPD)および転送トランジスタ(後述の転送トランジスタTGまたはTR)を有している。第2基板200には、画素共有ユニット539が有する画素回路が設けられている。画素回路は、画素541A,541B,541C,541D各々のフォトダイオードから転送トランジスタを介して転送された画素信号を読み出し、あるいは、フォトダイオードをリセットする。この第2基板200は、このような画素回路に加えて、行方向に延在する複数の行駆動信号線542および列方向に延在する複数の垂直信号線543を有している。第2基板200は、更に、行方向に延在する電源線544および列信号処理部550の一部を有している。第3基板300は、例えば、入力部510A,行駆動部520、タイミング制御部530、列信号処理部550の残部、画像信号処理部560および出力部510Bを有している。行駆動部520は、例えば、第1基板100、第2基板200および第3基板300の積層方向(以下、単に積層方向という)において、一部が画素アレイ部540に重なる領域に設けられている。より具体的には、行駆動部520は、積層方向において、画素アレイ部540のH方向の端部近傍に重なる領域に設けられている(図2)。列信号処理部550は、例えば、積層方向において、一部が画素アレイ部540に重なる領域に設けられている。より具体的には、列信号処理部550は、積層方向において、画素アレイ部540のV方向の端部近傍に重なる領域に設けられている(図2)。図示は省略するが、入力部510Aおよび出力部510Bは、第3基板300以外の部分に配置されていてもよく、例えば、第2基板200に配置されていてもよい。あるいは、第1基板100の裏面(光入射面)側に入力部510Aおよび出力部510Bを設けるようにしてもよい。なお、上記第2基板200に設けられた画素回路は、別の呼称として、画素トランジスタ回路、画素トランジスタ群、画素トランジスタ、画素読み出し回路または読出回路と呼ばれることもある。本明細書では、画素回路との呼称を用いる。
 第1基板100と第2基板200とは、例えば、貫通電極により電気的に接続されている。第2基板200と第3基板300とは、例えば、コンタクト部201,202,301,302を介して電気的に接続されている。第2基板200にコンタクト部201,202が設けられ、第3基板300にコンタクト部301,302が設けられている。第2基板200のコンタクト部201が第3基板300のコンタクト部301に接し、第2基板200のコンタクト部202が第3基板300のコンタクト部302に接している。第2基板200は、複数のコンタクト部201が設けられたコンタクト領域201Rと、複数のコンタクト部202が設けられたコンタクト領域202Rとを有している。第3基板300は、複数のコンタクト部301が設けられたコンタクト領域301Rと、複数のコンタクト部302が設けられたコンタクト領域302Rとを有している。コンタクト領域201R,301Rは、積層方向において、画素アレイ部540と行駆動部520との間に設けられている(図3)。換言すれば、コンタクト領域201R,301Rは、例えば、行駆動部520(第3基板300)と、画素アレイ部540(第2基板200)とが積層方向に重なる領域、もしくはこの近傍領域に設けられている。コンタクト領域201R,301Rは、例えば、このような領域のうち、H方向の端部に配置されている(図2)。第3基板300では、例えば、行駆動部520の一部、具体的には行駆動部520のH方向の端部に重なる位置にコンタクト領域301Rが設けられている(図2,図3)。コンタクト部201,301は、例えば、第3基板300に設けられた行駆動部520と、第2基板200に設けられた行駆動線542とを接続するものである。コンタクト部201,301は、例えば、第3基板300に設けられた入力部510Aと電源線544および基準電位線(後述の基準電位線VSS)とを接続していてもよい。コンタクト領域202R,302Rは、積層方向において、画素アレイ部540と列信号処理部550との間に設けられている(図3)。換言すれば、コンタクト領域202R,302Rは、例えば、列信号処理部550(第3基板300)と画素アレイ部540(第2基板200)とが積層方向に重なる領域、もしくはこの近傍領域に設けられている。コンタクト領域202R,302Rは、例えば、このような領域のうち、V方向の端部に配置されている(図2)。第3基板300では、例えば、列信号処理部550の一部、具体的には列信号処理部550のV方向の端部に重なる位置にコンタクト領域301Rが設けられている(図2,図3)。コンタクト部202,302は、例えば、画素アレイ部540が有する複数の画素共有ユニット539各々から出力された画素信号(フォトダイオードでの光電変換の結果発生した電荷の量に対応した信号)を、第3基板300に設けられた列信号処理部550へと接続するためのものである。画素信号は、第2基板200から第3基板300に送られるようになっている。
 図3は、上記のように、撮像装置1の断面図の一例である。第1基板100、第2基板200、第3基板300は、配線層100T、200T、300Tを介して電気的に接続される。例えば、撮像装置1は、第2基板200と第3基板300とを電気的に接続する電気的接続部を有する。具体的には、導電材料で形成された電極でコンタクト部201,202,301,302を形成する。導電材料は、例えば、銅(Cu)、アルミニウム(Al)、金(Au)、などの金属材料で形成される。コンタクト領域201R、202R、301R、302Rは、例えば電極として形成された配線同士を直接接合することで、第2基板と第3基板とを電気的に接続し、第2基板200と第3基板300との信号の入力及び/又は出力を可能にする。
 第2基板200と第3基板300とを電気的に接続する電気的接続部は、所望の箇所に設けることができる。例えば、図3においてコンタクト領域201R、202R、301R、302Rとして述べたように、画素アレイ部540と積層方向に重なる領域に設けても良い。また、電気的接続部を画素アレイ部540と積層方向に重ならない領域に設けても良い。具体的には、画素アレイ部540の外側に配置された周辺部と、積層方向に重なる領域に設けても良い。
 第1基板100および第2基板200には、例えば、接続孔部H1,H2が設けられている。接続孔部H1,H2は、第1基板100および第2基板200を貫通している(図3)。接続孔部H1,H2は、画素アレイ部540(または画素アレイ部540に重なる部分)の外側に設けられている(図2)。例えば、接続孔部H1は、H方向において画素アレイ部540より外側に配置されており、接続孔部H2は、V方向において画素アレイ部540よりも外側に配置されている。例えば、接続孔部H1は、第3基板300に設けられた入力部510Aに達しており、接続孔部H2は、第3基板300に設けられた出力部510Bに達している。接続孔部H1,H2は、空洞でもよく、少なくとも一部に導電材料を含んでいても良い。例えば、入力部510A及び/又は出力部510Bとして形成された電極に、ボンディングワイヤを接続する構成がある。または、入力部510A及び/又は出力部510Bとして形成された電極と、接続孔部H1,H2に設けられた導電材料とを接続する構成がある。接続孔部H1,H2に設けられた導電材料は、接続孔部H1,H2の一部または全部に埋め込まれていても良く、導電材料が接続孔部H1,H2の側壁に形成されていても良い。
 なお、図3では第3基板300に入力部510A、出力部510Bを設ける構造としたが、これに限定されない。例えば、配線層200T、300Tを介して第3基板300の信号を第2基板200へ送ることで、入力部510A及び/又は出力部510Bを第2基板200に設けることもできる。同様に、配線層100T、200Tを介して、第2基板200の信号を第1基板1000へ送ることで、入力部510A及び/又は出力部510Bを第1基板100に設けることもできる。
 図4は、第1実施形態による画素共有ユニット539、列信号処理部550および画素信号処理部560の構成を示す概略断面図である。画素共有ユニット539、列信号処理部550および画素信号処理部560は、例えば、それぞれ、第1基板100、第2基板200および第3基板300に設けられている。第1~第3基板100~300は、例えば、シリコン基板であり、互いに積層されている。第1~第3基板100~300は、ビアコンタクトVIA、貫通電極(TSV(Through Silicon Via))および/または配線接合(Cu-Cu接合)CCCを用いて、互いに電気的に接続されている。ビアコンタクトVIAは、層間絶縁膜を貫通して設けられてコンタクトプラグである。貫通電極TSVは、基板を貫通して、半導体素子を他の基板の半導体素子と電気的に接続する電極である。配線接合CCCは、第1~第3基板100~300のそれぞれに設けられた配線同士を、基板の積層によって直接接合することによって形成される。
 第1基板100には、例えば、フォトダイオードPD、転送トランジスタTG、オーバーフローゲート(図4では図示せず)、フローティングディフュージョンFD等の各画素541に対応した構成要素が設けられている。図4の固体撮像装置は、裏面照射型CISであり、第1基板100の受光面には、オンチップレンズOCLが設けられている。第1基板100の受光面とは反対側の面には、転送トランジスタTGおよびオーバーフローゲートが設けられている。転送トランジスタTGおよびオーバーフローゲートは層間絶縁膜で被覆されており、層間絶縁膜に埋め込まれたビアコンタクトVIAと電気的に接続されている。第2基板200には、例えば、列信号処理部550のコンパレータ部210が設けられている。列信号処理部550は、第2基板200を貫通する貫通電極TSVおよびビアコンタクトVIAを介して第1基板100のフローティングディフュージョンFD等と電気的に接続されている。列信号処理部550も、層間絶縁膜で被覆されており、層間絶縁膜に埋め込まれた配線と電気的に接続されている。配線の一部は、層間絶縁膜の表面に露出されている。第3基板300には、例えば、列信号処理部550のコンパレータ部210以降のロジック回路および画素信号処理部560等が設けられている。ロジック回路および画素信号処理部560等も層間絶縁膜で被覆されており、層間絶縁膜に埋め込まれた配線と電気的に接続されている。配線の一部は、層間絶縁膜の表面に露出されている。
 第2および第3基板200、300の配線の一部は、第2および第3基板200、300の積層によって互いに接合され、配線同士が電気的に接続される。これにより、配線接合CCCが形成される。
 図5は、画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。画素共有ユニット539は、複数の画素541と、複数の画素541に接続された1つのコンパレータ部210と、を含んでいる。複数の画素541は、第1基板100に設けられており、コンパレータ部210は、第2基板200に設けられている。第1基板100と第2基板200とは、配線接合(Cu-Cu接合)CCCにおいて電気的に接続された貫通電極により電気的に接続されている。
(画素共有ユニット539の構成)
 画素共有ユニット539は、1のコンパレータ部210を時分割で動作させることにより、画素共有ユニット539に含まれる複数の画素541(画素541A,541B,541C,541D)それぞれの画素信号を順次垂直信号線543へ出力するようになっている。複数の画素541に1のコンパレータ部210が接続されており、この複数の画素541の画素信号が、1のコンパレータ部210により時分割で出力される態様を、「複数の画素541が1のコンパレータ部210を共有する」という。図5では、8個の画素541が1のコンパレータ部210を共有しているが、その数は特に限定しない。
 画素541は、互いに共通の構成要素を有している。以降、複数の画素541A,541B,541C,541Dの構成要素を互いに区別する必要のない場合には、画素541A,541B,541C,541Dの構成要素の符号の末尾の識別番号を省略する。
 画素541は、例えば、フォトダイオードPDと、フォトダイオードPDと電気的に接続された転送トランジスタTGと、フォトダイオードPDと電気的に接続されたオーバーフローゲートOFと、転送トランジスタTGに電気的に接続されたフローティングディフュージョンFDとを備えている。
 フォトダイオードPD(PD1~PD4)では、カソードが転送トランジスタTGおよびオーバーフローゲートOFのソースまたはドレインに電気的に接続されており、アノードが基準電位線(例えばグラウンド)に電気的に接続されている。フォトダイオードPDは、入射した光を画素信号に光電変換し、その受光量に応じた電荷を発生する光電変換素子である。
 転送トランジスタTG(TG1~TG4)は、例えば、CMOS(Complementary Metal Oxide Semiconductor)トランジスタである。転送トランジスタTGでは、ドレインがフローティングディフュージョンFDに電気的に接続され、ゲートが駆動信号線に電気的に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542(図1参照)のうちの一部である。転送トランジスタTGは、フォトダイオードPDで発生した電荷をフローティングディフュージョンFDへと転送する。
 フローティングディフュージョンFDは、p型半導体層中に形成されたn型拡散層領域である。フローティングディフュージョンFDは、フォトダイオードPDから転送された電荷を一時的に保持する電荷保持手段であり、かつ、その電荷量に応じた電圧を発生させる、電荷―電圧変換手段である。フローティングディフュージョンFDは、複数の画素541に共有されている。
 オーバーフローゲートOF(OF1~OF4)は、フォトダイオードPDと電源VDDとの間に接続されており、ゲートには、所定電圧が印加されている。オーバーフローゲートOFは、フォトダイオードPDの飽和電荷量を超えた電荷を電源VDDへ流す。オーバーフローゲートOFは、例えば、n型トランジスタで構成されている。
(コンパレータ部210の構成および機能)
 コンパレータ部210は、能動負荷回路であるカレントミラー回路210aと、差動回路210bと、電流源210cと、リセットトランジスタ210dとを備える。
 カレントミラー回路210aは、p型トランジスタTp1、Tp2を備えている。トランジスタTp1のソースは、電源VDDに接続されており、そのドレインは、n型トランジスタTn1のドレインに接続されている。トランジスタTp1のゲートは、トランジスタTp2のゲートと共通にトランジスタTp1のドレインに接続されている。トランジスタTp2のソースは、電源VDDに接続されており、そのドレインは、n型トランジスタTn2のドレインに接続されている。トランジスタTp2のゲートは、トランジスタTp1のゲートと共通にトランジスタTp1のドレインに接続されている。
 トランジスタTp1、Tp2のゲートは、トランジスタTp1のドレインに共通に接続されているので、カレントミラー回路を構成し、トランジスタTn1、Tn2に所定のミラー比に対応する電流をそれぞれに流す。トランジスタTp1、Tp2のより詳細な構成については後述する。
 差動回路210bは、n型トランジスタTn1、Tn2を備えている。トランジスタTn1のドレインは、トランジスタTp1のドレインおよびゲートに接続されている。トランジスタTn1のソースは、トランジスタTn2のソースと共通にn型トランジスタTn3のドレインに接続されている。トランジスタTn2のドレインは、トランジスタTp2のドレインに接続されている。トランジスタTn2のソースは、トランジスタTn1のソースと共通にトランジスタTn3のドレインに接続されている。
 トランジスタTn1、Tn2は、それぞれフローティングディフュージョンFDからの画素信号および参照信号をゲートで受けて、その電圧差をノードN210から出力する。
 電流源210cは、n型トランジスタTn3で構成されており、トランジスタTn1、Tn2に流れる全体の電流を所定値に維持する。トランジスタTn3のドレインは、トランジスタTn1、Tn2のソースに共通に接続されており、トランジスタTn3のソースは、グランドGNDに接続されている。トランジスタTn3のゲートには、所定電圧Vbが印加されている。
 n型トランジスタTn4は、ノードN210とトランジスタTn2のゲート(フローティングディフュージョンFD)との間に接続されている。n型トランジスタTn4のゲートは、リセット信号RSTを受ける。n型トランジスタTn4は、AZトランジスタとして機能し、出力信号の検出前にフローティングディフュージョンFDとノードN210とを電気的に接続してオートゼロ動作を行う。
 トランジスタTn1~Tn4には、負電圧VRLWがバックバイアスとして印加されている。
(p型トランジスタTp1、Tp2の構成)
 図6~図9は、p型トランジスタTp1,Tp2の構成例を示す平面図である。図6~図9には、トランジスタTp1、Tp2のいずれか一方を示し、他方の構成の図示は省略している。トランジスタTp1、Tp2は、同じ構成を有していてもよい。また、トランジスタTp1、Tp2は、図6~図9に示す構成のいずれかの2つの組み合わせであってもよい。
 図6および図7では、45度ノッチ基板W45を示している。45度ノッチ基板W45は、結晶方位(100)の面((100)結晶面)を有するシリコン基板である。トランジスタTp1、Tp2は、45度ノッチ基板W45上に設けられており、ソース領域S、ドレイン領域Dおよびゲート電極Gtpを備えている。チャネル領域CHtpは、ソース領域Sとドレイン領域Dとの間に設けられている。ゲート電極Gtpは、ゲート絶縁膜(図示せず)を介してチャネル領域CHtpの上面および側面を被覆している。ゲート電極Gtpは、ゲート絶縁膜によってチャネル領域CHtpから電極的に絶縁されている。トランジスタTp1、Tp2のチャネル領域CHtpの上面または側面は、基板W45の表面上において、基板W45の(100)結晶面と略平行な面内にある。
 ゲート電極Gtpに電圧を印加することによって、チャネル領域CHtpの上面および側面が反転して、ソース領域Sとドレイン領域Dとの間が電気的に導通状態となる。これにより、チャネル領域CHtpをD1方向に電流が流れる。D1方向は、トランジスタTp1、Tp2において電流が流れる方向であり、かつ、トランジスタTp1、Tp2のチャネル長方向でもある。D1方向は、基板W45の(100)結晶面に対して略垂直または略平行方向である。即ち、トランジスタTp1、Tp2のチャネル長方向は、基板W45の表面上において、基板W45の(100)結晶面(ノッチ面)に対して略平行または略垂直方向となっている。
 図8および図9では、結晶方位(100)の面を有する0度ノッチ基板W0を示している。トランジスタTp1、Tp2は、0度ノッチ基板W0上に設けられており、ソース領域S、ドレイン領域Dおよびゲート電極Gtpを備えている。チャネル領域CHtpは、ソース領域Sとドレイン領域Dとの間に設けられている。ゲート電極Gtpは、ゲート絶縁膜(図示せず)を介してチャネル領域CHtpの上面および側面を被覆している。ゲート電極Gtpは、ゲート絶縁膜によってチャネル領域CHtpから電極的に絶縁されている。トランジスタTp1、Tp2のチャネル領域CHtpの上面または側面は、基板W0の表面上において、基板W0の(110)結晶面(ノッチ面)に対して、約45度または約135度に傾斜した面内にある。
 ゲート電極Gtpに電圧を印加することによって、チャネル領域CHtpの上面および側面が反転して、ソース領域Sとドレイン領域Dとの間が電気的に導通状態となる。これにより、チャネル領域CHtpをD2方向に電流が流れる。D2方向は、トランジスタTp1、Tp2において電流が流れる方向であり、かつ、トランジスタTp1、Tp2のチャネル長方向でもある。D2方向は、基板W0の(100)結晶面に対して略垂直または略平行方向である。即ち、トランジスタTp1、Tp2のチャネル長方向は、基板W0の表面上において、基板W45の(110)結晶面(ノッチ面)に対して、約45度または約135度方向となっている。
