WO2023053441A1 - 立方晶窒化硼素焼結体 - Google Patents

立方晶窒化硼素焼結体 Download PDF

Info

Publication number
WO2023053441A1
WO2023053441A1 PCT/JP2021/036415 JP2021036415W WO2023053441A1 WO 2023053441 A1 WO2023053441 A1 WO 2023053441A1 JP 2021036415 W JP2021036415 W JP 2021036415W WO 2023053441 A1 WO2023053441 A1 WO 2023053441A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cubic boron
sintered body
volume
group
Prior art date
Application number
PCT/JP2021/036415
Other languages
English (en)
French (fr)
Inventor
浩也 諸口
勇貴 堤内
倫子 松川
暁彦 植田
暁 久木野
Original Assignee
住友電工ハードメタル株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社, 住友電気工業株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to KR1020247009893A priority Critical patent/KR20240051212A/ko
Priority to CN202180102395.4A priority patent/CN117957208A/zh
Priority to PCT/JP2021/036415 priority patent/WO2023053441A1/ja
Priority to JP2022520776A priority patent/JP7300063B1/ja
Publication of WO2023053441A1 publication Critical patent/WO2023053441A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Definitions

  • the present disclosure relates to a cubic boron nitride sintered body.
  • a cubic boron nitride sintered body (hereinafter also referred to as "cBN sintered body") is known as a high-hardness material used for cutting tools (Patent Documents 1 and 2).
  • the present disclosure is a cubic boron nitride sintered body comprising cubic boron nitride particles and a binder,
  • the content of the cubic boron nitride particles in the cubic boron nitride sintered body is 30% by volume or more and 80% by volume or less
  • the binder is A simple substance of one element selected from Group 1 consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, iron, cobalt and nickel of the periodic table, and selected from the first group containing at least one element selected from the second group consisting of alloys and intermetallic compounds consisting of two or more elements, or from one element selected from the first group and nitrogen, carbon, boron and oxygen At least one selected from the fourth group consisting of a compound consisting of at least one element selected from the third group consisting of, and a solid solution of the compound,
  • the cubic boron nitride sintered body has a void content of 0.001% by volume or more and 0.20% by volume
  • FIG. 1 is a backscattered electron image of a cubic boron nitride sintered body according to Embodiment 1.
  • FIG. 1 is a backscattered electron image of a cubic boron nitride sintered body according to Embodiment 1.
  • an object of the present disclosure is to provide a cubic boron nitride sintered body that can have a long tool life even in high-efficiency machining when used as a tool material.
  • the present disclosure is a cubic boron nitride sintered body comprising cubic boron nitride particles and a binder,
  • the content of the cubic boron nitride particles in the cubic boron nitride sintered body is 30% by volume or more and 80% by volume or less
  • the binder is A simple substance of one element selected from Group 1 consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, iron, cobalt and nickel of the periodic table, and selected from the first group containing at least one element selected from the second group consisting of alloys and intermetallic compounds consisting of two or more elements, or from one element selected from the first group and nitrogen, carbon, boron and oxygen At least one selected from the fourth group consisting of a compound consisting of at least one element selected from the third group consisting of, and a solid solution of the compound,
  • the tool can have a long tool life even in high-efficiency machining.
  • the average equivalent circle diameter of the voids is preferably 3 nm or more and 60 nm or less. According to this, the tool life is further improved.
  • the cubic boron nitride sintered body includes a plurality of the voids, It is preferable that the average distance of the voids is 1.5 ⁇ m or more and 15 ⁇ m or less. According to this, the tool life is further improved.
  • the content of the cubic boron nitride particles in the cubic boron nitride sintered body is preferably 40% by volume or more and 75% by volume or less. According to this, the tool life is further improved.
  • a compound or the like when represented by a chemical formula, it shall include any conventionally known atomic ratio unless the atomic ratio is particularly limited, and should not necessarily be limited only to those within the stoichiometric range.
  • TiAlN when “TiAlN" is described, the ratio of the number of atoms constituting TiAlN includes all conventionally known atomic ratios.
  • a cubic boron nitride sintered body of one embodiment of the present disclosure (hereinafter also referred to as "this embodiment") is a cubic boron nitride sintered body comprising cubic boron nitride particles and a binder.
  • the content of the cubic boron nitride particles in the cubic boron nitride sintered body is 30% by volume or more and 80% by volume or less
  • the binder is A simple substance of one element selected from Group 1 consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, iron, cobalt and nickel of the periodic table, and selected from the first group containing at least one element selected from the second group consisting of alloys and intermetallic compounds consisting of two or more elements, or from one element selected from the first group and nitrogen, carbon, boron and oxygen At least one selected from the fourth group consisting of a compound consisting of at least one element selected from the third group consisting of, and a solid solution of the compound,
  • the cubic boron nitride sintered body has a void content of 0.001% by volume or more and 0.20% by volume or less, and is a cubic boron nitride sintered body.
  • the tool can have a long tool life even in high-efficiency machining.
  • the reason for this is presumed to be as follows (i) to (iii).
  • the cubic boron nitride sintered body of the present embodiment contains 30% by volume or more and 80% by volume or less of cubic boron nitride particles having excellent strength and toughness. Therefore, the cubic boron nitride sintered body can also have excellent strength and toughness. Therefore, the cubic boron nitride sintered body has excellent wear resistance and chipping resistance, and a tool using the cubic boron nitride sintered body can have a long tool life.
  • the binding material contained in the cubic boron nitride sintered body of the present embodiment has a particularly high binding force to the cubic boron nitride particles. Therefore, the cubic boron nitride sintered body has excellent wear resistance and chipping resistance, and a tool using the cubic boron nitride sintered body can have a long tool life.
  • the tool using the cubic boron nitride sintered body of the present embodiment which has a void content of 0.001% by volume or more and 0.20% by volume or less, has excellent chipping resistance and a long tool life. can be done. This is a finding newly discovered by the present inventors as a result of extensive studies.
  • the cubic boron nitride sintered body of the present embodiment includes 30% by volume or more and 80% by volume or less of cubic boron nitride particles and a binder.
  • the cubic boron nitride sintered body of the present embodiment can consist of cubic boron nitride particles and a binder.
  • the cubic boron nitride sintered body may contain unavoidable impurities resulting from the raw materials used, manufacturing conditions, and the like.
  • the content (% by mass) of unavoidable impurities in the cubic boron nitride sintered body can be 1% by mass or less.
  • the cubic boron nitride sintered body of the present embodiment can consist of cubic boron nitride particles, a binder, and unavoidable impurities.
  • the lower limit of the content of cubic boron nitride particles in the cubic boron nitride sintered body is 30% by volume or more, preferably 40% by volume or more, and more preferably 50% by volume or more.
  • the upper limit of the content of cubic boron nitride particles in the cubic boron nitride sintered body is 80% by volume or less, preferably 78% by volume or less, and 75% by volume or less, from the viewpoint of improving wear resistance and chipping resistance. is preferred.
  • the content of cubic boron nitride particles in the cubic boron nitride sintered body is 30% by volume or more and 80% by volume or less, preferably 40% by volume or more and 78% by volume or less, and further 50% by volume or more and 75% by volume or less. preferable.
  • the void content of the cubic boron nitride sintered body is 0.001% by volume or more and 0.20% by volume or less.
  • the lower limit of the void content of the cubic boron nitride sintered body is 0.001% by volume or more from the viewpoint of obtaining the effect of absorbing the difference in thermal expansion coefficient between the cubic boron nitride particles and the binder. 01 volume % or more is preferable, and 0.03 volume % or more is preferable.
  • the upper limit of the content of voids in the cubic boron nitride sintered body is 0.20% by volume or less, preferably 0.11% by volume or less, from the viewpoint of suppressing the voids from becoming crack starting points. 0.09% by volume or less is preferred.
  • the void content of the cubic boron nitride sintered body is 0.001% by volume or more and 0.20% by volume or less, preferably 0.01% by volume or more and 0.11% by volume or less, and 0.03% by volume or more. 0.09% by volume or less is preferable.
  • the volume of the entire cubic boron nitride sintered body of the present embodiment can be the total volume of the cubic boron nitride particles, the binder, and the voids. Therefore, the content rate (% by volume) of the binder in the cubic boron nitride sintered body is the content rate (% by volume) of the above cubic boron nitride particles from the entire cubic boron nitride sintered body (100% by volume). and a value obtained by subtracting the above void content (% by volume). For example, when the content of cubic boron nitride particles is 70% by volume and the content of voids is 0.01% by volume, the content of binder is 29.99% by volume.
  • the content of cubic boron nitride particles (% by volume), the content of voids (% by volume), and the content of binder (% by volume) of the cubic boron nitride sintered body are measured by the following methods.
  • (A1) Cut an arbitrary position of the cubic boron nitride sintered body to prepare a sample including a cross section of the cubic boron nitride sintered body.
  • a focused ion beam device, a cross-section polisher device, or the like is used to prepare the cross section.
  • FIG. 1 A backscattered electron image of the cubic boron nitride sintered body of this embodiment is shown in FIG.
  • the black area indicated by reference numeral 1 corresponds to the void.
  • the dark gray area indicated by reference numeral 2 corresponds to the cubic boron nitride particles, and the light gray area or white area indicated by reference numeral 3 corresponds to the binder.
  • the backscattered electron image is subjected to first binarization processing using image analysis software ("WinROOF" by Mitani Shoji Co., Ltd.).
  • the image brightness value is divided into 256 (low brightness: 0, high brightness: 255), and the brightness of the region where the voids specified above exists is The value is set to be within the range of 0 to 30, and the brightness value of the region where the cubic boron nitride particles are present is set to be greater than 30. This makes it possible to extract regions where voids exist.
  • a measurement area of 12 ⁇ m ⁇ 9 ⁇ m is arbitrarily set in the image after the first binarization process.
  • the area ratio of the area where voids are present is calculated.
  • the calculated area ratio as volume %, the void content (volume %) of the cubic boron nitride sintered body can be obtained.
  • the backscattered electron image is subjected to a second binarization process using the image analysis software under conditions preset in the image analysis software.
  • the image after the second binarization process pixels derived from the bright field indicate areas where the binder exists. That is, it is possible to extract the region where the binder exists by the second binarization processing.
  • a measurement area of 12 ⁇ m ⁇ 9 ⁇ m is set in the image after the second binarization process. In the measurement area, the area ratio of the area where the binder exists is calculated. By regarding the calculated area ratio as volume %, the binder content (volume %) of the cubic boron nitride sintered body can be obtained.
  • the above (A1) to (E1) are performed in 10 different measurement areas, and in each measurement area, the content of cubic boron nitride particles (% by volume), the content of voids (% by volume) and the content of binder ( volume %) is measured.
  • the average of the cubic boron nitride particle content (% by volume) of the ten measurement regions is taken as the cubic boron nitride particle content (% by volume) of the cubic boron nitride sintered body of the present embodiment.
  • the average of the void content (% by volume) of the ten measurement regions is taken as the void content (% by volume) of the cubic boron nitride sintered body of the present embodiment.
  • the average content rate (% by volume) of the binder in the ten measurement regions is defined as the content rate (% by volume) of the binder in the cubic boron nitride sintered body of the present embodiment.
  • the average equivalent circle diameter of the voids is preferably 3 nm or more and 60 nm or less. According to this, the tool life is further improved. The reason for this is presumed to be that the number of voids present in the cubic boron nitride sintered body is increased, and the occurrence of cracks is more effectively suppressed.
  • the lower limit of the equivalent circle diameter of the voids is preferably 3 nm or more, preferably 3.5 nm or more, preferably 4 nm or more, from the viewpoint of improving the effect of absorbing the difference in thermal expansion coefficient between the cubic boron nitride particles and the binder. 5 nm or more is preferable, and 10 nm or more is preferable. From the viewpoint of increasing the number of voids, the upper limit of the equivalent circle diameter of the voids is preferably 60 nm or less, preferably 55 nm or less, and preferably 50 nm or less.
