WO2023054321A1 - 接合型ウェーハの剥離方法 - Google Patents

接合型ウェーハの剥離方法 Download PDF

Info

Publication number
WO2023054321A1
WO2023054321A1 PCT/JP2022/035852 JP2022035852W WO2023054321A1 WO 2023054321 A1 WO2023054321 A1 WO 2023054321A1 JP 2022035852 W JP2022035852 W JP 2022035852W WO 2023054321 A1 WO2023054321 A1 WO 2023054321A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
device structure
bonded
support
bonded wafer
Prior art date
Application number
PCT/JP2022/035852
Other languages
English (en)
French (fr)
Inventor
順也 石崎
雅人 山田
敬典 小川
Original Assignee
信越半導体株式会社
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社, 信越化学工業株式会社 filed Critical 信越半導体株式会社
Priority to CN202280065905.XA priority Critical patent/CN118043942A/zh
Priority to JP2023535613A priority patent/JP7408881B2/ja
Priority to KR1020247010499A priority patent/KR20240063128A/ko
Publication of WO2023054321A1 publication Critical patent/WO2023054321A1/ja
Priority to JP2023214273A priority patent/JP2024029034A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/428Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • the present invention relates to a bonded wafer delamination method, and more particularly to a bonded wafer delamination method in which an epitaxial wafer is bonded to a different substrate.
  • the technology of separating only the epitaxial functional layer from the starting substrate and transferring it to another substrate is an important technology for alleviating the restrictions caused by the physical properties of the starting substrate and increasing the degree of freedom in device system design.
  • Patent Document 1 discloses a technique of thermocompression bonding a semiconductor epitaxial substrate and a temporary support substrate via a dielectric layer and a technique of separating the temporary support substrate and the epitaxial functional layer by wet etching.
  • Patent Document 2 discloses a technique in which a transparent conductive layer is inserted between an adhesive layer and a functional layer as one form of bonding, although it is not directly related to improving bondability.
  • Patent Document 1 discloses a technique of thermocompression bonding a semiconductor epitaxial substrate and the temporary support substrate via a dielectric layer, and a technique of separating the temporary support substrate and the epitaxial functional layer by wet etching. , there is a constraint that the thermal conditions must be below a certain level in order to maintain the temporary support. Therefore, fabrication of devices on the epitaxial functional layer after removal of the starting substrate has been restricted.
  • a thermal process is essential to obtain ohmic contact.
  • the temporary support changes to a permanent bond (a stronger bond than the temporary support), making separation difficult.
  • the present invention has been made in view of the above problems, and has a device structure portion having two or more electrodes with different polarities on one surface of an epitaxial functional layer as a bonded wafer,
  • the object of the present invention is to provide a separation method with a high survival rate of device structures in separating wafers firmly bonded with a hardening type bonding material, in which a portion is bonded to a support made of a different substrate with a hardening type bonding material.
  • the present invention has been made to achieve the above object, and has a device structure portion having two or more electrodes with different polarities on one surface of an epitaxial functional layer, wherein the device structure portion is a curable type A bonding-type wafer separating method for separating a support from a bonding-type wafer bonded to a support made of a different substrate with a bonding material, wherein the bonding-type wafer is irradiated with a laser beam to remove the hardening-type
  • a method for separating a bonded wafer characterized by separating the device structure and the support.
  • the support can be easily detached from the device structure portion by irradiating the laser beam. Therefore, compared to removing the support by machining or etching, it is possible to increase the survival rate of the device structure portion (percentage of the device structure portion remaining without being destroyed).
  • the epitaxial functional layer can have a light emitting device structure.
  • the epitaxial functional layer may contain an AlGaInP-based material.
  • the present invention can be suitably employed in debonding bonded wafers having such structures.
  • the curable bonding material preferably has any one of thermosetting, UV-curing, and room-temperature curing properties.
  • the curable bonding material preferably contains any one of benzocyclobutene, polyimide, fluororesin, epoxy resin, and silicone resin.
  • the bonded wafer detachment method of the present invention is particularly suitable when using such a curable bonding material.
  • the epitaxial functional layer is removed from the starting substrate for epitaxial growth.
  • the bonded wafer delamination method of the present invention can be suitably applied to delamination of a bonded wafer from which the starting substrate has been removed.
  • the hetero-substrate is made of any one of sapphire, SiC, synthetic quartz, quartz, glass, LiTaO 3 and LiNbO 3 .
  • Such a heterogeneous substrate can be selected so as to have high laser transmittance, and is suitable for the bonded wafer separation method of the present invention.
  • the laser beam is an excimer laser.
  • the bonded wafer can be separated more reliably.
  • a temporary support substrate coated with an adhesive is adhered to the surface of the epitaxial functional layer on the opposite side of the heterosubstrate of the bonded wafer before the laser light irradiation.
  • the temporary support substrate is preferably made of any one of sapphire, SiC, synthetic quartz, quartz, glass, LiTaO 3 and LiNbO 3 .
  • the bonded wafer can be peeled off more smoothly.
  • the support can be easily detached from the device structure portion by irradiating with laser light. Detachment by laser light irradiation requires less stress on the device. Therefore, compared to removing the support by machining or etching, it is possible to increase the survival rate of the device structure portion (percentage of the device structure portion remaining without being destroyed).
  • FIG. 2 is a schematic diagram illustrating the steps of fabricating an epitaxial wafer having an epitaxial functional layer on a starting substrate as part of the process of fabricating a bonded wafer.
  • FIG. 4 is a schematic diagram showing a step of bonding an epitaxial wafer and a heterogeneous substrate as part of the process of fabricating a bonded wafer.
  • FIG. 4A is a schematic diagram illustrating the step of removing the starting substrate as part of the process of making a bonded wafer.
  • FIG. 4 is a schematic diagram showing a step of forming a first electrode as part of the process of making a bonded wafer; FIG.
  • FIG. 4 is a schematic diagram showing a step of forming a notch as part of the process of fabricating a bonded wafer;
  • FIG. 4 is a schematic diagram showing a step of forming a second electrode as part of the process of making a bonded wafer;
  • It is a schematic diagram showing a process of bonding a bonded wafer and a temporary support substrate before separating the bonded wafer.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of 1st embodiment of the peeling method of the bonded type wafer of this invention. It is a schematic diagram showing an example of the second embodiment of the method for debonding a bonded wafer according to the present invention.
  • the present invention has a device structure portion having two or more electrodes with different polarities on one surface of an epitaxial functional layer, and the device structure portion is bonded to a support made of a different substrate with a hardening type bonding material.
  • separating the device structure and the support by causing at least part of the surface of the device structure to absorb a laser beam to decompose the curable bonding material and/or the surface of the device structure; It is characterized by a bonding type wafer separation method.
  • a bonded wafer to which the separation method of the present invention can be applied has, as described above, a device structure portion having two or more electrodes with different polarities on one surface of the epitaxial functional layer, and the device It is a bonded wafer in which the structural part is bonded to a support made of a different substrate with a hardening bonding material.
  • This bonded wafer can be produced, for example, as follows, but is not limited to this.
  • each layer can be epitaxially grown as follows. As shown in FIG. 1, after preparing a GaAs starting substrate of the first conductivity type as a starting substrate 10, after laminating a GaAs buffer layer 11 of the first conductivity type, a GaInP first etch stop layer 12 of the first conductivity type is deposited.
  • the first conductivity type GaAs second etch stop layer 13 for example 0.3 ⁇ m
  • the first conductivity type AlGaInP first clad layer 14 for example 1.0 ⁇ m
  • the non-doped AlGaInP active layer 15 The second conductivity type AlGaInP second cladding layer 16, for example, 1.0 ⁇ m, the second conductivity type GaInP intermediate layer 17, for example, 0.1 ⁇ m, and the second conductivity type GaP window layer 18, for example, 4 ⁇ m, can be grown sequentially.
  • an epitaxial wafer 100 having a light emitting device structure as the epitaxial functional layer 19 is prepared.
  • the AlGaInP first clad layer 14 to the AlGaInP second clad layer 16 are referred to as a DH structure (double hetero structure).
  • the epitaxial wafer 100 and the dissimilar substrate 21 are bonded with a curable bonding material 22.
  • the foreign substrate 21 serves as a support for the bonded wafer. More specifically, bonding can be performed as follows. As shown in FIG. 2, an epitaxial wafer 100 is spin-coated with a silicone resin as a curable bonding material (thermosetting bonding member) 22, placed facing a sapphire wafer as a heterogeneous substrate 21, and bonded by thermocompression. , the epitaxial wafer 100 and the sapphire wafer, which is the heterosubstrate 21, are bonded via the silicone resin, which is the curable bonding material 22. In FIG. Thus, the epitaxial wafer bonding substrate 200 is manufactured. When the silicone resin is applied by spin coating, the designed film thickness can be, for example, about 1.0 ⁇ m.
  • the epitaxial wafer 100 is not limited to being directly spin-coated with the curable bonding material 22, and the epitaxial wafer 100 may be spin-coated after laminating one or more transparent films. effect is obtained.
  • the transparent film may have a structure having one or more layers of insulating films such as SiO 2 and SiN x and transparent conductive films such as indium oxide, tin oxide, and ITO (indium tin oxide).
  • the hetero-substrate 21 is not limited to sapphire, and any material can be selected as long as it ensures flatness and has a low absorptance of laser light.
  • SiC synthetic quartz, quartz (natural quartz), glass, LiTaO 3 , LiNbO 3 and the like can be selected.
  • the curable bonding material 22 is not limited to silicone resin, and any material can be selected as long as it has curable properties, particularly thermosetting properties.
  • silicone resin fluorine resin or the like may be used.
  • the starting substrate 10 is removed while leaving the epitaxial functional layer 19 on the foreign substrate 21 . More specifically, removal can be performed as follows. As shown in FIG. 3, the GaAs starting substrate 10 (and the GaAs buffer layer 11) is removed by wet etching with a selective etchant such as ammonia hydrogen peroxide mixture (a mixture of ammonia water and hydrogen peroxide water), and the GaInP first substrate is removed. Etch stop layer 12 is exposed. Next, the etchant is switched to a hydrochloric acid system to selectively remove the GaInP first etch stop layer 12 and expose the GaAs second etch stop layer 13 .
  • a selective etchant such as ammonia hydrogen peroxide mixture (a mixture of ammonia water and hydrogen peroxide water)
  • the etchant is switched to a sulfuric acid peroxide system to selectively remove the GaAs second etch stop layer 13 and expose the first clad layer 14 .
  • the junction substrate 300 holding the epitaxial functional layer 19 (more specifically, the DH layer (the AlGaInP first clad layer 14 to the AlGaInP second clad layer 16) and the window layer 18) is manufactured.
  • the silicone resin thickness of 1.0 ⁇ m is exemplified, but the thickness is not limited to this thickness, and the thickness may be thinner or thicker than this thickness. effect is obtained.
  • the silicone resin is formed by spin coating, if it is too thin, the area yield after bonding tends to decrease. In order to maintain an area yield of 90% or more after bonding, it is preferable to design an adhesive layer thickness of 0.05 ⁇ m or more.
  • a silicone resin having a thickness of 0.01 ⁇ m or more should be designed. However, from the viewpoint of economic rationality, it is preferable to set the film thickness to 10 ⁇ m or less.
  • a first electrode 41 is formed on a partial region of the AlGaInP first cladding layer 14 of the first conductivity type. It is preferable to use a highly reflective metal for the first electrode 41, and an Au-based electrode can be used.
  • an AuBe-based metal can be used as the metal in contact with the AlGaInP first clad layer .
  • a part of the region of the first conductivity type AlGaInP first cladding layer 14 other than the formation region of the first electrode 41 is notched by a method such as dry etching. , the second conductivity type GaP window layer 18 is exposed in the notch.
  • FIG. 5 illustrates the case where only the semiconductor layer portion is cut out, it is not limited to the case where only the semiconductor portion is cut out, and the curable bonding material 22 (silicone resin) portion may also be cut out.
  • the dissimilar substrate 21 may be cut out.
  • the side surface is covered with a passivation (PSV) film 65.
  • a bonding substrate having a device structure portion with a second electrode 61 formed in the exposed region is produced.
  • the second electrode 61 preferably uses highly reflective metal. Specifically, an Au-based material can be used, and an AuSi-based material is preferable.
  • the PSV film 65 may be formed before the second electrode 61 is formed as described above, or the PSV film 65 may be formed after the second electrode 61 is formed. Also, the PSV film 65 itself does not necessarily have to be formed.
  • RTA heat treatment is performed at 400° C. for 5 minutes, for example, in order to obtain ohmic contact.
  • the device structure portion having two or more electrodes (the first electrode 41 and the second electrode 61) with different polarities on one surface of the epitaxial functional layer 19 is formed by the hardening type bonding material 22 and the dissimilar substrate 21.
  • a bonded wafer (bonded substrate having a device structure portion) 600 bonded to a support made of is manufactured.
  • the present invention is a bonded wafer detachment method for detaching a support made of a dissimilar substrate 21 from such a bonded wafer 600.
  • the curable bonding material 22 is removed. and/or by causing at least part of the surface of the device structure in contact with the curable bonding material 22 to absorb laser light to decompose the surface of the curable bonding material 22 and/or the device structure, It is characterized by separating the supports.
  • an aspect based on decomposition of the surface of the device structure will be mainly described. Specifically, this separation can be performed as follows.
  • a temporary support substrate 71 coated with an adhesive 72 to the surface of the epitaxial functional layer 19 on the side opposite to the dissimilar substrate 21 of the bonded wafer before laser light irradiation.
  • this adhesion is as follows. First, as shown in FIG. 7, a temporary support substrate 71 is prepared by applying a layered silicone adhesive 72 on a synthetic quartz wafer as a temporary support substrate 71, and the bonding type wafer 600 and the temporary support substrate 71 are opposed to each other. Press down and let the adhesive stick.
  • the temporary support substrate 71 is not limited to synthetic quartz, and sapphire, quartz (natural quartz), glass, SiC, LiTaO 3 , LiNbO 3 or the like can be used.
  • an excimer laser is irradiated from the heterogeneous substrate 21 side, and the laser beam transmitted through the heterogeneous substrate (sapphire substrate) 21 and the curable bonding material (silicone resin bonding layer) 22 is applied to the GaP window layer 18 . Then, the foreign substrate 21 is separated from the epitaxial functional layer 19 by absorption and decomposition (ablation).
  • each layer can be epitaxially grown as follows. As shown in FIG. 1, after preparing a GaAs starting substrate of the first conductivity type as a starting substrate 10, a GaAs buffer layer 11 of the first conductivity type is laminated, and then Ga x In 1-x P of the first conductivity type is deposited.
  • the first etch stop layer 12 is, for example, 0.3 ⁇ m
  • the first conductivity type GaAs second etch stop layer 13 is, for example, 0.3 ⁇ m
