WO2021187510A1 - 蛋白質の架橋方法 - Google Patents

蛋白質の架橋方法 Download PDF

Info

Publication number
WO2021187510A1
WO2021187510A1 PCT/JP2021/010764 JP2021010764W WO2021187510A1 WO 2021187510 A1 WO2021187510 A1 WO 2021187510A1 JP 2021010764 W JP2021010764 W JP 2021010764W WO 2021187510 A1 WO2021187510 A1 WO 2021187510A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
enzyme
laccase
cross
linking
Prior art date
Application number
PCT/JP2021/010764
Other languages
English (en)
French (fr)
Inventor
杏匠 酒井
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to CN202180020879.4A priority Critical patent/CN115298320A/zh
Priority to CA3171481A priority patent/CA3171481A1/en
Priority to JP2022508399A priority patent/JPWO2021187510A1/ja
Priority to US17/906,498 priority patent/US20230114377A1/en
Priority to BR112022017511A priority patent/BR112022017511A2/pt
Priority to EP21771002.9A priority patent/EP4122327A4/en
Publication of WO2021187510A1 publication Critical patent/WO2021187510A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/02Making cheese curd
    • A23C19/032Making cheese curd characterised by the use of specific microorganisms, or enzymes of microbial origin
    • A23C19/0328Enzymes other than milk clotting enzymes, e.g. lipase, beta-galactosidase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C20/00Cheese substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1209Proteolytic or milk coagulating enzymes, e.g. trypsine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1213Oxidation or reduction enzymes, e.g. peroxidase, catalase, dehydrogenase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1216Other enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • A23J3/343Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of dairy proteins
    • A23J3/344Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of dairy proteins of casein
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/346Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/03Oxidoreductases acting on the CH-CH group of donors (1.3) with oxygen as acceptor (1.3.3)
    • C12Y103/03005Bilirubin oxidase (1.3.3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01044Protein-glutamine glutaminase (3.5.1.44)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/20Ingredients acting on or related to the structure
    • A23V2200/21Binding agent
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/20Ingredients acting on or related to the structure
    • A23V2200/228Gelling agent
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/20Ingredients acting on or related to the structure
    • A23V2200/242Thickening agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to a novel method for cross-linking a protein using an enzyme. More specifically, the present invention relates to a method for cross-linking a protein using a combination of an oxidoreductase and a protein deamidating enzyme.
  • transglutaminase lysyl oxidase, protein disulfide isomerase, protein disulfide reductase, sulfhydryl oxidase, lipoxygenase, polyphenol oxidase (tyrosinase), peroxidase and the like are known as enzymes having a possibility of polymerizing a protein by a cross-linking reaction.
  • enzymes having a possibility of polymerizing a protein by a cross-linking reaction.
  • transglutaminase is well known as a protein cross-linking method using it. It is well known that it is widely used mainly in the food processing field due to the discovery of an inexpensive transglutaminase derived from a microorganism and which does not require the presence of calcium in the reaction (Patent Document 1, Non-Patent). See Reference 2).
  • transglutaminase forms a bridging structure within or between protein molecules as a result of the acyl transfer reaction that occurs between the ⁇ -carboxyl group of the glutamine residue in the protein and the ⁇ -amino group of the lysine residue. Since it is an enzyme, some proteins are difficult to serve as substrates due to lack of glutamine residue or lysine residue depending on the type of protein. For example, albumin proteins could not be substrates for transglutaminase in their native state.
  • a protein cross-linking method characterized by allowing an oxidoreductase and a protein deamidating enzyme to act on a protein.
  • the protein improver according to [7], wherein the redox enzyme is multi-copper oxidase.
  • the protein improver according to [8], wherein the multi-copper oxidase is laccase and / or bilirubin oxidase.
  • the protein improver according to [8], wherein the multi-copper oxidase is laccase.
  • the protein improving agent according to any one of [7] to [10], wherein the protein deamidating enzyme is an enzyme that acts on a glutamine residue in a protein.
  • the protein improver according to [11], wherein the protein deamidating enzyme is protein glutaminase.
  • a method for producing a crosslinked protein which comprises the following steps: (1) Step of treating protein with protein deamidating enzyme, (2) Protein A step of treating a deamidated protein with an oxidoreductase.
  • a method for producing a crosslinked protein which comprises the following steps: (1) Step of preparing a protein treated with a protein deamidating enzyme, (2) A step of treating the prepared protein with an oxidoreductase.
  • a method for producing a crosslinked protein which comprises a step of simultaneously treating a protein with an oxidoreductase and a protein deamidating enzyme.
  • a method for producing a food or pharmaceutical product which comprises the following steps: (1) A step of preparing a food raw material or a pharmaceutical raw material containing a protein, which has been treated with a protein deamidating enzyme. (2) A step of treating the prepared food raw material or pharmaceutical raw material with an oxidoreductase. [17] A method for producing a food or pharmaceutical product, which comprises a step of simultaneously treating a food material or a pharmaceutical material containing a protein with an oxidoreductase and a protein deamidating enzyme.
  • the cross-linking method of the present invention is characterized by allowing an oxidoreductase and a protein deamidating enzyme to act on a protein.
  • the oxidoreductase referred to in the present invention is not particularly limited as long as it is an enzyme that crosslinks a protein by a redox reaction, and examples thereof include the following. (1) An enzyme that cross-links a protein by oxidizing the ⁇ -amino group of lysine in the protein to generate a highly reactive aldehyde and forming a Schiff base with the amino group of another protein molecule (for example, lysyl oxidase).
  • An enzyme that cross-links a protein by oxidizing the sulfhydryl group of cysteine in the protein and forming a disulfhydryl bond with another protein molecule for example, sulfhydryl oxidase.
  • Crosslinking enzymes eg, multi-copper oxidases such as laccase
  • An enzyme eg, peroxidase that catalyzes the same reaction as (4) but requires hydrogen peroxide as an oxygen donor in the oxidation reaction.
  • multi-copper oxidase is a group of enzymes that contain a plurality of copper atoms in the molecule and oxidize polyphenols, methoxyphenols, diamines, birylbin, ascorbic acid, etc. with molecular oxygen.
  • the number of copper atoms contained is usually 2 to 8 known so far, but this number is particularly limited because it varies depending on the state of the enzyme preparation at the time of analysis and the analysis method. It's not a thing.
  • Examples of enzymes classified into multi-copper oxidase include laccase, bilirubin oxidase, ascorbic acid oxidase, and celluloplasmin.
  • Laccase [EC1.10.3.2] is a type of multi-copper protein with low substrate specificity that also acts on O-quinol, p-quinol or often aminophenols and phenylenediamines. It is an enzyme that has. The resulting semiquinone further reacts enzymatically or non-enzymatically.
  • laccases examples include those derived from plants such as lacquer and microorganisms such as bacteria and fungi (Fungi), and examples of laccases derived from microorganisms include Aspergillus, Neurospora, Podospora, Botrytis, Collybia, Fomes, Examples include enzymes from the genus Lentinus, Pleurotus, Pycnoporus, Pyricularia, Trametes, Rhizoctonia, Rigidoporus, Coprinus, Psatyrella, Myceliophtera, Schtalidium, Polyporus, Phlebia, Coriolus.
  • Bilirubin oxidase (EC1.3.3.5) is a type of multi-copper protein and is an enzyme that mainly acts on bilirubin. Examples of such bilirubin oxidase include enzymes derived from the genus Penicillium, Myrothecium, and Trachyderma. Be done.
  • Ascorbic acid oxidase (EC1.10.3.3) is a type of multi-copper protein, an enzyme that mainly acts on L-ascorbic acid, such as plants such as cucumber, pumpkin, and zucchini, and bacteria and fungi (Fungi). Some are derived from microorganisms.
  • Celluloplasmin (EC1.16.3.1) is a type of multi-copper protein, which is a multifunctional protein that maintains copper homeostasis in living organisms, has ferrooxidase activity, and amine oxidase activity, and is found in the serum of animals and birds. exist.
  • the protein deamidating enzyme as used in the present invention refers to an enzyme that catalyzes the reaction of liberating ammonia from a protein, and specifically, an enzyme that converts a glutamine residue in a protein into a glutamate residue (that is, protein glutaminase). Examples thereof include an enzyme that converts an asparagine residue into an aspartic acid residue (that is, a protein asparaginase), and a protein deimino enzyme that converts an arginine residue in a protein into a citrulin residue.
  • Examples of enzymes that deamidate glutamine residues in proteins include protein glutaminase derived from Chryseobacterium proteolyticum (EurJBiochem, 268 (5), 1410, 2001, Protein-glutaminaseFromChryseobacteriumProteolyticum, anEnzymeThatDeamidatesGlutaminylResiduesinProteins.Purination, AnEnzymeThatDeamidatesGlutaminylResiduesinProteins.
  • the deamidated protein has amphipathic properties and becomes an ideal surfactant, and the emulsifying power, emulsifying stability, foaming property, and foam stability of the protein are greatly improved.
  • deamidation of a protein results in an improvement in various functional properties of the protein, dramatically increasing its use (eg MolecularApproachestoImprovingFoodQualityandSafety, D.ChatnagarandT.E.Cleveland, eds., VanNostrandReinhold, New York). , 1992, p.37).
  • the arginine residue in the protein is deiminated, the hydrophobicity of the protein is increased and the higher-order structure of the protein is changed.
  • the present inventor newly discovered "a phenomenon in which a protein cross-linking reaction by an oxidative-reducing enzyme is promoted by the action of a protein deamidase" (see Examples described later).
  • a protein deamidase As a result of the unfolding of the protein and the change of the higher-order structure due to the action of the protein deamidating enzyme, the amino acid residues that are the targets of oxidative reduction enzymes such as cysteine and lysine, including tyrosine buried inside the protein molecule, are released. It can be explained that the exposure to the molecular surface of the protein made it more susceptible to the action of oxidative reductase.
  • the types and origins of the redox enzymes and protein deamidating enzymes that can be used in the present invention are not particularly limited.
  • the origin for example, it is derived from an animal, a plant, or a microorganism.
  • the enzyme may be accumulated inside or outside the microorganism.
  • it may be an enzyme protein modified by a protein engineering method.
  • oxidoreductase for example, multi-copper oxidase
  • protein deamidating enzyme for example, protein glutaminase
  • an enzyme preparation may be used as the oxidoreductase and the protein deamidating enzyme, and in that case, various salts, sugars, proteins, lipids, surfactants and the like are added as enzyme stabilizers to the enzyme preparation. May be.
  • the cross-linking method of the present invention can be applied to various proteins for which cross-linking is desired.
  • proteins for which cross-linking is desired.
  • the origin, properties, etc. of the protein that is the substrate for the redox enzyme and protein deamidating enzyme For example, in the case of vegetable proteins, legume-derived proteins such as soybeans, greenpeas, lentils, chickpeas, and blackbeans, wheat, barley, and swallow (Oat). ), Grain-derived proteins such as rice, nut-derived proteins such as almonds and peanuts, and seed-derived proteins such as cannabis seeds (Hemp), chia seeds (Chia), Chia (Quinoa), and Amaranthus. Take as an example.
  • Insect proteins such as crickets, yeast, filamentous fungi, fungal-derived proteins called mushroom mycoproteins, and algae-derived proteins such as spirulina can also be used.
  • animal proteins include casein, milk proteins such as ⁇ -lactoglobulin, egg proteins such as ovalbumin, meat proteins such as myosin and actin, blood proteins such as serum albumin, and tendon proteins such as gelatin and collagen.
  • a chemically partially decomposed protein such as an acid or an alkali
  • an enzymatic partially decomposed protein such as a protease, a chemically modified protein using various reagents, a synthetic peptide or the like can also be used as a substrate protein.
  • the above-mentioned substrate proteins are subjected to the reaction in a state of being contained in a fluid composition such as a solution, slurry or paste, but the concentration of the substrate protein in the fluid composition is not particularly limited. Instead, the concentration of the desired protein crosslinked product may be determined according to the desired properties and conditions. Generally, a solution or precipitate having increased viscosity can be obtained at a low concentration, and a gel-like substance can be obtained at a high concentration, but a gelled product can be sufficiently obtained when the substrate protein concentration is 1% by weight or more.
