WO2023048266A1 - 研磨パッド - Google Patents

研磨パッド Download PDF

Info

Publication number
WO2023048266A1
WO2023048266A1 PCT/JP2022/035519 JP2022035519W WO2023048266A1 WO 2023048266 A1 WO2023048266 A1 WO 2023048266A1 JP 2022035519 W JP2022035519 W JP 2022035519W WO 2023048266 A1 WO2023048266 A1 WO 2023048266A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing pad
polishing
molded body
thermoplastic polyurethane
mass
Prior art date
Application number
PCT/JP2022/035519
Other languages
English (en)
French (fr)
Inventor
佑有子 合志
充 加藤
尚 杉岡
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023549766A priority Critical patent/JPWO2023048266A1/ja
Priority to CN202280064669.XA priority patent/CN118019616A/zh
Priority to KR1020247013989A priority patent/KR20240060727A/ko
Publication of WO2023048266A1 publication Critical patent/WO2023048266A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/22Rubbers synthetic or natural
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing pad, more specifically, a polishing pad for polishing semiconductor wafers, semiconductor devices, silicon wafers, hard disks, glass substrates, optical products, or various metals.
  • Chemical mechanical polishing is a polishing method used to mirror-finish semiconductor wafers used as substrates for forming integrated circuits, and to planarize irregularities in insulating films and conductor films of semiconductor devices. , hereinafter also referred to as "CMP").
  • CMP is a method of polishing the surface of a substrate to be polished such as a semiconductor wafer with a polishing pad using a polishing slurry containing abrasive grains and a reaction liquid (hereinafter also simply referred to as slurry).
  • the polishing result changes greatly depending on the characteristics of the polishing layer of the polishing pad.
  • a soft polishing layer reduces the occurrence of scratches, which are polishing defects that occur on the surface to be polished, while reducing the local planarization and polishing speed of the surface to be polished.
  • the hard polishing layer improves the local planarization of the surface to be polished, while increasing the number of scratches generated on the surface to be polished.
  • polishing pads have been proposed for the purpose of reducing the occurrence of scratches on the surface to be polished, improving the flatness of the surface to be polished, or improving the polishing speed.
  • Patent Document 1 discloses a polishing material in which water-soluble particles such as a polymer containing an ether bond in the main chain such as polyoxyethylene and water-soluble particles such as cyclodextrin are dispersed in a polymer matrix material such as a conjugated diene copolymer.
  • a polishing pad comprising a layer is disclosed.
  • Patent Document 1 discloses that such a polishing pad can provide a high polishing rate, sufficiently suppress the occurrence of scratches on the surface to be polished, and further improve the uniformity of the polishing rate within the surface to be polished. Show what you can do.
  • Patent Document 2 describes a thermoplastic polyurethane of 80 parts by mass or more and 99 parts by mass or less, and a polymer compound such as polyoxyethylene having a water absorption of 3% or more and 3000% or less of 1 part by mass or more and 20 parts by mass or less, Disclosed is a chemical mechanical polishing pad having a polishing layer formed from a composition containing: Patent Document 2 discloses that such a polishing pad forms pores by liberating water-soluble particles that come into contact with the slurry, and holds the slurry in the formed pores to maintain high flatness, It is disclosed that the occurrence of scratches is also reduced.
  • Patent Document 3 discloses a polishing pad having a polishing layer containing first particles such as particles of resin and calcium carbonate, wherein the average particle diameter D50 of the first particles is 1.0 to 5.0 ⁇ m. a content of the first particles with respect to the entire polishing layer is 6.0 to 18.0% by volume, and the Mohs hardness of the first particles is less than the Mohs hardness of the substrate to be polished. do.
  • first particles such as particles of resin and calcium carbonate
  • the polishing surface of the polishing layer of the polishing pad used for CMP usually has concentric, radial, grid-like grooves or the like, which are useful for uniformly and sufficiently supplying the slurry to the surface to be polished of the substrate to be polished. Holes (hereinbelow, they are also collectively referred to as recesses) are formed. Such recesses are useful for discharging polishing dust that causes scratches and preventing damage to the wafer due to adsorption of the polishing pad.
  • the dresser and the substrate to be polished used for dressing for optimizing the surface roughness repeatedly contact the polishing surface, and as the polishing layer wears, the recesses are formed.
  • Some burrs were generated at the corners. When the generated burr clogs the concave portion, the supply of the polishing slurry is lowered, which may lower the polishing rate and lower the uniformity of polishing. Large burrs may also cause scratches.
  • Patent Document 4 describes a polishing pad having a polishing layer containing a thermoplastic polyurethane (A) and a polymer (B) other than thermoplastic polyurethane (A) in order to solve the above-described problems, wherein the thermoplastic polyurethane (A) is a polymer It is obtained by reacting a diol, an organic diisocyanate and a chain extender, the polymer (B) is an amorphous polymer having a glass transition temperature of 60 to 120 ° C., and the thermoplastic polyurethane (A) , and the maximum value of the loss tangent of the polishing layer at -80 to -50°C is 8.00 ⁇ 10 -2 or less.
  • the thermoplastic polyurethane (A) is a polymer It is obtained by reacting a diol, an organic diisocyanate and a chain extender
  • the polymer (B) is an amorphous polymer having a glass transition temperature of 60 to 120 ° C.
  • polymer (B) a polymer having a structural unit derived from at least one monomer selected from the group consisting of acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, acrylonitrile, methacrylonitrile and styrene is disclosed. .
  • Patent document 4 describes that such a polishing pad can reduce burrs generated at the corners of recesses.
  • the polishing pads disclosed in Patent Documents 1 and 2 combine reduction of burrs generated at the corners of recesses, high polishing speed, high flattening properties, and low scratch properties to prevent scratches from occurring. was difficult.
  • a polymer (B) other than thermoplastic polyurethane is dispersed in a thermoplastic polyurethane matrix in a substantially incompatible state. Therefore, the generation of burrs could not be sufficiently suppressed unless the content of the polymer (B) was relatively high. Further, when the content of the polymer (B) is increased, the properties of the polishing layer mainly composed of thermoplastic polyurethane may be reduced.
  • the dresser and the substrate to be polished during dressing may be affected by the recesses. Burrs tend to occur on the corners due to repeated contact with the corners for a long period of time. The generated burr gradually clogs the concave portion, so that the amount of slurry supplied to the polishing surface may be gradually reduced. As a result, there are problems such as a gradual decrease in polishing rate and planarization, a decrease in polishing uniformity, and an increase in the number of scratches generated on the polished surface.
  • burrs occur at the corners of recesses formed on the polishing surface. To provide a polishing pad which is difficult to be cleaned.
  • One aspect of the present invention is a polishing pad comprising a polishing layer that is a molded body of a polyurethane composition, wherein the polyurethane composition comprises thermoplastic polyurethane 90-99.9 containing non-alicyclic diisocyanate units as organic diisocyanate units. % by mass, and 0.1 to 10% by mass of a hygroscopic polymer having a moisture absorption rate of 0.1% or more.
  • the molded article is a polishing pad having a D hardness of 60 or more and less than 75 measured with a JIS K 7215-compliant type D durometer under the condition of a load holding time of 5 seconds.
  • the corners of the recesses formed on the polishing surface of the polishing layer having medium hardness with an excellent balance of high polishing rate, low scratch resistance, and high flattening properties are obtained. It is possible to obtain a polishing pad in which burrs are less likely to occur on the surface.
  • thermoplastic polyurethane preferably contains 90 to 100 mol% of 4,4'-diphenylmethane diisocyanate units, which are non-alicyclic diisocyanate units, in the total amount of organic diisocyanate units.
  • the hygroscopic polymer is dispersed particularly compatible with the thermoplastic polyurethane.
  • the polyurethane composition preferably contains 99 to 99.9% by mass of thermoplastic polyurethane and 0.1 to 1% by mass of hygroscopic polymer. In such a case, it becomes easier to maintain a higher type D durometer hardness and a higher level of flattenability.
  • hygroscopic polymers include polyethylene oxide and polyethylene oxide-propylene oxide block copolymers.
  • the hygroscopic polymer preferably has a weight average molecular weight of 70,000 to 4,000,000. In such a case, the compatibility with the thermoplastic polyurethane is particularly excellent.
  • the molded body has a saturated swelling elongation at break of 250 to 400% when saturated and swollen with water at 50°C. In such a case, a polishing pad with a higher polishing rate is likely to be obtained.
  • the molded body has a dry breaking elongation of 150 to 250% at a humidity of 48 RH% and 23°C. In such a case, it is easy to obtain a polishing pad exhibiting a higher polishing rate.
  • the molded article preferably has a ratio S 1 /S 2 of the elongation at break when saturated swelling S 1 and the elongation at break when dry S 2 is 1.0 to 2.0. In such a case, it is easy to obtain a polishing pad exhibiting a higher polishing rate.
  • the molded body preferably has a laser light transmittance of 60% or more at a wavelength of 550 nm when a sheet with a thickness of 0.5 mm is saturated and swollen with water at 50°C.
  • a laser light transmittance of 60% or more at a wavelength of 550 nm when a sheet with a thickness of 0.5 mm is saturated and swollen with water at 50°C.
  • the molded body preferably has a Vickers hardness of 5 or more and less than 21. In such a case, it is easy to obtain a polishing pad with excellent scratch resistance.
  • the molded body preferably has a storage elastic modulus of 0.1 to 1.0 GPa when saturated and swollen with water at 50°C. In such a case, it becomes easier to obtain a polishing layer that can easily retain higher planarization properties.
  • the molded article is a non-foamed molded article.
  • the hardness of the polishing layer is likely to be higher, thereby making it easier to achieve higher planarization and a higher polishing rate.
  • aggregates of abrasive grains formed by intrusion of abrasive grains in the slurry into the pores are less likely to occur, so scratches caused by aggregates scratching the wafer surface are less likely to occur.
  • a polishing layer having moderate hardness with an excellent balance of high polishing rate, low scratch resistance, and high flattening property.
  • a polishing pad is obtained in which burrs are less likely to occur.
  • FIG. 1 is an explanatory diagram for explaining CMP using the polishing pad 10 of the embodiment.
  • FIG. 2 is an SEM photograph taken in the burr test in the example.
  • polishing pad An embodiment of the polishing pad will be described in detail below.
  • the polishing pad of this embodiment includes a polishing layer that is a molded body of a polyurethane composition.
  • the polyurethane composition comprises 90 to 99.9% by mass of a thermoplastic polyurethane containing non-alicyclic diisocyanate units as organic diisocyanate units (hereinafter also referred to as non-alicyclic thermoplastic polyurethane) and 0.1 to 99.9% by mass of a hygroscopic polymer. 10% by mass.
  • the molded body has a durometer D hardness of 60 or more and less than 75 measured with a JIS K 7215-compliant type D durometer under the condition of a load retention time of 5 seconds.
  • a non-alicyclic thermoplastic polyurethane is a thermoplastic polyurethane obtained by reacting polyurethane raw materials containing an organic diisocyanate, a polymeric diol, and a chain extender.
  • the non-alicyclic thermoplastic polyurethane is a thermoplastic polyurethane obtained using an organic diisocyanate containing a non-alicyclic diisocyanate.
  • the content of non-alicyclic diisocyanate units contained in the total amount of organic diisocyanate units in the non-alicyclic thermoplastic polyurethane is 60 to 100 mol%, further 90 to 100 mol%, particularly 95 to 100 mol. %, preferably 99 to 100 mol %. If the non-alicyclic diisocyanate unit content is too low, the compatibility between the non-alicyclic thermoplastic polyurethane and the hygroscopic polymer tends to be low.
  • a polishing layer of a polishing pad By using a molded body of such a polyurethane composition as a polishing layer of a polishing pad, a polishing layer having moderate hardness with an excellent balance of high polishing rate, low scratch resistance, and high flatness can be obtained. Thus, it is possible to obtain a polishing pad having a polishing layer in which burrs are less likely to occur at the corners of the concave portions formed on the polishing surface.
  • the compatibility between the non-alicyclic thermoplastic polyurethane and the hygroscopic polymer increases, thereby increasing the dispersibility of the hygroscopic polymer in the molded article.
  • the soft segment derived from the polymeric diol of the non-alicyclic thermoplastic polyurethane and the hygroscopic polymer tend to be compatible with each other. Then, when the polishing layer, which is a molded body, is saturated with slurry, the extensibility of the surface of the molded body is moderately improved.
  • the compatibility between the crystalline hard segment derived from the chain extender and the hygroscopic polymer contained in the non-alicyclic thermoplastic polyurethane is low. Therefore, the hard crystalline hard segments are easily maintained. As a result, the hardness of the non-alicyclic thermoplastic polyurethane is less likely to decrease. That is, the hygroscopic polymer has high compatibility with the soft segment and low compatibility with the hard segment.
  • the soft segment in the non-alicyclic thermoplastic polyurethane has high compatibility with the hygroscopic polymer, so the stretchability of the surface of the polishing layer is improved. Therefore, fluff on the surface of the polishing pad generated by dressing is likely to be caught by the dresser, and the burr is easily scraped off, so that clogging of the concave portion by the burr can be suppressed.
  • the non-alicyclic diisocyanate used in the production of the non-alicyclic thermoplastic polyurethane is a diisocyanate other than an alicyclic diisocyanate, specifically an aromatic diisocyanate or a linear It is an aliphatic diisocyanate.
  • Aromatic diisocyanate is a diisocyanate compound containing an aromatic ring in its molecular structure. Specific examples thereof include 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, 1,5-naphthylene diisocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3 '-dimethyl-4,4'-diisocyanatodiphenylmethane, chlorophenylene-2,4-diisocyanate, tetramethylxylylene diisocyanate, and
  • the straight-chain aliphatic diisocyanate is a diisocyanate compound having a straight-chain aliphatic skeleton that does not have a ring structure in its molecular structure.
  • Specific examples include ethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, and isophorone.
  • the organic diisocyanate used as a raw material of the non-alicyclic thermoplastic polyurethane is, for example, 60 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more, particularly preferably 99 mol% or more, and particularly preferably. is obtained using organic diisocyanates containing 100 mol % of non-alicyclic diisocyanates.
  • Each non-alicyclic diisocyanate may be used alone or in combination of two or more.