  • the equivalent circle diameter of the void is preferably 3 nm or more and 60 nm or less, preferably 3 nm or more and 55 nm or less, preferably 3 nm or more and 50 nm or less, preferably 3.5 nm or more and 60 nm or less, preferably 3.5 nm or more and 55 nm or less, and 3.5 nm or more.
  • 50 nm or less is preferable, 4 nm or more and 60 nm or less is preferable, 4 nm or more and 55 nm or less is preferable, 4 nm or more and 50 nm or less is preferable, 5 nm or more and 60 nm or less is preferable, 5 nm or more and 55 nm or less is preferable, 5 nm or more and 50 nm or less is preferable, 10 nm or more and 60 nm or less is preferable.
  • the following is preferable, 10 nm or more and 55 nm or less is preferable, and 10 nm or more and 50 nm or less is preferable.
  • the equivalent circle diameter of voids means the equivalent circle diameter of voids observed in the cross section of the cubic boron nitride sintered body.
  • the equivalent circle diameter of the void is measured by the following method. First, in the same procedure as (A1) to (C1) of the method for measuring the void content of the cubic boron nitride sintered body, a backscattered electron image and secondary electrons of the cross section of the cubic boron nitride sintered body By comparing the backscattered electron image with the image, a region where voids exist (hereinafter also referred to as "void region”) is specified in the backscattered electron image, and the backscattered electron image is further subjected to the first binarization process.
  • void region a region where voids exist
  • a measurement area (12 ⁇ m ⁇ 9 ⁇ m) is set in the image after binarization.
  • the equivalent circle diameter (diameter of circle with equal area) of each void area is calculated using the image processing software.
  • the void region is regarded as one and the equivalent circle diameter is calculated.
  • the average of the equivalent circle diameters of all void regions in the measurement region is taken as the equivalent circle diameter of the voids in the measurement region.
  • the average equivalent circle diameter means the number-based arithmetic mean diameter of the equivalent circle diameters.
  • the equivalent circle diameter of the one void is regarded as the average of the equivalent circle diameters.
  • the average equivalent circle diameter is measured in ten different measurement areas.
  • the average of the measured values of the 10 measurement regions is taken as the average circle-equivalent diameter of the voids in the cubic boron nitride sintered body of this embodiment.
  • the cubic boron nitride sintered body of the present embodiment includes a plurality of voids, and the average distance between the voids is preferably 1.5 ⁇ m or more and 15 ⁇ m or less. According to this, the tool life is further improved. The reason for this is presumed to be that voids are distributed in the cubic boron nitride sintered body, and the generation of cracks is suppressed substantially uniformly over the entire area of the cubic boron nitride sintered body.
  • the lower limit of the gap distance is preferably 1.5 ⁇ m or more, preferably 3 ⁇ m or more, and preferably 5 ⁇ m or more, from the viewpoint of improving the dispersibility of the gaps.
  • the upper limit of the distance of the void is preferably 15 ⁇ m or less, preferably 14 ⁇ m or less, and preferably 13 ⁇ m or less, from the viewpoint of obtaining the effect of suppressing crack generation.
  • the distance of the gap is preferably 1.5 ⁇ m or more and 15 ⁇ m or less, more preferably 3 ⁇ m or more and 14 ⁇ m or less, and even more preferably 5 ⁇ m or more and 13 ⁇ m or less.
  • the distance of the gap is measured by the following method.
  • a backscattered electron image and a secondary electron image of the cross section of the cubic boron nitride sintered body are obtained in the same procedure as (A1) to (C1) of the method for measuring the void content of the cubic boron nitride sintered body.
  • void region a region where voids exist in the backscattered electron image
  • the backscattered electron image is subjected to the first binarization process. , to extract void regions.
  • a measurement area (12 ⁇ m ⁇ 9 ⁇ m) is set in the image after binarization.
  • the image processing software is used to derive the position of the center of gravity of each void area.
  • the obtained barycentric coordinates are regarded as generating points, and Voronoi division processing is performed to calculate each Voronoi region.
  • first Voronoi region a Voronoi region adjacent to the first Voronoi region
  • second Voronoi region a Voronoi region adjacent to the first Voronoi region
  • the length of a line segment connecting the barycentric coordinates of generating points calculate the Let the length of the line segment be the distance between the first Voronoi region and the second Voronoi region.
  • the length of the line segment is calculated for the first Voronoi region and each of the plurality of Voronoi regions adjoining thereto.
  • the lengths of the above line segments between adjacent Voronoi regions are calculated in a similar manner.
  • the average length of the line segments between all Voronoi regions in the measurement field is taken as the average distance of the gaps in the measurement region. Measurements of the average distance of the air gap are made in ten different measurement areas.
  • the average of the measured values of ten measurement regions is taken as the average of the distances of voids in the cubic boron nitride sintered body of this embodiment.
  • Cubic boron nitride particles have high hardness, strength and toughness, and play a role as a skeleton in the cubic boron nitride sintered body.
  • the average particle size (equivalent circle diameter D50) of the cubic boron nitride particles is preferably 0.4 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 6 ⁇ m or less.
  • the average particle size of cubic boron nitride particles is measured by the following method.
  • the void region and the region where the binder exists in the backscattered electron image (hereinafter , Also referred to as a “binder region”) is extracted, and the region excluding the void region and the binder region from the entire region is the region where the cubic boron nitride particles are present (hereinafter also referred to as the “cubic boron nitride particle region” ).
  • a measurement area (12 ⁇ m ⁇ 9 ⁇ m) is set in the image after binarization.
  • the equivalent circle diameter of each cubic boron nitride particle area is calculated.
  • the average of the equivalent circle diameters of all the cubic boron nitride particle regions within the measurement region is taken as the average particle diameter of the cubic boron nitride particles in the measurement region.
  • the average of the equivalent circle diameters means the median diameter D50 of the equivalent circle diameters (the equivalent circle diameter at which the cumulative number-based frequency is 50%). Measurements of the average particle size are carried out in ten different measurement areas.
  • the average of the measured values of the 10 measurement regions is taken as the average particle size of the cubic boron nitride particles in the cubic boron nitride sintered body of this embodiment.
  • the binder plays the role of enabling sintering of cubic boron nitride particles, which is a difficult-to-sinter material, at industrial-level pressure and temperature.
  • the reactivity with iron is lower than that of cBN, it has the function of suppressing chemical wear and thermal wear in cutting high-hardness hardened steel.
  • the cBN sintered body contains a binder, wear resistance in high-efficiency machining of high-hardness hardened steel is improved.
  • the binder is Elements of one element selected from Group 1 consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, iron, cobalt and nickel of the periodic table, and selected from the first group containing at least one element selected from the second group consisting of alloys and intermetallic compounds consisting of two or more elements, or from one element selected from the first group and nitrogen, carbon, boron and oxygen At least one element selected from the fourth group consisting of a compound consisting of at least one element selected from the third group and a solid solution of the compound. That is, the binder can be in any one of the following forms (a) to (f).
  • the Group 4 elements of the periodic table include, for example, titanium (Ti), zirconium (Zr) and hafnium (Hf).
  • Group 5 elements include, for example, vanadium (V), niobium (Nb) and tantalum (Ta).
  • Group 6 elements include, for example, chromium (Cr), molybdenum (Mo) and tungsten (W).
  • first elements elements included in the first group consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, iron, cobalt and nickel are also referred to as "first elements”.
  • alloys of the first element include Ti--Zr, Ti--Hf, Ti--V, Ti--Nb, Ti--Ta, Ti--Cr and Ti--Mo.
  • intermetallic compound of the first element include TiCr 2 , Ti 3 Al, and Co—Al.
  • Examples of the compound (nitride) containing the first element and nitrogen include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), Tantalum nitride (TaN), chromium nitride ( Cr2N ), molybdenum nitride (MoN), tungsten nitride (WN), aluminum nitride (AlN), silicon nitride ( Si3N4 ), cobalt nitride ( CoN ), nickel nitride ( NiN), titanium zirconium nitride (TiZrN), titanium hafnium nitride (TiHfN), titanium vanadium nitride (TiVN), titanium niobium nitride (TiNbN), titanium tant
  • Examples of the compound (carbide) containing the first element and carbon include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), carbide Mention may be made of tantalum (TaC), chromium carbide (Cr 3 C 2 ), molybdenum carbide (MoC), tungsten carbide (WC), silicon carbide (SiC), tungsten carbide-cobalt (W 2 Co 3 C).
  • Examples of the compound (boride) containing the first element and boron include titanium boride (TiB 2 ), zirconium boride (ZrB 2 ), hafnium boride (HfB 2 ), vanadium boride (VB 2 ), niobium boride (NbB 2 ), tantalum boride (TaB 2 ), chromium boride (CrB), molybdenum boride (MoB), tungsten boride (WB), aluminum boride (AlB 2 ), cobalt boride (Co 2 B), nickel boride (Ni 2 B).
  • Examples of the compound (oxide) containing the first element and oxygen include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), vanadium oxide (V 2 O 5 ), niobium oxide ( Nb2O5 ), tantalum oxide ( Ta2O5 ), chromium oxide ( Cr2O3 ), molybdenum oxide ( MoO3 ), tungsten oxide ( WO3 ), aluminum oxide ( Al2O3 ), Mention may be made of silicon oxide (SiO 2 ), cobalt oxide (CoO), nickel oxide (NiO).
  • Examples of the compound (carbonitride) containing the first element, carbon, and nitrogen include titanium carbonitride (TiCN), zirconium carbonitride (ZrCN), hafnium carbonitride (HfCN), and titanium niobium carbonitride (TiNbCN). , titanium zirconium carbonitride (TiZrCN), titanium hafnium carbonitride (TiHfCN), titanium tantalum carbonitride (TiTaCN), titanium chromium carbonitride (TiCrCN).
  • Examples of the compound (oxynitride) composed of the first element, oxygen, and nitrogen include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), and vanadium oxynitride (VON).
  • TiON titanium oxynitride
  • ZrON zirconium oxynitride
  • HfON hafnium oxynitride
  • VON vanadium oxynitride
  • niobium oxynitride (NbON), tantalum oxynitride (TaON), chromium oxynitride (CrON), molybdenum oxynitride (MoON), tungsten oxynitride (WON), aluminum oxynitride (AlON), silicon oxynitride (SiAlON) can be mentioned.
  • a solid solution of the above compounds means a state in which two or more of these compounds are dissolved in each other's crystal structure, and means an interstitial solid solution or a substitutional solid solution.
  • the above compounds may be used singly or in combination of two or more.
  • the lower limit of the total content of at least one binder selected from the second group and at least one binder selected from the fourth group is 50 % by volume or more is preferable, 60% by volume or more is more preferable, and 70% by volume or more is even more preferable.
  • the upper limit of the total content of the second group and the fourth group of binders is preferably 80% by volume or less, more preferably 90% by volume or less, and most preferably 100% by volume.
  • the total content of the second group and the fourth group of binders is preferably 50% by volume or more and 80% by volume or less, more preferably 60% by volume or more and 90% by volume or less, and even more preferably 70% by volume or more and 100% by volume or less.
  • the total content of the second group and the fourth group of binders is measured by the RIR method (Reference Intensity Ratio) by XRD.
  • the binding material may contain other components in addition to the second group and fourth group described above.
  • Manganese (Mn) and rhenium (Re) can be given as examples of elements constituting other components.
  • composition of the binder contained in the cBN sintered body can be specified by XRD (X-ray diffraction).
  • the cubic boron nitride sintered body of the present disclosure is suitable for use in cutting tools, wear-resistant tools, grinding tools, and the like.
  • the cutting tool, wear-resistant tool, and grinding tool using the cubic boron nitride sintered body of the present disclosure may each be entirely composed of the cubic boron nitride sintered body, or a part thereof (for example, a cutting tool In the case of , only the cutting edge portion) may be composed of a cubic boron nitride sintered body. Furthermore, a coating film may be formed on the surface of each tool.
  • Cutting tools include drills, end mills, indexable cutting inserts for drills, indexable cutting inserts for end mills, indexable cutting inserts for milling, indexable cutting inserts for turning, metal saws, gear cutting tools, reamers. , taps, and cutting tools.
  • Wear-resistant tools include dies, scribers, scribing wheels, and dressers. Grinding tools include grinding wheels.
  • the cubic boron nitride sintered body of the present disclosure can be produced, for example, by the following method.
  • cBN powder cubic boron nitride powder
