CN104437415B - 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用 - Google Patents

一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用 Download PDF

Info

Publication number
CN104437415B
CN104437415B CN201510001787.8A CN201510001787A CN104437415B CN 104437415 B CN104437415 B CN 104437415B CN 201510001787 A CN201510001787 A CN 201510001787A CN 104437415 B CN104437415 B CN 104437415B
Authority
CN
China
Prior art keywords
chitosan
graphite oxide
modified graphite
oxide magnetic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510001787.8A
Other languages
English (en)
Other versions
CN104437415A (zh
Inventor
吕海霞
王晓明
谢增鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201510001787.8A priority Critical patent/CN104437415B/zh
Publication of CN104437415A publication Critical patent/CN104437415A/zh
Application granted granted Critical
Publication of CN104437415B publication Critical patent/CN104437415B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备方法和应用,属于吸附材料制备领域。采用一步热溶剂法,直接将功能单体壳聚糖和氧化石墨加入具有高温高压条件的磁源环境中,合成一种固相萃取材料。合成方法简单,过程易于控制,而且其结合了氧化石墨及壳聚糖的大量功能基团,具有很好吸附功能,键合牢固、性质稳定,重现性好,富集倍数较大,可以在较宽的pH范围内使用,适用于环境水样中痕量Cu(II)的富集预处理。