  • the organic diisocyanates include aromatic diisocyanates and also 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and isophorone diisocyanate, especially 4 It is particularly preferable to contain 100 mol % of ,4'-diphenylmethane diisocyanate from the viewpoint of obtaining a polishing pad having particularly excellent planarization properties.
  • a non-alicyclic diisocyanate and an alicyclic diisocyanate may be used in combination to the extent that the effects of the present invention are not impaired.
  • Alicyclic diisocyanates are diisocyanate compounds containing an aliphatic cyclic structure.
  • Specific examples thereof include isopropylidene bis(4-cyclohexyl isocyanate), cyclohexylmethane diisocyanate, methylcyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis(2-isocyanato ethyl)-4-cyclohexene, and the like. If the content of the alicyclic diisocyanate is too high, the compatibility with the hygroscopic polymer tends to be low, and the flatness tends to be low.
  • the polymer diol is a diol having a number average molecular weight of 300 or more, and examples thereof include polyether diol, polyester diol, polycarbonate diol, and polymer diols in which these are combined.
  • polyether diols include poly(ethylene glycol), poly(propylene glycol), poly(tetramethylene glycol), poly(methyltetramethylene glycol), poly(oxypropylene glycol), glycerin-based polyalkylene ethers, Glycol and the like can be mentioned. These may be used alone or in combination of two or more. Among these, poly(ethylene glycol) and poly(tetramethylene glycol) are preferred from the viewpoint of particularly excellent compatibility with the hard segment of the non-alicyclic thermoplastic polyurethane.
  • a polyester diol is a high polymer having an ester structure in the main chain produced by direct esterification reaction or transesterification reaction of a dicarboxylic acid or its ester-forming derivative such as its ester or anhydride with a low-molecular-weight diol. It is a molecular diol.
  • dicarboxylic acids include oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecane dicarboxylic acid, 2-methylsuccinic acid, 2-methyladipic acid, 3 Aliphatic dicarboxylic acids with 2 to 12 carbon atoms such as -methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid; triglycerides Dimerized aliphatic dicarboxylic acid having 14 to 48 carbon atoms (dimer acid) and hydrogenated products thereof (hydrogenated dimer acid) obtained by dimerizing unsaturated fatty acids obtained by fractional distillation of 1,4-cyclohexanedicarboxylic acid, etc. alicyclic dicarboxylic acids
  • low-molecular-weight diols include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, aliphatic diols such as 1,9-nonanediol and 1,10-decanediol; alicyclic diols such as cyclohexanedimethanol such as 1,4-cyclohexanedimethanol and cyclohexanediol such as 1,4-cyclohexanediol; is mentioned.
  • polycarbonate diols are obtained by reacting low-molecular-weight diols with carbonate compounds such as dialkyl carbonates, alkylene carbonates, and diaryl carbonates.
  • Low-molecular-weight diols include low-molecular-weight diols as described above.
  • Specific examples of dialkyl carbonate include dimethyl carbonate and diethyl carbonate.
  • a specific example of the alkylene carbonate is ethylene carbonate.
  • specific examples of diaryl carbonate include diphenyl carbonate.
  • polyether diols such as poly(ethylene glycol) and poly(tetramethylene glycol), poly(nonamethylene adipate) diol, poly(2-methyl-1,8-octamethylene adipate) diol, polyester diols such as poly(2-methyl-1,8-octamethylene-co-nonamethylene adipate) diol and poly(methylpentane adipate) diol, especially polyester diols containing low-molecular-weight diol units having 6 to 12 carbon atoms; , from the viewpoint of particularly excellent compatibility with the hard segment derived from the chain extender unit of the non-alicyclic thermoplastic polyurethane.
  • the number average molecular weight of the polymeric diol is 300 or more, more than 300 to 2,000, further 350 to 2,000, particularly 500 to 1,500, especially 600 to 1,000.
  • the compatibility with the hard segment of the alicyclic thermoplastic polyurethane can be maintained at a high level, which is preferable from the viewpoint that scratches are less likely to occur particularly on the surface to be polished.
  • the number average molecular weight of the polymer diol is the number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1557.
  • chain extender a chain extender conventionally used in the production of polyurethane, which is a compound having a molecular weight of 300 or less and having two or more active hydrogen atoms capable of reacting with an isocyanate group, is used.
  • chain extenders include ethylene glycol, diethylene glycol, propylene glycol, 2,2-diethyl-1,3-propanediol, 1,2-, 1,3-, 2,3- or 1,4- -butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-bis( ⁇ -hydroxyethoxy)benzene, 1,4- Diols such as cyclohexanediol, bis-( ⁇ -hydroxyethyl) terephthalate, 1,9-nonanediol, m- or p-xylylene glycol; ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine , octamethylenediamine, nonamethylenediamine, decamethylenedi
  • chain extenders 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol and 1,4- Cyclohexanedimethanol is particularly preferred because of its excellent compatibility with soft segments derived from polymeric diol units.
  • the molecular weight of the chain extender is 300 or less, and 60 to 300 is particularly preferable from the viewpoint of excellent compatibility between the hard segment and the soft segment.
  • a non-alicyclic thermoplastic polyurethane is obtained by reacting polyurethane raw materials containing an organic diisocyanate containing a non-alicyclic diisocyanate, a polymeric diol, and a chain extender, as described above.
  • a known polyurethane synthesis method using a prepolymer method or a one-shot method in which a urethanization reaction is carried out is used without particular limitation.
  • a method of melt-polymerizing a polyurethane raw material substantially in the absence of a solvent in particular, a method of continuously melt-polymerizing a polyurethane raw material using a multi-screw kneading extruder, is particularly preferred from the standpoint of excellent continuous productivity. preferable.
  • the mixing ratio of the polymeric diol, organic diisocyanate and chain extender in the polyurethane raw material is adjusted as appropriate. It is preferable to blend each component so that the group is 0.95 to 1.30 mol, more preferably 0.96 to 1.10 mol, particularly 0.97 to 1.05 mol.
  • the mass ratio of the polymeric diol, the organic diisocyanate, and the chain extender in the polyurethane raw material is 10:90 to 50:50, and , 15:85 to 40:60, particularly preferably 20:80 to 30:70.
  • the content of nitrogen atoms derived from isocyanate groups in the non-alicyclic thermoplastic polyurethane is 4.5 to 7.5% by mass, further 5.0 to 7.3% by mass, particularly 5.3 to 7.5% by mass.
  • a content of 7.0% by mass is preferable because it facilitates obtaining a polishing layer having moderate hardness with an excellent balance among high polishing rate, low scratch resistance, and high flatness.
  • Non-alicyclic thermoplastic polyurethanes thus obtained include poly(ethylene glycol), poly(tetramethylene glycol), poly(nonamethylene adipate) diol, poly(2-methyl-1,8-octamethylene adipate).
  • diol diol
  • polymer diols such as 4,4'-diphenylmethane diisocyanate
  • 2,4- Organic diisocyanates including non-alicyclic diisocyanates such as tolylene diisocyanate and 2,6-tolylene diisocyanate, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, ,6-Hexanediol, 1,4-cyclohexanedimethanol, etc., which is obtained by reacting with at least one chain extender selected from the group consisting of 1,4-cyclohexanedimethanol and the like. This is preferable because it is easy to employ means for optical detection.
  • the weight-average molecular weight of the non-alicyclic thermoplastic polyurethane is preferably from 80,000 to 200,000, more preferably from 120,000 to 180,000, from the viewpoint of particularly excellent compatibility with the hygroscopic polymer.
  • a weight average molecular weight is a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography.
  • thermoplastic polyurethane containing no non-alicyclic diisocyanate in the organic diisocyanate unit (hereinafter also referred to as alicyclic thermoplastic polyurethane) is used as long as the effects of the present invention are not impaired.
  • alicyclic thermoplastic polyurethane a thermoplastic polyurethane containing no non-alicyclic diisocyanate in the organic diisocyanate unit
  • the content of the alicyclic thermoplastic polyurethane in the polyurethane composition is preferably 0 to 9.9% by mass, more preferably 0 to 5% by mass.
  • the polyurethane composition of this embodiment contains a hygroscopic polymer.
  • the hygroscopic polymer suppresses burrs generated in the concave portions of the polishing layer, which is a molded article of the polyurethane composition, and also acts to improve dressability.
  • a hygroscopic polymer is a polymer having a moisture absorption rate of 0.1% or more, preferably 0.1 to 5.0%, more preferably 0.1 to 3.0%, and particularly preferably 0.1% to 5.0%. Defined as macromolecules with a moisture absorption of 5-3.0%, particularly preferably 0.7-2.5%.
  • the hygroscopicity of the hygroscopic polymer was determined by spreading 5.0 g of particles of the hygroscopic polymer to be mixed thinly on a glass plate and leaving it to dry in a hot air dryer at 50°C for 48 hours. It is calculated based on the change in mass when left for 24 hours under constant temperature and humidity conditions of 23° C. and 50% RH.
  • hygroscopic polymers include polymers having a polyalkylene oxide structure such as a polymethylene oxide structure, polyethylene oxide structure, polypropylene oxide structure, polytetramethylene oxide structure, and polybutylene oxide structure.
  • hygroscopic polymers include polyethylene oxide (PEO), polypropylene oxide (PPO), PEO-PPO block copolymer, polyester thermoplastic elastomer (TPEE), polymethylene oxide alkyl ether, polyethylene oxide.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • TPEE polyester thermoplastic elastomer
  • polymethylene oxide alkyl ether polyethylene oxide.
  • Ether-type hygroscopic polymers such as alkyl ethers, polyethylene oxide alkylphenyl ethers, polyethylene oxide sterol ethers, polyethylene oxide lanolin derivatives, polyethylene oxide-polypropylene oxide copolymers, polyethylene oxide-polypropylene alkyl ethers; polyethylene oxide glycerin fatty acid esters, polyethylene oxide ether ester type hygroscopic polymers such as sorbitan fatty acid ester, polyethylene oxide sorbitol fatty acid ester, polyethylene oxide fatty acid alkanolamide sulfate, polyethylene glycol fatty acid ester, ethylene glycol fatty acid ester;
  • the weight average molecular weight of the hygroscopic polymer is 5,000 to 10,000,000, further 10,000 to 10,000,000, further 30,000 to 7,000,000, particularly 50,000. A molecular weight of up to 7,000,000, particularly 70,000 to 4,000,000 is preferred from the standpoint of excellent compatibility with the non-alicyclic thermoplastic polyurethane.
  • the weight average molecular weight of the hygroscopic polymer is a value measured by gel permeation chromatography (converted to polystyrene).
  • the hygroscopic polymer is highly compatible with the hydrophilic soft segment of the non-alicyclic thermoplastic polyurethane. On the other hand, it has low compatibility with hard segments of non-alicyclic thermoplastic polyurethanes.
  • the content of the non-alicyclic thermoplastic polyurethane in the polyurethane composition is 90 to 99.9 mass%, preferably 95 to 99.5 mass%, more preferably 95 to 99.0 mass%. If the content of the non-alicyclic thermoplastic polyurethane is less than 90% by mass, the planarization and polishing rate of the polishing pad are reduced. In addition, when the content of the non-alicyclic thermoplastic polyurethane is more than 99.9% by mass, the content of the hygroscopic polymer is less than 0.1% by mass, and the burrs generated in the concave portions are sufficiently removed. The suppressive effect is reduced.
  • the content of the hygroscopic polymer in the polyurethane composition is 0.1 to 10% by mass, preferably 0.5 to 10% by mass, and more preferably 0.5 to 5% by mass. If the content of the hygroscopic polymer is less than 0.1% by mass, the effect of suppressing burrs occurring in the concave portions is reduced. Moreover, when the content of the hygroscopic polymer exceeds 10% by mass, the planarization and polishing rate of the polishing pad are lowered.
  • the polyurethane composition of the present embodiment may optionally contain a cross-linking agent, a filler, a cross-linking accelerator, a cross-linking aid, a softening agent, a tackifier, an anti-aging agent, a processing Auxiliary agents, adhesion agents, inorganic fillers, organic fillers, crystal nucleating agents, heat stabilizers, weather stabilizers, antistatic agents, coloring agents, lubricants, flame retardants, flame retardant aids (antimony oxide, etc.), blooming Additives such as inhibitors, release agents, thickeners, antioxidants, and conductive agents may be contained.
  • the molded article of the polyurethane composition of the present embodiment is preferably a non-foamed molded article, it preferably does not contain a foaming agent.
  • a polyurethane composition is prepared by melt-kneading a blend containing a non-alicyclic thermoplastic polyurethane, a hygroscopic polymer, other thermoplastic polyurethanes blended as needed, and additives. More specifically, a non-alicyclic thermoplastic polyurethane, a hygroscopic polymer, and optionally other thermoplastic polyurethanes and additives are uniformly mixed with a Henschel mixer, a ribbon blender, a V-type blender, a tumbler, or the like.
  • the compound prepared as described above is melt-kneaded with a single-screw or multi-screw kneading extruder, roll, Banbury mixer, Laboplastomill (registered trademark), Brabender, or the like.
  • the temperature and kneading time for melt-kneading are appropriately selected depending on the type of non-alicyclic thermoplastic polyurethane, components and proportions, type of melting/kneading machine, and the like.
  • the melting temperature is preferably in the range of 200-300°C.
  • the polyurethane composition is molded into a molded body for the polishing layer.
  • the molding method is not particularly limited, but examples include a method of extruding or injection molding a molten mixture using a T-die.
  • extrusion molding using a T-die is preferable because a molded body for the polishing layer having a uniform thickness can be easily obtained. Thus, a compact for the polishing layer is obtained.
  • the molded body for the polishing layer should be a non-foamed molded body, because of its high hardness, it exhibits particularly excellent flattening properties. It is preferable from the viewpoint of reducing the occurrence and from the viewpoint that the wear rate of the polishing layer is low and the use can be performed for a long time.
  • the molded article has a durometer D hardness of 60 or more and less than 75, preferably 65 or more and less than 75, measured with a JIS K 7215-compliant type D durometer under the condition of a load retention time of 5 seconds.
  • a durometer D hardness 60 or more and less than 75, preferably 65 or more and less than 75, measured with a JIS K 7215-compliant type D durometer under the condition of a load retention time of 5 seconds.
  • the molded body has a Vickers hardness of 5 or more and less than 21, since the occurrence of scratches is particularly reduced.
  • Vickers hardness is defined as hardness measured with a Vickers indenter conforming to JIS Z 2244. On the other hand, when the Vickers hardness is too high, burrs tend to occur easily.
  • the elongation at break when saturated with water at 50° C. S 1 is 250 to 400%, preferably 250 to 350. %, particularly 250 to 330%.
  • the dry breaking elongation S 2 of the molded product at a humidity of 48 RH% and 23° C. is preferably 130 to 250%, more preferably 150 to 250%.
  • the molded article has a laser light transmittance of 60% or more for a laser wavelength of 550 nm in a sheet having a thickness of 0.5 mm when saturated and swollen with water at 50° C.
  • a substrate to be polished such as a wafer
  • An inspection method using an optical means for determining the polishing end point while polishing the surface to be polished is preferable because it is easy to adopt.