  • the fluid composition containing a substrate protein is not limited to a fluid composition in the form of an aqueous solution of a protein, an aqueous dispersion, or an aqueous dispersion paste, and these are fluid compositions in the form of an emulsion with fats and oils. May be subjected to the reaction, and salts, sugars, proteins, fragrances, moisturizers, colorants and the like may be added to the fluid composition containing the substrate protein, if necessary.
  • the amount of enzyme used, reaction time, temperature, pH of the reaction solution, etc. are not particularly limited. Usually, the amount of enzyme is 1 to 1000000 U, preferably 10 to 500,000 U, more preferably 100 to 200,000 U for oxidoreductase, and 0.01 to 100,000 U, preferably 0.1 to 50000 U, more preferably for protein deamidating enzyme with respect to 1 g of protein. It is 1 to 10000U.
  • the reaction temperature is 5 to 80 ° C, preferably 20 to 60 ° C.
  • the pH of the reaction solution is 2-10, preferably 4-8.
  • the reaction time is 10 seconds to 48 hours, preferably 10 minutes to 24 hours.
  • reaction conditions Under the above reaction conditions, a crosslinked product in which the protein is polymerized or a gel-like product of a fluid composition can be obtained.
  • reaction conditions are appropriately selected according to the physical characteristics and water content of the target protein crosslinked product or gel-like product of the fluid composition. The optimum reaction conditions may be determined through preliminary experiments.
  • multi-copper oxidase When multi-copper oxidase is used as the oxidative reduction enzyme, various polyphenols such as Hydroquinone, Catechol, Guaiacol, Ferulic acid, Vanillic acid, etc. are used as mediators to promote the reaction.
  • p-Coumaric acid, Syringaldehyde, p-Phenylenediamine and the like may be added.
  • the substrate protein is treated with a protein cross-linking enzyme, that is, an oxidoreductase and a protein deamidating enzyme.
  • a protein cross-linking enzyme that is, an oxidoreductase and a protein deamidating enzyme.
  • the order in which the enzymes are allowed to act is not particularly limited, but treatment with both enzymes at the same time, or treatment with protein deamide enzyme and then treatment with oxidoreductase. It is preferable to do so. Simultaneous processing is more preferable for the purpose of improving work efficiency.
  • a step of inactivating the protein deamidating enzyme after the treatment with the protein deamidating enzyme may be added.
  • the amount of protein deamidation can be adjusted by adding a deactivation step.
  • crosslinked protein or food or pharmaceutical product containing the crosslinked protein can be produced.
  • One aspect of the method for producing a crosslinked protein includes the following steps (1) and (2).
  • a step of inactivating the protein deamidating enzyme may be added after the step (1).
  • Step of treating protein with protein deamidating enzyme (2) Step of treating protein deamidated protein with oxidoreductase
  • steps (1) and (2) are performed.
  • Step of preparing protein treated with protein deamidating enzyme Step of treating prepared protein with oxidoreductase
  • the crosslinked protein is produced by the following step (i). (I) Step of simultaneously treating protein with redox enzyme and protein deamidating enzyme
  • one aspect of the method for producing foods and pharmaceuticals includes the following (1) and (2).
  • Step of preparing a food raw material or a pharmaceutical raw material containing a protein treated with a protein deamidating enzyme (2)
  • the food or pharmaceutical product is produced by the following step (i).
  • the present invention also provides a protein improver that can be used for protein cross-linking.
  • the protein improver of the present invention is typically utilized in the cross-linking method or production method of the present invention.
  • the protein improver of the present invention contains oxidoreductase and protein deamidating enzyme, which are enzymes for protein cross-linking, as active ingredients.
  • the protein improver of the present invention can be used as a protein cross-linking agent, preferably as a thickener for a fluid composition containing a protein, and more preferably as a gelling agent for a fluid composition containing a protein. Can be done. Since the details of the redox enzyme and the protein deamidating enzyme are as described in (1. Protein cross-linking method column), the description thereof will be omitted.
  • ⁇ Activity measurement method Dissolve ABTS in 25 mM citrate buffer (pH 3.2) at a concentration of 1.0 mg / ml to prepare a substrate solution. Take 3.0 ml of this substrate solution into a cuvette, preheat at 25 ° C., add 0.1 ml of enzyme solution, stir, incubate at 25 ° C., and measure the absorbance at 405 nm after 1 minute and 3 minutes. Under this condition, the amount of enzyme that increases the absorbance at 405 nm by 1.0 OD per minute is defined as 1 unit.
  • the enzyme activity of protein glutaminase was measured by the method described below using Z-Gln-Gly as a substrate unless otherwise specified.
  • ⁇ Activity measurement method> Add 10 ⁇ l of enzyme solution to 100 ⁇ l of 176 mmol / l phosphate buffer (pH 6.5) containing 10 mmol / l Z-Gln-Gly, incubate at 37 ° C for 60 minutes, and then add 100 ⁇ l of 12% trichloroacetic acid solution for reaction. To stop. After centrifugation (15000 rpm, 4 ° C., 5 minutes), the supernatant is measured using F-kitammonia (manufactured by Beringer Mannheim) as follows (A1).
  • reaction solution After completion of the reaction, a part of the reaction solution was separated and subjected to 2 to 25% polyacrylamide gel electrophoresis to observe an increase in the molecular weight of the substrate protein, and cross-linking and cross-linking based on the case where laccase was used alone. It was judged to be a promoting effect.
  • the amount of enzyme added was 100 U for laccase (final concentration) and 500 mU for protein glutaminase (final concentration) per 1 mg of substrate protein.
  • LYZAMINE-S pea protein, manufactured by Rocket Japan.
  • reaction solution After completion of the reaction, a part of the reaction solution was separated and subjected to 2 to 25% polyacrylamide gel electrophoresis to observe an increase in the molecular weight of the substrate protein, and cross-linking and cross-linking based on the case where laccase was used alone. It was judged to be a promoting effect.
  • the amount of enzyme added was 100 U for laccase (final concentration) and 500 mU for protein glutaminase (final concentration) per 1 mg of substrate protein.
  • the amount of enzyme added was 100 U for laccase (final concentration) and 500 mU for protein glutaminase (final concentration) per 1 mg of substrate protein.
  • the same reaction was carried out under the condition that both the amount of enzyme added (laccase and protein glutaminase) was reduced to 1/10 and 1/100.
  • the efficiency of cross-linking polymerization of the substrate protein is improved by the combined use of laccase and protein glutaminase as compared with the case of using laccase alone, and the polyacrylamide gel cannot pass through the network at any enzyme concentration.
  • the band of the polymerized protein (the band that can be confirmed at the top of each lane (lanes 5 to 7)) was confirmed to be darker, and cross-linked polymerization was observed. That is, the combined use of protein glutaminase with laccase was found to have an effect of promoting cross-linking of soybean-derived protein.
  • Example 4 The effect of promoting protein cross-linking by the combined use of laccase and protein glutaminase was examined by a method using egg-derived albumin (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Egg-derived albumin mixed with 5% by weight (final concentration) of 50 mM (final concentration) potassium / sodium phosphate buffer (pH 7.0) and protein glutaminase (product name: protein glutaminase "Amano" 500, manufactured by Amano Enzyme Co., Ltd.) After that, it was carried out at 40 ° C. for 4 hours with shaking at 160 rpm.
  • egg-derived albumin manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Egg-derived albumin mixed with 5% by weight (final concentration) of 50 mM (final concentration) potassium / sodium phosphate buffer (pH 7.0) and protein glutaminase (product name: protein glutaminase "Amano" 500, manufactured by Amano Enzyme
  • laccase product name: laccase Y120, manufactured by Amano Enzyme Co., Ltd.
  • laccase product name: laccase Y120, manufactured by Amano Enzyme Co., Ltd.
  • the amount of enzyme added was 100 U for laccase (final concentration) and 500 mU for protein glutaminase (final concentration) per 1 mg of substrate protein.
  • the amount of enzyme added was 100 U for laccase (final concentration) and 500 mU for protein glutaminase (final concentration) per 1 mg of substrate protein.
  • the same reaction was also carried out under the condition that the amount of enzyme added (laccase and protein glutaminase) was diluted together.
  • the efficiency of cross-linking polymerization of the substrate protein is improved by the combined use of laccase and protein glutaminase as compared with the case of using laccase alone, and the protein polymerized to about 200 kDa or more at any enzyme concentration.
  • laccase 5-7 That is, the combined use of protein glutaminase with laccase was found to have an effect of promoting cross-linking of almond-derived proteins.
  • the amount of enzyme added was 100 U for laccase (final concentration) and 500 mU for protein glutaminase (final concentration) per 1 mg of substrate protein.
  • the same reaction was also carried out under the condition that the amount of enzyme added (laccase and protein glutaminase) was diluted together.
  • the efficiency of cross-linking polymerization of the substrate protein is improved by the combined use of laccase and protein glutaminase as compared with the case of using laccase alone, and it is impossible to pass through the network of polyacrylamide gel at any enzyme concentration.
  • the band of the polymerized protein (the band that can be confirmed at the top of each lane (lanes 5 to 7)) was confirmed to be darker, and cross-linked polymerization was observed. That is, the combined use of protein glutaminase with laccase was found to have an effect of promoting cross-linking of chickpea-derived protein.
  • the efficiency of cross-linking polymerization of the substrate protein is improved by the combined use of bilirubin oxidase and protein glutaminase as compared with the case of using bilirubin oxidase alone, and the band of the polymerized protein is improved at any enzyme concentration.
  • the band of the polymerized protein is improved at any enzyme concentration.
  • the amount of enzyme added was 100 U for tyrosinase (final concentration) and 500 mU for protein glutaminase (final concentration) per 1 mg of substrate protein.
  • the same reaction was carried out under the condition that the amount of enzyme added (tyrosinase and protein glutaminase) was diluted together.
  • the efficiency of cross-linking polymerization of the substrate protein is improved by the combined use of tyrosinase and protein glutaminase as compared with the case of using tyrosinase alone, and the polymerized protein bands are formed at any enzyme concentration. Darker confirmation was observed in the upper part of the lanes (lanes 5 to 6), and / or a newly confirmed band of polymerized protein was confirmed at the top of each lane (lanes 6 to 7), and crosslinked polymerization was observed. .. That is, the combined use of protein glutaminase with tyrosinase was found to have an effect of promoting cross-linking of casein protein.
  • the shear rate at the time of measurement was 200 s-1, and a preliminary measurement was performed for 30 seconds in order to maintain the flow state.
  • an enzyme-free casein solution, a laccase (50 U / mL) -treated casein solution and a protein glutaminase (100 mU / mL) -treated casein solution were also measured as controls.
  • the efficiency of cross-linking polymerization of the substrate protein was improved by the combined use of laccase and protein glutaminase as compared with the case of using laccase alone, and the polymer was polymerized to 200 kDa or more at any enzyme concentration. The presence of the protein was newly confirmed, and cross-linked polymerization was observed.
  • the crosslinked, polymerized, or gelled protein materials produced by the present invention include, for example, fish meat pastes, sardines, fish / livestock sausages, tofu, noodles, confectionery / bread making, food adhesives, and meat sheets. It is used in the food processing field such as ready-to-eat foods, yogurt, jelly, cheese, and substitute meat / dairy products (substitute cheese, alternative milk fermented food) made from plant materials.
  • novel protein-derived material it is expected to be used in a wide range of industries including cosmetics, medical products, materials for microcapsules, and carriers such as immobilized enzymes. Since the reaction mechanism of cross-linking by oxidoreductase is considered to be different from that of transglutaminase, which is frequently used for cross-linking proteins, it is possible to produce protein polymerized products and gel-like substances having new qualities. The use and application of the present invention can also be expected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

