WO2023048195A1 - タンパク質発酵飲食品の製造方法 - Google Patents

タンパク質発酵飲食品の製造方法 Download PDF

Info

Publication number
WO2023048195A1
WO2023048195A1 PCT/JP2022/035225 JP2022035225W WO2023048195A1 WO 2023048195 A1 WO2023048195 A1 WO 2023048195A1 JP 2022035225 W JP2022035225 W JP 2022035225W WO 2023048195 A1 WO2023048195 A1 WO 2023048195A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
fermented food
drink
food
beverage
Prior art date
Application number
PCT/JP2022/035225
Other languages
English (en)
French (fr)
Inventor
杏匠 酒井
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to CN202280054812.7A priority Critical patent/CN117998993A/zh
Publication of WO2023048195A1 publication Critical patent/WO2023048195A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor

Definitions

  • the present invention relates to a method for producing protein-fermented food and drink. More specifically, the present invention relates to a protein-fermented food and drink, which is a technology for modifying the properties of the food and drink itself, such as its own stress, water retention, or syneresis suppression, or the properties of the fermented food and drink material with respect to the fermentation rate during production. Regarding.
  • Patent Literature 1 discloses a method for producing yoghurt having a smooth texture inherent to yoghurt without causing syneresis by adding transglutaminase to a milk raw material.
  • Patent Document 2 by adding glucose oxidase in the production process of fermented milk, compared to the case where glucose oxidase is not added, syneresis caused by aggregation of milk protein and increase in particle size of milk protein are significant.
  • yogurt mix is blended with peroxidase and whey protein concentrate and/or whey protein isolate and fermented with lactic acid bacteria to produce fermented milk with smooth texture and reduced whey separation.
  • a method of making is disclosed.
  • the present invention provides various characteristics related to fermented food and drink using protein materials (especially, characteristics of the fermented food and drink itself, such as stress, water retention, or syneresis suppression, or fermented food and drink related to fermentation rate during production of fermented food and drink.
  • the purpose is to provide a processing technology that can improve the characteristics of the product material).
  • the present inventor applies a combination of protein deamidase and multi-copper oxidase, which is a combination of enzymes that has not been used as a means of improving various characteristics of fermented food and drink, to the process of producing protein fermented food and drink.
  • the inventors have found that by doing so, the properties of the resulting protein-fermented food and drink are improved.
  • the present invention has been completed through further studies based on this finding.
  • Section 1 A method for producing a protein-fermented food or drink, comprising a step of fermenting a protein material and a step of treating with protein deamidase and multi-copper oxidase.
  • Section 2. Item 2. The production method according to Item 1, wherein the protein deamidase is protein glutaminase.
  • Item 3. Item 3.
  • Section 4. Item 4. The production method according to any one of Items 1 to 3, wherein the protein material is milk.
  • a protein fermented food and drink modifier comprising a protein deamidase and a multi-copper oxidase.
  • Item 7. Item 7. The modifier according to Item 6, which is used as a stress-enhancing agent for protein-fermented food and drink.
  • Item 8. Item 7. The modifier according to Item 6, which is used as a water retention improver for protein-fermented food and drink.
  • Item 9. Item 7. The modifier according to Item 6, which is used as a syneresis inhibitor for protein-fermented food and drink.
  • various characteristics related to fermented food and drink using protein materials in particular, characteristics such as stress, water retention, or syneresis suppression of the fermented food and drink itself, or fermentation related to fermentation rate during production of fermented food and drink characteristics of food and drink materials) can be improved.
  • the method for producing protein-fermented food and drink of the present invention is characterized by including a step of fermenting a protein material and a step of treating with protein deamidase and multi-copper oxidase. As a result, various properties of the obtained protein-fermented food and drink can be improved.
  • the method for producing the protein-fermented food and drink of the present invention will be described in detail.
  • the various characteristics related to protein fermented food and drink are the characteristics of the fermented food and drink itself, such as stress, water retention, syneresis suppression, and digestibility; Refers to at least one of the characteristics of food and beverage ingredients.
  • Protein material is not particularly limited as long as it contains protein and can be used as a food or drink material.
  • the origin of the protein is also not particularly limited, and may be animal protein, plant protein, or synthetic protein.
  • Animal proteins include milk proteins such as casein and ⁇ -lactoglobulin; egg proteins such as ovalbumin; meat proteins such as myosin and actin; blood proteins such as serum albumin; .
  • Vegetable proteins include cereal proteins such as soybeans, peas, lupine beans, broad beans, chickpeas, mung beans, kidney beans; oats, barley, wheat, rye, rice, buckwheat, millet, millet, teff, quinoa, corn Cereal protein such as canary seed, flaxseed, almond, cashew nut, hazelnut, pecan nut, macadamia nut, pistachio, walnut, brazil nut, peanut, coconut, hemp, pili nut, chestnut, sesame, pine nut, etc. is mentioned.
  • these proteins may be in the form of partially chemically degraded proteins by acids, alkalis, etc., partially enzymatically degraded proteins by proteases, or chemically modified proteins by various reagents.
  • proteins may be used singly or in combination.
  • animal proteins are preferred, and milk proteins are more preferred, from the viewpoint of further enhancing the effect of improving various properties of protein-fermented food and drink.
  • the specific form of the protein material is not particularly limited as long as it can be used as a material for fermented food and drink, and it may be in any form such as liquid, gel, or solid, but liquid is preferred.
  • liquid protein material examples include forms exhibiting fluidity, such as protein aqueous solutions, aqueous dispersions, and aqueous dispersion pastes.
  • liquid protein material containing animal protein that is, liquid animal protein material
  • milk egg liquid, egg liquid dilution, meat homogenate liquid, tendon protein solution, etc., preferably milk. is mentioned.
  • the liquid protein material containing vegetable protein may be a liquid in which at least vegetable protein is dissolved and / or dispersed in water, and specific examples include (i ) Crushing and dispersing food raw materials containing vegetable protein in water, and if necessary, removing insoluble matter derived from skins of food raw materials by any means such as centrifugal filtration, filtration, filter bags, sieves, etc.
  • a liquid obtained by dispersing a dry powder of a food raw material containing vegetable protein in water (iii) a liquid other than vegetable protein from the liquid of (i) or (ii) above (iv) a dry powder prepared from any of the above liquids (i) to (iii) dissolved and/or dispersed in water; and the like, preferably the liquid of (ii) above.
  • a typical example of these liquid vegetable protein materials is so-called vegetable milk.
  • the content of protein contained in the protein material is not particularly limited. .
  • the upper limit of the content range of the protein contained in the protein material is not particularly limited. , 10 w/v% or less, 8 w/v% or less, 6 w/v% or less, or 4 w/v% or less.
  • the protein material may contain other raw materials and/or food additives depending on the type of protein-fermented food and drink to be obtained (“1-7. Protein-fermented food and drink” below).
  • Other raw materials include ingredients that are derived from the above-mentioned protein-containing food raw materials and inevitably coexist.
  • Food additives are not particularly limited as long as they are food-safe. Examples include vegetable oils and fats; salt, sugar, spices, sodium L-glutamate, disodium 5'-ribonucleotide, 5'-inosine. seasonings such as disodium acid and disodium 5'-guanylate; antioxidants such as L-ascorbic acid; perfumes and the like.
  • the timing of adding other raw materials and / or food additives is not particularly limited, and may be added at the time of subjecting to the fermentation process and / or the process of performing treatment with enzymes, or after the fermentation process and treatment with enzymes. It may be added after any of the steps performed have been completed.
  • Microorganisms used for fermentation of the microbial protein material used for fermentation are not particularly limited as long as they give fermented food and drink, and examples thereof include lactic acid bacteria, bifidobacteria, koji molds, and yeasts.
  • Lactic acid bacteria are not particularly limited, and examples thereof include Streptococcus lactic acid bacteria, Lactobacillus lactic acid bacteria, Leuconostoc lactic acid bacteria, and Lactococcus lactic acid bacteria.
  • microorganisms may be used singly or in combination.
  • lactic acid bacteria are preferred, and Streptococcus lactic acid bacteria and Lactococcus lactic acid bacteria are more preferred, from the viewpoint of further enhancing the effect of improving various properties of protein-fermented food and drink.
  • Protein deamidase As the protein deamidase used in the present invention, any enzyme that exhibits the action of degrading an amide group-containing side chain of a protein without cleaving peptide bonds and cross-linking the protein can be used. is not particularly limited.
  • Examples of protein deamidase include Chryseobacterium genus and Flavobacterium disclosed in JP-A-2000-50887, JP-A-2001-218590, and International Publication No. 2006/075772. ), Empedobacter, Sphingobacterium, Aureobacterium or Myroides-derived protein deamidase, and Chryseobacterium-derived protein glutaminase mentioned. As these protein deamidase enzymes, one type may be used alone, or a plurality of types may be used in combination.
  • protein deamidase enzymes derived from the genus Chryseobacterium are preferable, and proteins derived from the genus Chryseobacterium are more preferable, from the viewpoint of further enhancing the effect of improving various properties of protein-fermented food and drink.
  • Glutaminase more preferably protein glutaminase from Chryseobacterium proteolyticum species.
  • the protein deamidase can be prepared from the culture solution of the microorganism from which the above protein deamidase is derived.
  • a specific preparation method includes a method of recovering the protein deamidase from the culture solution or cells of the above microorganisms.
  • the enzyme can be separated and/or purified after previously collecting the cells from the culture solution by filtration, centrifugation, or the like, if necessary.
  • the cells were collected from the culture solution in advance, and then the cells were crushed by pressure treatment, ultrasonic treatment, or the like to expose the enzyme. The enzyme can then be isolated and/or purified.
  • the enzyme separation and/or purification method known protein separation and/or purification methods can be used without particular limitation.
  • Various chromatographic methods using The separated and/or purified enzyme can be pulverized by a drying method such as freeze-drying or vacuum drying, and pulverized using a suitable excipient and/or drying aid in the drying method.
  • the separated and/or purified enzyme can be liquefied by adding appropriate additives and performing filtration sterilization.