  • binder raw material powder a cubic boron nitride powder
  • the cBN powder is raw material powder of cubic boron nitride particles (hereinafter also referred to as “cBN particles”) contained in the cBN sintered body.
  • the cBN powder is not particularly limited, and known cBN powder can be used. Among them, the cBN powder was obtained by converting hexagonal boron nitride powder into cubic boron nitride powder by keeping it within the thermodynamic stability region of cubic boron nitride in the presence of catalyst LiCaBN . It is preferable to be
  • the D50 (average particle diameter) of the cBN powder is not particularly limited, and can be, for example, 0.1 to 12.0 ⁇ m.
  • the cBN powder is coated with a binder component.
  • a binder component such as TiN, TiAlN, Al or Al 2 O 3
  • the void content of the cubic boron nitride sintered body is reduced. It is presumed that this is because the voids between the cubic boron nitride particles are easily filled during sintering.
  • the coating may be provided on the entire surface of the cBN powder. Further, the coating may be provided on at least part of the surface of the cBN powder.
  • the film thickness of the coating is preferably 0.15 ⁇ m or more and 0.25 m or less, for example. According to this, the void content of the cubic boron nitride sintered body is further reduced. The film thickness of the coating is measured by SEM-EDX of the cross section of the powder.
  • the binder raw material powder is the raw material powder of the binder contained in the cBN sintered body.
  • the binder raw material powder can have the same composition as at least part of the components constituting the binder.
  • As the raw material powder of the binder at least one element selected from the group consisting of the elements of Group 4, Group 5, Group 6 of the periodic table, aluminum, silicon, cobalt and nickel, or the element itself and at least one element selected from the group consisting of nitrogen, carbon, boron and oxygen.
  • powders made of various compounds described as binders in Embodiment 1 can be used as binder raw material powders.
  • TiN powder ZrN powder, W2N powder, VN powder, Ni powder, Si3N4 powder, TiCN powder, TaN powder, NbN powder, Mo2N powder, HfN powder, Cr2N powder etc.
  • the binder raw material powder is not particularly limited, and can be prepared by a conventionally known method.
  • the binder raw material powder prepared above is mixed and pulverized (hereinafter also referred to as “primary mixing”).
  • the primary mixing method is not particularly limited, for example, a ball mill or jet mill can be used. Each mixing and pulverizing method may be wet or dry.
  • the mixing time for the primary mixing can be, for example, 10 hours or more and 15 hours or less in the case of a ball mill. In the case of a jet mill, for example, it can be 1 hour or more and 2 hours or less.
  • the binder raw material powder pulverized by primary mixing is dispersed in a solvent such as ethanol or acetone to obtain a dispersion.
  • the cBN powder prepared above is added to the dispersion and mixed to obtain a mixed powder (hereinafter also referred to as “secondary mixing”).
  • the secondary mixing method is not particularly limited, but for example, a ball mill or jet mill can be used.
  • the mixing time for the secondary mixing can be, for example, 10 hours or more and 15 hours or less in the case of a ball mill. In the case of a jet mill, for example, it can be 1 hour or more and 2 hours or less.
  • the solvent is removed by air drying after mixing. Thereafter, a heat treatment is performed to volatilize impurities such as moisture adsorbed on the surface of the mixed powder, thereby cleaning the surface of the mixed powder.
  • the binder raw material powder and the cBN powder were dispersed and mixed in a solvent from the beginning. Therefore, the mixing time of the cBN powder is long (for example, 20 hours or more and 30 hours or less with a ball mill, and more than 2 hours and 4 hours or less with a jet mill), and strain is easily introduced into the cBN powder. Strain in cBN powder contributes to voids in cubic boron nitride sintered bodies.
  • the mixing step of the present embodiment includes primary mixing in which only the binder raw material powder is mixed and pulverized, and secondary mixing in which the cBN powder is added to the dispersion of the binder raw material powder after the primary mixing and mixed. including.
  • primary mixing in which only the binder raw material powder is mixed and pulverized
  • secondary mixing in which the cBN powder is added to the dispersion of the binder raw material powder after the primary mixing and mixed.
  • the mixed powder is filled in a Ta (tantalum) container while being in contact with a WC-6% Co cemented carbide disk and a Co (cobalt) foil, and vacuum-sealed.
  • the mixed powder filled in the Ta container is pressurized to a pressure of 5 GPa or more and 7 GPa or less using a belt-type ultrahigh pressure and high temperature generator, and then heated to a temperature of 1300 ° C. or more and 1500 ° C. or less. and temperature conditions for 15 minutes to 30 minutes for sintering. Thereby, the cubic boron nitride sintered body of the present embodiment is produced.
  • the present inventors have newly discovered that the lower the pressure after pressurization, the lower the void content of the cubic boron nitride sintered body. It is presumed that this is because when the pressure after pressurization is low, the cBN powder is less likely to be crushed. In addition, the inventors have newly found that the void content decreases when the temperature after heating is high. This is presumed to be due to grain growth when the temperature after heating is high. Therefore, the void content of the cubic boron nitride sintered body can be reduced to a desired range by appropriately adjusting the pressure and temperature conditions after heating and pressurization.
  • the above sintering process can also be performed by dividing the heating and pressurizing process into two stages. Specifically, the mixed powder filled in the Ta container is pressurized (primary pressure) to a primary pressure of 2 GPa or more and 4 GPa or less, and then heated to a primary temperature of 500 ° C. or more and 1000 ° C. or less (1 secondary heating), and held for 3 minutes or more and 30 minutes or less under the pressure and temperature conditions after heating and pressurization (primary holding). Subsequently, after pressurizing from the pressure to a secondary pressure of 5 GPa or higher and 7 GPa or lower (secondary pressure), the secondary temperature is heated to 1300 ° C. or higher and 1500 ° C.
  • the present inventors have newly found that the void content of the cubic boron nitride sintered body is reduced by performing the pressurizing and heating process in two stages. It is presumed that this is because by dividing the pressurization process into two stages, the amount of increase in pressure applied to the cBN powder in each of the primary pressurization and the secondary pressurization is reduced, and the cBN powder is less likely to be crushed. be. Conventionally, the heating and pressurizing process was not performed in two stages due to the inconvenience of an increase in manufacturing time.
  • the cubic boron nitride sintered body of the present embodiment is composed of 30% by volume or more and 80% by volume or less of cubic boron nitride particles, 0.01% by volume or more and 0.20% by volume or less of voids, and the balance of a binder. is preferred.
  • the cubic boron nitride sintered body of the present embodiment includes 30% by volume or more and 80% by volume or less of cubic boron nitride particles, 0.01% by volume or more and 0.20% by volume or less of voids, and 19.8% by volume or more and 69 It is preferable to consist of a binder of 0.99% by volume or less.
  • the cubic boron nitride sintered body of the present embodiment is composed of 40% by volume or more and 78% by volume or less of cubic boron nitride particles, 0.01% by volume or more and 0.11% by volume or less of voids, and the balance of a binder. is preferred.
  • the cubic boron nitride sintered body of the present embodiment includes cubic boron nitride particles of 40% by volume or more and 78% by volume or less, voids of 0.01% by volume or more and 0.11% by volume or less, and 21.89% by volume or more and 59 It is preferable to consist of a binder of 0.99% by volume or less.
  • the cubic boron nitride sintered body of the present embodiment is composed of 50% by volume or more and 75% by volume or less of cubic boron nitride particles, 0.03% by volume or more and 0.09% by volume or less of voids, and the balance of a binder. is preferred.
  • the cubic boron nitride sintered body of the present embodiment includes 50% by volume or more and 75% by volume or less of cubic boron nitride particles, 0.03% by volume or more and 0.09% by volume or less of voids, and 24.91% by volume or more and 49 0.94% by volume or less is preferred.
  • the cubic boron nitride powder described in the "cBN powder No.” Got ready.
  • the raw material powder for the binder at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt and nickel of the periodic table, and nitrogen, carbon and boron. and at least one element selected from the group consisting of oxygen.
  • the compound was used alone or in combination of two or more.
  • the average particle size of each binder material powder is 1 ⁇ m.
  • the amounts of the cBN powder and the binder material powder were adjusted so that the content of cBN particles in the cubic boron nitride sintered body to be produced was the percentage described in the "cBN particles [volume %]" column of Table 3. .
  • the binder raw material powder pulverized by primary mixing was dispersed in ethanol to obtain a dispersion liquid.
  • the cBN powder prepared above is added to the dispersion and mixed by the method described in the "mixing method” column in Table 2 for the time described in the "secondary mixing [hr]” column to obtain a mixed powder. obtained (“secondary mixture”).
  • the solvent was then removed by air drying.
  • the binder raw material powder was mixed and pulverized in a ball mill for 12 hours (primary mixing).
  • the binder raw material powder was dispersed in ethanol to obtain a dispersion, and cBN powder was added to the dispersion and mixed for 12 hours in a ball mill to obtain a mixed powder (secondary mixing).
  • the solvent was then removed by air drying.
  • the mixed powder is filled in a Ta (tantalum) container while being in contact with a WC-6% Co cemented carbide disk and a Co (cobalt) foil, and vacuum-sealed.
  • the mixed powder filled in the Ta container is pressurized to the pressure described in the "sintering pressure [GPa]” column of Table 2 using a belt-type ultrahigh pressure and high temperature generator, and then "sintering temperature [°C ]” column, and sintered for the time described in the “sintering time [min]” column under the pressure and temperature conditions after pressurized heating to form a cubic boron nitride sintered body. Obtained.
  • the mixed powder is pressurized to 7 GPa using a belt-type ultrahigh pressure and high temperature generator, heated to 1500 ° C., held at the pressure temperature for 15 minutes and sintered to cubic nitriding. A boron sintered body was obtained.
  • the “remainder” in the “Binder [vol%]” column is the cBN grain content (vol%) and void content (vol%) subtracted from the entire cubic boron nitride sintered body (100vol%). The remainder is the binder content.
  • a cutting tool (base material shape: CNGA120408) was produced using the cBN sintered body of each produced sample. Using this, a cutting test was carried out under the following cutting conditions. The following cutting conditions apply to cutting sintered alloys. Work material: Carburized SCM415 (HRC60) round bar with a diameter of 100 mm Cutting speed: 150 m/min. Feeding speed: 0.15 mm/rev. Notch: 0.5mm Coolant: WET Cutting method: Outer diameter continuous cutting Evaluation method: Calculate the cutting distance (km) until chipping. A longer cutting distance indicates better chipping resistance and longer tool life. The results are shown in the "cutting test" column of Table 3.
  • the binder raw material powder pulverized by primary mixing was dispersed in ethanol to obtain a dispersion liquid.
  • the cBN powder prepared above is added to the dispersion and mixed by the method described in the "mixing method” column in Table 4 for the time described in the "secondary mixing [hr]” column to obtain a mixed powder. obtained (“secondary mixture”).
  • the solvent was then removed by air drying.
  • the binder raw material powder was mixed and pulverized in a ball mill for 12 hours (primary mixing).
  • the binder raw material powder was dispersed in ethanol to obtain a dispersion, and cBN powder was added to the dispersion and mixed for 24 hours in a ball mill to obtain a mixed powder (secondary mixing).
  • the solvent was then removed by air drying.
  • the mixed powder is filled in a Ta (tantalum) container while being in contact with a WC-6% Co cemented carbide disk and a Co (cobalt) foil, and vacuum-sealed.
  • the mixed powder filled in the Ta container was pressurized (primary pressurization) using a belt-type ultrahigh pressure and high temperature generator to the pressure described in the "primary pressure [GPa]” column of Table 4, It was heated to the temperature described in the "primary temperature [°C]” column (primary heating), and was held for the time described in the "primary retention time [min]” column under the pressure and temperature conditions after pressurized heating ( primary retention).
  • the mixed powder was pressurized to 3 GPa (primary pressurization) using a belt-type ultrahigh pressure and high temperature generator, and then heated to 1000 ° C. (primary heating). minutes (primary hold). Subsequently, after pressurizing to 5 GPa (secondary pressure), heating to 1300 ° C. (secondary heating) and holding at this pressure temperature for 15 minutes (secondary holding), a cubic boron nitride sintered body was obtained. Obtained.
  • Binder [% by volume] refers to the content of cBN particles (% by volume) and the content of voids (% by volume) subtracted from the entire cubic boron nitride sintered body (100% by volume). The remainder is the binder content.

