WO2023056893A1 - 黄水多糖基水凝胶及其制备方法和应用 - Google Patents

黄水多糖基水凝胶及其制备方法和应用 Download PDF

Info

Publication number
WO2023056893A1
WO2023056893A1 PCT/CN2022/123118 CN2022123118W WO2023056893A1 WO 2023056893 A1 WO2023056893 A1 WO 2023056893A1 CN 2022123118 W CN2022123118 W CN 2022123118W WO 2023056893 A1 WO2023056893 A1 WO 2023056893A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
yellow water
mixture
polysaccharide
whsp
Prior art date
Application number
PCT/CN2022/123118
Other languages
English (en)
French (fr)
Inventor
吴继红
吴紫妍
黄明泉
孙宝国
孙啸涛
郑福平
孙金沅
李贺贺
董蔚
孟楠
王柏文
霍嘉颖
Original Assignee
北京工商大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工商大学 filed Critical 北京工商大学
Priority to US18/568,864 priority Critical patent/US20240181426A1/en
Publication of WO2023056893A1 publication Critical patent/WO2023056893A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Definitions

  • the present application relates to the field of hydrogel technology, in particular to a yellow water polysaccharide-based hydrogel and its preparation method and application.
  • Dye wastewater pollution represented by methylene blue is a severe problem facing the current environment.
  • Methylene blue with a chemical formula of C 16 H 18 N 3 ClS, is a phenothiazine salt, widely used in chemical indicators, dyes, biological stains and medicines.
  • Methylene blue is dark green bronze crystal or powder, soluble in water and ethanol, insoluble in ether.
  • Methylene blue is relatively stable in the air, but its aqueous solution is alkaline and poisonous.
  • High-concentration (5-10 mg/kg; 25-50 mL of 1% solution) methylene blue solution can oxidize hemoglobin to generate methemoglobin.
  • Traditional methylene blue treatment methods include: chemical methods such as adding tannic acid and metal calcium ions to methylene blue wastewater, and then flocculant to precipitate them after mixing, but this method will introduce new polluting compounds while treating wastewater; Phosphoric acid-modified peanut shells are prepared to adsorb methylene blue, but this method relies on plant natural resources, has the problem of insufficient raw materials, high cost, and poor stability.
  • the application provides a hydrogel, which includes polyvinyl alcohol, sodium carboxymethyl cellulose and yellow water polysaccharide, the sum of the quality of the polyvinyl alcohol and the sodium carboxymethyl cellulose is the same as that of the sodium carboxymethyl cellulose
  • the mass ratio of yellow water polysaccharide is 100:(1.8 ⁇ 8.2).
  • the mass ratio of the sum of the polyvinyl alcohol and the sodium carboxymethylcellulose to the yellow water polysaccharide is 100:(1.8-2.2).
  • the mass ratio of the polyvinyl alcohol to the sodium carboxymethyl cellulose is (2.8-3.2): (1.8-2.2).
  • the polyvinyl alcohol, the sodium carboxymethylcellulose and the yellow water polysaccharide are connected by intermolecular and/or intramolecular hydrogen bonds, and the hydrogel has a porous structure.
  • the yellow polysaccharide is selected from cerevisiae polysaccharides.
  • the hydrogel further includes magnetic particles doped in the hydrogel matrix.
  • the present application provides an application of the above-mentioned hydrogel as a dye adsorbent.
  • the dye is selected from methylene blue.
  • the working pH of the hydrogel as a dye adsorbent is 2-10, and the working temperature is 25°C-65°C.
  • the present application provides a method for preparing the hydrogel as described above, which includes the following steps:
  • the swelling process in step a includes the steps of heating and stirring, the heating temperature is 55°C-65°C, and the stirring time is 30min-60min;
  • the heating temperature in step b is 88°C to 98°C, and the stirring time is 50min to 70min;
  • the temperature after cooling in step c is 20°C to 30°C;
  • the step of mixing in step d is to drop the solution of yellow water polysaccharide into the first mixture
  • the freezing temperature in step e is -20°C to -15°C
  • the thawing temperature is 25°C to 30°C
  • the single freezing time is 7h to 9h
  • the single thawing time is 4h to 6h
  • the number of cycles is 5 to 8 times.
  • a step of stirring is further included, and the stirring time is 20 minutes to 40 minutes.
  • step d further includes a step of stirring the second mixture, and the stirring time is 20 minutes to 40 minutes.
  • it also includes sequentially immersing the gel-like product obtained in step e in a solution added with iron ions, hydroxide ions and magnetic particles to react;
  • the iron ion is a mixture of Fe 2+ and Fe 3+ , the concentration ratio of Fe 2+ and Fe 3+ is (0.8-1.2):2, the immersion time is 3h-5h, and the hydroxide ion concentration is 1.8mol/L ⁇ 2.2mol/L, immersion time is 3h ⁇ 5h;
  • a step of washing the reacted product to neutrality is also included.
  • the step of extracting the yellow water polysaccharide comprises: sequentially centrifuging the brewing yellow water, ultrafiltration, alcohol precipitation treatment, centrifugation, collecting the precipitate and drying;
  • the conditions for the first centrifugation in the extraction step are that the centrifugation temperature is 0°C-4°C, the centrifugal force is 4000g-6000g, and the centrifugation time is 15min-30min, and the conditions for the second and subsequent centrifugation are that the centrifugation temperature is 0 °C ⁇ 4°C, the centrifugal force is 8000g ⁇ 10000g, and the centrifugal time is 5min ⁇ 25min.
  • Fig. 1 is the hydrogel photo of adding magnetic particle Fe 3 O 4 of an embodiment of the present application
  • Fig. 2 is the hydrogel material of an embodiment of the present application and the infrared spectrogram of hydrogel, wherein (a) the infrared spectrogram of CMC, PVA, WHSP, (b) m-PVA/CMC, m-PVA/CMC/ WHSP-2%, 4%, 8% infrared spectrum;
  • Fig. 3 is the hydrogel material of an embodiment of the present application and hydrogel XRD diffraction spectrum, wherein (a) the XRD diffraction spectrum of WHSP, CMC, PVA, (b) m-PVA/CMC, m-PVA/ CMC/WHSP-2%, 4%, 8% XRD diffraction spectrum;
  • Fig. 4 is a hydrogel magnetic experiment diagram of an embodiment of the present application.
  • Fig. 5 is a hydrogel hysteresis loop diagram of an embodiment of the present application.
  • Fig. 6 is the hydrogel SEM analysis diagram of an embodiment of the present application, wherein (a) WHSP, (b) m-PVA/CMC, (c) m-PVA/CMC/WHSP-2%, (d) m- PVA/CMC/WHSP-4%, (e)m-PVA/CMC/WHSP-8%;
  • Figure 7 is a hydrogel TG-DSC analysis diagram of an embodiment of the present application, wherein (a) m-PVA/CMC, (b) m-PVA/CMC/WHSP-2%, (c) PVA/CMC/WHSP -2%;
  • Figure 8 is a swelling kinetics curve of a hydrogel in distilled water according to an embodiment of the present application.
  • Fig. 9 is the swelling kinetics curve of the hydrogel of an embodiment of the present application in different pH aqueous solutions
  • Fig. 10 is a graph showing the influence of pH on the adsorption performance of hydrogel according to an embodiment of the present application.
  • Figure 11 is a kinetic analysis chart of an embodiment of the present application adding 2% WHSP hydrogel to adsorb methylene blue at different temperatures Kinetic analysis, wherein (a) kinetics, (b) pseudo-first-order, (c) pseudo-second-order dynamic model;
  • Figure 12 is a fitting curve of the Weber equation of the hydrogel m-PVA/CMC/WHSP-2% intragranular diffusion model of an embodiment of the present application;
  • Figure 13 is a kinetic analysis diagram of adding 4% WHSP hydrogel to adsorb methylene blue at different temperatures in an embodiment of the present application, wherein (a) kinetics, (b) pseudo-first-order, (c) pseudo-second-order kinetic model ;
  • Fig. 14 is a fitting curve of the Weber equation of the hydrogel m-PVA/CMC/WHSP-4% intragranular diffusion model of an embodiment of the present application;
  • Figure 15 is a kinetic analysis diagram of adding 8% WHSP hydrogel to adsorb methylene blue at different temperatures in an embodiment of the present application, wherein (a) kinetics, (b) pseudo-first-order, (c) pseudo-second-order kinetic model ;
  • Fig. 16 is a fitting curve of the Weber equation of the intra-particle diffusion model of the hydrogel m-PVA/CMC/WHSP-8% according to an embodiment of the present application.
  • Yellow water polysaccharide is crude polysaccharide extracted from yellow water.
  • the production process of liquor brewing uses the starch and sugar in the raw materials for alcoholic fermentation, and other ingredients are rarely used.
  • Vitamins, phenols and other compounds contained in sorghum, rice, corn, glutinous rice, wheat, etc., as raw materials for brewing wine, as well as small molecular peptides, amino acids and other substances produced during fermentation and metabolism have antioxidant activity. These substances dissolve in the water environment of the fermented grains and gradually deposit on the bottom of the cellar. With the end of fermentation, the liquid produced by the fermented grains after long-term fermentation and metabolism and the liquid collected at the bottom of the fermented grains themselves due to the precipitation of water is the traditional wine-making yellow water.