 図10は、トランジスタTp1、Tp2のソース領域S、ドレイン領域D、チャネル領域CHtpを示す斜視図である。トランジスタTp1、Tp2は、例えば、基板W45またはW0上に形成されたFin型FET(Field Effect Transistor)である。この場合、チャネル領域CHtpは、図10に示すように、基板W45またはW0上に縦型(Fin状)に形成される。Fin型チャネル領域CHtpは、基板W45またはW0の表面F45またはF0に対して略平行な上面Stと、表面F45またはF0に対して略垂直な側面Ssとを有する。チャネル領域CHtpの上面Stおよび側面Ssは、基板W45の(100)結晶面に対して略平行または略垂直な結晶面内にある。上面Stは、X-Y面に対して略平行面であり、側面Ssは、X-Y面に対して略垂直面となっている。
 図11は、キャリア移動度とキャリア濃度との関係を示すグラフである。図11の右側は、p型トランジスタに関するグラフを示し、左側は、n型トランジスタに関するグラフを示す。p型トランジスタのグラフでは、横軸がキャリア濃度を示し、縦軸がキャリア移動度(ホール移動度)を示す。p型トランジスタのグラフでは、キャリア濃度は右から左へ行くにつれて増大している。n型トランジスタのグラフでは、横軸がキャリア濃度を示し、縦軸がキャリア移動度(電子移動度)を示す。n型トランジスタのグラフでは、キャリア濃度は左から右へ行くにつれて増大している。
(p型トランジスタ)
 ラインLp(100)は、図6~図9のように、チャネル領域CHtpの上面Stまたは側面Ssが基板W45の(100)結晶面に対して略平行または略垂直な面内にあるp型トランジスタTp1、Tp2の特性を示す。この場合、45度ノッチ基板W45の場合には、図6または図7に示すように、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W45の表面F45上において、基板W45の(100)結晶面(ノッチ面)に対して略垂直または略平行である。0度ノッチ基板W0の場合には、図8または図9に示すように、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W0の表面F0上において、基板W0の(110)結晶面(ノッチ面)に対して約45度または約135度に傾斜する。この場合、キャリア移動度が比較的低い。
 一方、ラインLp(110)は、チャネル領域CHtpの上面Stまたは側面Ssが基板の(110)結晶面に対して略平行または略垂直な面内にあるp型トランジスタTp1、Tp2の特性を示す。この場合、45度ノッチ基板W45の場合には、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W45の表面F45上において、基板W45の(100)結晶面(ノッチ面)に対して約45度または約135度に傾斜する。0度ノッチ基板W0の場合には、トランジスタTp1,Tp2のチャネル長方向(D1方向)は、基板W0の表面F0上において、基板W0の(110)結晶面(ノッチ面)に対して略垂直または略平行である。この場合、キャリア移動度が比較的高い。
 このように、ラインLp(100)に対応するp型トランジスタTp1、Tp2は、ラインLp(110)に対応するp型トランジスタよりもキャリア移動度において非常に低くなる。即ち、ラインLp(100)に示すように、チャネル領域CHtpの上面Stまたは側面Ssを、基板W45の(100)結晶面に対して略平行または略垂直な面にすることによって、p型トランジスタTp1、Tp2の相互コンダクタンスgmを低下させることができる。
 p型トランジスタTp1、Tp2の相互コンダクタンスgmを低下させることによって、ノイズが低減し、ノイズ特性が改善する。例えば、S/N(Signal/Noise)比が向上し、ダイナミックレンジを拡大することができる。その結果、本実施形態による固体撮像装置のセンサ特性が改善する。
(n型トランジスタ)
 ラインLn(100)は、チャネル領域の上面または側面が基板W45の(100)結晶面に対して略平行または略垂直な面内にあるn型トランジスタTn1、Tn2の特性を示す。この場合、45度ノッチ基板W45の場合には、トランジスタTn1,Tn2のチャネル長方向(D1方向)は、基板W45の表面F45上において、基板W45の(100)結晶面(ノッチ面)に対して略垂直または略平行である。0度ノッチ基板W0の場合には、トランジスタTn1,Tn2のチャネル長方向(D1方向)は、基板W0の表面F0上において、基板W0の(110)結晶面(ノッチ面)に対して約45度または約135度に傾斜する。
 一方、ラインLn(110)は、チャネル領域の上面または側面が基板の(110)結晶面に対して略平行または略垂直な面内にあるn型トランジスタTn1、Tn2の特性を示す。この場合、45度ノッチ基板W45の場合には、トランジスタTn1,Tn2のチャネル長方向(D1方向)は、基板W45の表面F45上において、基板W45の(100)結晶面(ノッチ面)に対して約45度または約135度に傾斜する。0度ノッチ基板W0の場合には、トランジスタTn1,Tn2のチャネル長方向(D1方向)は、基板W0の表面F0上において、基板W0の(110)結晶面(ノッチ面)に対して略垂直または略平行である。
 このようなラインLn(100)、Ln(110)に対応するn型トランジスタTn1、Tn2は、キャリア移動度においてさほど変化しない。即ち、基板の結晶面に対するチャネル領域の上面または側面の傾斜角は、n型トランジスタTn1、Tn2の相互コンダクタンスgmをあまり変化させない。n型トランジスタTn1、Tn2の相互コンダクタンスgmは、高い方がノイズ特性の改善に繋がる。しかし、n型トランジスタTn1、Tn2の相互コンダクタンスgmは、基板の結晶面に対するチャネル領域の上面または側面の傾斜角によってあまり変化しない。よって、基板の結晶面に対するn型トランジスタTn1、Tn2のチャネル長方向(D1)の変更は、例えば、S/N比やダイナミックレンジの改善にあまり寄与しない。
 本実施形態では、上記知見のもと、p型トランジスタTp1、Tp2のみのチャネル領域CHtpの上面Stまたは側面Ssを、基板W45の(100)結晶面に対して略平行または略垂直な面にする。これにより、p型トランジスタTp1、Tp2の相互コンダクタンスgmを低下させノイズ特性を効率良く改善することができる。その結果、ノイズ特性の劣化が少ない、高解像度の画像が得られる。
 図12は、第1基板100の平面レイアウトの一例を示す概略平面図である。フォトダイオードPDは、第1基板100を貫通する素子分離部DTI(Deep Trench Isolation)によって区画されている。図12では、4つのフォトダイオードPDが表示されているが、これに限定されない。フォトダイオードPDは、素子形成領域RAに設けられている。
 素子形成領域RAは、隣接するコンタクト領域RCNT間に設けられており、トランジスタ等の半導体素子を形成する領域である。コンタクト領域RCNTは、TSV等のコンタクトを形成する領域である。
 フォトダイオードPDの一方側には、転送トランジスタTGが設けられており、その他方側には、オーバーフローゲートOFが設けられている。
 ウェルコンタクトWCNTは、第1基板100に形成されたウェル拡散層(図示せず)にウェル電位を与えるために設けられているコンタクトである。
 図13は、第2基板200の平面レイアウトの一例を示す概略平面図である。第2基板200は、素子形成領域RAn、RApおよびコンタクト領域RCNTを備える。第2基板200の素子形成領域RAn、RApおよびコンタクト領域RCNTは、第1基板100と第2基板200とを積層したときに、それぞれ第1基板100の素子形成領域RAおよびコンタクト領域RCNTに対応するように配置されている。
 n型トランジスタTn1~Tn4は、素子形成領域RAnに形成され、p型トランジスタTp1、Pp4は、素子形成領域RApに形成される。このように、n型トランジスタTn1~Tn4とp型トランジスタTp1,Tp2とは、互いに異なる素子形成領域RAn、RApにそれぞれ設けられている。トランジスタTn1~Tn4、Tp1、Tp2は、第1基板100のフォトダイオードPDの上方に設けられ、第2基板200の表面から見たときに、フォトダイオードPDに重複する。
 第2基板200と第1基板100において、コンタクト領域RCNTの各コンタクトは、それぞれ対応して設けられている。これらのコンタクトCNTは、例えば、TSVで構成されている。第1基板100のコンタクトCNTと第2基板200のコンタクトCNTとは、例えば、CCCを用いて配線接合されている。
 このような第1および第2基板100、200の平面レイアウトによって、図5に示す画素共有ユニット539およびコンパレータ部210の回路構成が可能となる。画素共有ユニット539は、第1基板100に設けられ、コンパレータ部210は第1基板100とは異なる第2基板200に設けられている。第1および第2基板100、200は積層されており、画素共有ユニット539とコンパレータ部210とは、第1基板100の配線と第2基板200の配線との間の配線接合CCCによって電気的に接続されている。尚、画素共有ユニット539とコンパレータ部210とは、第1または第2基板100、200を貫通する貫通電極によって電気的に接続されていてもよい。
(第2実施形態)
 図14は、第2実施形態による固体撮像装置の構成例を示す概念図である。第2実施形態では、コンパレータ部210のn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2は、同一基板上に設けられている点で第1実施形態と同様である。しかし、第1実施形態では、フォトダイオードPDは第1基板100に形成され、コンパレータ部210は、第1基板100とは異なる第2基板200に形成されている。これに対し、第2実施形態では、コンパレータ部210は、フォトダイオードPDと同じ第1基板100に形成され、フォトダイオードPDの上方に積層するように形成されている。尚、ここでは、第1基板100の受光面を“下”として上下方向を表現している。よって、図14では、+Z方向が“上方向”となる。
 これにより、フォトダイオードPDとコンパレータ部210までの接続は、CCCを介することなく、図15に示すようにコンタクトプラグPLGで構成され得る。図15は、第2実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。コンパレータ部210は、フォトダイオードPDと同じ第1基板100に形成されている。よって、コンパレータ部210とフォトダイオードPDとの間には、コンタクトプラグPLGが形成されている。コンタクトプラグPLGは、コンパレータ部210とフォトダイオードPDとの間の層間絶縁膜を貫通してそれらの間を電気的に接続している。コンパレータ部210とフォトダイオードPDとの間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ部210の微細化に有利である。また、フォトダイオードPDからコンパレータ部210以降のロジック回路(列信号処理部550)までの接続には、第1基板100と第2基板200との間の1つの配線接合CCCで足りる。従って、ノイズ特性の改善に繋がる。
(第3実施形態)
 図16は、第3実施形態による固体撮像装置の構成例を示す概念図である。第3実施形態では、コンパレータ部210のn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2は、互いに異なる基板上に設けられている点で第1および第2実施形態と異なる。例えば、コンパレータ部210のn型トランジスタTn1~Tn4は、フォトダイオードPDと同じ第1基板100に形成され、フォトダイオードPDの上方の半導体層に形成されている。一方、コンパレータ部210のp型トランジスタTp1、Tp2は、第1基板100とは異なる第2基板200に形成されている。
 図17は、第3実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。コンパレータ部210のうち差動回路210bを含むn型トランジスタTn1~Tn4は、フォトダイオードPDと同じ第1基板100に形成されている。n型トランジスタTn1~Tn4は、フォトダイオードPDの上方に設けられている。よって、コンパレータ部210の差動回路210bとフォトダイオードPDとの間には、コンタクトプラグPLGが形成されている。コンタクトプラグPLGは、コンパレータ部210とフォトダイオードPDとの間の層間絶縁膜を貫通してそれらの間を電気的に接続している。コンパレータ210とフォトダイオードPDとの間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ210の微細化に有利である。
 一方、コンパレータ部210のうちカレントミラー回路210aを構成するp型トランジスタTp1、Tp2は、第1基板100とは異なる第2基板200に形成されている。よって、コンパレータ210内の差動回路210bとカレントミラー回路210aとは別々の基板100、200にそれぞれ設けられている。カレントミラー回路210aと差動回路210bとの間には、2つの配線接合CCCが設けられている。即ち、第1基板100と第2基板200との間の1つの界面において、複数の配線接合CCCが用いられている。
 フォトダイオードPDからコンパレータ210以降のロジック回路(列信号処理部550)までの接続には、第2基板200と第3基板300との間の1つの界面は、1つの配線接合CCCが用いられている。
 このように、第3実施形態では、コンパレータ210のp型トランジスタTp1、Tp2をn型トランジスタTn1~Tn4とは別々の基板100、200に形成する。よって、n型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2とを別々の半導体製造工程で形成することができる。これにより、半導体製造工程を簡素化することができる。
(第4実施形態)
 図18は、第4実施形態による固体撮像装置の構成例を示す概念図である。第4実施形態では、コンパレータ210のn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2は、同一基板上に設けられている。しかし、コンパレータ210のうちn型トランジスタTn1~Tn4は、フォトダイオードPD、転送トランジスタTG、オーバーフローゲートOFと同じ半導体製造工程において、第1基板100上に形成され、転送トランジスタTG、オーバーフローゲートOFと同一半導体層に設けられている。一方、コンパレータ210のうちカレントミラー回路210aを構成するp型トランジスタTp1、Tp2は、フォトダイオードPD、転送トランジスタTG、オーバーフローゲートOFおよびn型トランジスタTn1~Tn4(差動回路210b)の上方の他の半導体層に積層するように形成されている。
 これにより、フォトダイオードPDとコンパレータ210のn型トランジスタTn1~Tn4までの接続は、図19に示すように、通常の配線Wおよびコンタクト(図示せず)で構成され得る。図19は、第4実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。コンパレータ210は、フォトダイオードPDと同じ第1基板100に形成されている。よって、コンパレータ210とフォトダイオードPDとの間には、配線Wが形成されている。配線Wがコンパレータ210とフォトダイオードPDとの間を電気的に接続している。コンパレータ210とフォトダイオードPDとの間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ210の微細化に有利である。
 また、フローティングディフュージョンFDと差動回路210bの入力との間の配線Wの長さが短縮され、その配線の容量が低減する。これにより、フローティングディフュージョンFDの電位の変換効率が向上され、ノイズ特性が改善される。
 コンパレータ210において、n型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2との間には、コンタクトプラグPLGが形成されている。コンタクトプラグPLGがn型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2との間の層間絶縁膜を貫通してそれらの間を電気的に接続している。尚、n型トランジスタTn1~Tn4とp型トランジスタTp1、Tp2との間には、複数の基板100、200間の配線接合CCCは形成されていない。よって、フォトダイオードPDおよびコンパレータ210の微細化に有利である。
(第5実施形態)
 図20は、第5実施形態による画素共有ユニット539およびコンパレータ部210の構成の一例を表す等価回路図である。第5実施形態では、カレントミラー回路210aがn型トランジスタTn11、Tn12で構成され、差動回路210bがp型トランジスタTp11,Tp12で構成されている。この場合、ノイズ特性を改善するためには、差動回路210bのp型トランジスタTp11、Tp12の相互コンダクタンスgmは大きい方が好ましい。
 図21~図24は、p型トランジスタTp11,Tp12の構成例を示す平面図である。図21~図24には、トランジスタTp11、Tp12のいずれか一方を示し、他方の構成の図示は省略している。トランジスタTp11、Tp12は、同じ構成を有していてもよい。また、トランジスタTp11、Tp12は、図21~図24に示す構成のいずれかの2つの組み合わせであってもよい。
 図21および図22では、トランジスタTp11、Tp12は、0度ノッチ基板W0上に設けられている。トランジスタTp11、Tp12のチャネル領域CHtpの上面または側面は、基板W0の表面上において、基板W0の(110)結晶面と略平行または略垂直な面内にある。D1方向は、基板W0の(110)結晶面に対して略垂直または略平行方向である。即ち、トランジスタTp11、Tp12のチャネル長方向は、基板W0の表面上において、基板W0の(110)結晶面(ノッチ面)に対して略平行または略垂直方向となっている。これにより、図11のラインLp(110)に示したように、トランジスタTnp11、Tp12の相互コンダクタンスgmは比較的大きくなる。
 図23および図24では、トランジスタTp11、Tp12は、45度ノッチ基板W45上に設けられている。トランジスタTp11、Tp12のチャネル領域CHtpの上面または側面は、基板W45の表面上において、基板W45の(100)結晶面に対して約45度または約135度に傾斜した面内にある。D1方向は、基板W45の(100)結晶面に対して約45度または約135度に傾斜した方向である。即ち、トランジスタTp11、Tp12のチャネル長方向は、基板W45の表面上において、基板W45の(100)結晶面(ノッチ面)に対して約45度または約135度に傾斜した方向となっている。これにより、図11のラインLp(110)に示したように、トランジスタTnp11、Tp12の相互コンダクタンスgmは比較的大きくなる。
 これにより、カレントミラー回路210aおよび差動回路210bを構成するトランジスタの導電型が第1実施形態のそれらの導電型とは逆である場合でも、第1実施形態と同様の効果を得ることができる。
 図25~図27は、それぞれ第2~第4実施形態に第5実施形態を組み合わせた実施形態を示す図である。第2~第4実施形態のカレントミラー回路210aおよび差動回路210bを構成するトランジスタの導電型が逆になっている。差動回路210bのp型トランジスタTp11,Tp12は、第5実施形態のそれらと同じ構成でよい。
 これにより、カレントミラー回路210aおよび差動回路210bを構成するトランジスタの導電型が第2~第4実施形態のそれらの導電型とは逆である場合でも、第2~第4実施形態のそれぞれと同様の効果を得ることができる。
 本実施形態による固体撮像装置の製造方法について説明する。
 図28A~図28Cは、第1実施形態による固体撮像装置の製造方法の一例を示す断面図である。
 第1基板100は、例えば、バルクシリコン基板でよい。第1基板100にDTIを形成して画素を区画する。次に、第1基板100に不純物を導入して、フォトダイオードPDを形成する。第1基板100の表面上に、フローティングディフュージョンFD、転送トランジスタTG、オーバーフローゲートOFを形成する。フローティングディフュージョンFD、転送トランジスタTG、オーバーフローゲートOFは、層間絶縁膜ILDで被覆される。これにより、図28Aに示す構造が得られる。
 次に、第1基板100の受光面F1とは反対側の面F2の層間絶縁膜ILD上に第2基板200のSOI(Silicon On Insulator)層251を張り付ける。第2基板200は、例えば、SOI基板である。第2基板200のシリコン層252を薄膜化する。これにより、図28Bに示す構造が得られる。