新たな蛋白質架橋方法を提供することを課題とする。ラッカーゼなどの酸化還元酵素とプロテイングルタミナーゼなどの蛋白質脱アミド酵素の両方を基質蛋白質に作用させることで架橋反応を促進する。

Description

蛋白質の架橋方法
 本発明は、酵素を用いる、蛋白質の新規な架橋方法に関する。詳細には、酸化還元酵素と蛋白質脱アミド酵素を併用した、蛋白質の架橋方法に関する。
 蛋白質を架橋反応により高分子化せしめる可能性を有する酵素としては、従来、トランスグルタミナーゼ、リジルオキシダーゼ、プロテインジスルフィドイソメラーゼ、プロテインジスルフィドレダクターゼ、スルフヒドリルオキシダーゼ、リポキシゲナーゼ、ポリフェノールオキシダーゼ(チロシナーゼ)、ペルオキシダーゼなどが知られていた(例えばば非特許文献1を参照)。
 上述の酵素の中でトランスグルタミナーゼについては、それを利用した蛋白質の架橋法がよく知られている。微生物由来の安価な、そして反応にカルシウムの存在を必要としないトランスグルタミナーゼが発見されたことにより、食品加工分野を中心に広く利用されていることは周知の通りである(特許文献1、非特許文献2を参照)。
 しかしながら、トランスグルタミナーゼによる蛋白質架橋反応には以下のような問題点があった。即ち、トランスグルタミナーゼは、蛋白質中のグルタミン残基のγ-カルボキシル基と、リジン残基のε-アミノ基の間で生ずるアシル転移反応の結果、蛋白質分子内或いは分子間に橋かけ構造を形成する酵素であるため、蛋白質の種類によっては、グルタミン残基或いはリジン残基の不足により基質となりにくい蛋白質があった。たとえばアルブミン類の蛋白質はネイティブの状態では、トランスグルタミナーゼの基質となり得なかった。
 このように、従来、酵素による蛋白質の架橋法として、幾つかの酵素による可能性が指摘されていたが、供給量、コスト、精製の容易さなどを満足する実用性のあるものはほとんどなく、唯一ともいえる微生物由来のトランスグルタミナーゼによる方法においても、蛋白質の種類によっては架橋反応が生ぜず、その用途が制限されたものであった。
 これに対し、トランスグルタミナーゼとは全く反応機構の異なるラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラズミンなどが含まれるマルチ銅オキシダーゼによる蛋白質の架橋法が提案され、トランスグルタミナーゼによる蛋白質架橋法では限られていた、対象となる蛋白質の範囲が拡大し、また、新しい物性、性質を有する蛋白質ゲル化物の製造法が可能になった(特許文献2を参照)。
特公平6-65280号公報 特開平11-276162号公報
MatheisandWhitaker,J.FoodBiochemistry11,309-327,1987 日本農芸化学会誌69巻10号1301-1308頁
 しかしながら、上記のごときマルチ銅オキシダーゼによる蛋白質の架橋法においては、マルチ銅オキシダーゼの蛋白質に対する反応性が低いため、大量の酵素が必要であること、長時間の反応時間が必要であることなどの問題があった。
 本発明者は、上記課題を解決すべく鋭意検討を行った結果、蛋白質を脱アミドする酵素を併用することにより、マルチ銅オキシダーゼ等の酸化還元酵素による蛋白質の架橋反応を著しく向上せしめることを新たに見出し、以下に示す本発明を完成するに至った。
 [1]蛋白質に酸化還元酵素と蛋白質脱アミド酵素を作用させることを特徴とする蛋白質架橋方法。
 [2]酸化還元酵素がマルチ銅オキシダーゼである、[1]に記載の蛋白質架橋方法。
 [3]マルチ銅オキシダーゼがラッカーゼ及び/又はビリルビンオキシダーゼである、[2]に記載の蛋白質架橋方法。
 [4]マルチ銅オキシダーゼがラッカーゼである、[2]に記載の蛋白質架橋方法。
 [5]蛋白質脱アミド酵素が、蛋白質中のグルタミン残基に作用する酵素である、[1]~[4]のいずれか一項に記載の蛋白質架橋方法。
 [6]蛋白質脱アミド酵素が、プロテイングルタミナーゼである、[5]に記載の蛋白質架橋方法。
 [7]酸化還元酵素と蛋白質脱アミド酵素を含有する蛋白質改良剤。
 [8]酸化還元酵素がマルチ銅オキシダーゼである、[7]に記載の蛋白質改良剤。
 [9]マルチ銅オキシダーゼがラッカーゼ及び/又はビリルビンオキシダーゼである、[8]に記載の蛋白質改良剤。
 [10]マルチ銅オキシダーゼがラッカーゼである、[8]に記載の蛋白質改良剤。
 [11]蛋白質脱アミド酵素が、蛋白質中のグルタミン残基に作用する酵素である、[7]~[10]のいずれか一項に記載の蛋白質改良剤。
 [12]蛋白質脱アミド酵素が、プロテイングルタミナーゼである、[11]に記載の蛋白質改良剤。
 [13]以下の工程を含む、架橋化蛋白質の製造方法:
 (1)蛋白質脱アミド酵素で蛋白質を処理する工程、
 (2)蛋白質脱アミド化した蛋白質を酸化還元酵素で処理する工程。
 [14]以下の工程を含む、架橋化蛋白質の製造方法:
 (1)蛋白質脱アミド酵素で処理した蛋白質を用意する工程、
 (2)用意した蛋白質を酸化還元酵素で処理する工程。
 [15]蛋白質を酸化還元酵素と蛋白質脱アミド酵素で同時に処理する工程を含む、架橋化蛋白質の製造方法。
 [16]以下の工程を含む、食品又は医薬品の製造方法:
 (1)蛋白質脱アミド酵素で処理した、蛋白質を含む食品原料又は医薬原料を用意する工程、
 (2)用意した食品原料又は医薬原料を酸化還元酵素で処理する工程。
 [17]蛋白質を含む食品原料又は医薬原料を酸化還元酵素と蛋白質脱アミド酵素で同時に処理する工程を含む、食品又は医薬品の製造方法。
試験例1における、SDS-ポリアクリルアミドゲル電気泳動の泳動パターンを示す図である。 試験例2における、SDS-ポリアクリルアミドゲル電気泳動の泳動パターンを示す図である。 試験例3における、SDS-ポリアクリルアミドゲル電気泳動の泳動パターンを示す図である。 試験例5における、SDS-ポリアクリルアミドゲル電気泳動の泳動パターンを示す図である。 試験例6における、SDS-ポリアクリルアミドゲル電気泳動の泳動パターンを示す図である。 試験例7における、SDS-ポリアクリルアミドゲル電気泳動の泳動パターンを示す図である。 試験例8における、SDS-ポリアクリルアミドゲル電気泳動の泳動パターンを示す図である。 試験例9における粘度変化を示すグラフである。
1.蛋白質の架橋方法
 本発明の架橋方法は、蛋白質に酸化還元酵素と蛋白質脱アミド酵素を作用させることを特徴とする。本発明でいう酸化還元酵素は、酸化還元反応により蛋白質を架橋する酵素であれば特に限定されず、例えば以下のものが挙げられる。
(1)蛋白質中のリジンのε-アミノ基を酸化し反応性に富んだアルデヒドを生じせしめ、別の蛋白質分子のアミノ基とシッフ塩基を形成することにより蛋白質を架橋する酵素(例えばリジルオキシダーゼ)
(2)蛋白質中のシステインのスルフヒドリル基を酸化し、別の蛋白質分子とジスルフヒドリル結合を形成することにより蛋白質を架橋する酵素(例えばスルフヒドリルオキシダーゼ)
(3)蛋白質中のチロシンの水酸基を酸化し反応性に富んだο-キノンを生じせしめ、別の蛋白質分子のキノンあるいはアミノ基やスルフヒドリル基と反応することにより蛋白質を架橋する酵素(例えばチロシナーゼ)
(4)基質特異性が広く、主として蛋白質中のチロシンの水酸基、或いはシステインのスルフヒドリル基、リジンのε-アミノ基にも作用し、上記(1)から(3)のいずれかのメカニズムで蛋白質を架橋する酵素(例えばラッカーゼを始めとするマルチ銅オキシダーゼ)
(5)(4)と同様の反応を触媒するが、酸化反応における酸素供与体として過酸化水素を必要とする酵素(例えばパーオキシダーゼ)
 ここでマルチ銅オキシダーゼとは、分子中に複数の銅原子を含有し、ポリフェノール、メトキシフェノール、ジアミン、ビリルビン、アスコルビン酸などを分子状酸素により酸化せしめる一群の酵素である。含まれる銅原子の数は、これまで知られているものは通常2ないし8個であるが、この数は分析時の酵素標品の状態、分析法によりばらつきが見られるため、特に限定されるものではない。マルチ銅オキシダーゼに分類される酵素としては、例えばラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラズミンなどが挙げられる。
 ラッカーゼ([EC1.10.3.2])とは、マルチ銅蛋白質の一種で、O-クウィノール(quinol)、p-クウィノール(quinol)或いはしばしばアミノフェノールやフェニレンジアミンにも作用する、低い基質特異性を有する酵素である。生じたセミキノンは、さらに酵素的にもしくは非酵素的に反応する。このようなラッカーゼの例としては、漆などの植物や、バクテリアや真菌(Fungi)などの微生物由来のものがあり、微生物由来のラッカーゼとしては例えば、Aspergillus,Neurospora,Podospora,Botrytis,Collybia,Fomes,Lentinus,Pleurotus,Pycnoporus,Pyricularia,Trametes,Rhizoctonia,Rigidoporus,Coprinus,Psatyrella,Myceliophtera,Schtalidium,Polyporus,Phlebia,Coriolus属由来の酵素が挙げられる。
 ビリルビンオキシダーゼ(EC1.3.3.5)とは、マルチ銅蛋白質の一種で、主としてビリルビンに作用する酵素であり、このようなビリルビンオキシダーゼの例としては、例えばPenicillium,Myrothecium,Trachyderma属由来の酵素が挙げられる。
 アスコルビン酸オキシダーゼ(EC1.10.3.3)とは、マルチ銅蛋白質の一種で、主としてL-アスコルビン酸に作用する酵素であり、キュウリ、カボチャ、ズッキーニなどの植物や、バクテリアや真菌(Fungi)などの微生物由来のものがある。
 セルロプラズミン(EC1.16.3.1)とは、マルチ銅蛋白質の一種で、生体中の銅の恒常性維持や、フェロオキシダーゼ活性、アミンオキシダーゼ活性を有する多機能蛋白質であり、動物や鳥類の血清中に存在する。