Description

一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用
技术领域
本发明属于吸附材料制备领域,具体涉及一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备方法和应用。
背景技术
随着工业的发展,大量的金属离子流入环境中,造成环境污染并严重危害人类的身体健康。因此,对重金属离子的检测及把重金属离子从环境样品中去除显得十分重要。目前,重金属离子的分离主要有化学沉淀法、液液萃取法、溶剂萃取法和固相萃取法等。其中,固相萃取技术(SPE)由于其操作简单、有机溶剂消耗少、具有高回收率与富集倍数、易与其它仪器联用等优点成为最常被应用的预处理技术。在固相萃取技术中,二氧化硅,氧化铝,活性炭,生物吸附剂等已被广泛用于水溶液中金属铜的分离。而磁性吸附剂能通过磁析分离直接从溶液中分离出来,可以减少有害有机溶剂的使用,简化繁琐的样品洗脱步骤,易于实现自动化,故成为固相萃取技术发展中重要的一部分。
壳聚糖(CS)是除了纤维素以外最丰富的自然资源,可以由甲壳素脱乙酰化获得。因其分子结构中含有氨基和羟基两种活泼基团,故壳聚糖可以通过交联、接枝、酰化、醚化等化学方法实现改性制备出具有不同理化特性和用途的壳聚糖衍生物。为了提高壳聚糖的物理化学性质,可以对壳聚糖进行化学修饰,例如将壳聚糖包覆在固体基质颗粒上,从而能提高其稳定性。
同时,氧化石墨具有巨大的比表面积赋予其优异的复合性能,在一层碳原子构成的二维空间无限延伸的基面上连有羰基、羟基、羧基等大量亲水性基团,经过改性和还原后可在聚合物基体中形成纳米级分散,并修饰上更多的功能化基团,使石墨烯片在力学性能和吸附性性能等方面发挥更大潜力。Liu X. L. (Chinese Chemical Letters, 2014, 25(8): 1185-1189)等用石墨烯修饰四氧化三铁制备出磁性吸附剂3D-G@Fe3O4,并用于固相萃取吸附酚酞。Yu B. W. (Journal of Environmental Chemical Engineering, 2013, 1(4): 1044-1050)等用石墨烯氧化物和壳聚糖复合制备GO-CS气凝胶用来吸附分离Cu(II),吸附分离后的吸附剂很容易通过过滤或高速离心分离。目前,尚无采用一步法合成壳聚糖修饰氧化石墨磁性纳米吸附剂的相关报道。
发明内容
本发明的目的在于提供一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备方法和应用,制备过程较简单,条件控制简单,产品结合了氧化石墨和壳聚糖的大量功能基团,键合牢固、性质稳定,重现性好,吸附容量较大,富集倍数高,可以在较宽的pH范围内使用,其对环境水样中痕量Cu(II)的吸附富集能力良好。
为实现上述目的,本发明采用如下技术方案:
一种壳聚糖修饰氧化石墨磁性纳米吸附剂的制备方法包括以下步骤:
(1)氧化石墨的制备;
(2)壳聚糖修饰氧化石墨磁性纳米粒子的制备。
具体步骤如下:
(1)在0℃下,将300~360 mL 98wt.%浓硫酸和20~40 mL浓磷酸,搅拌均匀,边搅拌边加入2~3 g天然鳞片石墨和15~18 g高锰酸钾,继续搅拌20~30 min,,缓慢升温至50℃,搅拌10~12 h,加入去离子水,将反应液稀释至1000~1400 mL,加入3wt.%双氧水,过滤,用5wt.%的HCl溶液和去离子水洗涤滤饼直至滤液中无硫酸根离子,60℃干燥48 h,研磨,过200目筛,即得氧化石墨;
(2)将100~200mg 氧化石墨分散于60~70 mL乙二醇中,超声分散0.5~1 h,依次加入2.0~2.5 g FeCl3·6H2O、5.0~6.0 g无水NaAc和0.5~1.0 g 壳聚糖,磁力搅拌均匀,50℃水浴环境中,继续强力搅拌30~60 min,190~210℃反应6~10 h,冷却至室温,用无水乙醇和去离子水分别洗涤数次,50℃干燥24 h,得到壳聚糖修饰氧化石墨磁性纳米粒子,即所述的壳聚糖修饰氧化石墨磁性纳米吸附剂。
所述的吸附剂用于环境水样中痕量Cu(II)的富集预处理。
本发明的显著优点在于:
(1)本发明合成的壳聚糖修饰氧化石墨磁性纳米吸附剂,是采用一步热溶剂法直接合成的。方法简单,过程可控,产物具有很好的稳定性,且能在较宽的pH范围内使用。
(2)本发明合成的壳聚糖修饰氧化石墨磁性纳米吸附剂,以四氧化三铁为基体,并修饰上含有大量功能基团的氧化石墨和壳聚糖作为单体,可以提高其吸附能力与选择性。
(3)本发明合成的壳聚糖修饰氧化石墨磁性纳米吸附剂,具有富集倍数大,重现性好,可重复利用,再生性好的优点。
附图说明
图1是壳聚糖修饰氧化石墨磁性纳米吸附剂的扫描电镜图。
图2是壳聚糖修饰氧化石墨磁性纳米吸附剂的磁滞回线。