  • the first clad layer 14 is, for example, 1.0 ⁇ m thick and undoped (Al y Ga 1-y ) x In 1-xP (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.6) active layer 15, second conductivity type (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 1)
  • the thickness of the second clad layer 16 is, for example, 1.0 ⁇ m.
  • an epitaxial wafer 100 having a light emitting device structure as the epitaxial functional layer 19 is prepared.
  • the AlGaInP first clad layer 14 to the AlGaInP second clad layer 16 are referred to as a DH structure (double hetero structure).
  • the epitaxial wafer 100 and the dissimilar substrate 21 are bonded with a curable bonding material 22. More specifically, bonding can be performed as follows. As shown in FIG. 2, an epitaxial wafer 100 is spin-coated with benzocyclobutene (BCB) as a hardening type bonding material (thermosetting type bonding member) 22, and placed facing a sapphire wafer, which is a heterogeneous substrate 21. By thermocompression bonding, the epitaxial wafer 100 and the sapphire wafer, which is the heterogeneous substrate 21, are bonded via the hardening type bonding material 22, BCB. Thus, the epitaxial wafer bonding substrate 200 is manufactured. When BCB is applied by spin coating, the designed film thickness can be set to, for example, about 1.0 ⁇ m.
  • BCB benzocyclobutene
  • the epitaxial wafer 100 is not limited to being directly spin-coated with the curable bonding material 22, and the epitaxial wafer 100 may be spin-coated after laminating one or more transparent films. Needless to say, it is effective.
  • the transparent film may have a structure having one or more layers of insulating films such as SiO 2 and SiN x and transparent conductive films such as indium oxide, tin oxide, and ITO (indium tin oxide).
  • the hetero-substrate 21 is not limited to sapphire, and any material can be selected as long as it ensures flatness and has a low absorptance of laser light.
  • SiC synthetic quartz, quartz (natural quartz), glass, LiTaO 3 , LiNbO 3 and the like can be selected.
  • the curable bonding material 22 is not limited to BCB, and any material can be selected as long as it has curable properties.
  • BCB epoxy resin, SOG (spin-on-glass), PI (polyimide), and the like may be used.
  • the starting substrate 10 is removed while leaving the epitaxial functional layer 19 on the foreign substrate 21 . More specifically, removal can be performed as follows. As shown in FIG. 3, the GaAs starting substrate 10 and the GaAs buffer layer 11 are removed by wet etching with a selective etchant such as ammonia hydrogen peroxide mixture (a mixture of ammonia water and hydrogen peroxide water), and GaInP first etch stop. exposing layer 12; Next, the etchant is switched to a hydrochloric acid system to selectively remove the GaInP first etch stop layer 12 and expose the GaAs second etch stop layer 13 .
  • a selective etchant such as ammonia hydrogen peroxide mixture (a mixture of ammonia water and hydrogen peroxide water), and GaInP first etch stop.
  • the etchant is switched to a sulfuric acid peroxide system to selectively remove the GaAs second etch stop layer 13 and expose the first clad layer 14 .
  • the junction substrate 300 holding the epitaxial functional layer 19 (more specifically, the DH layer (the AlGaInP first clad layer 14 to the AlGaInP second clad layer 16) and the window layer 18) is manufactured.
  • the BCB thickness of 1.0 ⁇ m is exemplified as the thickness of the hardening type bonding material 22, it is not limited to this thickness, and the same thickness can be applied even if it is thinner or thicker than this thickness. effect is obtained.
  • the BCB is formed by spin coating, if it is too thin, the area yield after bonding tends to decrease. In order to maintain an area yield of 90% or more after bonding, it is preferable to design an adhesive layer thickness of 0.05 ⁇ m or more. Also, if it is sufficient to maintain a bonding area yield of 70% or more, a BCB of 0.01 ⁇ m or more should be designed. However, from the viewpoint of economic rationality, it is preferable to set the film thickness to 10 ⁇ m or less.
  • a first electrode 41 is formed on a partial region of the AlGaInP first cladding layer 14 of the first conductivity type. It is preferable to use a highly reflective metal for the first electrode 41, and an Au-based electrode can be used.
  • an AuBe-based metal can be used as the metal in contact with the AlGaInP first clad layer .
  • a part of the region of the first conductivity type AlGaInP first cladding layer 14 other than the formation region of the first electrode 41 is notched by a method such as dry etching. , the second conductivity type GaP window layer 18 is exposed in the notch.
  • FIG. 5 illustrates the case where only the semiconductor layer portion is cut out
  • the case is not limited to the case where only the semiconductor portion is cut out. You may notch to the board
  • the side surface is covered with a passivation (PSV) film 65.
  • a bonding substrate having a device structure portion with a second electrode 61 formed in the exposed region is produced.
  • the second electrode 61 preferably uses highly reflective metal. Specifically, an Au-based material can be used, and an AuSi-based material is preferable.
  • the PSV film 65 may be formed before the second electrode 61 is formed as described above, or the PSV film 65 may be formed after the second electrode 61 is formed. Also, the PSV film 65 itself does not necessarily have to be formed.
  • RTA heat treatment is performed at 400° C. for 5 minutes, for example, in order to obtain ohmic contact.
  • the device structure portion having two or more electrodes (the first electrode 41 and the second electrode 61) with different polarities on one surface of the epitaxial functional layer 19 is formed by the hardening type bonding material 22 and the dissimilar substrate 21.
  • the present invention is a bonded wafer detachment method for detaching a support made of a dissimilar substrate 21 from such a bonded wafer 600.
  • the curable bonding material 22 is removed. and/or at least a portion of the surface of the device structure in contact with the curable bonding material 22 (that is, the surface of the window layer 18 in the case of FIG. 6) absorbs the laser light, and the curable bonding material 22 and/or the device
  • the device structure and the support are separated by decomposing the surface of the structure.
  • the decomposition of the curable bonding material 22 will be mainly described.
  • this separation can be performed as follows. First, before laser light irradiation, a temporary support substrate coated with an adhesive is preferably adhered to the surface of the epitaxial functional layer of the bonded wafer opposite to the hetero-substrate. For example, as shown in FIG. 7, a temporary support substrate 71 is prepared by applying a layered silicone adhesive 72 on a synthetic quartz wafer as a temporary support substrate 71, and the bonding type wafer 600 and the temporary support substrate 71 are opposed to each other. Press down and let the adhesive stick.
  • the temporary support substrate 71 is not limited to synthetic quartz, and sapphire, quartz (natural quartz), glass, SiC, LiTaO 3 , LiNbO 3 or the like can be used.
  • an excimer laser is irradiated from the side of a heterogeneous substrate (sapphire substrate) 21 , passes through the heterogeneous substrate (sapphire substrate) 21 , and reaches a curable bonding material (BCB bonding layer) 22 .
  • BCB bonding layer is absorbed by the BCB layer 22 , and the BCB layer 22 decomposes (ablates) to form a gap, thereby separating the heterogeneous substrate 21 from the epitaxial functional layer 19 .
  • thermosetting bonding materials such as silicone resin and BCB were exemplified.
  • the present invention can also be applied to a mold wafer separation method.
  • Example 1 After stacking an n-type GaAs buffer layer 11 on an n-type GaAs starting substrate 10, an n-type Ga x In 1-x P (0.4 ⁇ x ⁇ 0.6) first etch stop layer 12 is deposited by 0.4 mm.
  • n-type GaAs second etch stop layer 13 is 0.3 ⁇ m, n-type (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 1 ) first clad layer 14 with a thickness of 1.0 ⁇ m, non-doped (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.6) active layer 15, p-type (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 1) second cladding layer 16 of 1.0 ⁇ m, p-type GaInP intermediate layer
  • An epitaxial wafer 100 having a light-emitting device structure as an epitaxial functional layer 19 was prepared by sequentially growing a layer 17 of 0.1 ⁇ m and a p-type GaP window layer 18 of 4 ⁇ m. (See Figure 1)
  • a silicone resin is spin-coated on the epitaxial wafer 100 as the thermosetting bonding member 22 to form a first bonding layer, which is placed facing the sapphire substrate as the heterogeneous substrate 21, superimposed, and thermocompressed to form an epitaxial layer.
  • An epitaxial wafer bonding substrate (first compound semiconductor bonding substrate) 200 was produced by bonding the wafer 100 and a sapphire substrate, which is a heterogeneous substrate 21, via a silicone resin, which is a curable bonding material 22.
  • the GaAs starting substrate 10 and the GaAs buffer layer 11 were removed by wet etching with ammonia peroxide, and the GaInP first etch stop layer 12 was exposed.
  • the etchant was switched to a hydrochloric acid system to selectively remove the GaInP first etch stop layer 12 and expose the GaAs second etch stop layer 13 .
  • the etchant was switched to a sulfuric acid peroxide system to selectively remove the GaAs second etch stop layer 13 and expose the first clad layer 14 .
  • the junction substrate (second compound semiconductor junction) holding the epitaxial functional layer 19 (more specifically, the DH layer (the first cladding layer 14 to the second cladding layer 16) and the window layer 18) is formed.
  • Substrate 300 was produced. (See Figure 3)
  • an AuBe-based first electrode 41 was formed on a partial region of the n-type first cladding layer 14 . (See Figure 4)
  • a portion of the n-type first cladding layer 14 other than the region where the first electrode 41 was formed was notched by dry etching to expose the p-type GaP window layer 18 in the notch. (See Fig. 5)
  • a bonded wafer (bonded substrate having a device structure portion) 600 having side surfaces covered with a passivation (PSV) film 65 and an AuSi-based second electrode 61 formed in the exposed region was produced.
  • RTA heat treatment was performed at 400° C. for 5 minutes in order to obtain ohmic contact. (See Figure 6)
  • a temporary support substrate 71 is prepared by applying a layered silicone adhesive 72 on a synthetic quartz wafer as a temporary support substrate 71, and the bonding type wafer 600 and the temporary support substrate 71 are pressed against each other and adhered to the adhesive.
  • rice field See Figure 7.
  • An excimer laser is irradiated from the sapphire substrate side, which is the heterogeneous substrate 21, and the laser light transmitted through the sapphire substrate and the silicone bonding layer 72 is absorbed by the p-type GaP window layer 18 and decomposed (ablated) to form the heterogeneous substrate 21.
  • the sapphire substrate was separated from the epitaxial functional layer 19 . (See Figure 8)
  • Example 2 After stacking an n-type GaAs buffer layer 11 on an n-type GaAs starting substrate 10, an n-type Ga x In 1-x P (0.4 ⁇ x ⁇ 0.6) first etch stop layer 12 is deposited by 0.4 mm.
  • n-type GaAs second etch stop layer 13 is 0.3 ⁇ m, n-type (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 1 ) first clad layer 14 with a thickness of 1.0 ⁇ m, non-doped (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.6) active layer 15, p-type (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 1) second cladding layer 16 of 1.0 ⁇ m, p-type GaInP intermediate layer
  • An epitaxial wafer 100 having a light-emitting device structure as an epitaxial functional layer 19 was prepared by sequentially growing a layer 17 of 0.1 ⁇ m and a p-type GaP window layer 18 of 4 ⁇ m. (See Figure 1)
  • Benzocyclobutene (BCB) as a thermosetting bonding member 22 is spin-coated on the epitaxial wafer 100 to form a first bonding layer.
  • An epitaxial wafer bonded substrate (first compound semiconductor bonded substrate) 200 was produced by bonding the epitaxial wafer 100 and the sapphire substrate as the heterosubstrate 21 via the BCB.
  • BCB was applied by spin coating, the designed film thickness was 1.0 ⁇ m.
  • the GaAs starting substrate 10 and the GaAs buffer layer 11 were removed by wet etching with a selective etchant such as ammonia hydrogen peroxide mixture to expose the GaInP first etch stop layer 12 .
  • a selective etchant such as ammonia hydrogen peroxide mixture
  • the etchant was switched to a hydrochloric acid system to selectively remove the GaInP first etch stop layer 12 and expose the GaAs second etch stop layer 13 .
  • the etchant was switched to a sulfuric acid peroxide system to selectively remove the GaAs second etch stop layer 13 and expose the first clad layer 14 .
  • the junction substrate (second compound semiconductor junction) holding the epitaxial functional layer 19 (more specifically, the DH layer (the first cladding layer 14 to the second cladding layer 16) and the window layer 18) is formed.
  • Substrate 300 was produced. (See Figure 3)
  • an AuBe-based first electrode 41 was formed on a partial region of the n-type first cladding layer 14 . (See Figure 4)
  • a portion of the n-type first cladding layer 14 other than the region where the first electrode 41 was formed was notched by dry etching to expose the p-type GaP window layer 18 in the notch. (See Fig. 5)
  • a bonded wafer (bonded substrate having a device structure portion) 600 was produced, in which the side surface was covered with a passivation (PSV) film 65 and an AuSi-based second electrode 61 was formed in the exposed region.
  • PSV passivation
  • a temporary support substrate 71 is prepared by applying a layered silicone adhesive 72 on a synthetic quartz wafer as a temporary support substrate 71, and the bonding type wafer 600 and the temporary support substrate 71 are pressed against each other and adhered to the adhesive.
  • rice field See Figure 7.
  • An excimer laser is irradiated from the sapphire substrate side, which is the heterogeneous substrate 21, passes through the sapphire substrate, and reaches the BCB bonding layer 72.
  • the BCB layer absorbs the laser light, and the BCB layer decomposes (ablates) to form a gap.
  • the sapphire substrate, which is the heterogeneous substrate 21, was separated from the epitaxial functional layer. (See Fig. 9)
  • a first etch stop layer of n-type Ga x In 1-x P (0.4 ⁇ x ⁇ 0.6) is deposited to a thickness of 0.3 ⁇ m, n type GaAs second etch stop layer 0.3 ⁇ m, n-type (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 1) first cladding layer of 1.0 ⁇ m, non-doped (Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.6) active layer, second conductivity type ( Al y Ga 1-y ) x In 1-x P (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 1) second clad layer of 1.0 ⁇ m, p-type GaInP intermediate layer of 0.1 ⁇ m, An epitaxial wafer having a light-emitting device structure was prepared as an epitaxial functional
  • BCB benzocyclobutene
  • GaAs starting substrate is removed by wet etching to expose the first etch stop layer, switch the etchant to remove the second etch stop layer to expose the first cladding layer, epitaxial retaining only the DH and window layers.
  • a bonded substrate was produced.
  • an AuBe-based first electrode was formed on a partial region of the n-type first clad layer.
  • a portion of the n-type first cladding layer other than the first electrode formation region was cut by dry etching to expose the p-type GaP window layer in the cutout.
  • a bonded wafer (bonded substrate having a device structure portion) having an AuSi-based second electrode formed in the exposed region was produced.
  • RTA heat treatment was performed at 400° C. for 5 minutes in order to obtain ohmic contact.
  • a temporary support substrate was prepared by coating a layered silicone adhesive on a silicon wafer, and the bonding substrate having the device structure and the temporary support substrate were opposed to each other and pressed to adhere to the adhesive.
  • the silicon wafer (heterogeneous substrate) side was thin-film processed by processing such as surface grinding. After the thickness of the silicon wafer (heterogeneous substrate) reached 150 ⁇ m or less, the silicon wafer (heterogeneous substrate) was removed by immersing it in a hydrofluoric-nitric acid-based etchant. After removing the silicon wafer (heterogeneous substrate), the BCB was removed by ashing or dry etching.
  • Table 1 shows the device portion residual ratio after removal of the foreign substrate in Examples 1 and 2 and Comparative Example.
  • Examples 1 and 2 there was little stress applied to the device during the peeling process, and a favorable device portion residual rate was exhibited. Since the stress is large and the device portion is damaged after processing, the device portion survival rate is reduced as a result.