 本発明でいう蛋白質脱アミド酵素とは、蛋白質からアンモニアを遊離する反応を触媒する酵素をいい、具体的には、蛋白質中のグルタミン残基をグルタミン酸残基に変換する酵素(すなわちプロテイングルタミナーゼ)、アスパラギン残基をアスパラギン酸残基に変換する酵素(すなわちプロテインアスパラギナーゼ)、及び蛋白質中のアルギニン残基をシトルリン残基に変換する蛋白質脱イミノ酵素が挙げられる。蛋白質中のグルタミン残基を脱アミドする酵素としては、例えばChryseobacteriumproteolyticum由来のプロテイングルタミナーゼ(EurJBiochem,268(5),1410,2001,Protein-glutaminaseFromChryseobacteriumProteolyticum,anEnzymeThatDeamidatesGlutaminylResiduesinProteins.Purification,CharacterizationandGeneCloning,SYamaguchi1,DJJeenes,DBArcher或いはFrontMicrobiol,9,1975,2018,CompleteGenomeSequenceandCharacterizationofaProtein-GlutaminaseProducingStrain,ChryseobacteriumproteolyticumQSH1265,RuidanQu,XiaoyuZhu,MinTian,YingjieLiu,WenjuanYan,JianYe,HongliangGao,JingHuang)がよく知られているが、これに限定されるものではない。蛋白質中のアスパラギン残基を脱アミドする酵素については、例えばWO2015/133590に開示されているプロテインアスパラギナーゼが挙げられるが、これに限定されるものではない。蛋白質中のアルギニン残基を脱イミノ化する酵素としては、例えばFusariumgraminearum由来のアルギニンデイミナーゼが知られている。
 一般に、蛋白質中のグルタミン残基及び/又はアスパラギン残基を脱アミド化してカルボキシル基を生じさせ、蛋白質の負電荷が増加すると、並びに/若しくは、蛋白質中の塩基性の強いアルギニン残基が脱イミノ化して中性化すると、それらの結果等電点が低下し、水和力が増加する。さらに静電反撥力の上昇による蛋白質間の相互作用の低下すなわち会合性の低下がもたらされる。これらの変化により蛋白質の可溶性、水分散性は大きく増大する。また蛋白質の負電荷の増加は、その蛋白質の折りたたみをほぐし、高次構造を変化させ、分子内部に埋もれていた疎水性領域を分子表面に露出させる。したがって脱アミド化蛋白質は両親媒性を有し理想的な界面活性剤となり、蛋白質の乳化力、乳化安定性、起泡性、泡沫安定性が大きく向上する。このように、蛋白質の脱アミド化は、蛋白質の様々な機能特性の向上をもたらし、その蛋白質の用途は飛躍的に増大させる(例えばMolecularApproachestoImprovingFoodQualityandSafety,D.ChatnagarandT.E.Cleveland,eds.,VanNostrandReinhold,NewYork,1992,p.37)。また、蛋白質中のアルギニン残基を脱イミノ化した場合も、蛋白質の疎水性を増大させて、蛋白質の高次構造を変化させる。
 従って、理論に拘泥する訳ではないが、本発明者が新たに見出した、「酸化還元酵素による蛋白質の架橋反応が蛋白質脱アミド酵素の作用により促進される現象」(後述の実施例を参照)は、蛋白質脱アミド酵素の作用によって蛋白質の折りたたみがほぐれ、高次構造が変化した結果、蛋白質の分子内部に埋もれていたチロシンを始めシステインやリジンなどの酸化還元酵素のターゲットとなるアミノ酸残基が蛋白質の分子表面に露出したことにより、酸化還元酵素の作用を受けやすくなったと説明できる。
 次に、本発明における蛋白質の架橋方法についてさらに詳細に説明する。本発明で利用可能な酸化還元酵素及び蛋白質脱アミド酵素の種類や由来等は特に限定されない。由来については、例えば、動物由来、植物由来又は微生物由来である。また、微生物由来の酵素の場合、微生物の菌体内、菌体外のいずれに蓄積されたものであってもよい。さらに自然界に存在するものばかりでなく、遺伝子工学的手法、細胞工学的手法により生産されたものであってもよい。また、蛋白質工学的手法により修飾された酵素蛋白質であってもよい。更に、酸化還元酵素(例えばマルチ銅オキシダーゼ)及び蛋白質脱アミド酵素(例えばプロテイングルタミナーゼ)は、精製された純度の高いものを用いることが望ましいが、所望の反応が可能であればその純度は問わない。また、酸化還元酵素及び蛋白質脱アミド酵素として酵素製剤を用いてもよく、その場合の酵素製剤には、酵素の安定化剤として各種の塩類、糖類、蛋白質、脂質、界面活性剤等が添加されていてもよい。
 架橋化が望まれる各種蛋白質に本発明の架橋方法を適用できる。酸化還元酵素及び蛋白質脱アミド酵素の基質となる蛋白質の起源、性状等に特段の制約はない。たとえば、植物性蛋白質であれば大豆(Soybeans)、えんどう豆(Greenpeas)、レンズ豆(Lentils)、ひよこ豆(Chickpeas)、黒豆(Blackbeans)等の豆類由来の蛋白質、小麦、大麦、燕麦(Oat)、米などの穀類由来の蛋白質、アーモンド、ピーナッツ等のナッツ由来の蛋白質、大麻種子(Hemp)、チア種子(Chia)、キア(Quinoa)、アマランサス(Amaranthus)などの種子類由来の蛋白質がその例として挙げられる。またコオロギなどの昆虫蛋白質、酵母、糸状菌、キノコのマイコプロテインと呼ばれる菌類由来の蛋白質、スピルリナなどの藻類由来の蛋白質を用いることもできる。動物性蛋白質であればカゼイン、β-ラクトグロブリンなどの乳蛋白、オボアルブミンなどの卵蛋白、ミオシン、アクチンなどの肉蛋白、血清アルブミンなどの血液蛋白、ゼラチン、コラーゲンなどの腱蛋白質が挙げられる。また、酸、アルカリなどによる化学的部分分解蛋白質、プロテアーゼなどによる酵素的部分分解蛋白質、各種試薬による化学修飾蛋白質、或いは合成ペプチド等を基質蛋白質として用いることもできる。
 以上のような基質蛋白質は、溶液、スラリー、又はペースト等の流動性組成物中に含まれる状態で反応に供されるが、流動性組成物中の基質蛋白質の濃度は特に限定されるものではなく、目的の蛋白質架橋物の望まれる性状、状態に応じて濃度を決定すればよい。一般に、低濃度であれば粘性の増加した溶液あるいは沈殿物、高濃度であればゲル状物が得られるが、基質蛋白質濃度が1重量%以上であれば十分にゲル化物を得ることができる。また、基質蛋白質を含む流動性組成物として、蛋白質の水溶液、水分散液、又は水分散ペーストの形態の流動性組成物に限らず、これらが油脂とのエマルジョンを構成した形態の流動性組成物を反応に供してもよく、また、基質蛋白質を含む流動性組成物に、必要に応じて塩類、糖類、蛋白質、香料、保湿剤、着色料などが添加されていてもよい。
 用いられる酵素量、反応時間、温度、反応溶液のpHなども特に限定されるものではない。通常、酵素量は蛋白質1gに対し酸化還元酵素が1~1000000U、好ましくは10~500000U、より好ましくは100~200000Uであり、蛋白質脱アミド酵素が0.01~100000U、好ましくは0.1~50000U、より好ましくは1~10000Uである。反応温度は5~80℃、好ましくは20~60℃である。反応溶液のpHは2~10、好ましくは4~8である。反応時間は10秒~48時間、好ましくは10分~24時間である。以上の反応条件によって、蛋白質が高分子化した架橋物ないし流動性組成物のゲル状物を得ることができる。これらの反応条件は、目的とする蛋白質架橋物ないし流動性組成物のゲル状物の物性、水分含量に応じて適宜選択される。尚、最適な反応条件は予備実験を通して決定すればよい。
 酸化還元酵素としてマルチ銅オキシダーゼを用いる場合は、反応を促進するメディエーターとして各種ポリフェノール類、例えばハイドロキノン(Hydroquinone)、カテコール(Catechol)、グアイヤコール(Guaiacol)、フェルラ酸(Ferulicacid)、バニリン酸(Vanillicacid)、p-クマル酸(p-Coumaricacid)、シリングアルデヒド(Syringaldehyde)、p-フェニレンジアミン(p-Phenylenediamine)などを添加してもよい。
 本発明における蛋白質の架橋方法では、基質蛋白質を蛋白質架橋用酵素、即ち酸化還元酵素と蛋白質脱アミド酵素で処理する。酵素を作用させる順序(即ち、酸化還元酵素の処理と蛋白質脱アミド酵素の処理の順番)は特に限定されないが、両方の酵素で同時に処理するか、蛋白質脱アミド酵素で処理後に酸化還元酵素で処理するのが好ましい。作業効率の向上等の目的で同時処理がより好ましい。蛋白質脱アミド酵素で処理後に酸化還元酵素で処理する場合、蛋白質脱アミド酵素処理後に蛋白質脱アミド酵素を失活させる工程を加えても良い。失活工程を加えることで蛋白質脱アミド化量を調整することが可能である。
2.架橋化蛋白質、又は架橋化蛋白質を含む食品や医薬品の製造方法
 本発明の架橋方法を用いることで、架橋化蛋白質、又はそれを含む食品や医薬品を製造することができる。架橋化蛋白質の製造方法の一態様は、以下の工程(1)及び(2)を含む。尚、工程(1)の後に、蛋白質脱アミド酵素の失活工程を追加しても良い。
 (1)蛋白質脱アミド酵素で蛋白質を処理する工程
 (2)蛋白質脱アミド化した蛋白質を酸化還元酵素で処理する工程
 別の態様では、以下の工程(1)及び(2)が行われる。
 (1)蛋白質脱アミド酵素で処理した蛋白質を用意する工程
 (2)用意した蛋白質を酸化還元酵素で処理する工程
 更に別の態様では、以下の工程(i)によって架橋化タンパク質を製造する。
 (i)蛋白質を酸化還元酵素と蛋白質脱アミド酵素で同時に処理する工程
 一方、食品や医薬の製造方法の一態様は、以下の(1)及び(2)を含む。
 (1)蛋白質脱アミド酵素で処理した、蛋白質を含む食品原料又は医薬原料を用意する工程
 (2)用意した食品原料又は医薬原料を酸化還元酵素で処理する工程
 別の態様では、以下の工程(i)によって食品又は医薬品を製造する。
(i)蛋白質を含む食品原料又は医薬原料を酸化還元酵素と蛋白質脱アミド酵素で同時に処理する工程
3.蛋白質改良剤
 本発明は、蛋白質の架橋化に使用できる蛋白質改良剤も提供する。本発明の蛋白質改良剤は、典型的には、本発明の架橋方法又は製造方法に利用される。本発明の蛋白質改良剤は、蛋白質架橋用酵素である、酸化還元酵素と蛋白質脱アミド酵素を有効成分として含む。本発明の蛋白質改良剤は、蛋白質架橋剤として用いることができ、好ましくは、蛋白質を含む流動性組成物の増粘剤、より好ましくは、蛋白質を含む流動性組成物のゲル化剤として用いることができる。酸化還元酵素と蛋白質脱アミド酵素の詳細は上記(1.蛋白質の架橋方法の欄)の通りであるため、その説明を省略する。
 以下、実施例を用いて本発明を更に説明する。