  • a commercial product can also be used as the protein deamidase, and a preferred example of a commercial product is protein glutaminase "Amano" 500 manufactured by Amano Enzyme Co., Ltd.
  • the amount of protein deamidase used is not particularly limited, but examples of the amount of protein deamidase per 1 g of protein include 0.001 to 1000 mU and 0.005 to 250 mU. From the viewpoint of further improving the various properties related to the 0.3 to 30 mU, particularly preferably 0.4 to 10 mU, most preferably 0.4 to 1 mU.
  • the amount of protein deamidase used is, for example, 0.00008 to 80 mU, 0.0004 to 20 mU, as the amount of protein deamidase per 1 U of multi-copper oxidase.
  • 1 unit (1 U) is defined as the amount of enzyme that liberates 1 ⁇ mol of ammonia per minute using benzyloxycarbonyl-L-glutaminylglycine (Z-Gln-Gly) as a substrate.
  • Multicopper oxidase used in the present invention is a group of enzymes containing multiple copper atoms in the molecule and oxidizing polyphenols, methoxyphenols, diamines, bilirubin, ascorbic acid, etc. with molecular oxygen.
  • the number of copper atoms contained so far is usually 2 to 8, but this number is particularly limited because it varies depending on the state of the enzyme preparation at the time of analysis and the analysis method. not a thing
  • Examples of enzymes classified as multicopper oxidases include laccase, bilirubin oxidase, ascorbate oxidase, ceruloplasmin, and the like.
  • multi-copper oxidases may be used singly or in combination.
  • laccase is preferred from the viewpoint of further improving various properties of fermented food and drink using protein materials.
  • Laccase is an enzyme (EC 1.10.3.2) with phenol oxidase activity.
  • laccases include laccases derived from microorganisms such as fungi and bacteria. More specifically, the genera Aspergillus, Neurospora, Podospora and Botrytis.
  • Genus genus Collybia, genus Fomes, genus Lentinus, genus Pleurotus, genus Pycnoporus, genus Pyricularia, genus Trametes, genus Rhizoctonia, Derived from genus Rigidoporus, genus Coprinus, genus Psatyrella, genus Myceliophtera, genus Schtalidium, genus Polyporus, genus Phlebia, genus Coriolus, etc. of laccase.
  • laccases may be used singly or in combination.
  • Trametes-derived laccase and Aspergillus-derived laccase are preferred from the viewpoint of further improving various properties of fermented food and drink using protein materials, Trametes-derived laccase is more preferred.
  • the amount of multi-copper oxidase used is not particularly limited, but the amount of multi-copper oxidase per 1 g of protein is, for example, 0.1 to 100 U, which further improves various characteristics of fermented food and drink using protein materials. From the point of view, it is preferably 1 to 50U, more preferably 5 to 20U, still more preferably 10 to 15U.
  • ABTS 2,2'-Azino-di-[3-ethylbenzthiazoline sulfonate]
  • the order of the step of fermenting the protein material and the step of treating with enzymes is arbitrary. That is, either the fermentation step or the enzyme treatment step may be performed first, and after the completion of the one step, the other step may be performed, or both steps may be performed simultaneously. Furthermore, when both steps are performed at the same time, both steps may be started at the same time, or one of the steps may be started earlier. From the viewpoint of further enhancing the effect of improving various characteristics of protein-fermented food and drink, it is preferable to perform both the fermentation step and the enzyme treatment step at the same time.
  • reaction conditions in the step of fermenting the protein material such as reaction conditions , taking into consideration the thermal stability of the microorganisms and whether or not the step of treating with enzymes is performed at the same time.
  • 20 to 45°C preferably 25 to 30°C.
  • the time for the fermentation process can be appropriately determined by those skilled in the art according to the type of protein-fermented food and drink of interest, the fermentation temperature, etc., and may be, for example, 1 to 80 hours.
  • the specific fermentation time is preferably 20 to 60 hours, more preferably 40 to 50 hours.
  • specific fermentation time is preferably 1 to 15 hours, more preferably 2 to 10 hours, and still more preferably 3 to 8 hours.
  • protein material can be added as appropriate along with the growth of microorganisms.
  • reaction conditions in the step of enzymatic treatment can be appropriately determined by those skilled in the art, taking into account the optimum temperature of protein deamidase and multi-copper oxidase, and whether or not the step of fermentation should be carried out at the same time. However, for example, 4 to 80°C, preferably 15 to 50°C, more preferably 20 to 40°C, and still more preferably 25 to 30°C.
  • the time required for the step of enzymatic treatment can be appropriately determined by those skilled in the art according to the degree of desired properties, the treatment temperature, and the like, and is, for example, 1 to 80 hours.
  • the specific treatment time is preferably 20 to 60 hours, more preferably 40 to 50 hours, and the treatment temperature is 30°C.
  • the specific treatment time is preferably 1 to 15 hours, more preferably 2 to 10 hours, and even more preferably 3 to 8 hours.
  • Protein Fermented Food and Beverage The protein fermented food and drink produced by the production method of the present invention is not particularly limited. Examples of the form of protein-fermented food and drink include solid, gel, liquid, and the like. Specific examples of protein-fermented foods and drinks include yogurt (example of gel-like food), drinkable yogurt (example of beverage), yogurt paste (example of paste-like food, also used as a food material), cheese (solid Examples of shaped foods) and the like.
  • a preferred form of protein-fermented food and drink is gel, and a preferred specific example of protein-fermented food and drink is yogurt (gel-like food). .
  • a modifier for protein fermented food and drink The combination of protein deamidase and multi-copper oxidase is used in the production of protein fermented food and drink to improve various characteristics of the fermented food and drink itself, such as stress, water retention, and syneresis suppression. It is possible to improve the quality. Accordingly, the present invention also provides modifiers for protein-fermented food and beverage products, comprising protein deamidase and multi-copper oxidase.
  • modifiers for protein fermented food and drink include stress improvers for protein fermented food and drink, water retention improvers for protein fermented food and drink, and/or syneresis inhibitors for protein fermented food and drink. things are mentioned.
  • Fast brewing agent in the production of protein-fermented food and drink The combination of protein deamidase and multi-copper oxidase can be used in the production of protein-fermented food and drink to improve fermentation efficiency during production (that is, quick brewing). Accordingly, the present invention also provides a fast-brewing agent for the production of protein-fermented food and drink, containing protein deamidase and multi-copper oxidase.
  • the type, amount, etc. of the ingredients used in the fast-brewing agent in the production of protein-fermented food and drink are as shown in the above "1. Production method of protein-fermented food and drink”.
  • a solution prepared to 30 mmol/L by dissolving Z-Gln-Gly in 0.2 mol/L phosphate buffer (pH 6.5) was used as a substrate solution. Place 0.1 mL of the enzyme solution whose activity is to be measured in a test tube, leave it in a constant temperature water bath at 37 ⁇ 0.5° C. for 1 minute, then add 1 mL of the substrate solution that has been left at 37 ⁇ 0.5° C. for 10 minutes. , mixed immediately. This solution was allowed to stand for 10 minutes for an enzymatic reaction, and then 1 mL of 0.4 mol/L trichloroacetic acid solution was added to stop the enzymatic reaction.
  • a measurement blank was prepared by adding 0.1 mL of enzyme solution to a test tube, followed by 1 mL of 0.4 mol/L trichloroacetic acid solution and 1 mL of substrate solution in that order.
  • Ammonia-Test Wako (Fujifilm Wako Pure Chemical Industries, Ltd.) was used for color development reaction, and based on the absorbance value at a wavelength of 630 nm, the amount of ammonia liberated by the enzymatic reaction for 10 minutes was quantified.
  • the amount of enzyme that produces 1 ⁇ mol of ammonia per minute was defined as 1 unit (1 U), and the activity value was calculated from the amount of ammonia liberated by the enzymatic reaction.
  • ABTS was dissolved in 25 mM citrate buffer (pH 3.2) at a concentration of 1.0 mg/ml to prepare a substrate solution. 3.0 ml of this substrate solution was taken in a cuvette, preheated at 25° C., 0.1 ml of enzyme solution was added, stirred, incubated at 25° C., and absorbance at 405 nm was measured after 1 minute and 3 minutes. The amount of enzyme that increased the absorbance at 405 nm by 1.0 OD per minute under these conditions was defined as 1 unit (U).
  • the weight of the obtained yogurt was measured, and then centrifuged at 1000 ⁇ g for 10 minutes at 20° C., the supernatant was recovered, and the weight of the remaining yogurt was measured.
  • the water holding capacity (%) was derived based on the following formula. It can be evaluated that the larger the value of the water retention capacity, the more the water retention is improved.
  • the weight (V1 (g)) of yogurt was measured before refrigerated storage. The whole amount of the yogurt after the measurement was put on the gauze covering the moisture receiving container, and stored in a refrigerator for 24 hours. After 24 hours, the weight of the naturally synergized water accumulated in the water receiving container was measured. The yogurt weight (V2 (g)) after 24 hours of refrigeration storage was calculated by subtracting the water weight from V1 (g). Based on the following formula, syneresis (%) was derived. It can be evaluated that the smaller the syneresis value, the better the syneresis suppressing property.
  • Yoghurt (gel-like food) was prepared in the same manner as in Test Example 1 using protein glutaminase and/or laccase in the amounts shown in Table 3. During the preparation, the following measurements were carried out to evaluate the effects on quick-release effect and taste. Table 3 shows the results.
  • Rapid brewing effect (1-1) Time until pH reaches 5 pH was measured over time from the time when the enzyme was added and culture was started, and the time until pH reached 5 was measured. . It can be evaluated that the shorter the time, the higher the fermentation efficiency (excellent quick-brewing effect).
  • EPS exopolysaccharide 40 hours after the start of culture by adding the enzyme was measured by the following method.
  • the yogurt after 40 hours was stirred, and the same volume of 40% by weight trichloroacetic acid aqueous solution was added and mixed.
  • the resulting solution was centrifuged (2,200 g, 30 min, 4° C.) to remove cells and proteins.
  • the supernatant was mixed with an equal volume of ethanol and stored at 4°C for 24 hours.
  • the precipitate was collected by centrifugation (9,000 g, 30 minutes, 4° C.) and dissolved in distilled water.
  • the total sugar content (EPS content) of this fraction was calculated by the phenol-sulfuric acid method. It can be evaluated that the higher the EPS amount, the higher the fermentation efficiency (excellent quick-brewing effect).
  • Yogurt was prepared in the same manner as in Test Example 1, with the amount of laccase fixed and the amount of protein glutaminase varied, and the relative stress was derived. As a result, when 0.05 to 100 mU (amount per 1 g of milk protein) of protein glutaminase was used for 12 U (amount of 1 g of milk protein) of laccase, a remarkable effect of improving relative stress was observed. Furthermore, Table 4 shows specific relative stresses when 0.05 to 100 mU of protein glutaminase is used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Microbiology (AREA)
  • Dairy Products (AREA)