图3是壳聚糖修饰氧化石墨磁性纳米吸附剂吸附Cu(II)的吸附容量。
具体实施方式
实施例1
壳聚糖修饰氧化石墨磁性纳米吸附剂的制备
(1)氧化石墨的制备:将1000 mL烧杯放入低温反应浴中,冷却至0℃,加入300mL 98%的浓硫酸和20mL浓磷酸,搅拌均匀。搅拌中加入2 g天然鳞片石墨和15 g高锰酸钾,然后继续搅拌20min,以保证充分混合。缓慢升温至50℃,搅拌10h。反应结束后,将反应体系移入2000 mL烧杯中,加去离子水将反应液稀释至1000 mL,并加入一定量的H2O2 (3%),此时反应液会变成金黄色。趁热过滤,然后用5%的HCl溶液和去离子水洗涤滤饼直至滤液中无硫酸根离子(用BaCl2溶液检测)。将滤饼置于60℃的真空干燥箱中干燥48 h。研磨过200目筛,得到氧化石墨,密封保存;
(2)壳聚糖修饰氧化石墨磁性粒子:取100mg GO分散于60 mL乙二醇中,超声分散0.5 h使GO分散均匀,依次加入2.0 g FeCl3.6H2O、5.0 g无水NaAc和0.5 g 壳聚糖(CS)于烧杯中混合。混合液用磁力搅拌器进行搅拌,并移入50℃水浴环境中,继续强力搅拌30min,直至溶质完全溶解形成均一暗色溶液。将该溶液密封于100 mL聚四氟乙烯反应釜中,用不锈钢外套锁紧,置于190℃反应炉中加热反应6h。取出后在空气中冷却至室温,移出反应产物,并用无水乙醇和去离子水分别洗涤数次,以除去残留物质。在50℃真空干燥箱中干燥24 h,得到壳聚糖修饰氧化石墨磁性纳米吸附剂。
实施例2
壳聚糖修饰氧化石墨磁性纳米吸附剂的制备
(1)氧化石墨的制备:将1000 mL烧杯放入低温反应浴中,冷却至0℃,加入360 mL 98%的浓硫酸和40 mL浓磷酸,搅拌均匀。搅拌中加入3 g天然鳞片石墨和18 g高锰酸钾,然后继续搅拌30 min,以保证充分混合。缓慢升温至50℃,搅拌12 h。反应结束后,将反应体系移入2000 mL烧杯中,加去离子水将反应液稀释至1400 mL,并加入一定量的H2O2 (3%),此时反应液会变成金黄色。趁热过滤,然后用5%的HCl溶液和去离子水洗涤滤饼直至滤液中无硫酸根离子(用BaCl2溶液检测)。将滤饼置于60℃的真空干燥箱中干燥48 h。研磨过200目筛,得到氧化石墨,密封保存;
(2)壳聚糖修饰氧化石墨磁性粒子:取200mg GO分散于70 mL乙二醇中,超声分散1 h使GO分散均匀,依次加入2.5 g FeCl3.6H2O、6.0 g无水NaAc和1.0 g 壳聚糖(CS)于烧杯中混合。混合液用磁力搅拌器进行搅拌,并移入50℃水浴环境中,继续强力搅拌60 min,直至溶质完全溶解形成均一暗色溶液。将该溶液密封于100 mL聚四氟乙烯反应釜中,用不锈钢外套锁紧,置于210 ℃反应炉中加热反应10 h。取出后在空气中冷却至室温,移出反应产物,并用无水乙醇和去离子水分别洗涤数次,以除去残留物质。在50℃真空干燥箱中干燥24 h,得到壳聚糖修饰氧化石墨磁性纳米吸附剂。
实施例3
壳聚糖修饰氧化石墨磁性纳米吸附剂的制备
(1)氧化石墨的制备:将1000 mL烧杯放入低温反应浴中,冷却至0℃,加入330 mL 98%的浓硫酸和30 mL浓磷酸,搅拌均匀。搅拌中加入2.5 g天然鳞片石墨和16.5g高锰酸钾,然后继续搅拌25min,以保证充分混合。缓慢升温至50℃,搅拌11h。反应结束后,将反应体系移入2000 mL烧杯中,加去离子水将反应液稀释至1200 mL,并加入一定量的H2O2 (3%),此时反应液会变成金黄色。趁热过滤,然后用5%的HCl溶液和去离子水洗涤滤饼直至滤液中无硫酸根离子(用BaCl2溶液检测)。将滤饼置于60℃的真空干燥箱中干燥48 h。研磨过200目筛,得到氧化石墨,密封保存;
(2)壳聚糖修饰氧化石墨磁性粒子:取150mg GO分散于65 mL乙二醇中,超声分散0.7 h使GO分散均匀,依次加入2.2 g FeCl3.6H2O、5.5 g无水NaAc和0.8 g 壳聚糖(CS)于烧杯中混合。混合液用磁力搅拌器进行搅拌,并移入50℃水浴环境中,继续强力搅拌45min,直至溶质完全溶解形成均一暗色溶液。将该溶液密封于100 mL聚四氟乙烯反应釜中,用不锈钢外套锁紧,置于200℃反应炉中加热反应8h。取出后在空气中冷却至室温,移出反应产物,并用无水乙醇和去离子水分别洗涤数次,以除去残留物质。在50℃真空干燥箱中干燥24 h,得到壳聚糖修饰氧化石墨磁性纳米吸附剂。
壳聚糖修饰氧化石墨磁性纳米吸附剂的形貌表征
采用扫描电子显微镜观察壳聚糖修饰氧化石墨磁性纳米吸附剂的粒径及整体形貌。图1是磁性纳米粒子的扫描电镜放大20 000倍图。电镜图显示,合成的磁性纳米粒子分散性较好,粒径分布均一,形貌为实心球体,而且较好的分散在层状的氧化石墨烯中。