 次に、シリコン層252に、列信号処理部550の半導体素子(例えば、コンパレータ210)を形成する。便宜的に、図28Cでは、1つのトランジスタのみ示されている。コンパレータ210上には、層間絶縁膜ILDが形成されている。次に、第2基板200および層間絶縁膜ILDにコンタクトプラグPLG、貫通電極TSV、配線Wを形成し、第1基板100の転送トランジスタTGまたはフローティングディフュージョンFD等の半導体素子と第2基板200のコンパレータ210等の半導体素子とを電気的に接続する。これにより、図28Cに示す構造が得られる。
 次に、ロジック回路および画素信号処理部560が形成された第3基板300を第2基板200に貼り合わせる。第3基板300の層間絶縁膜から露出された配線の一部は、第2基板200の層間絶縁膜から露出された配線の一部と直接接合され、配線接合CCCを構成する。これにより、第2および第3基板200、300が電気的に接続される。このようにして、図4の固体撮像装置が形成される。
(その他の変形例)
 以下、上記いずれかの実施形態を適用可能な固体撮像装置について説明する。本実施形態は、下記固体撮像装置にも適用することができる。
 図29は、画素共有ユニット539の構成の一例を表す等価回路図である。画素共有ユニット539は、複数の画素541(図29では、画素541A,541B,541C,541Dの4つの画素541を表す)と、この複数の画素541に接続された1の画素回路210と、画素回路210に接続された垂直信号線5433とを含んでいる。以下、コンパレータ部210は、画素回路に含まれるものとして考えてよい。画素回路210は、コンパレータ部のほか、例えば、4つのトランジスタ、具体的には、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDを含んでいる。上述のように、画素共有ユニット539は、1の画素回路210を時分割で動作させることにより、画素共有ユニット539に含まれる4つの画素541(画素541A,541B,541C,541D)それぞれの画素信号を順次垂直信号線543へ出力するようになっている。複数の画素541に1の画素回路210が接続されており、この複数の画素541の画素信号が、1の画素回路210により時分割で出力される態様を、「複数の画素541が1の画素回路210を共有する」という。
 画素541A,541B,541C,541Dは、互いに共通の構成要素を有している。以降、画素541A,541B,541C,541Dの構成要素を互いに区別するために、画素541Aの構成要素の符号の末尾には識別番号1、画素541Bの構成要素の符号の末尾には識別番号2、画素541Cの構成要素の符号の末尾には識別番号3、画素541Dの構成要素の符号の末尾には識別番号4を付与する。画素541A,541B,541C,541Dの構成要素を互いに区別する必要のない場合には、画素541A,541B,541C,541Dの構成要素の符号の末尾の識別番号を省略する。
 画素541A,541B,541C,541Dは、例えば、フォトダイオードPDと、フォトダイオードPDと電気的に接続された転送トランジスタTRと、転送トランジスタTRに電気的に接続されたフローティングディフュージョンFDとを有している。以下、転送トランジスタTGは、転送トランジスタTRとも呼ぶ。フォトダイオードPD(PD1,PD2,PD3,PD4)では、カソードが転送トランジスタTRのソースに電気的に接続されており、アノードが基準電位線(例えばグラウンド)に電気的に接続されている。フォトダイオードPDは、入射した光を光電変換し、その受光量に応じた電荷を発生する。転送トランジスタTR(転送トランジスタTR1,TR2,TR3,TR4)は、例えば、n型のCMOS(Complementary Metal Oxide Semiconductor)トランジスタである。転送トランジスタTRでは、ドレインがフローティングディフュージョンFDに電気的に接続され、ゲートが駆動信号線に電気的に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542(図1参照)のうちの一部である。転送トランジスタTRは、フォトダイオードPDで発生した電荷をフローティングディフュージョンFDへと転送する。フローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)は、p型半導体層中に形成されたn型拡散層領域である。フローティングディフュージョンFDは、フォトダイオードPDから転送された電荷を一時的に保持する電荷保持手段であり、かつ、その電荷量に応じた電圧を発生させる、電荷―電圧変換手段である。
 1の画素共有ユニット539に含まれる4つのフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)は、互いに電気的に接続されるとともに、増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソースに電気的に接続されている。FD変換ゲイン切替トランジスタFDGのドレインはリセットトランジスタRSTのソースに接続され、FD変換ゲイン切替トランジスタFDGのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。リセットトランジスタRSTのドレインは電源線VDDに接続され、リセットトランジスタRSTのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。増幅トランジスタAMPのゲートはフローティングディフュージョンFDに接続され、増幅トランジスタAMPのドレインは電源線VDDに接続され、増幅トランジスタAMPのソースは選択トランジスタSELのドレインに接続されている。選択トランジスタSELのソースは垂直信号線543に接続され、選択トランジスタSELのゲートは駆動信号線に接続されている。この駆動信号線は、1の画素共有ユニット539に接続された複数の行駆動信号線542のうちの一部である。
 転送トランジスタTRは、転送トランジスタTRがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。転送トランジスタTRのゲート(転送ゲートTG)は、例えば、いわゆる縦型電極を含んでおり、後述の図31に示すように、半導体層(後述の図31の半導体層100S)の表面からPDに達する深さまで延在して設けられている。リセットトランジスタRSTは、フローティングディフュージョンFDの電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、フローティングディフュージョンFDの電位を電源線VDDの電位にリセットする。選択トランジスタSELは、画素回路210からの画素信号の出力タイミングを制御する。増幅トランジスタAMPは、画素信号として、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、選択トランジスタSELを介して垂直信号線543に接続されている。この増幅トランジスタAMPは、列信号処理部550において、垂直信号線543に接続された負荷回路部(図1参照)とともにソースフォロアを構成している。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョンFDの電圧を、垂直信号線543を介して列信号処理部550に出力する。リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELは、例えば、N型のCMOSトランジスタである。
 FD変換ゲイン切替トランジスタFDGは、フローティングディフュージョンFDでの電荷―電圧変換のゲインを変更する際に用いられる。一般に、暗い場所での撮影時には画素信号が小さい。Q=CVに基づき、電荷電圧変換を行う際に、フローティングディフュージョンFDの容量(FD容量C)が大きければ、増幅トランジスタAMPで電圧に変換した際のVが小さくなってしまう。一方、明るい場所では、画素信号が大きくなるので、FD容量Cが大きくなければ、フローティングディフュージョンFDで、フォトダイオードPDの電荷を受けきれない。さらに、増幅トランジスタAMPで電圧に変換した際のVが大きくなりすぎないように(言い換えると、小さくなるように)、FD容量Cが大きくなっている必要がある。これらを踏まえると、FD変換ゲイン切替トランジスタFDGをオンにしたときには、FD変換ゲイン切替トランジスタFDG分のゲート容量が増えるので、全体のFD容量Cが大きくなる。一方、FD変換ゲイン切替トランジスタFDGをオフにしたときには、全体のFD容量Cが小さくなる。このように、FD変換ゲイン切替トランジスタFDGをオンオフ切り替えることで、FD容量Cを可変にし、変換効率を切り替えることができる。FD変換ゲイン切替トランジスタFDGは、例えば、N型のCMOSトランジスタである。
 なお、FD変換ゲイン切替トランジスタFDGを設けない構成も可能である。このとき、例えば、画素回路210は、例えば増幅トランジスタAMP、選択トランジスタSELおよびリセットトランジスタRSTの3つのトランジスタで構成される。画素回路210は、例えば、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGなどの画素トランジスタの少なくとも1つを有する。
 選択トランジスタSELは、電源線VDDと増幅トランジスタAMPとの間に設けられていてもよい。この場合、リセットトランジスタRSTのドレインが電源線VDDおよび選択トランジスタSELのドレインに電気的に接続されている。選択トランジスタSELのソースが増幅トランジスタAMPのドレインに電気的に接続されており、選択トランジスタSELのゲートが行駆動信号線542(図1参照)に電気的に接続されている。増幅トランジスタAMPのソース(画素回路210の出力端)が垂直信号線543に電気的に接続されており、増幅トランジスタAMPのゲートがリセットトランジスタRSTのソースに電気的に接続されている。なお、図示は省略するが、1の画素回路210を共有する画素541の数は、4以外であってもよい。例えば、2つまたは8つの画素541が1の画素回路210を共有してもよい。
 図30は、複数の画素共有ユニット539と、垂直信号線543との接続態様の一例を表したものである。例えば、列方向に並ぶ4つの画素共有ユニット539が4つのグループに分けられており、この4つのグループ各々に垂直信号線543が接続されている。図30には、説明を簡単にするため、4つのグループが各々、1つの画素共有ユニット539を有する例を示したが、4つのグループが各々、複数の画素共有ユニット539を含んでいてもよい。このように、撮像装置1では、列方向に並ぶ複数の画素共有ユニット539が、1つまたは複数の画素共有ユニット539を含むグループに分けられていてもよい。例えば、このグループそれぞれに、垂直信号線543および列信号処理回路550が接続されており、それぞれのグループから画素信号を同時に読み出すことができるようになっている。あるいは、撮像装置1では、列方向に並ぶ複数の画素共有ユニット539に1つの垂直信号線543が接続されていてもよい。このとき、1つの垂直信号線543に接続された複数の画素共有ユニット539から、時分割で順次画素信号が読み出されるようになっている。
[撮像装置1の具体的構成]
 図31は、撮像装置1の第1基板100、第2基板100および第3基板300の主面に対して垂直方向の断面構成の一例を表したものである。図31は、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の断面と異なっていてもよい。撮像装置1では、第1基板100、第2基板200および第3基板300がこの順に積層されている。撮像装置1は、さらに、第1基板100の裏面側(光入射面側)に受光レンズ401を有している。受光レンズ401と第1基板100との間に、カラーフィルタ層(図示せず)が設けられていてもよい。受光レンズ401は、例えば、画素541A,541B,541C,541D各々に設けられている。撮像装置1は、例えば、裏面照射型の撮像装置である。撮像装置1は、中央部に配置された画素アレイ部540と、画素アレイ部540の外側に配置された周辺部540Bとを有している。
 第1基板100は、受光レンズ401側から順に、絶縁膜111、固定電荷膜112、半導体層100Sおよび配線層100Tを有している。半導体層100Sは、例えばシリコン基板により構成されている。半導体層100Sは、例えば、表面(配線層100T側の面)の一部およびその近傍に、pウェル層115を有しており、それ以外の領域(pウェル層115よりも深い領域)に、n型半導体領域114を有している。例えば、このn型半導体領域114およびpウェル層115によりpn接合型のフォトダイオードPDが構成されている。pウェル層115は、p型半導体領域である。
 図32Aは、第1基板100の平面構成の一例を表したものである。図32Aは、主に、第1基板100の画素分離部117、フォトダイオードPD、フローティングディフュージョンFD、VSSコンタクト領域118および転送トランジスタTRの平面構成を表している。図31とともに、図32Aを用いて第1基板100の構成について説明する。
 半導体層100Sの表面近傍には、フローティングディフュージョンFDおよびVSSコンタクト領域118が設けられている。フローティングディフュージョンFDは、pウェル層115内に設けられたn型半導体領域により構成されている。画素541A,541B,541C,541D各々のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)は、例えば、画素共有ユニット539の中央部に互いに近接して設けられている(図32A)。詳細は後述するが、この共有ユニット539に含まれる4つのフローティングディフュージョン(フローティングディフュージョンFD1,FD2,FD3,FD4)は、第1基板100内(より具体的には配線層100Tの内)で、電気的接続手段(後述のパッド部120)を介して互いに電気的に接続されている。更に、フローティングディフュージョンFDは、第1基板100から第2基板200へ(より具体的には、配線層100Tから配線層200Tへ)と電気的手段(後述の貫通電極120E)を介して接続されている。第2基板200(より具体的には配線層200Tの内部)では、この電気的手段により、フローティングディフュージョンFDが、増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソースに電気的に接続されている。
 VSSコンタクト領域118は、基準電位線VSSに電気的に接続される領域であり、フローティングディフュージョンFDと離間して配置されている。例えば、画素541A,541B,541C,541Dでは、各画素のV方向の一端にフローティングディフュージョンFDが配置され、他端にVSSコンタクト領域118が配置されている(図32A)。VSSコンタクト領域118は、例えば、p型半導体領域により構成されている。VSSコンタクト領域118は、例えば接地電位や固定電位に接続されている。これにより、半導体層100Sに基準電位が供給される。
 第1基板100には、フォトダイオードPD、フローティングディフュージョンFDおよびVSSコンタクト領域118とともに、転送トランジスタTRが設けられている。このフォトダイオードPD、フローティングディフュージョンFD、VSSコンタクト領域118および転送トランジスタTRは、画素541A,541B,541C,541D各々に設けられている。転送トランジスタTRは、半導体層100Sの表面側(光入射面側とは反対側、第2基板200側)に設けられている。転送トランジスタTRは、転送ゲートTGを有している。転送ゲートTGは、例えば、半導体層100Sの表面に対向する水平部分TGbと、半導体層100S内に設けられた垂直部分TGaとを含んでいる。垂直部分TGaは、半導体層100Sの厚み方向に延在している。垂直部分TGaの一端は水平部分TGbに接し、他端はn型半導体領域114内に設けられている。転送トランジスタTRを、このような縦型トランジスタにより構成することにより、画素信号の転送不良が生じにくくなり、画素信号の読み出し効率を向上させることができる。
 転送ゲートTGの水平部分TGbは、垂直部分TGaに対向する位置から例えば、H方向において画素共有ユニット539の中央部に向かって延在している(図32A)。これにより、転送ゲートTGに達する貫通電極(後述の貫通電極TGV)のH方向の位置を、フローティングディフュージョンFD、VSSコンタクト領域118に接続される貫通電極(後述の貫通電極120E,121E)のH方向の位置に近づけることができる。例えば、第1基板100に設けられた複数の画素共有ユニット539は、互いに同じ構成を有している(図32A)。
 半導体層100Sには、画素541A,541B,541C,541Dを互いに分離する画素分離部117が設けられている。画素分離部117は、半導体層100Sの法線方向(半導体層100Sの表面に対して垂直な方向)に延在して形成されている。画素分離部117は、画素541A,541B,541C,541Dを互いに仕切るように設けられており、例えば格子状の平面形状を有している(図32A,図32B)。画素分離部117は、例えば、画素541A,541B,541C,541Dを互いに電気的および光学的に分離する。画素分離部117は、例えば、遮光膜117Aおよび絶縁膜117Bを含んでいる。遮光膜117Aには、例えば、タングステン(W)等が用いられる。絶縁膜117Bは、遮光膜117Aとpウェル層115またはn型半導体領域114との間に設けられている。絶縁膜117Bは、例えば、酸化シリコン(SiO)によって構成されている。画素分離部117は、例えば、FTI(Full Trench Isolation)構造を有しており、半導体層100Sを貫通している。図示しないが、画素分離部117は半導体層100Sを貫通するFTI構造に限定されない。例えば、半導体層100Sを貫通しないDTI(Deep Trench Isolation)構造であっても良い。画素分離部117は、半導体層100Sの法線方向に延在して、半導体層100Sの一部の領域に形成される。
 半導体層100Sには、例えば、第1ピニング領域113および第2ピニング領域116が設けられている。第1ピニング領域113は、半導体層100Sの裏面近傍に設けられており、n型半導体領域114と固定電荷膜112との間に配置されている。第2ピニング領域116は、画素分離部117の側面、具体的には、画素分離部117とpウェル層115またはn型半導体領域114との間に設けられている。第1ピニング領域113および第2ピニング領域116は、例えば、p型半導体領域により構成されている。
 半導体層100Sと絶縁膜111との間には、負の固定電荷を有する固定電荷膜112が設けられている。固定電荷膜112が誘起する電界により、半導体層100Sの受光面(裏面)側の界面に、ホール蓄積層の第1ピニング領域113が形成される。これにより、半導体層100Sの受光面側の界面準位に起因した暗電流の発生が抑えられる。固定電荷膜112は、例えば、負の固定電荷を有する絶縁膜によって形成されている。この負の固定電荷を有する絶縁膜の材料としては、例えば、酸化ハフニウム、酸化ジルコン、酸化アルミニウム、酸化チタンまたは酸化タンタルが挙げられる。
 固定電荷膜112と絶縁膜111との間には、遮光膜117Aが設けられている。この遮光膜117Aは、画素分離部117を構成する遮光膜117Aと連続して設けられていてもよい。この固定電荷膜112と絶縁膜111との間の遮光膜117Aは、例えば、半導体層100S内の画素分離部117に対向する位置に選択的に設けられている。絶縁膜111は、この遮光膜117Aを覆うように設けられている。絶縁膜111は、例えば、酸化シリコンにより構成されている。
 半導体層100Sと第2基板200との間に設けられた配線層100Tは、半導体層100S側から、層間絶縁膜119、パッド部120,121、パッシベーション膜122、層間絶縁膜123および接合膜124をこの順に有している。転送ゲートTGの水平部分TGbは、例えば、この配線層100Tに設けられている。層間絶縁膜119は、半導体層100Sの表面全面にわたって設けられており、半導体層100Sに接している。層間絶縁膜119は、例えば酸化シリコン膜により構成されている。なお、配線層100Tの構成は上述の限りでなく、配線と絶縁膜とを有する構成であれば良い。