Abstract

本発明の目的は、タンパク質材料を用いた発酵飲食品に関する諸特性(特に、発酵飲食品自体の、応力、保水性、又は離水抑制性といった特性、若しくは、発酵飲食品製造時の発酵速度に関する発酵飲食品材料の特性)を向上できる加工技術を提供することである。タンパク質材料を用いた発酵飲食品の製造において、タンパク質脱アミド酵素とマルチ銅オキシダーゼとを作用させることにより、発酵飲食品の諸特性を向上できる。

Description

タンパク質発酵飲食品の製造方法
 本発明は、タンパク質発酵飲食品の製造方法に関する。より具体的には、本発明は、タンパク質発酵飲食品に関する、それ自体の応力、保水性、又は離水抑制性といった特性、若しくは、製造時の発酵速度に関する発酵飲食品材料の特性を改質する技術に関する。
 近年の健康志向の意識の高まりを受け、伝統的な食品保存技術の一環として製造されてきた発酵飲食品がスーパーフードとして見直されてきており、飲食品市場において再び脚光を浴びている。
 このため、発酵飲食品の改質に関する検討がこれまでいくつかなされている。例えば、特許文献1には、乳原料にトランスグルタミナーゼを加えることで、離水を生ずることがなくヨーグルト本来の滑らかな食感を有するヨーグルトの製造方法が開示されている。特許文献2には、発酵乳の製造工程においてグルコースオキシダーゼを添加することにより、グルコースオキシダーゼを添加しない場合に比して、乳タンパク質の凝集に伴って生じる離水や乳タンパク質の粒子径の増大が有意に抑制されることが開示されている。特許文献3には、ヨーグルトミックスに、パーオキシダーゼとホエー蛋白濃縮物及び/又はホエー蛋白単離物とを配合して乳酸菌で発酵させることにより、組織が滑らかでホエー分離が低減された発酵乳を製造する方法が開示されている。
特開平6-197688号公報 国際公開第2012/121090号 特開平6-276933号公報
 飲食品市場における当該発酵飲食品のシェアをより一層拡大させ、また、より多くの消費者層に受け入れられるためには、嗜好性又は製造効率等に影響する諸特性(例えば、発酵飲食品自体の、応力、保水性、又は離水抑制性といった特性、若しくは、発酵飲食品製造時の発酵効率に関する特性)の向上が望まれる。
 そこで本発明は、タンパク質材料を用いた発酵飲食品に関する諸特性(特に、発酵飲食品自体の、応力、保水性、又は離水抑制性といった特性、若しくは、発酵飲食品製造時の発酵速度に関する発酵飲食品材料の特性)を向上できる加工技術を提供することを目的とする。
 本発明者は、これまで発酵飲食品に関する諸特性向上の手段として用いられてこなかった酵素の組み合わせである、タンパク質脱アミド酵素及びマルチ銅オキシダーゼの組み合わせを、タンパク質発酵飲食品の製造過程に適用することにより、得られるタンパク質発酵飲食品に関する諸特性が向上することを見出した。本発明は、この知見に基づいて、更に検討を重ねることにより完成したものである。
即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. タンパク質材料を発酵する工程と、タンパク質脱アミド酵素及びマルチ銅オキシダーゼによる処理を行う工程とを含む、タンパク質発酵飲食品の製造方法。
項2. 前記タンパク質脱アミド酵素がプロテイングルタミナーゼである、項1に記載の製造方法。
項3. 前記マルチ銅オキシダーゼがラッカーゼである、項1又は2に記載の製造方法。項4. 前記タンパク質材料が牛乳である、項1~3のいずれかに記載の製造方法。
項5. 前記タンパク質発酵飲食品がヨーグルトである、項1~4のいずれかに記載の製造方法。
項6. タンパク質脱アミド酵素及びマルチ銅オキシダーゼを含む、タンパク質発酵飲食品の改質剤。
項7. タンパク質発酵飲食品の応力向上剤として用いられる、項6に記載の改質剤。
項8. タンパク質発酵飲食品の保水性向上剤として用いられる、項6に記載の改質剤。
項9. タンパク質発酵飲食品の離水抑制剤として用いられる、項6に記載の改質剤。
項10. タンパク質脱アミド酵素及びマルチ銅オキシダーゼを含む、タンパク質発酵飲食品製造における速醸剤。
 本発明によれば、タンパク質材料を用いた発酵飲食品に関する諸特性(特に、発酵飲食品自体の、応力、保水性、又は離水抑制性といった特性、若しくは、発酵飲食品製造時の発酵速度に関する発酵飲食品材料の特性)を向上することができる。
1.タンパク質発酵飲食品の製造方法
 本発明のタンパク質発酵飲食品の製造方法は、タンパク質材料を発酵する工程と、タンパク質脱アミド酵素及びマルチ銅オキシダーゼによる処理を行う工程とを含むことを特徴とする。これにより、得られるタンパク質発酵飲食品に関する諸特性を向上させることができる。以下、本発明のタンパク質発酵飲食品の製造方法について詳述する。
 なお、以下において、タンパク質発酵飲食品に関する諸特性とは、発酵飲食品自体が有する、応力、保水性、離水抑制性、及び消化性といった特性;並びに、発酵飲食品の製造時の発酵速度に関する発酵飲食品材料の特性の少なくともいずれかを指す。
1-1.タンパク質材料
 タンパク質材料としては、タンパク質を含み飲食品の素材となるものであれば特に限定されない。
 タンパク質の由来についても特に限定されず、動物タンパク質、植物タンパク質、及び合成タンパク質のいずれであってもよい。動物性タンパク質としては、カゼイン、β-ラクトグロブリンなどの乳タンパク質;オボアルブミンなどの卵タンパク質;ミオシン、アクチンなどの肉タンパク質;血清アルブミンなどの血液タンパク質;ゼラチン、コラーゲンなどの腱タンパク質等が挙げられる。植物性タンパク質としては、大豆、エンドウ、ルピン豆、そら豆、ひよこ豆、緑豆、インゲン豆等の菽穀類タンパク質;オート麦、大麦、小麦、ライ麦、米、そば、ひえ、あわ、テフ、キヌア、トウモロコシ等の禾穀類タンパク質;カナリーシード、亜麻仁、アーモンド、カシューナッツ、ヘーゼルナッツ、ペカンナッツ、マカダミアナッツ、ピスタチオ、クルミ、ブラジルナッツ、ピーナッツ、ココナッツ、ヘンプ、ピリナッツ、栗、ゴマ、松の実等の種実類タンパク質等が挙げられる。また、これらタンパク質は、酸、アルカリなどによる化学的部分分解タンパク質、プロテアーゼなどによる酵素的部分分解タンパク質、各種試薬による化学修飾タンパク質の形態のものであってもよい。
 これらのタンパク質は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらのタンパク質の中でも、タンパク質発酵飲食品に関する諸特性向上効果をより一層高める観点から、好ましくは動物性タンパク質が挙げられ、より好ましくは乳タンパク質が挙げられる。
 タンパク質材料の具体的な形態については、発酵飲食品の材料となり得る限りにおいて特に限定されず、液状、ゲル状、固体状等どのような形態であってもよいが、好ましくは液状が挙げられる。
 液状のタンパク質材料のより具体的な形態としては、タンパク質の、水溶液、水分散液、又は水分散ペースト等の、流動性を呈する形態が挙げられる。
 動物性タンパク質を含む液状のタンパク質材料(つまり、液状の動物性タンパク質材料)の具体例としては、乳、卵液、卵液希釈液、肉ホモジェネート液、腱タンパク質溶液等が挙げられ、好ましくは乳が挙げられる。