  • the present invention is particularly effective when the starting substrate for epitaxial growth is an opaque substrate. Since such opaque substrates do not transmit the laser, or transmit the laser to an insufficient degree to cause ablation, the starting substrate for epitaxial growth is irradiated with a laser to separate the device structures (also called laser lift-off). ) is difficult. Therefore, it is effective when the starting substrate for epitaxial growth is a gallium arsenide substrate or when the device structure is a red LED. This red LED may be a micro-LED or a mini-LED.
  • Various substrates starting substrate for epitaxial growth, support, heterogeneous substrate, temporary support substrate
  • a disk shape from the viewpoint of cost and ease of application to various devices.
  • the effects of the present invention can be achieved even with other shapes such as a prism shape, a polygonal prism shape such as a quadrangular prism, and the like.
  • one device structure is illustrated, but a plurality of device structures may be bonded to the support, and the plurality of device structures may be a matrix. may be arranged in a pattern.
  • the shape of the device structure when observed from the direction perpendicular to the main surface of the support includes polygonal shapes such as a circular shape, an elliptical shape, and a rectangular shape.
  • a square shape is preferable in that the number of device structures that can be manufactured at one time can be increased.
  • circular, elliptical, square, and polygonal shapes do not mean exact circular, elliptical, square, and polygonal shapes, and dents and bulges in straight and curved portions, and chamfering at corners
  • the meaning also includes shape and the like.
  • the thickness of the cured material layer for bonding the device structure may be sufficient as long as it can withstand the process until the device structure is peeled off from the support. That is, since the support eventually peels off, the bonding reliability over several years is not required, and the support may be relatively thin. This works well for laser lift-off. Specifically, it is preferably 0.1 to 1.0 ⁇ m, more preferably 0.4 to 0.6 ⁇ m, depending on the materials contained in the curable bonding material and bonding performance.
  • the present invention can be expressed from different viewpoints as in the following (1) to (15), (U1) to (U89) and (X1) to (X4).
  • the bonded wafer according to (1), wherein the device structures are red LED chips.
  • the support has at least one selected from the group consisting of a sapphire substrate, a SiC substrate, a synthetic quartz substrate, a quartz substrate, a glass substrate, a LiTaO3 substrate and a LiNbO3 substrate. wafer.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.1 to 1.0 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin,
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.4 to 0.6 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains benzocyclobutene,
  • a bonded wafer detachment method for detaching a support from a bonded wafer in which a device structure portion is bonded to a support via a cured product layer of a curable bonding material comprising: A method for separating a bonded wafer, wherein the device structure portion and the support are separated by irradiating a laser beam from the support side of the bonded wafer.
  • a method for manufacturing a separated device structure portion wherein the device structure portion is separated from the support from a bonded wafer bonded to the support via a cured product layer of a curable bonding material
  • a method for manufacturing a separated device structure portion wherein the device structure portion and the support are separated by irradiating a laser beam from the support side of the bonded wafer.
  • (13) A bonded body in which a device structural portion is bonded to a support via a cured product layer of a curable bonding material, and which is used for peeling of the device structural portion by irradiation with laser light.
  • a bonded body peeling method for peeling a support from a bonded body in which a device structure portion is bonded to a support via a cured product layer of a curable bonding material comprising: A peeling method of a bonded body, wherein the device structure portion and the support are separated by irradiating a laser beam from the support side of the bonded body.
  • a method for manufacturing a separated device structure part wherein the device structure part is separated from a support body bonded to the support via a cured product layer of a curable bonding material, wherein the support body is peeled off
  • a method for manufacturing a separated device structure comprising separating the device structure and the support by irradiating a laser beam from the support side of the joined body.
  • a bonded wafer detachment system for detaching the support from a type wafer By irradiating the bonded wafer with a laser beam oscillated from a laser oscillator, the curable bonding material and/or at least a part of the surface of the device structure that is in contact with the curable bonding material absorbs the laser beam. and decomposing the surface of the curable bonding material and/or the device structure to separate the device structure from the support.
  • U2 The bonded wafer separation system according to (U1), wherein the epitaxial functional layer has a light emitting device structure.
  • U3 The bonded wafer separation system according to (U1) or (U2), wherein the epitaxial functional layer contains an AlGaInP-based material.
  • (U4) The bonding according to (U1) or (U2), wherein the curable bonding material has any one of thermosetting, UV-curing, and normal-temperature curing properties. type wafer detachment system.
  • (U5) The bonding according to (U1) or (U2), wherein the curable bonding material contains any one of benzocyclobutene, polyimide, fluororesin, epoxy resin, and silicone resin. type wafer detachment system.
  • (U6) The bonded wafer separation system according to (U1) or (U2), wherein the epitaxial functional layer is formed by removing the starting substrate for epitaxial growth.
  • (U7) The bonding according to (U1) or (U2), wherein the dissimilar substrate is made of any one of sapphire, SiC, synthetic quartz, quartz, glass, LiTaO 3 and LiNbO 3 . type wafer detachment system.
  • (U8) The bonded wafer separation system according to (U1) or (U2), wherein the laser beam is an excimer laser.
  • U9) Before the laser beam irradiation, a temporary support substrate coated with an adhesive is adhered to the surface of the epitaxial functional layer of the bonded wafer opposite to the heterosubstrate (U1). Or the bonded wafer separation system according to (U2).
  • (U10) The bonded wafer separation system according to (U9), wherein the adhesive is silicone.
  • (U11) The bonded wafer according to (U1), wherein the temporary support substrate is made of any one of sapphire, SiC, synthetic quartz, quartz, glass, LiTaO 3 , and LiNbO 3 . stripping system.
  • (U12) A bonded wafer in which a quadrangular device structure portion is bonded to a support via a cured product layer of a curable bonding material, and is used for peeling the device structure portion by irradiation with a laser beam. .
  • (U13) The bonded wafer according to (U12), wherein the device structure is a red LED chip.
  • (U14) The bonded wafer according to (U12), wherein the device structure includes an AlGaInP-based material.
  • (U20) The bonded wafer according to (U12), wherein the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin.
  • (U21) The junction type according to (U12), wherein the support has at least one selected from the group consisting of a sapphire substrate, a SiC substrate, a synthetic quartz substrate, a quartz substrate, a glass substrate, a LiTaO3 substrate and a LiNbO3 substrate. wafer.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.1 to 1.0 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin,
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.4 to 0.6 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains benzocyclobutene,
  • a bonded wafer detachment system for detaching a support from a bonded wafer in which a device structure portion is bonded to a support via a cured product layer of a curable bonding material, A bonded wafer detachment system comprising a mechanism for separating the device structure from the support by irradiating a laser beam oscillated from a laser oscillator from the support side of the bonded wafer.
  • U26 The bonded wafer separation system according to (U25), wherein the device structure is a red LED chip.
  • U27 The bonded wafer separation system according to (U25), wherein the device structure includes an AlGaInP-based material.
  • (U33) The bonded wafer separation system according to (U25), wherein the curable bonding material includes at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin, and silicone resin.
  • (U34) The junction type according to (U25), wherein the support has at least one selected from the group consisting of a sapphire substrate, a SiC substrate, a synthetic quartz substrate, a quartz substrate, a glass substrate, a LiTaO3 substrate and a LiNbO3 substrate. Wafer detachment system.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.1 to 1.0 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin,
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.4 to 0.6 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains benzocyclobutene,
  • U37 The bonded wafer separation system according to (U25), wherein a plurality of the device structures are bonded to the support, and the plurality of device structures are arranged in a matrix.
  • a system for manufacturing a separated device structure wherein the support is separated from the bonded wafer in which the device structure is bonded to the support via a cured product layer of a curable bonding material, A separated device structure portion characterized by having a mechanism for separating the device structure portion and the support by irradiating a laser beam oscillated from a laser oscillator from the support side of the bonded wafer. manufacturing system.
  • U40 The system for manufacturing an isolated device structure according to (U38), wherein the device structure includes an AlGaInP-based material.
  • the support has at least one selected from the group consisting of a sapphire substrate, a SiC substrate, a synthetic quartz substrate, a quartz substrate, a glass substrate, a LiTaO3 substrate and a LiNbO3 substrate (U38). manufacturing system for device structures.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.1 to 1.0 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin,
  • the isolated device structure according to (U38), wherein the support has at least one selected from the group consisting of a sapphire substrate, a SiC substrate, a synthetic quartz substrate, a quartz substrate, a glass substrate, a LiTaO3 substrate and a LiNbO3 substrate. department manufacturing system.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.4 to 0.6 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains benzocyclobutene,
  • (U50) The separated device structure manufacturing system according to (U38), wherein a plurality of the device structures are bonded to the support, and the plurality of device structures are arranged in a matrix.
  • (U51) A bonded body in which a rectangular device structure portion is bonded to a support via a cured product layer of a curable bonding material, and is a separated bond used for detachment of the device structure portion by laser light irradiation body.
  • (U52) The separated assembly according to (U51), wherein the device structure is a red LED chip.
  • (U53) The separated assembly according to (U51), wherein the device structure includes an AlGaInP-based material.
  • (U54) The separated joined body according to (U51), wherein the cured product layer has a thickness of 0.1 to 1.0 ⁇ m.
  • (U55) The separated joined body according to (U52), wherein the cured product layer has a thickness of 0.1 to 1.0 ⁇ m.
  • the support has at least one selected from the group consisting of a sapphire substrate, a SiC substrate, a synthetic quartz substrate, a quartz substrate, a glass substrate, a LiTaO3 substrate and a LiNbO3 substrate (U51). zygotes.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.1 to 1.0 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin,
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.4 to 0.6 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains benzocyclobutene,
  • (U63) The separated bonded body according to (U51), wherein a plurality of the device structures are bonded on the support, and the plurality of device structures are arranged in a matrix.
  • a bonded body peeling system for peeling a support from a bonded body in which a device structure portion is bonded to a support via a cured product layer of a curable bonding material A system for separating a bonded body, comprising: a mechanism for separating the device structure from the support by irradiating a laser beam oscillated from a laser oscillator from the support side of the bonded body.
  • U66 The bonded body delamination system according to (U64), wherein the device structure includes an AlGaInP-based material.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.1 to 1.0 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin,
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.4 to 0.6 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains benzocyclobutene,
  • U76 A bonded body peeling system according to (U64), wherein a plurality of the device structures are bonded on the support, and the plurality of device structures are arranged in a matrix.
  • a system for manufacturing a separated device structure part wherein the device structure part is separated from the support body bonded to the support via a cured product layer of a curable bonding material, Manufacture of a separated device structure, characterized by having a mechanism for separating the device structure and the support by irradiating a laser beam oscillated from a laser oscillator from the support side of the bonded body. system.
  • U78 The separated device structure manufacturing system according to (U77), wherein the device structure is a red LED chip.
  • U79 The separated device structure manufacturing system according to (U77), wherein the device structure includes an AlGaInP-based material.
  • the support has at least one selected from the group consisting of a sapphire substrate, a SiC substrate, a synthetic quartz substrate, a quartz substrate, a glass substrate, a LiTaO3 substrate and a LiNbO3 substrate (U77). manufacturing system for device structures.
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.1 to 1.0 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains at least one selected from the group consisting of benzocyclobutene, polyimide, fluororesin, epoxy resin and silicone resin,
  • the device structure is a red LED chip containing an AlGaInP-based material;
  • the thickness of the cured product layer is 0.4 to 0.6 ⁇ m,
  • the device structure portion has an epitaxial functional layer from which a starting substrate for epitaxial growth has been removed,
  • the curable bonding material contains benzocyclobutene,
  • (U89) The separated device structure manufacturing system according to (U77), wherein a plurality of the device structures are bonded to the support, and the plurality of device structures are arranged in a matrix.
  • (X1) Application of a bonded wafer having a device structure bonded to a support to exfoliation of the device structure by irradiation with a laser beam, The application, wherein the device structure portion is bonded to the support via a cured product layer of a curable bonding material.
  • (X2) Application to manufacture of a bonded wafer in which a device structural portion is bonded to a support and used for exfoliation of the device structural portion by irradiation with a laser beam, The application, wherein the device structure portion is bonded to the support via a cured product layer of a curable bonding material.
  • (X3) Application to exfoliation of the device structure by laser light irradiation of a bonded body in which the device structure is bonded to a support, The application, wherein the device structure portion is bonded to the support via a cured product layer of a curable bonding material.
  • (X4) Application to manufacture of a bonded body in which a device structural portion is bonded to a support, which is used for exfoliation of the device structural portion by irradiation with laser light, The application, wherein the device structure portion is bonded to the support via a cured product layer of a curable bonding material.
  • each of the subdivided constituent elements alone or in combination, these (1) to (15), (U1) to (U88) and (X1) to (X4) can be introduced.
  • Typical examples include materials, properties, dimensions, shapes and forming methods of various substrates and various layers, types of laser beams, peeling methods, structures of device structural portions, and the like.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本発明は、エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有し、前記デバイス構造部が硬化型接合材で異種基板からなる支持体と接合された接合型ウェーハから、前記支持体を剥離する接合型ウェーハの剥離方法であって、前記接合型ウェーハにレーザー光を照射することにより、前記硬化型接合材及び/又は前記硬化型接合材と接触する前記デバイス構造部の表面の少なくとも一部にレーザー光を吸収させ、前記硬化型接合材及び/又は前記デバイス構造部の表面を分解することで、前記デバイス構造部と前記支持体を分離させる接合型ウェーハの剥離方法である。これにより、接合型ウェーハとして、エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有し、デバイス構造部が硬化型接合材で異種基板からなる支持体と接合されるという、硬化型接合材で強固に接合されたウェーハの分離において、デバイス構造部の残存率が高い分離方法が提供される。