 以下の実施例において、ラッカーゼの酵素活性測定は、特に断りのない限り2,2'-Azino-di-[3-ethylbenzthiazolinesulfonate(6)](ABTS、ベーリンガー・マンハイム社製)を基質として以下に記載する方法で行った。
<活性測定法>
 ABTSを1.0mg/mlの濃度で25mMクエン酸緩衝液(pH3.2)に溶解し基質液とする。この基質液3.0mlをキュベットにとり、25℃で予熱後、0.1mlの酵素液を添加、撹拌し、25℃でインキュベートし、1分後と3分後における405nmの吸光度を測定する。この条件下で1分間に405nmの吸光度を1.0OD増加させる酵素量を1ユニットと定義する。
 一方、プロテイングルタミナーゼの酵素活性測定は、特に断りのない限りZ-Gln-Glyを基質として以下に記載する方法で行った。
<活性測定法>
 10mmol/lZ-Gln-Glyを含む176mmol/lリン酸緩衝液(pH6.5)100μlに酵素溶液10μlを添加して、37℃、60分間インキュベートした後、12%トリクロロ酢酸溶液100μlを加えて反応を停止する。遠心分離(15000rpm、4℃、5分間)した後、上清について以下のようにF-kitammonia(ベーリンガー・マンハイム社製)を用いて測定する(A1)。別途、酵素溶液の代わりに水を用いて同様にして測定する(A2)。F-kitammonia100μl試薬2に上清10μlと水190μlを加え室温で5分間放置後100μlを用いての340nmの吸光度(E1)を測定する。残りの200μlに、1.0μlの試薬3(グルタメートデヒドロゲナーゼ)を加えた後、更に20分間室温に放置した後に残りの200μlの340nmの吸光度(E2)を測定する。上記条件下で1分間あたり1μmolのアンモニアを遊離する酵素量を1単位とし、以下の式に従って求める。
 u/ml=1.76×[A1(E1-E2)-A2(E1-E2)]
<試験例1>
 ラッカーゼ(LC)とプロテイングルタミナーゼ(PG)の併用による蛋白質架橋の促進効果を、卵由来アルブミン(富士フイルム和光純薬株式会社製)を用いた方法で検討した。卵由来アルブミンを5重量%(終濃度)、50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、ラッカーゼ(製品名:ラッカーゼY120、天野エンザイム株式会社製)及びプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で24時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化と、ラッカーゼを単独で用いた場合を基準とした架橋促進効果とを判定した。酵素添加量は、基質蛋白質1mg当たり、ラッカーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。
 結果を図1と表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図1に示す通り、ラッカーゼ単独使用では、基質蛋白質の架橋高分子化が生じなかった。これに対し、ラッカーゼとプロテイングルタミナーゼの併用では、ポリアクリルアミドゲルの網目を通過できないほど高分子化した蛋白質のバンドがレーン3の最上部に確認でき、基質蛋白質の架橋高分子化が認められた。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、卵由来アルブミン蛋白質の架橋の促進効果が認められた。
<試験例2>
 ラッカーゼとプロテイングルタミナーゼの併用による蛋白質架橋の促進効果を、LYZAMINE-S(エンドウ蛋白質、ロケットジャパン製)を用いて検討した。LYZAMINE-Sを5重量%(終濃度)、50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、ラッカーゼ(製品名:ラッカーゼY120、天野エンザイム株式会社製)及びプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で24時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化と、ラッカーゼを単独で用いた場合を基準とした架橋促進効果とを判定した。酵素添加量は、基質蛋白質1mg当たり、ラッカーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。
 結果を図2と表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図2に示す通り、ラッカーゼ単独使用では、基質蛋白質の架橋高分子化が生じなかった。これに対し、ラッカーゼとプロテイングルタミナーゼの併用では、ポリアクリルアミドゲルの網目を通過できないほど高分子化した蛋白質のバンド(レーン3の最上部に確認できるバンド)がより濃く確認でき、基質蛋白質の架橋高分子化が認められた。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、エンドウ蛋白質の架橋の促進効果が認められた。
<試験例3>
 ラッカーゼとプロテイングルタミナーゼの併用による蛋白質架橋の促進効果を、大豆由来たん白粉末(富士フイルム和光純薬株式会社製)を用いた方法で検討した。大豆由来たん白粉末を5重量%(終濃度)、50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、ラッカーゼ(製品名:ラッカーゼY120、天野エンザイム株式会社製)及びプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で24時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化と、同濃度のラッカーゼを単独で用いた場合を基準とした架橋促進効果とを判定した。酵素添加量は、基質蛋白質1mg当たり、ラッカーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。また、酵素添加量(ラッカーゼ及びプロテイングルタミナーゼ)を共に10分の1、100分の1に減らした条件でも同様の反応を行った。
 結果を図3と表3に示す。
Figure JPOXMLDOC01-appb-T000003
 図3に示す通り、ラッカーゼ単独使用の場合に比較して、ラッカーゼ及びプロテイングルタミナーゼ併用では基質蛋白質の架橋高分子化の効率が向上し、いずれの酵素濃度でも、ポリアクリルアミドゲルの網目を通過できないほど高分子化した蛋白質のバンド(各レーン(レーン5~7)の最上部に確認できるバンド)がより濃く確認でき、架橋高分子化が認められた。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、大豆由来蛋白質の架橋の促進効果が認められた。
<試験例4>
 ラッカーゼとプロテイングルタミナーゼの併用による蛋白質架橋の促進効果を、卵由来アルブミン(富士フイルム和光純薬株式会社製)を用いた方法で検討した。卵由来アルブミンを5重量%(終濃度)を50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、プロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で4時間、160rpmで振盪しながら行った。その後、ラッカーゼ(製品名:ラッカーゼY120、天野エンザイム株式会社製)を加えて、40℃で20時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化を判定した。酵素添加量は、基質蛋白質1mg当たり、ラッカーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 また、電気泳動像でも、プロテイングルタミナーゼ処理後にラッカーゼ処理をしても、ポリアクリルアミドゲルの網目を通過できないほど高分子化した蛋白質のバンドがレーン2の最上部に確認でき、基質蛋白質の架橋高分子化が認められた。試験例1のラッカーゼを単独で用いて処理した場合と本試験例のプロテイングルタミナーゼ処理後にラッカーゼ処理を行った場合との対比から明らかな通り、ラッカーゼにプロテイングルタミナーゼを併用することによって、これらの酵素の添加順にかかわらず、卵由来アルブミン蛋白質の架橋の促進効果が認められた。
<試験例5>
 ラッカーゼとプロテイングルタミナーゼの併用による蛋白質架橋の促進効果を、アーモンド由来蛋白粉末を用いた方法で検討した。アーモンド由来蛋白粉末を5重量%(終濃度)、50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、ラッカーゼ(製品名:ラッカーゼ Y120、天野エンザイム株式会社製)及びプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で24時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化と、同濃度のラッカーゼを単独で用いた場合を基準とした架橋促進効果とを判定した。酵素添加量は、基質蛋白質1mg当たり、ラッカーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。また、酵素添加量(ラッカーゼ及びプロテイングルタミナーゼ)を共に希釈した条件でも同様の反応を行った。
 結果を図4と表5に示す。
Figure JPOXMLDOC01-appb-T000005
 図4に示す通り、ラッカーゼ単独使用の場合に比較して、ラッカーゼ及びプロテイングルタミナーゼ併用では基質蛋白質の架橋高分子化の効率が向上し、いずれの酵素濃度でも、約200kDa以上に高分子化した蛋白質の存在が新たに確認でき、架橋高分子化が認められた。(レーン5~7)。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、アーモンド由来蛋白質の架橋の促進効果が認められた。
<試験例6>
 ラッカーゼとプロテイングルタミナーゼの併用による蛋白質架橋の促進効果を、ひよこ豆由来蛋白粉末を用いた方法で検討した。ひよこ豆由来蛋白粉末を5重量%(終濃度)、50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、ラッカーゼ(製品名:ラッカーゼ Y120、天野エンザイム株式会社製)及びプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で24時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化と、同濃度のラッカーゼを単独で用いた場合を基準とした架橋促進効果とを判定した。酵素添加量は、基質蛋白質1mg当たり、ラッカーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。また、酵素添加量(ラッカーゼ及びプロテイングルタミナーゼ)を共に希釈した条件でも同様の反応を行った。