 植物性タンパク質を含む液状のタンパク質材料(つまり、液状の植物性タンパク質材料)としては、少なくとも植物性タンパク質が水に溶解及び/又は分散した液体であればよく、具体的な例としては、(i)植物性タンパク質を含有する食品原材料を水中で破砕及び分散させ、必要に応じて、食品原材料の皮等に由来する不溶物を、遠心ろ過、濾過、濾し袋、篩等の任意の手段によって除去して得られる液体;(ii)植物性タンパク質を含有する食品原材料の乾燥粉末を水に分散させて得られる液体;(iii)上記(i)又は(ii)の液体から、植物性タンパク質以外の成分の除去等を行って植物性タンパク質の含有量を高めた液体;(iv)上記(i)~(iii)のいずれかの液体から調製された乾燥粉末を、水に溶解及び/又は分散させて得られる液体等が挙げられ、好ましくは上記(ii)の液体が挙げられる。これら液状の植物性タンパク質材料の典型例としては、いわゆる植物性ミルクが挙げられる。
 タンパク質材料に含まれるタンパク質の含有量としては特に限定されないが、例えば0.5w/v%以上、1w/v%以上、好ましくは2w/v%以上、より好ましくは3w/v%以上が挙げられる。タンパク質材料に含まれるタンパク質の含有量範囲の上限としては特に限定されないが、例えば、30w/v%以下、25w/v%以下、20w/v%以下、15w/v%以下、12w/v%以下、10w/v%以下、8w/v%以下、6w/v%以下、又は4w/v%以下が挙げられる。
 タンパク質材料には、上記のタンパク質以外に、得るべきタンパク質発酵飲食品(後述の「1-7.タンパク質発酵飲食品」)の種類に応じて、他の原材料及び/又は食品添加物を含むことができる。他の原材料としては、上記のタンパク質を含有する食品原材料に由来し不可避的に共存している成分が挙げられる。食品添加物としては、食品学的に許容されるものであれば特に限定されず、例えば、植物油脂;食塩、砂糖、香辛料、L-グルタミン酸ナトリウム、5’-リボヌクレオチド二ナトリウム、5’-イノシン酸二ナトリウム及び5’-グアニル酸二ナトリウム等の調味料;L-アスコルビン酸等の酸化防止剤;香料等が挙げられる。なお、他の原材料及び/又は食品添加物を添加するタイミングとしては特に限定されず、発酵工程及び/又は酵素による処理を行う工程に供する時に添加してもよいし、発酵工程及び酵素による処理を行う工程のいずれも終了した後に添加してもよい。
1-2.発酵に用いる微生物
 タンパク質材料の発酵に用いる微生物としては、発酵飲食品を与えるものであれば特に限定されず、例えば、乳酸菌、ビフィズス菌、麹菌、酵母等が挙げられる。乳酸菌としては特に限定されず、例えば、ストレプトコッカス(Streptococcus)属乳酸菌、ラクトバチルス(Lactobacillus)属乳酸菌、ロイコノストック(Leuconostoc)属乳酸菌及びラクトコッカス(Lactococcus)属乳酸菌等が挙げられる。
 これらの微生物は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらの微生物の中でも、タンパク質発酵飲食品に関する諸特性向上効果をより一層高める観点から、好ましくは乳酸菌が挙げられ、より好ましくはストレプトコッカス属乳酸菌、ラクトコッカス属乳酸菌が挙げられる。
1-3.タンパク質脱アミド酵素
 本発明で用いられるタンパク質脱アミド酵素としては、ペプチド結合の切断及びタンパク質の架橋を伴わずタンパク質のアミド基含有側鎖を分解する作用を示す酵素であれば、その種類及び由来等は特に限定されない。タンパク質脱アミド酵素の例として、特開2000-50887号公報、特開2001-218590号公報、国際公開第2006/075772号に開示された、クリセオバクテリウム(Chryseobacterium)属、フラボバクテリウム(Flavobacterium)属、エンペドバクター(Empedobacter)属、スフィンゴバクテリウム(Sphingobacterium)属、アウレオバクテリウム(Aureobacterium)属又はミロイデス(Myroides)属由来のタンパク質脱アミド酵素、及びクリセオバクテリウム属由来のプロテイングルタミナーゼが挙げられる。これらのタンパク質脱アミド酵素としては、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 これらのタンパク質脱アミド酵素の中でも、タンパク質発酵飲食品に関する諸特性向上効果をより一層高める観点から、好ましくはクリセオバクテリウム属由来のタンパク質脱アミド酵素、より好ましくはクリセオバクテリウム属由来のプロテイングルタミナーゼ、さらに好ましくはクリセオバクテリウム・プロテオリティカム種由来のプロテイングルタミナーゼが挙げられる。
 タンパク質脱アミド酵素は、上記のタンパク質脱アミド酵素の由来元となる微生物の培養液より調製することができる。具体的な調製方法としては、上記の微生物の培養液又は菌体よりタンパク質脱アミド酵素を回収する方法が挙げられる。例えば、タンパク質脱アミド酵素分泌型微生物を用いる場合は、培養液から、必要に応じて予めろ過、遠心処理等によって菌体を回収した後、酵素を分離及び/又は精製することができる。また、タンパク質脱アミド酵素非分泌型微生物を用いる場合は、必要に応じて予め培養液から菌体を回収した後、菌体を加圧処理、超音波処理等によって破砕して酵素を露出させた後、酵素を分離及び/又は精製することができる。酵素の分離及び/又は精製法としては、公知のタンパク質分離及び/又は精製法を特に限定されることなく用いることができ、例えば、遠心分離法、UF濃縮法、塩析法、イオン交換樹脂等を用いた各種クロマトグラフィー法等が挙げられる。分離及び/又は精製された酵素は、凍結乾燥、減圧乾燥等の乾燥法により粉末化することができ、また、当該乾燥法において適当な賦形剤及び/又は乾燥助剤を用いて粉末化することもできる。また、分離及び/又は精製された酵素は、適当な添加剤を加え、ろ過滅菌することで液状化することもできる。
 タンパク質脱アミド酵素としては市販品を用いることもでき、好ましい市販品の例として、天野エンザイム株式会社製のプロテイングルタミナーゼ「アマノ」500が挙げられる。
 タンパク質脱アミド酵素の使用量については特に限定されないが、タンパク質1g当たりのタンパク質脱アミド酵素の量として、例えば0.001~1000mU、0.005~250mUが挙げられ、タンパク質材料を用いた発酵飲食品に関する諸特性をより一層向上させる観点から、好ましくは0.01~150mU、より好ましくは0.05~100mU、さらに好ましくは0.1~70mU、一層好ましくは0.2~60mU、より一層好ましくは0.3~30mU、特に好ましくは0.4~10mU、最も好ましくは0.4~1mUが挙げられる。
 また、タンパク質脱アミド酵素の使用量は、マルチ銅オキシダーゼ1U当たりのタンパク質脱アミド酵素の量として、例えば0.00008~80mU、0.0004~20mUが挙げられ、タンパク質材料を用いた発酵飲食品に関する諸特性をより一層向上させる観点から、好ましくは0.0008~13mU、より好ましくは0.004~9mU、さらに好ましくは0.008~6mU、一層好ましくは0.015~5mU、より一層好ましくは0.025~2.5mU、特に好ましくは0.03~0.9mU、最も好ましくは0.03~0.09mUが挙げられる。
 タンパク質脱アミド酵素の活性については、ベンジルオキシカルボニル-L-グルタミニルグリシン(Z-Gln-Gly)を基質とし、1分間に1μmolのアンモニアを遊離する酵素量を1単位(1U)とする。
1-4.マルチ銅オキシダーゼ