Description

接合型ウェーハの剥離方法
 本発明は、接合型ウェーハの剥離方法に関し、特に、エピタキシャルウェーハを異種基板に接合した接合型ウェーハの剥離方法に関する。
 出発基板からエピタキシャル機能層のみを分離し、別の基板へ移載する技術は、出発基板の物性に起因する制約を緩和し、デバイスシステムの設計自由度を上げるために重要な技術である。
 この移載を実現するためには、エピタキシャル機能層を永久基板に接合後、出発基板を除去し、移載を実現する技術が必要である。
 特許文献1では、半導体エピタキシャル基板と仮支持基板とを誘電体層を介して熱圧着接合する技術とウェットエッチングで仮支持基板とエピタキシャル機能層を分離する技術が開示されている。
 特許文献2には接合性の向上とは直接かかわりはないが、接合時の一形態として、透明導電層が接着層と機能層との間に挿入される技術が開示されている。
 しかし、特許文献1では、半導体エピ基板と前記仮支持基板とを誘電体層を介して熱圧着接合する技術と、ウェットエッチングで仮支持基板とエピタキシャル機能層を分離する技術が開示されているが、仮支持を維持するためには、熱条件が一定以下であるという制約がある。そのため、出発基板除去後にエピタキシャル機能層にデバイスを作製することに制約があった。
 また、出発基板除去後にデバイス工程を実施する場合、オーミック接触を得るために熱工程は必須である。しかし、有機接合材によって接合されている状態でオーミック接触となる熱履歴をかけると仮支持から永久接合(仮支持よりも、より強固な接合)になり、剥離が困難となる。
特開2021-27301号公報 特開2004-158823号公報
 本発明は、上記問題点に鑑みてなされたものであって、接合型ウェーハとして、エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有し、デバイス構造部が硬化型接合材で異種基板からなる支持体と接合されるという、硬化型接合材で強固に接合されたウェーハの分離において、デバイス構造部の残存率が高い分離方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有し、前記デバイス構造部が硬化型接合材で異種基板からなる支持体と接合された接合型ウェーハから、前記支持体を剥離する接合型ウェーハの剥離方法であって、前記接合型ウェーハにレーザー光を照射することにより、前記硬化型接合材及び/又は前記硬化型接合材と接触する前記デバイス構造部の表面の少なくとも一部にレーザー光を吸収させ、前記硬化型接合材及び/又は前記デバイス構造部の表面を分解することで、前記デバイス構造部と前記支持体を分離させることを特徴とする接合型ウェーハの剥離方法を提供する。
 このような本発明の接合型ウェーハの剥離方法では、レーザー光を照射することにより、容易に支持体をデバイス構造部から剥離することができる。そのため、機械加工やエッチングによって支持体を除去することに比べてデバイス構造部の残存率(デバイス構造部が破壊されずに残存する割合)を高くすることができる。
 また、本発明の接合型ウェーハの剥離方法では、前記エピタキシャル機能層を、発光素子構造を有するものとすることができる。
 また、前記エピタキシャル機能層を、AlGaInP系材料を含むものとすることができる。
 本発明は、これらのような構造を有する接合型ウェーハの剥離において好適に採用するこができる。
 また、本発明の接合型ウェーハの剥離方法では、前記硬化型接合材を、熱硬化性、UV硬化性、及び、常温硬化性のいずれかの硬化特性を有するものとすることが好ましい。
 この場合、前記硬化型接合材を、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂、シリコーン樹脂のいずれか1つを含むものとすることが好ましい。
 本発明の接合型ウェーハの剥離方法は、このような硬化型接合材を用いた場合に、特に好適である。
 また、前記エピタキシャル機能層を、エピタキシャル成長用出発基板が除去されているものとすることが好ましい。
 本発明の接合型ウェーハの剥離方法は、出発用基板が除去されている接合型ウェーハの剥離に好適に適用することができる。
 また、前記異種基板を、サファイア、SiC、合成石英、石英、ガラス、LiTaO、LiNbOのいずれかの材料からなるものとすることが好ましい。
 このような異種基板は、レーザーに対する透過性が高くなるように選択することができ、本発明の接合型ウェーハの剥離方法に適している。
 また、前記レーザー光を、エキシマレーザーとすることが好ましい。
 このように、レーザー光としてエキシマレーザーを用いることにより、より確実に接合型ウェーハの剥離を行うことができる。
 また、前記レーザー光照射前に、粘着剤を塗布した仮支持基板を、前記エピタキシャル機能層の前記接合型ウェーハの前記異種基板とは反対側の面に粘着することが好ましい。
 このとき、前記粘着剤を、シリコーンとすることが好ましい。
 前記仮支持基板を、サファイア、SiC、合成石英、石英、ガラス、LiTaO、LiNbOのいずれかの材料からなるものとすることが好ましい。
 これらのような仮支持基板及び粘着剤を用いることにより、接合型ウェーハの剥離をより円滑に行うことができる。
 本発明の接合型ウェーハの剥離方法では、レーザー光を照射することにより、容易に支持体をデバイス構造部から剥離することができる。レーザー光の照射による剥離では、デバイスに掛かる応力が少なくて済む。そのため、機械加工やエッチングによって支持体を除去することに比べてデバイス構造部の残存率(デバイス構造部が破壊されずに残存する割合)を高くすることができる。
接合型ウェーハを作製するプロセスの一部として、出発基板上にエピタキシャル機能層を有するエピタキシャルウェーハを作製する工程を示す概略図である。 接合型ウェーハを作製するプロセスの一部として、エピタキシャルウェーハと異種基板を接合する工程を示す概略図である。 接合型ウェーハを作製するプロセスの一部として、出発基板を除去する工程を示す概略図である。 接合型ウェーハを作製するプロセスの一部として、第一電極を形成する工程を示す概略図である。 接合型ウェーハを作製するプロセスの一部として、切り欠き部を形成する工程を示す概略図である。 接合型ウェーハを作製するプロセスの一部として、第二電極を形成する工程を示す概略図である。 接合型ウェーハの剥離を行う前に、接合型ウェーハと仮支持基板を接着する工程を示す概略図である。 本発明の接合型ウェーハの剥離方法の第一の実施形態の一例を示す概略図である。 本発明の接合型ウェーハの剥離方法の第二の実施形態の一例を示す概略図である。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明は、エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有し、前記デバイス構造部が硬化型接合材で異種基板からなる支持体と接合された接合型ウェーハから、前記支持体を剥離する接合型ウェーハの剥離方法であって、前記接合型ウェーハにレーザー光を照射することにより、前記硬化型接合材及び/又は前記硬化型接合材と接触する前記デバイス構造部の表面の少なくとも一部にレーザー光を吸収させ、前記硬化型接合材及び/又は前記デバイス構造部の表面を分解することで、前記デバイス構造部と前記支持体を分離させることを特徴とする接合型ウェーハの剥離方法である。
 本発明の剥離方法を適用することができる接合型ウェーハは、上記のように、エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有しており、デバイス構造部が硬化型接合材で異種基板からなる支持体と接合された接合型ウェーハである。この接合型ウェーハは、例えば、以下のようにして作製することができるが、これに限定されない。
[第一の実施形態]
 第一の実施形態では、主に、硬化型接合材としてシリコーン樹脂を用いる場合を例示して説明する。
 まず、図1に示すように出発基板10上に、順次エピタキシャル成長を行い、各層を形成する。これにより、エピタキシャル機能層を作製する。より具体的には、以下のようにして各層のエピタキシャル成長を行うことができる。図1に示すように、出発基板10として、第一導電型のGaAs出発基板を準備した後、第一導電型のGaAsバッファ層11を積層後、第一導電型のGaInP第一エッチストップ層12を例えば0.3μm、第一導電型のGaAs第二エッチストップ層13を例えば0.3μm、第一導電型のAlGaInP第一クラッド層14を例えば1.0μm、ノンドープのAlGaInP活性層15、第二導電型のAlGaInP第二クラッド層16を例えば1.0μm、第二導電型のGaInP中間層17を例えば0.1μm、第二導電型のGaP窓層18を例えば4μm、順次成長させることができる。これにより、エピタキシャル機能層19としての発光素子構造を有するエピタキシャルウェーハ100を準備する。ここでAlGaInP第一クラッド層14からAlGaInP第二クラッド層16までをDH構造部(ダブルヘテロ構造部)と称する。
 次に、図2に示すように、エピタキシャルウェーハ100と異種基板21を、硬化型接合材22で接合する。異種基板21は、接合型ウェーハの支持体となるものである。より具体的には、以下のようにして接合を行うことができる。図2に示すように、エピタキシャルウェーハ100上に硬化型接合材(熱硬化型接合部材)22としてシリコーン樹脂をスピンコートし、異種基板21であるサファイアウェーハと対向させて重ね合わせ、熱圧着することでエピタキシャルウェーハ100と異種基板21であるサファイアウェーハとを硬化型接合材22であるシリコーン樹脂を介して接合する。このようにして、エピタキシャルウェーハ接合基板200を作製する。スピンコートにてシリコーン樹脂を塗布する際、設計膜厚は例えば1.0μm程度とすることができる。
 なお、エピタキシャルウェーハ100上に直接、硬化型接合材22をスピンコートするものに限定されるものではなく、エピタキシャルウェーハ100上に透明な膜を1層以上積層した後にスピンコートを行っても同様の効果が得られる。前記透明な膜は、SiO、SiNなどの絶縁膜、酸化インジウム、酸化スズ、ITO(インジウムスズ酸化物)などの透明導電膜を1層以上有する構造とすることができる。
 また、異種基板21はサファイアに限定されるものではなく、平坦性が担保されて、かつレーザー光の吸収率の低い材料であればどのような材料も選択可能である。サファイアの他、SiC、合成石英、石英(天然石英)、ガラス、LiTaO、LiNbO等を選択することができる。
 また、硬化型接合材22はシリコーン樹脂に限定されるものではなく、硬化性、特に熱硬化性を有するものであれば、どのような材料でも選択可能である。シリコーン樹脂の他、フッ素樹脂などを用いてもよい。
 次に、図3に示すように、異種基板21上にエピタキシャル機能層19を残し、出発基板10を除去する。より具体的には、以下のようにして除去を行うことができる。図3に示すように、GaAs出発基板10(及びGaAsバッファ層11)をアンモニア過水(アンモニア水と過酸化水素水の混合)などの選択エッチング液によりウェットエッチング処理して除去し、GaInP第一エッチストップ層12を露出させる。次にエッチャントを塩酸系に切り替えてGaInP第一エッチストップ層12を選択的に除去し、GaAs第二エッチストップ層13を露出させる。次にエッチャントを硫酸過水系に切り替えてGaAs第二エッチストップ層13を選択的に除去し、第一クラッド層14を露出させる。以上の処理を行うことにより、エピタキシャル機能層19(より具体的にはDH層(AlGaInP第一クラッド層14からAlGaInP第二クラッド層16)と窓層18)を保持する接合基板300を作製する。
 なお、ここでは、硬化型接合材22の厚さとして、1.0μmのシリコーン樹脂厚を例示したが、この厚さに限定されるものではなく、この厚さ以上に薄くても厚くても同様の効果が得られる。ただ、シリコーン樹脂をスピンコートで形成しているため、薄すぎる場合、接合処理後の面積歩留まりが低下する傾向がある。接合後、90%以上の面積歩留まりを保つためには0.05μm以上の接着層厚を設計することが好適である。また、70%以上の接合面積歩留まりを維持すればよいのであれば、0.01μm以上のシリコーン樹脂を設計しておけばよい。ただし経済合理性から10μm以下の膜厚とすることが好適である。
 次に図4に示すように、第一導電型のAlGaInP第一クラッド層14の一部領域に第一電極41を形成する。第一電極41は高反射性の金属を使用することが好適であり、Au系を用いた電極とすることができる。この第一電極41は、例えばAlGaInP第一クラッド層14と接する金属にAuBe系を用いることができる。
 次に図5に示すように、第一電極41形成後、第一導電型のAlGaInP第一クラッド層14の第一電極41の形成域以外の領域の一部をドライエッチングなどの方法により切り欠き、切り欠き部に第二導電型GaP窓層18を露出させる。
 なお、図5では半導体層部のみを切り欠く場合を例示しているが、半導体部のみを切り欠く場合に限定されず、硬化型接合材22(シリコーン樹脂)部まで切り欠いてもよいし、異種基板21部まで切り欠いてもよい。
 次に図6に示すように、側面をパッシベーション(PSV)膜65で被覆する。更に露出領域に第二電極61を形成したデバイス構造部を有する接合基板を作製する。第二電極61は高反射性の金属を使用することが好ましい。具体的にはAu系を用いることができ、AuSi系とすることが好ましい。なお、前述のように第二電極61形成前にPSV膜65を形成してもよいし、第二電極61形成後にPSV膜65を形成してもよい。また、必ずしもPSV膜65自体形成しなくてもよい。第一・第二電極形成後、オーミック接触を得るため、例えば400℃5分間のRTA熱処理を行う。
 このようにして、エピタキシャル機能層19の片方の面に極性の異なる2つ以上の電極(第一電極41及び第二電極61)を有したデバイス構造部が、硬化型接合材22で異種基板21からなる支持体と接合された接合型ウェーハ(デバイス構造部を有する接合基板)600を作製する。
 本発明は、このような接合型ウェーハ600から、異種基板21からなる支持体を剥離する接合型ウェーハの剥離方法であり、接合型ウェーハ600にレーザー光を照射することにより、硬化型接合材22及び/又は硬化型接合材22と接触するデバイス構造部の表面の少なくとも一部にレーザー光を吸収させ、硬化型接合材22及び/又はデバイス構造部の表面を分解することで、デバイス構造部と支持体を分離させることを特徴とする。第一の実施形態では、デバイス構造部の表面の分解による態様を主に説明する。この分離は具体的には以下のようにして行うことができる。
 まず、図7のように、レーザー光照射前に、粘着剤72を塗布した仮支持基板71を、エピタキシャル機能層19の接合型ウェーハの異種基板21とは反対側の面に粘着することが好ましい。この粘着は、具体的には以下の通りである。まず、図7に示すように、仮支持基板71として合成石英ウェーハ上に、層状のシリコーン粘着剤72を塗布した仮支持基板71を準備し、接合型ウェーハ600と仮支持基板71を対向させて圧迫し、粘着剤に粘着させる。
 なお、仮支持基板71としては合成石英に限定されず、サファイアや石英(天然石英)、ガラス、SiC、LiTaO、LiNbOなどを用いることができる。
 次に図8に示すように、異種基板21側よりエキシマレーザーを照射し、異種基板(サファイア基板)21及び硬化型接合材(シリコーン樹脂接合層)22を透過したレーザー光を、GaP窓層18で吸収させて分解(アブレーション)し、異種基板21をエピタキシャル機能層19から剥離する。
[第二の実施形態]
 第二の実施形態では、主に、硬化型接合材としてBCBを用いる場合を例示して説明する。第一の実施形態と類似する工程については、図1~7を参照し、接合型ウェーハの剥離について図9を参照する。
 まず、図1に示すように出発基板10上に、順次エピタキシャル成長を行い、各層を形成する。これにより、エピタキシャル機能層を作製する。より具体的には、以下のようにして各層のエピタキシャル成長を行うことができる。図1に示すように、出発基板10として、第一導電型のGaAs出発基板を準備した後、第一導電型のGaAsバッファ層11を積層後、第一導電型のGaIn1-xP(0.4≦x≦0.6)第一エッチストップ層12を例えば0.3μm、第一導電型のGaAs第二エッチストップ層13を例えば0.3μm、第一導電型の(AlGa1-yIn1-xP(0.4≦x≦0.6,0<y≦1)第一クラッド層14を例えば1.0μm、ノンドープの(AlGa1-yIn1-xP(0.4≦x≦0.6, 0≦y≦0.6)活性層15、第二導電型の(AlGa1-yIn1-xP(0.4≦x≦0.6, 0<y≦1)第二クラッド層16を例えば1.0μm、第二導電型のGaInP中間層17を例えば0.1μm、第二導電型のGaP窓層18を例えば4μm、順次成長させることができる。これにより、エピタキシャル機能層19としての発光素子構造を有するエピタキシャルウェーハ100を準備する。ここでAlGaInP第一クラッド層14からAlGaInP第二クラッド層16までをDH構造部(ダブルヘテロ構造部)と称する。
 次に、図2に示すように、エピタキシャルウェーハ100と異種基板21を、硬化型接合材22で接合する。より具体的には、以下のようにして接合を行うことができる。図2に示すように、エピタキシャルウェーハ100上に硬化型接合材(熱硬化型接合部材)22としてベンゾシクロブテン(BCB)をスピンコートし、異種基板21であるサファイアウェーハと対向させて重ね合わせ、熱圧着することで、エピタキシャルウェーハ100と異種基板21であるサファイアウェーハとを硬化型接合材22であるBCBを介して接合する。このようにして、エピタキシャルウェーハ接合基板200を作製する。スピンコートにてBCBを塗布する際、設計膜厚は例えば1.0μm程度とすることができる。
 なお、エピタキシャルウェーハ100上に直接、硬化型接合材22をスピンコートするものに限定されるものではなく、エピタキシャルウェーハ100上に透明な膜を1層以上積層した後にスピンコートを行っても同様の効果が得られることは言うまでもない。前記透明な膜は、SiO、SiNなどの絶縁膜、酸化インジウム、酸化スズ、ITO(インジウムスズ酸化物)などの透明導電膜を1層以上有する構造とすることができる。
 また、異種基板21はサファイアに限定されるものではなく、平坦性が担保されて、かつレーザー光の吸収率の低い材料であればどのような材料も選択可能である。サファイアの他、SiC、合成石英、石英(天然石英)、ガラス、LiTaO、LiNbO等を選択することができる。
 また、硬化型接合材22はBCBに限定されるものではなく、硬化性を有するものであれば、どのような材料でも選択可能である。BCBの他、エポキシ樹脂、SOG(spin-on-glass)、PI(ポリイミド、Polyimide)などを用いてもよい。
 次に、図3に示すように、異種基板21上にエピタキシャル機能層19を残し、出発基板10を除去する。より具体的には、以下のようにして除去を行うことができる。図3に示すように、GaAs出発基板10及びGaAsバッファ層11をアンモニア過水(アンモニア水と過酸化水素水の混合)などの選択エッチング液によりウェットエッチング処理して除去し、GaInP第一エッチストップ層12を露出させる。次にエッチャントを塩酸系に切り替えてGaInP第一エッチストップ層12を選択的に除去し、GaAs第二エッチストップ層13を露出させる。次にエッチャントを硫酸過水系に切り替えてGaAs第二エッチストップ層13を選択的に除去し、第一クラッド層14を露出させる。以上の処理を行うことにより、エピタキシャル機能層19(より具体的にはDH層(AlGaInP第一クラッド層14からAlGaInP第二クラッド層16)と窓層18)を保持する接合基板300を作製する。