 図32Bは、図32Aに示した平面構成とともに、パッド部120,121の構成を表している。パッド部120,121は、層間絶縁膜119上の選択的な領域に設けられている。パッド部120は、画素541A,541B,541C,541D各々のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)を互いに接続するためのものである。パッド部120は、例えば、画素共有ユニット539毎に、平面視で画素共有ユニット539の中央部に配置されている(図32B)。このパッド部120は、画素分離部117を跨ぐように設けられており、フローティングディフュージョンFD1,FD2,FD3,FD4各々の少なくとも一部に重畳して配置されている(図31,図32B)。具体的には、パッド部120は、画素回路210を共有する複数のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)各々の少なくとも一部と、その画素回路210を共有する複数のフォトダイオードPD(フォトダイオードPD1,PD2,PD3,PD4)の間に形成された画素分離部117の少なくとも一部とに対して、半導体層100Sの表面に対して垂直な方向に重なる領域に形成される。層間絶縁膜119には、パッド部120とフローティングディフュージョンFD1,FD2,FD3,FD4とを電気的に接続するための接続ビア120Cが設けられている。接続ビア120Cは、画素541A,541B,541C,541D各々に設けられている。例えば、接続ビア120Cにパッド部120の一部が埋め込まれることにより、パッド部120とフローティングディフュージョンFD1,FD2,FD3,FD4とが電気的に接続されている。
 パッド部121は、複数のVSSコンタクト領域118を互いに接続するためのものである。例えば、V方向に隣り合う一方の画素共有ユニット539の画素541C,541Dに設けられたVSSコンタクト領域118と、他方の画素共有ユニット539の画素541A,541Bに設けられたVSSコンタクト領域118とがパッド部121により電気的に接続されている。パッド部121は、例えば、画素分離部117を跨ぐように設けられており、これら4つのVSSコンタクト領域118各々の少なくとも一部に重畳して配置されている。具体的には、パッド部121は、複数のVSSコンタクト領域118各々の少なくとも一部と、その複数のVSSコンタクト118の間に形成された画素分離部117の少なくとも一部とに対して、半導体層100Sの表面に対して垂直な方向に重なる領域に形成される。層間絶縁膜119には、パッド部121とVSSコンタクト領域118とを電気的に接続するための接続ビア121Cが設けられている。接続ビア121Cは、画素541A,541B,541C,541D各々に設けられている。例えば、接続ビア121Cにパッド部121の一部が埋め込まれることにより、パッド部121とVSSコンタクト領域118とが電気的に接続されている。例えば、V方向に並ぶ複数の画素共有ユニット539各々のパッド部120およびパッド部121は、H方向において略同じ位置に配置されている(図32B)。
 パッド部120を設けることで、チップ全体において、各フローティングディフュージョンFDから画素回路210(例えば増幅トランジスタAMPのゲート電極)へ接続するための配線を減らすことができる。同様に、パッド部121を設けることで、チップ全体において、各VSSコンタクト領域118への電位を供給する配線を減らすことができる。これにより、チップ全体の面積の縮小、微細化された画素における配線間の電気的干渉の抑制、及び/又は部品点数の削減によるコスト削減などが可能になる。
 パッド部120、121は、第1基板100、第2基板200の所望の位置に設けることができる。具体的には、パッド部120、121を配線層100T、半導体層200Sの絶縁領域212のいずれかに設けることができる。配線層100Tに設ける場合には、パッド部120、121を半導体層100Sに直接接触させても良い。具体的には、パッド部120、121が、フローティングディフュージョンFD及び/又はVSSコンタクト領域118の各々の少なくとも一部と直接接続される構成でも良い。また、パッド部120、121に接続するフローティングディフュージョンFD及び/又はVSSコンタクト領域118の各々から接続ビア120C,121Cを設け、配線層100T、半導体層200Sの絶縁領域2112の所望の位置にパッド部120、121を設ける構成でも良い。
 特に、パッド部120、121を配線層100Tに設ける場合には、半導体層200Sの絶縁領域212におけるフローティングディフュージョンFD及び/又はVSSコンタクト領域118に接続される配線を減らすことができる。これにより、画素回路210を形成する第2基板200のうち、フローティングディフュージョンFDから画素回路210に接続するための貫通配線を形成するための絶縁領域212の面積を削減することができる。よって、画素回路210を形成する第2基板200の面積を大きく確保することができる。画素回路210の面積を確保することで、画素トランジスタを大きく形成することができ、ノイズ低減などによる画質向上に寄与することができる。
 特に、画素分離部117にFTI構造を用いた場合、フローティングディフュージョンFD及び/又はVSSコンタクト領域118は、各画素541に設けることが好ましいため、パッド部120、121の構成を用いることで、第1基板100と第2基板200とを接続する配線を大幅に削減することができる。
 また、図32Bのように、例えば複数のフローティングディフュージョンFDが接続されるパッド部120と、複数のVSSコンタクト118が接続されるパッド部121とは、V方向において直線状に交互に配置される。また、パッド部120、121は、複数のフォトダイオードPDや、複数の転送ゲートTGや、複数のフローティングディフュージョンFDに囲まれる位置に形成される。これにより、複数の素子を形成する第1基板100において、フローティングディフュージョンFDとVSSコンタクト領域118以外の素子を自由に配置することができ、チップ全体のレイアウトの効率化を図ることができる。また、各画素共有ユニット539に形成される素子のレイアウトにおける対称性が確保され、各画素541の特性のばらつきを抑えることができる。
 パッド部120,121は、例えば、ポリシリコン(Poly Si)、より具体的には、不純物が添加されたドープドポリシリコンにより構成されている。パッド部120,121はポリシリコン、タングステン(W)、チタン(Ti)および窒化チタン(TiN)等の耐熱性の高い導電性材料により構成されていることが好ましい。これにより、第1基板100に第2基板200の半導体層200Sを貼り合わせた後に、画素回路210を形成することが可能となる。以下、この理由について説明する。なお、以下の説明において、第1基板100と第2基板200の半導体層200Sを貼り合わせた後に、画素回路210を形成する方法を、第1の製造方法と呼ぶ。
 ここで、第2基板200に画素回路210を形成した後に、これを第1基板100に貼り合わせることも考え得る(以下第2の製造方法という)。この第2の製造方法では、第1基板100の表面(配線層100Tの表面)および第2基板200の表面(配線層200Tの表面)それぞれに、電気的接続用の電極を予め形成しておく。第1基板100と第2基板200を貼り合わせると、これと同時に、第1基板100の表面と第2基板200の表面のそれぞれに形成された電気的接続用の電極同士が接触する。これにより、第1基板100に含まれる配線と第2基板200に含まれる配線との間で電気的接続が形成される。よって、第2の製造方法を用いた撮像装置1の構成とすることで、例えば第1基板100と第2基板200の各々の構成に応じて適切なプロセスを用いて製造することができ、高品質、高性能な撮像装置を製造することができる。
 このような第2の製造方法では、第1基板100と第2基板200とを貼り合わせる際に、貼り合せ用の製造装置に起因して、位置合わせの誤差が生じることがある。また、第1基板100および第2基板200は、例えば、直径数十cm程度の大きさを有するが、第1基板100と第2基板200とを貼り合わせる際に、この第1基板100、第2基板200各部の微視的領域で、基板の伸び縮みが発生するおそれがある。この基板の伸び縮みは、基板同士が接触するタイミングが多少ずれることに起因する。このような第1基板100および第2基板200の伸び縮みに起因して、第1基板100の表面および第2基板200の表面それぞれに形成された電気的接続用の電極の位置に、誤差が生じることがある。第2の製造方法では、このような誤差が生じても、第1基板100および第2基板200それぞれの電極同士が接触するように対処しておくことが好ましい。具体的には、第1基板100および第2基板200の電極の少なくとも一方、好ましくは両方を、上記誤差を考慮して大きくしておく。このため、第2の製造方法を用いると、例えば、第1基板100または第2基板200の表面に形成された電極の大きさ(基板平面方向の大きさ)が、第1基板100または第2基板200の内部から表面に厚み方向へ延在する内部電極の大きさよりも大きくなる。
 一方、パッド部120,121を耐熱性の導電材料により構成することで、上記第1の製造方法を用いることが可能となる。第1の製造方法では、フォトダイオードPDおよび転送トランジスタTRなどを含む第1基板100を形成した後、この第1基板100と第2基板200(半導体層2000S)とを貼り合わせる。このとき、第2基板200は、画素回路210を構成する能動素子および配線層などのパターンは未形成の状態である。第2基板200はパターンを形成する前の状態であるため、仮に、第1基板100と第2基板200を貼り合わせる際、その貼り合せ位置に誤差が生じたとしても、この貼り合せ誤差によって、第1基板100のパターンと第2基板200のパターンとの間の位置合わせに誤差が生じることはない。なぜならば、第2基板200のパターンは、第1基板100と第2基板200を貼り合わせた後に、形成するからである。なお、第2基板にパターンを形成する際には、例えば、パターン形成のための露光装置において、第1基板に形成されたパターンを位置合わせの対象としながらパターン形成する。上記理由により、第1基板100と第2基板200との貼り合せ位置の誤差は、第1の製造方法においては、撮像装置1を製造する上で問題とならない。同様の理由で、第2の製造方法で生じる基板の伸び縮みに起因した誤差も、第1の製造方法においては、撮像装置1を製造する上で問題とならない。
 第1の製造方法では、このようにして第1基板100と第2基板200(半導体層200S)とを貼り合せた後、第2基板200上に能動素子を形成する。この後、貫通電極120E,121Eおよび貫通電極TGV(図31)を形成する。この貫通電極120E,121E,TGVの形成では、例えば、第2基板200の上方から、露光装置による縮小投影露光を用いて貫通電極のパターンを形成する。縮小露光投影を用いるため、仮に、第2基板200と露光装置との位置合わせに誤差が生じても、その誤差の大きさは、第2基板200においては、上記第2の製造方法の誤差の数分の一(縮小露光投影倍率の逆数)にしかならない。よって、第1の製造方法を用いた撮像装置1の構成とすることで、第1基板100と第2基板200の各々に形成される素子同士の位置合わせが容易になり、高品質、高性能な撮像装置を製造することができる。
 このような第1の製造方法を用いて製造された撮像装置1は、第2の製造方法で製造された撮像装置と異なる特徴を有する。具体的には、第1の製造方法により製造された撮像装置1では、例えば、貫通電極120E,121E,TGVが、第2基板200から第1基板100に至るまで、略一定の太さ(基板平面方向の大きさ)となっている。あるいは、貫通電極120E,121E,TGVがテーパー形状を有するときには、一定の傾きのテーパー形状を有している。このような貫通電極120E,121E,TGVを有する撮像装置1は、画素541を微細化しやすい。
 ここで、第1の製造方法により撮像装置1を製造すると、第1基板100と第2基板200(半導体層200S)とを貼り合わせた後に、第2基板200に能動素子を形成するので、第1基板100にも、能動素子の形成の際に必要な加熱処理の影響が及ぶことになる。このため、上記のように、第1基板100に設けられたパッド部120,121には、耐熱性の高い導電材料を用いることが好ましい。例えば、パッド部120,121には、第2基板200の配線層200Tに含まれる配線材の少なくとも一部よりも、融点の高い(すなわち耐熱性の高い)材料を用いていることが好ましい。例えば、パッド部120,121にドープトポリシリコン、タングステン、チタンあるいは窒化チタン等の耐熱性の高い導電材を用いる。これにより、上記第1の製造方法を用いて撮像装置1を製造することが可能となる。
 パッシベーション膜122は、例えば、パッド部120,121を覆うように、半導体層100Sの表面全面にわたって設けられている(図31)。パッシベーション膜122は、例えば、窒化シリコン(SiN)膜により構成されている。層間絶縁膜123は、パッシベーション膜122を間にしてパッド部120,121を覆っている。この層間絶縁膜123は、例えば、半導体層100Sの表面全面にわたって設けられている。層間絶縁膜123は、例えば酸化シリコン(SiO)膜により構成されている。接合膜124は、第1基板100(具体的には配線層100T)と第2基板200との接合面に設けられている。即ち、接合膜124は、第2基板200に接している。この接合膜124は、第1基板100の主面全面にわたって設けられている。接合膜124は、例えば、窒化シリコン膜により構成されている。
 受光レンズ401は、例えば、固定電荷膜112および絶縁膜111を間にして半導体層100Sに対向している(図31)。受光レンズ401は、例えば画素541A,541B,541C,541D各々のフォトダイオードPDに対向する位置に設けられている。
 第2基板200は、第1基板100側から、半導体層200Sおよび配線層200Tをこの順に有している。半導体層200Sは、シリコン基板で構成されている。半導体層200Sでは、厚み方向にわたって、ウェル領域211が設けられている。ウェル領域211は、例えば、p型半導体領域である。第2基板20には、画素共有ユニット539毎に配置された画素回路210が設けられている。この画素回路210は、例えば、半導体層200Sの表面側(配線層200T側)に設けられている。撮像装置1では、第1基板100の表面側(配線層100T側)に第2基板200の裏面側(半導体層200S側)が向かうようにして、第2基板200が第1基板100に貼り合わされている。つまり、第2基板200は、第1基板100に、フェイストゥーバックで貼り合わされている。
 図33~図37は、第2基板200の平面構成の一例を模式的に表している。図33には、半導体層200Sの表面近傍に設けられた画素回路210の構成を表す。図34は、配線層200T(具体的には後述の第1配線層W1)と、配線層200Tに接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表している。図35~図37は、配線層200Tの平面構成の一例を表している。以下、図31とともに、図33~図37を用いて第2基板200の構成について説明する。図33および図34ではフォトダイオードPDの外形(画素分離部117とフォトダイオードPDとの境界)を破線で表し、画素回路210を構成する各トランジスタのゲート電極に重なる部分の半導体層200Sと素子分離領域213または絶縁領域214との境界を点線で表す。増幅トランジスタAMPのゲート電極に重なる部分では、チャネル幅方向の一方に、半導体層200Sと素子分離領域213との境界、および素子分離領域213と絶縁領域213との境界が設けられている。
 第2基板200には、半導体層200Sを分断する絶縁領域212と、半導体層200Sの厚み方向の一部に設けられた素子分離領域213とが設けられている(図31)。例えば、H方向に隣り合う2つの画素回路210の間に設けられた絶縁領域212に、この2つの画素回路210に接続された2つの画素共有ユニット539の貫通電極120E,121Eおよび貫通電極TGV(貫通電極TGV1,TGV2,TGV3,TGV4)が配置されている(図34)。
 絶縁領域212は、半導体層200Sの厚みと略同じ厚みを有している(図31)。半導体層200Sは、この絶縁領域212により分断されている。この絶縁領域212に、貫通電極120E,121Eおよび貫通電極TGVが配置されている。絶縁領域212は、例えば酸化シリコンにより構成されている。
 貫通電極120E,121Eは、絶縁領域212を厚み方向に貫通して設けられている。貫通電極120E,121Eの上端は、配線層200Tの配線(後述の第1配線W1,第2配線W2,第3配線W3,第4配線W4)に接続されている。この貫通電極120E,121Eは、絶縁領域212、接合膜124、層間絶縁膜123およびパッシベーション膜122を貫通して設けられ、その下端はパッド部120,121に接続されている(図31)。貫通電極120Eは、パッド部120と画素回路210とを電気的に接続するためのものである。即ち、貫通電極120Eにより、第1基板100のフローティングディフュージョンFDが第2基板200の画素回路210に電気的に接続される。貫通電極121Eは、パッド部121と配線層200Tの基準電位線VSSとを電気的に接続するためのものである。即ち、貫通電極121Eにより、第1基板100のVSSコンタクト領域118が第2基板200の基準電位線VSSに電気的に接続される。
 貫通電極TGVは、絶縁領域212を厚み方向に貫通して設けられている。貫通電極TGVの上端は、配線200Tの配線に接続されている。この貫通電極TGVは、絶縁領域212、接合膜124、層間絶縁膜123、パッシベーション膜122および層間絶縁膜119を貫通して設けられ、その下端は転送ゲートTGに接続されている(図31)。このような貫通電極TGVは、画素541A,541B,541C,541D各々の転送ゲートTG(転送ゲートTG1,TG2,TG3,TG4)と、配線層200Tの配線(行駆動信号線542の一部、具体的には、後述の図36の配線TRG1,TRG2,TRG3,TRG4)とを電気的に接続するためのものである。即ち、貫通電極TGVにより、第1基板100の転送ゲートTGが第2基板200の配線TRGに電気的に接続され、転送トランジスタTR(転送トランジスタTR1,TR2,TR3,TR4)各々に駆動信号が送られるようになっている。
 絶縁領域212は、第1基板100と第2基板200とを電気的に接続するための前記貫通電極120E,121Eおよび貫通電極TGVを、半導体層200Sと絶縁して設けるための領域である。例えば、H方向に隣り合う2つの画素回路210(共有ユニット539)の間に設けられた絶縁領域212に、この2つの画素回路210に接続された貫通電極120E,121Eおよび貫通電極TGV(貫通電極TGV1,TGV2,TGV3,TGV4)が配置されている。絶縁領域212は、例えば、V方向に延在して設けられている(図33,図34)。ここでは、転送ゲートTGの水平部分TGbの配置を工夫することにより、垂直部分TGaの位置に比べて、貫通電極TGVのH方向の位置が貫通電極120E,121EのH方向の位置に近づくように配置されている(図32A,図34)。例えば、貫通電極TGVは、H方向において、貫通電極120E,120Eと略同じ位置に配置されている。これにより、V方向に延在する絶縁領域212に、貫通電極120E,121Eおよび貫通電極TGVをまとめて設けることができる。別の配置例として、垂直部分TGaに重畳する領域のみに水平部分TGbを設けることも考え得る。この場合には、垂直部分TGaの略直上に貫通電極TGVが形成され、例えば、各画素541のH方向およびV方向の略中央部に貫通電極TGVが配置される。このとき、貫通電極TGVのH方向の位置と貫通電極120E,121EのH方向の位置とが大きくずれる。貫通電極TGVおよび貫通電極120E,121Eの周囲には、近接する半導体層200Sから電気的に絶縁するため、例えば、絶縁領域212を設ける。貫通電極TGVのH方向の位置と貫通電極120E,121EのH方向の位置とが大きく離れる場合には、貫通電極120E,121E,TGV各々の周囲に絶縁領域212を独立して設けることが必要となる。これにより、半導体層200Sが細かく分断されることになる。これに比べ、V方向に延在する絶縁領域212に、貫通電極120E,121Eおよび貫通電極TGVをまとめて配置するレイアウトは、半導体層200SのH方向の大きさを大きくすることができる。よって、半導体層200Sにおける半導体素子形成領域の面積を大きく確保することができる。これにより、例えば、増幅トランジスタAMPのサイズを大きくし、ノイズを抑えることが可能となる。