 本発明で用いられるマルチ銅オキシダーゼとは、分子中に複数の銅原子を含有し、ポリフェノール、メトキシフェノール、ジアミン、ビリルビン、アスコルビン酸などを分子状酸素により酸化せしめる一群の酵素である。含まれる銅原子の数は、これまで知られているものは通常2~8個であるが、この数は分析時の酵素標品の状態、分析法によりばらつきが見られるため、特に限定されるものではない。マルチ銅オキシダーゼに分類される酵素としては、例えばラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラズミン等が挙げられる。
 これらのマルチ銅オキシダーゼは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらのマルチ銅オキシダーゼの中でも、タンパク質材料を用いた発酵飲食品に関する諸特性をより一層向上させる観点から、好ましくはラッカーゼが挙げられる。
 ラッカーゼは、フェノールオキシダーゼ活性を有する酵素(EC1.10.3.2)である。ラッカーゼの具体例としては、真菌及び細菌等の微生物に由来のラッカーゼが挙げられ、より具体的には、アスペルギルス(Aspergillus)属、ニューロスポラ(Neurospora)属、ポドスポラ(Podospora)属、ボトリチス(Botrytis)属、コリビア(Collybia)属、フォメス(Fomes)属、レンチナス(Lentinus)属、プレウロタス(Pleurotus)属、ピクノポラス(Pycnoporus)属、ピリキュラリア(Pyricularia)属、トラメテス(Trametes)属、リゾクトニア(Rhizoctonia)属、リギドポルス(Rigidoporus)属、コプリヌス(Coprinus)属、プサティレルラ(Psatyrella)属、ミセリオフテラ(Myceliophtera)属、シタリジウム(Schtalidium)属、ポリポルス(Polyporus)属、フレビア(Phlebia)属、コリオルス(Coriolus)属等に由来のラッカーゼが挙げられる。
 これらのラッカーゼは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらのラッカーゼの中でも、タンパク質材料を用いた発酵飲食品に関する諸特性をより一層向上させる観点から、好ましくはトラメテス属由来ラッカーゼ及びアスペルギルス属由来ラッカーゼ(より好ましくはアスペルギルスオリゼ種由来ラッカーゼ)が挙げられ、さらに好ましくはトラメテス属由来ラッカーゼが挙げられる。
 マルチ銅オキシダーゼの使用量については特に限定されないが、タンパク質1g当たりのマルチ銅オキシダーゼの量として、例えば0.1~100Uが挙げられ、タンパク質材料を用いた発酵飲食品に関する諸特性をより一層向上させる観点から、好ましくは1~50U、より好ましくは5~20U、さらに好ましくは10~15Uが挙げられる。
 なお、マルチ銅オキシダーゼの活性については、基質である2,2’-Azino-di-[3-ethylbenzthiazoline sulfonate](ABTS)の1.0mg/ml溶液3.0mlに、酵素液0.1mlを加えて25℃で反応を行い1分後と3分後の405nmの吸光度を測定した場合に、1分間に405nmの吸光度を1.0 OD増加させる酵素量を1ユニット(U)とする。
1-5.工程順
 タンパク質材料を発酵する工程と、酵素(タンパク質脱アミド酵素及びマルチ銅オキシダーゼ)による処理を行う工程との順番は、任意である。つまり、発酵する工程及び酵素による処理を行う工程のいずれか一方を先に行い、当該一方の工程が完了した後、他方の工程を行ってもよいし、両方の工程を同時に行ってもよい。さらに、両方の工程を同時に行う場合、両方の工程の開始タイミングは同時であってもよいし、いずれか一方の工程の開始タイミングを早めてもよい。タンパク質発酵飲食品に関する諸特性向上効果をより一層高める観点から、発酵する工程及び酵素による処理を行う工程の両方を同時に行うことが好ましい。
1-6.反応条件等
 タンパク質材料を発酵する工程における反応条件については、微生物の熱安定性、及び酵素による処理を行う工程を同時に行うか否か等を考慮して当業者が適宜選択することができるが、例えば、20~45℃、好ましくは25~30℃が挙げられる。発酵する工程に係る時間としては、目的のタンパク質発酵飲食品の種類及び発酵温度等に応じて当業者が適宜決定することができるが、例えば、1~80時間が挙げられる。さらに、発酵温度が20~30℃である場合、具体的な発酵時間としては、好ましくは20~60時間、より好ましくは40~50時間が挙げられ、発酵温度が30℃超~45℃以下、特に37~43℃の場合、具体的な発酵時間としては、好ましくは1~15時間、より好ましくは2~10時間、さらにより好ましくは3~8時間が挙げられる。酵素による処理を行う工程の開始に先立って行われる発酵する工程においては、微生物の増殖に伴って、タンパク質材料を適宜追加することができる。
 酵素による処理を行う工程における反応条件については、タンパク質脱アミド酵素及びマルチ銅オキシダーゼの至適温度、及び発酵を行う工程を同時に行うか否か等を考慮して当業者が適宜決定することができるが、例えば、4~80℃、好ましくは15~50℃、より好ましくは20~40℃、さらに好ましくは25~30℃が挙げられる。酵素による処理を行う工程に係る時間としては、目的とする諸特性の程度及び処理温度等に応じて当業者が適宜決定することができるが、例えば1~80時間が挙げられる。さらに、処理温度が4~30℃、特に20~30℃である場合、具体的な処理時間としては、好ましくは20~60時間、より好ましくは40~50時間が挙げられ、処理温度が30℃超~80℃以下、特に35~45℃の場合、具体的な処理時間としては、好ましくは1~15時間、より好ましくは2~10時間、さらにより好ましくは3~8時間が挙げられる。
1-7.タンパク質発酵飲食品
 本発明の製造方法により製造されるタンパク質発酵飲食品としては特に限定されない。タンパク質発酵飲食品の形態としては、固形状、ゲル状、液状等が挙げられる。また、タンパク質発酵飲食品の具体例としては、ヨーグルト(ゲル状食品の例)、飲むヨーグルト(飲料の例)、ヨーグルトペースト(ペースト状食品の例。食品素材としても用いられる。)、チーズ(固形状食品の例)等が挙げられる。
 タンパク質発酵飲食品に関する諸特性向上効果をより一層高める観点から、タンパク質発酵飲食品の好ましい形態としてはゲル状が挙げられ、タンパク質発酵飲食品の好ましい具体例としてはヨーグルト(ゲル状食品)が挙げられる。
2.タンパク質発酵飲食品の改質剤
 タンパク質脱アミド酵素及びマルチ銅オキシダーゼの組み合わせは、タンパク質発酵飲食品の製造に用いることで、発酵飲食品自体の、応力、保水性、又は離水抑制性といった諸特性を向上させる改質が可能となる。従って、本発明は、タンパク質脱アミド酵素及びマルチ銅オキシダーゼを含む、タンパク質発酵飲食品の改質剤も提供する。
 タンパク質発酵飲食品の改質剤のより具体的な例としては、タンパク質発酵飲食品の応力向上剤、タンパク質発酵飲食品の保水性向上剤、及び/又はタンパク質発酵飲食品の離水抑制剤として用いられるものが挙げられる。
 タンパク質発酵飲食品の改質剤において、使用する成分の種類、使用量等については、前記「1.タンパク質発酵飲食品の製造方法」の欄に示す通りである。
3.タンパク質発酵飲食品製造における速醸剤
 タンパク質脱アミド酵素及びマルチ銅オキシダーゼの組み合わせは、タンパク質発酵飲食品の製造に用いることで、製造時の発酵効率を向上する(つまり速醸する)ことができる。従って、本発明は、タンパク質脱アミド酵素及びマルチ銅オキシダーゼを含む、タンパク質発酵飲食品製造における速醸剤も提供する。