 なお、ここでは、硬化型接合材22の厚さとして、1.0μmのBCB厚を例示したが、この厚さに限定されるものではなく、この厚さ以上に薄くても厚くても同様の効果が得られる。ただ、BCBをスピンコートで形成しているため、薄すぎる場合、接合処理後の面積歩留まりが低下する傾向がある。接合後、90%以上の面積歩留まりを保つためには0.05μm以上の接着層厚を設計することが好適である。また、70%以上の接合面積歩留まりを維持すればよいのであれば、0.01μm以上のBCBを設計しておけばよい。ただし経済合理性から10μm以下の膜厚とすることが好適である。
 次に図4に示すように、第一導電型のAlGaInP第一クラッド層14の一部領域に第一電極41を形成する。第一電極41は高反射性の金属を使用することが好適であり、Au系を用いた電極とすることができる。この第一電極41は、例えばAlGaInP第一クラッド層14と接する金属にAuBe系を用いることができる。
 次に図5に示すように、第一電極41形成後、第一導電型のAlGaInP第一クラッド層14の第一電極41の形成域以外の領域の一部をドライエッチングなどの方法により切り欠き、切り欠き部に第二導電型GaP窓層18を露出させる。
 なお、図5では半導体層部のみを切り欠く場合を例示しているが、半導体部のみを切り欠く場合に限定されず、硬化型接合材22(BCB)部まで切り欠いてもよいし、異種基板21部まで切り欠いてもよい。
 次に図6に示すように、側面をパッシベーション(PSV)膜65で被覆する。更に露出領域に第二電極61を形成したデバイス構造部を有する接合基板を作製する。第二電極61は高反射性の金属を使用することが好ましい。具体的にはAu系を用いることができ、AuSi系とすることが好ましい。なお、前述のように第二電極61形成前にPSV膜65を形成してもよいし、第二電極61形成後にPSV膜65を形成してもよい。また、必ずしもPSV膜65自体形成しなくてもよい。第一・第二電極形成後、オーミック接触を得るため、例えば400℃5分間のRTA熱処理を行う。
 このようにして、エピタキシャル機能層19の片方の面に極性の異なる2つ以上の電極(第一電極41及び第二電極61)を有したデバイス構造部が、硬化型接合材22で異種基板21からなる支持体と接合された接合型ウェーハ600を作製する。
 本発明は、このような接合型ウェーハ600から、異種基板21からなる支持体を剥離する接合型ウェーハの剥離方法であり、接合型ウェーハ600にレーザー光を照射することにより、硬化型接合材22及び/又は硬化型接合材22と接触するデバイス構造部の表面(すなわち、図6の場合、窓層18の表面)の少なくとも一部にレーザー光を吸収させ、硬化型接合材22及び/又はデバイス構造部の表面を分解することで、デバイス構造部と支持体を分離させることを特徴とする。第二の実施形態では、硬化型接合材22の分解による態様を主に説明する。
 この分離は具体的には以下のようにして行うことができる。まず、レーザー光照射前に、粘着剤を塗布した仮支持基板を、エピタキシャル機能層の接合型ウェーハの異種基板とは反対側の面に粘着することが好ましい。例えば、図7に示すように、仮支持基板71として合成石英ウェーハ上に、層状のシリコーン粘着剤72を塗布した仮支持基板71を準備し、接合型ウェーハ600と仮支持基板71を対向させて圧迫し、粘着剤に粘着させる。
 なお、仮支持基板71としては合成石英に限定されず、サファイアや石英(天然石英)、ガラス、SiC、LiTaO、LiNbOなどを用いることができる。
 次に図9に示すように、異種基板(サファイア基板)21側よりエキシマレーザーを照射して異種基板(サファイア基板)21を透過し、硬化型接合材(BCB接合層)22に達したレーザー光を、BCB層22が吸収し、BCB層22が分解(アブレーション)することで空隙を生じさせ、異種基板21をエピタキシャル機能層19から剥離する。
 なお、上記のように、硬化型接合材22として、シリコーン樹脂やBCBなど、主に熱硬化性の接合材を例示したが、UV硬化性や常温硬化性の硬化特性を有するものを採用した接合型ウェーハの剥離方法にも、本発明を適用することができる。
 以下、実施例及び比較例を挙げて本発明について詳細に説明するが、これらは本発明を限定するものではない。
(実施例1)
 n型のGaAs出発基板10上に、n型のGaAsバッファ層11積層後、n型のGaIn1-xP(0.4≦x≦0.6)第一エッチストップ層12を0.3μm、n型のGaAs第二エッチストップ層13を0.3μm、n型の(AlGa1-yIn1-xP(0.4≦x≦0.6, 0<y≦1)第一クラッド層14を1.0μm、ノンドープの(AlGa1-yIn1-xP(0.4≦x≦0.6, 0≦y≦0.6)活性層15、p型の(AlGa1-yIn1-xP(0.4≦x≦0.6, 0<y≦1)第二クラッド層16を1.0μm、p型のGaInP中間層17を0.1μm、p型のGaP窓層18を4μm、順次成長したエピタキシャル機能層19としての発光素子構造を有するエピタキシャルウェーハ100を準備した。(図1参照)
 次にエピタキシャルウェーハ100上に熱硬化型接合部材22としてシリコーン樹脂をスピンコートして第一接合層を形成し、異種基板21であるサファイア基板と対向させて重ね合わせ、熱圧着することで、エピタキシャルウェーハ100と異種基板21であるサファイア基板とを、硬化型接合材22であるシリコーン樹脂を介して接合したエピタキシャルウェーハ接合基板(第一の化合物半導体接合基板)200を作製した。スピンコートにてシリコーン樹脂を塗布する際、設計膜厚は1.0μmとした。(図2参照)
 GaAs出発基板10及びGaAsバッファ層11をアンモニア過水によりウェットエッチング処理して除去し、GaInP第一エッチストップ層12を露出させた。次にエッチャントを塩酸系に切り替えてGaInP第一エッチストップ層12を選択的に除去し、GaAs第二エッチストップ層13を露出させた。次にエッチャントを硫酸過水系に切り替えてGaAs第二エッチストップ層13を選択的に除去し、第一クラッド層14を露出させた。以上の処理を行うことにより、エピタキシャル機能層19(より具体的にはDH層(第一クラッド層14から第二クラッド層16)と窓層18)を保持する接合基板(第二の化合物半導体接合基板)300を作製した。(図3参照)
 次に、n型の第一クラッド層14の一部領域にAuBe系の第一電極41を形成した。(図4参照)
 第一電極形成後、n型の第一クラッド層14の第一電極41形成域以外の領域の一部をドライエッチングにより切り欠き、切り欠き部にp型GaP窓層18を露出させた。(図5参照)
 次に側面をパッシベーション(PSV)膜65で被覆し、露出領域にAuSi系の第二電極61を形成した接合型ウェーハ(デバイス構造部を有する接合基板)600を作製した。第一・第二電極形成後、オーミック接触を得るため、400℃5分間のRTA熱処理を行った。(図6参照)
 次に仮支持基板71として合成石英ウェーハ上に層状のシリコーン粘着剤72を塗布した仮支持基板71を準備し、接合型ウェーハ600と仮支持基板71を対向させて圧迫し、粘着剤に粘着させた。(図7参照)
 異種基板21であるサファイア基板側よりエキシマレーザーを照射してサファイア基板およびシリコーン接合層72を透過したレーザー光を、p型GaP窓層18で吸収させて分解(アブレーション)し、異種基板21であるサファイア基板をエピタキシャル機能層19から剥離した。(図8参照)
(実施例2)
 n型のGaAs出発基板10上に、n型のGaAsバッファ層11積層後、n型のGaIn1-xP(0.4≦x≦0.6)第一エッチストップ層12を0.3μm、n型のGaAs第二エッチストップ層13を0.3μm、n型の(AlGa1-yIn1-xP(0.4≦x≦0.6, 0<y≦1)第一クラッド層14を1.0μm、ノンドープの(AlGa1-yIn1-xP(0.4≦x≦0.6, 0≦y≦0.6)活性層15、p型の(AlGa1-yIn1-xP(0.4≦x≦0.6, 0<y≦1)第二クラッド層16を1.0μm、p型のGaInP中間層17を0.1μm、p型のGaP窓層18を4μm、順次成長したエピタキシャル機能層19としての発光素子構造を有するエピタキシャルウェーハ100を準備した。(図1参照)
 エピタキシャルウェーハ100上に熱硬化型接合部材22としてベンゾシクロブテン(BCB)をスピンコートして第一接合層を形成し、異種基板21であるサファイア基板と対向させて重ね合わせ、熱圧着することでエピタキシャルウェーハ100と異種基板21であるサファイア基板とをBCBを介して接合したエピタキシャルウェーハ接合基板(第一の化合物半導体接合基板)200を作製した。スピンコートにてBCBを塗布する際、設計膜厚は1.0μmとした。(図2参照)
 次にGaAs出発基板10及びGaAsバッファ層11をアンモニア過水などの選択エッチング液によりウェットエッチング処理して除去し、GaInP第一エッチストップ層12を露出させた。次にエッチャントを塩酸系に切り替えてGaInP第一エッチストップ層12を選択的に除去し、GaAs第二エッチストップ層13を露出させた。次にエッチャントを硫酸過水系に切り替えてGaAs第二エッチストップ層13を選択的に除去し、第一クラッド層14を露出させた。以上の処理を行うことにより、エピタキシャル機能層19(より具体的にはDH層(第一クラッド層14から第二クラッド層16)と窓層18)を保持する接合基板(第二の化合物半導体接合基板)300を作製した。(図3参照)
 次にn型の第一クラッド層14の一部領域にAuBe系の第一電極41を形成した。(図4参照)
 第一電極形成後、n型の第一クラッド層14の第一電極41形成域以外の領域の一部をドライエッチングにより切り欠き、切り欠き部にp型GaP窓層18を露出させた。(図5参照)
 側面をパッシベーション(PSV)膜65で被覆し、露出領域にAuSi系の第二電極61を形成した接合型ウェーハ(デバイス構造部を有する接合基板)600を作製した。
 第一・第二電極形成後、オーミック接触を得るため、400℃5分間のRTA熱処理を行った。(図6参照)
 次に仮支持基板71として合成石英ウェーハ上に層状のシリコーン粘着剤72を塗布した仮支持基板71を準備し、接合型ウェーハ600と仮支持基板71を対向させて圧迫し、粘着剤に粘着させた。(図7参照)
 異種基板21であるサファイア基板側よりエキシマレーザーを照射してサファイア基板を透過し、BCB接合層72に達したレーザー光を、BCB層が吸収し、BCB層が分解(アブレーション)することで空隙を生じさせ、異種基板21であるサファイア基板をエピタキシャル機能層から剥離した。(図9参照)
(比較例)
 n型のGaAs出発基板上に、n型のGaAsバッファ層積層後、n型のGaIn1-xP(0.4≦x≦0.6)第一エッチストップ層を0.3μm、n型のGaAs第二エッチストップ層を0.3μm、n型の(AlGa1-yIn1-xP(0.4≦x≦0.6, 0<y≦1)第一クラッド層を1.0μm、ノンドープの(AlGa1-yIn1-xP(0.4≦x≦0.6, 0≦y≦0.6)活性層、第二導電型の(AlGa1-yIn1-xP(0.4≦x≦0.6, 0<y≦1)第二クラッド層を1.0μm、p型のGaInP中間層を0.1μm、p型のGaP窓層18を4.0μm、順次成長したエピタキシャル機能層として発光素子構造を有するエピタキシャルウェーハを準備した。
 次にエピタキシャルウェーハ上に熱硬化型接合部材としてベンゾシクロブテン(BCB)をスピンコートし、シリコンウェーハと対向させて重ね合わせ、熱圧着することでエピタキシャルウェーハとシリコンウェーハとをBCBを介して接合したEPW接合基板を作製した。スピンコートにてBCBを塗布する際、設計膜厚は1.0μmとした。
 GaAs出発基板をウェットエッチングで除去し、第一エッチストップ層を露出させ、エッチャントを切り替えて第二エッチストップ層を除去して第一クラッド層を露出させ、DH層と窓層のみを保持するエピタキシャル接合基板を作製した。
 次にn型の第一クラッド層の一部領域にAuBe系の第一電極を形成した。
 第一電極形成後、n型の第一クラッド層の第一電極形成域以外の領域の一部をドライエッチングにより切り欠き、切り欠き部にp型GaP窓層を露出させた。
 側面をパッシベーション(PSV)膜で被覆した。露出領域にAuSi系の第二電極を形成した接合型ウェーハ(デバイス構造部を有する接合基板)を作製した。第一・第二電極形成後、オーミック接触を得るため、400℃5分間のRTA熱処理を行った。
 次にシリコンウェーハ上に層状のシリコーン粘着剤を塗布した仮支持基板を準備し、デバイス構造部を有する接合基板と仮支持基板を対向させて圧迫し、粘着剤に粘着させた。
 シリコンウェーハ(異種基板)側を平面研削等の処理により薄膜加工した。シリコンウェーハ(異種基板)厚が150μm以下の膜厚に達した後、フッ硝酸系のエッチング液に浸してシリコンウェーハ(異種基板)を除去した。シリコンウェーハ(異種基板)除去後、アッシング処理またはドライエッチング処理にてBCBを除去した。
 表1に実施例1、実施例2と比較例における異種基板除去後のデバイス部残存率を示す。実施例1及び実施例2では剥離過程において、デバイスに掛かる応力が少なく、良好なデバイス部残存率を示すのに対し、比較例においては、異種基板の機械加工時にデバイス部に印加される機械的な応力が大きく、加工後のデバイス部の破損が発生するため、結果として、デバイス部残存率が低下している。
Figure JPOXMLDOC01-appb-T000001
 本発明は、前記エピタキシャル成長用出発基板が不透明な基板である場合に特に有効である。このような不透明な基板はレーザーが透過しない、又はアブレーション発生に不十分な程度しかレーザーが透過しないため、エピタキシャル成長用出発基板にレーザーを照射することでデバイス構造部を分離すること(レーザーリフトオフとも呼ばれる)が困難である。したがって、エピタキシャル成長用出発基板がガリウムひ素基板である場合や、デバイス構造部が赤色LEDである場合に有効である。この赤色LEDはマイクロLEDであっても、ミニLEDであってもよい。
 また、本発明における各種基板(エピタキシャル成長用出発基板、支持体、異種基板、仮支持基板)は円盤形状であることが、コスト面や、各種装置への適用容易性などの点から好ましいが、楕円柱形状、四角柱等の多角柱形状など、他の形状であっても本発明の効果は達成可能である。
 また、図6等において、一つのデバイス構造部が描写されるように説明しているが、支持体には複数のデバイス構造部が接合されていてもよく、それらの複数のデバイス構造部はマトリックス状に配列していてもよい。
 また、支持体の主面とは垂直方向から観察した場合のデバイス構造部の形状は、円形状、楕円形状、四角形状等の多角形状等が挙げられる。これらの中でも四角形状であることが一度に製造できるデバイス構造部を増やせる点で好ましい。ここで、円形状、楕円形状、四角形状及び多角形状は、厳密な円形状、楕円形状、四角形状及び多角形状を意味するものではなく、直線部分・曲線部分における凹みや膨らみ、角部における面取り形状なども含まれる意味である。
 また、デバイス構造部を接合するための硬化物層の厚みは、デバイス構造部を支持体から剥離する迄の工程に堪え得る厚みであればよい。つまり、支持体は最終的には剥離するために、数年にわたるような接合信頼性は求められず、比較的薄くてもよい。このことはレーザーリフトオフを行う上で有利に働く。具体的には、硬化型接合材に含まれる材料や、接合性能によるが、0.1~1.0μmであることが好ましく、0.4~0.6μmであることがより好ましい。
 以上、本発明の実施形態について詳述したが、一方で本発明について異なる視点から表現すると下記(1)~(15)、(U1)~(U89)及び(X1)~(X4)のようになる。
(1)デバイス構造部が硬化型接合材の硬化物層を介して支持体に接合された接合型ウェーハであって、レーザー光の照射によるデバイス構造部の剥離に用いられる接合型ウェーハ。
(2)前記デバイス構造部が、赤色LEDチップである(1)記載の接合型ウェーハ。
(3)前記デバイス構造部が、AlGaInP系材料を含む(1)記載の接合型ウェーハ。
(4)前記硬化物層の厚みは、0.1~1.0μmである(1)記載の接合型ウェーハ。
(5)前記硬化物層の厚みは、0.4~0.6μmである(2)記載の接合型ウェーハ。
(6)前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する(1)記載の接合型ウェーハ。
(7)前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む(1)記載の接合型ウェーハ。
(8)前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(1)記載の接合型ウェーハ。
(9)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.1~1.0μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(1)記載の接合型ウェーハ。
(10)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.4~0.6μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテンを含み、
前記支持体は、サファイア基板を有する(1)記載の接合型ウェーハ。
(11)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合型ウェーハから前記支持体を剥離する接合型ウェーハの剥離方法であって、
 前記接合型ウェーハの支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする接合型ウェーハの剥離方法。
(12)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合型ウェーハから前記支持体を剥離する、分離されたデバイス構造部の製造方法であって、
 前記接合型ウェーハの支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする、分離されたデバイス構造部の製造方法。
(13)デバイス構造部が硬化型接合材の硬化物層を介して支持体に接合された接合体であって、レーザー光の照射によるデバイス構造部の剥離に用いられる接合体。
(14)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合体から、前記支持体を剥離する接合体の剥離方法であって、
 前記接合体の支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする接合体の剥離方法。
(15)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合体から前記支持体を剥離する、分離されたデバイス構造部の製造方法であって、
 前記接合体の支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする、分離されたデバイス構造部の製造方法。