Abstract

立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、前記立方晶窒化硼素焼結体の前記立方晶窒化硼素粒子の含有率は、30体積%以上80体積%以下であり、前記結合材は、周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる第1群より選ばれる1種の元素の単体、並びに、前記第1群より選ばれる2種以上の元素からなる合金及び金属間化合物、からなる第2群より選ばれる少なくとも1種を含み、又は前記第1群より選ばれる1種の元素と、窒素、炭素、硼素及び酸素からなる第3群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物の固溶体、からなる第4群より選ばれる少なくとも1種を含み、前記立方晶窒化硼素焼結体の空隙の含有率は、0.001体積%以上0.20体積%以下である。

Description

立方晶窒化硼素焼結体
 本開示は、立方晶窒化硼素焼結体に関する。
 切削工具等に用いられる高硬度材料として、立方晶窒化硼素焼結体(以下、「cBN焼結体」ともいう。)がある(特許文献1、特許文献2)。
特開2016-107396号公報 国際公開第2007/010670号
 本開示は、立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
 前記立方晶窒化硼素焼結体の前記立方晶窒化硼素粒子の含有率は、30体積%以上80体積%以下であり、
 前記結合材は、
 周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる第1群より選ばれる1種の元素の単体、並びに、前記第1群より選ばれる2種以上の元素からなる合金及び金属間化合物、からなる第2群より選ばれる少なくとも1種を含み、又は
 前記第1群より選ばれる1種の元素と、窒素、炭素、硼素及び酸素からなる第3群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物の固溶体、からなる第4群より選ばれる少なくとも1種を含み、
 前記立方晶窒化硼素焼結体の空隙の含有率は、0.001体積%以上0.20体積%以下である、立方晶窒化硼素焼結体である。
図1は、実施形態1に係る立方晶窒化硼素焼結体の反射電子像である。
 [本開示が解決しようとする課題]
 近年、高能率加工への要求が高まっている。立方晶窒化硼素を用いた工具で高能率加工を行った場合、欠損により工具寿命が短くなる場合がある。よって、工具材料として用いた場合、該工具が高能率加工においても長い工具寿命を有することができる立方晶窒化硼素焼結体が求められている。
 そこで、本開示は、工具材料として用いた場合、該工具が高能率加工においても長い工具寿命を有することができる立方晶窒化硼素焼結体を提供することを目的とする。
 [本開示の効果]
 本開示の立方晶窒化硼素焼結体を工具材料として用いた場合、該工具は高能率加工においても長い工具寿命を有することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示は、立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
 前記立方晶窒化硼素焼結体の前記立方晶窒化硼素粒子の含有率は、30体積%以上80体積%以下であり、
 前記結合材は、
 周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる第1群より選ばれる1種の元素の単体、並びに、前記第1群より選ばれる2種以上の元素からなる合金及び金属間化合物、からなる第2群より選ばれる少なくとも1種を含み、又は
 前記第1群より選ばれる1種の元素と、窒素、炭素、硼素及び酸素からなる第3群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物の固溶体、からなる第4群より選ばれる少なくとも1種を含み、
 前記立方晶窒化硼素焼結体の空隙の含有率は、0.001体積%以上0.20体積%以下である、立方晶窒化硼素焼結体である。
 本開示の立方晶窒化硼素焼結体を工具材料として用いた場合、該工具は高能率加工においても長い工具寿命を有することができる。
 (2)前記空隙の円相当径の平均は、3nm以上60nm以下であることが好ましい。これによると、工具寿命が更に向上する。
 (3)前記立方晶窒化硼素焼結体は、複数の前記空隙を含み、
 前記空隙間の距離の平均は、1.5μm以上15μm以下であることが好ましい。これによると、工具寿命が更に向上する。
 (4)前記立方晶窒化硼素焼結体の前記立方晶窒化硼素粒子の含有率は、40体積%以上75体積%以下であることが好ましい。これによると、工具寿命が更に向上する。
 [本開示の実施形態の詳細]
 本開示の立方晶窒化硼素焼結体の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「TiAlN」と記載されている場合、TiAlNを構成する原子数の比は、従来公知のあらゆる原子比が含まれる。
 [実施形態1:立方晶窒化硼素焼結体]
 本開示の一実施形態(以下、「本実施形態」とも記す。)の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
 該立方晶窒化硼素焼結体の該立方晶窒化硼素粒子の含有率は、30体積%以上80体積%以下であり、
 該結合材は、
 周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる第1群より選ばれる1種の元素の単体、並びに、前記第1群より選ばれる2種以上の元素からなる合金及び金属間化合物、からなる第2群より選ばれる少なくとも1種を含み、又は
 前記第1群より選ばれる1種の元素と、窒素、炭素、硼素及び酸素からなる第3群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物の固溶体、からなる第4群より選ばれる少なくとも1種を含み、
 該立方晶窒化硼素焼結体の空隙の含有率は、0.001体積%以上0.20体積%以下である、立方晶窒化硼素焼結体である。
 本実施形態の立方晶窒化硼素焼結体を工具材料として用いた場合、該工具は高能率加工においても長い工具寿命を有することができる。この理由は、以下(i)~(iii)の通りと推察される。
 (i)本実施形態の立方晶窒化硼素焼結体は、優れた強度及び靱性を有する立方晶窒化硼素粒子を30体積%以上80体積%以下含む。このため、立方晶窒化硼素焼結体も優れた強度及び靱性を有することができる。従って、該立方晶窒化硼素焼結体は、優れた耐摩耗性及び耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 (ii)本実施形態の立方晶窒化硼素焼結体に含まれる結合材は、立方晶窒化硼素粒子に対する結合力が特に高い。従って、該立方晶窒化硼素焼結体は、優れた耐摩耗性及び耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 (iii)立方晶窒化硼素焼結体を用いた工具を高能率加工に用いた場合、刃先温度が高くなる。立方晶窒化硼素粒子と結合材とは熱膨張係数が異なるため、熱サイクルにより亀裂が発生しやすく、欠損が生じやすい。立方晶窒化硼素焼結体中に空隙が存在すると、該空隙が立方晶窒化硼素粒子と結合材との熱膨張係数の差を吸収するため、亀裂の発生が抑制される。一方、立方晶窒化硼素焼結体中の空隙の含有率が大きすぎると、該空隙自体が亀裂の起点となる傾向がある。
 立方晶窒化硼素焼結体の空隙の含有率が0.001体積%以上0.20体積%以下であると、空隙による上記の熱膨張係数の差の吸収効果を得られるとともに、空隙自体が亀裂の起点となることを抑制できる。すなわち、立方晶窒化硼素焼結体の空隙の含有率が0.001体積%以上0.20体積%以下であると、亀裂の発生が効果的に抑制される。よって、空隙の含有率が0.001体積%以上0.20体積%以下である本実施形態の立方晶窒化硼素焼結体を用いた工具は、耐欠損性に優れ、長い工具寿命を有することができる。これは、本発明者らが鋭意検討の結果、新たに見出した知見である。
 <立方晶窒化硼素粒子、空隙及び結合材の含有率>
 本実施形態の立方晶窒化硼素焼結体は、30体積%以上80体積%以下の立方晶窒化硼素粒子と、結合材と、を備える。本実施形態の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材とからなることができる。なお立方晶窒化硼素焼結体は、使用する原材料、製造条件等に起因する不可避不純物を含み得る。立方晶窒化硼素焼結体の不可避不純物の含有率(質量%)は、1質量%以下とすることができる。本実施形態の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、不可避不純物とからなることができる。
 立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率の下限は、強度及び靭性向上の観点から、30体積%以上であり、40体積%以上が好ましく、50体積%以上がより好ましい。立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率の上限は、耐摩耗性及び耐欠損性向上の観点から、80体積%以下であり、78体積%以下が好ましく、75体積%以下が好ましい。立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率は、30体積%以上80体積%以下であり、40体積%以上78体積%以下が好ましく、50体積%以上75体積%以下が更に好ましい。
 立方晶窒化硼素焼結体の空隙の含有率は、0.001体積%以上0.20体積%以下である。立方晶窒化硼素焼結体の空隙の含有率の下限は、立方晶窒化硼素粒子と結合材との熱膨張係数の差の吸収効果を得るという観点から、0.001体積%以上であり、0.01体積%以上が好ましく、0.03体積%以上が好ましい。立方晶窒化硼素焼結体の空隙の含有率の上限は、空隙が亀裂の起点となることを抑制するという観点から、0.20体積%以下であり、0.11体積%以下が好ましく、0.09体積%以下が好ましい。立方晶窒化硼素焼結体の空隙の含有率は、0.001体積%以上0.20体積%以下であり、0.01体積%以上0.11体積%以下が好ましく、0.03体積%以上0.09体積%以下が好ましい。
 本実施形態の立方晶窒化硼素焼結体全体の体積は、立方晶窒化硼素粒子、結合材及び空隙の体積の合計とすることができる。従って、立方晶窒化硼素焼結体の結合材の含有率(体積%)は、立方晶窒化硼素焼結体全体(100体積%)から、上記の立方晶窒化硼素粒子の含有率(体積%)及び上記の空隙の含有率(体積%)を減じた値とすることができる。例えば、立方晶窒化硼素粒子の含有率が70体積%であり、空隙の含有率が0.01体積%の場合、結合材の含有率は、29.99体積%である。
 立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率(体積%)、空隙の含有率(体積%)及び結合材の含有率(体積%)は、以下の方法で測定される。
 (A1)立方晶窒化硼素焼結体の任意の位置を切断し、立方晶窒化硼素焼結体の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置又はクロスセクションポリッシャ装置等を用いる。
 (B1)次に、上記断面をSEMにて10000倍で観察して、反射電子像及び二次電子像を得る。観察倍率を10000倍とすることにより、立方晶窒化硼素焼結体中の空隙を明確に特定することができる。反射電子像においては、空隙の存在する領域が黒色領域となり、立方晶窒化硼素粒子の存在する領域が濃い灰色領域となり、結合材の存在する領域が薄い灰色領域または白色領域となる。二次電子像では、空隙が存在する領域は凹部領域となる。反射電子像における黒色領域(空隙の存在する領域)と、二次電子像における凹部領域(空隙の存在する領域)とを照合することにより、反射電子像において空隙の存在する領域を特定する。