  • the molded article has a storage elastic modulus of 0.1 to 1.0 GPa, further 0.1 to 0.5 GPa, particularly 0.1 to 0.4 GPa when saturated and swollen with water at 50°C. It is preferable from the point that it is easy to maintain a higher planarization property. If the storage elastic modulus is too low when saturated and swollen with water at 50° C., the polishing layer tends to become soft, resulting in reduced flatness and reduced polishing rate. Also, if the storage elastic modulus is too high when saturated and swollen with water at 50° C., it may be difficult to remove burrs generated at the corners of the concave portions.
  • the contact angle of the molded body with water is 80 degrees or less, further 78 degrees or less, particularly 75 degrees or less, and preferably 50 degrees or more, further 60 degrees or more. If the contact angle is too high, the surface to be polished tends to be easily scratched.
  • the polishing pad of the present embodiment includes a polishing layer formed by cutting out a circular piece or the like from a molding for the polishing layer.
  • the abrasive layer is manufactured by adjusting the dimensions, shape, thickness, etc., by cutting, slicing, buffing, punching, etc., of the compact for the abrasive layer obtained as described above.
  • the polishing surface of the polishing layer is preferably formed with concave portions such as grooves and holes for holding the slurry as described above. Such recesses are useful for discharging polishing dust that causes scratches and preventing damage to the wafer due to adsorption of the polishing pad.
  • the shape of the grooves for holding the slurry is not particularly limited, and concentric, spiral, lattice, and radial grooves for holding the slurry on the polishing surface that have been formed in conventional polishing pads are available.
  • a combination of more than one kind of grooves, or grooves or recesses made up of a plurality of holes can be employed without particular limitation.
  • concentric or spiral grooves are preferable from the viewpoint of excellent polishing characteristics such as polishing rate.
  • the groove pitch, groove width, and groove depth of the grooves for holding the slurry are not particularly limited.
  • the width of the slurry is 0.1 to 5.0 mm, further 0.3 to 3.5 mm, and the groove depth is 0.1 to 1.7 mm, further 0.3 to 1.5 mm. It is preferable from the point of ensuring sufficient retention.
  • the thickness of the polishing layer is not particularly limited, it is preferably 0.8 to 3.0 mm, more preferably 1.0 to 2.5 mm, particularly preferably 1.2 to 2.0 mm.
  • the polishing pad is a polishing pad including a polishing layer which is a molding for the polishing layer as described above. It may also be a laminated multi-layered polishing pad.
  • a layer having a hardness lower than that of the polishing layer is preferable from the viewpoint that polishing uniformity can be improved while maintaining flatness.
  • the material used as the cushion layer include a composite of nonwoven fabric impregnated with polyurethane (eg, "Suba400" (manufactured by Nitta Haas Co., Ltd.); natural rubber, nitrile rubber, polybutadiene rubber, silicone rubber, and the like. Rubber: Thermoplastic elastomers such as polyester thermoplastic elastomers, polyamide thermoplastic elastomers, and fluorothermoplastic elastomers; Therefore, polyurethanes having a foamed structure are particularly preferred.
  • polishing pad of this embodiment described above is preferably used for CMP.
  • CMP chemical vapor deposition
  • CMP for example, a CMP apparatus 20 equipped with a circular platen 1, a slurry supply nozzle 2 for supplying slurry 6, a carrier 3, and a dresser 4 as shown in FIG. 1 is used.
  • a polishing pad 10 is attached to the surface of the platen 1 with a double-sided adhesive sheet or the like. Further, the carrier 3 supports the substrate 5 to be polished.
  • the platen 1 is rotated, for example, in the direction indicated by the arrow by a motor (not shown). Further, the carrier 3 is rotated, for example, in the direction indicated by the arrow by a motor (not shown) while pressing the surface of the substrate 5 to be polished against the polishing surface of the polishing pad 10 .
  • the dresser 4 rotates, for example, in the direction indicated by the arrow.
  • the polishing surface of the polishing pad is finely roughened prior to or during polishing of the substrate to be polished to form a roughness suitable for polishing.
  • the surface of the polishing pad 10 is dressed by pressing the dresser 4 for CMP while running water over the surface of the polishing pad 10 fixed to the platen 1 and rotating.
  • the dresser for example, a diamond dresser in which diamond particles are fixed on the surface of the carrier by nickel electrodeposition or the like is used.
  • a diamond count of #60 to #200 is preferable, but it can be appropriately selected according to the resin composition of the polishing layer and the polishing conditions.
  • the dresser load depends on the diameter of the dresser, but it is 5 to 50 N for diameters of 150 mm or less, 10 to 250 N for diameters of 150 to 250 mm, and 50 to 300 N for diameters of 250 mm or more. preferable.
  • the rotation speeds of the dresser and the platen are preferably 10 to 200 rpm, respectively, but it is preferable that the rotation speeds of the dresser and the platen are different in order to prevent synchronization of rotation.
  • the polishing pad of the present embodiment since the polishing pad of the present embodiment also has excellent dressing properties, the polishing surface can be sufficiently roughened by dressing, and the dressing time can be shortened.
  • a polishing surface of a rough polishing layer having an arithmetic surface roughness Ra of 3.0 to 8.0 ⁇ m, further 4.2 to 8.0 ⁇ m is formed. This is preferable because the amount of burrs generated and the amount of burrs removed by the dresser are easily balanced, and burr growth is easily suppressed.
  • the polishing pad of the present embodiment preferably has a polishing surface of a polishing layer having a ten-point average height (Rz) of 20 to 50 ⁇ m, more preferably 25 to 45 ⁇ m.
  • the polishing of the surface to be polished of the substrate to be polished is started.
  • the slurry 6 is supplied from the slurry supply nozzle to the surface of the rotating polishing pad.
  • the slurry contains, for example, liquid media such as water and oil; abrasives such as silica, alumina, cerium oxide, zirconium oxide and silicon carbide; bases, acids, surfactants, oxidants, reducing agents, chelating agents and the like. ing.
  • lubricating oil, coolant, etc. may be used together with the slurry, if necessary.
  • the substrate to be polished which is fixed to the carrier and rotates, is pressed against the polishing pad in which the slurry has spread evenly over the polishing surface. Polishing is continued until the desired flatness and polishing amount are obtained.
  • the finishing quality is affected by adjusting the pressing force applied during polishing and the speed of relative motion between the rotation of the platen and the carrier.
  • the polishing conditions are not particularly limited, but in order to perform polishing efficiently, the rotation speed of each of the surface plate and the substrate to be polished is preferably 300 rpm or less. Further, the pressure applied to the substrate to be polished in order to bring it into pressure contact with the polishing surface of the polishing pad is preferably 150 kPa or less from the standpoint of preventing scratches after polishing. Moreover, during polishing, it is preferable to continuously or discontinuously supply the slurry to the polishing pad so that the polishing surface is evenly coated with the slurry.
  • Such CMP of the present embodiment is preferably used for polishing in manufacturing processes of various semiconductor devices, MEMS (Micro Electro Mechanical Systems), and the like.
  • objects to be polished include semiconductor substrates such as silicon, silicon carbide, gallium nitride, gallium arsenide, zinc oxide, sapphire, germanium, and diamond; Insulating films such as films and low-k films; wiring materials such as copper, aluminum, and tungsten; glass, crystal, optical substrates, and hard disks.
  • the polishing pad of the present embodiment is particularly preferably used for polishing insulating films and wiring materials formed on semiconductor substrates.
  • the moisture absorption rate of the polymer was measured as follows.
  • Moisture absorption rate (%) ⁇ (W2-W1)/W1 ⁇ x 100
  • Non-alicyclic thermoplastic polyurethane I was produced by continuously melt-polymerizing the polyurethane raw material in this way.
  • Non-alicyclic thermoplastic polyurethane I contains 100 mol % of MDI, which is a non-alicyclic diisocyanate unit, in the total amount of organic diisocyanate units.
  • the non-alicyclic thermoplastic polyurethane I had a weight average molecular weight of 120,000 and a nitrogen atom content derived from isocyanate groups of 6.5% by mass.
  • the obtained pellets were dehumidified and dried at 70° C. for 20 hours.
  • a non-alicyclic thermoplastic polyurethane II was produced by continuously melt-polymerizing polyurethane raw materials in the same manner as in Production Example 1, except that this blend was used.
  • Non-alicyclic thermoplastic polyurethane II contains 100 mol % of MDI, which is a non-alicyclic diisocyanate unit, in the total amount of organic diisocyanate units.
  • the non-alicyclic thermoplastic polyurethane II had a weight average molecular weight of 120,000 and a nitrogen atom content derived from isocyanate groups of 6.5% by mass. The obtained pellets were dehumidified and dried at 70° C. for 20 hours.
  • Non-alicyclic thermoplastic polyurethane III contains 100 mol % of HDI, which is a non-alicyclic diisocyanate unit, in the total amount of organic diisocyanate units.
  • Alicyclic thermoplastic polyurethane III had a weight average molecular weight of 120,000 and a nitrogen atom content derived from isocyanate groups of 6.5% by mass. The obtained pellets were dehumidified and dried at 70° C. for 20 hours.
  • Formulations were prepared in such proportions as An alicyclic thermoplastic polyurethane IV was produced by continuously melt-polymerizing polyurethane raw materials in the same manner as in Production Example 1, except that this blend was used.
  • Alicyclic thermoplastic polyurethane IV contains 100 mol % of IPDI, which is an alicyclic diisocyanate unit, in the total amount of organic diisocyanate units.
  • Alicyclic thermoplastic polyurethane IV had a weight average molecular weight of 120,000 and a nitrogen atom content derived from isocyanate groups of 6.5% by mass. The obtained pellets were dehumidified and dried at 70° C. for 20 hours.
  • Alicyclic thermoplastic polyurethane V contains 100 mol % of CHI, which is an alicyclic diisocyanate unit, in the total amount of organic diisocyanate units. Alicyclic thermoplastic polyurethane V had a weight average molecular weight of 120,000 and a nitrogen atom content derived from isocyanate groups of 6.5% by mass. The obtained pellets were dehumidified and dried at 70° C. for 20 hours. As the cyclohexanemethyl isocyanate, 1,3-Bis(isocyanatomethyl)cyclohexane (Takenate 600, registered trademark of Mitsui Chemicals, Inc.) was used.
  • the resulting molten mixture was left to stand at 70° C. for 16 hours or longer in a vacuum dryer to dry it. Then, the dried molten mixture is sandwiched between metal plates, sandwiched in a hot press molding machine (Kanmori Kogyosho Co., Ltd. desktop test press), and the molten mixture is melted at a heating temperature of 230 ° C. for 2 minutes. , a gauge pressure of 40 kg/cm 2 and left for 1 minute. Then, after cooling them at room temperature, a compact having a thickness of 2.0 mm sandwiched between the hot press molding machine and the metal plate was taken out.
  • a hot press molding machine Kelmani Kogyosho Co., Ltd. desktop test press
  • the obtained 2.0 mm-thick compact was heat-treated at 110°C for 3 hours, and then cut into a rectangular test piece of 30 mm x 50 mm by cutting. Then, by cutting the test piece, concentric linear grooves (width 1.0 mm, depth 1.0 mm, groove interval 6.5 mm) were formed. Then, a recess for accommodating the test piece was formed in the same circular molded body of non-alicyclic thermoplastic polyurethane I having a thickness of 2.0 mm, and the test piece was fitted into the recess to obtain a non-foamed product for evaluation. A polishing layer was obtained. And it evaluated as follows.
  • the tensile test was carried out under the following conditions: chuck-to-chuck distance of 40 mm, tensile speed of 500 mm/min, humidity of 48 RH%, and 23°C.
  • the breaking elongation of five No. 2 test pieces was measured, and the average value was defined as the dry breaking elongation S2 (%).
  • the No. 2 test piece was saturated and swollen with water of 50°C by immersing it in hot water of 50°C for 2 days. Then, the rupture elongation of the saturated swollen No. 2 test piece was measured under the same conditions, and the rupture elongation S1 when saturated with water at 50°C was obtained.
  • the specimen for storage elastic modulus evaluation was saturated and swollen with 50°C water by immersing it in 50°C hot water for 2 days. Then, using a dynamic viscoelasticity measuring device [DVE Rheospectra (trade name, manufactured by Rheology Co., Ltd.)], the dynamic viscoelasticity at 70 ° C. at a measurement range of -100 to 180 ° C. and a frequency of 11.0 Hz
  • DVE Rheospectra trade name, manufactured by Rheology Co., Ltd.
  • UV-2450 ultraviolet-visible spectrophotometer
  • a press-molded sheet was obtained in the same manner as in the measurement of elongation at break, except that the thickness was changed to 0.2 mm (200 ⁇ m). After the press-molded sheet was left under conditions of 20° C. and 65% RH for 3 days, the contact angle of the sheet was measured using DropMaster 500 manufactured by Kyowa Interface Science Co., Ltd. The results are shown in the table below.
  • the polishing layer for evaluation was set on the platen of a CMP apparatus (FREX300 manufactured by Ebara Corporation). Then, using a #100 diamond dresser (Asahi Diamond Co., Ltd.), the slurry (Klebosol (R) Co., Ltd. DuPont) is flowed at a rate of 200 mL / min, and the dresser rotation speed is 100 rpm and the turntable rotation speed is 70 rpm. , and a dresser load of 40N.
  • the polishing rate was evaluated by measuring the polishing time until the thickness of the film with the remaining convex portions became less than 100 nm. In addition, when the polishing time was 180 sec or less, further 170 sec or less, and particularly 160 sec or less, it was judged to have a high polishing rate.
  • the number of scratches larger than 0.207 ⁇ m on the entire surface of the substrate to be polished after polishing was counted.
  • the number of scratches was less than 40, further less than 30, particularly less than 25, it was determined that the occurrence of scratches was suppressed.
  • the polishing layer for evaluation was set on the platen of a CMP apparatus (FREX300 manufactured by Ebara Corporation). Then, using a diamond dresser with a diamond count of #100 (Asahi Diamond Co., Ltd.), the polishing pad was polished under the conditions of a dresser rotation speed of 100 rpm, a turntable rotation speed of 70 rpm, and a dresser load of 40 N while flowing distilled water at a rate of 200 mL / min. surface was dressed for 2 hours.
  • the grooves of the polishing layer for evaluation after polishing were photographed with a scanning electron microscope (SEM), and whether or not the grooves were blocked by burrs was observed.
  • SEM scanning electron microscope
  • FIG. 2 shows an SEM photograph taken for burr evaluation.
  • Example 2 to 12 Comparative Examples 1 to 8
  • the properties of the molded article or the polishing layer were evaluated in the same manner as in Example 1, except that the type of polyurethane composition was changed to those shown in Table 1 or Table 2. The results are shown in Table 1 or Table 2 below.
  • Comparative Example 7 an acrylonitrile-styrene copolymer having a moisture absorption rate of 0.08% was used.
  • the polishing pad according to the present invention was able to achieve both a high polishing rate, a high leveling property, a reduction in the occurrence of scratches, and an improvement in the dressing property.
  • the polishing pads of Comparative Examples 1 to 8 which had a small elongation at break, burrs occurred and the grooves were blocked in the burr test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