 タンパク質発酵飲食品製造における速醸剤において、使用する成分の種類、使用量等については、前記「1.タンパク質発酵飲食品の製造方法」の欄に示す通りである。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定して解釈されるものではない。
[試験例1]
(1)使用材料
 下記表1に示す材料を用いた。
Figure JPOXMLDOC01-appb-T000001
(2)酵素活性値測定方法
(2-1)タンパク質脱アミド酵素活性値測定方法
 タンパク質脱アミド酵素の酵素活性測定は、N-ベンジルオキシカルボニル-L-グルタミニルグリシン(Z-Gln-Gly;ペプチド研究所)を基質として以下に記載する方法で行った。
 Z-Gln-Glyを0.2mol/Lリン酸塩バッファー(pH6.5)で溶解し、30mmol/Lに調製した溶液を基質溶液とした。活性を測定すべき酵素溶液0.1mLを試験管に入れ、37±0.5℃の恒温水槽中にて1分間放置後、あらかじめ37±0.5℃で10分間放置した基質溶液1mLを加え、直ちに混ぜた。この液を10分間放置することで酵素反応を行った後、0.4mol/Lトリクロロ酢酸溶液1mLを加えて酵素反応を停止した。測定ブランクは、試験管に酵素溶液0.1mLを加え、0.4mol/Lトリクロロ酢酸溶液1mL、基質溶液1mLの順に添加することで調製した。アンモニア-テストワコー(富士フィルム和光純薬)による発色反応を行い、波長630nmにおける吸光度の値をもとに、10分間の酵素反応によって遊離したアンモニアの定量を行った。1分間に1μmolのアンモニアを生成する酵素量を1単位(1U)と定義し、酵素反応によって遊離したアンモニア量から活性値を算出した。
(2-2)マルチ銅オキシダーゼ活性値測定方法
 マルチ銅オキシダーゼの酵素活性測定は、2,2’-Azino-di-[3-ethylbenzthiazoline sulfonate](ABTS、ベーリンガー・マンハイム社製)を基質として以下に記載する方法で行った。
 ABTSを1.0mg/mlの濃度で25mMクエン酸緩衝液(pH3.2)に溶解し基質液とした。この基質液3.0mlをキュベットにとり、25℃で予熱後、0.1mlの酵素液を添加、撹拌し、25℃でインキュベートし、1分後と3分後における405nmの吸光度を測定した。この条件下で1分間に405nmの吸光度を1.0 OD増加させる酵素量を1ユニット(U)と定義した。
(3)手順
 牛乳5mLに乳酸菌(種菌)を接種し、28℃で4時間前培養を行った。これにより得られた培養物1mLを新しい牛乳49mLに加え混合し、さらに、プロテイングルタミナーゼ及び/又はラッカーゼを表2に示す量加えて混合した。28℃で48時間静置し、その後冷蔵庫で2~4時間静置し(離水抑制性の試験に供する場合のみ、静置条件は下記(4-3)に示す条件とした。)た。つまり、本試験例では発酵工程と酵素処理工程とを同時に行った。これによって、ヨーグルト(ゲル状食品)を得た。
(4)各種特性試験
 得られたヨーグルトについて、以下の各種特性を試験した。結果を表2に示す。
(4-1)応力
 レオメーター(株式会社サン科学社製)を用い、得られたヨーグルトの応力を測定した。比較例1のヨーグルトの応力を100%とした場合の相対応力(%)を導出した。相対応力の値が大きいほど、応力が向上していると評価できる。
(4-2)保水性
 得られたヨーグルトの重量を測定し、その後、1000×g、10分、20℃の条件で遠心し、上清を回収して、残りのヨーグルトの重量を測定した。以下の式に基づいて、保水力(%)を導出した。保水力の値が大きいほど、保水性が向上していると評価できる。
Figure JPOXMLDOC01-appb-M000002
(4-3)離水抑制性
 冷蔵保存前にヨーグルトの重量(V1(g))を測定した。測定後のヨーグルトを水分受け容器に被せたガーゼ上に全量乗せ、24時間冷蔵保存した。24時間後、水分受け容器に溜まった自然離水した水分の重量を測定した。V1(g)から水分重量を引くことで冷蔵保存24時間後のヨーグルト重量(V2(g))を算出した。以下の式に基づいて、離水性(%)を導出した。離水性の値が小さいほど、離水抑制性が向上していると評価できる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 表2に示される通り、ラッカーゼ及びプロテイングルタミナーゼは単独ではヨーグルトの諸特性を向上する十分な機能はないが、プロテイングルタミナーゼをラッカーゼと組み合わせることで、ヨーグルトの諸特性を顕著に向上することができた。
[試験例2]
 プロテイングルタミナーゼ及び/又はラッカーゼを表3に示す量で用い、試験例1と同じ手順でヨーグルト(ゲル状食品)を調製した。調製中、以下の測定を行い、速譲効果と呈味に与える影響とを評価した。結果を表3に示す。
(1)速醸効果
(1-1)pHが5に到達するまでの時間
 酵素を加えて培養を開始した時点からpHを経時的に測定し、pHが5に到達するまでの時間を測定した。当該時間が短いほど、発酵効率が高い(速醸効果に優れている)と評価できる。
(1-2)EPS生成量
 酵素を加えて培養を開始した時点から40時間後におけるEPS(エキソポリサッカライド)量を、次の方法で測定した。当該40時間後のヨーグルトを攪拌し、同体積量の40重量%トリクロロ酢酸水溶液を添加し、混合した。細胞およびタンパク質を除去するため、得られた溶液を遠心分離(2,200g、30分、4℃)した。さらに、オリゴ糖及び低分子糖を除去するため、上清を同体積量のエタノールと混合し、24時間、4℃で保管した。遠心分離(9,000g、30分、4℃)した沈殿を回収し、蒸留水に溶解した。この画分をフェノール硫酸法にて全糖量(EPS量)を算出した。EPS量が多いほど、発酵効率が高い(速醸効果に優れている)と評価できる。
(2)呈味への影響(乳酸生成量)
 調製中、酵素を加えて培養を開始した時点から40時間後における乳酸量をLactate Assay Kit-WST(同仁化学研究所)を用いて測定した。比較例4に比べて乳酸量の増加が抑えられていると、過度な酸味による呈味への悪影響が無いと評価できる。
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、プロテイングルタミナーゼとラッカーゼとを組み合わせて用いた場合に、優れた速醸効果が得られた。特に、EPS量の結果から、プロテイングルタミナーゼとラッカーゼとを組み合わせて用いた場合の速醸効果は、それぞれの酵素を単独で用いた場合に対して相乗的な効果として認められた。このように、プロテイングルタミナーゼとラッカーゼとを組み合わせて用いた場合には優れた速醸効果が得られる一方で、乳酸の量はほとんど変化していないため、呈味への悪影響もないことが認められた。
[試験例3]
 ラッカーゼの量を固定し、プロテイングルタミナーゼの量を変動させて、試験例1と同様にしてヨーグルトを調製し、相対応力を導出した。その結果、ラッカーゼ12U(乳タンパク質1g当たり量)に対してプロテイングルタミナーゼを0.05~100mU(乳タンパク質1g当たり量)用いた場合に、顕著な相対応力向上効果が認められた。さらに、プロテイングルタミナーゼを0.05~100mU用いた場合の具体的な相対応力を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表4に示す通り、プロテイングルタミナーゼとラッカーゼとを組み合わせた場合に、ヨーグルトの相対応力の顕著な向上が認められた。