 本実施形態の立方晶窒化硼素焼結体の反射電子像を図1に示す。図1において、符号1で示される黒色領域が空隙に該当する。図1において、符号2で示される濃い灰色領域が立方晶窒化硼素粒子に該当し、符号3で示される薄い灰色領域または白色領域が結合材に該当する。
 (C1)次に、上記反射電子像に対して画像解析ソフト(三谷商事(株)の「WinROOF」)を用いて第1の二値化処理を行う。第1の二値化処理では、上記反射電子像の撮影の際に、画像輝度値を256に分割し(低輝度:0,高輝度:255)、上記で特定した空隙の存在する領域の輝度値が0以上30以下の範囲内となり、立方晶窒化硼素粒子の存在する領域の輝度値が30超になるように設定する。これにより、空隙の存在する領域を抽出することができる。第1の二値化処理後の画像中に12μm×9μmの測定領域を任意に設定する。該測定領域において、空隙の存在する領域の面積比率を算出する。算出された面積比率を体積%とみなすことにより、立方晶窒化硼素焼結体の空隙の含有率(体積%)を求めることができる。上記の第1の二値化処理での閾値設定を行うと、同一視野を測定する限りでは、空隙の含有率にばらつきは生じない。
 (D1)次に、上記反射電子像に対して上記の画像解析ソフトを用いて、該画像解析ソフトに予め設定された条件で、第2の二値化処理を行う。第2の二値化処理後の画像において、明視野に由来する画素は、結合材の存在する領域を示す。すなわち、第2の二値化処理によって、結合材の存在する領域を抽出することができる。第2の二値化処理後の画像中に12μm×9μmの測定領域を設定する。該測定領域において、結合材の存在する領域の面積比率を算出する。算出された面積比率を体積%とみなすことにより、立方晶窒化硼素焼結体の結合材の含有率(体積%)を求めることができる。上記の第2の二値化処理を行うと、同一視野を測定する限りでは、結合材の含有率にばらつきは生じない。
 (E1)立方晶窒化硼素焼結体全体(100体積%)から、空隙の含有率及び結合材の含有率を減じることにより、立方晶窒化硼素粒子の含有率(体積%)を求めることができる。
 上記(A1)~(E1)を異なる10の測定領域で行い、各測定領域において、立方晶窒化硼素粒子の含有率(体積%)、空隙の含有率(体積%)及び結合材の含有率(体積%)を測定する。10の測定領域の立方晶窒化硼素粒子の含有率(体積%)の平均を、本実施形態の立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率(体積%)とする。10の測定領域の空隙の含有率(体積%)の平均を、本実施形態の立方晶窒化硼素焼結体の空隙の含有率(体積%)とする。10の測定領域の結合材の含有率(体積%)の平均を、本実施形態の立方晶窒化硼素焼結体の結合材の含有率(体積%)とする。
 同一の試料で上記の測定を行う限り、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定領域を設定しても恣意的にはならないことが確認されている。
 <空隙の円相当径>
 本実施形態の立方晶窒化硼素焼結体において、空隙の円相当径の平均は、3nm以上60nm以下であることが好ましい。これによると、工具寿命が更に向上する。この理由は、立方晶窒化硼素焼結体中に存在する空隙の数が多くなり、亀裂の発生が更に効果的に抑制されるためと推察される。
 空隙の円相当径の下限は、立方晶窒化硼素粒子と結合材との熱膨張係数の差の吸収効果の向上の観点から、3nm以上が好ましく、3.5nm以上が好ましく、4nm以上が好ましく、5nm以上が好ましく、10nm以上が好ましい。空隙の円相当径の上限は、空隙数の増加の観点から、60nm以下が好ましく、55nm以下が好ましく、50nm以下が好ましい。空隙の円相当径は、3nm以上60nm以下が好ましく、3nm以上55nm以下が好ましく、3nm以上50nm以下が好ましく、3.5nm以上60nm以下が好ましく、3.5nm以上55nm以下が好ましく、3.5nm以上50nm以下が好ましく、4nm以上60nm以下が好ましく、4nm以上55nm以下が好ましく、4nm以上50nm以下が好ましく、5nm以上60nm以下が好ましく、5nm以上55nm以下が好ましく、5nm以上50nm以下が好ましく、10nm以上60nm以下が好ましく、10nm以上55nm以下が好ましく、10nm以上50nm以下が好ましい。
 本明細書において、空隙の円相当径とは、立方晶窒化硼素焼結体の断面に観察される空隙の円相当径を意味する。該空隙の円相当径は、以下の方法で測定される。まず、上記の立方晶窒化硼素焼結体の空隙の含有率の測定方法の(A1)~(C1)と同様の手順で、立方晶窒化硼素焼結体の断面の反射電子像と二次電子像とを照合することにより、反射電子像において空隙の存在する領域(以下、「空隙領域」とも記す。)を特定し、更に、反射電子像に対して上記第1の二値化処理を行うことにより、空隙領域を抽出する。二値化処理後の画像中に測定領域(12μm×9μm)を設定する。該測定領域において、上記画像処理ソフトを用いて各空隙領域の円相当径(等面積円の直径)を算出する。空隙領域の形状から、2つ以上の空隙領域がつながっていると考えられる場合は、該空隙領域は1つと見做して、円相当径を算出する。測定領域内の全空隙領域の円相当径の平均を、該測定領域における空隙の円相当径とする。ここで、円相当径の平均とは、円相当径の個数基準の算術平均径を意味する。該測定領域中に存在する空隙が1つの場合は、該1つの空隙の円相当径を円相当径の平均と見做す。該円相当径の平均の測定を異なる10の測定領域で行う。10の測定領域の測定値の平均を、本実施形態の立方晶窒化硼素焼結体における空隙の円相当径の平均とする。
 同一の試料で上記の測定を行う限り、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定領域を設定しても恣意的にはならないことが確認されている。
 <空隙間の距離>
 本実施形態の立方晶窒化硼素焼結体は、複数の空隙を含み、空隙間の距離の平均は、1.5μm以上15μm以下が好ましい。これによると、工具寿命が更に向上する。この理由は、立方晶窒化硼素焼結体において空隙が分散して存在し、立方晶窒化硼素焼結体の全領域で略均一に亀裂の発生が抑制されるためと推察される。
 空隙間の距離の下限は、空隙の分散性向上の観点から、1.5μm以上が好ましく、3μm以上が好ましく、5μm以上が好ましい。空隙間の距離の上限は、亀裂発生抑制効果を得るという観点から、15μm以下が好ましく、14μm以下が好ましく、13μm以下が好ましい。空隙間の距離は、1.5μm以上15μm以下が好ましく、3μm以上14μm以下がより好ましく、5μm以上13μm以下が更に好ましい。
 本明細書において、空隙間の距離は、以下の方法で測定される。上記の立方晶窒化硼素焼結体の空隙の含有率の測定方法の(A1)~(C1)と同様の手順で、立方晶窒化硼素焼結体の断面の反射電子像と二次電子像とを照合することにより、反射電子像において空隙の存在する領域(以下、「空隙領域」とも記す。)を特定し、更に、反射電子像に対して上記第1の二値化処理を行うことにより、空隙領域を抽出する。二値化処理後の画像中に測定領域(12μm×9μm)を設定する。該測定領域において、上記画像処理ソフトを用いて各空隙領域の重心位置を導出する。求めた重心座標を母点とみなし、ボロノイ分割処理を行って各ボロノイ領域を計算する。1つのボロノイ領域(以下、第1のボロノイ領域)と、該第1のボロノイ領域に隣接するボロノイ領域(以下、第2のボロノイ領域)とについて、母点の重心座標同士を結ぶ線分の長さを計算する。該線分の長さを、第1ボロノイ領域と第2ボロノイ領域との距離とする。第1のボロノイ領域に複数のボロノイ領域が隣接する場合は、第1のボロノイ領域と、それに隣接する複数のボロノイ領域のそれぞれとについて、上記線分の長さを計算する。測定視野中の全てのボロノイ領域について、同様の方法で、隣接するボロノイ領域間の上記線分の長さを計算する。測定視野中の全てのボロノイ領域間の線分の長さの平均を、上記測定領域における空隙間の距離の平均とする。該空隙間の距離の平均の測定を異なる10の測定領域で行う。10の測定領域の測定値の平均を、本実施形態の立方晶窒化硼素焼結体における空隙間の距離の平均とする。
 同一の試料で上記の測定を行う限り、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定領域を設定しても恣意的にはならないことが確認されている。
 <立方晶窒化硼素粒子>
 立方晶窒化硼素粒子は、硬度、強度、靱性が高く、立方晶窒化硼素焼結体中の骨格としての役割を果たす。立方晶窒化硼素粒子の平均粒径(円相当径のD50)は、工具寿命向上の観点から、0.4μm以上10μm以下が好ましく、0.5μm以上6μm以下が更に好ましい。
 立方晶窒化硼素粒子の平均粒径は、以下の方法で測定される。上記の立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率の測定方法の(A1)~(D1)と同様の手順で、反射電子像において空隙領域及び結合材の存在する領域(以下、「結合材領域」とも記す。)を抽出し、全領域から空隙領域及び結合材領域を除いた領域を立方晶窒化硼素粒子の存在する領域(以下、「立方晶窒化硼素粒子領域」とも記す)として特定する。二値化処理後の画像中に測定領域(12μm×9μm)を設定する。該測定領域において、各立方晶窒化硼素粒子領域の円相当径を算出する。測定領域内の全ての立方晶窒化硼素粒子領域の円相当径の平均を、該測定領域における立方晶窒化硼素粒子の平均粒径とする。ここで、円相当径の平均とは、円相当径のメジアン径D50(個数基準の頻度の累積が50%となる円相当径)を意味する。該平均粒径の測定を異なる10の測定領域で行う。10の測定領域の測定値の平均を、本実施形態の立方晶窒化硼素焼結体における立方晶窒化硼素粒子の平均粒径とする。
 同一の試料で上記の測定を行う限り、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定領域を設定しても恣意的にはならないことが確認されている。
 <結合材>
 結合材は、難焼結性材料である立方晶窒化硼素粒子を工業レベルの圧力温度で焼結可能とする役割を果たす。また、鉄との反応性がcBNより低いため、高硬度焼入鋼の切削において、化学的摩耗及び熱的摩耗を抑制する働きを付加する。また、cBN焼結体が結合材を含有すると、高硬度焼入鋼の高能率加工における耐摩耗性が向上する。
 本開示のcBN焼結体において、結合材は、
 周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる第1群より選ばれる1種の元素の単体、並びに、該第1群より選ばれる2種以上の元素からなる合金及び金属間化合物、からなる第2群より選ばれる少なくとも1種を含み、又は
 該第1群より選ばれる1種の元素と、窒素、炭素、硼素及び酸素からなる第3群より選ばれる少なくとも1種の元素とからなる化合物、及び、該化合物の固溶体、からなる第4群より選ばれる少なくとも1種を含む。すなわち、結合材は、下記の(a)~(f)のいずれかの形態とすることができる。
 (a)第2群より選ばれる少なくとも1種からなる。
 (b)第2群より選ばれる少なくとも1種を含む。
 (c)第4群より選ばれる少なくとも1種からなる。
 (d)第4群より選ばれる少なくとも1種を含む。
 (e)第2群より選ばれる少なくとも1種、並びに、第4群より選ばれる少なくとも1種からなる。
 (f)第2群より選ばれる少なくとも1種、並びに、第4群より選ばれる少なくとも1種を含む。