ポリウレタン組成物の成形体である研磨層を含む研磨パッドであって、ポリウレタン組成物は、有機ジイソシアネート単位として非脂環式ジイソシアネート単位を含む熱可塑性ポリウレタン90~99.9質量%と、吸湿性高分子0.1~10質量%とを含有し、成形体は、JIS K 7215準拠のタイプDデュロメータで60以上75未満の硬度を有する、研磨パッド。

Description

研磨パッド
 本発明は、研磨パッド、詳しくは、半導体ウエハ,半導体デバイス,シリコンウエハ,ハードディスク,ガラス基板,光学製品,または,各種金属等を研磨するための研磨パッドに関する。
 集積回路を形成するための基板として使用される半導体ウエハの鏡面加工や、半導体デバイスの絶縁膜や導電体膜の凹凸を平坦化加工するために用いられる研磨方法として、化学機械研磨(Chemical Mechanical Polishing、以下「CMP」ともいう)が知られている。CMPは、半導体ウエハ等の被研磨基板の表面を、砥粒及び反応液を含む研磨スラリー(以下、単にスラリーとも称する)を用いて研磨パッドで研磨する方法である。
 CMPでは、研磨パッドの研磨層の特性により研磨結果が大きく変化する。例えば、柔らかい研磨層は、被研磨面に発生する研磨欠陥であるスクラッチの発生を低減させる一方、被研磨面に対する局所的な平坦化性や研磨速度を低下させる。また、硬い研磨層は、被研磨面に対する局所的な平坦化性を向上させる一方、被研磨面に発生するスクラッチを増加させる。
 被研磨面のスクラッチの発生の低減、被研磨面の平坦化性の向上、または、研磨速度の向上を目的として、種々の研磨パッドが提案されている。
 例えば、下記特許文献1は、共役ジエン共重合体等の高分子マトリクス材に、ポリオキシエチレン等の主鎖にエーテル結合を含む重合体及びシクロデキストリン等の水溶性粒子を、分散させてなる研磨層を備える研磨パッドを開示する。そして、特許文献1は、このような研磨パッドは、高い研磨速度を与え、被研磨面におけるスクラッチの発生を充分に抑制し、さらに、被研磨面内の研磨速度の均一性を向上させることができることを開示する。
 また、下記特許文献2は、熱可塑性ポリウレタンを80質量部以上99質量部以下と、ポリオキシエチレン等の吸水率3%以上3000%以下の高分子化合物を1質量部以上20質量部以下と、を含有する組成物から形成された研磨層を有する化学機械研磨パッドを開示する。特許文献2は、このような研磨パッドが、スラリーと接触した水溶性粒子が遊離することにより空孔を形成させ、形成された空孔にスラリーを保持させて、高い平坦化性を維持し、スクラッチの発生も低減させることを開示する。
 また、下記特許文献3は、樹脂及び炭酸カルシウムの粒子等の第一の粒子を含む研磨層を有する研磨パッドであって、第一の粒子の平均粒子径D50が1.0~5.0μm未満であり、研磨層全体に対する第一の粒子の含有量が6.0~18.0体積%であり、第一の粒子のモース硬度が、被研磨基板のモース硬度未満である研磨パッドを開示する。
 ところで、CMPに用いられる研磨パッドの研磨層の研磨面には、通常、被研磨基板の被研磨面にスラリーを均一かつ充分に供給するために役立つ、同心円状や放射状や格子状等の溝や穴(以下、単にこれらをまとめて凹部とも称する)が形成されている。このような凹部は、スクラッチの発生の原因となる研磨屑の排出や、研磨パッドの吸着によるウエハ破損の防止にも役立つ。
 研磨面に凹部を形成した場合には、表面粗さを最適化するためのドレッシングに用いられるドレッサーや被研磨基板が、繰り返し研磨面に接触することにより、研磨層が摩耗する際に、凹部のコーナー部にバリが発生することがあった。そして、発生したバリが凹部を閉塞させた場合には、研磨スラリーの供給性が低下して、研磨速度が低下したり、研磨均一性が低下したりすることがあった。また、大きなバリは、スクラッチを発生させることもある。
 下記特許文献4は、上述した課題を解決すべく、熱可塑性ポリウレタン(A)およびそれ以外のポリマー(B)を含む研磨層を有する研磨パッドであって、熱可塑性ポリウレタン(A)が、高分子ジオール、有機ジイソシアネートおよび鎖伸長剤を反応させることにより得られるものであり、ポリマー(B)が、ガラス転移温度が60~120℃である非晶性ポリマーであり、且つ熱可塑性ポリウレタン(A)中に分散しており、研磨層の-80~-50℃における損失正接の最大値が8.00×10-2以下である研磨パッドを開示する。そして、ポリマー(B)として、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、メタクリロニトリルおよびスチレンからなる群から選ばれる少なくとも一つのモノマーに由来する構造単位を有するポリマーを開示する。特許文献4は、このような研磨パッドによれば、凹部のコーナー部に発生するバリを低減できることを記載する。
国際公開第2007/089004号 特開2011-151373号公報 特開2019-155507号公報 特開2015-226940号公報
 特許文献1及び特許文献2に開示された研磨パッドは、凹部のコーナー部に発生するバリの低減と、高い研磨速度と、高い平坦化性と、スクラッチの発生しにくい低スクラッチ性とを兼ね備えることが困難であった。
 また、特許文献3に開示された研磨パッドによれば、第一の粒子の粒子径が比較的大きいために、スクラッチが発生しやすくなる懸念があった。
 また、特許文献4に開示された研磨パッドにおいては、マトリクスである熱可塑性ポリウレタンに、熱可塑性ポリウレタン以外のポリマー(B)が、実質的に非相溶の状態で分散している。そのために、ポリマー(B)の含有割合を比較的高くしなければ、バリの発生を充分に抑制できなかった。また、ポリマー(B)の含有割合を高くした場合には、熱可塑性ポリウレタンを主体とする研磨層の特性が低減することがあった。
 また、とくに、JIS K 7215準拠のタイプDデュロメータで60~75程度の中程度の硬さを有する研磨層の研磨面に凹部を形成した場合、ドレッシングの際のドレッサーや被研磨基板が、凹部のコーナー部に長時間繰り返し接触することにより、コーナー部にバリが発生しやすかった。そして、発生したバリが凹部を徐々に閉塞させることにより、研磨面へのスラリーの供給量が徐々に低減することがあった。その結果、研磨速度や平坦化性が徐々に低下したり、研磨均一性が低下したり、被研磨面に発生するスクラッチが増加したり、しやすくなるという問題があった。
 本発明は、高い研磨速度と、低スクラッチ性と、高い平坦化性と、のバランスに優れた中程度の硬さを有する研磨層において、研磨面に形成された凹部のコーナー部にバリが発生しにくい、研磨パッドを提供することを目的とする。
 本発明の一局面は、ポリウレタン組成物の成形体である研磨層を含む研磨パッドであって、ポリウレタン組成物は、有機ジイソシアネート単位として非脂環式ジイソシアネート単位を含む熱可塑性ポリウレタン90~99.9質量%と、吸湿率0.1%以上の吸湿性高分子0.1~10質量%と、を含有する。そして、成形体は、JIS K 7215準拠のタイプDデュロメータで荷重保持時間5秒間の条件で測定された、60以上75未満のD硬度を有する、研磨パッドである。このような研磨パッドによれば、高い研磨速度と、低スクラッチ性と、高い平坦化性と、のバランスに優れた中程度の硬さを有する研磨層において、研磨面に形成された凹部のコーナー部にバリが発生しにくい、研磨パッドが得られる。
 熱可塑性ポリウレタンは、有機ジイソシアネート単位の総量中に、非脂環式ジイソシアネート単位である4,4’-ジフェニルメタンジイソシアネート単位を90~100モル%含むことが好ましい。このような場合には、吸湿性高分子が熱可塑性ポリウレタンにとくに相溶性よく分散する。
 また、ポリウレタン組成物が、熱可塑性ポリウレタン99~99.9質量%と、吸湿性高分子0.1~1質量%と、を含有することが好ましい。このような場合には、タイプDデュロメータ硬度をより高く維持しやすくなり、より高い平坦化性を保持しやすくなる。
 また、吸湿性高分子としては、例えば、ポリエチレンオキサイドやポリエチレンオキサイド-プロピレンオキサイドブロック共重合体が挙げられる。
 また、吸湿性高分子は、重量平均分子量が70,000~4,000,000であることが好ましい。このような場合には、熱可塑性ポリウレタンとの相溶性にとくに優れる。
 また、成形体は、50℃の水で飽和膨潤させたときの、飽和膨潤時破断伸度が250~400%であることが好ましい。このような場合には、より高い研磨速度の研磨パッドが得られやすい。
 また、成形体が、湿度48RH%、23℃における、乾燥時破断伸度が150~250%であることが好ましい。このような場合には、より高い研磨速度を示す、研磨パッドが得られやすい。
 また、成形体は、上記飽和膨潤時破断伸度Sと上記乾燥時破断伸度S2との比S/S2が1.0~2.0であること好ましい。このような場合には、より高い研磨速度を示す、研磨パッドが得られやすい。
 また、成形体は、厚さ0.5mmのシートを50℃の水で飽和膨潤させたときの、波長550nmのレーザー光透過率が60%以上であることが好ましい。このような場合には、ウエハ等の被研磨基板の被研磨面を研磨するときに、研磨終点を決定するための光学的な検知手段を採用しやすくなる。
 また、成形体は、ビッカース硬さが5以上21未満であることが好ましい。このような場合には、低スクラッチ性により優れた研磨パッドが得られやすい。
 また、成形体は、50℃の水で飽和膨潤させたときの、貯蔵弾性率が0.1~1.0GPaであることが好ましい。このような場合には、より高い平坦化性を保持させやすい研磨層が得られやすくなる。
 また、成形体が無発泡成形体であることが好ましい。このような場合には、研磨層の硬度がより高くなりやすくなることにより、より高い平坦化性や高い研磨速度を実現しやすくなる。また、スラリー中の砥粒が空孔内に侵入して形成される砥粒の凝集体が発生しにくくなるために、ウエハ表面を凝集体が引掻いて発生するスクラッチが、発生しにくくなる。
 本発明によれば、高い研磨速度と、低スクラッチ性と、高い平坦化性とのバランスに優れた中程度の硬さを有する研磨層であって、研磨面に形成された凹部のコーナー部にバリが発生しにくい、研磨パッドが得られる。
図1は、実施形態の研磨パッド10を用いたCMPを説明するための説明図である。 図2は、実施例におけるバリ試験で撮影されたSEM写真である。
 以下、研磨パッドの一実施形態について、詳しく説明する。
 本実施形態の研磨パッドは、ポリウレタン組成物の成形体である研磨層を含む。ポリウレタン組成物は、有機ジイソシアネート単位として非脂環式ジイソシアネート単位を含む熱可塑性ポリウレタン(以下、非脂環式熱可塑性ポリウレタンとも称する)90~99.9質量%と、吸湿性高分子0.1~10質量%とを含有する。そして、成形体は、JIS K 7215準拠のタイプDデュロメータで荷重保持時間を5秒間の条件で測定された、デュロメータD硬度60以上75未満のD硬度を有する。
 非脂環式熱可塑性ポリウレタンは、有機ジイソシアネート,高分子ジオール及び鎖伸長剤を含むポリウレタン原料を反応させて得られる熱可塑性ポリウレタンである。そして、非脂環式熱可塑性ポリウレタンは、非脂環式ジイソシアネートを含む有機ジイソシアネートを用いて得られる、熱可塑性ポリウレタンである。非脂環式熱可塑性ポリウレタンの有機ジイソシアネート単位の総量中に含まれる、非脂環式ジイソシアネート単位の含有割合としては、60~100モル%、さらには90~100モル%、とくには95~100モル%、ことには99~100モル%であることが好ましい。非脂環式ジイソシアネート単位の含有割合が低すぎる場合には、非脂環式熱可塑性ポリウレタンと吸湿性高分子との相溶性が低くなる傾向がある。
 研磨パッドの研磨層として、このようなポリウレタン組成物の成形体を用いることにより、高い研磨速度と、低スクラッチ性と、高い平坦化性のバランスに優れた中程度の硬さを有する研磨層において、研磨面に形成された凹部のコーナー部にバリが発生しにくい研磨層を備えた、研磨パッドが得られる。
 このようなポリウレタン組成物の成形体においては、非脂環式熱可塑性ポリウレタンと吸湿性高分子との相溶性が高くなることにより、成形体中の吸湿性高分子の分散性が高くなる。詳しくは、非脂環式熱可塑性ポリウレタンの高分子ジオールに由来するソフトセグメントと吸湿性高分子とが相溶しやすくなる。そして、成形体である研磨層がスラリーを含水したときに成形体の表面の延伸性が適度に向上する。そして、研磨層表面の延伸性が適度に向上することにより、ドレッシングの際に、研磨面がドレッサーに削られて発生する毛羽が、ドレッサーに引っ掛かりやすくなって、バリが削り取られやすくなる。その結果、バリによる凹部の閉塞が抑制されやすくなる。また、吸湿性高分子の高い延伸性により、ドレス性も向上し、さらに、その親水性によりスクラッチの発生も低減しやすくなる。
 一方、非脂環式熱可塑性ポリウレタンに含まれる、鎖伸長剤に由来する結晶性のハードセグメントと吸湿性高分子とは、相溶性が低い。そのために結晶性の硬いハードセグメントは、維持されやすくなる。その結果、非脂環式熱可塑性ポリウレタンの硬度は低下しにくくなる。すなわち、吸湿性高分子はソフトセグメントに対して相溶性が高く、ハードセグメントに対して相溶性が低い。
 非脂環式熱可塑性ポリウレタン中のソフトセグメントは、吸湿性高分子との相溶性が高いために、研磨層の表面の延伸性が向上する。そのために、ドレッシングにより生じる研磨パッド表面の毛羽が、ドレッサーに引っ掛かりやすく、バリが削り取られやすくなるために、バリによる凹部の閉塞を抑制することができる。
 非脂環式熱可塑性ポリウレタンの製造に用いられる非脂環式ジイソシアネートとは、脂環式ジイソシアネート以外のジイソシアネートであり、具体的には、脂肪族環式構造を有しない、芳香族ジイソシアネートまたは直鎖脂肪族ジイソシアネートである。
 芳香族ジイソシアネートは、分子構造内に芳香環を含有するジイソシアネート化合物である。その具体例としては、例えば、2,4’-ジフェニルメタンジイソシアネート,4,4’-ジフェニルメタンジイソシアネート,2,4-トリレンジイソシアネート,2,6-トリレンジイソシアネート,m-フェニレンジイソシアネート,p-フェニレンジイソシアネート,m-キシリレンジイソシアネート,p-キシリレンジイソシアネート,1,5-ナフチレンジイソシアネート,4,4’-ジイソシアナトビフェニル,3,3’-ジメチル-4,4’-ジイソシアナトビフェニル,3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン,クロロフェニレン-2,4-ジイソシアネート,テトラメチルキシリレンジイソシアネート、等が挙げられる。
 また、直鎖脂肪族ジイソシアネートは、分子構造内に環構造を有しない直鎖脂肪族の骨格を有するジイソシアネート化合物である。その具体例としては、例えば、エチレンジイソシアネート,テトラメチレンジイソシアネート,ペンタメチレンジイソシアネート,ヘキサメチレンジイソシアネート,2,2,4-トリメチルヘキサメチレンジイソシアネート,2,4,4-トリメチルヘキサメチレンジイソシアネート,ドデカメチレンジイソシアネート,イソホロンジイソシアネート,リジンジイソシアネート,2,6-ジイソシアナトメチルカプロエート,ビス(2-イソシアナトエチル)フマレート,ビス(2-イソシアナトエチル)カーボネート,2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート、等が挙げられる。