(U1)エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有し、前記デバイス構造部が硬化型接合材で異種基板からなる支持体と接合された接合型ウェーハから、前記支持体を剥離する接合型ウェーハの剥離システムであって、
 前記接合型ウェーハにレーザー発振器から発振されたレーザー光を照射することにより、前記硬化型接合材及び/又は前記硬化型接合材と接触する前記デバイス構造部の表面の少なくとも一部にレーザー光を吸収させ、前記硬化型接合材及び/又は前記デバイス構造部の表面を分解することで、前記デバイス構造部と前記支持体を分離させる機構を有することを特徴とする接合型ウェーハの剥離システム。
(U2)前記エピタキシャル機能層を、発光素子構造を有するものとすることを特徴とする(U1)に記載の接合型ウェーハの剥離システム。
(U3)前記エピタキシャル機能層を、AlGaInP系材料を含むものとすることを特徴とする(U1)又は(U2)に記載の接合型ウェーハの剥離システム。
(U4)前記硬化型接合材を、熱硬化性、UV硬化性、及び、常温硬化性のいずれかの硬化特性を有するものとすることを特徴とする(U1)又は(U2)に記載の接合型ウェーハの剥離システム。
(U5)前記硬化型接合材を、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂、シリコーン樹脂のいずれか1つを含むものとすることを特徴とする請求項(U1)又は(U2)に記載の接合型ウェーハの剥離システム。
(U6)前記エピタキシャル機能層を、エピタキシャル成長用出発基板が除去されているものとすることを特徴とする(U1)又は(U2)に記載の接合型ウェーハの剥離システム。
(U7)前記異種基板を、サファイア、SiC、合成石英、石英、ガラス、LiTaO、LiNbOのいずれかの材料からなるものとすることを特徴とする(U1)又は(U2)に記載の接合型ウェーハの剥離システム。
(U8)前記レーザー光を、エキシマレーザーとすることを特徴とする(U1)又は(U2)に記載の接合型ウェーハの剥離システム。
(U9)前記レーザー光照射前に、粘着剤を塗布した仮支持基板を、前記エピタキシャル機能層の前記接合型ウェーハの前記異種基板とは反対側の面に粘着することを特徴とする(U1)又は(U2)に記載の接合型ウェーハの剥離システム。
(U10)前記粘着剤を、シリコーンとすることを特徴とする(U9)に記載の接合型ウェーハの剥離システム。
(U11)前記仮支持基板を、サファイア、SiC、合成石英、石英、ガラス、LiTaO、LiNbOのいずれかの材料からなるものとすることを特徴とする(U1)に記載の接合型ウェーハの剥離システム。
(U12)四角形状のデバイス構造部が硬化型接合材の硬化物層を介して支持体に接合された接合型ウェーハであって、レーザー光の照射によるデバイス構造部の剥離に用いられる接合型ウェーハ。
(U13)前記デバイス構造部が、赤色LEDチップである(U12)記載の接合型ウェーハ。
(U14)前記デバイス構造部が、AlGaInP系材料を含む(U12)記載の接合型ウェーハ。
(U15)前記硬化物層の厚みは、0.1~1.0μmである(U12)記載の接合型ウェーハ。
(U16)前記硬化物層の厚みは、0.1~1.0μmである(U13)記載の接合型ウェーハ。
(U17)前記硬化物層の厚みは、0.4~0.6μmである(U12)記載の接合型ウェーハ。
(U18)前記硬化物層の厚みは、0.4~0.6μmである(U13)記載の接合型ウェーハ。
(U19)前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する(U12)記載の接合型ウェーハ。
(U20)前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む(U12)記載の接合型ウェーハ。
(U21)前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U12)記載の接合型ウェーハ。
(U22)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.1~1.0μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U12)記載の接合型ウェーハ。
(U23)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.4~0.6μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテンを含み、
前記支持体は、サファイア基板を有する(U12)記載の接合型ウェーハ。
(U24)前記デバイス構造部は、前記支持体上に複数接合されており、該複数のデバイス構造体はマトリックス状に配列している(U12)記載の接合型ウェーハ。
(U25)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合型ウェーハから前記支持体を剥離する接合型ウェーハの剥離システムであって、
 前記接合型ウェーハの支持体側から、レーザー発振器から発振されたレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させる機構を有することを特徴とする接合型ウェーハの剥離システム。
(U26)前記デバイス構造部が、赤色LEDチップである(U25)記載の接合型ウェーハの剥離システム。
(U27)前記デバイス構造部が、AlGaInP系材料を含む(U25)記載の接合型ウェーハの剥離システム。
(U28)前記硬化物層の厚みは、0.1~1.0μmである(U25)記載の接合型ウェーハの剥離システム。
(U29)前記硬化物層の厚みは、0.1~1.0μmである(U26)記載の接合型ウェーハの剥離システム。
(U30)前記硬化物層の厚みは、0.4~0.6μmである(U25)記載の接合型ウェーハの剥離システム。
(U31)前記硬化物層の厚みは、0.4~0.6μmである(U26)記載の接合型ウェーハの剥離システム。
(U32)前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する(U25)記載の接合型ウェーハの剥離システム。
(U33)前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む(U25)記載の接合型ウェーハの剥離システム。
(U34)前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U25)記載の接合型ウェーハの剥離システム。
(U35)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.1~1.0μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U25)記載の接合型ウェーハの剥離システム。
(U36)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.4~0.6μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテンを含み、
前記支持体は、サファイア基板を有する(U25)記載の接合型ウェーハの剥離システム。
(U37)前記デバイス構造部は、前記支持体上に複数接合されており、該複数のデバイス構造体はマトリックス状に配列している(U25)記載の接合型ウェーハの剥離システム。
(U38)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合型ウェーハから前記支持体を剥離する、分離されたデバイス構造部の製造システムであって、
 前記接合型ウェーハの支持体側から、レーザー発振器から発振されたレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させる機構を有することを特徴とする、分離されたデバイス構造部の製造システム。
(U39)前記デバイス構造部が、赤色LEDチップである(U38)記載の分離されたデバイス構造部の製造システム。
(U40)前記デバイス構造部が、AlGaInP系材料を含む(U38)記載の分離されたデバイス構造部の製造システム。
(U41)前記硬化物層の厚みは、0.1~1.0μmである(U38)記載の分離されたデバイス構造部の製造システム。
(U42)前記硬化物層の厚みは、0.1~1.0μmである(U39)記載の分離されたデバイス構造部の製造システム。
(U43)前記硬化物層の厚みは、0.4~0.6μmである(U38)記載の分離されたデバイス構造部の製造システム。
(U44)前記硬化物層の厚みは、0.4~0.6μmである(U39)記載の分離されたデバイス構造部の製造システム。
(U45)前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する(U38)記載の分離されたデバイス構造部の製造システム。
(U46)前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む(U38)記載の分離されたデバイス構造部の製造システム。
(U47)前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U38)記載の分離されたデバイス構造部の製造システム。
(U48)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.1~1.0μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U38)記載の分離されたデバイス構造部の製造システム。
(U49)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.4~0.6μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテンを含み、
前記支持体は、サファイア基板を有する(U38)記載の分離されたデバイス構造部の製造システム。
(U50)前記デバイス構造部は、前記支持体上に複数接合されており、該複数のデバイス構造体はマトリックス状に配列している(U38)記載の分離されたデバイス構造部の製造システム。
(U51)四角形状のデバイス構造部が硬化型接合材の硬化物層を介して支持体に接合された接合体であって、レーザー光の照射によるデバイス構造部の剥離に用いられる分離された接合体。
(U52)前記デバイス構造部が、赤色LEDチップである(U51)記載の分離された接合体。
(U53)前記デバイス構造部が、AlGaInP系材料を含む(U51)記載の分離された接合体。
(U54)前記硬化物層の厚みは、0.1~1.0μmである(U51)記載の分離された接合体。
(U55)前記硬化物層の厚みは、0.1~1.0μmである(U52)記載の分離された接合体。
(U56)前記硬化物層の厚みは、0.4~0.6μmである(U51)記載の分離された接合体。
(U57)前記硬化物層の厚みは、0.4~0.6μmである(U52)記載の分離された接合体。
(U58)前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する(U51)記載の分離された接合体。
(U59)前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む(U51)記載の分離された接合体。
(U60)前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U51)記載の分離された接合体。
(U61)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.1~1.0μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U51)記載の分離された接合体。
(U62)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.4~0.6μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテンを含み、
前記支持体は、サファイア基板を有する(U51)記載の分離された接合体。
(U63)前記デバイス構造部は、前記支持体上に複数接合されており、該複数のデバイス構造体はマトリックス状に配列している(U51)記載の分離された接合体。
(U64)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合体から、前記支持体を剥離する接合体の剥離システムであって、
 前記接合体の支持体側から、レーザー発振器から発振されたレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させる機構を有することを特徴とする接合体の剥離システム。
(U65)前記デバイス構造部が、赤色LEDチップである(U64)記載の接合体の剥離システム。
(U66)前記デバイス構造部が、AlGaInP系材料を含む(U64)記載の接合体の剥離システム。
(U67)前記硬化物層の厚みは、0.1~1.0μmである(U64)記載の接合体の剥離システム。
(U68)前記硬化物層の厚みは、0.1~1.0μmである(U65)記載の接合体の剥離システム。
(U69)前記硬化物層の厚みは、0.4~0.6μmである(U64)記載の接合体の剥離システム。
(U70)前記硬化物層の厚みは、0.4~0.6μmである(U65)記載の接合体の剥離システム。
(U71)前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する(U64)記載の接合体の剥離システム。
(U72)前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む(U64)記載の接合体の剥離システム。
(U73)前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U64)記載の接合体の剥離システム。
(U74)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.1~1.0μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U64)記載の接合体の剥離システム。
(U75)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.4~0.6μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテンを含み、
前記支持体は、サファイア基板を有する(U64)記載の接合体の剥離システム。
(U76)前記デバイス構造部は、前記支持体上に複数接合されており、該複数のデバイス構造体はマトリックス状に配列している(U64)記載の接合体の剥離システム。
(U77)デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合体から前記支持体を剥離する、分離されたデバイス構造部の製造システムであって、
 前記接合体の支持体側から、レーザー発振器から発振されたレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させる機構を有することを特徴とする、分離されたデバイス構造部の製造システム。
(U78)前記デバイス構造部が、赤色LEDチップである(U77)記載の分離されたデバイス構造部の製造システム。
(U79)前記デバイス構造部が、AlGaInP系材料を含む(U77)記載の分離されたデバイス構造部の製造システム。
(U80)前記硬化物層の厚みは、0.1~1.0μmである(U77)記載の分離されたデバイス構造部の製造システム。
(U81)前記硬化物層の厚みは、0.1~1.0μmである(U78)記載の分離されたデバイス構造部の製造システム。
(U82)前記硬化物層の厚みは、0.4~0.6μmである(U77)記載の分離されたデバイス構造部の製造システム。
(U83)前記硬化物層の厚みは、0.4~0.6μmである(U78)記載の分離されたデバイス構造部の製造システム。
(U84)前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する(U77)記載の分離されたデバイス構造部の製造システム。
(U85)前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む(U77)記載の分離されたデバイス構造部の製造システム。
(U86)前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U77)記載の分離されたデバイス構造部の製造システム。
(U87)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.1~1.0μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する(U77)記載の分離されたデバイス構造部の製造システム。
(U88)前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
前記硬化物層の厚みは、0.4~0.6μmであり、
前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
前記硬化型接合材は、ベンゾシクロブテンを含み、
前記支持体は、サファイア基板を有する(U77)記載の分離されたデバイス構造部の製造システム。
(U89)前記デバイス構造部は、前記支持体上に複数接合されており、該複数のデバイス構造体はマトリックス状に配列している(U77)記載の分離されたデバイス構造部の製造システム。
(X1)デバイス構造部が支持体に接合された接合型ウェーハの、レーザー光の照射によるデバイス構造部の剥離への応用であって、
前記デバイス構造部は、硬化型接合材の硬化物層を介して前記支持体に接合される、応用。
(X2)デバイス構造部が支持体に接合された接合型ウェーハの、レーザー光の照射によるデバイス構造部の剥離に用いられる接合型ウェーハの製造への応用であって、
前記デバイス構造部は、硬化型接合材の硬化物層を介して前記支持体に接合される、応用。
(X3)デバイス構造部が支持体に接合された接合体の、レーザー光の照射によるデバイス構造部の剥離への応用であって、
前記デバイス構造部は、硬化型接合材の硬化物層を介して前記支持体に接合される、応用。
(X4)デバイス構造部が支持体に接合された接合体の、レーザー光の照射によるデバイス構造部の剥離に用いられる接合体の製造への応用であって、
前記デバイス構造部は、硬化型接合材の硬化物層を介して前記支持体に接合される、応用。
 前述した多くの実施形態における各構成要件を細分化し、細分化された構成要件を各々単独で、又は組み合わせて、これら(1)~(15)、(U1)~(U88)及び(X1)~(X4)に導入することができる。例えば、各種基板や各種層の材料・性質・寸法、形状・形成方法、レーザー光の種類、剥離方法、デバイス構造部の構造等が代表的な例である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (26)