 ここで、周期表の第4族元素は、例えば、チタン(Ti)、ジルコニウム(Zr)及びハフニウム(Hf)を含む。第5族元素は、例えば、バナジウム(V)、ニオブ(Nb)及びタンタル(Ta)を含む。第6族元素は、例えば、クロム(Cr)、モリブデン(Mo)及びタングステン(W)を含む。以下、第4族元素、第5族元素、第6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる第1群に含まれる元素を「第1元素」とも記す。
 第1元素の合金は、例えばTi-Zr、Ti-Hf、Ti-V、Ti-Nb、Ti-Ta、Ti-Cr、Ti-Moが挙げられる。第1元素の金属間化合物は、例えば、TiCr、TiAl、Co-Alが挙げられる。
 上記の第1元素と窒素とを含む化合物(窒化物)としては、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(CrN)、窒化モリブデン(MoN)、窒化タングステン(WN)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、窒化コバルト(CoN)、窒化ニッケル(NiN)、窒化チタンジルコニウム(TiZrN)、窒化チタンハフニウム(TiHfN)、窒化チタンバナジウム(TiVN)、窒化チタンニオブ(TiNbN)、窒化チタンタンタル(TiTaN)、窒化チタンクロム(TiCrN)、窒化チタンモリブデン(TiMoN)、窒化チタンタングステン(TiWN)、窒化チタンアルミニウム(TiAlN、TiAlN、TiAlN)、窒化ジルコニウムハフニウム(ZrHfN)、窒化ジルコニウムバナジウム(ZrVN)、窒化ジルコニウムニオブ(ZrNbN)、窒化ジルコニウムタンタル(ZrTaN)、窒化ジルコニウムクロム(ZrCrN)、窒化ジルコニウムモリブデン(ZrMoN)、窒化ジルコニウムタングステン(ZrWN)、窒化ハフニウムバナジウム(HfVN)、窒化ハフニウムニオブ(HfNbN)、窒化ハフニウムタンタル(HfTaN)、窒化ハフニウムクロム(HfCrN)、窒化ハフニウムモリブデン(HfMoN)、窒化ハフニウムタングステン(HfWN)、窒化バナジウムニオブ(VNbN)、窒化バナジウムタンタル(VTaN)、窒化バナジウムクロム(VCrN)、窒化バナジウムモリブデン(VMoN)、窒化バナジウムタングステン(VWN)、窒化ニオブタンタル(NbTaN)、窒化ニオブクロム(NbCrN)、窒化ニオブモリブデン(NbMoN)、窒化ニオブタングステン(NbWN)、窒化タンタルクロム(TaCrN)、窒化タンタルモリブデン(TaMoN)、窒化タンタルタングステン(TaWN)、窒化クロムモリブデン(CrMoN)、窒化クロムタングステン(CrWN)、窒化モリブデンクロム(MoCrN)を挙げることができる。
 上記の第1元素と炭素とを含む化合物(炭化物)としては、例えば、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化バナジウム(VC)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化クロム(Cr)、炭化モリブデン(MoC)、炭化タングステン(WC)、炭化ケイ素(SiC)、炭化タングステン-コバルト(WCoC)を挙げることができる。
 上記の第1元素と硼素とを含む化合物(硼化物)としては、例えば、硼化チタン(TiB)、硼化ジルコニウム(ZrB)、硼化ハフニウム(HfB)、硼化バナジウム(VB)、硼化ニオブ(NbB)、硼化タンタル(TaB)、硼化クロム(CrB)、硼化モリブデン(MoB)、硼化タングステン(WB)、硼化アルミニウム(AlB)、硼化コバルト(CoB)、硼化ニッケル(NiB)を挙げることができる。
 上記の第1元素と酸素とを含む化合物(酸化物)としては、例えば、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化クロム(Cr)、酸化モリブデン(MoO)、酸化タングステン(WO)、酸化アルミニウム(Al)、酸化ケイ素(SiO)、酸化コバルト(CoO)、酸化ニッケル(NiO)を挙げることができる。
 上記の第1元素と炭素と窒素とを含む化合物(炭窒化物)としては、例えば、炭窒化チタン(TiCN)、炭窒化ジルコニウム(ZrCN)、炭窒化ハフニウム(HfCN)、炭窒化チタンニオブ(TiNbCN)、炭窒化チタンジルコニウム(TiZrCN)、炭窒化チタンハフニウム(TiHfCN)、炭窒化チタンタンタル(TiTaCN)、炭窒化チタンクロム(TiCrCN)を挙げることができる。
 上記の第1元素と酸素と窒素とからなる化合物(酸窒化物)としては、例えば、酸窒化チタン(TiON)、酸窒化ジルコニウム(ZrON)、酸窒化ハフニウム(HfON)、酸窒化バナジウム(VON)、酸窒化ニオブ(NbON)、酸窒化タンタル(TaON)、酸窒化クロム(CrON)、酸窒化モリブデン(MoON)、酸窒化タングステン(WON)、酸窒化アルミニウム(AlON)、酸窒化ケイ素(SiAlON)を挙げることができる。
 上記化合物の固溶体とは、2種類以上のこれらの化合物が互いの結晶構造内に溶け込んでいる状態を意味し、侵入型固溶体や置換型固溶体を意味する。
 上記化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。
 結合材の上記第2群より選ばれる少なくとも1種及び上記第4群より選ばれる少なくとも1種の合計含有量(以下、「第2群及び第4群の合計含有量」)の下限は、50体積%以上が好ましく、60体積%以上がより好ましく、70体積%以上が更に好ましい。結合材の第2群及び第4群の合計含有量の上限は、80体積%以下が好ましく、90体積%以下がより好ましく、100体積%が最も好ましい。結合材の第2群及び第4群の合計含有量は50体積%以上80体積%以下が好ましく、60体積%以上90体積%以下がより好ましく、70体積%以上100体積%以下が更に好ましい。
 結合材の第2群及び第4群の合計含有量は、XRDによるRIR法(Reference Intensity Ratio)により測定される。
 結合材は、上記の第2群及び第4群の他に、他の成分を含んでいてもよい。他の成分を構成する元素としては、例えば、マンガン(Mn)、レニウム(Re)を挙げることができる。
 cBN焼結体に含まれる結合材の組成は、XRD(X線回折測定、X-ray Diffraction)により特定することができる。
 <用途>
 本開示の立方晶窒化硼素焼結体は、切削工具、耐摩工具、研削工具などに用いることが好適である。
 本開示の立方晶窒化硼素焼結体を用いた切削工具、耐摩工具および研削工具はそれぞれ、その全体が立方晶窒化硼素焼結体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが立方晶窒化硼素焼結体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
 切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
 耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
 [実施形態2:立方晶窒化硼素焼結体の製造方法]
 本開示の立方晶窒化硼素焼結体は、例えば、下記の方法で作製することができる。
 <原料準備工程>
 まず、立方晶窒化硼素粉末(以下、「cBN粉末」ともいう。)と、結合材原料粉末とを準備する。
 cBN粉末とは、cBN焼結体に含まれる立方晶窒化硼素粒子(以下、「cBN粒子」ともいう。)の原料粉末である。cBN粉末は、特に限定されず、公知のcBN粉末を用いることができる。中でも、cBN粉末は、六方晶窒化硼素粉末を、触媒であるLiCaBNの存在下で立方晶窒化硼素の熱力学的安定領域内で保持して、立方晶窒化硼素粉末に変換させて得られたものであることが好ましい。
 cBN粉末のD50(平均粒径)は特に限定されず、例えば、0.1~12.0μmとすることができる。
 上記cBN粉末を結合材の成分で被覆することが好ましい。例えば、cBN粉末の表面に、スパッタリング又はイオンプレーティングにより、TiN、TiAlN、Al又はAl等の結合材の成分からなる被膜を形成することが好ましい。これによると、立方晶窒化硼素焼結体の空隙含有率が低減する。これは、焼結時に立方晶窒化硼素粒子間の空隙が埋まりやすいためと推察される。
 上記被膜は、cBN粉末の表面の全面に設けられていても良い。また、上記被膜は、cBN粉末の表面の少なくとも一部に設けられていても良い。
 上記被膜の膜厚は、例えば、0.15μm以上0.25m以下が好ましい。これによると、立方晶窒化硼素焼結体の空隙含有率が更に低減する。該被膜の膜厚は、粉末断面のSEM-EDXにより測定される。
 結合材原料粉末とは、cBN焼結体に含まれる結合材の原料粉末である。結合材原料粉末は、結合材を構成する成分の少なくとも一部と同一の組成とすることができる。結合材原料粉末としては、周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素の単体、又は、該元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素と、からなる化合物を用いることができる。例えば、結合材原料粉末として、実施形態1に結合材として記載される各種化合物からなる粉末を用いることができる。より具体的には、TiN粉末、ZrN粉末、WN粉末、VN粉末、Ni粉末、Si粉末、TiCN粉末、TaN粉末、NbN粉末、MoN粉末、HfN粉末、CrN粉末等を用いることができる。結合材原料粉末は、特に限定されず、従来公知の方法で準備することができる。
 <混合工程>
 次に、上記で準備した結合材原料粉末を混合して粉砕する(以下、「1次混合」とも記す。)。1次混合の方法は特に制限されないが、例えば、ボールミル又はジェットミルを用いることができる。各混合、粉砕方法は、湿式でもよく乾式でもよい。1次混合の混合時間は、ボールミルの場合は、例えば、10時間以上15時間以下とすることができる。ジェットミルの場合は、例えば、1時間以上2時間以下とすることができる。
 次に、1次混合により粉砕した結合材原料粉末をエタノールやアセトン等の溶媒に分散させて分散液を得る。該分散液に上記で準備したcBN粉末を添加して混合して混合粉末を得る(以下、「2次混合」とも記す。)。2次混合の方法は特に制限されないが、例えば、ボールミル又はジェットミルを用いることができる。2次混合の混合時間は、ボールミルの場合は、例えば、10時間以上15時間以下とすることができる。ジェットミルの場合は、例えば、1時間以上2時間以下とすることができる。溶媒は、混合後に自然乾燥により除去される。その後、熱処理を行うことにより、混合粉末の表面に吸着した水分などの不純物を揮発させ、混合粉末の表面を清浄化する。
 従来の混合方法では、はじめから、結合材原料粉末及びcBN粉末を溶媒中に分散させて混合していた。このため、cBN粉末の混合時間が長く(例えば、ボールミルでは20時間以上30時間以下、ジェットミルでは2時間超4時間以下)、cBN粉末に歪みが導入されやすかった。cBN粉末中の歪みは、立方晶窒化硼素焼結体中の空隙の一因である。
 一方、本実施形態の混合工程は、結合材原料粉末のみを混合して粉砕する1次混合と、1次混合後の結合材原料粉末の分散液にcBN粉末を添加して混合する2次混合とを含む。これにより、cBN粉末に対するボールミルやジェットミルによる混合時間が低減し、cBN粉末の歪みが低減される。よって、立方晶窒化硼素焼結体の空隙含有率が低減する。なお、従来は、製造時間の増加という不都合があるため、混合工程を1次工程と2次工程とに分けて行うことは採用されなかった。本実施形態のように、混合工程を1次混合と2次混合とに分ける方法は、本発明者等が新たに見出したものである。
 <焼結工程>