 非脂環式熱可塑性ポリウレタンは、原料として用いられる有機ジイソシアネートとして、例えば、60モル%以上、好ましくは90モル%以上、さらに好ましくは95モル%以上、特に好ましくは99モル%以上、ことに好ましくは100モル%の非脂環式ジイソシアネートを含む有機ジイソシアネートを用いて得られる。
 各非脂環式ジイソシアネートは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では有機ジイソシアネートが、芳香族ジイソシアネート、さらには、4,4’-ジフェニルメタンジイソシアネート,2,4-トリレンジイソシアネート,2,6-トリレンジイソシアネート,及びイソホロンジイソシアネートを含むこと、とくには、4,4’-ジフェニルメタンジイソシアネートを100モル%含むことが、平坦化性がとくに優れた研磨パッドが得られる点からとくに好ましい。
 なお、本発明の効果を損なわない範囲で、非脂環式ジイソシアネートに脂環式ジイソシアネートを組み合わせて用いてもよい。脂環式ジイソシアネートは、脂肪族環式構造を含有するジイソシアネート化合物である。その具体例としては、例えば、イソプロピリデンビス(4-シクロヘキシルイソシアネート),シクロヘキシルメタンジイソシアネート,メチルシクロヘキサンジイソシアネート,4,4’-ジシクロヘキシルメタンジイソシアネート,シクロヘキシレンジイソシアネート,メチルシクロヘキシレンジイソシアネート,ビス(2-イソシアナトエチル)-4-シクロへキセン、等が挙げられる。脂環式ジイソシアネートの含有割合が高すぎる場合には、吸湿性高分子との相溶性が低くなり、また、平坦化性も低下し易くなる傾向がある。
 高分子ジオールは、数平均分子量が300以上のジオールであり、例えば、ポリエーテルジオール,ポリエステルジオール,ポリカーボネートジオール,またはこれらを組み合わせた高分子ジオール等が挙げられる。
 ポリエーテルジオールの具体例としては、例えば、ポリ(エチレングリコール),ポリ(プロピレングリコール),ポリ(テトラメチレングリコール),ポリ(メチルテトラメチレングリコール),ポリ(オキシプロピレングリコール),グリセリンベースポリアルキレンエーテルグリコール等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、ポリ(エチレングリコール)及びポリ(テトラメチレングリコール)が、非脂環式熱可塑性ポリウレタンのハードセグメントとの相溶性にとくに優れる点から好ましい。
 ポリエステルジオールとは、ジカルボン酸または、そのエステル,無水物等のエステル形成性誘導体と、低分子ジオールと、を直接エステル化反応またはエステル交換反応させることにより製造された主鎖にエステル構造を有する高分子ジオールである。
 ジカルボン酸の具体例としては、例えば、シュウ酸,コハク酸,グルタル酸,アジピン酸,ピメリン酸,スベリン酸,アゼライン酸,セバシン酸,ドデカンジカルボン酸,2-メチルコハク酸,2-メチルアジピン酸,3-メチルアジピン酸,3-メチルペンタン二酸,2-メチルオクタン二酸,3,8-ジメチルデカン二酸,3,7-ジメチルデカン二酸等の炭素数2~12の脂肪族ジカルボン酸;トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸(ダイマー酸)及びその水素添加物(水添ダイマー酸);1,4-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸;テレフタル酸,イソフタル酸,オルトフタル酸等の芳香族ジカルボン酸などが挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
 低分子ジオールの具体例としては、例えば、エチレングリコール,1,3-プロパンジオール,1,2-プロパンジオール,2-メチル-1,3-プロパンジオール,1,4-ブタンジオール,ネオペンチルグリコール,1,5-ペンタンジオール,3-メチル-1,5-ペンタンジオール,1,6-ヘキサンジオール,1,7-ヘプタンジオール,1,8-オクタンジオール,2-メチル-1,8-オクタンジオール,1,9-ノナンジオール,1,10-デカンジオール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール等のシクロヘキサンジメタノール,1,4-シクロヘキサンジオール等のシクロヘキサンジオール等の脂環式ジオール;などが挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、炭素数3~12、さらには炭素数4~9の低分子ジオールが好ましい。
 また、ポリカーボネートジオールは、低分子ジオールと、ジアルキルカーボネート,アルキレンカーボネート,ジアリールカーボネート等のカーボネート化合物と、の反応により得られる。低分子ジオールとしては、上述したような低分子ジオールが挙げられる。また、ジアルキルカーボネートの具体例としては、例えば、ジメチルカーボネート,ジエチルカーボネートが挙げられる。また、アルキレンカーボネートの具体例としては、例えば、エチレンカーボネートが挙げられる。また、ジアリールカーボネートの具体例としては、例えば、ジフェニルカーボネートが挙げられる。
 高分子ジオールの中では、ポリ(エチレングリコール),ポリ(テトラメチレングリコール)等のポリエーテルジオールや、ポリ(ノナメチレンアジペート)ジオール,ポリ(2-メチル-1,8-オクタメチレンアジペート)ジオール,ポリ(2-メチル-1,8-オクタメチレン-co-ノナメチレンアジペート)ジオール,ポリ(メチルペンタンアジペート)ジオール等のポリエステルジオール、とくには炭素数6~12の低分子ジオール単位を含むポリエステルジオールが、非脂環式熱可塑性ポリウレタンの鎖伸長剤単位に由来するハードセグメントとの相溶性にとくに優れる点から好ましい。
 高分子ジオールの数平均分子量は300以上であり、300超~2,000、さらには350~2,000、とくには500~1,500、ことには600~1,000であることが、非脂環式熱可塑性ポリウレタンのハードセグメントとの相溶性を高く維持することができ、それにより、とくに被研磨面にスクラッチを発生させにくくしやすい点から好ましい。なお、高分子ジオールの数平均分子量は、JIS K 1557に準拠して測定した水酸基価に基づいて算出した数平均分子量である。
 鎖伸長剤としては、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量300以下の化合物である、ポリウレタンの製造に従来から使用されている鎖伸長剤が用いられる。
 鎖伸長剤の具体例としては、例えば、エチレングリコール,ジエチレングリコール,プロピレングリコール,2,2-ジエチル-1,3-プロパンジオール,1,2-,1,3-、2,3-または1,4-ブタンジオール,1,5-ペンタンジオール,ネオペンチルグリコール,1,6-ヘキサンジオール,3-メチル-1,5-ペンタンジオール,1,4-ビス(β-ヒドロキシエトキシ)ベンゼン,1,4-シクロヘキサンジオール,ビス-(β-ヒドロキシエチル)テレフタレート,1,9-ノナンジオール,m-またはp-キシリレングリコールなどのジオール類;エチレンジアミン,トリメチレンジアミン,テトラメチレンジアミン,ヘキサメチレンジアミン,ヘプタメチレンジアミン,オクタメチレンジアミン,ノナメチレンジアミン,デカメチレンジアミン,ウンデカメチレンジアミン,ドデカメチレンジアミン,2,2,4-トリメチルヘキサメチレンジアミン,2,4,4-トリメチルヘキサメチレンジアミン,3-メチルペンタメチレンジアミン,1,2-シクロヘキサンジアミン,1,3-シクロヘキサンジアミン,1,4-シクロヘキサンジアミン,1,2-ジアミノプロパン,1,3-ジアミノプロパン,ヒドラジン,キシリレンジアミン,イソホロンジアミン,ピペラジン,o-,m-またはp-フェニレンジアミン,トリレンジアミン,キシレンジアミン,アジピン酸ジヒドラジド,イソフタル酸ジヒドラジド,4,4’-ジアミノジフェニルメタン,4,4’-ジアミノジフェニルエーテル,4,4’-ビス(4-アミノフェノキシ)ビフェニル,4,4’-ビス(3-アミノフェノキシ)ビフェニル,1,4’-ビス(4-アミノフェノキシ)ベンゼン,1,3’-ビス(4-アミノフェノキシ)ベンゼン,1,3-ビス(3-アミノフェノキシ)ベンゼン,3,4’-ジアミノジフェニルエーテル,4,4’-ジアミノジフェニルスルフォン,3,4-ジアミノジフェニルスルフォン,3,3’-ジアミノジフェニルスルフォン,4,4’-メチレン-ビス(2-クロロアニリン),3,3’-ジメチル-4,4’-ジアミノビフェニル,4,4’-ジアミノジフェニルスルフィド,2,6’-ジアミノトルエン,2,4-ジアミノクロロベンゼン,1,2-ジアミノアントラキノン,1,4-ジアミノアントラキノン,3,3’-ジアミノベンゾフェノン,3,4-ジアミノベンゾフェノン,4,4’-ジアミノベンゾフェノン,4,4’-ジアミノビベンジル,R(+)-2,2’-ジアミノ-1,1’-ビナフタレン,S(+)-2,2’-ジアミノ-1,1’-ビナフタレン,1,3-ビス(4-アミノフェノキシ)C3-10アルカン,1,4-ビス(4-アミノフェノキシ)C3-10アルカン,1,5-ビス(4-アミノフェノキシ)C3-10アルカン等の1,n-ビス(4-アミノフェノキシ)C3-10アルカン(nは3~10),1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン,9,9-ビス(4-アミノフェニル)フルオレン,4,4’-ジアミノベンズアニリドなどのジアミン類などが挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
 鎖伸長剤の中では、1,3-プロパンジオール,1,4-ブタンジオール,ネオペンチルグリコール,1,5-ペンタンジオール,1,6-ヘキサンジオール,1,9-ノナンジオール及び1,4-シクロヘキサンジメタノールが、高分子ジオール単位に由来するソフトセグメントとの相溶性に優れる点からとくに好ましい。
 鎖伸長剤の分子量は300以下であり、60~300であることがハードセグメントとソフトセグメントとの相溶性に優れる点からとくに好ましい。
 非脂環式熱可塑性ポリウレタンは、上述したように、非脂環式ジイソシアネートを含む有機ジイソシアネート,高分子ジオール,及び鎖伸長剤、を含むポリウレタン原料を反応させて得られる。非脂環式熱可塑性ポリウレタンの製造には、ウレタン化反応を行うプレポリマー法またはワンショット法等を用いた、公知のポリウレタンの合成方法がとくに限定なく用いられる。とくには、実質的に溶剤の不存在下で、ポリウレタン原料を溶融重合させる方法、とくには、多軸混練押出機を用いてポリウレタン原料を連続溶融重合させる方法が、連続生産性に優れる点からとくに好ましい。
 ポリウレタン原料における、高分子ジオール,有機ジイソシアネート及び鎖伸長剤の配合割合は、適宜調整されるが、高分子ジオール及び鎖伸長剤に含まれる活性水素原子1モルに対して、有機ジイソシアネートに含まれるイソシアネート基が0.95~1.30モル、さらには0.96~1.10モル、とくには0.97~1.05モルになるように各成分を配合することが好ましい。
 また、ポリウレタン原料における、高分子ジオールと有機ジイソシアネートと鎖伸長剤との質量比(高分子ジオールの質量:有機ジイソシアネート及び鎖伸長剤の合計質量)としては、10:90~50:50、さらには、15:85~40:60、とくには20:80~30:70であることが好ましい。
 非脂環式熱可塑性ポリウレタンの、イソシアネート基由来の窒素原子の含有割合としては、4.5~7.5質量%、さらには、5.0~7.3質量%、とくには5.3~7.0質量%であることが、高い研磨速度と、低スクラッチ性と、高い平坦化性とのバランスに優れた中程度の硬さを有する研磨層が得られやすい点から好ましい。
 このようにして得られる非脂環式熱可塑性ポリウレタンとしては、ポリ(エチレングリコール),ポリ(テトラメチレングリコール),ポリ(ノナメチレンアジペート)ジオール,ポリ(2-メチル-1,8-オクタメチレンアジペート)ジオール,ポリ(2-メチル-1,8-オクタメチレン-co-ノナメチレンアジペート)ジオール及びポリ(メチルペンタンアジペート)ジオール等の高分子ジオールと、4,4’-ジフェニルメタンジイソシアネート,2,4-トリレンジイソシアネート及び2,6-トリレンジイソシアネート等の非脂環式ジイソシアネートを含む有機ジイソシアネートと、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール,及び1,4-シクロヘキサンジメタノール等からなる群から選ばれる少なくとも一つの鎖伸長剤とを反応させて得られるものが、光透過性に優れるために、CMPにおいて研磨量を光学的に検知する手段を採用しやすい点から好ましい。
 非脂環式熱可塑性ポリウレタンの重量平均分子量としては、80,000~200,000、さらには120,000~180,000であることが、吸湿性高分子との相溶性にとくに優れる点から好ましい。なお、重量平均分子量は、ゲル浸透クロマトグラフィーで測定されたポリスチレン換算された重量平均分子量である。
 なお、本実施形態のポリウレタン組成物には、本発明の効果を損なわない範囲で、有機ジイソシアネート単位に非脂環式ジイソシアネートを含まない熱可塑性ポリウレタン(以下、脂環式熱可塑性ポリウレタンとも称する)を含有してもよい。脂環式熱可塑性ポリウレタンを含有する場合、ポリウレタン組成物中の脂環式熱可塑性ポリウレタンの含有割合としては、0~9.9質量%、さらには、0~5質量%であることが好ましい。
 本実施形態のポリウレタン組成物は吸湿性高分子を含む。吸湿性高分子は、ポリウレタン組成物の成形体である研磨層の凹部に発生するバリを抑制し、またドレス性を向上させる作用をする。
 吸湿性高分子とは、吸湿率が0.1%以上の高分子であり、好ましくは、0.1~5.0%、さらに好ましくは0.1~3.0%、とくに好ましくは0.5~3.0%、ことに好ましくは0.7~2.5%、の吸湿率を有する高分子と定義される。なお、吸湿性高分子の吸湿率は、混合される吸湿性高分子の5.0gの粒子をガラス製の皿に薄く広げ、50℃の熱風乾燥機内で48時間放置して乾燥させた後、23℃、50%RHの恒温恒湿条件で24時間放置したときの質量の変化に基づいて計算される。具体的には、23℃、50%RHの恒温恒湿条件での処理の直前における重量(W1)と、上記23℃、50%RHの恒温恒湿条件での処理後の重量(W2)を測定し、下記の計算式から求められる。
吸湿率(%)={(W2-W1)/W1}×100
 このような吸湿性高分子としては、ポリメチレンオキサイド構造,ポリエチレンオキサイド構造,ポリプロピレンオキサイド構造,ポリテトラメチレンオキサイド構造,ポリブチレンオキサイド構造等のポリアルキレンオキサイド構造を有する高分子が挙げられる。