Claims (10)

  1.  タンパク質材料を発酵する工程と、タンパク質脱アミド酵素及びマルチ銅オキシダーゼによる処理を行う工程とを含む、タンパク質発酵飲食品の製造方法。
  2.  前記タンパク質脱アミド酵素がプロテイングルタミナーゼである、請求項1に記載の製造方法。
  3.  前記マルチ銅オキシダーゼがラッカーゼである、請求項1に記載の製造方法。
  4.  前記タンパク質材料が牛乳である、請求項1に記載の製造方法。
  5.  前記タンパク質発酵飲食品がヨーグルトである、請求項1に記載の製造方法。
  6.  タンパク質脱アミド酵素及びマルチ銅オキシダーゼを含む、タンパク質発酵飲食品の改質剤。
  7.  タンパク質発酵飲食品の応力向上剤として用いられる、請求項6に記載の改質剤。
  8.  タンパク質発酵飲食品の保水性向上剤として用いられる、請求項6に記載の改質剤。
  9.  タンパク質発酵飲食品の離水抑制剤として用いられる、請求項6に記載の改質剤。
  10.  タンパク質脱アミド酵素及びマルチ銅オキシダーゼを含む、タンパク質発酵飲食品製造における速醸剤。
PCT/JP2022/035225 2021-09-21 2022-09-21 タンパク質発酵飲食品の製造方法 WO2023048195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280054812.7A CN117998993A (zh) 2021-09-21 2022-09-21 蛋白质发酵饮食品的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-153628 2021-09-21
JP2021153628 2021-09-21