 上記の混合粉末をWC-6%Coの超硬合金製円盤とCo(コバルト)箔とに接した状態で、Ta(タンタル)製の容器に充填して真空シールする。Ta製容器に充填された混合粉末を、ベルト型超高圧高温発生装置を用いて、圧力5GPa以上7GPa以下に加圧した後、温度1300℃以上1500℃以下に加熱し、加圧加熱後の圧力及び温度条件下で15分以上30分以下保持して焼結させる。これにより、本実施形態の立方晶窒化硼素焼結体が作製される。
 本発明者等は、加圧後の圧力が低い程、立方晶窒化硼素焼結体の空隙含有率が低減することを新たに見出した。これは、加圧後の圧力が低いと、cBN粉末の破砕が生じ難いためと推察される。また、加熱後の温度が高いと、空隙含有率が低減することを新たに見出した。これは、加熱後の温度が高いと、粒成長するためと推察される。よって、加熱加圧後の圧力及び温度条件を適宜調整することにより、立方晶窒化硼素焼結体の空隙含有率を所望の範囲に低減させることができる。
 上記の焼結工程は、加熱加圧工程をそれぞれ2段階に分けて行うこともできる。具体的には、上記のTa製容器に充填された混合粉末を、1次圧力2GPa以上4GPa以下に加圧(1次加圧)した後、1次温度500℃以上1000℃以下に加熱(1次加熱)して、加熱加圧後の圧力及び温度条件下で3分以上30分以下保持する(1次保持)。続いて、該圧力から2次圧力5GPa以上7GPa以下に加圧(2次加圧)した後、2次温度1300℃以上1500℃以下に加熱(2次加熱)し、加圧加熱後の圧力及び温度条件下で15分以上30分以下保持(2次保持)して焼結させる。これにより、本実施形態の立方晶窒化硼素焼結体が作製される。
 本発明者等は、上記の通り、加圧加熱工程をそれぞれ2段階に分けて行うことにより、立方晶窒化硼素焼結体の空隙含有率が低減することを新たに見出した。これは、加圧工程を2段階に分けることにより、1次加圧及び2次加圧のそれぞれにおいてcBN粉末に加えられる圧力の増加量が小さくなり、cBN粉末の破砕が生じ難いためと推察される。なお、従来は、製造時間の増加という不都合があるため、加熱加圧工程を2段階に分けて行うことは採用されなかった。
 [付記1]
 本実施形態の立方晶窒化硼素焼結体は、30体積%以上80体積%以下の立方晶窒化硼素粒子、0.01体積%以上0.20体積%以下の空隙及び残部の結合材からなることが好ましい。
 本実施形態の立方晶窒化硼素焼結体は、30体積%以上80体積%以下の立方晶窒化硼素粒子、0.01体積%以上0.20体積%以下の空隙及び19.8体積%以上69.99体積%以下の結合材からなることが好ましい。
 本実施形態の立方晶窒化硼素焼結体は、40体積%以上78体積%以下の立方晶窒化硼素粒子、0.01体積%以上0.11体積%以下の空隙及び残部の結合材からなることが好ましい。
 本実施形態の立方晶窒化硼素焼結体は、40体積%以上78体積%以下の立方晶窒化硼素粒子、0.01体積%以上0.11体積%以下の空隙及び21.89体積%以上59.99体積%以下の結合材からなることが好ましい。
 本実施形態の立方晶窒化硼素焼結体は、50体積%以上75体積%以下の立方晶窒化硼素粒子、0.03体積%以上0.09体積%以下の空隙及び残部の結合材からなることが好ましい。
 本実施形態の立方晶窒化硼素焼結体は、50体積%以上75体積%以下の立方晶窒化硼素粒子、0.03体積%以上0.09体積%以下の空隙及び24.91体積%以上49.94体積%以下であることが好ましい。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
[実施例1]
 <立方晶窒化硼素焼結体の作製>
 試料1~試料36、試料1-1~試料1-3の立方晶窒化硼素焼結体を以下の手順で作製した。
 (原料準備工程)
 まず、平均粒径3μmの立方晶窒化硼素粉末を準備した。該立方晶窒化硼素粉末に対して、表1の「被膜形成方法」欄に記載の方法を用いて、表1の「被膜組成」欄に記載の組成及び表1の「膜厚[μm]」欄に記載の膜厚を有する被膜を形成して、No.A~Iの立方晶窒化硼素粉末を作製した。例えばNo.Bの立方晶窒化硼素粉末では、スパッタリングにより、膜厚0.1μmのTiN膜が形成されている。
Figure JPOXMLDOC01-appb-T000001
 各試料の原料として、表2の「cBN粉末No.」欄に記載の立方晶窒化硼素粉末(cBN粉末No.は表1のcBN粉末No.に対応する。)、及び、結合材原料粉末を準備した。結合材原料粉末としては、周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素と、からなる化合物を準備した。該化合物は、1種類又は2種類以上を組み合わせた。各結合材原料粉末の平均粒径は1μmである。
 cBN粉末及び結合材原料粉末の量を、作製される立方晶窒化硼素焼結体のcBN粒子の含有率が表3の「cBN粒子[体積%]」欄に記載の百分率となるように準備した。
Figure JPOXMLDOC01-appb-T000002
 (混合工程)
 次に、準備した結合材原料粉末を表2の「混合方法」欄に記載の方法で、「1次混合[hr]」欄に記載の時間混合して粉砕した(1次混合)。
 次に、1次混合により粉砕した結合材原料粉末をエタノールに分散させて分散液を得た。該分散液に上記で準備したcBN粉末を添加して表2の「混合方法」欄に記載の方法で、「2次混合[hr]」欄に記載の時間混合して混合して混合粉末を得た(「2次混合」)。その後自然乾燥で溶媒を除去した。
 例えば、試料1では、結合材原料粉末をボールミルで12時間混合して粉砕した(1次混合)。次に、結合材原料粉末をエタノールに分散させて分散液を得て、該分散液にcBN粉末を添加して、ボールミルで12時間混合して混合粉末を得た(2次混合)。その後自然乾燥で溶媒を除去した。
 (焼結工程)
 上記の混合粉末をWC-6%Coの超硬合金製円盤とCo(コバルト)箔とに接した状態で、Ta(タンタル)製の容器に充填して真空シールする。Ta製容器に充填された混合粉末を、ベルト型超高圧高温発生装置を用いて、表2の「焼結圧力[GPa]」欄に記載の圧力まで加圧した後、「焼結温度[℃]」欄に記載の温度まで加熱し、加圧加熱後の圧力及び温度条件下で「焼結時間[min]」欄に記載の時間保持して焼結し、立方晶窒化硼素焼結体を得た。
 例えば、試料1では、混合粉末を、ベルト型超高圧高温発生装置を用いて、7GPaまで加圧した後、1500℃まで加熱し、該圧力温度で15分間保持して焼結して立方晶窒化硼素焼結体を得た。
 <評価>
 得られた立方晶窒化硼素焼結体について、立方晶窒化硼素粒子の含有率(体積%)、結合材の含有率(体積%)及び空隙の含有率(体積%)、結合材組成、空隙の円相当径の平均並びに空隙間距離の平均を測定した。具体的な測定方法は実施形態1に示されているため、その説明は繰り返さない。結果を表3の「cBN粒子[体積%]」、「結合材[体積%]」、「結合材組成」、「空隙[体積%]」、「空隙円相当径平均[nm]」、「空隙間距離平均[μm]」欄に示す。「結合材[体積%]」欄の「残り」とは、立方晶窒化硼素焼結体全体(100体積%)からcBN粒子の含有率(体積%)及び空隙の含有率(体積%)を減じた残りが、結合材の含有率であることを意味する。
Figure JPOXMLDOC01-appb-T000003
 <切削試験>
 作製された各試料のcBN焼結体を用いて切削工具(基材形状:CNGA120408)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。下記の切削条件は、焼結合金の切削に該当する。
 被削材:浸炭材SCM415(HRC60)径100mmの丸棒
 切削速度:150m/min.
 送り速度:0.15mm/rev.
 切込み:0.5mm
 クーラント:WET
 切削方法:外径連続切削
 評価方法:欠損に至るまでの切削距離(km)を導出する。切削距離が長いほど、耐欠損性に優れ、工具寿命が長いことを示す。
 結果を表3の「切削試験」欄に示す。
 <考察>
 試料1~試料36の立方晶窒化硼素焼結体は実施例に該当し、試料1-1~試料1-3の立方晶窒化硼素焼結体は比較例に該当する。試料1~試料36(実施例)は、試料1-1~試料1-3(比較例)に比べて、工具寿命が長いことが確認された。
 [実施例2]
 <立方晶窒化硼素焼結体の作製>
 試料50~試料60の立方晶窒化硼素焼結体を以下の手順で作製した。
 (原料準備工程)
 実施例1と同様の方法で、No.A~Iの立方晶窒化硼素粉末及び結合材原料粉末を準備した。cBN粉末及び結合材原料粉末の量を、作製される立方晶窒化硼素焼結体のcBN粒子の含有率が表5の「cBN粒子[体積%]」欄に記載の百分率となるように準備した。
Figure JPOXMLDOC01-appb-T000004
 (混合工程)
 次に、準備した結合材原料粉末を表4の「混合方法」欄に記載の方法で、「1次混合[hr]」欄に記載の時間混合して粉砕した(1次混合)。
 次に、1次混合により粉砕した結合材原料粉末をエタノールに分散させて分散液を得た。該分散液に上記で準備したcBN粉末を添加して表4の「混合方法」欄に記載の方法で、「2次混合[hr]」欄に記載の時間混合して混合して混合粉末を得た(「2次混合」)。その後自然乾燥で溶媒を除去した。
 例えば、試料50では、結合材原料粉末をボールミルで12時間混合して粉砕した(1次混合)。次に、結合材原料粉末をエタノールに分散させて分散液を得て、該分散液にcBN粉末を添加して、ボールミルで24時間混合して混合粉末を得た(2次混合)。その後自然乾燥で溶媒を除去した。
 (焼結工程)
 上記の混合粉末をWC-6%Coの超硬合金製円盤とCo(コバルト)箔とに接した状態で、Ta(タンタル)製の容器に充填して真空シールする。Ta製容器に充填された混合粉末を、ベルト型超高圧高温発生装置を用いて、表4の「1次圧力[GPa]」欄に記載の圧力まで加圧した(1次加圧)後、「1次温度[℃]」欄に記載の温度まで加熱し(1次加熱)、加圧加熱後の圧力及び温度条件下で「1次保持時間[min]」欄に記載の時間保持した(1次保持)。続いて、表4の「2次圧力[GPa]」欄に記載の圧力まで加圧した(2次加圧)後、「2次温度[℃]」欄に記載の温度まで加熱(2次加熱)し、加圧加熱後の圧力及び温度条件下で「2次保持時間[min]」欄に記載の時間保持して(2次保持)、立方晶窒化硼素焼結体を得た。
 例えば、試料50では、混合粉末を、ベルト型超高圧高温発生装置を用いて、3GPaまで加圧した(1次加圧)後、1000℃まで加熱(1次加熱)し、該圧力温度で15分間保持した(1次保持)。続いて、5GPaまで加圧した(2次加圧)後、1300℃まで加熱(2次加熱)し、該圧力温度で15分間保持して(2次保持)、立方晶窒化硼素焼結体を得た。
 <評価>
 得られた立方晶窒化硼素焼結体について、立方晶窒化硼素粒子の含有率(体積%)、結合材の含有率(体積%)及び空隙の含有率(体積%)、結合材組成、空隙の円相当径の平均並びに空隙間距離の平均を測定した。具体的な測定方法は実施形態1に示されているため、その説明は繰り返さない。結果を表5の「cBN粒子[体積%]」、「結合材[体積%]」、「結合材組成」、「空隙[体積%]」、「空隙円相当径平均[nm]」、「空隙間距離平均[μm]」欄に示す。「結合材[体積%]」欄の「残り」とは、立方晶窒化硼素焼結体全体(100体積%)からcBN粒子の含有率(体積%)及び空隙の含有率(体積%)を減じた残りが、結合材の含有率であることを意味する。
Figure JPOXMLDOC01-appb-T000005
 <切削試験>
 作製された各試料のcBN焼結体を用いて実施例1と同一条件で切削試験を行った。結果を表5の「切削試験」欄に示す。
 <考察>
 試料50~試料60の立方晶窒化硼素焼結体は実施例に該当する。試料50~試料60(実施例)は、実施例1で作製された試料1-1~試料1-3(比較例)に比べて、工具寿命が長いことが確認された。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 空隙、2 立方晶窒化硼素粒子、3 結合材、4 立方晶窒化硼素焼結体