 このような吸湿性高分子の具体例としては、例えば、ポリエチレンオキサイド(PEO),ポリプロピレンオキサイド(PPO),PEO-PPOブロックコポリマー,ポリエステル系熱可塑性エラストマー(TPEE),ポリメチレンオキサイドアルキルエーテル,ポリエチレンオキサイドアルキルエーテル,ポリエチレンオキサイドアルキルフェニルエーテル,ポリエチレンオキサイドステロールエーテル,ポリエチレンオキサイドラノリン誘導体,ポリエチレンオキサイド‐ポリプロピレンオキサイドコポリマー,ポリエチレンオキサイド‐ポリプロピレンアルキルエーテルなどのエーテル型の吸湿性高分子;ポリエチレンオキサイドグリセリン脂肪酸エステル,ポリエチレンオキサイドソルビタン脂肪酸エステル,ポリエチレンオキサイドソルビトール脂肪酸エステル,ポリエチレンオキサイド脂肪酸アルカノールアミド硫酸塩ポリエチレングリコール脂肪酸エステル,エチレングリコール脂肪酸エステル,等のエーテルエステル型の吸湿性高分子;等が挙げられる。
 吸湿性高分子の重量平均分子量としては、5,000~10,000,000,さらには10,000~10,000,000、さらには30,000~7,000,000、とくには50,000~7,000,000、ことには70,000~4,000,000であることが非脂環式熱可塑性ポリウレタンとの相溶性にとくに優れる点から好ましい。なお、吸湿性高分子の重量平均分子量は、ゲル浸透クロマトグラフィー(ポリスチレン換算)によって測定された値である。
 吸湿性高分子は、非脂環式熱可塑性ポリウレタンの親水性のソフトセグメントとの相溶性が高い。一方、非脂環式熱可塑性ポリウレタンのハードセグメントとは相溶性が低い。
 ポリウレタン組成物中の非脂環式熱可塑性ポリウレタンの含有割合は90~99.9質量であり、95~99.5質量、さらには、95~99.0質量%であることが好ましい。非脂環式熱可塑性ポリウレタンの含有割合が90質量%未満である場合には、研磨パッドの平坦化性及び研磨速度が低下する。また、非脂環式熱可塑性ポリウレタンの含有割合が99.9質量%超である場合には、吸湿性高分子の含有割合が0.1質量%未満になり、凹部に発生するバリを充分に抑制する効果が低下する。
 また、ポリウレタン組成物における吸湿性高分子の含有割合は0.1~10質量%であり、0.5~10質量%、さらには、0.5~5質量%であることが好ましい。吸湿性高分子の含有割合が0.1質量%未満である場合には、凹部に発生するバリを抑制する効果が低下する。また、吸湿性高分子の含有割合が10質量%超である場合には、研磨パッドの平坦化性及び研磨速度が低下する。
 本実施形態のポリウレタン組成物は、本発明の効果を損なわない範囲で、必要に応じて、架橋剤,充填剤,架橋促進剤,架橋助剤,軟化剤,粘着付与剤,老化防止剤,加工助剤,密着性付与剤,無機充填剤,有機フィラー,結晶核剤,耐熱安定剤,耐候安定剤,帯電防止剤,着色剤,滑剤,難燃剤,難燃助剤(酸化アンチモンなど),ブルーミング防止剤,離型剤,増粘剤,酸化防止剤,導電剤等の添加剤を含有してもよい。なお、本実施形態のポリウレタン組成物の成形体は無発泡成形体であることが好ましいために、発泡剤は含有しないことが好ましい。
 ポリウレタン組成物は、非脂環式熱可塑性ポリウレタン,吸湿性高分子及び必要に応じて配合されるその他の熱可塑性ポリウレタンや添加剤を含む配合物を溶融混練することにより調製される。さらに詳しくは、非脂環式熱可塑性ポリウレタン,吸湿性高分子,及び必要に応じて配合されるその他の熱可塑性ポリウレタンや添加剤をヘンシェルミキサー,リボンブレンダー,V型ブレンダー,タンブラー等により均一に混合して調製された配合物を、一軸又は多軸混練押出機,ロール,バンバリーミキサー,ラボプラストミル(登録商標)やブラベンダー等で溶融混練することにより調製される。溶融混練する際の温度と混練時間は、非脂環式熱可塑性ポリウレタンの種類、成分や割合、溶融・混練機の種類等により適宜選択する。一例としては、溶融温度は200~300℃の範囲が好ましい。
 ポリウレタン組成物は研磨層用の成形体に成形される。成形方法は特に限定されないが、溶融混合物を、Tダイを用いて押出成形したり射出成形したりする方法が挙げられる。とくには、Tダイを用いた押出成形が、均一な厚さの研磨層用の成形体が容易に得られる点から好ましい。このようにして研磨層用の成形体が得られる。
 研磨層用の成形体は、無発泡成形体であることが、硬度が高くなるために特に優れた平坦化性を発揮する点、表面に気孔がなく研磨屑の堆積が起こらないためにスクラッチの発生を低減させる点、及び、研磨層の摩耗速度が小さく長時間使用可能になる点から好ましい。
 成形体は、JIS K 7215準拠のタイプDデュロメータで荷重保持時間5秒間の条件で測定された、デュロメータD硬度が、60以上75未満、好ましくは65以上75未満である。このような中程度の硬さの硬度を有することにより、高い研磨速度と、低スクラッチ性と、高い平坦化性とのバランスに優れた研磨層が得られる。デュロメータD硬度が60未満の場合、研磨層が柔らかくなり過ぎて、研磨速度や平坦化性が低下する。また、デュロメータD硬度が75以上の場合、スクラッチが発生しやすくなったり、凹部のコーナー部にバリが発生し易くなったりする。
 また、成形体は、ビッカース硬さが5以上21未満であることが、スクラッチの発生がとくに少なくなる点から好ましい。ここで、ビッカース硬さとは、JIS Z 2244準拠のビッカース圧子で測定される硬さと定義される。また、ビッカース硬さが高すぎる場合にはバリが発生し易くなる傾向がある。
 また、成形体の延伸性、とくに、スラリーを吸収したときの延伸性が高い場合には、研磨面のドレス性が向上するとともに、ドレッサーにより荒らされた研磨面に発生した毛羽がドレッシングの際に除去され易くなることにより、バリが残りにくくなる傾向がある。このようにバリをより除去されやすくさせるために、成形体の、50℃の水で飽和膨潤させたときの、飽和膨潤時破断伸度S1としては、250~400%、さらには250~350%、とくには250~330%であることが好ましい。また、成形体の、湿度48RH%、23℃における乾燥時破断伸度S2としては、130~250%、さらには150~250%であることが好ましい。また、飽和膨潤時破断伸度S1と乾燥時破断伸度S2との比S1/S2が1.0~2.0であることが、より研磨速度の高い研磨パッドが得られやすい点から好ましい。
 また、成形体は、50℃の水で飽和膨潤させたときの、厚さ0.5mmのシートにおける550nmのレーザー波長に対するレーザー光透過率が60%以上であることが、ウエハ等の被研磨基板の被研磨面を研磨しながら研磨終点を決定する光学的手段を用いた検査方法が採用しやすい点から好ましい。
 また、成形体は、50℃の水で飽和膨潤させたときの貯蔵弾性率が、0.1~1.0GPa、さらには0.1~0.5GPa、とくには0.1~0.4GPaであることが、より高い平坦化性を保持させやすい点から好ましい。50℃の水で飽和膨潤させたときの貯蔵弾性率が低すぎる場合には、研磨層が柔らかくなり、平坦化性が低下したり、研磨速度が低下したりしやすくなる傾向がある。また、50℃の水で飽和膨潤させたときの貯蔵弾性率が高すぎる場合には、凹部のコーナー部に発生したバリが除去されにくくなることがある。
 また、成形体の水との接触角は、80度以下、さらには78度以下、とくには75度以下であり、50度以上、さらには60度以上であることが好ましい。接触角が高すぎる場合には、被研磨面にスクラッチが発生しやすくなる傾向がある。
 次に、このような研磨層用の成形体を研磨層として含む研磨パッドについて説明する。本実施形態の研磨パッドは、研磨層用の成形体から円形等の断片を切り出すことにより形成される研磨層を含む。
 研磨層は、上記のようにして得られた研磨層用の成形体を切削,スライス,バフ,打ち抜き加工等により寸法、形状、厚さ等を調整して製造される。
 また、研磨層の研磨面には、研磨面にスラリーを均一かつ充分に供給させるために、上述したようなスラリーを保持するため溝や穴のような凹部が形成されることが好ましい。このような凹部は、スクラッチの発生の原因となる研磨屑の排出や、研磨パッドの吸着によるウエハ破損の防止にも役立つ。
 スラリーを保持するための溝の形状は特に限定されず、従来の研磨パッドにおいて形成されてきた研磨面にスラリーを保持させるための、同心円状,螺旋状,格子状、放射状の溝、これらが2種以上組み合わされた溝、又は複数の穴からなるような溝または凹部が特に限定なく採用できる。これらの中では、同心円状または螺旋状の溝が研磨速度などの研磨特性に優れる点から好ましい。
 スラリーを保持するための溝の溝ピッチ,溝幅、及び溝深さは特に限定されないが、例えば、溝ピッチが1.5~20.0mm、さらには2.5~15.0mmであり、溝幅が0.1~5.0mm、さらには0.3~3.5mmであり、溝深さが0.1~1.7mm、さらには0.3~1.5mmであることが、スラリーの保持性を充分に確保する点から好ましい。
 研磨層の厚さは特に限定されないが、例えば、0.8~3.0mm、さらには1.0~2.5mm、とくには1.2~2.0mmであることが好ましい。
 研磨パッドは、上述したような研磨層用の成形体である研磨層を含む研磨パッドであり、研磨層のみからなる単層型研磨パッドであっても、研磨層の裏面にクッション層等をさらに積層した複層型研磨パッドであってもよい。クッション層としては、研磨層の硬度よりも低い硬度を有する層である場合には、平坦化性を維持しながら、研磨均一性を向上させることができる点から好ましい。
 クッション層として用いられる素材の具体例としては、不織布にポリウレタンを含浸させた複合体(例えば、「Suba400」(ニッタ・ハース(株)製);天然ゴム,ニトリルゴム,ポリブタジエンゴム,シリコーンゴム等のゴム;ポリエステル系熱可塑性エラストマー,ポリアミド系熱可塑性エラストマー,フッ素系熱可塑性エラストマー等の熱可塑性エラストマー;発泡プラスチック;ポリウレタン等が挙げられる。これらの中では、クッション層として好ましい柔軟性が得られやすい点から、発泡構造を有するポリウレタンがとくに好ましい。
 以上説明した本実施形態の研磨パッドはCMPに好ましく用いられる。次に、本実施形態の研磨パッド10を用いたCMPの一実施形態について説明する。
 CMPにおいては、例えば、図1に示すような円形のプラテン1と、スラリー6を供給するためのスラリー供給ノズル2と、キャリア3と、ドレッサー4とを備えたCMP装置20が用いられる。プラテン1の表面に、研磨パッド10が両面粘着シート等により貼付けられる。また、キャリア3は被研磨基板5を支持する。
 CMP装置20においては、プラテン1は、図略のモータにより、例えば、矢印に示す方向に回転する。また、キャリア3は、被研磨基板5の被研磨面を研磨パッド10の研磨面に圧接しながら、図略のモータにより例えば矢印に示す方向に回転する。ドレッサー4は、例えば矢印に示す方向に回転する。
 研磨パッドを用いるとき、被研磨基板の研磨に先立って、または、研磨しながら、研磨パッドの研磨面を細かく荒らして研磨に適した粗さを形成するためのドレッシングが行われる。具体的には、プラテン1に固定されて回転する研磨パッド10の表面に水を流しながら、CMP用のドレッサー4を押し当て、研磨パッド10の表面のドレッシングを行う。ドレッサーとしては、例えば、ダイヤモンド粒子をニッケル電着等により担体表面に固定したダイヤモンドドレッサーが用いられる。
 ドレッサーの種類としては、ダイヤモンド番手#60~200が好ましいが、研磨層の樹脂組成や研磨条件に合わせて適宜選択することができる。また、ドレッサー荷重としては、ドレッサーの直径にもよるが、直径150mm以下の場合には5~50N、直径150~250mmの場合には10~250N、直径250mm以上の場合には50~300N程度が好ましい。また、回転速度としては、ドレッサーとプラテンがそれぞれ10~200rpmであることが好ましいが、回転の同期を防ぐためにドレッサーとプラテンの回転数が異なることが好ましい。
 また、本実施形態の研磨パッドは、ドレス性にも優れているために、ドレッシングにより研磨面が充分に粗くなり、また、ドレッシングの時間も短縮化される。このような、本実施形態の研磨パッドにおいては、算術表面粗さRaが3.0~8.0μm、さらには、4.2~8.0μmであるような粗い研磨層の研磨面を形成することが、バリの発生量とドレッサーにより取り除かれるバリの量が均衡しやすくなり、バリ成長が抑制されやすくなる点から好ましい。また、本実施形態の研磨パッドにおいては、10点平均高さ(Rz)が20~50μm、さらには、25~45μmである研磨層の研磨面を有することが好ましい。
 そして、ドレッシングが完了した後、または、ドレッシングをしながら、被研磨基板の被研磨面の研磨を開始する。研磨においては、回転する研磨パッドの表面にスラリー供給ノズルからスラリー6を供給する。スラリーは、例えば、水やオイル等の液状媒体;シリカ,アルミナ,酸化セリウム,酸化ジルコニウム,炭化ケイ素等の研磨剤;塩基,酸,界面活性剤,酸化剤,還元剤,キレート剤等を含有している。またCMPを行うに際し、必要に応じ、スラリーと共に、潤滑油、冷却剤などを併用してもよい。そして、研磨面にスラリーが満遍なく行き渡った研磨パッドに、キャリアに固定されて回転する被研磨基板を押し当てる。そして、所定の平坦度や研磨量が得られるまで、研磨が続けられる。研磨時に作用させる押し付け力やプラテンの回転とキャリアの相対運動の速度を調整することにより、仕上がり品質が影響を受ける。
 研磨条件は特に限定されないが、効率的に研磨を行うためには、定盤及び被研磨基板のそれぞれの回転速度は300rpm以下の低回転が好ましい。また、研磨パッドの研磨面に圧接するために被研磨基板に掛ける圧力は、研磨後に傷が発生しないようにするという見地から、150kPa以下とすることが好ましい。また、研磨している間、研磨パッドには、研磨面にスラリーが満遍なく行き渡るようにスラリーを連続または不連続に供給することが好ましい。
 そして、研磨終了後の被研磨基板をよく洗浄した後、スピンドライヤ等を用いて被研磨基板に付着した水滴を払い落として乾燥させる。このようにして、被研磨面が平滑な面になる。
 このような本実施形態のCMPは、各種半導体デバイス、MEMS(Micro Electro Mechanical Systems)等の製造プロセスにおける研磨に好ましく用いられる。研磨対象の例としては、例えば、シリコン,炭化ケイ素,窒化ガリウム,ガリウムヒ素,酸化亜鉛,サファイヤ,ゲルマニウム,ダイヤモンドなどの半導体基板;所定の配線を有する配線板に形成されたシリコン酸化膜,シリコン窒化膜,low-k膜などの絶縁膜や、銅,アルミニウム,タングステンなどの配線材料;ガラス,水晶,光学基板,ハードディスク等が挙げられる。本実施形態の研磨パッドは、とくには、半導体基板上に形成された絶縁膜や配線材料を研磨する用途に好ましく用いられる。
 以下、本発明を実施例により具体的に説明する。本発明の範囲はこれらの実施例によって何ら限定されるものではない。
 はじめに本実施例で用いた吸湿性高分子を以下にまとめて示す。
<吸湿性高分子>
・重量平均分子量5,000のポリエチレンオキサイド(PEO5,000);吸湿率0.4%(0.1~3.0%の範囲)
・重量平均分子量30,000のポリエチレンオキサイド(PEO30,000);吸湿率0.7%(0.1~3.0%の範囲)
・重量平均分子量100,000のポリエチレンオキサイド(PEO100,000);吸湿率0.5%
・重量平均分子量1,000,000のポリエチレンオキサイド(PEO1,000,000);吸湿率1.6%(0.1~3.0%の範囲)
・重量平均分子量7,000,000のポリエチレンオキサイド(PEO7,000,000);吸湿率2.5%(0.1~3.0%の範囲)