Publications (1)

Publication Number Publication Date
WO2023048195A1 true WO2023048195A1 (ja) 2023-03-30

Family

ID=85720751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035225 WO2023048195A1 (ja) 2021-09-21 2022-09-21 タンパク質発酵飲食品の製造方法

Country Status (2)

Country Link
CN (1) CN117998993A (ja)
WO (1) WO2023048195A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197688A (ja) 1993-01-08 1994-07-19 Ajinomoto Co Inc ヨーグルト類の製造法
JPH06276933A (ja) 1993-03-26 1994-10-04 Snow Brand Milk Prod Co Ltd 発酵乳及びその製造方法
JPH11276162A (ja) * 1998-03-31 1999-10-12 Amano Pharmaceut Co Ltd 酵素による蛋白質の架橋法
JP2000050887A (ja) 1998-06-04 2000-02-22 Amano Pharmaceut Co Ltd 新規蛋白質脱アミド酵素、それをコ―ドする遺伝子、その製造法並びにその用途
JP2001218590A (ja) 1999-12-03 2001-08-14 Amano Enzyme Inc 新規蛋白質脱アミド酵素、それを生産する微生物、それをコードする遺伝子、その製造法及び用途
WO2006075772A1 (ja) 2005-01-13 2006-07-20 Ajinomoto Co., Inc. 乳製品及びその製造方法
WO2011024994A1 (ja) * 2009-08-31 2011-03-03 味の素株式会社 低脂肪又は無脂肪ヨーグルト及びその製造方法
WO2012121090A1 (ja) 2011-03-04 2012-09-13 株式会社明治 物性が改良された発酵乳の製造方法
US20170013852A1 (en) * 2014-03-31 2017-01-19 Valio Ltd. Protein products and methods for producing them
WO2017170657A1 (ja) * 2016-03-30 2017-10-05 味の素株式会社 ヨーグルトの製造方法
CN107279289A (zh) * 2017-01-20 2017-10-24 西南民族大学 一种预酸化酶交联益生菌酸奶及其制备方法
WO2021187510A1 (ja) * 2020-03-17 2021-09-23 天野エンザイム株式会社 蛋白質の架橋方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197688A (ja) 1993-01-08 1994-07-19 Ajinomoto Co Inc ヨーグルト類の製造法
JPH06276933A (ja) 1993-03-26 1994-10-04 Snow Brand Milk Prod Co Ltd 発酵乳及びその製造方法
JPH11276162A (ja) * 1998-03-31 1999-10-12 Amano Pharmaceut Co Ltd 酵素による蛋白質の架橋法
JP2000050887A (ja) 1998-06-04 2000-02-22 Amano Pharmaceut Co Ltd 新規蛋白質脱アミド酵素、それをコ―ドする遺伝子、その製造法並びにその用途
JP2001218590A (ja) 1999-12-03 2001-08-14 Amano Enzyme Inc 新規蛋白質脱アミド酵素、それを生産する微生物、それをコードする遺伝子、その製造法及び用途
WO2006075772A1 (ja) 2005-01-13 2006-07-20 Ajinomoto Co., Inc. 乳製品及びその製造方法
WO2011024994A1 (ja) * 2009-08-31 2011-03-03 味の素株式会社 低脂肪又は無脂肪ヨーグルト及びその製造方法
WO2012121090A1 (ja) 2011-03-04 2012-09-13 株式会社明治 物性が改良された発酵乳の製造方法
US20170013852A1 (en) * 2014-03-31 2017-01-19 Valio Ltd. Protein products and methods for producing them
WO2017170657A1 (ja) * 2016-03-30 2017-10-05 味の素株式会社 ヨーグルトの製造方法
CN107279289A (zh) * 2017-01-20 2017-10-24 西南民族大学 一种预酸化酶交联益生菌酸奶及其制备方法
WO2021187510A1 (ja) * 2020-03-17 2021-09-23 天野エンザイム株式会社 蛋白質の架橋方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIWA, NORIKO: "Improvement of Food Texture by Enzymatic Deamidation. The use of protein glutaminase for dairy product", REITO - REFRIGERATION, NIPPON REITO KYOKAI, TOKYO,, JP, vol. 94, no. 1095, 1 January 2019 (2019-01-01), JP , pages 11 - 18, XP009534386, ISSN: 0034-3714 *

Also Published As

Publication number Publication date
CN117998993A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
Ray et al. Traditional and novel fermented foods and beverages from tropical root and tuber crops
Odunfa Biochemical changes in fermenting African locust bean (Parkia biglobosa) during ‘iru’fermentation
Lv et al. Interactions between plant proteins/enzymes and other food components, and their effects on food quality
MX2007005462A (es) Bebidas con contenido reducido de prolamina y metodos de preparacion de las mismas.
US10640740B2 (en) Fermentation
FR3063876A1 (fr) Produit alimentaire a base de lait vegetal
WO2022054880A1 (ja) 加工タンパク質の製造方法
Hayta et al. The effect of fermentation on viscosity and protein solubility of Boza, a traditional cereal-based fermented Turkish beverage
EP4241571A1 (en) Method for producing processed plant-based milk having increased dispersion stability and/or solubility
WO2023048195A1 (ja) タンパク質発酵飲食品の製造方法
Ganguly et al. Cereal-based fermented foods for enhanced nutritional attributes and better gut health
US20200245640A1 (en) Use of enzymes to deflavor pea protein
JP2006296421A (ja) 調味料及びその製造方法
WO2023027110A1 (ja) 植物性タンパク質発酵飲食品の製造方法
AU657617B2 (en) Enzymatic treatment of denatured natural protein process and products thereof
JP6117570B2 (ja) 食酢
Villarino et al. Quality and health dimensions of pulse-based dairy alternatives with chickpeas, lupins and mung beans
Fadlallah et al. Effect of fermentation on biochemical characteristics of sorghum flour supplemented with chickpea flour
Bartkienė et al. The use of solid state fermentation for food and feed plant material processing.
RU2129810C1 (ru) Способ получения порошкообразного полуфабриката для супов и соусов
Ogodo et al. Variations in the functional properties of soybean flour fermented with lactic acid bacteria
Gowthami et al. Lactobacillus plantarum fermentation to reduce anti-nutritional contents in peanut, mustard and sesame
Liu et al. Effects of roasting treatment on functional properties and structure of proteins in grafted Korean pine
US9295274B1 (en) Enzymatic hydrolysates of okara
US20230031973A1 (en) High fiber, high protein, low carbohydrate flour, sweetened liquid, sweeteners, cereals, and methods for production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549729

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022872946

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872946

Country of ref document: EP

Effective date: 20240422