壳聚糖修饰氧化石墨磁性纳米吸附剂的磁性能表征
采用磁学测量系统对壳聚糖修饰氧化石墨磁性纳米吸附剂的磁性能进行表征。图2是壳聚糖修饰氧化石墨磁性纳米吸附剂的磁滞回线。磁滞回线显示,粒子是超顺磁性,具有良好的磁响应能力。
壳聚糖修饰氧化石墨磁性纳米吸附剂的饱和吸附容量
通过FAAS测定吸附剂在2~160 mg/L不同浓度的溶液中超声20~30 min充分吸附后Cu(II)的浓度。结果如图3所示。结果表明,当Cu(II)溶液在较低浓度时,其吸附容量随之增加而增加,当Cu(II)溶液初始浓度较高时,则出现平台,说明吸附剂对Cu(II)的吸附达到了饱和状态。实验结果显示壳聚糖修饰氧化石墨磁性纳米吸附剂对Cu(II)的饱和吸附容量为47.35 mg/g。吸附条件:Cu(II)的离子浓度:2~160 mg/L;pH:7.0;吸附剂用量:5 mg;超声时间:20~30 min;试样体积:20 mL;温度:25℃。
应用例
实际水样中Cu(II)的萃取富集与测定
用洗净的容器于福州大学新区行政北楼前池塘取水样1 L,立即将其过滤保存备用。取50 mL过滤好的水样,利用缓冲液将其pH值调节至7.0,在最佳样品吸附条件下萃取富集,再用2 mL 0.6 mol/L的盐酸溶液洗脱被吸附的离子,用FAAS测定洗脱液中的Cu(II)。同时,本文还通过加标的方法对水样进行了测试,实验方法与未加标实验相同,加标量分别为100 μg/L、200 μg/L,各法均平行富集测定三次。结果如表1所示。实验结果表明,用该方法测得湖水的Cu(II)的浓度为9.4 μg/L。国家地表水环境质量标准中规定一级地表水的Cu(II)浓度上限值为10 μg/L,故所采集测试的湖水Cu(II)浓度略符合国家一类地表水标准。对实际水样的测定和加标实验测得Cu(II)离子回收率在96.4%-98.4%之间。采用同样的方法对福州大学自来水进行萃取富集与测定,结果如表2所示,表明该方法对水样的分析可靠可行,结果令人满意。
表1 湖水中Cu(II)含量的测定结果
表2 自来水中Cu(II)含量的测定结果
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种壳聚糖修饰氧化石墨磁性纳米吸附剂的制备方法,其特征在于:包括以下步骤:
(1)氧化石墨的制备;
(2)壳聚糖修饰氧化石墨磁性纳米粒子的制备;
其具体步骤如下:
(1)在0℃下,将300~360 mL 98wt.%浓硫酸和20~40 mL浓磷酸,搅拌均匀,边搅拌边加入2~3 g天然鳞片石墨和15~18 g高锰酸钾,继续搅拌20~30 min,缓慢升温至50℃,搅拌10~12 h,加入去离子水,将反应液稀释至1000~1400 mL,加入3wt.%双氧水,过滤,用5wt.%的HCl溶液和去离子水洗涤滤饼直至滤液中无硫酸根离子,60℃干燥48 h,研磨,过200目筛,即得氧化石墨;
(2)将100~200 mg 氧化石墨分散于60~70 mL乙二醇中,超声分散0.5~1 h,依次加入2.0~2.5 g FeCl3·6H2O、5.0~6.0 g无水NaAc和0.5~1.0 g 壳聚糖,磁力搅拌均匀,50℃水浴环境中,继续强力搅拌30~60 min,190~210℃反应6~10 h,冷却至室温,用无水乙醇和去离子水分别洗涤数次,50℃干燥24 h,得到壳聚糖修饰氧化石墨磁性纳米粒子,即所述的壳聚糖修饰氧化石墨磁性纳米吸附剂。
2.一种如权利要求1所述的方法制得的壳聚糖修饰氧化石墨磁性纳米吸附剂。
3.一种如权利要求1所述的方法制得的壳聚糖修饰氧化石墨磁性纳米吸附剂的应用,其特征在于:所述的吸附剂用于环境水样中痕量Cu(II)的富集预处理。
CN201510001787.8A 2015-01-05 2015-01-05 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用 Expired - Fee Related CN104437415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510001787.8A CN104437415B (zh) 2015-01-05 2015-01-05 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510001787.8A CN104437415B (zh) 2015-01-05 2015-01-05 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN104437415A CN104437415A (zh) 2015-03-25
CN104437415B true CN104437415B (zh) 2016-11-09

Family

ID=52884624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510001787.8A Expired - Fee Related CN104437415B (zh) 2015-01-05 2015-01-05 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN104437415B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988592B (zh) * 2015-07-17 2017-05-17 黑龙江大学 聚乙烯醇/石墨烯复合纳米纤维材料及其制备方法
CN106610409A (zh) * 2015-10-23 2017-05-03 杭州师范大学 一种壳聚糖填充微型基质固相分散方法
CN105413647B (zh) * 2015-12-10 2018-05-15 福建师范大学福清分校 一种功能化石墨烯的制备方法
CN105668757B (zh) * 2016-04-11 2018-05-04 重庆工商大学 纳米零价铁修饰的石墨烯/海藻酸钠小球及其制备方法和应用
CN106076267B (zh) * 2016-06-13 2018-12-11 中国农业科学院茶叶研究所 壳聚糖修饰的还原氧化石墨烯纳米材料的制备方法及该材料的应用
CN107570212B (zh) * 2017-10-10 2020-01-07 东南大学 一种以复合材料为载体的金属氧化物催化剂及其制备方法与应用
CN109081331B (zh) * 2018-10-17 2022-01-11 青岛科技大学 一种具有非对称润湿性的石墨烯基气凝胶、制备方法及其应用
CN114471492B (zh) * 2022-01-18 2024-04-12 中国农业科学院蔬菜花卉研究所 一种复合材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774574A (zh) * 2010-01-22 2010-07-14 湘潭大学 一种石墨烯无机纳米复合材料制备方法

Also Published As

Publication number Publication date
CN104437415A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104437415B (zh) 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用
Sitko et al. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis
Huang et al. Chitosan/thiol functionalized metal–organic framework composite for the simultaneous determination of lead and cadmium ions in food samples
Dai et al. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS
Yang et al. Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultra-trace cadmium
Wang et al. Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC
Huang et al. Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples
Cui et al. Preparation and application of Aliquat 336 functionalized chitosan adsorbent for the removal of Pb (II)
Wang et al. Determination of trace amounts of Se (IV) by hydride generation atomic fluorescence spectrometry after solid-phase extraction using magnetic multi-walled carbon nanotubes
Huang et al. Ionic liquid-coated Fe 3 O 4/APTES/graphene oxide nanocomposites: Synthesis, characterization and evaluation in protein extraction processes
Zhu et al. Kinetics and thermodynamic study of phosphate adsorption on the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood microstructure
Ye et al. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry
CN105622960B (zh) 一种羧甲基壳聚糖/氧化石墨烯复合水凝胶及其制备与应用
CN109569544A (zh) 一种氨基和羧基功能化磁性微球复合吸附剂的制备方法
Wang et al. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization
CN108176368A (zh) 一种生物炭壳聚糖复合材料及其制法和应用
Zhang et al. Effective removal of methyl blue by fine-structured strontium and barium phosphate nanorods
Liang et al. Influences of surface-coated fulvic and humic acids on the adsorption of metal cations to SiO2 nanoparticles
Hao et al. Magnetic three-dimensional graphene solid-phase extraction coupled with high performance liquid chromatography for the determination of phthalate esters in fruit juice
Sergi et al. Graphene oxide magnetic nanocomposites for the preconcentration of trace amounts of malachite green from fish and water samples prior to determination by fiber optic-linear array detection spectrophotometry
Shen et al. Surface modification of activated carbon fiber and its adsorption for vitamin B1 and folic acid
Zheng et al. Preparation of poly (butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls
CN109351335B (zh) 一种磁性三叠烯-三嗪共价骨架固相萃取剂及其制备方法和应用
CN103028351B (zh) 苯磺酸修饰磁性微球及其制备方法和应用
Liu et al. β-Cyclodextrin anchoring onto pericarpium granati-derived magnetic mesoporous carbon for selective capture of lopid in human serum and pharmaceutical wastewater samples

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161109

Termination date: 20200105

CF01 Termination of patent right due to non-payment of annual fee