・重量平均分子量100,000のポリエチレンオキサイド-プロピレンオキサイド(PEO-PPO100,000);吸湿率0.7%(0.1~3.0%の範囲)
・重量平均分子量1,000,000のポリエチレンオキサイド-プロピレンオキサイド(PEO-PPO1,000,000);吸湿率1.3%(0.1~3.0%の範囲)
・重量平均分子量7,000,000ポリエチレンオキサイド-プロピレンオキサイド(PEO-PPO7,000,000);吸湿率2.1%(0.1~3.0%の範囲)
・ポリエステル系熱可塑性エラストマー(TPEE); 吸湿率1.2%(0.1~3.0%の範囲)
<アクリルニトリル-スチレン共重合体>
・アクリルニトリル-スチレン共重合体;吸湿率0.08%
 なお、高分子の吸湿率は、以下のようにして測定した。
 各高分子の5.0gの粒子をガラス製の皿に薄く広げ、50℃の熱風乾燥機内で48時間放置して乾燥させた。その後、23℃、50%RHの恒温恒湿条件で24時間放置した。そして、23℃、50%RHの恒温恒湿条件での処理の直前における重量(W1)と、上記23℃、50%RHの恒温恒湿条件での処理後の重量(W2)を測定し、下記の計算式から求めた。
吸湿率(%)={(W2-W1)/W1}×100
 また、本実施例で用いたポリウレタンの製造例を以下に示す。
[製造例1]
 数平均分子量850のポリ(テトラメチレングリコール)[略称:PTMG]、数平均分子量600のポリ(エチレングリコール)[略号:PEG]、1,4-ブタンジオール[略号:BD]、1,5-ペンタンジオール[略号:MPD]、及び4,4’-ジフェニルメタンジイソシアネート[略号:MDI]を、PTMG:PEG:BD:MPD:MDIの質量比が16.0:7.5:10.5:0.73:58.1となるような割合で配合した配合物を調製した。
 そして、配合物を定量ポンプにより同軸で回転する2軸押出機に連続的に供給し、溶融した配合物をストランド状に水中に連続的に押出した後、ペレタイザーで細断してペレット化した。このようにしてポリウレタン原料を連続溶融重合させることにより、非脂環式熱可塑性ポリウレタンIを製造した。非脂環式熱可塑性ポリウレタンIは、有機ジイソシアネート単位の総量中に非脂環式ジイソシアネート単位であるMDIを100モル%含む。非脂環式熱可塑性ポリウレタンIの重量平均分子量は120,000であり、イソシアネート基由来の窒素原子の含有量は6.5質量%であった。そして、得られたペレットを70℃で20時間除湿乾燥した。
[製造例2]
 数平均分子量850のポリ(テトラメチレングリコール)[略号:PTMG]、数平均分子量600のポリ(エチレングリコール)[略号:PEG]、1,4-ブタンジオール[略号:BD]、及び4,4’-ジフェニルメタンジイソシアネート[略号:MDI]を、PTMG:PEG:BD:MDIの質量比が16.2:7.6:18.1:58.1となるような割合で配合した配合物を調製した。この配合物を用いた以外は、製造例1と同様にしてポリウレタン原料を連続溶融重合させることにより、非脂環式熱可塑性ポリウレタンIIを製造した。非脂環式熱可塑性ポリウレタンIIは、有機ジイソシアネート単位の総量中に非脂環式ジイソシアネート単位であるMDIを100モル%含む。非脂環式熱可塑性ポリウレタンIIの重量平均分子量は120,000であり、イソシアネート基由来の窒素原子の含有量は6.5質量%であった。そして、得られたペレットを70℃で20時間除湿乾燥した。
[製造例3]
 数平均分子量850のポリ(テトラメチレングリコール)[略称:PTMG]、数平均分子量600のポリ(エチレングリコール)[略号:PEG]、1,4-ブタンジオール[略号:BD]、1,5-ペンタンジオール[略号:MPD]、及びヘキサメチレンジイソシアネート[略号:HDI]を、PTMG:PEG:BD:MPD:HDIの質量比が7.9:3.7:28.2:1.9:58.1となるような割合で配合した配合物を調製した。この配合物を用いた以外は、製造例1と同様にしてポリウレタン原料を連続溶融重合させることにより、脂環式熱可塑性ポリウレタンIIIを製造した。非脂環式熱可塑性ポリウレタンIIIは、有機ジイソシアネート単位の総量中に非脂環式ジイソシアネート単位であるHDIを100モル%含む。脂環式熱可塑性ポリウレタンIIIの重量平均分子量は120,000であり、イソシアネート基由来の窒素原子の含有量は6.5質量%であった。そして、得られたペレットを70℃で20時間除湿乾燥した。
[製造例4]
 数平均分子量850のポリ(テトラメチレングリコール)[略称:PTMG]、数平均分子量600のポリ(エチレングリコール)[略号:PEG]、1,4-ブタンジオール[略号:BD]、1,5-ペンタンジオール[略号:MPD]、及びイソホロンジイソシアネート[略号:IPDI]を、PTMG:PEG:BD:MPD:IPDIの質量比が13.9:6.5:20.0:1.4:58.1となるような割合で配合した配合物を調製した。この配合物を用いた以外は、製造例1と同様にしてポリウレタン原料を連続溶融重合させることにより、脂環式熱可塑性ポリウレタンIVを製造した。脂環式熱可塑性ポリウレタンIVは、有機ジイソシアネート単位の総量中に脂環式ジイソシアネート単位であるIPDIを100モル%含む。脂環式熱可塑性ポリウレタンIVの重量平均分子量は120,000であり、イソシアネート基由来の窒素原子の含有量は6.5質量%であった。そして、得られたペレットを70℃で20時間除湿乾燥した。
[製造例5]
 数平均分子量850のポリ(テトラメチレングリコール)[略称:PTMG]、数平均分子量600のポリ(エチレングリコール)[略号:PEG]、1,4-ブタンジオール[略号:BD]、及びシクロヘキサンメチルイソシアネート[略号:CHI]を、PTMG:PEG:BD:CHIの質量比が19.5:9.2:16.4:54.9となるような割合で配合した配合物を調製した。この配合物を用いた以外は、製造例1と同様にしてポリウレタン原料を連続溶融重合させることにより、脂環式熱可塑性ポリウレタンVを製造した。脂環式熱可塑性ポリウレタンVは、有機ジイソシアネート単位の総量中に脂環式ジイソシアネート単位であるCHIを100モル%含む。脂環式熱可塑性ポリウレタンVの重量平均分子量は120,000であり、イソシアネート基由来の窒素原子の含有量は6.5質量%であった。そして、得られたペレットを70℃で20時間除湿乾燥した。なお、シクロヘキサンメチルイソシアネートとしては、1,3-Bis(isocyanatomethyl)cyclohexane(三井化学(株)タケネート600 登録商標)を用いた。
[実施例1]
 非脂環式熱可塑性ポリウレタンIを小型ニーダーに仕込み、温度240℃、スクリュー回転数100rpm、混練時間1分間の条件で溶融混練した。そして、非脂環式熱可塑性ポリウレタンI:PEO100,000=99.5:0.5の質量比になるように、PEO100,000を小型ニーダーに添加し、さらに、温度240℃、スクリュー回転数60rpm、混練時間2分間の条件で溶融混練した。さらに、温度240℃、スクリュー回転数100rpm、混練時間4分間の条件で溶融混練した。
 そして、得られた溶融混合物を減圧乾燥機内で、70℃で16時間以上放置して、乾燥した。そして、乾燥された溶融混合物を金属板に挟み、熱プレス成形機((株)神森工業所 卓上用テストプレス)に挟み、溶融混合物を加熱温度230℃で2分間の条件で溶融させた後、ゲージ圧40kg/cmで加圧して1分間放置した。そして、それらを室温で冷却した後、熱プレス成形機及び金属板に挟まれた厚さ2.0mmの成形体を取り出した。
 そして、得られた厚さ2.0mmの成形体を110℃で3時間熱処理した後、切削加工することにより30mm×50mmの矩形の試験片を切り出した。そして、その試験片に切削加工することにより、同心円状の筋状溝(幅1.0mm、深さ1.0mm、溝間隔6.5mm)を形成した。そして、厚さ2.0mmの円形の同じ非脂環式熱可塑性ポリウレタンIの成形体にその試験片を収容する凹部を形成し、その凹部に試験片をはめ込むことにより、評価用の無発泡の研磨層を得た。そして、以下のように評価した。
[成形体のデュロメータD硬度]
 JIS K 7215準拠のタイプDデュロメータ((株)島津製作所製のHARDNESS-TESTER)を用いて、荷重保持時間5秒間の条件で、厚さ2.0mmの成形体のタイプDデュロメータの硬度を測定した。
[成形体のビッカース硬さ]
 JIS Z2244準拠のビッカース硬さ計((株)アカシ製HARDNESS-TESTER MVK-E2)を用いて、厚さ2.0mmの成形体の、ビッカース硬さを測定した。
[成形体の乾燥時破断伸度、及び50℃の水で飽和膨潤させたときの飽和膨潤時破断伸度]
 厚さ2.0mmの成形体の代わりに、厚さ0.3mmの成形体を製造した。そして、厚さ0.3mmの成形体から2号型試験片(JIS K7113)を打ち抜いた。そして、2号型試験片を湿度48RH%、23℃で48時間状態調整した。そして、精密万能試験機((株)島津製作所製のオートグラフAG5000)を用いて状態調整された2号型試験片の引張試験を行い、破断伸度を測定した。引張試験の条件は、チャック間距離40mm、引張速度500mm/分、湿度48RH%、23℃で行った。5本の2号型試験片の破断伸度を測定し、その平均値を乾燥時破断伸度S2(%)とした。一方、50℃の温水に2日間浸漬することにより、2号型試験片を50℃の水で飽和膨潤させた。そして、飽和膨潤させた2号型試験片についても同様の条件で破断伸度を測定し、50℃の水で飽和膨潤させたときの飽和膨潤時破断伸度S1を求めた。
[50℃の水で飽和膨潤させたときの、成形体の貯蔵弾性率E’]
 ゲージ圧40kg/cmで加圧して1分間放置して得られた厚さ2.0mmの成形体を製造した代わりに、ゲージ圧50kg/cmで加圧して1分間放置した以外は同様にして、厚さ0.3mmの成形体を製造した。そして、厚さ0.3mmの成形体を110℃で3時間熱処理した後、30mm×5mmの矩形の型で試験片を打ち抜くことにより、30mm×5mmの貯蔵弾性率評価用の試験片を打ち抜いた。そして、50℃の温水に2日間浸漬することにより、貯蔵弾性率評価用の試験片を50℃の水で飽和膨潤させた。そして、動的粘弾性測定装置[DVEレオスペクトラー(商品名、(株)レオロジー製)]を用いて、-100~180℃の測定範囲、周波数11.0Hzで、70℃における動的粘弾性率を測定することにより、50℃の水で飽和膨潤させたときの成形体の貯蔵弾性率E’を求めた。2本の試験片の貯蔵弾性率E’を測定し、その平均値を貯蔵弾性率E’(GPa)とした。
[50℃の水で飽和膨潤させたときの、成形体の光透過率]
 厚さ2.0mmの成形体の代わりに、厚さ0.5mmの成形体を製造した。そして、厚さ0.5mmの成形体を110℃で3時間熱処理した後、切削加工することにより30mm×50mmの矩形に切り出した。そして、50℃の温水に2日間浸漬することにより、試験片を50℃の水で飽和膨潤させた後、表面の水滴を拭きとった。そして、紫外可視分光高度計((株)島津製作所製の「UV-2450」)を用いて、成形体の試験片の波長550nmの光透過率を下記の条件で測定した。
・光源:レーザー波長(550nm)
・WIランプ:50W
・検出ヘッド出力ヘッド間距離:10cm
・試験片の測定位置:検出ヘッドと出力ヘッドとの中間位置
[水との接触角]
 厚さ0.2mm(200μm)に変更した以外は、破断伸度の測定において作成した方法と同様にしてプレス成形シートを得た。そして、プレス成形シートを20℃および65%RHの条件下に3日間放置した後、該シートの接触角を、協和界面化学(株)製DropMaster500を用いて測定した。結果を下記表に示す。
[研磨特性評価]
 評価用の研磨層をCMP装置((株)荏原製作所製FREX300)のプラテンにセットした。そして、ダイヤモンド番手#100のダイヤモンドドレッサー((株)旭ダイヤモンド)を用いて、スラリー(Klebosol(R)(株)DuPont)を200mL/分の速度で流しながらドレッサー回転数100rpm、ターンテーブル回転数70rpm、ドレッサー荷重40Nの条件で被研磨基板の表面を研磨した。被研磨基板としては、シリコン基板上にTEOS膜(tetra ethoxy silane膜)を3000nm積層させた「SEMATECH764(SKW Associates社製)」を用いた。上述の条件でCMPを行い、平坦化性の指標として、幅250μm(50%デンシティ)のパターンが連続した部分について、凸部と凹部との差分(以下、残存段差とも称する)を精密段差計((株)ブルカー製 Dektak XTL)を用いて測定した。なお、残存段差は、30nm以下、さらには25nm以下である場合には、高い平坦化性を有すると判定した。また、同様にして、凸部の残った膜が100nm未満になるまでの研磨時間を測定することにより、研磨速度を評価した。なお、研磨時間は、180sec以下、さらには170sec以下、とくには160sec以下である場合には、高い研磨速度を有すると判定した。
 そして、ウエハ欠陥検査装置((株)ケーエルエー・テンコール社製SP-3)を用いて、研磨後の被研磨基板の表面の全面における、0.207μmよりも大きいスクラッチの個数を計数した。なお、スクラッチが40個未満、さらには30個未満、とくには25個未満である場合には、スクラッチの発生が抑制されていると判定した。
[バリ評価(溝閉塞の評価)]
 評価用の研磨層をCMP装置((株)荏原製作所製FREX300)のプラテンにセットした。そして、ダイヤ番手#100のダイヤモンドドレッサー((株)旭ダイヤモンド)を用いて、蒸留水を200mL/分の速度で流しながらドレッサー回転数100rpm、ターンテーブル回転数70rpm、ドレッサー荷重40Nの条件で研磨パッドの表面を2時間ドレッシングした。
 そして、研磨終了後の評価用の研磨層の溝を走査型電子顕微鏡(SEM)により写真撮影し、バリにより溝が閉塞されているか否かを観察した。なお、50μmを超えるバリによって溝が閉塞されている場合をバリが「有り」と評価し、50μmを超えるバリが存在せず、溝が閉塞されていない場合を、バリが「無し」と評価した。
 評価結果を下記表1に示す。また、バリ評価で撮影されたSEM写真を図2に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例2~12、比較例1~8]
 ポリウレタン組成物の種類を表1または表2に示したような組成に変更した以外は、実施例1と同様にして成形体または研磨層の特性を評価した。結果を表1または下記表2に示す。なお、比較例7では吸湿率0.08%のアクリルニトリル-スチレン共重合体を用いた。
Figure JPOXMLDOC01-appb-T000002
 上記表に示しているように、実施例1~12の研磨パッドでは、バリ試験において、バリが発生せず、凹部である溝が閉塞されなかった。また、残存段差も小さく、平坦化性にも優れていた。また、研磨時間も短く、高い研磨速度が得られた。さらに、スクラッチの発生も少なかった。このように、本発明に係る研磨パッドは、高い研磨速度,高い平坦化性,及び発生するスクラッチの低減と、ドレス性の向上とを両立させることができた。一方、破断伸度の小さい比較例1~8の研磨パッドでは、バリ試験において、バリが発生し、溝が閉塞された。
1 プラテン
2 スラリー供給ノズル
3 キャリア
4 ドレッサー
5 被研磨基板
10 研磨パッド
20 CMP装置