 結果を図5と表6に示す。
Figure JPOXMLDOC01-appb-T000006
 図5に示す通り、ラッカーゼ単独使用の場合に比較して、ラッカーゼ及びプロテイングルタミナーゼ併用では基質蛋白質の架橋高分子化の効率が向上し、いずれの酵素濃度でも、ポリアクリルアミドゲルの網目を通過できないほど高分子化した蛋白質のバンド(各レーン(レーン5~7)の最上部に確認できるバンド)がより濃く確認でき、架橋高分子化が認められた。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、ひよこ豆由来蛋白質の架橋の促進効果が認められた。
<試験例7>
 ビリルビンオキシダーゼ(BO)とプロテイングルタミナーゼの併用による蛋白質架橋の促進効果を、カゼイン(Merck Millipore)を用いた方法で検討した。蛋白を5重量%(終濃度)、50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、ビリルビンオキシダーゼ(製品名:BO”Amano”3、天野エンザイム株式会社製)及びプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で24時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化と、同濃度のビリルビンオキシダーゼを単独で用いた場合を基準とした架橋促進効果とを判定した。酵素添加量は、基質蛋白質1mg当たり、ビリルビンオキシダーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。また、酵素添加量(ビリルビンオキシダーゼ及びプロテイングルタミナーゼ)を共に希釈した条件でも同様の反応を行った。
 結果を図6と表7に示す。
Figure JPOXMLDOC01-appb-T000007
 図6に示す通り、ビリルビンオキシダーゼ単独使用の場合に比較して、ビリルビンオキシダーゼ及びプロテイングルタミナーゼ併用では基質蛋白質の架橋高分子化の効率が向上し、いずれの酵素濃度でも、高分子化した蛋白質のバンドが各レーン(レーン5~7)の上部により濃く確認でき、架橋高分子化が認められた。つまり、ビリルビンオキシダーゼにプロテイングルタミナーゼを併用することによって、カゼイン蛋白質の架橋の促進効果が認められた。
<試験例8>
 チロシナーゼ(TyrA)とプロテイングルタミナーゼの併用による蛋白質架橋の促進効果を、カゼイン(Merck Millipore)を用いた方法で検討した。蛋白を5重量%(終濃度)、50mM(終濃度)カリウム・ナトリウム燐酸緩衝液(pH7.0)、チロシナーゼ(製品名:チロシナーゼ from mushroom、Merck社製)及びプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)を混合後、40℃で24時間、160rpmで振盪しながら反応させた。反応終了後、反応液の一部を分取し、2~25%ポリアクリルアミド電気泳動に供し、基質蛋白質の分子量増加を観察し、架橋化と、同濃度のチロシナーゼを単独で用いた場合を基準とした架橋促進効果とを判定した。酵素添加量は、基質蛋白質1mg当たり、チロシナーゼ(終濃度)は100U、プロテイングルタミナーゼ(終濃度)は500mUとした。また、酵素添加量(チロシナーゼ及びプロテイングルタミナーゼ)を共に希釈した条件でも同様の反応を行った。
 結果を図7と表8に示す。
Figure JPOXMLDOC01-appb-T000008
 図7に示す通り、チロシナーゼ単独使用の場合に比較して、チロシナーゼ及びプロテイングルタミナーゼ併用では基質蛋白質の架橋高分子化の効率が向上し、いずれの酵素濃度でも、高分子化した蛋白質のバンドが各レーン(レーン5~6)の上部により濃く確認でき、及び/又は高分子化した蛋白質のバンドが各レーン(レーン6~7)の最上部に新たに確認でき、架橋高分子化が認められた。つまり、チロシナーゼにプロテイングルタミナーゼを併用することによって、カゼイン蛋白質の架橋の促進効果が認められた。
<試験例9>
(カゼイン溶液及び小麦グルテン溶液の粘度向上効果の確認)
 5%(w/v)カゼイン溶液又は小麦グルテン溶液とプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)100mU/mL、ラッカーゼ(製品名:ラッカーゼ Y120、天野エンザイム株式会社製)50U/mL、100mMリン酸緩衝液(pH7.0)を含む混合物を40℃で処理し、各時間における粘度をEMS-1000(京都電子製造株式会社、東京、日本)によって測定した。測定時のせん断速度は200s-1であり、流動状態を維持するために予備測定を30秒間行った。測定中、酵素無添加カゼイン溶液、ラッカーゼ(50U/mL)処理及びプロテイングルタミナーゼ(100mU/mL)処理のカゼイン溶液も対照として測定した。
 結果を図8に示す。酵素無添加カゼイン(もしくはグルテン)溶液、ラッカーゼ単独添加のカゼイン(もしくはグルテン)溶液、プロテイングルタミナーゼ単独添加のカゼイン(もしくはグルテン)溶液の粘度は、測定中変動することはなかった。一方で、ラッカーゼ及びプロテイングルタミナーゼを併用したカゼイン溶液では、反応時間依存的に濃度が上昇した。
 また、電気泳動像においても、ラッカーゼ単独使用の場合に比較して、ラッカーゼ及びプロテイングルタミナーゼ併用では基質蛋白質の架橋高分子化の効率が向上し、いずれの酵素濃度でも、200kDa以上に高分子化した蛋白質の存在が新たに確認でき、架橋高分子化が認められた。
 つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、カゼイン蛋白質及び小麦グルテン蛋白質の架橋の促進効果が認められた。
(カゼイン溶液のゲル化検討)
<試験例10>
 5%(w/v)カゼイン溶液と、プロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)100mU/mL、ラッカーゼ(製品名:ラッカーゼ Y120、天野エンザイム株式会社製)50U/mL、100mMリン酸緩衝液(pH7.0)を含む混合物とを試験管に加え、40℃24時間処理後、試験管を傾けてゲル化の有無、及びラッカーゼを単独で用いた場合を基準とした架橋促進効果を確認した。
 結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示す通り、酵素無添加のカゼイン溶液、ラッカーゼ単独添加のカゼイン溶液、プロテイングルタミナーゼ単独添加のカゼイン溶液は、性状が変化しなかった。一方で、ラッカーゼとプロテイングルタミナーゼを併用したカゼイン溶液のみ、カゼイン溶液がゲル化した。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、カゼイン蛋白質の架橋の促進効果が認められた。
(牛乳のゲル化検討)
<試験例11>
 市販の牛乳と、プロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)100mU/mL、ラッカーゼ(製品名:ラッカーゼ Y120、天野エンザイム株式会社製)50U/mL、100mMリン酸緩衝液(pH7.0)を加えた混合物とを試験管に加え、40℃24時間処理後、試験管を傾けてゲル化の有無、及びラッカーゼを単独で用いた場合を基準とした架橋促進効果を確認した。
 結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示す通り、酵素無添加の牛乳、ラッカーゼ単独添加の牛乳、プロテイングルタミナーゼ単独添加の牛乳は、性状が変化しなかった。一方で、ラッカーゼとプロテイングルタミナーゼを併用した牛乳のみ、ゲル化した。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、乳蛋白質の架橋の促進効果が認められた。
(小麦グルテンのゲル化検討)
<試験例12>
 5%(w/v)小麦グルテン溶液とプロテイングルタミナーゼ(製品名:プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)100mU/mLとラッカーゼ(製品名:ラッカーゼ Y120、天野エンザイム株式会社製)50U/mL、100mMリン酸緩衝液(pH7.0)を加えた混合物とを試験管に加え、40℃24時間処理後、試験管を傾けてゲル化の有無、及びラッカーゼを単独で用いた場合を基準とした架橋促進効果を確認した
 結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示す通り、酵素無添加の小麦グルテン溶液、ラッカーゼ単独添加の小麦グルテン溶液、プロテイングルタミナーゼ単独添加の小麦グルテン溶液は、性状が変化しなかった。一方で、ラッカーゼとプロテイングルタミナーゼを併用した小麦グルテン溶液のみ、ゲル化した。つまり、ラッカーゼにプロテイングルタミナーゼを併用することによって、小麦グルテン蛋白質の架橋の促進効果が認められた。
 本発明の酵素による蛋白質の架橋法によれば、これまでは反応性が低いために実用化が困難であった酸化還元酵素による蛋白質の架橋反応を大幅に促進することができる。本発明によって製造される架橋、高分子化された、或いはゲル化された蛋白質素材は、例えば、魚肉すり身、蒲鉾、魚肉・畜肉ソーセージ、豆腐、麺類、製菓・製パン、食品接着剤、肉シート状食品、ヨーグルト、ゼリー、チーズ、植物原料の代替肉・代替乳製品(代替チーズ、代替乳発酵食品)などの食品加工分野に用いられる。更に、新規な蛋白質由来素材として、化粧品、医療用品、マイクロカプセルの素材、固定化酵素等の坦体などを含む広範な産業への利用も想定される。酸化還元酵素による架橋化の反応機構は、蛋白質の架橋化に頻用されるトランスグルタミナーゼの場合とは異なったものと考えられるため、新たな品質を有する蛋白質高分子化物やゲル状物の製造への本発明の利用・応用も期待できる。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (17)