Claims (4)

  1.  立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
     前記立方晶窒化硼素焼結体の前記立方晶窒化硼素粒子の含有率は、30体積%以上80体積%以下であり、
     前記結合材は、
     周期表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる第1群より選ばれる1種の元素の単体、並びに、前記第1群より選ばれる2種以上の元素からなる合金及び金属間化合物、からなる第2群より選ばれる少なくとも1種を含み、又は
     前記第1群より選ばれる1種の元素と、窒素、炭素、硼素及び酸素からなる第3群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物の固溶体、からなる第4群より選ばれる少なくとも1種を含み、
     前記立方晶窒化硼素焼結体の空隙の含有率は、0.001体積%以上0.20体積%以下である、立方晶窒化硼素焼結体。
  2.  前記空隙の円相当径の平均は、3nm以上60nm以下である、請求項1に記載の立方晶窒化硼素焼結体。
  3.  前記立方晶窒化硼素焼結体は、複数の前記空隙を含み、
     前記空隙間の距離の平均は、1.5μm以上15μm以下である、請求項1又は請求項2に記載の立方晶窒化硼素焼結体。
  4.  前記立方晶窒化硼素焼結体の前記立方晶窒化硼素粒子の含有率は、40体積%以上75体積%以下である、請求項1から請求項3のいずれか1項に記載の立方晶窒化硼素焼結体。
PCT/JP2021/036415 2021-10-01 2021-10-01 立方晶窒化硼素焼結体 WO2023053441A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247009893A KR20240051212A (ko) 2021-10-01 2021-10-01 입방정 질화붕소 소결체
CN202180102395.4A CN117957208A (zh) 2021-10-01 2021-10-01 立方晶氮化硼烧结体
PCT/JP2021/036415 WO2023053441A1 (ja) 2021-10-01 2021-10-01 立方晶窒化硼素焼結体
JP2022520776A JP7300063B1 (ja) 2021-10-01 2021-10-01 立方晶窒化硼素焼結体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036415 WO2023053441A1 (ja) 2021-10-01 2021-10-01 立方晶窒化硼素焼結体

Publications (1)

Publication Number Publication Date
WO2023053441A1 true WO2023053441A1 (ja) 2023-04-06

Family

ID=85782091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036415 WO2023053441A1 (ja) 2021-10-01 2021-10-01 立方晶窒化硼素焼結体

Country Status (4)

Country Link
JP (1) JP7300063B1 (ja)
KR (1) KR20240051212A (ja)
CN (1) CN117957208A (ja)
WO (1) WO2023053441A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182234A (ja) * 1996-12-25 1998-07-07 Agency Of Ind Science & Technol 立方晶窒化硼素基焼結材及びその製造方法
WO2007010670A1 (ja) * 2005-07-15 2007-01-25 Sumitomo Electric Hardmetal Corp. 複合焼結体
JP2014198637A (ja) * 2013-03-29 2014-10-23 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体
JP2016107396A (ja) 2014-11-27 2016-06-20 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP2016528132A (ja) * 2013-05-31 2016-09-15 エレメント シックス リミテッド Pcbn材料、それを備える工具要素、およびそれを使用するための方法
WO2021024737A1 (ja) * 2019-08-06 2021-02-11 住友電工ハードメタル株式会社 切削工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182234A (ja) * 1996-12-25 1998-07-07 Agency Of Ind Science & Technol 立方晶窒化硼素基焼結材及びその製造方法
WO2007010670A1 (ja) * 2005-07-15 2007-01-25 Sumitomo Electric Hardmetal Corp. 複合焼結体
JP2014198637A (ja) * 2013-03-29 2014-10-23 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体
JP2016528132A (ja) * 2013-05-31 2016-09-15 エレメント シックス リミテッド Pcbn材料、それを備える工具要素、およびそれを使用するための方法
JP2016107396A (ja) 2014-11-27 2016-06-20 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
WO2021024737A1 (ja) * 2019-08-06 2021-02-11 住友電工ハードメタル株式会社 切削工具

Also Published As

Publication number Publication date
JP7300063B1 (ja) 2023-06-28
JPWO2023053441A1 (ja) 2023-04-06
CN117957208A (zh) 2024-04-30
KR20240051212A (ko) 2024-04-19

Similar Documents

Publication Publication Date Title
KR102326622B1 (ko) 내치핑성, 내마모성이 우수한 표면 피복 절삭 공구
TWI470088B (zh) Hard alloy and cutting tools using it
JP6391045B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
US10987739B2 (en) Cemented carbide and cutting tool
JP6032375B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2012105710A1 (ja) cBN焼結体工具および被覆cBN焼結体工具
JP5023654B2 (ja) 硬質被覆層の改質α型Al2O3層がすぐれた結晶粒界面強度を有する表面被覆サーメット製切削工具
US8765272B2 (en) Cermet and coated cermet
CN114845972A (zh) 立方晶氮化硼烧结体
JP7137011B2 (ja) 立方晶窒化硼素焼結体及びその製造方法
JP6990319B2 (ja) 立方晶窒化硼素焼結体
JP6990320B2 (ja) 立方晶窒化硼素焼結体
JPWO2021124399A1 (ja) 立方晶窒化硼素焼結体
WO2023053441A1 (ja) 立方晶窒化硼素焼結体
JP7346751B1 (ja) 立方晶窒化硼素焼結体
JP5213644B2 (ja) サーメット焼結体および切削工具
WO2022172729A1 (ja) 超硬合金及びそれを基材として含む切削工具
WO2022070677A1 (ja) 立方晶窒化硼素焼結体工具
JP7473871B2 (ja) 耐摩耗性および耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP4569861B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5201936B2 (ja) 表面被覆工具
JP4747338B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006231423A (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2023095013A (ja) サーメット焼結体
JP4888759B2 (ja) 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップの表面研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022520776

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 17789504

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247009893

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021959475

Country of ref document: EP

Effective date: 20240502