 画素共有ユニット539は、図29を参照して説明したように、複数の画素541のそれぞれに設けられたフローティングディフュージョンFDの間を電気的に接続し、これら複数の画素541が1つの画素回路210を共有する構造を有している。そして、前記フローティングディフュージョンFD間の電気的接続は、第1基板100に設けられたパッド部120によってなされている(図31、図32B)。第1基板100に設けられた電気的接続部(パッド部120)と第2基板200に設けられた画素回路210は、1つの貫通電極120Eを介して電気的に接続されている。別の構造例として、フローティングディフュージョンFD間の電気的接続部を第2基板200に設けることも考え得る。この場合、画素共有ユニット539には、フローティングディフュージョンFD1,FD2,FD3,FD4各々に接続される4つの貫通電極が設けられる。したがって、第2基板200において、半導体層200Sを貫通する貫通電極の数が増え、これら貫通電極の周囲を絶縁する絶縁領域212が大きくなる。これに比べ、第1基板100にパッド部120を設ける構造(図31,図32B)は、貫通電極の数を減らし、絶縁領域212を小さくすることができる。よって、半導体層200Sにおける半導体素子形成領域の面積を大きく確保することができる。これにより、例えば、増幅トランジスタAMPのサイズを大きくし、ノイズを抑えることが可能となる。
 素子分離領域213は、半導体層200Sの表面側に設けられている。素子分離領域213は、STI(Shallow Trench Isolation)構造を有している。この素子分離領域213では、半導体層200Sが厚み方向(第2基板200の主面に対して垂直方向)に掘り込まれており、この掘り込みに絶縁膜が埋め込まれている。この絶縁膜は、例えば、酸化シリコンにより構成されている。素子分離領域213は、画素回路210を構成する複数のトランジスタ間を、画素回路210のレイアウトに応じて素子分離するものである。素子分離領域213の下方(半導体層200Sの深部)には、半導体層200S(具体的には、ウエル領域211)が延在している。
 ここで、図32A,図32Bおよび図33を参照して、第1基板100での画素共有ユニット539の外形形状(基板平面方向の外形形状)と、第2基板200での画素共有ユニット539の外形形状との違いを説明する。
 撮像装置1では、第1基板100および第2基板200の両方にわたり、画素共有ユニット539が設けられている。例えば、第1基板100に設けられた画素共有ユニット539の外形形状と、第2基板200に設けられた画素共有ユニット539の外形形状とは互いに異なっている。
 図32A,図32Bでは、画素541A,541B,541C,541Dの外形線を一点鎖線で表し、画素共有ユニット539の外形形状を太線で表している。例えば、第1基板100の画素共有ユニット539は、H方向に隣接して配置された2つの画素541(画素541A,541B)と、これにV方向に隣接して配置された2つの画素541(画素541C,541D)により構成されている。即ち、第1基板100の画素共有ユニット539は、隣接する2行×2列の4つの画素541により構成されており、第1基板100の画素共有ユニット539は、略正方形の外形形状を有している。画素アレイ部540では、このような画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2個分に相当するピッチ)、かつ、V方向へ2画素ピッチ(画素541の2個分に相当するピッチ)、で隣接して配列されている。
 図33および図34では、画素541A,541B,541C,541Dの外形線を一点鎖線で表し、画素共有ユニット539の外形形状を太線で表している。例えば、第2基板200の画素共有ユニット539の外形形状は、H方向において第1基板100の画素共有ユニット539よりも小さく、V方向において第1基板100の画素共有ユニット539よりも大きくなっている。例えば、第2基板200の画素共有ユニット539は、H方向には画素1個分に相当する大きさ(領域)で形成され、V方向には、画素4個分に相当する大きさで形成されている。即ち、第2基板200の画素共有ユニット539は、隣接する1行×4列に配列された画素に相当する大きさで形成されており、第2基板200の画素共有ユニット539は、略長方形の外形形状を有している。
 例えば、各画素回路210では、選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGがこの順にV方向に並んで配置されている(図33)。各画素回路210の外形形状を、上記のように、略長方形状に設けることにより、一方向(図33ではV方向)に4つのトランジスタ(選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDG)を並べて配置することができる。これにより、増幅トランジスタAMPのドレインと、リセットトランジスタRSTのドレインとを一の拡散領域(電源線VDDに接続される拡散領域)で共有することができる。例えば、各画素回路210の形成領域を略正方形状に設けることも可能である(後述の図46参照)。この場合には、一方向に沿って2つのトランジスタが配置され、増幅トランジスタAMPのドレインと、リセットトランジスタRSTのドレインとを一の拡散領域で共有することが困難となる。よって、画素回路210の形成領域を略長方形状に設けることにより、4つのトランジスタを近接して配置しやすくなり、画素回路210の形成領域を小さくすることができる。即ち、画素の微細化を行うことができる。また、画素回路210の形成領域を小さくすることが不要であるときには、増幅トランジスタAMPの形成領域を大きくし、ノイズを抑えることが可能となる。
 例えば、半導体層200Sの表面近傍には、選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGに加えて、基準電位線VSSに接続されるVSSコンタクト領域218が設けられている。VSSコンタクト領域218は、例えば、p型半導体領域により構成されている。VSSコンタクト領域218は、配線層200Tの配線および貫通電極121Eを介して第1基板100(半導体層100S)のVSSコンタクト領域118に電気的に接続されている。このVSSコンタクト領域218は、例えば、素子分離領域213を間にして、FD変換ゲイン切替トランジスタFDGのソースと隣り合う位置に設けられている(図33)。
 次に、図32Bおよび図33を参照して、第1基板100に設けられた画素共有ユニット539と第2基板200に設けられた画素共有ユニット539との位置関係を説明する。例えば、第1基板100のV方向に並ぶ2つの画素共有ユニット539のうち、一方(例えば図32Bの紙面上側)の画素共有ユニット539は、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうちの一方(例えば、図33の紙面左側)の画素共有ユニット539に接続されている。例えば、第1基板100のV方向に並ぶ2つの画素共有ユニット539のうち、他方(例えば図32Bの紙面下側)の画素共有ユニット539は、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうちの他方(例えば、図33の紙面右側)の画素共有ユニット539に接続されている。
 例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539では、一方の画素共有ユニット539の内部レイアウト(トランジスタ等の配置)が、他方の画素共有ユニット539の内部レイアウトをV方向およびH方向に反転させたレイアウトに略等しくなっている。以下、このレイアウトによって得られる効果を説明する。
 第1基板100のV方向に並ぶ2つの画素共有ユニット539では、各々のパッド部120が、画素共有ユニット539の外形形状の中央部、即ち、画素共有ユニット539のV方向およびH方向の中央部に配置される(図32B)。一方、第2基板200の画素共有ユニット539は、上記のように、V方向に長い略長方形の外形形状を有しているので、例えば、パッド部120に接続される増幅トランジスタAMPは、画素共有ユニット539のV方向の中央から紙面上方にずれた位置に配置されている。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトが同じであるとき、一方の画素共有ユニット539の増幅トランジスタAMPと、パッド部120(例えば、図32の紙面上側の画素共有ユニット539のパッド部120)との距離は比較的短くなる。しかし、他方の画素共有ユニット539の増幅トランジスタAMPと、パッド部120(例えば、図32の紙面下側の画素共有ユニット539のパッド部120)との距離が長くなる。このため、この増幅トランジスタAMPとパッド部120との接続に要する配線の面積が大きくなり、画素共有ユニット539の配線レイアウトが複雑になるおそれがある。このことは、撮像装置1の微細化に影響を及ぼす可能性がある。
 これに対して、第2基板200のH方向に並ぶ2つの画素共有ユニット539で、互いの内部レイアウトを少なくともV方向に反転させることにより、これら2つの画素共有ユニット539の両方の増幅トランジスタAMPとパッド部120との距離を短くすることができる。したがって、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトを同じにした構成と比べて、撮像装置1の微細化を行いやすくなる。なお、第2基板200の複数の画素共有ユニット539各々の平面レイアウトは、図33に記載の範囲では左右対称であるが、後述する図34に記載の第1配線層W1のレイアウトまで含めると、左右非対称のものとなる。
 また、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトは、互いに、H方向にも反転されていることが好ましい。以下、この理由について説明する。図34に示したように、第2基板200のH方向に並ぶ2つの画素共有ユニット539はそれぞれ、第1基板100のパッド部120,121に接続されている。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539のH方向の中央部(H方向に並ぶ2つの画素共有ユニット539の間)にパッド部120,121が配置されている。したがって、第2基板200のH方向に並ぶ2つの画素共有ユニット539の内部レイアウトを、互いに、H方向にも反転させることにより、第2基板200の複数の画素共有ユニット539それぞれとパッド部120,121との距離を小さくすることができる。即ち、撮像装置1の微細化を更に行いやすくなる。
 また、第2基板200の画素共有ユニット539の外形線の位置は、第1基板100の画素共有ユニット539のいずれかの外形線の位置に揃っていなくてもよい。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうち、一方(例えば図34の紙面左側)の画素共有ユニット539では、V方向の一方(例えば図34の紙面上側)の外形線が、対応する第1基板100の画素共有ユニット539(例えば図32Bの紙面上側)のV方向の一方の外形線の外側に配置されている。また、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうち、他方(例えば図34の紙面右側)の画素共有ユニット539では、V方向の他方(例えば図34の紙面下側)の外形線が、対応する第1基板100の画素共有ユニット539(例えば図32Bの紙面下側)のV方向の他方の外形線の外側に配置されている。このように、第2基板200の画素共有ユニット539と、第1基板100の画素共有ユニット539とを互いに配置することにより、増幅トランジスタAMPとパッド部120との距離を短くすることが可能となる。したがって、撮像装置1の微細化を行いやすくなる。
 また、第2基板200の複数の画素共有ユニット539の間で、互いの外形線の位置は揃っていなくてもよい。例えば、第2基板200のH方向に並ぶ2つの画素共有ユニット539は、V方向の外形線の位置がずれて配置されている。これにより、増幅トランジスタAMPとパッド部120との距離を短くすることが可能となる。したがって、撮像装置1の微細化を行いやすくなる。
 図32Bおよび図34を参照して、画素アレイ部540での画素共有ユニット539の繰り返し配置について説明する。第1基板100の画素共有ユニット539は、H方向に2つ分の画素541の大きさ、およびV方向に2つ分の画素541の大きさを有している(図32B)。例えば、第1基板100の画素アレイ部540では、この4つの画素541に相当する大きさの画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2つ分に相当するピッチ)、かつ、V方向へ2画素ピッチ(画素541の2つ分に相当するピッチ)、で隣接して繰り返し配列されている。あるいは、第1基板100の画素アレイ部540に、画素共有ユニット539がV方向に2つ隣接して配置された一対の画素共有ユニット539が設けられていてもよい。第1基板100の画素アレイ部540では、例えば、この一対の画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2つ分に相当するピッチ)、かつ、V方向へ4画素ピッチ(画素541の4つ分に相当するピッチ)、で隣接して繰り返し配列している。第2基板200の画素共有ユニット539は、H方向に1つ分の画素541の大きさ、およびV方向に4つ分の画素541の大きさを有している(図34)。例えば、第2基板200の画素アレイ部540には、この4つの画素541に相当する大きさの画素共有ユニット539を2つ含む、一対の画素共有ユニット539が設けられている。この画素共有ユニット539は、H方向に隣接して配置され、かつ、V方向にはずらして配置されている。第2基板200の画素アレイ部540では、例えば、この一対の画素共有ユニット539が、H方向へ2画素ピッチ(画素541の2個分に相当するピッチ)、かつ、V方向へ4画素ピッチ(画素541の4個分に相当するピッチ)、で隙間なく隣接して繰り返し配列されている。このような画素共有ユニット539の繰り返し配置により、画素共有ユニット539を隙間なく配置することが可能となる。したがって、撮像装置1の微細化を行いやすくなる。
 増幅トランジスタAMPは、例えば、Fin型等の三次元構造を有していることが好ましい(図31)。これにより、実効のゲート幅の大きさが大きくなり、ノイズを抑えることが可能となる。選択トランジスタSEL、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGは、例えば、プレーナー構造を有している。増幅トランジスタAMPがプレーナー構造を有していてもよい。あるいは、選択トランジスタSEL、リセットトランジスタRSTまたはFD変換ゲイン切替トランジスタFDGが、三次元構造を有していてもよい。
 配線層200Tは、例えば、パッシベーション膜221、層間絶縁膜222および複数の配線(第1配線層W1,第2配線層W2,第3配線層W3,第4配線層W4)を含んでいる。パッシベーション膜221は、例えば、半導体層200Sの表面に接しており、半導体層200Sの表面全面を覆っている。このパッシベーション膜221は、選択トランジスタSEL、増幅トランジスタAMP、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDG各々のゲート電極を覆っている。層間絶縁膜222は、パッシベーション膜221と第3基板300との間に設けられている。この層間絶縁膜222により、複数の配線(第1配線層W1,第2配線層W2,第3配線層W3,第4配線層W4)が分離されている。層間絶縁膜222は、例えば、酸化シリコンにより構成されている。
 配線層200Tには、例えば、半導体層200S側から、第1配線層W1、第2配線層W2、第3配線層W3、第4配線層W4およびコンタクト部201,202がこの順に設けられ、これらが互いに層間絶縁膜222により絶縁されている。層間絶縁膜222には、第1配線層W1、第2配線層W2、第3配線層W3または第4配線層W4と、これらの下層とを接続する接続部が複数設けられている。接続部は、層間絶縁膜222に設けた接続孔に、導電材料を埋設した部分である。例えば、層間絶縁膜222には、第1配線層W1と半導体層200SのVSSコンタクト領域218とを接続する接続部218Vが設けられている。例えば、このような第2基板200の素子同士を接続する接続部の孔径は、貫通電極120E,121Eおよび貫通電極TGVの孔径と異なっている。具体的には、第2基板200の素子同士を接続する接続孔の孔径は、貫通電極120E,121Eおよび貫通電極TGVの孔径よりも小さくなっていることが好ましい。以下、この理由について説明する。配線層200T内に設けられた接続部(接続部218V等)の深さは、貫通電極120E,121Eおよび貫通電極TGVの深さよりも小さい。このため接続部は、貫通電極120E,121Eおよび貫通電極TGVに比べて、容易に接続孔へ導電材を埋めることができる。この接続部の孔径を、貫通電極120E,121Eおよび貫通電極TGVの孔径よりも小さくすることにより、撮像装置1の微細化を行いやすくなる。
 例えば、第1配線層W1により、貫通電極120Eと増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソース(具体的にはFD変換ゲイン切替トランジスタFDGのソースに達する接続孔)とが接続されている。第1配線層W1は、例えば、貫通電極121Eと接続部218Vとを接続しており、これにより、半導体層200SのVSSコンタクト領域218と半導体層100SのVSSコンタクト領域118とが電気的に接続される。
 次に、図35~図37を用いて、配線層200Tの平面構成について説明する。図35は、第1配線層W1および第2配線層W2の平面構成の一例を表したものである。図36は、第2配線層W2および第3配線層W3の平面構成の一例を表したものである。図37は、第3配線層W3および第4配線層W4の平面構成の一例を表したものである。
 例えば、第3配線層W3は、H方向(行方向)に延在する配線TRG1,TRG2,TRG3,TRG4,SELL,RSTL,FDGLを含んでいる(図36)。これらの配線は、図29を参照して説明した複数の行駆動信号線542に該当する。配線TRG1,TRG2,TRG3,TRG4は各々、転送ゲートTG1,TG2,TG3,TG4に駆動信号を送るためのものである。配線TRG1,TRG2,TRG3,TRG4は各々、第2配線層W2、第1配線層W1および貫通電極120Eを介して転送ゲートTG1,TG2,TG3,TG4に接続されている。配線SELLは選択トランジスタSELのゲートに、配線RSTLはリセットトランジスタRSTのゲートに、配線FDGLは、FD変換ゲイン切替トランジスタFDGのゲートに各々駆動信号を送るためのものである。配線SELL,RSTL,FDGLは各々、第2配線層W2、第1配線層W1および接続部を介して、選択トランジスタSEL,リセットトランジスタRST,FD変換ゲイン切替トランジスタFDG各々のゲートに接続されている。
 例えば、第4配線層W4は、V方向(列方向)に延在する電源線VDD、基準電位線VSSおよび垂直信号線543を含んでいる(図37)。電源線VDDは、第3配線層W3、第2配線層W2、第1配線層W1および接続部を介して増幅トランジスタAMPのドレインおよびリセットトランジスタRSTのドレインに接続されている。基準電位線VSSは、第3配線層W3、第2配線層W2、第1配線層W1および接続部218Vを介してVSSコンタクト領域218に接続されている。また、基準電位線VSSは、第3配線層W3、第2配線層W2、第1配線層W1、貫通電極121Eおよびパッド部121を介して第1基板100のVSSコンタクト領域118に接続されている。垂直信号線543は、第3配線層W3、第2配線層W2、第1配線層W1および接続部を介して選択トランジスタSELのソース(Vout)に接続されている。