  • Yellow water generally contains 1% to 2% residual starch, 0.3% to 0.7% residual sugar, 4% to 5% ethanol, organic acids, precursors of liquor flavor, etc., and rich antioxidant active substances , has high use value. Yellow water is the product of fermentation in the cellar during the winemaking process.
  • the application provides a hydrogel, comprising polyvinyl alcohol, sodium carboxymethyl cellulose and yellow water polysaccharide, the mass ratio of the sum of the quality of polyvinyl alcohol and sodium carboxymethyl cellulose to yellow water polysaccharide is 100: (1.8 ⁇ 8.2).
  • This application proposes a solution for treating dye wastewater with hydrogel.
  • the hydrogel is prepared from yellow water polysaccharide, polyvinyl alcohol, and sodium carboxymethyl cellulose, which is used to absorb dyes such as methylene blue in wastewater.
  • the hydrogel not only swells Strong property, large adsorption surface area, large adsorption capacity, and low price, which is conducive to popularization and application.
  • the study found that the addition of yellow water polysaccharides can significantly increase the adsorption and swelling properties of the hydrogel.
  • the mass ratio of the mass sum of polyvinyl alcohol and sodium carboxymethyl cellulose to yellow water polysaccharide can be 100:2, 100:3, 100:4, 100:5, 100:6, 100: 7. 100:8.
  • the mass ratio of the sum of the mass of polyvinyl alcohol and sodium carboxymethyl cellulose to the mass of yellow water polysaccharide is 100:(1.8-2.2).
  • the mass ratio of polyvinyl alcohol to sodium carboxymethyl cellulose is (2.8-3.2): (1.8-2.2).
  • polyvinyl alcohol, sodium carboxymethylcellulose and yellow water polysaccharide are connected by intermolecular and/or intramolecular hydrogen bonds.
  • the yellow water polysaccharide is selected from polysaccharides extracted from the yellow water of liquor fermentation products.
  • the brewing yellow water comes from liquor fermentation products.
  • the liquor is, for example, selected from any one or more of Luzhou-flavored, Maotai-flavored, and Fen-flavored liquors.
  • the liquor may be Wuliangye or the like.
  • the hydrogel further includes magnetic particles doped in the above hydrogel matrix.
  • the magnetic particles and other components of the hydrogel rely on the physical cross-linking of hydrogen bond interactions to form an interpenetrating network of magnetic hydrogels.
  • the magnetic particles are selected from any one or both of Fe 2 O 3 and Fe 3 O 4 .
  • the hydrogel is a porous structure.
  • the present application also provides the application of the above-mentioned hydrogel as a dye adsorbent.
  • the dye is selected from methylene blue.
  • the hydrogel works as a dye adsorbent at a pH of 2-10.
  • the working pH can be 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the working temperature of the hydrogel as a dye adsorbent is between 25°C and 65°C. Specifically, the working temperature may be 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C or 65°C.
  • the present application further provides a method for preparing the above-mentioned hydrogel, comprising the following steps:
  • the swelling process in step a includes the steps of heating and stirring.
  • the heating temperature is 55°C-65°C, and the stirring time is 30min-60min.
  • the heating temperature in step b is 88°C-98°C, and the stirring time is 50min-70min.
  • the temperature after cooling in step c is 20°C to 30°C.
  • a step of stirring is further included, and the stirring time is 20 minutes to 40 minutes.
  • the step of mixing in step d is to drop the solution of yellow water polysaccharide into the first mixture.
  • a step of stirring the second mixture is also included, and the stirring time is 20 minutes to 40 minutes.
  • the step of extracting yellow water polysaccharides comprises: sequentially centrifuging wine brewing yellow water, ultrafiltration, alcohol precipitation treatment, centrifugation, collecting precipitates and drying.
  • the conditions for the first centrifugation in the extraction step are that the centrifugation temperature is 0°C-4°C, the centrifugal force is 4000g-6000g, and the centrifugation time is 15min-30min, and the conditions for the second and subsequent centrifugation are that the centrifugation temperature is 0 °C ⁇ 4°C, the centrifugal force is 8000g ⁇ 10000g, and the centrifugal time is 5min ⁇ 25min.
  • the freezing temperature in e is -20°C to -15°C
  • the thawing temperature is 25°C to 30°C
  • the single freezing time is 7h to 9h
  • the single thawing time is 4h to 6h
  • the number of cycles is 5 to 8 times.
  • the preparation method further includes sequentially immersing the gel-like product obtained in step e into a solution added with iron ions, hydroxide ions and magnetic particles for reaction.
  • the hydroxide ions may be provided by alkali metal salts, such as sodium hydroxide, potassium hydroxide and the like.
  • the iron ion is a mixture of Fe 2+ and Fe 3+ , the concentration ratio of Fe 2+ and Fe 3+ is (0.8-1.2):2, the immersion time is 3h-5h, and the hydroxide ion concentration is 1.8mol /L ⁇ 2.2mol/L, the immersion time is 3h ⁇ 5h.
  • step e also includes the step of washing the reacted product to neutrality.
  • WHSP Wuliangye Yellow Water Polysaccharide
  • PVA Polyvinyl Alcohol
  • CMC Sodium Carboxymethyl Cellulose
  • NC Cellulose
  • PVA polyvinyl alcohol
  • the wavenumber range is 400-4000cm -1
  • the resolution of the spectrometer is 4cm - 1
  • the signal-to-noise ratio is 50000:1
  • the scans are 64 times.
  • the hysteresis curve of the lyophilized magnetic hydrogel powder was measured at 300K using a vibrating sample magnetometer (SQUID-VSM, MPMS-3, USA), with a magnetic field range of ⁇ 3T.
  • TPA texture profile analysis
  • TG thermogravimetry
  • DSC differential scanning calorimetry
  • W t (g) and W d (g) are the weight of the swollen hydrogel at time t (min) and the dry hydrogel, respectively.
  • the pH sensitivity of the hydrogel was achieved by monitoring the change in swelling ability in solutions of different pH (pH 2.0–12.0). After reaching swelling equilibrium at room temperature, the swelling capacity was recorded as the swelling ratio.
  • Q t (mg/g) is the adsorption capacity of the hydrogel at different times;
  • C 0 and C t (mg/L) are the initial concentration of the methylene blue solution and the concentration after adsorption for a certain period of time,
  • V (L ) is the volume of methylene blue solution,
  • m (g) is the quality of dry hydrogel.
  • the kinetics of the adsorption process were evaluated using a pseudo-first-order model and a pseudo-second-order model. And the diffusion model of the adsorption process was predicted by the Weber diffusion equation in the adsorbent. In adsorption experiments, kinetic parameters are important mechanical parameters to predict the adsorption rate and equilibrium time.
  • the calculation formulas of pseudo-first-order kinetics, pseudo-second-order kinetics and Weber equation are shown in formulas (1), (2) and (3).
  • Q t (mg/g) and Q e (mg/g) respectively refer to the adsorption amount at t (min) time and adsorption equilibrium.
  • k 1 and k 2 are the coefficients of pseudo-first-order kinetic model and pseudo-second-order kinetic model, respectively;
  • k p (mg(g ⁇ min 1/2 ) -1 ) is the intra-particle diffusion rate constant.
  • Panel a of Figure 2 is the initial material for the preparation of the hydrogel.
  • the broad peak at 3263 cm is related to the stretching vibration of OH.
  • the peak at 1562.75 cm corresponds to the CO stretching of the carboxyl group.
  • the peaks at 2905cm -1 , 1563cm -1 , 1415cm -1 , 1324cm -1 are related to the CH and COC stretching and CH bending vibrations, respectively.
  • 1142cm -1 is produced by CCC stretching vibration.
  • the very intense peaks at 1588 cm -1 and 1413 cm -1 are considered to be the stretching vibrations of the -COO group and its salt forms, corresponding to the characteristic absorption of carboxymethylcellulose.
  • 3304cm -1 is the stretching vibration absorption peak of -OH
  • 2926cm -1 is the absorption peak of CH
  • the absorption peak in this region is the characteristic peak of carbohydrates.
  • the absorption peak at 1640cm -1 is caused by the stretching vibration of the carboxyl group (COO-), and the absorption peak at 1360cm -1 is caused by the angle-changing vibration of CH. 994cm -1 is the rolling vibration of the methine at the end of the pyran ring.
  • Figure 2b compared with the initial materials (PVA, CMC, and WHSP), all hydrogels show a new peak at 575 cm -1 of the characteristic absorption of the Fe-O lattice vibration of Fe 3 O 4 , indicating that Fe Successful incorporation of 3O4 .
  • the broad peak at 3300 cm was attributed to the intermolecular and intramolecular hydrogen bond interactions between the OH groups in PVA, CMC and WHSP.
  • hydrogels Compared with m-PVA/CMC, the WHSP-incorporated hydrogels showed relatively increased OH group strength, further suggesting that PVA, CMC, and WHSP are linked by hydrogen bonds. Since there is no new chemical bond between them, the formation of hydrogel is a physical crosslinking relying on hydrogen bond interaction, which is an interpenetrating network hydrogel.