  1.  エピタキシャル機能層の片方の面に極性の異なる2つ以上の電極を有したデバイス構造部を有し、前記デバイス構造部が硬化型接合材で異種基板からなる支持体と接合された接合型ウェーハから、前記支持体を剥離する接合型ウェーハの剥離方法であって、
     前記接合型ウェーハにレーザー光を照射することにより、前記硬化型接合材及び/又は前記硬化型接合材と接触する前記デバイス構造部の表面の少なくとも一部にレーザー光を吸収させ、前記硬化型接合材及び/又は前記デバイス構造部の表面を分解することで、前記デバイス構造部と前記支持体を分離させることを特徴とする接合型ウェーハの剥離方法。
  2.  前記エピタキシャル機能層を、発光素子構造を有するものとすることを特徴とする請求項1に記載の接合型ウェーハの剥離方法。
  3.  前記エピタキシャル機能層を、AlGaInP系材料を含むものとすることを特徴とする請求項1又は請求項2に記載の接合型ウェーハの剥離方法。
  4.  前記硬化型接合材を、熱硬化性、UV硬化性、及び、常温硬化性のいずれかの硬化特性を有するものとすることを特徴とする請求項1から請求項3のいずれか1項に記載の接合型ウェーハの剥離方法。
  5.  前記硬化型接合材を、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂、シリコーン樹脂のいずれか1つを含むものとすることを特徴とする請求項4に記載の接合型ウェーハの剥離方法。
  6.  前記エピタキシャル機能層を、エピタキシャル成長用出発基板が除去されているものとすることを特徴とする請求項1から請求項5のいずれか1項に記載の接合型ウェーハの剥離方法。
  7.  前記異種基板を、サファイア、SiC、合成石英、石英、ガラス、LiTaO、LiNbOのいずれかの材料からなるものとすることを特徴とする請求項1から請求項6のいずれか1項に記載の接合型ウェーハの剥離方法。
  8.  前記レーザー光を、エキシマレーザーとすることを特徴とする請求項1から請求項7のいずれか1項に記載の接合型ウェーハの剥離方法。
  9.  前記レーザー光照射前に、粘着剤を塗布した仮支持基板を、前記エピタキシャル機能層の前記接合型ウェーハの前記異種基板とは反対側の面に粘着することを特徴とする請求項1から請求項8のいずれか1項に記載の接合型ウェーハの剥離方法。
  10.  前記粘着剤を、シリコーンとすることを特徴とする請求項9に記載の接合型ウェーハの剥離方法。
  11.  前記仮支持基板を、サファイア、SiC、合成石英、石英、ガラス、LiTaO、LiNbOのいずれかの材料からなるものとすることを特徴とする請求項9又は請求項10に記載の接合型ウェーハの剥離方法。
  12.  デバイス構造部が硬化型接合材の硬化物層を介して支持体に接合された接合型ウェーハであって、レーザー光の照射による前記デバイス構造部の剥離に用いられる接合型ウェーハ。
  13.  前記デバイス構造部が、赤色LEDチップである請求項12記載の接合型ウェーハ。
  14.  前記デバイス構造部が、AlGaInP系材料を含む請求項12記載の接合型ウェーハ。
  15.  前記硬化物層の厚みは、0.1~1.0μmである請求項12記載の接合型ウェーハ。
  16.  前記硬化物層の厚みは、0.4~0.6μmである請求項13記載の接合型ウェーハ。
  17.  前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有する請求項12記載の接合型ウェーハ。
  18.  前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含む請求項12記載の接合型ウェーハ。
  19.  前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する請求項12記載の接合型ウェーハ。
  20.  前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
     前記硬化物層の厚みは、0.1~1.0μmであり、
     前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
     前記硬化型接合材は、ベンゾシクロブテン、ポリイミド、フッ素樹脂、エポキシ樹脂及びシリコーン樹脂からなる群より選択される少なくとも一つを含み、
     前記支持体は、サファイア基板、SiC基板、合成石英基板、石英基板、ガラス基板、LiTaO基板及びLiNbO基板からなる群より選択される少なくとも一つを有する請求項12記載の接合型ウェーハ。
  21.  前記デバイス構造部が、AlGaInP系材料を含む赤色LEDチップであり、
     前記硬化物層の厚みは、0.4~0.6μmであり、
     前記デバイス構造部は、エピタキシャル成長用出発基板が除去されたエピタキシャル機能層を有し、
     前記硬化型接合材は、ベンゾシクロブテンを含み、
     前記支持体は、サファイア基板を有する請求項12記載の接合型ウェーハ。
  22.  デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合型ウェーハから前記支持体を剥離する接合型ウェーハの剥離方法であって、
     前記接合型ウェーハの支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする接合型ウェーハの剥離方法。
  23. デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合型ウェーハから前記支持体を剥離する、分離されたデバイス構造部の製造方法であって、
     前記接合型ウェーハの支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする、分離されたデバイス構造部の製造方法。
  24.  デバイス構造部が硬化型接合材の硬化物層を介して支持体に接合された接合体であって、レーザー光の照射によるデバイス構造部の剥離に用いられる接合体。
  25.  デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合体から、前記支持体を剥離する接合体の剥離方法であって、
     前記接合体の支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする接合体の剥離方法。
  26.  デバイス構造部が硬化型接合材の硬化物層を介して支持体と接合された接合体から前記支持体を剥離する、分離されたデバイス構造部の製造方法であって、
     前記接合体の支持体側からレーザー光を照射することにより、前記デバイス構造部と前記支持体を分離させることを特徴とする、分離されたデバイス構造部の製造方法。
PCT/JP2022/035852 2021-09-29 2022-09-27 接合型ウェーハの剥離方法 WO2023054321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280065905.XA CN118043942A (zh) 2021-09-29 2022-09-27 接合型晶片的剥离方法
JP2023535613A JP7408881B2 (ja) 2021-09-29 2022-09-27 接合型ウェーハの剥離方法
KR1020247010499A KR20240063128A (ko) 2021-09-29 2022-09-27 접합형 웨이퍼의 박리 방법
JP2023214273A JP2024029034A (ja) 2021-09-29 2023-12-19 接合型ウェーハの剥離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159760 2021-09-29
JP2021159760 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054321A1 true WO2023054321A1 (ja) 2023-04-06

Family

ID=85782711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035852 WO2023054321A1 (ja) 2021-09-29 2022-09-27 接合型ウェーハの剥離方法

Country Status (5)

Country Link
JP (2) JP7408881B2 (ja)
KR (1) KR20240063128A (ja)
CN (2) CN219591348U (ja)
TW (2) TWM645474U (ja)
WO (1) WO2023054321A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158823A (ja) 2002-07-15 2004-06-03 Shogen Koden Kofun Yugenkoshi 接着層を有する発光ダイオード及びその製造方法
JP2007042664A (ja) * 2005-07-29 2007-02-15 Shin Etsu Handotai Co Ltd 発光素子及びその製造方法
JP2014517518A (ja) * 2011-05-19 2014-07-17 晶能光電(江西)有限公司 窒化ガリウムベースフィルムチップの生産方法および製造方法
JP2016506061A (ja) * 2012-09-05 2016-02-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. デバイスウエハからのキャリアウエハのレーザ剥離
JP2021027301A (ja) 2019-08-08 2021-02-22 信越半導体株式会社 半導体基板の仮接合方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158823A (ja) 2002-07-15 2004-06-03 Shogen Koden Kofun Yugenkoshi 接着層を有する発光ダイオード及びその製造方法
JP2007042664A (ja) * 2005-07-29 2007-02-15 Shin Etsu Handotai Co Ltd 発光素子及びその製造方法
JP2014517518A (ja) * 2011-05-19 2014-07-17 晶能光電(江西)有限公司 窒化ガリウムベースフィルムチップの生産方法および製造方法
JP2016506061A (ja) * 2012-09-05 2016-02-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. デバイスウエハからのキャリアウエハのレーザ剥離
JP2021027301A (ja) 2019-08-08 2021-02-22 信越半導体株式会社 半導体基板の仮接合方法

Also Published As

Publication number Publication date
TW202315155A (zh) 2023-04-01
JP2024029034A (ja) 2024-03-05
JPWO2023054321A1 (ja) 2023-04-06
CN219591348U (zh) 2023-08-25
CN118043942A (zh) 2024-05-14
KR20240063128A (ko) 2024-05-09
TWM645474U (zh) 2023-09-01
JP7408881B2 (ja) 2024-01-05

Similar Documents

Publication Publication Date Title
KR101254539B1 (ko) 수직 구조 반도체 장치
JP3525061B2 (ja) 半導体発光素子の製造方法
US6607931B2 (en) Method of producing an optically transparent substrate and method of producing a light-emitting semiconductor chip
TWI233216B (en) Semiconductor element and method for producing the same
US7554124B2 (en) Nitride-based compound semiconductor light emitting device, structural unit thereof, and fabricating method thereof
JP4584785B2 (ja) 半導体発光素子の製造方法
JP5403754B2 (ja) 半導体発光装置の製造方法
KR20070007137A (ko) 화합물 반도체 발광소자 웨이퍼의 제조방법
WO2007072871A1 (ja) 窒化物半導体発光素子の製造方法
JP2005244198A (ja) 半導体装置の製造方法
JP2012142508A (ja) 半導体素子用ウェハ
US20040121562A1 (en) Method for manufacturing a semiconductor device having multiple laminated layers of different materials
WO2023054321A1 (ja) 接合型ウェーハの剥離方法
WO2019102738A1 (ja) 発光素子の製造方法
JP5716524B2 (ja) 発光素子の製造方法
US7696068B2 (en) Method for manufacturing vertical light-emitting diode
JP6312552B2 (ja) 半導体発光素子の製造方法および半導体発光素子
WO2024034480A1 (ja) マイクロled用接合型ウェーハの製造方法
TWI702733B (zh) 發光元件的安裝方法
WO2018034065A1 (ja) 発光素子及び発光素子の製造方法
JP3708342B2 (ja) 発光ダイオード素子の製造方法
WO2024111396A1 (ja) マイクロled構造体及びその製造方法
JP3663100B2 (ja) 半導体装置およびその製造方法、並びに、無線通信システム
JP2007318168A (ja) 半導体装置
CN114975700A (zh) 一种氮化物led的制备与无损界面分离方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535613

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247010499

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022876187

Country of ref document: EP

Effective date: 20240429