 コンタクト部201,202は、平面視で画素アレイ部540に重なる位置に設けられていてもよく(例えば、図3)、あるいは、画素アレイ部540の外側の周辺部540Bに設けられていてもよい(例えば、図31)。コンタクト部201,202は、第2基板200の表面(配線層200T側の面)に設けられている。コンタクト部201,202は、例えば、Cu(銅)およびAl(アルミニウム)などの金属により構成されている。コンタクト部201,202は、配線層200Tの表面(第3基板300側の面)に露出している。コンタクト部201,202は、第2基板200と第3基板300との電気的な接続および、第2基板200と第3基板300との貼り合わせに用いられる。
 図31には、第2基板200の周辺部540Bに周辺回路を設けた例を図示した。この周辺回路は、行駆動部520の一部または列信号処理部550の一部等を含んでいてもよい。また、図3に記載のように、第2基板200の周辺部540Bには周辺回路を配置せず、接続孔部H1,H2を画素アレイ部540の近傍に配置するようにしてもよい。
 第3基板300は、例えば、第2基板200側から配線層300Tおよび半導体層300Sをこの順に有している。例えば、半導体層300Sの表面は、第2基板200側に設けられている。半導体層300Sは、シリコン基板で構成されている。この半導体層300Sの表面側の部分には、回路が設けられている。具体的には、半導体層300Sの表面側の部分には、例えば、入力部510A、行駆動部520、タイミング制御部530、列信号処理部550、画像信号処理部560および出力部510Bのうちの少なくとも一部が設けられている。半導体層300Sと第2基板200との間に設けられた配線層300Tは、例えば、層間絶縁膜と、この層間絶縁膜により分離された複数の配線層と、コンタクト部301,302とを含んでいる。コンタクト部301,302は、配線層300Tの表面(第2基板200側の面)に露出されており、コンタクト部301は第2基板200のコンタクト部201に、コンタクト部302は第2基板200のコンタクト部202に各々接している。コンタクト部301,302は、半導体層300Sに形成された回路(例えば、入力部510A、行駆動部520、タイミング制御部530、列信号処理部550、画像信号処理部560および出力部510Bの少なくともいずれか)に電気的に接続されている。コンタクト部301,302は、例えば、Cu(銅)およびアルミニウム(Al)等の金属により構成されている。例えば、接続孔部H1を介して外部端子TAが入力部510Aに接続されており、接続孔部H2を介して外部端子TBが出力部510Bに接続されている。
 ここで、撮像装置1の特徴について説明する。
 一般に、撮像装置は、主な構成として、フォトダイオードと画素回路とからなる。ここで、フォトダイオードの面積を大きくすると光電変換の結果発生する電荷が増加し、その結果画素信号のシグナル/ノイズ比(S/N比)が改善し、撮像装置はよりよい画像データ(画像情報)を出力することができる。一方、画素回路に含まれるトランジスタのサイズ(特に増幅トランジスタのサイズ)を大きくすると、画素回路で発生するノイズが減少し、その結果撮像信号のS/N比が改善し、撮像装置はよりよい画像データ(画像情報)を出力することができる。
 しかし、フォトダイオードと画素回路とを同一の半導体基板に設けた撮像装置において、半導体基板の限られた面積の中でフォトダイオードの面積を大きくすると、画素回路に備わるトランジスタのサイズが小さくなってしまうことが考えられる。また、画素回路に備わるトランジスタのサイズを大きくすると、フォトダイオードの面積が小さくなってしまうことが考えられる。
 これらの課題を解決するために、例えば、本実施の形態の撮像装置1は、複数の画素541が1つの画素回路210を共有し、かつ、共有した画素回路210をフォトダイオードPDに重畳して配置する構造を用いる。これにより、半導体基板の限られた面積の中で、フォトダイオードPDの面積をできるだけ大きくすることと、画素回路210に備わるトランジスタのサイズをできるだけ大きくすることとを実現することができる。これにより、画素信号のS/N比を改善し、撮像装置1がよりよい画像データ(画像情報)を出力することができる。
 複数の画素541が1つの画素回路210を共有し、これをフォトダイオードPDに重畳して配置する構造を実現する際、複数の画素541各々のフローティングディフュージョンFDから1つの画素回路210に接続される複数の配線が延在する。画素回路210を形成する半導体基板200の面積を大きく確保するためには、例えばこれらの延在する複数の配線の間を相互に接続し、1つにまとめる接続配線を形成することができる。VSSコンタクト領域118から延在する複数の配線についても同様に、延在する複数の配線の間を相互に接続し、1つにまとめる接続配線を形成することができる。
 例えば、複数の画素541各々のフローティングディフュージョンFDから延在する複数の配線の間を相互に接続する接続配線を、画素回路210を形成する半導体基板200において形成すると、画素回路210に含まれるトランジスタを形成する面積が小さくなってしまうことが考えられる。同様に、複数の画素541各々のVSSコンタクト領域118から延在する複数の配線の間を相互接続して1つにまとめる接続配線を、画素回路210を形成する半導体基板200に形成すると、これにより画素回路210に含まれるトランジスタを形成する面積が小さくなってしまうことが考えられる。
 これらの課題を解決するために、例えば本実施の形態の撮像装置1は、複数の画素541が1つの画素回路210を共有し、かつ、共有した画素回路210をフォトダイオードPDに重畳して配置する構造であって、前記複数の画素541各々のフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、前記複数の画素541のそれぞれに備わるVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を第1基板100に設けた構造を備えることができる。
 ここで、前記複数の画素541各々のフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、前記複数の画素541各々のVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線とを、第1基板100に設けるための製造方法として、先に述べた第2の製造方法を用いると、例えば、第1基板100および第2基板200各々の構成に応じて適切なプロセスを用いて製造することができ、高品質、高性能な撮像装置を製造することができる。また、容易なプロセスで第1基板100および第2基板200の接続配線を形成することができる。具体的には、上記第2の製造方法を用いる場合、第1基板100と第2基板200の貼り合せ境界面となる第1基板100の表面と第2基板200の表面とに、フローティングディフュージョンFDに接続する電極とVSSコンタクト領域118に接続する電極とをそれぞれ設ける。さらに、第1基板100と第2基板200を貼り合せた際にこれら2つの基板表面に設けた電極間で位置ずれが発生してもこれら2つの基板表面に形成した電極同士が接触するように、これら2つの基板表面に形成する電極を大きくすることが好ましい。この場合、撮像装置1に備わる各画素の限られた面積の中に上記電極を配置することが難しくなってしまうことが考えられる。
 第1基板100と第2基板200の貼り合せ境界面に大きな電極が必要となる課題を解決するために、例えば本実施の形態の撮像装置1は、複数の画素541が1つの画素回路210を共有し、かつ、共有した画素回路210をフォトダイオードPDに重畳して配置する製造方法として、先に述べた第1の製造方法を用いることができる。これにより、第1基板100および第2基板200各々に形成される素子同士の位置合わせが容易になり、高品質、高性能な撮像装置を製造することができる。さらに、この製造方法を用いることによって生じる固有の構造を備えることができる。すなわち、第1基板100の半導体層100Sと配線層100Tと第2基板200の半導体層200Sと配線層200Tをこの順で積層した構造、言い換えれば、第1基板100と第2基板200をフェイストゥーバックで積層した構造を備え、かつ、第2基板200の半導体層200Sの表面側から、半導体層200Sと第1基板100の配線層100Tを貫通して、第1基板100の半導体層100Sの表面へと至る、貫通電極120E,121Eを備える。
 前記複数の画素541各々のフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、前記複数の画素541各々のVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を第1基板100に設けた構造において、この構造と第2の基板200とを前記第1の製造方法を用いて積層し第2の基板200に画素回路210を形成すると、画素回路210に備わる能動素子を形成する際に必要となる加熱処理の影響が、第1基板100に形成した上記接続配線に及んでしまう可能性がある。
 そこで、上記接続配線に対して、上記能動素子を形成する際の加熱処理の影響が及んでしまう課題を解決するために、本実施の形態の撮像装置1は、前記複数の画素541各々のフローティングディフュージョンFD同士を相互に接続して1つにまとめる接続配線と、前記複数の画素541各々のVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、に耐熱性の高い導電材料を用いることが望ましい。具体的には、耐熱性の高い導電材料は、第2基板200の配線層200Tに含まれる配線材の少なくとも一部よりも、融点の高い材料を用いることができる。
 このように、例えば本実施の形態の撮像装置1は、(1)第1基板100と第2基板200をフェイストゥーバックで積層した構造(具体的には、第1基板100の半導体層100Sと配線層100Tと第2基板200の半導体層200Sと配線層200Tをこの順で積層する構造)と、(2)第2基板200の半導体層200Sの表面側から、半導体層200Sと第1基板100の配線層100Tを貫通して、第1基板100の半導体層100Sの表面へと至る、貫通電極120E,121Eを設けた構造と、(3)複数の画素541のそれぞれに備わるフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、複数の画素541のそれぞれに備わるVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を耐熱性の高い導電材料で形成した構造と、を備えることで、第1基板100と第2基板200との界面に大きな電極を備えることなく、第1基板100に、複数の画素541のそれぞれに備わるフローティングディフュージョンFDの間を相互に接続して1つにまとめる接続配線と、複数の画素541のそれぞれに備わるVSSコンタクト領域118の間を相互に接続して1つにまとめる接続配線と、を設けることを可能としている。
[撮像装置1の動作]
 次に、図38および図39を用いて撮像装置1の動作について説明する。図38および図39は、図3に各信号の経路を表す矢印を追記したものである。図38は、外部から撮像装置1に入力される入力信号と、電源電位および基準電位の経路を矢印で表したものである。図39は、撮像装置1から外部に出力される画素信号の信号経路を矢印で表している。例えば、入力部510Aを介して撮像装置1に入力された入力信号(例えば、画素クロックおよび同期信号)は、第3基板300の行駆動部520へ伝送され、行駆動部520で行駆動信号が作り出される。この行駆動信号は、コンタクト部301,201を介して第2基板200に送られる。更に、この行駆動信号は、配線層200T内の行駆動信号線542を介して、画素アレイ部540の画素共有ユニット539各々に到達する。第2基板200の画素共有ユニット539に到達した行駆動信号のうち、転送ゲートTG以外の駆動信号は画素回路210に入力されて、画素回路210に含まれる各トランジスタが駆動される。転送ゲートTGの駆動信号は貫通電極TGVを介して第1基板100の転送ゲートTG1,TG2,TG3,TG4に入力され、画素541A,541B,541C,541Dが駆動される(図38)。また、撮像装置1の外部から、第3基板300の入力部510A(入力端子511)に供給された電源電位および基準電位は、コンタクト部301,201を介して第2基板200に送られ、配線層200T内の配線を介して、画素共有ユニット539各々の画素回路210に供給される。基準電位は、さらに貫通電極121Eを介して、第1基板100の画素541A,541B,541C,541Dへも供給される。一方、第1基板100の画素541A,541B,541C,541Dで光電変換された画素信号は、貫通電極120Eを介して画素共有ユニット539毎に第2基板200の画素回路210に送られる。この画素信号に基づく画素信号は、画素回路210から垂直信号線543およびコンタクト部202,302を介して第3基板300に送られる。この画素信号は、第3基板300の列信号処理部550および画像信号処理部560で処理された後、出力部510Bを介して外部に出力される。
[効果]
 本実施の形態では、画素541A,541B,541C,541D(画素共有ユニット539)と画素回路210とが互いに異なる基板(第1基板100および第2基板200)に設けられている。これにより、画素541A,541B,541C,541Dおよび画素回路210を同一基板に形成した場合と比べて、画素541A,541B,541C,541Dおよび画素回路210の面積を拡大することができる。その結果、光電変換により得られる画素信号の量を増大させ、かつ、画素回路210のトランジスタノイズを低減することが可能となる。これらにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1は、よりよい画素データ(画像情報)を出力することが可能となる。また、撮像装置1の微細化(言い換えれば、画素サイズの縮小および撮像装置1の小型化)が可能となる。撮像装置1は、画素サイズの縮小により、単位面積当たりの画素数を増加させることができ、高画質の画像を出力することができる。
 また、撮像装置1では、第1基板100および第2基板200が、絶縁領域212に設けられた貫通電極120E,121Eによって互いに電気的に接続されている。例えば、第1基板100と第2基板200とをパッド電極同士の接合により接続する方法や、半導体層を貫通する貫通配線(例えばTSV(Thorough Si Via))により接続する方法も考え得る。このような方法に比べて、絶縁領域212に貫通電極120E,121Eを設けることにより、第1基板100および第2基板200の接続に要する面積を小さくすることができる。これにより、画素サイズを縮小し、撮像装置1をより小型化することができる。また、1画素あたりの面積の更なる微細化により、解像度をより高くすることができる。チップサイズの小型化が不要なときには、画素541A,541B,541C,541Dおよび画素回路210の形成領域を拡大することができる。その結果、光電変換により得られる画素信号の量を増大させ、かつ、画素回路210に備わるトランジスタのノイズを低減することが可能となる。これにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素回路210と列信号処理部550および画像信号処理部560とが互いに異なる基板(第2基板200および第3基板300)に設けられている。これにより、画素回路210と列信号処理部550および画像信号処理部560とを同一基板に形成した場合と比べて、画素回路210の面積と、列信号処理部550および画像信号処理部560の面積とを拡大することができる。これにより、列信号処理部550で生じるノイズを低減したり、画像信号処理部560により高度な画像処理回路を搭載することが可能となる。よって、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素アレイ部540が、第1基板100および第2基板200に設けられ、かつ、列信号処理部550および画像信号処理部560が第3基板300に設けられている。また、第2基板200と第3基板300とを接続するコンタクト部201,202,301,302は、画素アレイ部540の上方に形成されている。このため、コンタクト部201,202,301,302は、画素アレイに備わる各種配線からレイアウト上の干渉を受けずに自由にレイアウトにすることが可能となる。これにより、第2基板200と第3基板300との電気的な接続に、コンタクト部201,202,301,302を用いることが可能となる。コンタクト部201,202,301,302を用いることにより、例えば、列信号処理部550および画像信号処理部560はレイアウトの自由度が高くなる。これにより、列信号処理部550で生じるノイズを低減したり、画像信号処理部560により高度な画像処理回路を搭載することが可能となる。したがって、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素分離部117が半導体層100Sを貫通している。これにより、1画素あたりの面積の微細化によって隣り合う画素(画素541A,541B,541C,541D)の距離が近づいた場合であっても、画素541A,541B,541C,541Dの間での混色を抑制できる。これにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 また、撮像装置1では、画素共有ユニット539毎に画素回路210が設けられている。これにより、画素541A,541B,541C,541D各々に画素回路210を設けた場合に比べて、画素回路210を構成するトランジスタ(増幅トランジスタAMP,リセットトランジスタRST,選択トランジスタSEL,FD変換ゲイン切替トランジスタFDG)の形成領域を大きくすることが可能となる。例えば、増幅トランジスタAMPの形成領域を大きくすることにより、ノイズを抑えることが可能となる。これにより、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 更に、撮像装置1では、4つの画素(画素541A,541B,541C,541D)のフローティングディフュージョンFD(フローティングディフュージョンFD1,FD2,FD3,FD4)を電気的に接続するパッド部120が、第1基板100に設けられている。これにより、このようなパッド部120を第2基板200に設ける場合に比べて、第1基板100と第2基板200とを接続する貫通電極(貫通電極120E)の数を減らすことができる。したがって、絶縁領域212を小さくし、画素回路210を構成するトランジスタの形成領域(半導体層200S)を十分な大きさで確保することができる。これにより、画素回路210に備わるトランジスタのノイズを低減することが可能となり、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 以下、上記実施の形態に係る撮像装置1の変形例について説明する。以下の変形例では、上記実施の形態と共通の構成に同一の符号を付して説明する。
<変形例1>
 図40~図44は、上記実施の形態に係る撮像装置1の平面構成の一変形例を表したものである。図40は、第2基板200の半導体層200Sの表面近傍の平面構成を模式的に表しており、上記実施の形態で説明した図33に対応する。図41は、第1配線層W1と、第1配線層W1に接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表しており、上記実施の形態で説明した図34に対応する。図42は、第1配線層W1および第2配線層W2の平面構成の一例を表しており、上記実施の形態で説明した図35に対応する。図43は、第2配線層W2および第3配線層W3の平面構成の一例を表しており、上記実施の形態で説明した図36に対応する。図44は、第3配線層W3および第4配線層W4の平面構成の一例を表しており、上記実施の形態で説明した図37に対応する。