Claims (12)

  1.  ポリウレタン組成物の成形体である研磨層を含む研磨パッドであって、
     前記ポリウレタン組成物は、有機ジイソシアネート単位として非脂環式ジイソシアネート単位を含む熱可塑性ポリウレタン90~99.9質量%と、吸湿率0.1%以上の吸湿性高分子0.1~10質量%とを含有し、
     前記成形体は、JIS K 7215準拠のタイプDデュロメータで、荷重保持時間を5秒間の条件で、測定された、60以上75未満のD硬度を有する、ことを特徴とする研磨パッド。
  2.  前記熱可塑性ポリウレタンは、前記有機ジイソシアネート単位の総量中に、前記非脂環式ジイソシアネート単位である4,4’-ジフェニルメタンジイソシアネート単位を90~100モル%含む、請求項1に記載の研磨パッド。
  3.  前記ポリウレタン組成物は、前記熱可塑性ポリウレタン99~99.9質量%と、前記吸湿性高分子0.1~1質量%とを含有する、請求項1または2に記載の研磨パッド。
  4.  前記吸湿性高分子は、ポリエチレンオキサイド及びポリエチレンオキサイド-プロピレンオキサイドブロック共重合体から選ばれる少なくとも1種を含む請求項1~3の何れか1項に記載の研磨パッド。
  5.  前記吸湿性高分子は、重量平均分子量が70,000~4,000,000である請求項1~4の何れか1項に記載の研磨パッド。
  6.  前記成形体は、50℃の水で飽和膨潤させたときの、飽和膨潤時破断伸度が250~400%である、請求項1~5の何れか1項に記載の研磨パッド。
  7.  前記成形体は、湿度48RH%、23℃における、乾燥時破断伸度が150~250%である、請求項1~6の何れか1項に記載の研磨パッド。
  8.  前記成形体は、前記飽和膨潤時破断伸度Sと前記乾燥時破断伸度S2との比S/S2が1.0~2.0である、請求項7に記載の研磨パッド。
  9.  前記成形体は、50℃の水で飽和膨潤させたときの、厚さ0.5mmのシートにおいて、波長550nmのレーザー光透過率が60%以上である、請求項1~8のいずれか1項に記載の研磨パッド。
  10.  前記成形体は、ビッカース硬さが5以上21未満である、請求項1~9のいずれか1項に記載の研磨パッド。
  11.  前記成形体は、50℃の水で飽和膨潤させたときの貯蔵弾性率が0.1~1.0GPaである、請求項1~10のいずれか1項に記載の研磨パッド。
  12.  前記成形体が無発泡成形体である、請求項1~11のいずれか1項に記載の研磨パッド。
PCT/JP2022/035519 2021-09-27 2022-09-22 研磨パッド WO2023048266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023549766A JPWO2023048266A1 (ja) 2021-09-27 2022-09-22
CN202280064669.XA CN118019616A (zh) 2021-09-27 2022-09-22 抛光垫
KR1020247013989A KR20240060727A (ko) 2021-09-27 2022-09-22 연마 패드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156900 2021-09-27
JP2021156900 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023048266A1 true WO2023048266A1 (ja) 2023-03-30

Family

ID=85720828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035519 WO2023048266A1 (ja) 2021-09-27 2022-09-22 研磨パッド

Country Status (4)

Country Link
JP (1) JPWO2023048266A1 (ja)
KR (1) KR20240060727A (ja)
CN (1) CN118019616A (ja)
WO (1) WO2023048266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117020935A (zh) * 2023-09-06 2023-11-10 中山大学 一种聚氨酯抛光垫及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059745A (ja) * 2005-08-26 2007-03-08 Toyo Tire & Rubber Co Ltd 研磨パッド
WO2012077592A1 (ja) * 2010-12-07 2012-06-14 Jsr株式会社 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP2016215368A (ja) * 2015-05-20 2016-12-22 エフエヌエス テック カンパニー, リミテッド 研磨パッド及びその製造方法
JP2021053748A (ja) * 2019-09-30 2021-04-08 富士紡ホールディングス株式会社 研磨パッド及び研磨加工物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379598B (zh) 2006-02-03 2010-06-23 Jsr株式会社 化学机械研磨垫
JP2011151352A (ja) 2009-12-24 2011-08-04 Jsr Corp 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP6341758B2 (ja) 2014-05-30 2018-06-13 株式会社クラレ 研磨パッド
JP7349774B2 (ja) 2018-03-09 2023-09-25 富士紡ホールディングス株式会社 研磨パッド、研磨パッドの製造方法、被研磨物の表面を研磨する方法、被研磨物の表面を研磨する際のスクラッチを低減する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059745A (ja) * 2005-08-26 2007-03-08 Toyo Tire & Rubber Co Ltd 研磨パッド
WO2012077592A1 (ja) * 2010-12-07 2012-06-14 Jsr株式会社 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP2016215368A (ja) * 2015-05-20 2016-12-22 エフエヌエス テック カンパニー, リミテッド 研磨パッド及びその製造方法
JP2021053748A (ja) * 2019-09-30 2021-04-08 富士紡ホールディングス株式会社 研磨パッド及び研磨加工物の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117020935A (zh) * 2023-09-06 2023-11-10 中山大学 一种聚氨酯抛光垫及其制备方法与应用
CN117020935B (zh) * 2023-09-06 2024-04-26 中山大学 一种聚氨酯抛光垫及其制备方法与应用

Also Published As

Publication number Publication date
TW202321335A (zh) 2023-06-01
CN118019616A (zh) 2024-05-10
KR20240060727A (ko) 2024-05-08
JPWO2023048266A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
JP6619100B2 (ja) 研磨パッドおよびそれを用いた研磨方法
KR101290490B1 (ko) 고분자 재료, 그것으로부터 얻어지는 발포체 및 이들을사용한 연마 패드
EP3213868B1 (en) Nonporous molded article for polishing layer, polishing pad, and polishing method
KR101084808B1 (ko) 금속 막 연마용 패드 및 그것을 이용하는 금속 막의 연마 방법
KR102398128B1 (ko) 연마층용 성형체 및 연마 패드
TWI450794B (zh) Polishing pad
JP5789523B2 (ja) 研磨パッド、及び研磨パッドを用いた化学的機械的研磨方法
WO2009098917A1 (ja) 研磨パッドの製造方法
WO2023048266A1 (ja) 研磨パッド
JP2008235508A (ja) 研磨パッド、それを用いた研磨方法および半導体デバイスの製造方法
WO2021117834A1 (ja) ポリウレタン、研磨層、研磨パッド及び研磨方法
WO2023048265A1 (ja) 研磨パッド
TWI838883B (zh) 研磨墊
TWI798502B (zh) 研磨層用聚胺基甲酸酯、研磨層、研磨墊及研磨層之改質方法
WO2023054331A1 (ja) 研磨層用熱可塑性ポリウレタン、研磨層、及び研磨パッド
WO2023149434A1 (ja) 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法
JP7014526B2 (ja) 研磨パッド用研磨層の製造方法
JP2022153966A (ja) 研磨パッド及び研磨パッドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549766

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247013989

Country of ref document: KR

Kind code of ref document: A