  1.  蛋白質に酸化還元酵素と蛋白質脱アミド酵素を作用させることを特徴とする蛋白質架橋方法。
  2.  酸化還元酵素がマルチ銅オキシダーゼである、請求項1に記載の蛋白質架橋方法。
  3.  マルチ銅オキシダーゼがラッカーゼ及び/又はビリルビンオキシダーゼである、請求項2に記載の蛋白質架橋方法。
  4.  マルチ銅オキシダーゼがラッカーゼである、請求項2に記載の蛋白質架橋方法。
  5.  蛋白質脱アミド酵素が、蛋白質中のグルタミン残基に作用する酵素である、請求項1~4のいずれか一項に記載の蛋白質架橋方法。
  6.  蛋白質脱アミド酵素が、プロテイングルタミナーゼである、請求項5に記載の蛋白質架橋方法。
  7.  酸化還元酵素と蛋白質脱アミド酵素を含有する蛋白質改良剤。
  8.  酸化還元酵素がマルチ銅オキシダーゼである、請求項7に記載の蛋白質改良剤。
  9.  マルチ銅オキシダーゼがラッカーゼ及び/又はビリルビンオキシダーゼである、請求項8に記載の蛋白質改良剤。
  10.  マルチ銅オキシダーゼがラッカーゼである、請求項8に記載の蛋白質改良剤。
  11.  蛋白質脱アミド酵素が、蛋白質中のグルタミン残基に作用する酵素である、請求項7~10のいずれか一項に記載の蛋白質改良剤。
  12.  蛋白質脱アミド酵素が、プロテイングルタミナーゼである、請求項11に記載の蛋白質改良剤。
  13.  以下の工程を含む、架橋化蛋白質の製造方法:
     (1)蛋白質脱アミド酵素で蛋白質を処理する工程、
     (2)蛋白質脱アミド化した蛋白質を酸化還元酵素で処理する工程。
  14.  以下の工程を含む、架橋化蛋白質の製造方法:
     (1)蛋白質脱アミド酵素で処理した蛋白質を用意する工程、
     (2)用意した蛋白質を酸化還元酵素で処理する工程。
  15.  蛋白質を酸化還元酵素と蛋白質脱アミド酵素で同時に処理する工程を含む、架橋化蛋白質の製造方法。
  16.  以下の工程を含む、食品又は医薬品の製造方法:
     (1)蛋白質脱アミド酵素で処理した、蛋白質を含む食品原料又は医薬原料を用意する工程、
     (2)用意した食品原料又は医薬原料を酸化還元酵素で処理する工程。
  17.  蛋白質を含む食品原料又は医薬原料を酸化還元酵素と蛋白質脱アミド酵素で同時に処理する工程を含む、食品又は医薬品の製造方法。
PCT/JP2021/010764 2020-03-17 2021-03-17 蛋白質の架橋方法 WO2021187510A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180020879.4A CN115298320A (zh) 2020-03-17 2021-03-17 蛋白质的交联方法
CA3171481A CA3171481A1 (en) 2020-03-17 2021-03-17 Protein crosslinking method
JP2022508399A JPWO2021187510A1 (ja) 2020-03-17 2021-03-17
US17/906,498 US20230114377A1 (en) 2020-03-17 2021-03-17 Protein crosslinking method
BR112022017511A BR112022017511A2 (pt) 2020-03-17 2021-03-17 Método de reticulação de proteína
EP21771002.9A EP4122327A4 (en) 2020-03-17 2021-03-17 PROTEIN CROSS-LINKING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-046931 2020-03-17
JP2020046931 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021187510A1 true WO2021187510A1 (ja) 2021-09-23

Family

ID=77771133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010764 WO2021187510A1 (ja) 2020-03-17 2021-03-17 蛋白質の架橋方法

Country Status (7)

Country Link
US (1) US20230114377A1 (ja)
EP (1) EP4122327A4 (ja)
JP (1) JPWO2021187510A1 (ja)
CN (1) CN115298320A (ja)
BR (1) BR112022017511A2 (ja)
CA (1) CA3171481A1 (ja)
WO (1) WO2021187510A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202889A1 (ja) * 2021-03-23 2022-09-29 天野エンザイム株式会社 加工大豆飲食品の製造方法
CN115350329A (zh) * 2022-08-19 2022-11-18 江苏西宏生物医药有限公司 一种长效微粒ⅰ型与iii型胶原蛋白复合植入剂
WO2023048195A1 (ja) * 2021-09-21 2023-03-30 天野エンザイム株式会社 タンパク質発酵飲食品の製造方法
WO2023085315A1 (ja) * 2021-11-09 2023-05-19 天野エンザイム株式会社 植物性タンパク質含有組成物の消化性向上剤
WO2023085316A1 (ja) * 2021-11-09 2023-05-19 天野エンザイム株式会社 組織化植物性タンパク質含有食品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115317668B (zh) * 2022-08-19 2023-12-29 北京西宏润美医药科技有限公司 一种长效微粒ⅰ型胶原蛋白植入剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665280A (ja) 1992-04-25 1994-03-08 Merck Patent Gmbh 蛍光標識化合物、その調製法および使用
JPH11276162A (ja) 1998-03-31 1999-10-12 Amano Pharmaceut Co Ltd 酵素による蛋白質の架橋法
JP2000060431A (ja) * 1998-06-09 2000-02-29 Ajinomoto Co Inc 新規酵素処理蛋白質含有食品、その製造方法及びそれに使用する酵素製剤
WO2015133590A1 (ja) 2014-03-07 2015-09-11 味の素株式会社 新規タンパク質脱アミド酵素

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI126442B (en) * 2011-11-01 2016-12-15 Valio Oy Liquid enzyme preparation and process for its preparation
FI20145305A (fi) * 2014-03-31 2015-10-01 Valio Oy Proteiinituotteet ja menetelmät niiden valmistamiseksi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665280A (ja) 1992-04-25 1994-03-08 Merck Patent Gmbh 蛍光標識化合物、その調製法および使用
JPH11276162A (ja) 1998-03-31 1999-10-12 Amano Pharmaceut Co Ltd 酵素による蛋白質の架橋法
JP2000060431A (ja) * 1998-06-09 2000-02-29 Ajinomoto Co Inc 新規酵素処理蛋白質含有食品、その製造方法及びそれに使用する酵素製剤
WO2015133590A1 (ja) 2014-03-07 2015-09-11 味の素株式会社 新規タンパク質脱アミド酵素

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
EURJBIOCHEM, vol. 268, no. 5, 2001, pages 1410
HOU JUN-JIE, YANG XIAO-QUAN, FU SHI-RAO, WANG MENG-PING, XIAO FAN: "Preparation of double-network tofu with mechanical and sensory toughness", INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD., GB, vol. 51, no. 4, 1 April 2016 (2016-04-01), GB , pages 962 - 969, XP055859053, ISSN: 0950-5423, DOI: 10.1111/ijfs.13043 *
JUVONEN HELKA, SMOLANDER MARIA, BOER HARRY, PERE JAAKKO, BUCHERT JOHANNA, PELTONEN JOUKO: "Film formation and surface properties of enzymatically crosslinked casein films", JOURNAL OF APPLIED POLYMER SCIENCE, JOHN WILEY & SONS, INC., US, vol. 119, no. 4, 15 February 2011 (2011-02-15), US , pages 2205 - 2213, XP055859052, ISSN: 0021-8995, DOI: 10.1002/app.32943 *
MATHEISWHITAKER, J. FOOD BIOCHEMISTRY, vol. 11, 1987, pages 309 - 327
S YAMAGUCHI 1DJ JEENES: "Protein-glutaminase From Chryseobacterium Proteolyticum, an Enzyme That Deamidates Glutaminyl Residues in Proteins. Purification, Characterization and Gene Cloning", DBARCHER OR FRONT MICROBIOL, vol. 9, 2018, pages 1975
See also references of EP4122327A4
YAMAZAKI, KATSUTOSHI: "Conferring deterioration resistance on change over time of noodle by transglutaminase", A TECHNICAL JOURNAL ON FOOD CHEMISTRY & CHEMICALS, vol. 19, 30 November 2002 (2002-11-30), JP , pages 44 - 49, XP009539565, ISSN: 0911-2286 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202889A1 (ja) * 2021-03-23 2022-09-29 天野エンザイム株式会社 加工大豆飲食品の製造方法
WO2023048195A1 (ja) * 2021-09-21 2023-03-30 天野エンザイム株式会社 タンパク質発酵飲食品の製造方法
WO2023085315A1 (ja) * 2021-11-09 2023-05-19 天野エンザイム株式会社 植物性タンパク質含有組成物の消化性向上剤
WO2023085316A1 (ja) * 2021-11-09 2023-05-19 天野エンザイム株式会社 組織化植物性タンパク質含有食品の製造方法
CN115350329A (zh) * 2022-08-19 2022-11-18 江苏西宏生物医药有限公司 一种长效微粒ⅰ型与iii型胶原蛋白复合植入剂

Also Published As

Publication number Publication date
EP4122327A1 (en) 2023-01-25
EP4122327A4 (en) 2024-04-03
CN115298320A (zh) 2022-11-04
CA3171481A1 (en) 2021-09-23
BR112022017511A2 (pt) 2022-10-18
JPWO2021187510A1 (ja) 2021-09-23
US20230114377A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2021187510A1 (ja) 蛋白質の架橋方法
JP4137224B2 (ja) 酵素による蛋白質の架橋法
Nivala et al. Structuring colloidal oat and faba bean protein particles via enzymatic modification
Isaschar-Ovdat et al. Crosslinking of food proteins mediated by oxidative enzymes–A review
Liu et al. Effects of enzymatic hydrolysis of fava bean protein isolate by alcalase on the physical and oxidative stability of oil-in-water emulsions
Buchert et al. Crosslinking food proteins for improved functionality
Glusac et al. Enzymatic and chemical modification of zein for food application
Matheis et al. Peroxidase-catalyzed cross linking of proteins
Wu et al. Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: A review
Struch et al. Laccase-catalysed cross-linking of a yoghurt-like model system made from skimmed milk with added food-grade mediators
Labat et al. Effect of laccase and manganese peroxidase on wheat gluten and pentosans during mixing
Pourmohammadi et al. Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review
Hiller et al. Surface hydrophobicity of physicochemically and enzymatically treated milk proteins in relation to techno-functional properties
Brzozowski Immunoreactivity of wheat proteins modified by hydrolysis and polymerisation
Saricay et al. Changes in protein conformation and surface hydrophobicity upon peroxidase-catalyzed cross-linking of apo-α-lactalbumin
AU702447B2 (en) Deoxygenation of an oil product with a laccase
EP4212626A1 (en) Method of producing processed protein
WO2002068671A1 (fr) Désamidation et dénaturation d'une protéine du lait
Selinheimo Tyrosinase and laccase as novel crosslinking tools for food biopolymers
Yang et al. Structure and property changes of whey protein isolate in response to the chemical modification mediated by horseradish peroxidase, glucose oxidase and d-glucose
WO1999016893A2 (en) Enzymatic modification
EP1169922A1 (en) Method of enzymatically cross-linking proteins and phenolic polymers
Buchert et al. Using crosslinking enzymes to improve textural and other properties of food
Takasaki et al. Polymerisation of gliadin mediated by mushroom tyrosinase
FI125288B (en) Process for reducing the content of gluten protein in a fraction of a cereal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508399

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3171481

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017511

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022017511

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220831

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021771002

Country of ref document: EP

Effective date: 20221017