  • the XRD patterns of the initial material and the magnetic hydrogel are shown in a,b of Fig. 3.
  • the prepared hydrogel m-PVA/CMC, m-PVA/PCMC/WHSP-2%, m -PVA/PCMC/WHSP-4%, m-PVA/PCMC/WHSP-8% are both magnetic, from which the hydrogel m-PVA/PCMC/WHSP-2% is selected, and the magnetic hydrogel is further determined by analyzing its magnetization curve Magnetic Response Behavior of Glue.
  • Hysteresis loop Figure 5 shows that the S-shaped hysteresis loop is symmetrical to the origin, without hysteresis, coercivity and remanence, which means it has superparamagnetism.
  • the saturation magnetization of m-PVA/PCMC/WHSP-2% is 14.81emu/g, which is sufficient for magnetic separation from the solution in which a magnet is applied.
  • WHSP was distributed in sheets, and the hydrogels formed with both PVA and CMC showed interconnected pore structures, and the organic-inorganic phases were almost indistinguishable.
  • the surface of the hydrogel showed good homogeneity without the phenomenon of free polysaccharides or Fe3O4 agglomeration, indicating the ideal compatibility of PVA, CMC, WHSP and Fe3O4 components.
  • the hydrogel presents a more ordered and fluffy porous structure. The abundant hydroxyl groups in WHSP can induce more hydrogen bonds between PVA, CMC and WHSP, resulting in more fluffy porous structures inside.
  • Table 1 is the texture analysis of the hydrogel. It can be seen from the table that the introduction of WHSP has no significant effect on the texture of the magnetic hydrogel.
  • thermogravimetric curve the degradation of hydrogel can be roughly divided into three stages: the weight loss in the first stage (below 100 °C) is mainly due to the evaporation loss of bound water and adsorbed water in the hydrogel; the second stage ( The main weight loss at 200°C-350°C) and further weight loss at the third stage (350°C-450°C) correspond to polymer degradation.
  • the TG curves as shown in a of Fig.
  • the DSC curves of all hydrogels show an endothermic peak around 50°C, which corresponds to the first-stage weight loss on the TG curve; at further elevated temperatures (>200°C), above 200°C, observed
  • the main peaks of the hydrogel m-PVA/CMC/WHSP-2%, PVA/CMC/WHSP-2% and PVA/CMC curves appeared at 288 °C, 288 °C and 297 °C, respectively, which were consistent with the position of the main peak of the DTG curve, indicating that Fe
  • 3O4 accelerated the decomposition of the hydrogel in the second stage, and this phenomenon may be due to the catalytic properties of metal oxide nanoparticles, thus promoting the thermal decomposition of the hydrogel.
  • the weight loss rates of m-PVA/CMC, m-PVA/CMC/WHSP-2%, and PVA/CMC/WHSP-2% were 56.05%, 55.09% and 70.61%, respectively.
  • the lower weight loss of m-PVA/CMC and m-PVA/CMC/WHSP-2% compared with PVA /CMC/WHSP could be attributed to the residual Fe3O4 .
  • Figure 8 shows the magnetic hydrogel m-PVA/CMC, m-PVA/CMC/WHSP-2%, m-PVA/CMC/WHSP-4%, m-PVA/CMC/WHSP-8% in distilled water Swelling situation, wherein the hydrogel with 2% coarse sugar added has the best swelling performance, and the swelling equilibrium water absorption is 38.67mg/g, which is higher than the equilibrium water absorption of the magnetic nanocellulose hydrogel prepared by Dai et al. 33.38mg/g , all hydrogels reached swelling equilibrium after 16 minutes. Compared with the magnetic nanocellulose hydrogel prepared by Dai et al., which reached swelling equilibrium in 90 minutes, the magnetic polysaccharide hydrogels had short-term adsorption properties.
  • the pH-sensitive behavior during hydrogel swelling can be attributed as follows: In acidic media (typically at pH ⁇ 4), most of the -COO- groups in the hydrogel are protonated to -COOH, followed by -COOH groups The hydrogen-bonding interactions between the groups are strengthened while the electrostatic repulsion between the original -COO- groups is suppressed, so the diffusion of water molecules in the hydrogel network structure is impaired, which eventually leads to swelling at lower pH values. smaller. As the pH of the external solution increases, -COOH is ionized into COO-, and the hydrogen bonding is broken. In addition, the electrostatic repulsion between -COO- groups is correspondingly enhanced, which eventually leads to an increase in the swelling rate of the hydrogel. However, under alkaline conditions, the charge shielding effect of Na + in the swelling medium can effectively prevent the anion-anion electrostatic repulsion, resulting in a decrease in the swelling rate. For these reasons, the swelling rate of hydrogels decreases at high pH.
  • the pH value of the solution is an important factor affecting the adsorption performance of the adsorption material for the cationic dye methylene blue. It can affect the adsorption performance by affecting the surface charge of the adsorption material and the dissociation of the functional group of the active site.
  • Adsorption experiment the effect of polysaccharide hydrogel on the removal rate of methylene blue aqueous solution at different pH values (2-10), other experimental conditions were set as: dye solution at an initial concentration of 100mg/L, normal temperature, adsorption for 1 hour, the result as the picture shows.
  • the pseudo-first-order kinetic model, pseudo-second-order kinetic model fitting curve and intra-particle diffusion Weber model fitting curve of 2% adsorption of methylene blue at different temperatures (25°C, 45°C and 65°C) are shown in Figure 11-16 Show.
  • the methylene blue adsorption rate of all hydrogels was faster in the initial stage of adsorption (20-240min), the adsorption amount increased rapidly, and then gradually slowed down to equilibrium.
  • the hydrogels with 2% and 4% WHSP had the highest equilibrium adsorption capacity at 25°C, which were 71.07 mg/g and 68.21 mg/g, respectively, while the addition of 8% WHSP had the highest equilibrium adsorption capacity at 45°C, which was 67.32mg/g; adding 4% WHSP hydrogel has a relatively stable adsorption of methylene blue in a wide temperature range (25°C-65°C), and the adsorption amount is greater than 60mg/g. Adding 2% WHSP is more suitable for medium and low temperature Adding 8% WHSP is more suitable for adsorption at medium and high temperatures. The addition amount and temperature of WHSP are important factors affecting the adsorption properties of hydrogels, and there may be mutual antagonism.
  • the kinetic parameters of the two models were obtained by linear regression fitting, and the results are shown in Tables 2-7.
  • the correlation coefficient of the pseudo-second-order kinetic model (R2>0.99) is higher than that of the pseudo-first-order kinetic model ( ⁇ 0.97), and the theoretical equilibrium adsorption capacity (Qe,cal) obtained by fitting the pseudo-second-order kinetic model is consistent with the experimental equilibrium
  • the adsorption capacity (Qe, exp) is closer, so the static adsorption process of the currently prepared hydrogel to methylene blue is more in line with the pseudo-second-order kinetic model.
  • m-PVA/CMC/WHSP-8% has a higher equilibrium adsorption capacity at high temperatures of 45°C and 65°C. It may be that the increase of WHSP content increases the number of hydroxyl groups on the molecular chain. Due to intermolecular interactions, the active sites on the hydrogel may shield each other, resulting in the increase of the hydrogel m-PVA/CMC/WHSP-8% at 25 °C. It has a lower adsorption capacity at low temperature.
  • K 1 increases, indicating that the adsorbate is easy to diffuse inside the adsorbent as the temperature increases; at the same temperature, the fitting effect of the Weber equation is better in the first period of time, indicating that in the early stage There is an intra-particle diffusion adsorption mechanism in the adsorption process; as the temperature increases, the I value increases, indicating that with the increase of temperature, the influence of the liquid boundary layer around the adsorbent on the surface diffusion process of the adsorbent increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本申请涉及一种水凝胶,包括聚乙烯醇、羧甲基纤维素钠和黄水多糖,聚乙烯醇和羧甲基纤维素钠的质量之和与黄水多糖的质量比为100:(1.8~8.2)。本申请还涉及了一种水凝胶作为染料吸附剂的应用。本申请还涉及了一种水凝胶的制备方法。

Description

黄水多糖基水凝胶及其制备方法和应用
相关申请
本申请要求2021年10月08日申请的,申请号为2021111713360,名称为“黄水多糖基水凝胶及其制备方法和应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及水凝胶技术领域,具体涉及一种黄水多糖基水凝胶及其制备方法和应用。
背景技术
以亚甲基蓝为代表的染料废水污染是当前环境面临的严峻问题。亚甲基蓝,化学式为C 16H 18N 3ClS,是一种吩噻嗪盐,广泛应用于化学指示剂、染料、生物染色剂和药物等方面。亚甲基蓝为深绿色青铜光泽结晶或粉末,可溶于水和乙醇,不溶于醚类。亚甲基蓝在空气中较稳定,其水溶液呈碱性,有毒。高浓度(5~10mg/kg;1%溶液25~50mL)的亚甲蓝溶液对血红蛋白起氧化作用,使生成高铁血红蛋白。原因是大量本品进入体内,还原型辅酶Ⅰ脱氢酶(NADPH)生成减少,不能使本品全部转变为还原型亚甲蓝,氧化型亚甲蓝量多,血红蛋白被氧化为高铁血红蛋白。
传统的亚甲基蓝的处理方法包括:化学法例如亚甲基蓝废水中添加单宁酸和金属钙离子,经混合后再絮凝剂使之沉淀,但这种方法又会在处理废水的同时引入新的污染化合物;制备磷酸改性花生壳用以吸附亚甲基蓝,但该种方法依赖于植物自然资源,存在原料不足的问题,成本较高,稳定性不好。
发明内容
基于此,有必要针对传统的染料废水处理方法存在的问题,提供一种安全性高、成本低、稳定性强的黄水多糖基水凝胶及其制备方法和应用,用以实现染料优化废水的处理。
本申请是这样实现的:
第一方面,本申请提供一种水凝胶,其包括聚乙烯醇、羧甲基纤维素钠和黄水多糖,所述聚乙烯醇和所述羧甲基纤维素钠的质量之和与所述黄水多糖的质量比为100:(1.8~8.2)。
在其中一些实施例中,所述聚乙烯醇和所述羧甲基纤维素钠的质量之和与所述黄水多糖的质量比为100:(1.8~2.2)。
在其中一些实施例中,所述聚乙烯醇与所述羧甲基纤维素钠的质量比为(2.8~3.2):(1.8~2.2)。
在其中一些实施例中,所述聚乙烯醇、所述羧甲基纤维素钠和所述黄水多糖之间通过分子间和/或分子内氢键连接,所述水凝胶为多孔结构。
在其中一些实施例中,所述黄水多糖选自酿酒黄水多糖。
在其中一些实施例中,所述水凝胶还包括掺杂在上述水凝胶基体中的磁性粒子。
第二方面,本申请提供一种如上述所述的水凝胶作为染料吸附剂的应用。
在其中一些实施例中,所述染料选自亚甲基蓝。
在其中一些实施例中,所述水凝胶作为染料吸附剂的工作pH为2~10,工作温度为25℃~65℃。
第二方面,本申请提供一种如上述所述的水凝胶的制备方法,其包括以下步骤:
a、将聚乙烯醇在水中溶胀;
b、在溶胀的聚乙烯醇溶液与羧甲基纤维素钠混合得到第一混合物,对所述第一混合物进行加热并搅拌;
c、将加热和搅拌后的第一混合物进行冷却;
d、将冷却后的第一混合物与黄水多糖混合得到第二混合物;
e、对所述第二混合物进行冷冻和解冻的循环反应。
在其中一些实施例中,步骤a的溶胀过程包括加热并搅拌的步骤,加热温度为55℃~65℃,搅拌时间为30min~60min;
在其中一些实施例中,步骤b的加热的温度为88℃~98℃,搅拌时间为50min~70min;
在其中一些实施例中,步骤c中冷却后的温度为20℃~30℃;
在其中一些实施例中,步骤d中混合的步骤为将所述黄水多糖的溶液滴入所述第一混合物中;
在其中一些实施例中,步骤e中冷冻的温度为-20℃~-15℃,解冻的温度为25℃~30℃,单次冷冻的时间为7h~9h,单次解冻的时间为4h~6h,循环次数为5~8次。
在其中一些实施例中,步骤c中冷却后还包括进行搅拌的步骤,所述搅拌的时间为20min~40min。
在其中一些实施例中,步骤d中还包括对所述第二混合物进行搅拌的步骤,所述搅拌的时间为20min~40min。
在其中一些实施例中,还包括将步骤e得到的凝胶状产物依次浸入添加有铁离子、氢氧根离子和磁性粒子的溶液中进行反应;
可选的,所述铁离子为Fe 2+和Fe 3+混合物,Fe 2+和Fe 3+的浓度比例为(0.8~1.2):2,浸入时间为3h~5h,氢氧根离子浓度为1.8mol/L~2.2mol/L,浸入时间为3h~5h;
可选的,还包括将反应后的产物洗涤至中性的步骤。
在其中一些实施例中,所述黄水多糖的提取步骤包括:对酿酒黄水依次进行离心、超滤、醇沉处理、离心、收集沉淀并干燥;
可选的,所述提取步骤中首次离心的条件为离心温度为0℃~4℃、离心力为4000g~6000g、离心时间为15min~30min,第二次及以后的离心的条件为离心温度为0℃~4℃、离心力为8000g~10000g、离心时间为5min~25min。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一实施例的添加磁性粒子Fe 3O 4的水凝胶照片;
图2为本申请一实施例的水凝胶材料及水凝胶红外光谱图,其中(a)CMC、PVA、WHSP的红外光谱图、(b)m-PVA/CMC、m-PVA/CMC/WHSP-2%、4%、8%红外光谱图;
图3为本申请一实施例的水凝胶材料及水凝胶XRD衍射能谱,其中(a)WHSP、CMC、PVA的XRD衍射能谱、(b)m-PVA/CMC,m-PVA/CMC/WHSP-2%,4%,8%XRD衍射能谱;
图4为本申请一实施例的水凝胶磁性实验图;
图5为本申请一实施例的水凝胶磁滞回线图;
图6为本申请一实施例的水凝胶SEM分析图,其中(a)WHSP、(b)m-PVA/CMC、(c)m-PVA/CMC/WHSP-2%、(d)m-PVA/CMC/WHSP-4%、(e)m-PVA/CMC/WHSP-8%;
图7为本申请一实施例的水凝胶TG-DSC分析图,其中(a)m-PVA/CMC、(b)m-PVA/CMC/WHSP-2%、(c)PVA/CMC/WHSP-2%;
图8为本申请一实施例的水凝胶在蒸馏水中的溶胀动力学曲线;
图9为本申请一实施例的水凝胶在不同pH水溶液中的溶胀动力学曲线;
图10为本申请一实施例的pH对水凝胶吸附性能的影响图;
图11为本申请一实施例的不同温度下添加2%WHSP水凝胶吸附亚甲基蓝的动力学分析图动力学分析,其中(a)动力学、(b)准一级、(c)准二级动力学模型;
图12为本申请一实施例的水凝胶m-PVA/CMC/WHSP-2%颗粒内扩散模型Weber方程的拟合曲线;
图13为本申请一实施例的不同温度下添加4%WHSP水凝胶吸附亚甲基蓝的动力学分析图,其中(a)动力学、(b)准一级、(c)准二级动力学模型;
图14为本申请一实施例的水凝胶m-PVA/CMC/WHSP-4%颗粒内扩散模型Weber方程的拟合曲线;
图15为本申请一实施例的不同温度下添加8%WHSP水凝胶吸附亚甲基蓝的动力学分析图,其中 (a)动力学、(b)准一级、(c)准二级动力学模型;
图16为本申请一实施例的水凝胶m-PVA/CMC/WHSP-8%颗粒内扩散模型Weber方程的拟合曲线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
黄水多糖为从黄水中提取的粗多糖。
白酒酿造生产过程利用了原料中的淀粉和糖分进行酒精发酵,其他成分很少被利用。酿酒原料高粱、大米、玉米、糯米、小麦等含有的维生素类、酚类等化合物以及发酵代谢过程中产生的小分子肽、氨基酸等物质具有抗氧化活性。这些物质溶于糟醅的水环境中逐渐沉积于窖池底部。随着发酵结束,糟醅经长时间发酵代谢产生的液体以及糟醅自身水分沉降而汇集于底部的液体即为传统的酿酒黄水。黄水一般含有1%~2%的残余淀粉,0.3%~0.7%的残糖,4%~5%的乙醇,以及有机酸、白酒香味的前体物质等,以及丰富的抗氧化性活性物质,具有较高的使用价值。黄水为酿酒过程中窖内发酵产物。
第一方面,本申请提供一种水凝胶,包括聚乙烯醇、羧甲基纤维素钠和黄水多糖,聚乙烯醇和羧甲基纤维素钠的质量之和与黄水多糖的质量比为100:(1.8~8.2)。
本申请提出一种水凝胶处理染料废水的方案,将黄水多糖、聚乙烯醇、羧甲基纤维素钠制备得到水凝胶,用于吸附废水中的亚甲基蓝等染料,水凝胶不仅溶胀性强,吸附表面积增大,吸附量大,而且价格低廉,利于推广应用。并且,研究发现,黄水多糖的添加能够明显增加该水凝胶的吸附和溶胀性能。
在一些实施方式中,聚乙烯醇和羧甲基纤维素钠的质量之和与黄水多糖的质量比可以为100:2、100:3、100:4、100:5、100:6、100:7、100:8。
在一些实施方式中,聚乙烯醇和羧甲基纤维素钠的质量之和与黄水多糖的质量比为100:(1.8~2.2)。
在一些实施方式中,聚乙烯醇与羧甲基纤维素钠的质量比为(2.8~3.2):(1.8~2.2)。
在一些实施方式中,聚乙烯醇、羧甲基纤维素钠和黄水多糖之间通过分子间和/或分子内氢键连接。
在一些实施方式中,黄水多糖选自白酒发酵产物黄水中提取的多糖。
在一些实施方式中,酿酒黄水来自白酒发酵产物。白酒例如选自浓香型、酱香型、清香型白酒中的任意一种或多种。白酒可以为五粮液等。
在一些实施方式中,水凝胶还包括掺杂在上述水凝胶基体中的磁性粒子。磁性粒子与水凝胶其余组分依靠氢键相互作用的物理交联,形成互穿网络的磁性水凝胶。
可选的,磁性粒子选自Fe 2O 3和Fe 3O 4中的任意一种或两种。
在一些实施方式中,水凝胶为多孔结构。
第二方面,本申请还提供上述所述的水凝胶作为染料吸附剂的应用。
可选的,染料选自亚甲基蓝。
在一些实施方式中,水凝胶作为染料吸附剂的工作pH为2~10。具体的,工作pH可以为2、3、4、5、6、7、8、9或10。
在一些实施方式中,水凝胶作为染料吸附剂的工作温度为25℃~65℃。具体的,工作温度可以为25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃或65℃。
第三方面,本申请进一步提供上述所述的水凝胶的制备方法,包括以下步骤:
a、将聚乙烯醇在水中溶胀;
b、在溶胀的聚乙烯醇溶液与羧甲基纤维素钠混合得到第一混合物,对第一混合物进行加热并搅拌;
c、将加热和搅拌后的第一混合物进行冷却;
d、将冷却后的第一混合物与黄水多糖混合得到第二混合物;
e、对第二混合物进行冷冻和解冻的循环反应。
在一些实施方式中,步骤a的溶胀过程包括加热并搅拌的步骤。加热温度为55℃~65℃,搅拌时间为30min~60min。
在一些实施方式中,步骤b的加热的温度为88℃~98℃,搅拌时间为50min~70min。
在一些实施方式中,步骤c中冷却后的温度为20℃~30℃。
在一些实施方式中,冷却后还包括进行搅拌的步骤,搅拌的时间为20min~40min。
在一些实施方式中,步骤d中混合的步骤为将黄水多糖的溶液滴入第一混合物中。
在一些实施方式中,还包括对第二混合物进行搅拌的步骤,搅拌的时间为20min~40min。
在一些实施方式中,黄水多糖的提取步骤包括:对酿酒黄水依次进行离心、超滤、醇沉处理、离心、收集沉淀并干燥。在一些实施方式中,提取步骤中首次离心的条件为离心温度为0℃~4℃、离心力为4000g~6000g、离心时间为15min~30min,第二次及以后的离心的条件为离心温度为0℃~4℃、离心力为8000g~10000g、离心时间为5min~25min。
在一些实施方式中,e中冷冻的温度为-20℃~-15℃,解冻的温度为25℃~30℃,单次冷冻的时间为7h~9h,单次解冻的时间为4h~6h,循环次数为5~8次。
在一些实施方式中,制备方法还包括将步骤e得到的凝胶状产物依次浸入添加有铁离子、氢氧根离子和磁性粒子的溶液中进行反应。
提供氢氧根离子的可以为碱金属盐,例如氢氧化钠、氢氧化钾等。
可选的,铁离子为Fe 2+和Fe 3+混合物,Fe 2+和Fe 3+的浓度比例为(0.8~1.2):2,浸入时间为3h~5h,氢氧根离子浓度为1.8mol/L~2.2mol/L,浸入时间为3h~5h。
可选的,步骤e还包括将反应后的产物洗涤至中性的步骤。
以下为具体实施例。
实施例1
1材料与方法
1.1材料与试剂
五粮液黄水多糖(WHSP)、聚乙烯醇(PVA)、羧甲基纤维素钠(CMC)、纤维素(NC)。
1.2仪器与设备
仪器名称 型号 生产厂家
傅里叶变换红外光谱仪 iS10 FT-IR spectrometer 美国尼高力公司
X射线衍射仪 D8 ADVANCE 德国布鲁克公司
热场发射扫描电镜 Gemini300 德国蔡司
DSC的仪器 TA Q200 美国TA公司
同步热分析仪 STA449F5 德国耐驰
差示扫描热量仪 TG-DSC 3+ 梅特乐mettler
质构分析仪 TA.XTC-18 保圣科技
振动样品磁强计 SQUID-VSM,MPMS-3 美国Quantum Design公司
多功能酶标仪 SpectraMax.M2e 美国Molecular.Devices公司
1.3水凝胶的制备方法
(1)将1.5g聚乙烯醇(PVA,平均聚合度1750±50)加入到100g蒸馏水中,加热到60℃,搅拌30min,使PVA完全溶胀;
(2)待PVA全部变成青灰白色,充分溶胀后,加入1.0g(粘度800~1200)羧甲基纤维素钠(CMC),升温至96℃,搅拌1h,常温搅拌30min;
(3)PVA/CMC混匀后,室温下滴入50mL WSHP或者NC(有三组2%-0.05g,4%-0.1g,8%-0.2g),搅拌30min,超声以及在4℃下放置12h除气泡,倒入圆柱形模具中;
(4)在-20℃冷冻8h,室温下解冻4h,经过五次冻融循环后得到PVA/CMC/多糖水凝胶;
(5)将(4)中的水凝胶先浸入0.1mol/L Fe 2+,0.2mol/L Fe 3+混合溶液4h,再浸入2mol/L NaOH溶液4h,得到磁性水凝胶m-PVA/CMC/WSHP;
(6)将m-PVA/CMC/WSHP水凝胶浸泡在蒸馏水中72h,每6h换一次水,洗至中性即可。水凝胶照片如图1。
2.结构表征
2.1红外光谱(FTIR)表征
选取干燥后的样品2mg,用ATR模式进行分析测定。波数范围是400-4000cm -1,光谱仪分辨率4cm - 1,信噪比是50000:1,扫描64次。
2.2 X射线衍射(XRD)表征
将干燥后的样品研成粉末,采用X衍射射线仪进行XRD测试,测试条件为:Ni滤波,Cu靶,衍射角2θ为2°~50°,扫描速度设定为2°/min,管压和管流分别设置为40kV和40mA。
2.3磁性能分析
在300K下使用振动样品磁强计(SQUID-VSM,MPMS-3,美国)测量冻干的磁性水凝胶粉末磁滞回曲线,磁场范围±3T。
2.4扫描电镜(SEM)观察
取少量干燥后的未研磨水凝胶样品和五粮液黄水多糖,用导电胶分别固定于铜板上,对样品表面进行喷金处理,用扫描电镜在10kV加速电压下观察样品的表面形貌。
2.5质构分析
质构分析(texture profile analysis,TPA)的实验条件参考Hurler的方法,修整多糖水凝胶样品的大小为直径约2cm,高约10mm,采用圆柱形不锈钢探头(P5:5mm DIA CYL in Der Stainless),5g的力进行一次压缩,压缩量为样品原有高度的30%,压缩前速度为5mm/s,压缩时速度为1mm/s,压缩后速度为5mm/s,每种样品的质构分析测试均重复3次。TPA参数包括硬度(hardness)、弹性(springiness)、咀嚼性(chewiness)内聚性(cohesiveness)、脆度(fracturability)、胶着性(gumminess)以及回复性(resilience)等。
2.6热稳定性分析(TG-DSC)
取适量干燥后的样品,通过热重(TG)和差示扫描量热(DSC)同步热分析仪测定样品的TG和DSC曲线,测定条件为:在N 2氛围下以10℃/min的加热速率从室温升温至600℃。
2.7溶胀性能分析
50mg干燥的水凝胶在室温下完全浸泡在蒸馏水中。在预设的时间间隔后,在除去过量的表面水后,立即记录水凝胶的质量。在特定时间的膨胀能力可以使用公式计算。
溶胀率:(g/g)=(W t-W d)/W d
其中W t(g)和W d(g)分别是溶胀水凝胶在时间t(min)和干燥水凝胶的重量。
2.8 pH响应分析
水凝胶的酸碱度敏感性是通过监测在不同酸碱度溶液(酸碱度2.0-12.0)中溶胀能力的变化来实现的。在室温下达到溶胀平衡后,根据溶胀率来记录溶胀能力。
2.9水凝胶吸附亚甲基蓝性能测定
2.9.1水凝胶在不同温度和不同pH下吸附亚甲基蓝
取20mg干燥水凝胶,浸入到15mL 100mg/L亚甲基蓝水溶液中,在不同温度下以及常温不同pH下进行静态吸附,每隔一段时间后吸取0.1mL溶液(相应补充0.1mL蒸馏水)经稀释后用多功能酶标仪测量其在664nm处的吸光值,根据标准曲线计算水凝胶对亚甲基蓝的吸附量Q(mg/g):
Figure PCTCN2022123118-appb-000001
式中:其中Q t(mg/g)为水凝胶在不同时间的吸附量;C 0和C t(mg/L)分别为亚甲基蓝溶液的初始浓度和吸附一定时间后的浓度,V(L)为亚甲基蓝溶液的体积,m(g)为干燥水凝胶的质量。
2.9.2水凝胶吸附亚甲基蓝动力学
采用准一级模型和准二级模型对吸附过程动力学进行了评价。并利用吸附剂内扩散方程Weber预测吸附过程的扩散模式。在吸附实验中,动力学参数是预测吸附速率和平衡时间的重要力学参数。准一级动力学、准二级动力学和Weber方程式计算公式如式(1)、(2)、(3)所示。
Figure PCTCN2022123118-appb-000002
Figure PCTCN2022123118-appb-000003
Figure PCTCN2022123118-appb-000004
式中:Q t(mg/g)和Q e(mg/g)、分别指在t(min)时刻和吸附平衡时的吸附量。其中k 1和k 2分别为吸附准一级动力学模型和准二级动力学模型系数;k p(mg(g·min 1/2) -1)为颗粒内扩散速率常数。
3结果与讨论
3.1 FTIR红外分析
图2的a图是制备水凝胶的初始材料。如图2的b图所示,对于聚乙烯醇,3263cm -1处的宽峰与O-H的拉伸振动有关。1562.75cm -1处的峰对应于羧基基团的C-O拉伸。2905cm -1、1563cm -1、1415cm -1、1324cm -1处的峰值分别与C-H和C-O-C拉伸和C-H弯曲的振动有关。1142cm -1是C-C-C伸缩振动产生的。839cm -1是末端乙烯基和C=C伸缩振动产生的。对于CMC来说,1588cm -1,1413cm -1处非常强烈的峰被认为是-COO基团及其盐形式的拉伸振动,对应于羧甲基纤维素的特征吸收。1322cm -1被认为是-C=O的不对称伸缩振动吸收峰。1017.30cm -1对应的是C-O-C的角锥体环的拉伸振动。对于WHSP来说,3304cm -1是-OH的伸缩振动吸收峰,2926cm -1是C-H的吸收峰,这个区域的吸收峰是糖类的特征峰。1640cm -1的吸收峰是羧基(COO-)的伸缩振动引起的,1360cm -1是C-H的变角振动引起的吸收峰。994cm -1是吡喃环末端次甲基的横摇振动。如图2b所示,与初始材料(PVA、CMC和WHSP)相比,所有水凝胶在575cm -1处显示出Fe 3O 4的Fe-O晶格振动的特征吸收的新峰,表明Fe 3O 4的成功掺入。3300cm -1处的宽峰归因于PVA、CMC和WHSP中的O-H基团之间的分子间和分子内氢键相互作用。与m-PVA/CMC相比,掺入WHSP的水凝胶显示出相对增加的O-H基团强度,进一步表明了PVA、CMC和WHSP之间靠氢键连接。由于它们之间无新的化学键产生,所以水凝胶的形成是依靠氢键相互作用的物理交联,是一种互穿网络水凝胶。
3.2 XRD分析
初始材料和磁性水凝胶的XRD图如图3的a,b所示。PVA通常在2θ=19.7°处呈现强峰,同时在2θ=22.8°处呈现肩峰,在2θ=40.8°处呈现弱峰,是PVA的特征结晶峰。WHSP仅在2θ=18°时显示出宽峰,表明其结晶度低,没有明显的特征衍射峰。将CMC的衍射峰与标准PDF卡(JCPDS no.05-0628)比对,其中27.4°,31.7°,45.5°分别对应氯化钠的(111)、(220)、(222)晶面,NaCl的衍射峰出现是因为在CMC的制备工艺中有氯元素的引入而有微量Cl-残留。2θ=20.1°是纤维素II的特征结晶衍射峰。Fe 3O 4在2θ=30.2°、35.5°和43.1°处有三个特征峰,分别对应具有尖晶石结构的纯Fe 3O 4的(220)、(311)和(400)晶面。在b中发现所有水凝胶都出现了相似的衍射图,观察到与Fe 3O 4晶面相关的峰,证实了Fe 3O 4成功掺入水凝胶中。在2θ=19°附近的弱而宽的峰是由于在聚乙烯醇结构中存在分子间和分子内氢键,峰强度的降低可能是由于聚乙烯醇侧链的-OH与CMC的-OH相互作用,抑制了PVA的结晶引起的。
3.3水凝胶的磁性能分析
通过FTIR和XRD的分析得出四氧化三铁成功嵌在水凝胶中,如图4所示,所制备的水凝胶m-PVA/CMC、m-PVA/PCMC/WHSP-2%、m-PVA/PCMC/WHSP-4%、m-PVA/PCMC/WHSP-8%均具有磁性,从中选取水凝胶m-PVA/PCMC/WHSP-2%,通过分析其磁化曲线进一步确定磁性水凝胶的磁响应行为。磁滞回线图5显示,S形磁滞回线与原点对称,没有磁滞、矫顽力和剩磁,这意味着它具有超顺磁性。m-PVA/PCMC/WHSP-2%的饱和磁化强度为14.81emu/g,足以从应用磁体的溶液中进行磁分离。如图4所示,在磁体靠近玻璃容器放置后,水凝胶聚集到玻璃容器靠近磁体的一侧。
3.4 SEM分析
WHSP呈片状分布,与PVA和CMC形成的水凝胶都显示出具有相互连接的孔道结构,有机-无机相几乎无法区分。水凝胶的表面显示出良好的均匀性,没有出现游离多糖或Fe 3O 4团聚的现象,表明聚乙烯醇、CMC、WHSP和Fe 3O 4组分具有理想的相容性。随着WHSP添加量的增加,水凝胶呈现出更加有序蓬松的多孔结构。WHSP中丰富的羟基可以诱导聚乙烯醇、CMC和WHSP之间形成更多的氢键,从而内部出现更多蓬松的多孔结构。从图6(WHSP(a)、m-PVA/CMC(b)、m-PVA/CMC/WHSP-2%(c)、m-PVA/CMC/WHSP-4%(d)、m-PVA/C MC/WHSP-8%(e))中可以看出,相比于其他两个添加量,添加2%WHSP获得孔径小而且均匀的水凝胶,表明WHSP量会影响到水凝胶的表观形貌,进而可能会影响到水凝胶的应用。
3.5水凝胶的质构分析
表1是对水凝胶的质构分析,从表中可以看出,WHSP的引入对磁性水凝胶的质地没有显著性影响。
表1 水凝胶质构分析数据
Figure PCTCN2022123118-appb-000005
表1中每个值都表示为平均值±SD。不同字母标记的数值具有统计学意义(p<0.05)。
3.6 TG-DSC分析
水凝胶m-PVA/CMC/WHSP、m-PVA/CMC/WHSP-2%、PVA/CMC/WHSP-2%的热稳定性通过TG、DTG和DSC曲线进行分析和比较,结果如图7所示。根据热重曲线,水凝胶的降解大致可分为三个阶段:第一阶段(低于100℃)的重量损失主要是由于水凝胶中结合水和吸附水的蒸发损失;第二阶段(200℃-350℃)的主要重量损失和第三阶段(350℃-450℃)的进一步重量损失对应于聚合物降解造成的。对于TG曲线,如图7的a所示,这三种水凝胶的初始分解温度分别为271℃、267℃、264℃,表明引入WHSP和Fe 3O 4对水凝胶的初始分解温度没有明显影响。然而,所以水凝胶的DSC曲线在50℃左右显示吸热峰,这对应于TG曲线上的第一阶段重量损失;在进一步升高的温度(>200℃),在200℃以上,观察到水凝胶m-PVA/CMC/WHSP-2%、PVA/CMC/WHSP-2%和PVA/CMC曲线分别在288℃、288℃和297℃出现主峰,与DTG曲线主峰的位置一致,表明Fe 3O 4的引入加速了水凝胶在第二阶段的分解,这种现象可能是由于金属氧化物纳米粒子的催化特性,从而促进了水凝胶的受热分解。加热至600℃后,m-PVA/CMC、m-PVA/CMC/WHSP-2%,PVA/CMC/WHSP-2%的失重率分别为56.05%、55.09%和70.61%。与PVA/CMC/WHSP相比,m-PVA/CMC和m-PVA/CMC/WHSP-2%的较低失重可归因于 Fe 3O 4的残留。
4性能测试
4.1水凝胶的溶胀性
下图8是磁性水凝胶m-PVA/CMC、m-PVA/CMC/WHSP-2%、m-PVA/CMC/WHSP-4%、m-PVA/CMC/WHSP-8%在蒸馏水中的溶胀情况,其中添加2%粗糖的水凝胶,溶胀性能最好,溶胀平衡吸水量为38.67mg/g,高于Dai等人制备的磁性纳米纤维素水凝胶的平衡吸水量33.38mg/g,所有水凝胶在16min之后达到溶胀平衡,与Dai等制备的磁性纳米纤维素水凝胶在90分钟达到溶胀平衡相比,磁性多糖水凝胶具有短时吸附的性能。
4.2水凝胶的pH敏感性分析
为了分析水凝胶的酸碱敏感性,将水凝胶分别浸泡在pH为2.0-12.0下测试其平衡溶胀率,结果如图9所示,随着pH值的变化,所有水凝胶都表现出相似的溶胀趋势,水凝胶的溶胀率根据溶液pH值的变化而变化,表现出明显的pH敏感性。当溶液pH值从2.0升高到7.0,水凝胶的溶胀率显著增加,在pH为7.0时出现最大平衡溶胀率,随后溶胀率开始降低。水凝胶溶胀过程中的pH敏感性行为可归因如下:在酸性介质(通常在pH<4)下,水凝胶中的大部分-COO-基团质子化成-COOH,随后-COOH基团之间的氢键相互作用被强化而原先的-COO-基团之间的静电排斥受到抑制,因此水分子在水凝胶网络结构中的扩散受到损害,最终导致在较低pH值下出现溶胀较小。随着外部溶液pH值的增加,-COOH电离成COO-,氢键作用被破坏。此外,-COO-基团之间的静电排斥也相应增强,最终导致水凝胶溶胀率增加。但是,在碱性条件下,Na +在溶胀介质中的电荷屏蔽作用可以有效防止阴离子-阴离子静电排斥作用,导致溶胀率降低。由于这些原因,水凝胶在高pH值下溶胀率降低。
4.3水凝胶对亚甲基蓝的吸附性能分析
4.3.1 pH对吸附性能的影响
溶液pH值是影响吸附材料吸附阳离子型染料亚甲基蓝性能的一个重要因素,它可以通过影响吸附材料的表面电荷和活性部位官能团的解离来影响吸附性能。吸附实验,多糖水凝胶对亚甲基蓝水溶液在不同的pH值(2~10)条件下去除率的影响,其他实验条件设置为:在初始浓度100mg/L的染料溶液,常温,吸附1小时,结果如图所示。如图10所示,未添加NC和WHSP的水凝胶在弱酸性(pH=6)对亚甲基蓝的去除率为80%;添加2%NC水凝胶在中性以及酸性下对亚甲基蓝的去除率较好,在中性条件下最多可去除95%的亚甲基蓝;添加2%WHSP的水凝胶在中性偏碱的环境下对亚甲基蓝的吸附能力较强,在碱性条件下对亚甲基蓝的去除率为85%,因此可以根据需要选择合适的修饰剂。
4.3.2在不同温度下水凝胶的吸附动力学
水凝胶m-PVA/CMC、m-PVA/CMC/WHSP-2%、m-PVA/CMC/WHSP-4%、m-PVA/CMC/WHSP-8%以及m-PVA/CMC/NC-2%在不同温度(25℃、45℃和65℃)下吸附亚甲基蓝的准一级动力学模型、准二级动力学模型拟合曲线以及颗粒内扩散Weber模型拟合曲线如图11-16所示。所有水凝胶在吸附初始阶段(20~240min)的亚甲基蓝吸附速率较快,吸附量迅速增加,然后逐渐减慢至平衡。这可能是由于在初始吸附阶段,亚甲基蓝溶液的浓度较高,同时水凝胶中存在大量自由吸附位点,导致吸附速率较快,吸附量增加迅速。而随着吸附时间的延长,亚甲基蓝溶液浓度和水凝胶中相应的吸附位点均减少,从而吸附量增加缓慢。水凝胶在25℃、45℃和65℃时的达到吸附平衡的时间是依次递减,以m-PVA/CMC/WHSP-2%为例,达到吸附平衡的时间依次为1800min、1080min、780min。此外,添加2%和4%WHSP的水凝胶在低温25℃有最高平衡吸附量,分别为71.07mg/g、68.21mg/g,而添加8%WHSP在45℃有最高平衡吸附量,为67.32mg/g;添加4%WHSP水凝胶在较宽的温度范围内(25℃-65℃)对亚甲基蓝的吸附比较稳定,吸附量均大于60mg/g,添加2%WHSP更适合在中低温下的吸附,添加8%WHSP更适合在中高温下的吸附。WHSP的添加量和温度是影响水凝胶吸附性能的重要因素,而且可能存在相互拮抗作用。
通过线性回归拟合得到两个模型的动力学参数,结果如表2~7所示。准二级动力学模型的相关系数(R2>0.99)高于准一级动力学模型(<0.97),同时准二阶动力学模型拟合得到的理论平衡吸附量(Qe,cal)与实验平衡吸附量(Qe,exp)更为接近,所以当前制备的水凝胶对亚甲基蓝的静态吸附过程更符合准二级动力学模型。这些结果表明所制备的水凝胶在吸附亚甲基蓝过程中主要是通过染料阳离子和水凝胶 的官能团之间交换或共享电子的化学吸附过程来控制的。此外,准二级动力学模型中的速率常数k 2随着温度的升高而增加,表明随吸附温度升高,水凝胶对亚甲基蓝的吸附速率也会更快,更快达到吸附平衡,这与图15(a)是一致的。戴等用菠萝皮渣纤维素和PVA制备水凝胶,在吸附亚甲基蓝时出现高温(50℃)会降低水凝胶对亚甲基蓝吸附的问题,原因可能是高温增加了吸附过程中染料离子的迁移率,导致部分吸附在水凝胶表面的染料分子出现解吸现象,最终导致吸附能力降低;相反,m-PVA/CMC/WHSP-8%在高温45℃、65℃具有较高的平衡吸附量,原因可能是WHSP含量的增加,分子链上的羟基增多,由于分子间相互作用,水凝胶上的活性位点可能会相互屏蔽,导致水凝胶m-PVA/CMC/WHSP-8%在25℃下具有较低的吸附能力,随着温度升高,链逐渐被打开,活性位点相应增多,因此在45℃和65℃有较好的吸附能力,因此可以通过控制WHSP的量获得在不同温度下对亚甲基蓝具有较好吸附能力的水凝胶。Weber-Morris内扩散方程如拟合曲线分为两部分,不是一条直线,而且都没有经过坐标原点,揭示了多糖水凝胶对亚甲基蓝的吸附过程中内扩散不是唯一的吸附速率限制步骤。随着温度的升高,K 1在升高,说明吸附质随着温度的升高容易在吸附剂内部扩散;同一温度,在第一段时间内用Weber方程拟合效果较好,说明在前期吸附过程中存在颗粒内扩散吸附机制;随着温度的升高,I值在增大,说明随着温度的升高,吸附剂周围液相边界层对吸附剂表面扩散过程的影响增大。
表2 水凝胶m-PVA/CMC/WHSP-2%准一级动力学和准二级动力学方程拟合结果
Figure PCTCN2022123118-appb-000006
表3 水凝胶m-PVA/CMC/WHSP-2%颗粒内扩散模型Weber方程拟合结果
Figure PCTCN2022123118-appb-000007
表4 水凝胶m-PVA/CMC/WHSP-4%准一级动力学和准二级动力学方程拟合结果
Figure PCTCN2022123118-appb-000008
表5 水凝胶m-PVA/CMC/WHSP-4%颗粒内扩散模型Weber方程拟合结果
Figure PCTCN2022123118-appb-000009
表6 水凝胶m-PVA/CMC/WHSP-8%准一级动力学和准二级动力学方程拟合结果
Figure PCTCN2022123118-appb-000010
表7 水凝胶m-PVA/CMC/WHSP-8%颗粒内扩散模型Weber方程拟合结果
Figure PCTCN2022123118-appb-000011
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种水凝胶,其特征在于,包括聚乙烯醇、羧甲基纤维素钠和黄水多糖,所述聚乙烯醇和所述羧甲基纤维素钠的质量之和与所述黄水多糖的质量比为100:(1.8~8.2)。
  2. 根据权利要求1所述的水凝胶,其特征在于,所述聚乙烯醇和所述羧甲基纤维素钠的质量之和与所述黄水多糖的质量比为100:(1.8~2.2)。
  3. 根据权利要求1或2所述的水凝胶,其特征在于,所述聚乙烯醇与所述羧甲基纤维素钠的质量比为(2.8~3.2):(1.8~2.2)。
  4. 根据权利要求1~3任一项所述的水凝胶,其特征在于,所述聚乙烯醇、所述羧甲基纤维素钠和所述黄水多糖之间通过分子间和/或分子内氢键连接,所述水凝胶为多孔结构。
  5. 根据权利要求1~3任一项所述的水凝胶,其特征在于,所述黄水多糖选自酿酒黄水多糖。
  6. 根据权利要求1~5任一项所述的水凝胶,其特征在于,所述水凝胶还包括掺杂在上述水凝胶基体中的磁性粒子。
  7. 如权利要求1~6任一项所述的水凝胶作为染料吸附剂的应用。
  8. 根据权利要求7所述的应用,其特征在于,所述染料选自亚甲基蓝。
  9. 根据权利要求7或8所述的应用,其特征在于,所述水凝胶作为染料吸附剂的工作pH为2~10,工作温度为25℃~65℃。
  10. 一种如权利要求1~6任一项所述的水凝胶的制备方法,其特征在于,包括以下步骤:
    a、将聚乙烯醇在水中溶胀;
    b、在溶胀的聚乙烯醇溶液与羧甲基纤维素钠混合得到第一混合物,对所述第一混合物进行加热并搅拌;
    c、将加热和搅拌后的第一混合物进行冷却;
    d、将冷却后的第一混合物与黄水多糖混合得到第二混合物;
    e、对所述第二混合物进行冷冻和解冻的循环反应。
  11. 根据权利要求10所述的水凝胶的制备方法,其特征在于,包括特征(1)~(5)中的至少一种:
    (1)步骤a的溶胀过程包括加热并搅拌的步骤,加热温度为55℃~65℃,搅拌时间为30min~60min;
    (2)步骤b的加热的温度为88℃~98℃,搅拌时间为50min~70min;
    (3)步骤c中冷却后的温度为20℃~30℃;
    (4)步骤d中混合的步骤为将所述黄水多糖的溶液滴入所述第一混合物中;
    (5)步骤e中冷冻的温度为-20℃~-15℃,解冻的温度为25℃~30℃,单次冷冻的时间为7h~9h,单次解冻的时间为4h~6h,循环次数为5~8次。
  12. 根据权利要求10或11所述的水凝胶的制备方法,其特征在于,步骤c中冷却后还包括进行搅拌的步骤,所述搅拌的时间为20min~40min。
  13. 根据权利要求10或11所述的水凝胶的制备方法,其特征在于,步骤d中还包括对所述第二混合物进行搅拌的步骤,所述搅拌的时间为20min~40min。
  14. 根据权利要求10或11所述的水凝胶的制备方法,其特征在于,还包括将步骤e得到的凝胶状产物依次浸入添加有铁离子、氢氧根离子和磁性粒子的溶液中进行反应;
    可选的,所述铁离子为Fe 2+和Fe 3+混合物,Fe 2+和Fe 3+的浓度比例为(0.8~1.2):2,浸入时间为3h~5h,氢氧根离子浓度为1.8mol/L~2.2mol/L,浸入时间为3h~5h;
    可选的,还包括将反应后的产物洗涤至中性的步骤。
  15. 根据权利要求11~14任一项所述的水凝胶的制备方法,其特征在于,所述黄水多糖的提取步骤包括:对酿酒黄水依次进行离心、超滤、醇沉处理、离心、收集沉淀并干燥;
    可选的,所述提取步骤中首次离心的条件为离心温度为0℃~4℃、离心力为4000g~6000g、离心时间为15min~30min,第二次及以后的离心的条件为离心温度为0℃~4℃、离心力为8000g~10000g、离心时间为5min~25min。
PCT/CN2022/123118 2021-10-08 2022-09-30 黄水多糖基水凝胶及其制备方法和应用 WO2023056893A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/568,864 US20240181426A1 (en) 2021-10-08 2022-09-30 Huangshui polysaccharide-based hydrogel and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111171336.0 2021-10-08
CN202111171336.0A CN113750979B (zh) 2021-10-08 2021-10-08 黄水多糖基水凝胶及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023056893A1 true WO2023056893A1 (zh) 2023-04-13

Family

ID=78798919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123118 WO2023056893A1 (zh) 2021-10-08 2022-09-30 黄水多糖基水凝胶及其制备方法和应用

Country Status (3)

Country Link
US (1) US20240181426A1 (zh)
CN (1) CN113750979B (zh)
WO (1) WO2023056893A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750979B (zh) * 2021-10-08 2022-10-28 北京工商大学 黄水多糖基水凝胶及其制备方法和应用
CN116790042B (zh) * 2023-06-26 2024-02-27 北京工商大学 一种复合水凝胶、制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1480224A (zh) * 2002-07-26 2004-03-10 马来西亚核技术研究所 淀粉水凝胶
CN105903442A (zh) * 2016-05-10 2016-08-31 西北师范大学 一种多糖基水凝胶的制备及作为吸附剂在废水处理中的应用
US20180327279A1 (en) * 2017-03-30 2018-11-15 Board Of Regents, The University Of Texas System Hybrid hydrogel for highly efficient solar generation of steam
CN110016160A (zh) * 2019-04-10 2019-07-16 南方医科大学 一种多糖基水凝胶的制备方法
CN110156907A (zh) * 2019-06-11 2019-08-23 北京工商大学 一种分离鉴定黄水中多糖的方法
CN113750979A (zh) * 2021-10-08 2021-12-07 北京工商大学 黄水多糖基水凝胶及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1480224A (zh) * 2002-07-26 2004-03-10 马来西亚核技术研究所 淀粉水凝胶
CN105903442A (zh) * 2016-05-10 2016-08-31 西北师范大学 一种多糖基水凝胶的制备及作为吸附剂在废水处理中的应用
US20180327279A1 (en) * 2017-03-30 2018-11-15 Board Of Regents, The University Of Texas System Hybrid hydrogel for highly efficient solar generation of steam
CN110016160A (zh) * 2019-04-10 2019-07-16 南方医科大学 一种多糖基水凝胶的制备方法
CN110156907A (zh) * 2019-06-11 2019-08-23 北京工商大学 一种分离鉴定黄水中多糖的方法
CN113750979A (zh) * 2021-10-08 2021-12-07 北京工商大学 黄水多糖基水凝胶及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAI HONGJIE; ZHANG HUAN; MA LIANG; ZHOU HONGYUAN; YU YONG; GUO TING; ZHANG YUHAO; HUANG HUIHUA: "Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release", CARBOHYDRATE POLYMERS, APPLIED SCIENCE PUBLISHERS , LTD BARKING, GB, vol. 209, 1 January 1900 (1900-01-01), GB , pages 51 - 61, XP085591047, ISSN: 0144-8617, DOI: 10.1016/j.carbpol.2019.01.014 *
WANG LIANG-YI, WANG MENG-JIY: "Removal of Heavy Metal Ions by Poly(vinyl alcohol) and Carboxymethyl Cellulose Composite Hydrogels Prepared by a Freeze–Thaw Method", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, AMERICAN CHEMICAL SOCIETY, US, vol. 4, no. 5, 2 May 2016 (2016-05-02), US , pages 2830 - 2837, XP093055448, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.6b00336 *
WANG WENBIN, ZHANG HONGXI, SHEN JIANFENG, YE MINGXIN: "Facile preparation of magnetic chitosan/poly (vinyl alcohol) hydrogel beads with excellent adsorption ability via freezing-thawing method", COLLOIDS AND SURFACES A : PHYSIOCHEMICAL AND ENGINEERINGS ASPECTS, ELSEVIER, AMSTERDAM, NL, vol. 553, 1 September 2018 (2018-09-01), AMSTERDAM, NL , pages 672 - 680, XP093055443, ISSN: 0927-7757, DOI: 10.1016/j.colsurfa.2018.05.094 *
WU, ZIYAN ET AL.: "Synthesis, characterization, and methylene blue adsorption of multiple-responsive hydrogels loaded with Huangshui polysaccharides, polyvinyl alcohol, and sodium carboxyl methyl cellulose", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 216, 1 July 2022 (2022-07-01), XP087149816, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2022.06.178 *

Also Published As

Publication number Publication date
CN113750979B (zh) 2022-10-28
US20240181426A1 (en) 2024-06-06
CN113750979A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023056893A1 (zh) 黄水多糖基水凝胶及其制备方法和应用
CN109904501B (zh) 一种复合碱性聚电解质膜及其制备方法和应用
CN104437415B (zh) 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用
CN111437792A (zh) 一种用于去除水中铜离子的磁性介孔二氧化硅的合成方法
CN112108120B (zh) 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用
CN113145076A (zh) 一种改性生物炭的制备方法及改性生物炭
US20220144972A1 (en) Surface-nanocrystallized cellulose-containing biomass material, preparation method and use thereof
CN108831759A (zh) 一种基于石墨烯/壳聚糖多孔碳复合材料及其制备方法和应用
CN110585933A (zh) 一种用于六价铬去除的纳米铁-海藻酸钙复合膜制备方法
CN106277077B (zh) 一种中空花状氢氧化镍微球复合材料及其制备方法与应用
CN106964362A (zh) 金属钼酸盐/碳复合纳米纤维及其制备方法以及复合材料及其应用
WO2017197590A1 (zh) 银纳米颗粒的制备方法
CN111808437B (zh) 一种具有反触变性的疏水纳米碳酸钙及其制备方法
CN107064221B (zh) 一种检测甲醛的气敏材料及制备方法
CN112808244A (zh) 一种偕胺肟化吸附材料及其制备方法和应用
CN113171760A (zh) 一种高强度的印迹复合膜及其制备方法和应用
CN110835110A (zh) 一种沉淀水合二氧化硅的制备方法
CN106633215A (zh) 磺化β‑环糊精‑LDH复合体及其合成方法
CN106379948B (zh) 一种制备纳米羟基氧化钴锰的方法
CN110031449B (zh) 一种碳基点包裹二氧化锡纳米片复合材料的制备及其在表面增强拉曼基底中的应用
CN113943006A (zh) 高补强白炭黑及其制备方法和应用
CN113209839A (zh) 一种具有高耐酸性能的甲烷/氮气分离的混合基质膜及制备方法和应用
CN111604026A (zh) 一种偏钛酸型锂离子筛吸附剂的制备方法及其产品与应用
CN109659151A (zh) 一种通过调控木质素分子量制备不同碳基超级电容器用电极材料的方法
CN110467217A (zh) 一种珊瑚状纳米二氧化锡粉体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18568864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE