WO2023053869A1 - エポキシ樹脂組成物およびプリプレグ - Google Patents

エポキシ樹脂組成物およびプリプレグ Download PDF

Info

Publication number
WO2023053869A1
WO2023053869A1 PCT/JP2022/033520 JP2022033520W WO2023053869A1 WO 2023053869 A1 WO2023053869 A1 WO 2023053869A1 JP 2022033520 W JP2022033520 W JP 2022033520W WO 2023053869 A1 WO2023053869 A1 WO 2023053869A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
aromatic
group
resin composition
component
Prior art date
Application number
PCT/JP2022/033520
Other languages
English (en)
French (fr)
Inventor
池田裕樹
町田銀平
武田一朗
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP22875741.5A priority Critical patent/EP4386049A1/en
Publication of WO2023053869A1 publication Critical patent/WO2023053869A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • Patent Document 1 proposes an epoxy resin containing no aromatic ring as a resin composition having light resistance.
  • the non-aromatic epoxy resin described in Patent Document 1 generally has low viscosity due to weak intermolecular interaction.
  • the impregnated prepreg has a problem in that it is difficult to handle at room temperature and resin flow tends to occur during curing molding.
  • an object of the present invention is to provide a resin composition that has excellent light resistance and excellent handling properties at room temperature when used as a prepreg.
  • An object of the present invention is to provide a prepreg which is much more excellent in flexibility and has less resin flow during curing and molding.
  • the present invention provides a resin composition having the following configuration.
  • R 1 is a divalent non-aromatic hydrocarbon group and a group in which the non-aromatic hydrocarbon group is linked via an ether group or an amino group (-NR-; R is a non-aromatic hydrocarbon group).
  • any group hereinafter, "a group in which a non-aromatic hydrocarbon group and a non-aromatic hydrocarbon group are linked via an ether group or an amino group (-NR-; R is a non-aromatic hydrocarbon group)" are collectively referred to as “non-aromatic organic groups”
  • R 2 and R 3 are non-aromatic hydrocarbon groups in which the hydrogen atoms of the non-aromatic hydrocarbon groups are substituted with at least one epoxy group and at least one hydroxyl group.
  • An epoxy resin composition comprising components [G], [C], and [D'] and having properties 1 and 2 below.
  • [G] A mixture of epoxy resins containing at least one non-aromatic epoxy resin and having a number average molecular weight of 550 to 800 g/mol
  • Curing agent [D'] A number average molecular weight of 16000 to 28000 g / mol non-aromatic thermoplastic resin Property 1: After defoaming in vacuum, the temperature is raised at a temperature increase rate of 2 ° C./min, and the resin with a thickness of 2 mm obtained by holding at 180 ° C. for 120 minutes and curing. The bending breaking strain required for the hardened plate is 4.5% or more.
  • Characteristic 2 The epoxy resin composition does not contain a non-aromatic epoxy resin represented by formula (I).
  • R 1 is a divalent non-aromatic organic group
  • R 2 and R 3 have at least one epoxy group and at least one hydroxyl group substituted for the hydrogen atom of the non-aromatic hydrocarbon group a non-aromatic organic group
  • R 4 and R 5 are non-aromatic organic groups in which the hydrogen atoms of the non-aromatic hydrocarbon groups are substituted with at least one epoxy group and one hydroxyl group
  • nitrogen-containing heterocycles is a non-aromatic hydrocarbon group forming part of or a hydrogen atom.
  • n in formula (I) is an integer of 1 to 5, and R 1 , R 2 , R 3 , R 4 and R 5 are hydrogen atoms, linear, branched or cyclic structures.
  • an epoxy resin composition that has excellent light resistance and excellent handleability at room temperature when used as a prepreg.
  • the resin film obtained by filming the epoxy resin composition of the present invention and the prepreg obtained by impregnating a fiber base material with the resin film are excellent in light resistance, and in a preferred embodiment, are excellent in handleability at room temperature, and resin flow during curing and molding. shows little effect.
  • epoxy resins containing neither an aromatic ring, an amine nitrogen atom, a cycloalkane ring nor a cycloalkene ring include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol glycidyl ether, 1,6-hexanediol diglycidyl ether, neopentylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, sorbitol polyglycidyl ether, 1,4-bis(2-oxiranyl ) butane, pentaerythritol polyglycidyl ether.
  • a commercially available product can be used as the above non-aromatic epoxy resin.
  • EHPE3150 manufactured by Daicel Chemical Industries, Ltd.
  • THI-DE manufactured by JXTG Energy Corporation
  • TTA22 manufactured by Sun Chemical Co., Ltd.
  • Ex-121, Ex-211, Ex-212, Ex-313 , Ex-321, Ex-411 manufactured by Nagase Chemtech Co., Ltd.
  • Epolite registered trademark
  • ST-3000, ST-4000 Nippon Steel Chemical & Materials Co., Ltd.
  • YX8000 manufactured by Mitsubishi Chemical Corporation
  • EPALOY5000 manufactured by HUNTSMAN
  • non-aromatic organic group is preferably a non-aromatic hydrocarbon group.
  • the non-aromatic hydrocarbon group is linked via an ether group or an amino group (-NR-.
  • R is a non-aromatic hydrocarbon group
  • the number of linked non-aromatic hydrocarbon groups is three. It does not matter if it is more than that.
  • the R substituting the amino group may form a part of the cyclic structure.
  • the component [B] can be obtained, for example, by reacting a non-aromatic epoxy compound (including a resin; the same shall apply hereinafter) with a non-aromatic amine.
  • a non-aromatic epoxy compound has a plurality of epoxy groups, and for example, resins exemplified for the component [A] described above can be used.
  • resins exemplified for the component [A] described above can be used.
  • Specific examples of non-aromatic amines include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-aminoethylpiverazine, 4,4′-methylenebis(2-methylcyclohexylamine), isopholone.
  • Non-aromatic epoxy compounds include, for example, EDA (ethylenediamine), DETA (diethylenetriamine), TETA (triethylenetetramine), TEPA (tetraethylenepentamine), PEHA (pentaethylenehexamine), AEP (aminoethylpiperazine) (Tosoh Corporation).
  • the number-average molecular weight is 800 g/mol or less, the viscosity of the epoxy resin composition does not become too high, and it is easy to form a resin film by a hot-melt method, which is preferable.
  • the number average molecular weight is 450 g/mol or more, the viscosity of the epoxy resin composition does not become too low, and the prepreg obtained by impregnating a fiber base material with a resin film formed from the resin composition has a good tack. It is preferable because it is not too excessive.
  • the number average molecular weight here means the number average molecular weight converted to polystyrene by gel permeation chromatography.
  • the epoxy resin composition of the present invention contains a curing agent (component [C]).
  • the type of curing agent is not particularly limited, and examples thereof include amine-based curing agents, imidazoles, cationic curing agents, acid anhydrides, and boron chloride amine complexes. From the viewpoint of light resistance, it is preferable to use a non-aromatic curing agent.
  • a non-aromatic curing agent refers to a curing agent that does not contain an aromatic hydrocarbon group or an unsaturated heterocyclic ring in its chemical structure. Among them, dicyandiamide is preferably used because the performance of the epoxy resin composition before curing does not change due to moisture, and curing can be completed at a relatively low temperature while maintaining long-term stability.
  • a preferred blending amount of dicyandiamide is such that the number of moles of active hydrogen in dicyandiamide is 0.6 to 1.2 times the number of moles of epoxy groups derived from all epoxy resins blended in the epoxy resin composition. is preferable from the viewpoint of obtaining a cured product exhibiting good mechanical properties. Furthermore, when it is 0.7 to 1.0 times, the heat resistance is excellent, so it is more preferable.
  • the epoxy resin composition of the present invention contains a non-aromatic thermoplastic resin (component [D]).
  • a non-aromatic thermoplastic resin refers to a non-aromatic thermoplastic resin.
  • non-aromatic is as described above.
  • polyvinyl alcohol and its acetal compound can be used as the non-aromatic thermoplastic resin.
  • non-aromatic thermoplastic resins include polyvinyl alcohol, acetal compounds of polyvinyl alcohol such as polyvinyl acetal, polyvinyl formal, polyvinyl acetoacetal, polyvinyl butyral, polyvinyl acetate, hydrogenated bisphenol A and pentaerythritol phosphite. Polymers, hydrogenated terpenes, hydrogenated terpene phenols, and the like can be mentioned.
  • the number average molecular weight of these non-aromatic thermoplastic resins is from 16,000 to 28,000 g/mol. preferable. More preferably 17,000 to 27,000 g/mol, still more preferably 18,000 to 27,000 g/mol.
  • the number-average molecular weight of the non-aromatic thermoplastic resin exceeds 28000 g/mol, the viscosity of the epoxy resin composition per amount of the non-aromatic thermoplastic resin added may increase, making it easier to form a resin film. From the viewpoint of adjusting the tackiness, it is required to reduce the amount of the thermoplastic resin added.
  • the number average molecular weight of the non-aromatic thermoplastic resin is less than 16000 g/mol, the increase in viscosity of the epoxy resin composition per amount of the non-aromatic thermoplastic resin added may be small, resulting in film tackiness. becomes excessive, and a decrease in elastic modulus of the cured resin may be observed.
  • the number average molecular weight of the non-aromatic thermoplastic resin is from 16,000 to 28,000 g/mol, an appropriate balance between easiness of film formation of the resin composition and appropriate tackiness, breaking strain and elastic modulus of the cured resin is provided. be.
  • the number average molecular weight here means the number average molecular weight converted to polystyrene by gel permeation chromatography.
  • the content of the non-aromatic thermoplastic resin is 1 to 20 parts by mass when the total of the component [A] and the component [B] is 100 parts by mass. It is preferable from the viewpoint of tackiness of a prepreg produced by impregnating a fiber base material with a film. More preferably, it is 5 to 15 parts by mass.
  • the epoxy resin composition in the present invention can contain a curing accelerator (component [E]).
  • curing accelerators include urea-based curing accelerators, hydrazide-based curing accelerators, tertiary amines, imidazoles, and phenols.
  • a urea-based curing accelerator is preferred from the viewpoint of curing acceleration and storage stability at room temperature.
  • DCMU99 manufactured by Hodogaya Chemical Co., Ltd.
  • U-24M U-52M (manufactured by CVC Thermoset Specialties)
  • UDH-J manufactured by Ajinomoto Fine-Techno Co., Ltd.
  • CDH MDH
  • SUDH ADH
  • SDH manufactured by Nippon Finechem Co., Ltd.
  • DDH-S, IDH-S manufactured by Otsuka Chemical Co., Ltd.
  • Kaorizer registered trademark
  • the amount of the curing accelerator is 0.1 to 5 parts by mass when the total of the component [A] and the component [B] is 100 parts by mass. preferable from this point of view. More preferably, it is 1 to 3 parts by mass.
  • Component [F] The epoxy resin composition in the present invention can contain inorganic particles (component [F]).
  • inorganic particles include inorganic particles exhibiting thixotropic properties when blended (in this specification, may be referred to as "thixotropic agents"), pigments, and the like.
  • thixotropic agents examples include silicon dioxide, synthetic hectorite, clay minerals, modified bentonite, and mixed systems of minerals and organically modified bentonite.
  • thixotropic agent examples include fumed silica (“Aerosil (registered trademark)” 50, 90G, 130, 150, 200, 300, 380, RY200S, “Aeroxide (registered trademark)” AluC, Alu65, Alu130, TiO2T805 (manufactured by Nippon Aerosil Co., Ltd.), “OPTIGEL (registered trademark)” WX, “OPTIBENT (registered trademark)” 616, “GARAMITE (registered trademark)” 1958, 7305, “LAPONITE (registered trademark)” Trademarks) “S-482,” “TIXOGEL (registered trademark)” MP, VP, “CRAYTONE (registered trademark)” 40, “CLOISITE (registered trademark)” 20A (manufactured by BYK Corporation), “Somasif (registered trademark)” Examples include ME-100 and Micromica MK (manufact
  • the amount of the thixotropic agent compounded is 1 to 10 parts by mass when the total of the component [A] and the component [B] is 100 parts by mass. This is preferable from the viewpoint of suppression. More preferably, it is 3 to 8 parts by mass.
  • pigments are barium sulfate, zinc sulfide, titanium oxide, aluminum oxide, molybdenum red, cadmium red, chromium oxide, titanium yellow, cobalt green, cobalt blue, ultramarine blue, barium titanate, carbon black, iron oxide, red phosphorus, Copper chromate etc. can be mentioned.
  • pigments examples include B-30, BARIFINE BF (manufactured by Sakai Chemical Industry Co., Ltd.), "Ti-Pure (registered trademark)” TS-6200, R-902+, R- 960, R-706 (manufactured by Chemours Co., Ltd.), and "Aeroxide (registered trademark)” (manufactured by Nippon Aerosil Co., Ltd.).
  • Component [G] is a mixture of epoxy resins containing at least one non-aromatic epoxy resin and having a number average molecular weight of 550 to 800 g/mol as a mixture thereof.
  • the combination of epoxy resins is not particularly limited as long as the component [G] has a number average molecular weight in the range of 550 to 800 g/mol and contains at least one non-aromatic epoxy resin.
  • a non-aromatic thermoplastic resin (constituent element [D']) having a number average molecular weight of 16000 to 28000 g / mol is used in combination, and a composition having the following properties 1 and 2 is obtained. It has excellent handleability and can suppress resin flow during curing and molding.
  • the number average molecular weight of the component [G] is preferably 550 to 700 g/mol from the viewpoint of ease of film formation and tackiness of a prepreg produced by impregnating a fiber base material with a resin film. . More preferably, it is 600 to 700 g/mol.
  • non-aromatic epoxy resins can be used in the component [G].
  • Component [G] preferably contains 90 to 100 parts by mass of a non-aromatic epoxy resin when the mass of all epoxy resins is 100 parts by mass. By doing so, high light resistance can be obtained. can be done. In addition, when only an epoxy resin having an alicyclic epoxy structure or a cycloalkane structure such as a cyclohexane ring in the molecule is used as the epoxy resin, an epoxy resin cured product having a high glass transition temperature while having light resistance is obtained. Obtainable.
  • the epoxy resin composition of the present invention when the component [G] is used contains the above-described component [C] and component [D'], and also has the following properties 1 and 2. are doing.
  • an epoxy resin that satisfies the following properties it is possible to achieve excellent handleability at room temperature and to suppress resin flow during curing and molding.
  • Characteristic 1 After degassing in a vacuum, the bending breaking strain required for a resin cured plate with a thickness of 2 mm obtained by heating at a heating rate of 2 ° C./min and curing by holding at 180 ° C. for 120 minutes is 4.5% or more.
  • R 1 is a divalent non-aromatic organic group
  • R 2 and R 3 have at least one epoxy group and at least one hydroxyl group substituted for the hydrogen atom of the non-aromatic hydrocarbon group
  • n in formula (I ) is an integer of 1 to 5, preferably an integer of 1 or 2 ; be.
  • Examples of rubber include natural rubber, diene rubber, and non-diene rubber.
  • Examples of diene rubber include styrene-butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, and the like.
  • Examples of non-diene rubber include butyl rubber, ethylene/propylene rubber, ethylene/propylene/diene rubber, urethane rubber, silicone rubber, and fluororubber. As the content in the epoxy resin composition of the present invention, non-diene rubbers are preferred.
  • the blending amount of these additives is an amount within a range that does not impair the original properties of the epoxy resin composition of the present invention, that is, 50 parts by mass when the total of component [A] and component [B] is 100 parts by mass. parts or less, or 50 parts by mass or less per 100 parts by mass of the component [G].
  • prepreg The epoxy resin composition in the present invention can be used as a prepreg by impregnating a fiber base material.
  • the epoxy resin composition of the present invention and the prepreg comprising the resin composition preferably have a curing exothermic peak temperature of 100 to 250° C. as measured by differential scanning calorimetry (DSC). From the viewpoint of surface smoothness obtained by low-temperature curing of the prepreg, it is more preferably 100 to 150°C.
  • the viscosity of the epoxy resin composition of the present invention is 40,000 Pa s at 30°C from the viewpoints of ease of film formation, tackiness of a prepreg produced by impregnating a fiber base material with a resin film, and resin flow during curing and molding. It is preferably 200,000 Pa ⁇ s or more, 300 Pa ⁇ s or less at 80°C, and 100 Pa ⁇ s or more and 300 Pa ⁇ s or less at 100°C.
  • the epoxy resin composition has a viscosity of 40000 Pa ⁇ s or more at 30° C.
  • the prepreg obtained by impregnating a fiber base material with a resin film formed from the resin composition is preferable because the tackiness of the prepreg is not excessive.
  • a prepreg obtained by impregnating a fiber base material with a resin film formed from the resin composition has good adhesion, which is preferable.
  • the viscosity of the epoxy resin composition is 300 Pa s or less at 80°C, it is easy to form a resin film by a hot melt method, and when it is 100 Pa s or more at 100°C, the resin composition was made into a film. It is preferable because the resin film and the prepreg obtained by impregnating the resin film into the fiber base material can appropriately suppress the resin flow.
  • the epoxy resin composition of the present invention causes discoloration after irradiating the cured product with ultraviolet rays having a wavelength of 300 to 400 nm at 1000 kJ/m 2 , which is known as a rough estimate of the UV dose for one month in Japan (summer). Invisibility is preferable from the viewpoint of light resistance.
  • "no discoloration is observed” means that the formula difference ⁇ E * ab before and after UV irradiation is 4 or less. 2 Colorimetric values of the cured epoxy resin composition before and after irradiation can be obtained by measuring with a multi-light source spectrophotometer.
  • the epoxy resin composition of the present invention preferably has a bending strain at break of 4.5% or more according to the measurement test described later. Although there is no particular upper limit for the bending strain at break, 7% is sufficient.
  • the flexural breaking strain is obtained by defoaming the epoxy resin composition in a vacuum, heating it at a temperature rising rate of 2° C./min, and holding it at 180° C. for 120 minutes for curing.
  • JIS-K7171 (1994) the plate is subjected to three-point bending with a span of 32 mm.
  • the device was stopped when the bending deflection exceeded 12 mm, and the value was defined as the breaking strain.
  • Detailed measurement procedures are as described in the Examples section.
  • Aromatic epoxy resin/Bisphenol A type epoxy resin (“jER (registered trademark)” 828 (hereinafter “jER828”), manufactured by Mitsubishi Chemical Corporation) Epoxy equivalent: 175 (g / eq.) (liquid )
  • Non-aromatic epoxy resin/hydrogenated bisphenol type epoxy resin (EPALLOY5000, manufactured by HUNTSMAN) epoxy equivalent: 220 (g/eq.) (liquid) 1,2-bis(hydroxymethyl)-1-butanol 1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct (EHPE3150, manufactured by Daicel Chemical Industries, Ltd.) epoxy equivalent: 170-190 (g) /eq.) (solid)
  • Non-aromatic amine 4,4′-methylenebis(cyclohexylamine) (mixture of isomers) (“VESTAMIN (registered trademark)” PACM (hereinafter “PACM”), manufactured by Evonik Japan
  • ⁇ Preparation of masterbatch of inorganic particles > 30 parts by mass of EPALLOY5000, 6.1 parts by mass of RY200S, and 30 parts by mass of R960 were weighed, charged into a three-roll mill, and thoroughly mixed to obtain a uniform masterbatch (masterbatch 1). .
  • Step 2 ⁇ Preparation of Masterbatch of Curing Agent (Step 2)> 3.6 parts by mass of EPALLOY 5000, 3.6 parts by mass of DICY7T, and 2 parts by mass of Omicure 24 were weighed, charged into a three-roll mill, and thoroughly mixed to obtain a uniform masterbatch (masterbatch 2). Obtained.
  • ⁇ Preparation of mixture of component [A] and component [B] (step 3)> 59.7 parts by mass of EPALLOY 5000 and 6.7 parts by mass of PACM are added to the masterbatch 1 obtained above, and a preliminary reaction is performed by heating and mixing at 100 to 150 ° C., and the constituent elements A mixture of [A] and component [B] (mixture 1) was obtained.
  • ⁇ Preparation of epoxy resin composition (step 4)> 15 parts by mass of BX-L was added to 132.5 parts by mass of the mixture 1 obtained above, and the mixture was heated and mixed at 100 to 150°C to obtain a uniform masterbatch (masterbatch 3).
  • This masterbatch 3 was cooled to 80°C or lower, and then the masterbatch 2 obtained above was added at 80°C or lower and mixed until uniform to obtain an epoxy resin composition.
  • the column “Composition before heating” in Table 1 shows the amounts of the epoxy resin component and the amine component used as raw materials
  • the column “Composition after heating” in Table 1 shows the amount of epoxy resin in the final composition.
  • the amounts of resin and amine components and their pre-reactants are indicated.
  • “epoxy/amine pre-reactant” indicates a reactant that does not correspond to formula (I).
  • the “composition” column in Table 2 shows the composition ratio of each component in the final resin composition and the active hydrogen equivalent/epoxy equivalent of the resin composition. To avoid misunderstanding, in the example described below, the mixture of the component [A] and the component [B] may not be obtained in step 3.
  • Example 2 to 12, Comparative Example 3 The amount of EPALLOY 5000 and PACM added in step 3 was changed, and the type and amount of non-aromatic thermoplastic resin added in step 4 was changed, as shown in Tables 1 and 2. A resin composition was obtained in the same manner. However, in Example 9, 15 parts by mass of EPALLOY 5000 was used in step 1, 5.8 parts by mass of EPALLOY 5000 was used in step 2, and 2.2 parts by mass of EPALLOY 5000 was used in step 3. , to obtain a resin composition.
  • Example 4 A resin composition was obtained in the same manner as in Example 1, except that the amounts of EPALLOY 5000 and PACM added in step 3 were changed, and EHPE 3150 was further added in step 4 as shown in Tables 1 and 2. .
  • Example 1 A resin was prepared in the same manner as in Example 1 except that step 3 was not performed and EPALLOY 5000, which was planned to be added in step 3, was added in step 1, and the composition ratio of the final composition was as shown in Table 2. A composition was obtained.
  • ⁇ Temperature-rising viscosity measurement> For the epoxy resin composition obtained in the above ⁇ Preparation of epoxy resin composition>, a dynamic viscoelasticity device ARES-2KFRTN1-FCO-STD (manufactured by TA Instruments) was used to measure the diameter of the upper and lower measurement jigs. Using a 25 mm flat parallel plate, set the epoxy resin composition so that the distance between the upper and lower jigs is 1 mm. /min to measure the viscosity (Table 2, Table 3).
  • the viscosity of the resin composition in which the number average molecular weight of the mixture of the component [A] and the component [B] is less than 450 g/mol or more than 800 g/mol is 30°C, 80°C or 100°C. did not satisfy the above viscosity range (Examples 8 and 9, Comparative Example 1).
  • the number average molecular weight of the component [G] is 550 to 800 g / mol
  • the number average molecular weight of the component [D] (component [D']) is in the range of 16000 to 28000 g / mol.
  • the viscosity of the resulting resin composition was 40000 Pa ⁇ s or more and 200000 Pa ⁇ s or less at 30°C, 300 Pa ⁇ s or less at 80°C, and 100 Pa ⁇ s or more and 300 Pa ⁇ s or less at 100°C.
  • a resin flow rate of 5% or less, B of over 5% and 10% or less, and C of over 10% (Table 2).
  • Resin compositions with viscosities at 100° C. of less than 100 Pa ⁇ s were rated as other than A (Examples 8 and 12 and Comparative Examples 1 and 10).
  • ⁇ Preparation of resin film> The epoxy resin compositions of Examples 1 to 14 and Comparative Examples 1, 2, 5, 7, 8, and 10 to 14 obtained in ⁇ Preparation of Epoxy Resin Composition> were heated to 60 to 100°C. Then, it was coated on a release paper with a film coater so as to have a weight per unit area of 80 to 120 g/m 2 to prepare a resin film.
  • the prepreg obtained in the above ⁇ Preparation of prepreg> is cut into 10 cm squares, attached to an aluminum plate of any size (larger than 10 cm square), and Daifree GA-3000 (manufactured by Daikin Industries, Ltd.) is applied thereon.
  • a 10 cm square stainless steel plate (400 g) that had been subjected to release treatment by spraying was placed thereon and held for 30 seconds. After that, lift the stainless steel plate, and with the prepreg attached to the aluminum plate, lean the aluminum plate so that it is at an angle of 90 degrees with the ground as the axis. It was evaluated as "good", and when even a part was peeled off, it was evaluated as "bad” (Tables 2 and 3).
  • the device when the resin plate did not break in the resin bending test, the device was stopped when the bending deflection exceeded 12 mm, and the strain value at that time was defined as the breaking strain. In Examples 1 to 12, the bending strain at break was 4.5% or more. On the other hand, the bending breaking strain of the cured resins of Comparative Examples 1 and 2 to which the constituent element [B] was not added was less than 4.5%, which was unattainable. In addition, the greater the amount of component [B] added, the lower the elastic modulus and the greater the bending breaking strain. It was shown that the bending breaking strain tended to decrease. In addition, a tendency was shown that the smaller the amount of the component [D] added, the smaller the bending strain at break.
  • the elastic modulus of the cured resin of Comparative Example 10 in which the component [D] (component [D']) had a number average molecular weight of less than 16000 g/mol, showed the lowest value among the Examples and Comparative Examples. .
  • ⁇ Evaluation of light resistance of cured resin> The epoxy resin cured product having a thickness of 2 mm obtained in the above ⁇ Preparation of cured resin plate> was cut into a width of 10 ⁇ 0.1 mm and a length of 60 ⁇ 1 mm to obtain a test piece. With the surface of the obtained test piece half covered with aluminum foil, a metering weather meter (M6T, manufactured by Suga Test Instruments Co., Ltd.) was used to set the irradiation wavelength to 300 to 400 nm and the illuminance to 1.55 kW/m 2 . On top of that, it is assumed that the cured product of the epoxy resin composition of the present invention will be exposed to sunlight outdoors on a yearly basis.
  • M6T manufactured by Suga Test Instruments Co., Ltd.
  • the epoxy resin composition was set in a multi-light source spectrophotometer, and the reflectance was measured in the wavelength range of 380 to 780 nm under the conditions of reflection mode, C light source, 2° field of view, and 8° incidence. Furthermore, using a program attached to the apparatus, colorimetric values (L * 1 , a * 1 , b * 1 ) before UV irradiation in the L * a * b * color system were obtained. Next, similarly, colorimetric values (L * 2 , a * 2 , b * 2 ) after UV irradiation were determined.
  • ⁇ E * ab [(L * 1 - L * 2 ) 2 + (a * 1 - a * 2 ) 2 + (b * 1 -b * 2 ) 2 ] 1/2 .
  • Comparative Example 14 containing 40 parts by mass of the aromatic epoxy resin had poor light resistance, and when the aromatic epoxy resin was contained, the light resistance tended to be inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、耐光性に優れた樹脂組成物であり、耐光性および室温における取り扱い性に優れ、硬化成形時の樹脂フローが少ないプリプレグを提供することを課題とするものであり、上記課題を解決するために、本発明は、次の構成を有する樹脂組成物を提供する。 構成要素[A]、[B]、[C]、[D]を含み、構成要素[B]の総質量のうち、nが1である式(I)の非芳香族エポキシ樹脂が95質量%以上である、エポキシ樹脂組成物。 [A]構成要素[B]以外の非芳香族エポキシ樹脂 [B]式(I)で表される非芳香族エポキシ樹脂 ここで、R1は二価の、非芳香族炭化水素および非芳香族炭化水素基がエーテル基若しくはアミノ基(-NR-。Rは非芳香族炭化水素基)を介して連結された基の何れかの基(「非芳香族有機基」)であり、R2およびR3は少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基であり、R4およびR5は少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基、含窒素複素環の一部をなす非芳香族炭化水素基、あるいは水素原子である。式(I)中のnは1~5の整数であり、R1、R2、R3、R4およびR5は水素原子、直鎖、分岐または環状構造である。 [C]硬化剤 [D]非芳香族熱可塑性樹脂

Description

エポキシ樹脂組成物およびプリプレグ
 本発明は、耐光性に優れたエポキシ樹脂組成物、および耐光性に優れたエポキシ樹脂組成物を用いた取り扱い性の良いプリプレグに関する。
 航空機構造部材、風車の羽根、自動車外板およびICトレイやノートパソコンの筐体などのコンピュータ用途等の高い構造性能を求められる製品には、繊維基材にエポキシ樹脂などの熱硬化性樹脂を含浸させて作製されるプリプレグが用いられることが多い。しかし、一般的なプリプレグを硬化して得られる繊維複合材料は耐光性が低く、表面が光にさらされると劣化変性する。そのため近年、繊維複合材料の表面に耐光性を付与したいとの要望が増えている。特許文献1では耐光性を有する樹脂組成物として、芳香環を含まないエポキシ樹脂を提案している。
特開2003-26763号公報
 しかし、特許文献1に記載された非芳香族エポキシ樹脂は、一般に分子間の相互作用が弱いために粘度が低いことから、非芳香族エポキシ樹脂からなる樹脂フィルム、その樹脂フィルムを繊維基材に含浸したプリプレグは、室温における取り扱い性が悪く、硬化成形時に樹脂フローが発生しやすいという課題を有している。
 そこで、本発明では、耐光性に優れ、なおかつプリプレグとして用いたときの室温における取り扱い性に優れた樹脂組成物を提供することを課題とし、また、耐光性に優れ、好ましい態様において、室温における取り扱い性に一段と優れ、硬化成形時の樹脂フローが少ないプリプレグを提供することを課題とする。
 上記課題を解決するために、本発明は、次の構成を有する樹脂組成物を提供する。
 構成要素[A]、[B]、[C]、[D]を含み、構成要素[B]の総質量のうち、nが1である式(I)の非芳香族エポキシ樹脂が95質量%以上である、エポキシ樹脂組成物。
[A]構成要素[B]以外の非芳香族エポキシ樹脂
[B]式(I)で表される非芳香族エポキシ樹脂
Figure JPOXMLDOC01-appb-C000003
 ここで、Rは二価の、非芳香族炭化水素基および非芳香族炭化水素基がエーテル基若しくはアミノ基(-NR-。Rは非芳香族炭化水素基)を介して連結された基の何れかの基(以下、「非芳香族炭化水素基および非芳香族炭化水素基がエーテル基若しくはアミノ基(-NR-。Rは非芳香族炭化水素基)を介して連結された基」を総称して「非芳香族有機基」という)であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基、含窒素複素環の一部をなす非芳香族炭化水素基、あるいは水素原子である。式(I)中のnは1~5の整数であり、R、R、R、RおよびRは水素原子、直鎖、分岐または環状構造である。
[C]硬化剤
[D]非芳香族熱可塑性樹脂
 また、上記課題を解決するための本発明の別の態様は、次の構成を有する樹脂組成物である。
 構成要素[G]、[C]、[D’]を含み、下記特性1および特性2を備えるエポキシ樹脂組成物。
[G]少なくとも1種の非芳香族エポキシ樹脂を含み、その混合物としての数平均分子量が550~800g/molであるエポキシ樹脂の混合物
[C]硬化剤
[D’]数平均分子量が16000~28000g/molの非芳香族熱可塑性樹脂
特性1:真空中で脱泡した後、昇温速度2℃/分で昇温し、180℃で120分保持して硬化させて得た厚さ2mmの樹脂硬化板について求められる曲げ破断歪が4.5%以上。
特性2:エポキシ樹脂組成物中に式(I)で表される非芳香族エポキシ樹脂を含まない。
Figure JPOXMLDOC01-appb-C000004
ここで、Rは二価の非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基、含窒素複素環の一部をなす非芳香族炭化水素基、あるいは水素原子である。式(I)中のnは1~5の整数であり、R、R、R、RおよびRは水素原子、直鎖、分岐または環状構造である。
 本発明により、耐光性に優れ、プリプレグとして用いたときの室温での取り扱い性が優れるエポキシ樹脂組成物を提供することができる。本発明のエポキシ樹脂組成物をフィルム化した樹脂フィルムおよび樹脂フィルムを繊維基材に含浸してなるプリプレグは、耐光性に優れ、好ましい態様において、室温における取り扱い性に優れ、硬化成形時の樹脂フローが少ない効果を示す。
 本発明の樹脂組成物における各構成要素について詳細を述べる。なお、本発明において、「芳香族」とは、芳香族炭化水素基や共役不飽和複素環を化学構造中に含むものであり、すなわち、ヒュッケル則を充たす共役不飽和環構造を持つことをいい、それ以外が「非芳香族」である。また、ある物性・特性について、必須の範囲、好ましい範囲等が複数の数値範囲で示される場合に、同複数の範囲におけるいずれかの上限値と、いずれかの下限値を組み合わせたものも好ましい範囲とする(例えば、下記する非芳香族エポキシ樹脂あるいはその混合物の数平均分子量の好ましい範囲として、600~800g/molがありえる)。
 本発明のエポキシ樹脂組成物は、エポキシ樹脂として、非芳香族エポキシ樹脂を用いたエポキシ樹脂組成物であり、全エポキシ樹脂を100質量%としたとき、非芳香族エポキシ樹脂が90%以上を占めることが好ましく、95%以上を占めることがより好ましく、100%を占めるものであっても良い。
 「構成要素[A]」
 構成要素[A]は、後述する構成要素[B]には該当しない非芳香族エポキシ樹脂であり、そのようなエポキシ樹脂を複数種用いた混合物であることもできる。構成要素[A]に該当するエポキシ樹脂としては、例えば、テトラヒドロインデンジエポキシド、ビニルシクロヘキセンオキシド、ジペンテンジオキシド、ジシクロペンタジエンジオキシド、ビス(2,3-エポキシシクロペンチル)エーテル、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、ビ-7-オキサビシクロ[4.1.0]ヘプタン、ドデカヒドロビスフェノールAジグリシジルエーテル、ドデカヒドロビスフェノールFジグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパンノジグリシジルエーテルなどの脂環式エポキシ樹脂(シクロアルカン環を含むエポキシ樹脂)が挙げられる。また、芳香環、アミン性窒素原子、シクロアルカン環およびシクロアルケン環のいずれも含まないエポキシ樹脂の具体例として、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、1,4-ビス(2-オキシラニル)ブタン、ペンタエリスリトールポリグリシジルエーテルが挙げられる。芳香環、アミン性窒素原子のいずれも含まない単官能エポキシ化合物(1個のオキシラン環のみを含むエポキシ化合物)の具体例として、4-tert-ブチルグリシジルエーテル、ブチルグリシジルエーテル、1-ブテンオキシド、1,2-エポキシ-4-ビニルシクロヘキサン、2-エチルヘキシルグリシジルエーテルなどが挙げられる。
 上記非芳香族エポキシ樹脂あるいはその混合物の組み合わせは、本発明で特に限定されない。なお、耐熱性の観点から、構成要素[A]の非芳香族エポキシ樹脂としては、脂環式のエポキシ樹脂、もしくはシクロヘキサン環などのシクロアルカン構造を分子内に有するエポキシ樹脂が好ましく用いられる。
 上記非芳香族エポキシ樹脂は市販品を用いることができる。例えば、EHPE3150((株)ダイセル化学工業製)、THI-DE(JXTGエネルギー(株)製)、TTA22(サンケミカル(株)製)、Ex-121、Ex-211、Ex-212、Ex-313、Ex-321、Ex-411(ナガセケムテック(株)製)、“エポライト(登録商標)”4000(共栄社化学(株)製)、ST-3000、ST-4000(日鉄ケミカル&マテリアル(株)製)、YX8000(三菱ケミカル(株)製)、EPALOY5000(HUNTSMAN製)などが挙げられる。
 「構成要素[B]」
Figure JPOXMLDOC01-appb-C000005
 構成要素[B]は、式(I)で表される構造を有し、分子構造中に少なくとも2個の水酸基、および、少なくとも2個のエポキシ基を含み、また、二級アミノ基または三級アミノ基を分子構造中に有する非芳香族エポキシ樹脂である。式(I)中のRは二価の非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された一価の非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された一価の非芳香族有機基、含窒素複素環の一部をなす非芳香族炭化水素基、あるいは水素原子である。式(I)中のnは1~5の整数、好ましく1または2の整数、であり、構成要素[B]の総質量のうちnが1である式(I)の非芳香族エポキシ樹脂が95質量%以上である。R、R、R、RおよびRは水素原子、直鎖、分岐または環状構造であって良い。R、R、RおよびRのエポキシ基はグリシジル基または脂環式エポキシ基であることが好ましい。「非芳香族有機基」は非芳香族炭化水素基であることが好ましい。なお、非芳香族炭化水素基がエーテル基若しくはアミノ基(-NR-。Rは非芳香族炭化水素基)を介して連結される場合の連結される非芳香族炭化水素基の数は3個以上であっても構わない。また、アミノ基に置換するRは環状構造の一部をなしていても構わない。
 構成要素[B]は、例えば、非芳香族エポキシ化合物(樹脂である場合を含む。以下同じ)と非芳香族アミンとを反応させることによって得ることができる。かかる非芳香族エポキシ化合物は、エポキシ基を複数個有し、例えば、上に説明した構成要素[A]に例示した樹脂を用いることができる。非芳香族アミンの具体例として、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-アミノエチルピベラジン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、イソフホロンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、1,3-ビス(アミノメチル)シクロヘキサン、メトキシポリ(オキシエチレン/オキシプロピレン)-2-プロピルアミン、ポリオキシプロピレンジアミン、ポリエーテルアミン、トリエチレングリコールジアミン、トリメチロールプロパンポリ(オキシプロピレン)トリアミン、グリセリルポリ(オキシプロピレン)トリアミンなどを挙げることができ、非芳香族エポキシ化合物と反応して上記構造をとるものが選定される。
 構成要素[B]を得るための反応に用いる非芳香族エポキシ化合物および非芳香族アミンの組み合わせは、式(I)で表される構造のエポキシ樹脂を与える組み合わせであれば、本発明で特に限定されない。なお、式(I)の構造を生成するにあたって、非芳香族エポキシ化合物および非芳香族アミンの反応のモル比は、非芳香族エポキシ化合物1.0に対して非芳香族アミンが0.1~0.5であることが好ましい。この範囲内であれば、構成要素[B]は、構造中に少なくとも2個のエポキシ基を含むため、熱硬化性樹脂として働くことができる。
 また、硬化反応時にゲル化することなく反応を完結させることが可能となる。上記反応は加熱による反応が好ましく、反応に触媒を用いても良い。上記反応は非芳香族エポキシ化合物と非芳香族アミンを80~180℃で1~12時間攪拌することが好ましく、より好ましくは80~150℃、1~5時間である。上記反応は、硬化剤の存在しない系にて、予備反応として行う方法が好ましく用いられ、構成要素[A]と構成要素[B]を含む反応生成物に、硬化剤等を加えて、エポキシ樹脂組成物を得ることが可能である。耐熱性の観点から、非芳香族エポキシ化合物および非芳香族アミンは、脂環式、またはシクロヘキサン環などのシクロアルカン構造を分子内に有するものが好ましく用いられる。
 上記非芳香族エポキシ化合物および非芳香族アミンは市販品を用いることができる。非芳香族エポキシ化合物として、構成要素[A]で用いる非芳香族エポキシ樹脂と同一の樹脂を用いることは、一つの好ましい態様である。非芳香族アミンは、例えばEDA(エチレンジアミン)、DETA(ジエチレントリアミン)、TETA(トリエチレンテトラミン)、TEPA(テトラエチレンペンタミン)、PEHA(ペンタエチレンヘキサミン)、AEP(アミノエチルピペラジン)(東ソー(株))、ラミロンC-260、IPDA(イソホロンジアミン)(BASF社製)、ワンダミンHM(新日本理化(株)製)、“VESTAMIN(登録商標)”PACM(エボニック・ジャパン(株)製)、1,3-BAC(三菱ガス化学(株)製)、“JEFFAMINE(登録商標)”(HUNTSMAN製)などが挙げられる。
 構成要素[A]および構成要素[B]は、構成要素[A]および構成要素[B]の混合物としたとき、その数平均分子量が450~800g/molの範囲であることが好ましい。なお、それらの組み合わせおよび組成比は本発明で特に限定されない。樹脂フィルム化の容易性および繊維基材に樹脂フィルムを含浸して作製するプリプレグのタック性の観点から、構成要素[A]および構成要素[B]の混合物の数平均分子量は550~700g/molであることが好ましい。さらに好ましくは、600~700g/molである。上記数平均分子量が800g/mol以下である場合、エポキシ樹脂組成物の粘度が高くなり過ぎず、ホットメルト法による樹脂フィルム化が容易となり好ましい。一方、この数平均分子量が450g/mol以上である場合、エポキシ樹脂組成物の粘度が低くなり過ぎず、その樹脂組成物をフィルム化した樹脂フィルムを繊維基材に含浸して成るプリプレグのタックが過剰となり過ぎず好ましい。ここでの数平均分子量とは、ゲル浸透クロマグラフィーによるポリスチレン換算の数平均分子量を意味する。
 「構成要素[C]」
 本発明のエポキシ樹脂組成物は、硬化剤(構成要素[C])を含有する。硬化剤の種類は、特に限定されず、アミン系硬化剤、イミダゾール類、カチオン硬化剤、酸無水物、塩化ホウ素アミン錯体等が挙げられる。耐光性の観点から非芳香族硬化剤を用いることが好ましい。非芳香族硬化剤とは、芳香族炭化水素基や不飽和複素環を化学構造中に含まない硬化剤のことを指す。中でもジシアンジアミドを用いることで、硬化前のエポキシ樹脂組成物の湿気による性能変化がなく、長期安定性をもちながら比較的低温で硬化を完了することができるため好ましい。
 上記硬化剤は市販品を用いることができる。例えば、ジシアンジアミドにおいては“jERキュア(登録商標)”DICY7、DICY15(三菱ケミカル(株)製)、イミダゾール類においてはキュアゾール1.2DMZ、C11Z、C17Z(四国化成(株)製)、カチオン硬化開始剤においては“アデカオプトン(登録商標)”CP-77、“アデカオプトン(登録商標)”CP-66((株)ADEKA製)、CI-2639、CI-2624(日本曹達)、“サンエイド(登録商標)”SI-60、“サンエイド(登録商標)”SI-80、“サンエイド(登録商標)”SI-100、“サンエイド(登録商標)”SI-150、“サンエイド(登録商標)”SI-B4、“サンエイド(登録商標)”SI-B5(三新化学工業(株)製)、TA-100、IK-1PC(80)(サンアプロ株式会社)、酸無水物においてはリカシッド(新日本理化(株)製)、三フッ化ホウ素ピペリジン、塩化ホウ素アミン錯体においては三フッ化ホウ素モノエチルアミン(ステラケミファ(株)製)などが挙げられる。
 ジシアンジアミドの好ましい配合量は、エポキシ樹脂組成物に配合される全てのエポキシ樹脂に由来するエポキシ基のモル数に対し、ジシアンジアミドの活性水素のモル数が0.6~1.2倍となる配合量であることが、良好な機械物性を発現する硬化物が得られる点から好ましい。さらに0.7~1.0倍であると耐熱性に優れるのでさらに好ましい。
 「構成要素[D]」
 本発明のエポキシ樹脂組成物は、非芳香族熱可塑性樹脂(構成要素[D])を含有する。非芳香族熱可塑性樹脂とは、非芳香族の熱可塑性樹脂のことを指す。なお、「非芳香族」の説明は上にしたとおりである。非芳香族熱可塑性樹脂としては、例えば、ポリビニルアルコールおよびそのアセタール化合物を用いることができる。非芳香族の熱可塑性樹脂を例示すると、ポリビニルアルコール、ポリビニルアルコールのアセタール化合物としてポリビニルアセタール、ポリビニルホルマール、ポリビニルアセトアセタール、ポリビニルブチラール、それ以外ではポリ酢酸ビニル、水添ビスフェノールA・ペンタエリストールホスファイトポリマー、水添テルペン、水添テルペンフェノールなどを挙げることができる。
 上記の中で、特に、非芳香族エポキシ樹脂への溶解性が高いポリビニルアルコールおよびそのアセタール化合物であるポリビニルアセタール類(ポリビニルアセトアセタール、ポリビニルブチラール、ポリビニルホルマール)またはポリビニル酢酸ビニルは、エポキシ樹脂組成物の粘度調整が容易である点で好ましい。
 また、フィルム化の容易性および樹脂フィルムを繊維基材に含浸して作製したプリプレグのタック性の観点から、これらの非芳香族熱可塑性樹脂の数平均分子量は16000~28000g/molであることが好ましい。より好ましくは17000~27000g/mol、さらに好ましくは18000~27000g/molである。非芳香族熱可塑性樹脂の数平均分子量が28000g/molを超える場合、非芳香族熱可塑性樹脂の添加量当たりのエポキシ樹脂組成物の粘度上昇が大きくなることがあるため、樹脂フィルム化の容易性とタック調整の観点から添加量を少なくすることが要求されるが、熱可塑性樹脂の添加量が低下するほど樹脂硬化物の曲げ破断歪の低下がみられることがある。一方、非芳香族熱可塑性樹脂の数平均分子量が16000g/molに満たない場合、非芳香族熱可塑性樹脂の添加量当たりのエポキシ樹脂組成物の粘度上昇が小さくなることがあるため、フィルムのタックが過剰となり、また樹脂硬化物の弾性率の低下がみられることがある。非芳香族熱可塑性樹脂の数平均分子量が16000~28000g/molである場合、樹脂組成物のフィルム化の容易性および適切なタック、樹脂硬化物の破断歪および弾性率の適切なバランスが提供される。ここでの数平均分子量とは、ゲル浸透クロマグラフィーによるポリスチレン換算の数平均分子量を意味する。
 上記非芳香族熱可塑性樹脂は市販品を用いることができる。例えば、“J-POVAL(登録商標)”(日本酢ビ・ポバール(株)製)、“エスレック(登録商標)”(積水化学工業(株)製)、“ウルトラセン(登録商標)”(東ソー(株)製)“JPH-3800”(城北化学工業(株)製)、“YSポリスターUH130”(ヤスハラケミカル(株)製)などが挙げられる。
 上記非芳香族熱可塑性樹脂の含有量は、構成要素[A]および構成要素[B]を合わせて100質量部とした場合、1~20質量部であることが、フィルム化の容易性および樹脂フィルムを繊維基材に含浸し作製したプリプレグのタック性の観点から好ましい。より好ましくは、5~15質量部である。
 「構成要素[E]」
 本発明におけるエポキシ樹脂組成物は、硬化促進剤(構成要素[E])を含むことができる。硬化促進剤の例としては、尿素系硬化促進剤、ヒドラジド系硬化促進剤、三級アミン類、イミダゾール類、フェノール類などを挙げることができる。特に構成要素[C]がジシアンジアミドである場合、尿素系硬化促進剤が硬化促進および室温における保存安定性の観点から好ましい。
 上記硬化促進剤は市販品を用いることができる。例えば、DCMU99(保土谷化学(株)製)“Omicure(登録商標)”U-24M、U-52M(CVC Thermoset Specialties製)、UDH-J(味の素ファインテクノ(株)製)、CDH、MDH、SUDH、ADH、SDH((株)日本ファインケム製)、“DDH-S、IDH-S”(大塚化学(株)製)、“カオーライザー(登録商標)”No.20(花王(株)製)などが挙げられる。
 硬化促進剤の配合量は、構成要素[A]および構成要素[B]を合わせて100質量部とした場合、0.1~5質量部であることが、硬化促進および室温における保存安定性の観点から好ましい。より好ましくは、1~3質量部である。
 「構成要素[F]」
 本発明におけるエポキシ樹脂組成物は、無機粒子(構成要素[F])を含むことができる。無機粒子の例としては、配合したときにチキソトロープ性を発現する無機粒子(本明細書において、「チキソトロープ剤」ということがある)、顔料などを挙げることができる。
 チキソトロープ剤の例としては、二酸化ケイ素、合成ヘクトライト、粘度鉱物、変性ベントナイト、鉱物および有機変性ベントナイトの混合系などを挙げることができる。
 上記チキソトロープ剤は市販品を用いることができ、例としては、ヒュームドシリカ(“アエロジル(登録商標)”50、90G、130、150、200、300、380、RY200S、“アエロキサイド(登録商標)”AluC、Alu65、Alu130、TiO2T805(日本アエロジル(株)製))、“OPTIGEL(登録商標)”WX、“OPTIBENT(登録商標)”616、“GARAMITE(登録商標)”1958、7305、“LAPONITE(登録商標)”S-482、“TIXOGEL(登録商標)”MP、VP、“CRAYTONE(登録商標)”40、“CLOISITE(登録商標)”20A(BYK(株)製)、“ソマシフ(登録商標)”ME-100、ミクロマイカMK(片倉コープアグリ(株)製)などが挙げられる。
 チキソトロープ剤の配合量は、構成要素[A]および構成要素[B]を合わせて100質量部とした場合、1~10質量部であることが、フィルム化の容易性および硬化成形時の樹脂フロー抑制の観点から好ましい。より好ましくは3~8質量部である。
 顔料の例は、硫酸バリウム、硫化亜鉛、酸化チタン、酸化アルミニウム、モリブデンレッド、カドミウムレッド、酸化クロム、チタンイエロー、コバルトグリーン、コバルトブルー、群青、チタン酸バリウム、カーボンブラック、酸化鉄、赤リン、クロム酸銅などを挙げることができる。
 上記顔料は市販品を用いることができ、例としては、B-30、BARIFINE BF(堺化学工業(株)製)、“Ti-Pure(登録商標)”TS-6200、R-902+、R-960、R-706(ケマーズ(株)製)、“アエロキサイド(登録商標)”(日本アエロジル(株)製)などが挙げられる。
 顔料の配合量は、構成要素[A]および構成要素[B]を合わせて100質量部とした場合、15~50質量部であることが、フィルム化の容易性および耐光性の観点から好ましい。より好ましくは20~40質量部である。
 「構成要素[G]」
 構成要素[G]は、少なくとも1種の非芳香族エポキシ樹脂を含み、その混合物としての数平均分子量が550~800g/molのエポキシ樹脂の混合物である。
 構成要素[G]は、数平均分子量が550~800g/molの範囲であり、少なくとも1種の非芳香族エポキシ樹脂を含むものであれば、エポキシ樹脂の組み合わせは特に限定されない。
 すなわち、数平均分子量が16000~28000g/molの非芳香族熱可塑性樹脂(構成要素[D’])を併用し、さらに下記する特性1および特性2を具備する組成物とすることで、室温における取り扱い性に優れ、また、硬化成形時の樹脂フローの抑制を実現することができる。また、構成要素[G]は、フィルム化の容易性および繊維基材に樹脂フィルムを含浸して作製するプリプレグのタック性の観点から、その数平均分子量は550~700g/molであることが好ましい。さらに好ましくは、600~700g/molである。上記数平均分子量が800g/molを超える場合、エポキシ樹脂組成物の粘度が高いため、ホットメルト法による樹脂フィルム化が困難になり、またその樹脂組成物をフィルム化した樹脂フィルムを繊維基材に含浸して成るプリプレグのタックが低下する。一方、構成要素[G]の数平均分子量が550g/molに満たない場合、エポキシ樹脂組成物の粘度が低いため、その樹脂組成物をフィルム化した樹脂フィルムを繊維基材に含浸して成るプリプレグのタックが過剰となってしまう。構成要素[G]の数平均分子量が550~800g/molである場合、樹脂フィルム化の容易性およびタックの良好なバランスが提供される。ここでの数平均分子量とは、ゲル浸透クロマグラフィーによるポリスチレン換算の数平均分子量を意味する。なお、耐熱性の観点から、非芳香族エポキシ樹脂は、脂環式のエポキシもしくはシクロヘキサン環などのシクロアルカン構造を分子内に有するものが好ましく用いられる。
 構成要素[G]において、非芳香族エポキシ樹脂は市販品を用いることができる。例えば、“セロキサイド(登録商標)”2021P、“セロキサイド(登録商標)”8010、“セロキサイド(登録商標)”2000、“エポリード(登録商標)”GT401、“セロキサイド(登録商標)”2081、EHPE3150((株)ダイセル化学工業製)、THI-DE(JXTGエネルギー(株)製)、TTA21、AAT15,TTA22(サンケミカル(株)製)、Ex-121、Ex-211、Ex-212、Ex-313、Ex-321、Ex-411(ナガセケムテック(株)製)、“エポライト(登録商標)”4000(共栄社化学(株)製)、ST-3000、ST-4000(日鉄ケミカル&マテリアル(株)製)、YX8000(三菱ケミカル(株)製)、EPALOY5000(HUNTSMAN製)などが挙げられる。
 構成要素[G]においては、非芳香族エポキシ樹脂を、全エポキシ樹脂の質量を100質量部としたとき、90~100質量部含むことが好ましく、そのようにすることで高い耐光性を得ることができる。また、エポキシ樹脂として脂環式エポキシ構造、または、シクロヘキサン環などのシクロアルカン構造を分子内に有するエポキシ樹脂のみを用いた場合、耐光性を有しつつ高いガラス転移温度を有するエポキシ樹脂硬化物を得ることができる。
 また、構成要素[G]が用いられた場合の本発明のエポキシ樹脂組成物は、上記の構成要素[C]、および、構成要素[D’]を含むほか、下記特性1および特性2を具備している。下記特性が充たされたエポキシ樹脂とすることで、室温における取り扱い性に優れ、また、硬化成形時の樹脂フローの抑制を実現することができる。
 特性1:真空中で脱泡した後、昇温速度2℃/分で昇温し、180℃で120分保持して硬化させて得た厚さ2mmの樹脂硬化板について求められる曲げ破断歪が4.5%以上。
 特性2:エポキシ樹脂組成物中に式(I)で表される非芳香族エポキシ樹脂を含まない。
Figure JPOXMLDOC01-appb-C000006
ここで、Rは二価の非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基、含窒素複素環の一部をなす非芳香族炭化水素基、あるいは水素原子である。式(I)中のnは1~5の整数、好ましく1または2の整数、であり、R、R、R、RおよびRは水素原子、直鎖、分岐または環状構造である。
 「その他添加剤」
 本発明のエポキシ樹脂組成物は必要に応じて、ゴム、難燃剤、光安定剤、酸化防止剤、脱泡剤などの添加剤を含むことができる。
 ゴムの例としては、天然ゴム、ジエン系ゴム、非ジエン系ゴムなどを挙げることができる。ジエン系ゴムの例としてはスチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリル・ブタジエンゴムなどが挙げられる。非ジエン系ゴムの例としてはブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴムなどが挙げられる。本発明におけるエポキシ樹脂組成物中の含有物としては非ジエン系ゴムが好ましくなかでも二重結合をポリマー主鎖にもたない、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、シリコーンゴム、フッ素ゴムは耐光性が高く、本発明におけるエポキシ樹脂組成物に対する耐光性への影響が少ないことから特に好ましい。また、ゴムの形状としては特にパウダー状であればエポキシ樹脂組成物中での分散生に優れるため好ましい。
 これら添加剤の配合量は、本発明のエポキシ樹脂組成物の本来の性質を損なわない範囲の量、すなわち構成要素[A]および構成要素[B]を合わせて100質量部とした場合、50質量部以下、あるいは、構成要素[G]の100質量部とした場合、50質量部以下であることが好ましい。
 「プリプレグ」
 本発明におけるエポキシ樹脂組成物は、繊維基材に含浸させ、プリプレグとして用いることができる。
 繊維基材の例としては、炭素繊維、黒鉛繊維、アラミド繊維、炭化珪素繊維、アルミナ繊維、ボロン繊維、高強度ポリエチレン繊維、タングステンカーバイド繊維、PBO繊維、ガラス繊維などが挙げられ、これらを単独で、または2種以上を組合せて用いてもかまわない。繊維は連続繊維で一方向に引き揃えられていてもよいし、織物や編物のように布帛基材としてもよい。不連続繊維が集積したマット、不織布でもかまわない。本発明のプリプレグは繊維目付けに特段の制限はない。
 「硬化特性」
 本発明のエポキシ樹脂組成物およびその樹脂組成物からなるプリプレグは、保存安定性の観点から、示唆走査熱量(DSC)測定において測定される硬化発熱ピーク温度が100~250℃であることが好ましい。プリプレグの低温硬化によって得られる表面平滑性の観点から、100~150℃であることがより好ましい。
 「粘度」
 本発明のエポキシ樹脂組成物の粘度は、フィルム化の容易性、繊維基材に樹脂フィルムを含浸して作製するプリプレグのタック性および硬化成形時の樹脂フローの観点から、30℃において40000Pa・s以上200000Pa・s以下、80℃において300Pa・s以下、100℃において100Pa・s以上300Pa・s以下であることが好ましい。エポキシ樹脂組成物の粘度が30℃において40000Pa・s以上である場合、その樹脂組成物をフィルム化した樹脂フィルムを繊維基材に含浸して成るプリプレグのタックが過剰になり過ぎず好ましい。200000Pa・s以下である場合、その樹脂組成物をフィルム化した樹脂フィルムを繊維基材に含浸して成るプリプレグの貼り付きが良好となり好ましい。また、エポキシ樹脂組成物の粘度が80℃において300Pa・s以下である場合、ホットメルト法による樹脂フィルム化が容易となり、100℃において100Pa・s以上である場合、その樹脂組成物をフィルム化した樹脂フィルムおよびその樹脂フィルムを繊維基材に含浸して成るプリプレグの樹脂フローを適切に抑制できるため好ましい。エポキシ樹脂組成物の粘度が30℃において40000Pa・s以上200000Pa・s以下、80℃において300Pa・s以下、100℃において100Pa・s以上300Pa・s以下である場合、樹脂フィルム化の容易性、タック、樹脂フローの良好なバランスが提供される。ここでの粘度とは、20℃から150℃まで2℃/分で昇温しながら周波数0.5Hzで測定される粘度を意味する。
 「耐光性」
 本発明のエポキシ樹脂組成物は、その硬化物に波長300~400nmの紫外線を、日本(夏場)における1ヶ月間のUV量の概算値として知られている、1000kJ/m照射した後に変色が見られないことが、耐光性の観点から好ましい。「変色が見られない」とは、本発明では、UV照射前後での式差ΔE abが4以下であることを示し、式差ΔE abは、波長300~400nmの紫外線を1000kJ/m照射した前後でのエポキシ樹脂組成物の硬化物の測色値を、多光源分光測色計により測定することで求めることができる。
 「曲げ破断歪」
 本発明のエポキシ樹脂組成物は、後述する測定試験による曲げ破断歪が4.5%以上であることが好ましい。曲げ破断歪の上限は特にないが、7%もあれば十分である。
 曲げ破断歪は、エポキシ樹脂組成物を真空中で脱泡した後、昇温速度2℃/分で昇温し、180℃で120分保持して硬化させることにより得られる厚さ2mmの樹脂硬化板について、JIS-K7171(1994)に従い、スパン間32mmの三点曲げを実施し、測定される数値であり、測定数6の平均値を求める。なお、樹脂曲げ試験にて樹脂板が破断しない場合は、曲げたわみが12mmを超えた時点で装置を停止し、その値を破断歪とした。詳細な測定操作は実施例の項に記載するとおりである。
 以下、本発明を実施例により詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定されるものではない。また、各種特性の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。
 <実施例および比較例で用いた材料>
(1)芳香族エポキシ樹脂
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”828(以下、「jER828」)、三菱ケミカル(株)製)エポキシ当量:175(g/eq.)(液体状)
(2)非芳香族エポキシ樹脂
・水添ビスフェノール型エポキシ樹脂(EPALLOY5000、HUNTSMAN製)エポキシ当量:220(g/eq.)(液体状)
・2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(EHPE3150、(株)ダイセル化学工業製)エポキシ当量:170-190(g/eq.)(固体状)
(3)非芳香族アミン
・4,4’-メチレンビス(シクロヘキシルアミン)(異性体混合物)(“VESTAMIN(登録商標)”PACM(以下、「PACM」)、エボニック・ジャパン(株)製)
(4)硬化剤
・ジシアンジアミド(“jERキュア(登録商標)”DICY7T(以下、「DICY7T」、三菱ケミカル(株)製)
(5)非芳香族熱可塑性樹脂
・ポリビニルアセトアセタール(“エスレック(登録商標)”KS-10(以下、「KS-10」)、KS-1(以下、「KS-1」)、積水化学工業(株)製、数平均分子量17000g/mol、27000g/mol)
・ポリビニルブチラール(“エスレック(登録商標)”BX-L(以下、「BX-L」)、積水化学工業(株)製、数平均分子量18000g/mol)
・ポリビニルブチラール(“エスレック(登録商標)”BL-10(以下、「BL-10」)、BL-5Z(以下、「BL-5Z」)、BM-5(以下、「BM-5」)、積水化学工業(株)製、数平均分子量15000g/mol、32000g/mol、56000g/mol)
(6)硬化促進剤
・トルエンビス(ジメチルウレア)(“Omicure(登録商標)”24(以下、「Omicure24」)、CVC Thermoset Specialties製)
(7)無機粒子
・ヒュームドシリカ(“アエロジル(登録商標)”RY200S(以下、「RY200S」)、日本アエロジル(株)製)
・酸化チタン(“Ti-Pure(登録商標)”R-960(以下、「R-960」)、ケマーズ(株)製、平均粒径0.5μm)
(8)繊維基材
・ポリエステル繊維不織布(JH-30015、日本バイリーン(株)製、15g/m)。
 〔実施例1〕
 以下の手順でエポキシ樹脂組成物を調製し、これを用いて粘度、樹脂曲げ弾性率、樹脂曲げ破断歪みを測定し、プリプレグのタック等を評価した。
 <無機粒子のマスターバッチの調製(工程1)>
 EPALLOY5000を30質量部、RY200Sを6.1質量部、R960を30質量部となるよう秤量し、三本ロールミルに投入し、十分に混合して、均一なマスターバッチ(マスターバッチ1)を得た。
 <硬化剤のマスターバッチの調製(工程2)>
 EPALLOY5000を3.6質量部、DICY7Tを3.6質量部、Omicure24を2質量部となるよう秤量し、三本ロールミルに投入し、十分に混合して、均一なマスターバッチ(マスターバッチ2)を得た。
 <構成要素[A]および構成要素[B]の混合物の調製(工程3)>
 上で得られたマスターバッチ1に対して、EPALLOY5000を59.7質量部、PACMを6.7質量部、を添加し、100~150℃にて加熱混合することで予備反応を行い、構成要素[A]および構成要素[B]の混合物(混合物1)を得た。
 <エポキシ樹脂組成物の調製(工程4)>
 上で得られた混合物1の132.5質量部に対して、BX-L15質量部を加え、100~150℃にて加熱混合することで均一なマスターバッチ(マスターバッチ3)を得た。
 このマスターバッチ3を80℃以下にまで冷却し、次いで、上で得られたマスターバッチ2を80℃以下にて添加し、均一になるまで混合してエポキシ樹脂組成物を得た。
 表1の「加熱前の組成」の欄は、原料として用いたエポキシ樹脂成分およびアミン成分の量を示しており、表1の「加熱後の組成」の欄は、最終的な組成物におけるエポキシ樹脂成分およびアミン成分ならびにこれらの予備反応物の量を表している。なおここで、「加熱後の組成」の欄中、「エポキシ/アミン予備反応物」は、式(I)には該当しない反応物を示している。また、表2の「組成」の欄は、最終的な樹脂組成物における各成分の組成比と、当該樹脂組成物の活性水素当量/エポキシ当量を示している。なお、誤解を避けるために補足すると、以下に説明する例では工程3において構成要素[A]および構成要素[B]の混合物としては得られていない場合がある。
 [実施例2~12、比較例3]
 工程3において加えるEPALLOY5000およびPACMの量を変更し、また、工程4において加える非芳香族熱可塑性樹脂の種類および量を変更し、表1および表2に示すとおりとした以外は、実施例1と同様にして樹脂組成物を得た。ただし、実施例9については、さらに、工程1にてEPALLOY5000を15質量部用い、工程2にてEPALLOY5000を5.8質量部用い、工程3にてEPALLOY5000を2.2質量部用いる変更を行って、樹脂組成物を得た。
 [比較例4]
 工程3において加えるEPALLOY5000およびPACMの量を変更し、また、工程4において、さらにEHPE3150を加え、表1および表2に示すとおりとした以外は、実施例1と同様にして樹脂組成物を得た。
 [比較例5]
 EPALLOY5000に代えてjER828を用い、また、その量として、表1および表2に示すとおりとした以外は、実施例1と同様にして樹脂組成物を得た。
 [比較例1]
 工程3を行わず、また工程3において加える予定であったEPALLOY5000を工程1において加え、最終的な組成物の組成比として、表2に示すとおりとした以外は、実施例1と同様にして樹脂組成物を得た。
 [実施例14、15、比較例2、比較例6~14]
 工程1において加えるEPALLOY(比較例14についてはEPALLOY5000に代えてjER828を使用)の量を変更し、また、工程4において、さらにEHPE3150を加え、また、工程4において加える非芳香族熱可塑性樹脂の種類および量を変更し、表2に示すとおりとした以外は、比較例1と同様にして樹脂組成物を得た。
 <エポキシ樹脂組成物の発熱ピーク温度の測定方法>
 示差走査熱量計(DSC Q2500:TAインスツルメント社製)を用いて、窒素雰囲気中で5℃/分の昇温速度にて、上述の<エポキシ樹脂組成物の調製>にて得られたエポキシ樹脂組成物の発熱曲線を得た。得られた発熱曲線中で、発熱量が100mW/g以上である発熱ピークの頂点の温度を、本発明におけるDSCの発熱ピーク温度として算出した。発熱量が100mW/g以上である発熱ピークが2つ以上ある場合は、低温側のピークの頂点の温度を、上記発熱ピーク温度として算出した(表2、表3)。
 <昇温粘度測定>
 上述の<エポキシ樹脂組成物の調製>にて得られたエポキシ樹脂組成物について、動的粘弾性装置ARES-2KFRTN1-FCO-STD(TAインスツルメント社製)を用い、上下部測定冶具に直径25mmの平板のパラレルプレートを用い、上部と下部の冶具間距離が1mmとなるように該エポキシ樹脂組成物をセット後、ねじりモード(測定周波数:0.5Hz)温度20℃から150℃まで2℃/分で昇温することで粘度を測定した(表2、表3)。
 表2において、構成要素[A]と[B]の混合物の数平均分子量が450~800g/molの範囲で構成された樹脂組成物の粘度は、構成要素[D]として数平均分子量が低い化合物を用いた実施例12を除いて、30℃において40000Pa・s以上200000Pa・s以下、80℃において300Pa・s以下、100℃において100Pa・s以上300Pa・s以下であった(実施例1~7、10、11)。
 一方、構成要素[A]と構成要素[B]の混合物の数平均分子量が450g/mol未満あるいは800g/molを超える樹脂組成物の粘度は、30℃、80℃または100℃のいずれかの点において上記粘度範囲を満たさなかった(実施例8、9、比較例1)。
 また、実施例13、14において、構成要素[G]の数平均分子量550~800g/mol、構成要素[D](構成要素[D’])の数平均分子量16000~28000g/molの範囲で構成された樹脂組成物の粘度は、30℃において40000Pa・s以上200000Pa・s以下、80℃において300Pa・s以下、100℃において100Pa・s以上300Pa・s以下であった。
 一方、構成要素[G]の数平均分子量が550g/mol未満あるいは800g/molを超える樹脂組成物の粘度は、30℃、80℃または100℃のいずれかの点において上記粘度範囲を満たさなかった(比較例6~10)。構成要素[D](構成要素[D’])の数平均分子量が16000g/mol未満の比較例10の樹脂組成物の粘度は、30℃において40000Pa・s未満であった。
 また、構成要素[D](構成要素[D’])の数平均分子量が28000g/molを超える樹脂組成物は、実施例13と比較して後述する樹脂硬化物の曲げ破断歪は低い値となった(比較例11~13)。
 <エポキシ樹脂組成物の樹脂フロー評価>
 上述の<エポキシ樹脂組成物の調製>にて得られたエポキシ樹脂組成物3gを15cm角に切り出した離型フィルムの上に秤量した(質量:W4(g))。もう一枚の15cmの角に切り出した離型フィルムでエポキシ樹脂組成物をはさみ、さらに2枚の10cm角の金属板(一枚400g)ではさみ、昇温速度2℃/分で昇温し、180℃で120分保持して硬化物を得た。硬化後、10cm角金属板からはみ出した部分を取り除き、残った硬化物の質量を測定した(質量:W5(g))。以下の算出式により本発明におけるエポキシ樹脂組成物の樹脂フロー量[%]を算出した。
樹脂フロー量=(W4-W5)/W4×100[%]    。
 樹脂フロー量が5%以下をA、5%を超え、10%以下をB、10%を超えたものをCと表記した(表2)。100℃における粘度が100Pa・s未満の樹脂組成物は、樹脂フロー評価がA以外であった(実施例8、12および比較例1、10)。
 <樹脂フィルムの作製>
 上述の<エポキシ樹脂組成物の調製>にて得られた、実施例1~14と比較例1、2、5、7、8、10~14のエポキシ樹脂組成物を60~100℃に加温し、目付が80~120g/mとなるようにフィルムコーターで離型紙に塗布して樹脂フィルムを作製した。なお、80℃における粘度が300Pa・sを超える比較例6および9の樹脂組成物は、樹脂組成物が固く80~120g/mの範囲で離型紙に塗布することができなかった(表3)。
 <プリプレグの作製>
 上述の<樹脂フィルムの作製>にて得られた、実施例1~14と比較例1、2、5、7、8、10~14の樹脂フィルム(離型紙の、樹脂フィルム形成側表面)を、含浸に十分な圧力でガラス不織布に含浸させた。
 <タック性評価>
 上述の<プリプレグの作製>にて得られたプリプレグを10cm角に切り出し、15cm角のFEPフィルム(“トヨフロン(登録商標)”50FV、東レフィルム加工(株)製)を下側、10cm角のプリプレグを上側にして重ねた。重ねたプリプレグの上側に、両面粘着性テープを貼り付けた10cm角のステンレス製プレート(400g)を載せ、30秒間保持した。その後、ステンレス製プレートを持ち上げ、プリプレグがFEPフィルムから剥がれて二枚に分かれる際、FEPフィルムの上にプリプレグに使用したエポキシ樹脂組成物が残留する場合はタック性を「不良」、プリプレグに使用したエポキシ樹脂組成物が残留しない場合はタック性を「良好」と判定した(表2、表3)。
 実施例、比較例共に30℃における粘度が40000Pa・s以上の樹脂組成物を使用したプリプレグのタック性は良好であった。一方、構成要素[G]の数平均分子量が550g/mol未満である比較例7および比較例10のプリプレグのタック性は不良であった。
 <貼り付き性評価>
 上述の<プリプレグの作製>にて得られたプリプレグを10cm角に切り出し、任意の大きさ(10cm角よりも大きい)のアルミ板に貼り付け、その上からダイフリーGA-3000(ダイキン工業製)をスプレーすることで離型処理した10cm角のステンレス製プレート(400g)を載せ、30秒間保持した。その後、ステンレス製プレートを持ち上げ、アルミ板にプリプレグが貼り付いた状態で地面を軸に90°になるようにアルミ板を立てかけ、24時間後アルミ板にプリプレグが貼り付いている場合は貼り付き性「良好」とし、一部でも剥がれていた場合を「不良」とした(表2、表3)。数平均分子量が800g/molを超え30℃における粘度が200000Pa・sを超える比較例8の樹脂組成物を用いて作成したプリプレグは貼り付き性が不良であった。
 <樹脂硬化板の作製>
 上述の<エポキシ樹脂組成物の調製>にて得られたエポキシ樹脂組成物を真空中で脱泡した後、厚さ2mmのポリテトラフルオロエチレン製のスペーサーと共にステンレス板で挟んで、昇温速度2℃/分で昇温し、180℃で120分保持して硬化させることにより樹脂硬化板を得た。
 <樹脂硬化物の曲げ試験>
 上述の<樹脂硬化板の作製>にて得られた厚み2mmのエポキシ樹脂硬化物を幅10±0.1mm、長さ60±1mmにカットし、試験片を得た。インストロン万能試験機(インストロン製)を用いJIS-K7171(1994)に従い、スパン間32mmの三点曲げを実施し、弾性率と曲げ歪(伸度)を測定した。測定数は6とし、その平均値を求めた(表2、表3)。なお、樹脂曲げ試験にて樹脂板が破断しない場合は、曲げたわみが12mmを超えた時点で装置を停止し、その時点での歪値を破断歪とした。実施例1~12においては曲げ破断歪4.5%以上であった。一方で、構成要素[B]を添加していない比較例1、2の樹脂硬化物の曲げ破断歪は4.5%未満となり未達であった。また、構成要素[B]の添加量が多いほど弾性率が低くなり、曲げ破断歪が大きくなる傾向が示され、構成要素[A]の固体状のエポキシ樹脂の添加量が多いほど弾性率が高くなり、曲げ破断歪が小さくなる傾向が示された。また、構成要素[D]の添加量が少なくなるほど曲げ破断歪が小さくなる傾向が示された。
 実施例13、14においてはいずれも曲げ破断歪4.5%以上であった。一方、構成要素[G]の数平均分子量が800g/molを超える比較例6および比較例8においては曲げ破断歪は4.5%に未達であった。構成要素[G]の数平均分子量が大きくなるほど、曲げ破断歪が小さくなる傾向が示された。また、構成要素[D](構成要素[D’])の数平均分子量が28000g/molを超えた比較例11~13の樹脂硬化物の曲げ破断歪は4.5%未満となり未達であった。構成要素[D]の添加量が少なくなるほど曲げ破断歪が小さくなる傾向が示された。一方、構成要素[D](構成要素[D’])の数平均分子量が16000g/mol未満の比較例10の樹脂硬化物の弾性率は実施例、比較例の中で最も低い値を示した。
 <樹脂硬化物の耐光性評価>
 上述の<樹脂硬化板の作製>にて得られた厚み2mmのエポキシ樹脂硬化物を幅10±0.1mm、長さ60±1mmにカットし、試験片を得た。得られた試験片表面を半分アルミホイルで覆った状態でメタリングウェザーメータ(M6T、スガ試験機(株)製)を用いて照射波長を300~400nm、照度を1.55kW/mに設定し、その上で、本発明のエポキシ樹脂組成物の硬化物は屋外で日光に年単位で暴露されることが想定されるため、日本(夏場)における1ヶ月間のUV量の概算値として知られている、積算強度1000kJ/mのUV光を照射した。照射後アルミホイルを剥がし、アルミホイルを覆った場所と覆っていない場所の見た目を肉眼で見ることで、UV照射前後のエポキシ樹脂硬化物の変色有無を確認できる。照射前後でエポキシ樹脂組成物の硬化物の色差を多光源分光測色計(MSC-P、スガ試験機(株)製)を用いて測定した。エポキシ樹脂組成物を多光源分光測色計にセットし、測定条件として波長380~780nmの範囲において、反射モード、C光源、2°視野、8°入射の条件で反射率を測定した。さらに、装置に付属するプログラムを用いて、L表色系におけるUV照射前の測色値(L 、a 、b )を求めた。次に、同様にUV照射実施後の測色値(L 、a 、b )を求めた。さらにUV照射実施前後でのエポキシ樹脂組成物の硬化物の色差ΔE abをΔE ab=[(L -L +(a -a +(b -b 1/2により求めた。求めたΔE abが4以下の場合、耐光性を「良好」とし、ΔE abが4を超えた場合、耐光性を「不良」とした(表2、表3)。
 芳香族エポキシ樹脂を88.5質量部含む比較例5は耐光性が不良で、芳香族エポキシ樹脂を含む場合、耐光性に劣る傾向が示された。
 また、芳香族エポキシ樹脂を40質量部含む比較例14は耐光性が不良で、芳香族エポキシ樹脂を含む場合、耐光性に劣る傾向が示された。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

Claims (13)

  1.  構成要素[A]、[B]、[C]、[D]を含み、構成要素[B]の総質量のうち、nが1である式(I)の非芳香族エポキシ樹脂が95質量%以上である、エポキシ樹脂組成物。
    [A]構成要素[B]以外の非芳香族エポキシ樹脂
    [B]式(I)で表される非芳香族エポキシ樹脂
    Figure JPOXMLDOC01-appb-C000001
    ここで、Rは二価の、非芳香族炭化水素基および非芳香族炭化水素基がエーテル基若しくはアミノ基(-NR-。Rは非芳香族炭化水素基)を介して連結された基の何れかの基(以下、「非芳香族炭化水素基および非芳香族炭化水素基がエーテル基若しくはアミノ基(-NR-。Rは非芳香族炭化水素基)を介して連結された基」を総称して「非芳香族有機基」という)であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基、含窒素複素環の一部をなす非芳香族炭化水素基、あるいは水素原子である。式(I)中のnは1~5の整数であり、R、R、R、RおよびRは水素原子、直鎖、分岐または環状構造である。
    [C]硬化剤
    [D]非芳香族熱可塑性樹脂
  2.  構成要素[A]と構成要素[B]のエポキシ樹脂混合物の数平均分子量が450~800g/molである、請求項1に記載のエポキシ樹脂組成物。
  3.  構成要素[D]の数平均分子量が16000~28000g/molである、請求項1または2に記載のエポキシ樹脂組成物。
  4.  構成要素[A]と構成要素[B]を合わせて100質量部としたとき、構成要素[D]を1~20質量部含む、請求項1~3のいずれかに記載のエポキシ樹脂組成物。
  5.  構成要素[C]が非芳香族硬化剤である、請求項1~4のいずれかに記載のエポキシ樹脂組成物。
  6.  構成要素[C]がジシアンジアミドである、請求項5に記載のエポキシ樹脂組成物。
  7.  硬化促進剤(構成要素[E])をさらに含む、請求項1~6のいずれかに記載のエポキシ樹脂組成物。
  8.  無機粒子(構成要素「F」)をさらに含む、請求項1~7のいずれかに記載のエポキシ樹脂組成物。
  9.  構成要素[F]がチキソトロープ剤であり、構成要素[A]と構成要素[B]を合わせて100質量部としたとき、該チキソトロープ剤を1~10質量部含む、請求項8に記載のエポキシ樹脂組成物。
  10.  20℃から150℃まで2℃/分で昇温しながら周波数0.5Hzで測定される粘度が以下のとおりである、請求項1~9のいずれかに記載のエポキシ樹脂組成物。
    30℃において40000Pa・s以上200000Pa・s以下
    80℃において300Pa・s以下
    100℃において100Pa・s以上300Pa・s以下
  11.  請求項1~10のいずれかに記載のエポキシ樹脂組成物が繊維基材に含浸されてなる、プリプレグ。
  12.  構成要素[G]、[C]、[D’]を含み、下記特性1および特性2を備えるエポキシ樹脂組成物。
    [G]少なくとも1種の非芳香族エポキシ樹脂を含み、その混合物としての数平均分子量が550~800g/molであるエポキシ樹脂の混合物
    [C]硬化剤
    [D’]数平均分子量が16000~28000g/molの非芳香族熱可塑性樹脂
    特性1:真空中で脱泡した後、昇温速度2℃/分で昇温し、180℃で120分保持して硬化させて得た厚さ2mmの樹脂硬化板について求められる曲げ破断歪が4.5%以上。
    特性2:エポキシ樹脂組成物中に式(I)で表される非芳香族エポキシ樹脂を含まない。
    Figure JPOXMLDOC01-appb-C000002
    ここで、Rは二価の非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と少なくとも1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基であり、RおよびRは少なくとも1個のエポキシ基と1個の水酸基でその非芳香族炭化水素基の水素原子が置換された非芳香族有機基、含窒素複素環の一部をなす非芳香族炭化水素基、あるいは水素原子である。式(I)中のnは1~5の整数であり、R、R、R、RおよびRは水素原子、直鎖、分岐または環状構造である。
  13. 請求項12に記載のエポキシ樹脂組成物を繊維基材に含浸してなるプリプレグ。
PCT/JP2022/033520 2021-09-30 2022-09-07 エポキシ樹脂組成物およびプリプレグ WO2023053869A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22875741.5A EP4386049A1 (en) 2021-09-30 2022-09-07 Epoxy resin composition and prepreg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160396 2021-09-30
JP2021-160396 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053869A1 true WO2023053869A1 (ja) 2023-04-06

Family

ID=85782381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033520 WO2023053869A1 (ja) 2021-09-30 2022-09-07 エポキシ樹脂組成物およびプリプレグ

Country Status (2)

Country Link
EP (1) EP4386049A1 (ja)
WO (1) WO2023053869A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026763A (ja) 2001-07-13 2003-01-29 New Japan Chem Co Ltd エポキシ樹脂組成物
JP2014145018A (ja) * 2013-01-29 2014-08-14 Toray Ind Inc エポキシ樹脂組成物、成形材料および繊維強化複合材料
WO2016013622A1 (ja) * 2014-07-24 2016-01-28 三菱化学株式会社 熱硬化性樹脂組成物及びその成形体
JP2021120215A (ja) * 2020-01-30 2021-08-19 東レ株式会社 シート状中間基材および繊維強化複合材料
JP2021147550A (ja) * 2020-03-23 2021-09-27 東レ株式会社 成形材料および繊維強化複合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026763A (ja) 2001-07-13 2003-01-29 New Japan Chem Co Ltd エポキシ樹脂組成物
JP2014145018A (ja) * 2013-01-29 2014-08-14 Toray Ind Inc エポキシ樹脂組成物、成形材料および繊維強化複合材料
WO2016013622A1 (ja) * 2014-07-24 2016-01-28 三菱化学株式会社 熱硬化性樹脂組成物及びその成形体
JP2021120215A (ja) * 2020-01-30 2021-08-19 東レ株式会社 シート状中間基材および繊維強化複合材料
JP2021147550A (ja) * 2020-03-23 2021-09-27 東レ株式会社 成形材料および繊維強化複合材料

Also Published As

Publication number Publication date
EP4386049A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
CN101821312B (zh) 一液型氰酸酯-环氧复合树脂组合物、其固化物及其制造方法以及使用该组合物的密封用材料和粘着剂
CA2915352C (en) Structural adhesive compositions
CN102037076B (zh) 一液型氰酸酯-环氧复合树脂组合物
EP2788397A2 (en) Structural adhesive compositions
KR102598118B1 (ko) 옥외 물품 제조용 열경화성 에폭시 수지 조성물 및 그로부터 얻어진 물품
CN101679608A (zh) 一液型氰酸酯-环氧复合脂组合物
WO2015124792A1 (en) Furan-based amines as curing agents for epoxy resins in low voc applications
TW201200535A (en) Curable compositions
TW201638175A (zh) 組成物、環氧樹脂固化劑、環氧樹脂組成物、熱固化性組成物、固化物、半導體裝置以及層間絕緣材料
KR20130131283A (ko) 분말 코팅 조성물
EP4077460A1 (en) Polymeric material including a uretdione-containing material and inorganic filler, two-part compositions, products, and methods
KR20150023525A (ko) 에폭시 코팅 적용을 위한 저점도 페놀 디글리시딜 에테르
WO2023053869A1 (ja) エポキシ樹脂組成物およびプリプレグ
US11242427B2 (en) Structural adhesive compositions
JP7038565B2 (ja) 熱硬化性エポキシ樹脂組成物、接着剤、エポキシ樹脂硬化物、塩、及び硬化剤
JP2020200389A (ja) 硬化性樹脂組成物
JP2023058452A (ja) エポキシ樹脂組成物およびプリプレグ
JP2023033784A (ja) エポキシ樹脂組成物およびプリプレグ
JP2011231243A (ja) エポキシ樹脂組成物
JP2021120215A (ja) シート状中間基材および繊維強化複合材料
CN112724596A (zh) 固化性组合物以及固化物
KR102602066B1 (ko) 비스페놀-z 폴리우레탄을 포함하는 이액형 접착제 조성물
JP7230433B2 (ja) エポキシ樹脂組成物、成形材料の製造方法、成形材料、繊維強化複合材料及び繊維強化複合材料の製造方法
JP2022153282A (ja) エポキシ樹脂組成物、表面保護中間基材および繊維強化複合材料中間体
JP2021138924A (ja) 塗布剤および中間基材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022554798

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022875741

Country of ref document: EP

Effective date: 20240311

NENP Non-entry into the national phase

Ref country code: DE