 本変形例では、図41に示したように、第2基板200のH方向に並ぶ2つの画素共有ユニット539のうち、一方(例えば紙面右側)の画素共有ユニット539の内部レイアウトが、他方(例えば紙面左側)の画素共有ユニット539の内部レイアウトをH方向にのみ反転させた構成となっている。また、一方の画素共有ユニット539の外形線と他方の画素共有ユニット539の外形線との間のV方向のずれが、上記実施の形態で説明したずれ(図34)よりも大きくなっている。このように、V方向のずれを大きくすることにより、他方の画素共有ユニット539の増幅トランジスタAMPと、これに接続されたパッド部120(図32に記載のV方向に並ぶ2つの画素共有ユニット539のうちの他方(紙面下側)のパッド部120)との間の距離を小さくすることができる。このようなレイアウトにより、図40~図44に記載の撮像装置1の変形例1は、H方向に並ぶ2つの画素共有ユニット539の平面レイアウトを互いにV方向に反転させることなく、その面積を、上記実施の形態で説明した第2基板200の画素共有ユニット539の面積と同じにすることができる。なお、第1基板100の画素共有ユニット539の平面レイアウトは、上記実施の形態で説明した平面レイアウト(図32A,図32B)と同じである。したがって、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と同様の効果を得ることができる。第2基板200の画素共有ユニット539の配置は、上記実施の形態および本変形例で説明した配置に限定されるものではない。
<変形例2>
 図45~図50は、上記実施の形態に係る撮像装置1の平面構成の一変形例を表したものである。図45は、第1基板100の平面構成を模式的に表しており、上記実施の形態で説明した図32Aに対応する。図46は、第2基板200の半導体層200Sの表面近傍の平面構成を模式的に表しており、上記実施の形態で説明した図33に対応する。図47は、第1配線層W1と、第1配線層W1に接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表しており、上記実施の形態で説明した図34に対応する。図48は、第1配線層W1および第2配線層W2の平面構成の一例を表しており、上記実施の形態で説明した図35に対応する。図49は、第2配線層W2および第3配線層W3の平面構成の一例を表しており、上記実施の形態で説明した図36に対応する。図50は、第3配線層W3および第4配線層W4の平面構成の一例を表しており、上記実施の形態で説明した図37に対応する。
 本変形例では、各画素回路210の外形が、略正方形の平面形状を有している(図46等)。この点において、本変形例の撮像装置1の平面構成は、上記実施の形態で説明した撮像装置1の平面構成と異なっている。
 例えば、第1基板100の画素共有ユニット539は、上記実施の形態で説明したのと同様に、2行×2列の画素領域にわたって形成されており、略正方形の平面形状を有している(図45)。例えば、各々の画素共有ユニット539では、一方の画素列の画素541Aおよび画素541Cの転送ゲートTG1,TG3の水平部分TGbが、垂直部分TGaに重畳する位置からH方向において画素共有ユニット539の中央部に向かう方向(より具体的には、画素541A,541Cの外縁に向かう方向、かつ画素共有ユニット539の中央部に向かう方向)に延在し、他方の画素列の画素541Bおよび画素541Dの転送ゲートTG2,TG4の水平部分TGbが、垂直部分TGaに重畳する位置からH方向において画素共有ユニット539の外側に向かう方向(より具体的には、画素541B,541Dの外縁に向かう方向、かつ画素共有ユニット539の外側に向かう方向)に延在している。フローティングディフュージョンFDに接続されたパッド部120は、画素共有ユニット539の中央部(画素共有ユニット539のH方向およびV方向の中央部)に設けられ、VSSコンタクト領域118に接続されたパッド部121は、少なくともH方向において(図45ではH方向およびV方向において)画素共有ユニット539の端部に設けられている。
 別の配置例として、転送ゲートTG1,TG2,TG3,TG4の水平部分TGbを垂直部分TGaに対向する領域のみに設けることも考え得る。このときには、上記実施の形態で説明したのと同様に、半導体層200Sが細かく分断されやすい。したがって、画素回路210のトランジスタを大きく形成することが困難となる。一方、転送ゲートTG1,TG2,TG3,TG4の水平部分TGbを、上記変形例のように、垂直部分TGaに重畳する位置からH方向に延在させると、上記実施の形態で説明したのと同様に、半導体層200Sの幅を大きくすることが可能となる。具体的には、転送ゲートTG1,TG3に接続された貫通電極TGV1,TGV3のH方向の位置を、貫通電極120EのH方向の位置に近接させて配置し、転送ゲートTG2,TG4に接続された貫通電極TGV2,TGV4のH方向の位置を、貫通電極121EのH方向の位置に近接して配置することが可能となる(図47)。これにより、上記実施の形態で説明したのと同様に、V方向に延在する半導体層200Sの幅(H方向の大きさ)を大きくすることができる。よって、画素回路210のトランジスタのサイズ、特に増幅トランジスタAMPのサイズを大きくすることが可能となる。その結果、画素信号のシグナル/ノイズ比を改善して、撮像装置1はよりよい画素データ(画像情報)を出力することが可能となる。
 第2基板200の画素共有ユニット539は、例えば、第1基板100の画素共有ユニット539のH方向およびV方向の大きさと略同じであり、例えば、略2行×2列の画素領域に対応する領域にわたって設けられている。例えば、各画素回路210では、V方向に延在する1の半導体層200Sに選択トランジスタSELおよび増幅トランジスタAMPがV方向に並んで配置され、FD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTがV方向に延在する1の半導体層200Sに、V方向に並んで配置されている。この選択トランジスタSELおよび増幅トランジスタAMPが設けられた1の半導体層200Sと、FD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTが設けられた1の半導体層200Sとは、絶縁領域212を介してH方向に並んでいる。この絶縁領域212はV方向に延在している(図46)。
 ここで、第2基板200の画素共有ユニット539の外形について、図46および図47を参照して説明する。例えば、図45に示した第1基板100の画素共有ユニット539は、パッド部120のH方向の一方(図47の紙面左側)に設けられた増幅トランジスタAMPおよび選択トランジスタSELと、パッド部120のH方向の他方(図47の紙面右側)に設けられたFD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTとに接続されている。この増幅トランジスタAMP、選択トランジスタSEL、FD変換ゲイン切替トランジスタFDGおよびリセットトランジスタRSTを含む第2基板200の共有ユニット541の外形は、次の4つの外縁により決まる。
 第1の外縁は、選択トランジスタSELおよび増幅トランジスタAMPを含む半導体層200SのV方向の一端(図47の紙面上側の端)の外縁である。この第1の外縁は、当該画素共有ユニット539に含まれる増幅トランジスタAMPと、この画素共有ユニット539のV方向の一方(図47の紙面上側)に隣り合う画素共有ユニット539に含まれる選択トランジスタSELとの間に設けられている。より具体的には、第1の外縁は、これら増幅トランジスタAMPと選択トランジスタSELとの間の素子分離領域213のV方向の中央部に設けられている。第2の外縁は、選択トランジスタSELおよび増幅トランジスタAMPを含む半導体層200SのV方向の他端(図47の紙面下側の端)の外縁である。この第2の外縁は、当該画素共有ユニット539に含まれる選択トランジスタSELと、この画素共有ユニット539のV方向の他方(図47の紙面下側)に隣り合う画素共有ユニット539に含まれる増幅トランジスタAMPとの間に設けられている。より具体的には、第2の外縁は、これら選択トランジスタSELと増幅トランジスタAMPとの間の素子分離領域213のV方向の中央部に設けられている。第3の外縁は、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGを含む半導体層200SのV方向の他端(図47の紙面下側の端)の外縁である。この第3の外縁は、当該画素共有ユニット539に含まれるFD変換ゲイン切替トランジスタFDGと、この画素共有ユニット539のV方向の他方(図47の紙面下側)に隣り合う画素共有ユニット539に含まれるリセットトランジスタRSTとの間に設けられている。より具体的には、第3の外縁は、これらFD変換ゲイン切替トランジスタFDGとリセットトランジスタRSTとの間の素子分離領域213のV方向の中央部に設けられている。第4の外縁は、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGを含む半導体層200SのV方向の一端(図47の紙面上側の端)の外縁である。この第4の外縁は、当該画素共有ユニット539に含まれるリセットトランジスタRSTと、この画素共有ユニット539のV方向の一方(図47の紙面上側)に隣り合う画素共有ユニット539に含まれるFD変換ゲイン切替トランジスタFDG(不図示)との間に設けられている。より具体的には、第4の外縁は、これらリセットトランジスタRSTとFD変換ゲイン切替トランジスタFDGとの間の素子分離領域213(不図示)のV方向の中央部に設けられている。
 このような第1,第2,第3,第4の外縁を含む第2基板200の画素共有ユニット539の外形では、第1,第2の外縁に対して、第3,第4の外縁がV方向の一方側にずれて配置されている(言い換えればV方向の一方側にオフセットされている)。このようなレイアウトを用いることにより、増幅トランジスタAMPのゲートおよびFD変換ゲイン切替トランジスタFDGのソースをともに、パッド部120にできるだけ近接して配置することが可能となる。したがって、これらを接続する配線の面積を小さくし、撮像装置1の微細化を行いやすくなる。なおVSSコンタクト領域218は、選択トランジスタSELおよび増幅トランジスタAMPを含む半導体層200Sと、リセットトランジスタRSTおよびFD変換ゲイン切替トランジスタFDGを含む半導体層200Sとの間に設けられている。例えば、複数の画素回路210は、互いに同じ配置を有している。
 このような第2基板200を有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。第2基板200の画素共有ユニット539の配置は、上記実施の形態および本変形例で説明した配置に限定されるものではない。
<変形例3>
 図51~図56は、上記実施の形態に係る撮像装置1の平面構成の一変形例を表したものである。図51は、第1基板100の平面構成を模式的に表しており、上記実施の形態で説明した図32Bに対応する。図52は、第2基板200の半導体層200Sの表面近傍の平面構成を模式的に表しており、上記実施の形態で説明した図8に対応する。図53は、第1配線層W1と、第1配線層W1に接続された半導体層200Sおよび第1基板100の各部の構成を模式的に表しており、上記実施の形態で説明した図34に対応する。図54は、第1配線層W1および第2配線層W2の平面構成の一例を表しており、上記実施の形態で説明した図35に対応する。図55は、第2配線層W2および第3配線層W3の平面構成の一例を表しており、上記実施の形態で説明した図36に対応する。図56は、第3配線層W3および第4配線層W4の平面構成の一例を表しており、上記実施の形態で説明した図37に対応する。
 本変形例では、第2基板200の半導体層200Sが、H方向に延在している(図53)。即ち、上記図46等に示した撮像装置1の平面構成を90度回転させた構成に略対応している。
 例えば、第1基板100の画素共有ユニット539は、上記実施の形態で説明したのと同様に、2行×2列の画素領域にわたって形成されており、略正方形の平面形状を有している(図51)。例えば、各々の画素共有ユニット539では、一方の画素行の画素541Aおよび画素541Bの転送ゲートTG1,TG2が、V方向において画素共有ユニット539の中央部に向かって延在し、他方の画素行の画素541Cおよび画素541Dの転送ゲートTG3,TG4が、V方向において画素共有ユニット539の外側方向に延在している。フローティングディフュージョンFDに接続されたパッド部120は、画素共有ユニット539の中央部に設けられ、VSSコンタクト領域118に接続されたパッド部121は、少なくともV方向において(図51ではV方向およびH方向において)画素共有ユニット539の端部に設けられている。このとき、転送ゲートTG1,TG2の貫通電極TGV1,TGV2のV方向の位置が貫通電極120EのV方向の位置に近づき、転送ゲートTG3,TG4の貫通電極TGV3,TGV4のV方向の位置が貫通電極121EのV方向の位置に近づく(図53)。したがって、上記実施の形態で説明したのと同様の理由により、H方向に延在する半導体層200Sの幅(V方向の大きさ)を大きくすることができる。よって、増幅トランジスタAMPのサイズを大きくし、ノイズを抑えることが可能となる。
 各々の画素回路210では、選択トランジスタSELおよび増幅トランジスタAMPがH方向に並んで配置され、選択トランジスタSELと絶縁領域212を間にしてV方向に隣り合う位置にリセットトランジスタRSTが配置されている(図52)。FD変換ゲイン切替トランジスタFDGは、リセットトランジスタRSTとH方向に並んで配置されている。VSSコンタクト領域218は、絶縁領域212に島状に設けられている。例えば、第3配線層W3はH方向に延在し(図55)、第4配線層W4はV方向に延在している(図56)。
 このような第2基板200を有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。第2基板200の画素共有ユニット539の配置は、上記実施の形態および本変形例で説明した配置に限定されるものではない。例えば、上記実施の形態および変形例1で説明した半導体層200Sが、H方向に延在していてもよい。
<変形例4>
 図57は、上記実施の形態に係る撮像装置1の断面構成の一変形例を模式的に表したものである。図57は、上記実施の形態で説明した図3に対応する。本変形例では、撮像装置1が、コンタクト部201,202,301,302に加えて、画素アレイ部540の中央部に対向する位置にコンタクト部203,204,303,304を有している。この点において、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と異なっている。
 コンタクト部203,204は、第2基板200に設けられており、第3基板300との接合面の露出されている。コンタクト部303,304は、第3基板300に設けられており、第2基板200との接合面に露出されている。コンタクト部203は、コンタクト部303と接しており、コンタクト部204は、コンタクト部304と接している。即ち、この撮像装置1では、第2基板200と第3基板300とが、コンタクト部201,202,301,302に加えてコンタクト部203,204,303,304により接続されている。
 次に、図58および図59を用いてこの撮像装置1の動作について説明する。図58には、外部から撮像装置1に入力される入力信号と、電源電位および基準電位の経路を矢印で表す。図59には、撮像装置1から外部に出力される画素信号の信号経路を矢印で表している。例えば、入力部510Aを介して撮像装置1に入力された入力信号は、第3基板300の行駆動部520へ伝送され、行駆動部520で行駆動信号が作り出される。この行駆動信号は、コンタクト部303,203を介して第2基板200に送られる。更に、この行駆動信号は、配線層200T内の行駆動信号線542を介して、画素アレイ部540の画素共有ユニット539各々に到達する。第2基板200の画素共有ユニット539に到達した行駆動信号のうち、転送ゲートTG以外の駆動信号は画素回路210に入力されて、画素回路210に含まれる各トランジスタが駆動される。転送ゲートTGの駆動信号は貫通電極TGVを介して第1基板100の転送ゲートTG1,TG2,TG3,TG4に入力され、画素541A,541B,541C,541Dが駆動される。また、撮像装置1の外部から、第3基板300の入力部510A(入力端子511)に供給された電源電位および基準電位は、コンタクト部303,203を介して第2基板200に送られ、配線層200T内の配線を介して、画素共有ユニット539各々の画素回路210に供給される。基準電位は、さらに貫通電極121Eを介して、第1基板100の画素541A,541B,541C,541Dへも供給される。一方、第1基板100の画素541A,541B,541C,541Dで光電変換された画素信号は、画素共有ユニット539毎に第2基板200の画素回路210に送られる。この画素信号に基づく画素信号は、画素回路210から垂直信号線543およびコンタクト部204,304を介して第3基板300に送られる。この画素信号は、第3基板300の列信号処理部550および画像信号処理部560で処理された後、出力部510Bを介して外部に出力される。
 このようなコンタクト部203,204,303,304を有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。コンタクト部303,304を介した配線の接続先である、第3基板300の回路等の設計に応じてコンタクト部の位置および数等を変えることができる。
<変形例5>
 図60は、上記実施の形態に係る撮像装置1の断面構成の一変形例を表したものである。図60は、上記実施の形態で説明した図31に対応する。本変形例では、第1基板100にプレーナー構造を有する転送トランジスタTRが設けられている。この点において、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と異なっている。
 この転送トランジスタTRは、水平部分TGbのみにより転送ゲートTGが構成されている。換言すれば、転送ゲートTGは、垂直部分TGaを有しておらず、半導体層100Sに対向して設けられている。
 このようなプレーナー構造の転送トランジスタTRを有する撮像装置1も、上記実施の形態で説明したのと同様の効果が得られる。更に、第1基板100にプレーナー型の転送ゲートTGを設けることにより、縦型の転送ゲートTGを第1基板100に設ける場合に比べて、より半導体層100Sの表面近くまでフォトダイオードPDを形成し、これにより、飽和信号量(Qs)を増加させることも考え得る。また、第1基板100にプレーナー型の転送ゲートTGを形成する方法は、第1基板100に縦型の転送ゲートTGを形成する方法に比べて、製造工程数が少なく、製造工程に起因したフォトダイオードPDへの悪影響が生じにくい、とも考え得る。
<変形例6>
 図61は、上記実施の形態に係る撮像装置1の画素回路の一変形例を表したものである。図61は、上記実施の形態で説明した図29に対応する。本変形例では、1つの画素(画素541A)毎に画素回路210が設けられている。即ち、画素回路210は、複数の画素で共有されていない。この点において、本変形例の撮像装置1は、上記実施の形態で説明した撮像装置1と異なっている。
 本変形例の撮像装置1は、画素541Aと画素回路210とを互いに異なる基板(第1基板100および第2基板200)に設ける点では、上記実施の形態で説明した撮像装置1と同じである。このため、本変形例に係る撮像装置1も、上記実施の形態で説明したのと同様の効果を得ることができる。
<変形例7>
 図62は、上記実施の形態で説明した画素分離部117の平面構成の一変形例を表したものである。画素541A,541B,541C,541D各々を囲む画素分離部117に、隙間が設けられていてもよい。即ち、画素541A,541B,541C,541Dの全周が画素分離部117に囲まれていなくてもよい。例えば、画素分離部117の隙間は、パッド部120,121近傍に設けられている(図32B参照)。
 上記実施の形態では、画素分離部117が半導体層100Sを貫通するFTI構造を有する例(図31参照)を説明したが、画素分離部117はFTI構造以外の構成を有していてもよい。例えば、画素分離部117は、半導体層100Sを完全に貫通するように設けられていなくてもよく、いわゆる、DTI(Deep Trench Isolation)構造を有していてもよい。
<適用例>
 図63は、上記実施の形態およびその変形例に係る撮像装置1を備えた撮像システム7の概略構成の一例を表したものである。
 撮像システム7は、例えば、デジタルスチルカメラやビデオカメラ等の撮像装置や、スマートフォンやタブレット型端末等の携帯端末装置などの電子機器である。撮像システム7は、例えば、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246、操作部247および電源部248を備えている。撮像システム7において、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246、操作部247および電源部248は、バスライン249を介して相互に接続されている。
 上記実施の形態およびその変形例に係る撮像装置1は、入射光に応じた画像データを出力する。DSP回路243は、上記実施の形態およびその変形例に係る撮像装置1から出力される信号(画像データ)を処理する信号処理回路である。フレームメモリ244は、DSP回路243により処理された画像データを、フレーム単位で一時的に保持する。表示部245は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、上記実施の形態およびその変形例に係る撮像装置1で撮像された動画又は静止画を表示する。記憶部246は、上記実施の形態およびその変形例に係る撮像装置1で撮像された動画又は静止画の画像データを、半導体メモリやハードディスク等の記録媒体に記録する。操作部247は、ユーザによる操作に従い、撮像システム7が有する各種の機能についての操作指令を発する。電源部248は、上記実施の形態およびその変形例に係る撮像装置1、DSP回路243、フレームメモリ244、表示部245、記憶部246および操作部247の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 次に、撮像システム7における撮像手順について説明する。
 図64は、撮像システム7における撮像動作のフローチャートの一例を表す。ユーザは、操作部247を操作することにより撮像開始を指示する(ステップS101)。すると、操作部247は、撮像指令を撮像装置1に送信する(ステップS102)。撮像装置1(具体的にはシステム制御回路36)は、撮像指令を受けると、所定の撮像方式での撮像を実行する(ステップS103)。
 撮像装置1は、撮像により得られた画像データをDSP回路243に出力する。ここで、画像データとは、フローティングディフュージョンFDに一時的に保持された電荷に基づいて生成された画素信号の全画素分のデータである。DSP回路243は、撮像装置1から入力された画像データに基づいて所定の信号処理(例えばノイズ低減処理など)を行う(ステップS104)。DSP回路243は、所定の信号処理がなされた画像データをフレームメモリ244に保持させ、フレームメモリ244は、画像データを記憶部246に記憶させる(ステップS105)。このようにして、撮像システム7における撮像が行われる。
 本適用例では、上記実施の形態およびその変形例に係る撮像装置1が撮像システム7に適用される。これにより、撮像装置1を小型化もしくは高精細化することができるので、小型もしくは高精細な撮像システム7を提供することができる。
<応用例>
[応用例1]
 本開示に係る技術(本技術)は、様々な電子機器へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図65は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図65に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図65の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図66は、撮像部12031の設置位置の例を示す図である。
 図66では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図66には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上記実施の形態およびその変形例に係る撮像装置1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、ノイズの少ない高精細な撮影画像を得ることができるので、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
[応用例2]
 図67は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図67では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図68は、図67に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、撮像部11402を小型化もしくは高精細化することができるので、小型もしくは高精細な内視鏡11100を提供することができる。
 以上、実施の形態およびその変形例、適用例ならびに応用例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
 なお、本技術は、以下のような構成をとることができる。
(1)
 入射光を画素信号に光電変換する光電変換素子を含む画素部と、
 前記画素部からの画素信号を参照信号と比較して比較結果を出力する比較部を含み、前記比較結果に基づいて前記画素信号をデジタル信号へ変換するAD変換部と、を備え、
 前記比較部は、前記画素信号および前記参照信号を入力し該画素信号と該参照信号との差電圧を出力する差動回路と、前記差動回路に所定のミラー比に応じた電流を流す能動負荷回路としてのカレントミラー回路とを含み、
 前記カレントミラー回路は、基板上に設けられ、チャネル領域の上面または側面が前記基板の(100)結晶面に対して略平行または略垂直な面内にある第1および第2トランジスタを含む、固体撮像装置。
(2)
 前記第1および第2トランジスタは、p型トランジスタである、(1)に記載の固体撮像装置。
(3)
 前記基板が45度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直または略平行方向である、(1)または(2)に記載の固体撮像装置。
(4)
 前記基板が0度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、(1)または(2)に記載の固体撮像装置。
(5)
 前記第1および第2トランジスタは、前記基板の表面に対して略平行な上面と、前記基板の表面に対して略垂直な側面とを有するチャネル領域を有し、
 前記チャネル領域の前記上面および前記側面は、前記基板の(100)結晶面に対して略平行または略垂直な結晶面内にある、(1)から(4)のいずれか一項に記載の固体撮像装置。
(6)
 前記画素部は、第1基板に設けられており、
 前記比較部は、前記第1基板とは別の第2基板に設けられており、
 前記第1基板と前記第2基板とは積層されており、
 前記画素部と前記比較部とは、前記第1または第2基板に設けられた貫通電極、または、前記第1基板の配線と前記第2基板の配線との配線接合によって電気的に接続されている、(1)から(5)のいずれか一項に記載の固体撮像装置。
(7)
 前記画素部および前記比較部は、同一の第1基板に設けられ、
 前記比較部は、前記第1基板の前記画素部の上方に設けられ、
 前記画素部と前記比較部とは、前記画素部と前記比較部との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、(1)から(5)のいずれか一項に記載の固体撮像装置。
(8)
 前記差動回路は、第1基板に設けられており、
 前記カレントミラー回路は、前記第1基板とは別の第2基板に設けられており、
 前記第1基板と前記第2基板とは積層されており、
 前記差動回路と前記カレントミラー回路とは、前記第1基板の配線と前記第2基板の配線との接合によって電気的に接続されている、(1)から(5)のいずれか一項に記載の固体撮像装置。
(9)
 前記画素部および前記差動回路は、同一の第1基板に設けられ、
 前記差動回路は、前記第1基板の前記画素部の上方に設けられ、
 前記画素部と前記差動回路とは、前記画素部と前記差動回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、(8)に記載の固体撮像装置。
(10)
 前記画素部および前記比較部は、同一の第1基板に設けられ、
 前記差動回路は、前記画素部のトランジスタと同一層に設けられており、
 前記カレントミラー回路は、前記第1基板の前記画素部の上方に設けられ、
 前記差動回路と前記カレントミラー回路とは、前記差動回路と前記カレントミラー回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、(1)から(5)のいずれか一項に記載の固体撮像装置。
(11)
 前記第1および第2トランジスタは、n型トランジスタである、(1)に記載の固体撮像装置。
(12)
 前記基板が45度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、(11)に記載の固体撮像装置。
(13)
 前記基板が0度ノッチ基板であり、
 前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直度または略平行方向である、(11)に記載の固体撮像装置。
(14)
 前記第1および第2トランジスタは、前記基板の表面に対して略平行な上面と、前記基板の表面に対して略垂直な側面とを有するチャネル領域を有し、
 前記チャネル領域の前記上面および前記側面は、前記基板の(110)結晶面に対して略平行または略垂直な結晶面内にある、(11)から(13)のいずれか一項に記載の固体撮像装置。
(15)
 (1)から(14)のいずれかの固体撮像装置を備える電子機器。
 尚、本開示は、上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
100 第1基板、200 第2基板、300 第3基板、210 コンパレータ、539 画素共有ユニット、210a カレントミラー回路、210b 差動回路、210c 電流源、Tp1,Tp2 p型トランジスタ、Tn1~Tn4 n型トランジスタ、PD フォトダイオード、FD フローティングディフュージョン、TR 転送トランジスタ、OF オーバーフローゲート、CCC 配線接合、VIA ビアコンタクト、PLG コンタクトプラグ、W0 0度ノッチ基板、W45 45度ノッチ基板、CHtp チャネル領域、Gtp ゲート電極、D1,D2 チャネル長方向、

Claims (15)

  1.  入射光を画素信号に光電変換する光電変換素子を含む画素部と、
     前記画素部からの画素信号を参照信号と比較して比較結果を出力する比較部を含み、前記比較結果に基づいて前記画素信号をデジタル信号へ変換するAD変換部と、を備え、
     前記比較部は、前記画素信号および前記参照信号を入力し該画素信号と該参照信号との差電圧を出力する差動回路と、前記差動回路に所定のミラー比に応じた電流を流す能動負荷回路としてのカレントミラー回路とを含み、
     前記カレントミラー回路は、基板上に設けられ、チャネル領域の上面または側面が前記基板の(100)結晶面に対して略平行または略垂直な面内にある第1および第2トランジスタを含む、固体撮像装置。
  2.  前記第1および第2トランジスタは、p型トランジスタである、請求項1に記載の固体撮像装置。
  3.  前記基板が45度ノッチ基板であり、
     前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直または略平行方向である、請求項1に記載の固体撮像装置。
  4.  前記基板が0度ノッチ基板であり、
     前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、請求項1に記載の固体撮像装置。
  5.  前記第1および第2トランジスタは、前記基板の表面に対して略平行な上面と、前記基板の表面に対して略垂直な側面とを有するチャネル領域を有し、
     前記チャネル領域の前記上面および前記側面は、前記基板の(100)結晶面に対して略平行または略垂直な結晶面内にある、請求項1に記載の固体撮像装置。
  6.  前記画素部は、第1基板に設けられており、
     前記比較部は、前記第1基板とは別の第2基板に設けられており、
     前記第1基板と前記第2基板とは積層されており、
     前記画素部と前記比較部とは、前記第1または第2基板に設けられた貫通電極、または、前記第1基板の配線と前記第2基板の配線との配線接合によって電気的に接続されている、請求項1に記載の固体撮像装置。
  7.  前記画素部および前記比較部は、同一の第1基板に設けられ、
     前記比較部は、前記第1基板の前記画素部の上方に設けられ、
     前記画素部と前記比較部とは、前記画素部と前記比較部との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、請求項1に記載の固体撮像装置。
  8.  前記差動回路は、第1基板に設けられており、
     前記カレントミラー回路は、前記第1基板とは別の第2基板に設けられており、
     前記第1基板と前記第2基板とは積層されており、
     前記差動回路と前記カレントミラー回路とは、前記第1基板の配線と前記第2基板の配線との接合によって電気的に接続されている、請求項1に記載の固体撮像装置。
  9.  前記画素部および前記差動回路は、同一の第1基板に設けられ、
     前記差動回路は、前記第1基板の前記画素部の上方に設けられ、
     前記画素部と前記差動回路とは、前記画素部と前記差動回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、請求項8に記載の固体撮像装置。
  10.  前記画素部および前記比較部は、同一の第1基板に設けられ、
     前記差動回路は、前記画素部のトランジスタと同一層に設けられており、
     前記カレントミラー回路は、前記第1基板の前記画素部の上方に設けられ、
     前記差動回路と前記カレントミラー回路とは、前記差動回路と前記カレントミラー回路との間の層間絶縁膜に設けられたコンタクトプラグによって電気的に接続されている、請求項1に記載の固体撮像装置。
  11.  前記第1および第2トランジスタは、n型トランジスタである、請求項1に記載の固体撮像装置。
  12.  前記基板が45度ノッチ基板であり、
     前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して約45度または約135度傾斜する方向である、請求項11に記載の固体撮像装置。
  13.  前記基板が0度ノッチ基板であり、
     前記第1および第2トランジスタのチャネル長方向は、前記基板の表面において、ノッチ面に対して略垂直度または略平行方向である、請求項11に記載の固体撮像装置。
  14.  前記第1および第2トランジスタは、前記基板の表面に対して略平行な上面と、前記基板の表面に対して略垂直な側面とを有するチャネル領域を有し、
     前記チャネル領域の前記上面および前記側面は、前記基板の(110)結晶面に対して略平行または略垂直な結晶面内にある、請求項11に記載の固体撮像装置。
  15.  請求項1に記載の固体撮像装置を備える電子機器。
PCT/JP2022/048602 2022-01-13 2022-12-28 固体撮像装置および電子機器 WO2023136174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022003922 2022-01-13
JP2022-003922 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023136174A1 true WO2023136174A1 (ja) 2023-07-20

Family

ID=87279113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048602 WO2023136174A1 (ja) 2022-01-13 2022-12-28 固体撮像装置および電子機器

Country Status (1)

Country Link
WO (1) WO2023136174A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227205A (ja) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2021084959A1 (ja) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2021124974A1 (ja) * 2019-12-16 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP2021136541A (ja) * 2020-02-26 2021-09-13 キヤノン株式会社 比較器、ad変換器、光電変換装置及び撮像システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227205A (ja) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2021084959A1 (ja) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2021124974A1 (ja) * 2019-12-16 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP2021136541A (ja) * 2020-02-26 2021-09-13 キヤノン株式会社 比較器、ad変換器、光電変換装置及び撮像システム

Similar Documents

Publication Publication Date Title
US11985443B2 (en) Solid-state image sensor
WO2020262559A1 (ja) 撮像装置
WO2020262558A1 (ja) 撮像装置
WO2020262502A1 (ja) 固体撮像装置
WO2022085722A1 (ja) 撮像装置および受光素子
WO2020262199A1 (ja) 半導体装置および撮像装置
KR20220023760A (ko) 촬상 장치
WO2020262323A1 (ja) 撮像装置
JP2023169424A (ja) 固体撮像素子
WO2022138467A1 (ja) 固体撮像装置
TW202107722A (zh) 攝像裝置
JP2021005619A (ja) 撮像装置
WO2020262461A1 (ja) 固体撮像装置及び電子機器
WO2023136174A1 (ja) 固体撮像装置および電子機器
WO2023157627A1 (ja) 比較器、光検出素子および電子機器
WO2023243440A1 (ja) 比較器、光検出素子および電子機器
WO2023223743A1 (ja) 光検出素子
WO2024176641A1 (ja) 固体撮像装置及び電子機器
WO2024214517A1 (ja) 光検出装置及び電子機器
WO2024185529A1 (ja) 光検出装置及び電子機器
WO2024090081A1 (ja) 増幅回路、コンパレータおよび固体撮像装置
TWI853040B (zh) 半導體裝置及攝像裝置
WO2023058484A1 (ja) 撮像装置
WO2024203423A1 (ja) 光検出装置及び電子機器
WO2023106023A1 (ja) 光検出装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE