WO2023048163A1 - 多官能フェノール化合物及びその製造方法 - Google Patents

多官能フェノール化合物及びその製造方法 Download PDF

Info

Publication number
WO2023048163A1
WO2023048163A1 PCT/JP2022/035110 JP2022035110W WO2023048163A1 WO 2023048163 A1 WO2023048163 A1 WO 2023048163A1 JP 2022035110 W JP2022035110 W JP 2022035110W WO 2023048163 A1 WO2023048163 A1 WO 2023048163A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol compound
polyfunctional phenol
polyfunctional
mass
compound
Prior art date
Application number
PCT/JP2022/035110
Other languages
English (en)
French (fr)
Inventor
遼平 早坂
壮 宮田
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023549714A priority Critical patent/JPWO2023048163A1/ja
Publication of WO2023048163A1 publication Critical patent/WO2023048163A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • C08F12/24Phenols or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols

Definitions

  • the present invention relates to a polyfunctional phenol compound and a method for producing the same.
  • Plant-derived phenolic compounds include, for example, vegetable oil extracted from cashew nut shells (hereinafter also referred to as "CNSL".
  • CNSL is an abbreviation for Cashew Nut Shell Liquid), long-chain unsaturated compounds contained in lacquer, etc.
  • a phenol compound having an aliphatic hydrocarbon group can be mentioned.
  • a large amount of cashew nut shells are discarded as cashew nut by-products, and the establishment of a technology for effectively using them will greatly contribute to reducing the environmental load.
  • Patent Document 1 discloses a polymer of a CNSL-derived allylcardanol (A) and a thiol compound (B) as a polymer whose dynamic viscoelasticity changes over time is suppressed, and has a disulfide bond.
  • the ratio of the peak intensity [I (530)] at a Raman shift of 530 cm to the peak intensity [I (1450)] at a Raman shift of 1450 cm when irradiated with a laser beam of 532 nm [I (530) / I (1450)] is greater than or equal to 0.10.
  • plant-derived resins Resins synthesized from plant-derived phenol compounds (hereinafter also referred to as “plant-derived resins”) are being investigated for industrial use as, for example, adhesives, paints, various additives, and the like.
  • plant-derived resins cannot be said to be applicable to a wide range of fields due to restrictions on production methods, molecular structures, physical properties, and the like.
  • the present invention has been made in view of the above problems, and aims to provide a polyfunctional phenol compound with low environmental load and a method for producing the same.
  • the present inventors have found that the above problems can be solved by a polyfunctional phenol compound having specific properties obtained by oxidatively polymerizing a plant-derived phenol compound, and have completed the present invention.
  • the present invention relates to the following [1] to [10].
  • [1] A polyfunctional phenol compound obtained by oxidative polymerization of a phenol compound (A) derived from a plant and having an unsaturated aliphatic hydrocarbon group with 15 to 17 carbon atoms, which is solid at 23°C or 23°C.
  • R is an unsaturated aliphatic hydrocarbon group having 15 to 17 carbon atoms containing 1 to 3 aliphatic unsaturated bonds
  • X 1 is a hydrogen atom or a hydroxy group
  • X 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X 3 is a hydrogen atom, a hydroxy group, or a carboxy group.
  • the aliphatic unsaturated bond disappearance rate which represents the ratio of the total amount of aliphatic unsaturated bonds contained in the phenol compound (A) before the oxidative polymerization, which is lost by the oxidative polymerization, is 20 to 75%.
  • the number average molecular weight (Mn) and the mass average molecular weight (Mw) are values converted to standard polystyrene measured by gel permeation chromatography (GPC), specifically described in Examples. It is a value measured based on the method.
  • active ingredient refers to an ingredient excluding dilution solvents such as water and organic solvents among the ingredients contained in the target composition.
  • biomass means a renewable organic resource derived from living organisms, excluding fossil resources.
  • the polyfunctional phenol compound of the present embodiment is a phenol compound (A) derived from a plant and having an unsaturated aliphatic hydrocarbon group with 15 to 17 carbon atoms (hereinafter also simply referred to as "phenol compound (A)").
  • the polyfunctional phenol compound of the present embodiment uses a plant-derived phenol compound (A) as a raw material monomer, so it is a material that enables effective use of non-edible biomass and has a low environmental impact.
  • the phenol compound (A) is a raw material monomer for the polyfunctional phenol compound of the present embodiment, is derived from a plant, and contains an unsaturated aliphatic hydrocarbon group having 15 to 17 carbon atoms (hereinafter referred to as "long-chain unsaturated aliphatic It is a phenol compound having a hydrocarbon group (R).
  • the polyfunctional phenol compound of the present embodiment has a high molecular weight due to the reaction of the long-chain unsaturated aliphatic hydrocarbon group (R) of the phenol compound (A). The reaction is presumed to occur, for example, by a known reaction mechanism proposed as a mechanism for oxidizing unsaturated fatty acids.
  • the phenolic compound (A) generally comprises one benzene ring, one or more phenolic hydroxyl groups directly bonded to the benzene ring, and one or more long-chain unsaturated aliphatic hydrocarbons directly bonded to the benzene ring. and a hydrogen group (R).
  • the number of phenolic hydroxyl groups possessed by the phenolic compound (A) is preferably 1 to 3, more preferably 1 or 2, still more preferably 1, from the viewpoint of availability.
  • the number of long-chain unsaturated aliphatic hydrocarbon groups (R) possessed by the phenolic compound (A) is preferably 1 to 3, more preferably 1, from the viewpoint of ease of availability and suppression of gelation during oxidative polymerization. or two, more preferably one.
  • the number of carbon atoms in the long-chain unsaturated aliphatic hydrocarbon group (R) of the phenol compound (A) is preferably 15 or 16, more preferably 15, from the viewpoint of availability.
  • the number of aliphatic unsaturated bonds contained in the long-chain unsaturated aliphatic hydrocarbon group (R) of the phenol compound (A) is preferably 1 to 5, more preferably 1 to 5, from the viewpoint of availability. 4, more preferably 1 to 3.
  • the long-chain unsaturated aliphatic hydrocarbon group (R) of the phenol compound (A) may be linear or branched. is preferably Examples of the long-chain unsaturated aliphatic hydrocarbon group (R) possessed by the phenol compound (A) include unsaturated aliphatic hydrocarbon groups represented by the following formulas (R-1) to (R-14). be done.
  • the long-chain unsaturated aliphatic hydrocarbon group (R) is represented by the above formula (R-1), the above formula (R-2), or the above formula (R-3) from the viewpoint of availability. It is preferably an unsaturated aliphatic hydrocarbon group represented.
  • the phenol compound (A) is preferably one or more selected from compounds represented by the following general formula (A-1).
  • R is an unsaturated aliphatic hydrocarbon group having 15 to 17 carbon atoms containing 1 to 3 aliphatic unsaturated bonds
  • X 1 is a hydrogen atom or a hydroxy group
  • X 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X 3 is a hydrogen atom, a hydroxy group, or a carboxy group.
  • the unsaturated aliphatic hydrocarbon group having 15 to 17 carbon atoms containing 1 to 3 aliphatic unsaturated bonds represented by R in the general formula (A-1) is the long-chain unsaturated aliphatic hydrocarbon group described above.
  • the hydrogen groups (R) it corresponds to those containing 1 to 3 aliphatic unsaturated bonds. Therefore, the number of carbon atoms in the group, the number of aliphatic unsaturated bonds, and preferred embodiments of specific examples are as described above for the long-chain unsaturated aliphatic hydrocarbon group (R).
  • X 1 in the general formula (A-1) is a hydrogen atom or a hydroxy group, preferably a hydrogen atom from the viewpoint of availability.
  • X 2 in the general formula (A-1) is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a hydrogen atom from the viewpoint of availability.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by X 2 include methyl group, ethyl group, propyl group, butyl group and pentyl group. Among these, a methyl group is preferred.
  • X 3 in the general formula (A-1) is a hydrogen atom, a hydroxy group or a carboxy group, preferably a hydrogen atom from the viewpoint of availability.
  • the phenol compound (A) is a compound in which X 1 , X 2 and X 3 are all hydrogen atoms in the above general formula (A-1), that is, the following general formula (A-2 ) preferably contains a compound represented by
  • the content of the compound represented by the general formula (A-2) in the phenol compound (A) is not particularly limited, but is preferably 90% by mass or more, more preferably 92% by mass or more, and still more preferably 94% by mass. % by mass or more.
  • the content of the compound represented by the general formula (A-2) in the phenol compound (A) is not particularly limited, but is preferably 99% by mass or less, more preferably 98% by mass or less, and still more preferably is 96% by mass or less.
  • the phenol compound (A) is a compound represented by the general formula (A-1) in which X 1 is a hydroxy group and both X 2 and X 3 are hydrogen atoms, that is, the following general formula ( It may contain a compound represented by A-3).
  • the content of the compound represented by the general formula (A-3) in the phenol compound (A) is not particularly limited, but is preferably 1% by mass or more, more preferably 2% by mass or more, and still more preferably 4% by mass or more. % by mass or more.
  • the content of the compound represented by the general formula (A-3) in the phenol compound (A) is not particularly limited, but is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably is 6% by mass or less.
  • Examples of the phenolic compound (A) include cardanol, cardol, 2-methylcardol, and anacardic acid, which are phenolic compounds contained in CNSL extracted from cashew nut shells; urushiol, which is a phenolic compound contained in lacquer. , thithiol and laccol; and those contained in plant-derived phenolic compounds.
  • cardanol, cardol, 2-methylcardol, and anacardic acid are preferable, cardanol and cardol are more preferable, and cardanol is more preferable, from the viewpoint of effective utilization of waste resources and easy availability. More preferred.
  • Cardanol is represented by the following formula (A-4)
  • cardol is represented by the following formula (A-5)
  • 2-methylcardol is represented by the following formula (A-6)
  • anacardic acid is represented by the following formula (A-7). It contains structure.
  • R 1 is represented by the above formula (R-1), (R-2), (R-3) or (RC) is a group.
  • * is a site directly bonded to the benzene ring.
  • Cardanol, cardol, 2-methylcardol and anacardic acid are each a compound having a group represented by formula (R-1) as R 1 and a group represented by formula (R-2) as R 1 group, a compound having a group represented by formula (R-3) as R 1 , and a compound containing a group represented by formula (RC) as R 1 .
  • Cardanol, cardol, 2-methylcardol and anacardic acid each generally contain a compound having a group represented by the formula (R- 1 ) as R1, although this varies depending on the purification conditions and the like. 25 to 40 mol%, the content of the compound having the group represented by formula (R-2) as R 1 is 10 to 25 mol%, and the compound having the group represented by formula (R-3) as R 1 is 40 to 60 mol %, and the content of the compound having a group represented by the formula (RC) as R 1 is 1 to 5 mol %.
  • the polyfunctional phenol compound of the present embodiment may be obtained by oxidatively polymerizing a raw material monomer other than the phenolic compound (A) together with the phenolic compound (A), and only the phenolic compound (A) is oxidatively polymerized. It may be something that you let me do.
  • the other raw material monomers are preferably biomass-derived compounds from the viewpoint of reducing environmental load.
  • the content of the phenol compound (A) in the total amount of raw material monomers for the polyfunctional phenol compound of the present embodiment is preferably 90 to 100% by mass, more preferably 92 to 100% by mass, and still more preferably 95 to 100% by mass. is.
  • the content of the biomass-derived raw material is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably 98 to 100% by mass. be.
  • the polyfunctional phenol compound of the present embodiment is solid at 23°C or has a viscosity at 23°C of greater than 50,000 mPa ⁇ s.
  • the term “solid state” means a state of not having fluidity under an environment of 1 atmospheric pressure and 23°C.
  • the term “non-fluid state” means a state in which the temperature is below the melting point, and in the case of a compound without a melting point, it means a state in which the temperature is below the melting point. do.
  • the viscosity at 23 ° C. is more than 50,000 mPa s means that the viscosity is measurable under an environment of 1 atm and 23 ° C., and the viscosity is It means a state of exceeding 50,000 mPa ⁇ s.
  • the polyfunctional phenol compound of the present embodiment is solid at 23 ° C., for example, when the polyfunctional phenol compound of the present embodiment is used as a main agent or curing agent of a thermosetting resin composition, it is solid at room temperature.
  • a thermoset resin composition can be formed.
  • Thermosetting resin compositions that are solid at room temperature are easy to handle and can be applied to a wider variety of uses than ever before.
  • the polyfunctional phenol compound of the present embodiment has a viscosity of more than 50,000 mPa s at 23° C., for example, the polyfunctional phenol compound of the present embodiment is used as the main agent or curing agent of the thermosetting resin composition. can form a highly viscous thermosetting resin composition at room temperature.
  • Thermosetting resin compositions with high viscosity at room temperature are useful for high-viscosity adhesives and the like that require suppression of dripping and the like.
  • the highly viscous polyfunctional phenol compound can also be used as a reactive thickener or the like.
  • the viscosity of the polyfunctional phenol compound at 23°C can be measured according to JIS Z 8803 (2011).
  • the polyfunctional phenol compound of the present embodiment may be solid at 23° C. and may have a viscosity of more than 50,000 mPa s at 23° C., but can be applied to a wider variety of uses. From the viewpoint of being possible and being effective in reducing the environmental load, it is preferably solid at 23°C. On the other hand, when the polyfunctional phenol compound of the present embodiment has a viscosity of more than 50,000 mPa s at 23°C, the viscosity of the polyfunctional phenol compound of the present embodiment at 23°C is the same as that of the polyfunctional phenol compound of the present embodiment.
  • the viscosity at 23° C. of the polyfunctional phenol compound of the present embodiment is not particularly limited, but may be, for example, 300,000 mPa ⁇ s or less, or 200,000 mPa ⁇ s or less.
  • the number average molecular weight (Mn) of the polyfunctional phenol compound of the present embodiment is not particularly limited, but from the viewpoint of handleability, preferably 3,000 to 10,000, more preferably 3,500 to 8,000, and further It is preferably 4,000 to 6,000.
  • the mass average molecular weight (Mw) of the polyfunctional phenol compound of the present embodiment is not particularly limited, but from the viewpoint of handleability, preferably 8,000 to 200,000, more preferably 15,000 to 150,000, and further It is preferably 20,000 to 100,000, and more preferably 30,000 to 60,000.
  • the polyfunctional phenol compound of the present embodiment is useful, for example, as a main agent or curing agent for thermosetting resin compositions, an additive for modifying physical properties of thermosetting resin compositions, and the like.
  • the thermosetting resin is preferably an epoxy resin.
  • the application field of the thermosetting resin composition using the polyfunctional phenol compound of the present embodiment is not particularly limited, but examples thereof include adhesives, electrical insulating materials, paints, civil engineering/building materials, and the like.
  • the polyfunctional phenol compound of the present embodiment which is solid at 23° C., is effective as a main agent, curing agent, or additive when producing a solid thermosetting resin composition.
  • the polyfunctional phenol compound of the present embodiment which has a viscosity of more than 50,000 mPa ⁇ s at 23° C., is effective as a main agent, curing agent, or additive for high-viscosity thermosetting resin compositions.
  • the method for producing a polyfunctional phenol compound of the present embodiment is a method for producing a polyfunctional phenol compound by oxidatively polymerizing the phenol compound (A).
  • a method of oxidative polymerization a method of heating a raw material monomer containing a phenol compound (A) in the presence of an oxidizing agent while stirring is preferred.
  • the method of oxidative polymerization of the phenol compound (A) may be, for example, a bulk polymerization method or a solution polymerization method depending on the state of the phenol compound (A).
  • the phenolic compound (A) is usually liquid at the reaction temperature, but as the oxidative polymerization progresses, it tends to thicken and the stirring efficiency tends to decrease, so the stirring efficiency is maintained to improve productivity. From the point of view, the solution polymerization method is preferable.
  • organic solvents used for solution polymerization include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Ether solvents such as tetrahydrofuran; Aromatic solvents such as toluene, xylene, and mesitylene; Nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone; Solvents containing sulfur atoms such as dimethyl sulfoxide; Examples thereof include ester solvents such as butyrolactone. Among these, nitrogen atom-containing solvents and sulfur atom-containing solvents are preferable, and dimethyl sulfoxide is more preferable, from the viewpoint of solubility in raw material monomers and products.
  • the concentration of the raw material monomers in the reaction solution before starting the reaction is preferably 15 to 50% by mass, more preferably 20 to 45% by mass, from the viewpoint of reaction rate and stirring efficiency. More preferably, it is 25 to 40% by mass.
  • Oxygen is preferably supplied as a gas containing oxygen. That is, the method for producing a polyfunctional phenol compound of the present embodiment is preferably a method in which oxidative polymerization is performed by heating the phenol compound (A) while supplying a gas containing oxygen.
  • the oxygen-containing gas may be oxygen gas itself, a mixed gas of oxygen and an inert gas such as nitrogen, or air. Air is preferable from the point of view.
  • the oxygen-containing gas may be, for example, purged into the reaction vessel, passed over the reaction solution, or bubbled into the reaction solution.
  • the method of bubbling in the reaction solution is preferable from the viewpoint of reactivity.
  • the pressure during the oxidation polymerization may be pressurized or normal pressure.
  • a reaction catalyst such as a metal catalyst may be used, but a reaction catalyst may not be used.
  • the reaction temperature of the oxidative polymerization is not particularly limited, but is preferably 100 to 250° C., more preferably 120 to 210° C., from the viewpoint of facilitating adjustment of the properties of the polyfunctional phenol compound while obtaining an appropriate reaction rate. , more preferably 140 to 180°C.
  • the reaction time of oxidative polymerization is not particularly limited, and the time for obtaining a polyfunctional phenol compound having desired properties may be appropriately determined. From the viewpoint of productivity, it is preferably 1 to 48 hours, more preferably 10 to 38 hours, more preferably 18 to 28 hours.
  • aliphatic unsaturated bond disappearance which represents the ratio of aliphatic unsaturated bonds that disappear due to oxidative polymerization, out of the total amount of aliphatic unsaturated bonds contained in the phenol compound (A) before oxidative polymerization.
  • the rate is not particularly limited, it is preferably 20 to 75%, more preferably 30 to 65%, still more preferably 35 to 60%.
  • the aliphatic unsaturated bond disappearance rate can be measured by the method described in Examples.
  • the polyfunctional phenol compound obtained by completing oxidative polymerization may be purified by known methods such as distillation, reprecipitation, centrifugation, and washing, if necessary.
  • thermosetting resin composition can also provide a thermosetting resin composition using the polyfunctional phenol compound of the present embodiment as a curing agent for epoxy resin.
  • a thermosetting resin composition containing an epoxy resin and the polyfunctional phenol compound of the present embodiment will be described below.
  • epoxy resins examples include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin; novolac type epoxy resins such as phenol novolak type epoxy resin and cresol novolak type epoxy resin; epoxy resins having a cyclopentadiene skeleton; epoxy resins having a biphenol skeleton; epoxy resins having an aralkyl skeleton; epoxy resins having a fluorene skeleton; glycidyl ether type epoxy resins such as epoxy resins having a naphthalene skeleton; Ester type epoxy resin; 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, epsilon-caprolactone-modified-3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, bis- alicyclic epoxy resins such as (3,
  • the epoxy resin may be appropriately selected from the above options according to the purpose, but from the viewpoint of reducing the environmental load, biomass-derived epoxy resins are preferable, and plant-derived epoxy resins are more preferable.
  • the epoxy resin is preferably an epoxy resin obtained by oxidative polymerization (hereinafter also referred to as “oxidatively polymerized epoxy resin”) from the viewpoint of reducing environmental load.
  • the oxidatively polymerized epoxy resin may be, for example, an epoxy resin obtained by oxidatively polymerizing a monomer having an epoxy group, or a phenolic resin obtained by oxidatively polymerizing a phenolic compound in which the phenolic hydroxyl group is glycidyl-etherified. There may be.
  • an epoxy resin obtained by oxidative polymerization of a monomer having an epoxy group for example, an epoxy resin obtained by oxidative polymerization of an epoxidized monomer obtained by glycidyl-etherifying the phenolic hydroxyl group of the phenol compound (A) (hereinafter referred to as "oxidation Polymerized epoxy resin (EA)"), an epoxy resin obtained by oxidative polymerization of an epoxidized monomer obtained by glycidyl-etherifying a phenolic compound other than the phenolic compound (A), and an oxidized monomer having an epoxy group other than glycidyl ether.
  • EA oxidation Polymerized epoxy resin
  • examples thereof include epoxy resins obtained by polymerization.
  • Examples of glycidyl-etherified phenolic hydroxyl groups of a phenolic resin obtained by oxidative polymerization of a phenol compound include, for example, glycidyl-etherified phenolic hydroxyl groups of a polyfunctional phenol compound obtained by oxidative polymerization of the phenol compound (A). epoxy resin, and an epoxy resin obtained by glycidyl-etherifying the phenolic hydroxyl group of a polyfunctional phenol compound obtained by oxidative polymerization of a phenol compound other than the phenol compound (A).
  • phenolic compounds other than the phenolic compound (A) that can be used in oxidation polymerization include phenolic compounds having an unsaturated aliphatic hydrocarbon group other than the long-chain unsaturated aliphatic hydrocarbon group (R).
  • the oxidatively polymerized epoxy resin (EA) is preferable as the oxidatively polymerized epoxy resin from the viewpoint of further reducing the environmental load. Next, the oxidatively polymerized epoxy resin (EA) will be described.
  • the oxidatively polymerized epoxy resin (EA) is an epoxy resin obtained by oxidatively polymerizing an epoxidized monomer obtained by glycidyl-etherifying the phenolic hydroxyl group of the phenol compound (A).
  • a method for glycidyl-etherifying the phenolic hydroxyl group of the phenolic compound (A) a known method can be applied, for example, a method of reacting the phenolic compound (A) with epihalohydrin in the presence of a basic compound. is mentioned.
  • the reaction is preferably carried out in an organic solvent from the viewpoint of homogeneous progress of the reaction. Examples of the organic solvent include the same organic solvents as exemplified in the method for producing a polyfunctional phenol compound, and preferred embodiments are also the same.
  • Epihalohydrin includes, for example, epichlorohydrin, epibromohydrin, epiiodohydrin, and the like. Among these, epichlorohydrin is preferable from the viewpoint of reactivity.
  • the amount of epihalohydrin to be used is not particularly limited, but is preferably 1 to 6 mol, more preferably 1.5 to 5 mol, still more preferably 2 to 4 mol, per 1 mol of phenolic hydroxyl group.
  • Preferred examples of basic compounds include alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydroxides, and the like. Among these, alkali metal hydroxides are preferable from the viewpoint of reactivity. As the alkali metal hydroxide, sodium hydroxide and potassium hydroxide are preferred, and potassium hydroxide is more preferred.
  • the amount of the basic compound to be used is not particularly limited, but is preferably 1.2 to 5 mol, more preferably 1.5 to 4 mol, still more preferably 1.8 to 3 mol, per 1 mol of epihalohydrin. .
  • reaction conditions are not particularly limited, and for example, the reaction may be carried out at 15 to 40° C. for 0.5 to 4 hours.
  • the reaction conditions of the phenol compound (A) and epihalohydrin are not particularly limited, and the reaction may be carried out at 15 to 40° C. for 1 to 8 hours, for example.
  • the obtained reaction product may be purified by known methods such as distillation, reprecipitation, centrifugation, and washing, if necessary.
  • the method and conditions for oxidative polymerization of the resulting epoxidized monomer are described in the same manner as the oxidative polymerization in the method for producing a polyfunctional phenol compound of the present embodiment.
  • the epoxidized monomer is oxidatively polymerized, there is a tendency to maintain good stirring efficiency without using a solvent. Therefore, when the epoxidized monomer is oxidatively polymerized, from the viewpoint of reactivity, it is preferable not to use an organic solvent or, if used, to keep the amount used low.
  • Other preferred aspects of the method and conditions are the same as the preferred aspects of the oxidative polymerization method and conditions in the method for producing a polyfunctional phenol compound.
  • the mass average molecular weight (Mw) of the oxidatively polymerized epoxy resin (EA) is not particularly limited, it is preferably 6,000 to 300,000, more preferably 12,000 to 100,000, still more preferably 12,000 to 100,000, from the viewpoint of handleability. is between 18,000 and 30,000.
  • the oxidatively polymerized epoxy resin (EA) may be liquid or solid at 23°C, but is preferably liquid at 23°C from the viewpoint of ease of handling.
  • thermosetting resin composition of the present embodiment the polyfunctional phenol compound of the present embodiment is used as a curing agent for epoxy resin.
  • Polyfunctional phenol compounds may be used alone or in combination of two or more.
  • the equivalent ratio [epoxy group/phenolic hydroxyl group] between the epoxy group of the epoxy resin and the phenolic hydroxyl group of the polyfunctional phenol compound in the thermosetting resin composition of the present embodiment is not particularly limited. From the viewpoint of suppressing characteristic fluctuations due to residuals, it is preferably 0.7 to 1.5, more preferably 0.8 to 1.3, and still more preferably 0.9 to 1.2.
  • the thermosetting resin composition of the present embodiment may contain a phenol-based curing agent other than the polyfunctional phenol compound of the present embodiment as a curing agent for the epoxy resin.
  • the compounding ratio of the epoxy resin and the phenol-based curing agent is the equivalent ratio of the epoxy groups of the epoxy resin to the total phenolic hydroxyl groups of the phenol-based curing agent containing the polyfunctional phenol compound of the present embodiment [epoxy group/ phenolic hydroxyl group] is preferably within the above range.
  • the thermosetting resin composition of the present embodiment preferably further contains a curing accelerator.
  • Curing accelerators include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl -imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole; organic phosphines such as tributylphosphine, diphenylphosphine and triphenylphosphine phosphonium salts such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, and tributyl(methyl)phosphonium dimethylphosphate; and the like.
  • a hardening accelerator may be used individually by 1 type, and may use 2 or more types together.
  • phosphonium salts are preferred from the viewpoint of compatibility and reactivity, and tributyl(methyl)phosphonium dimethyl phosphate is more preferred.
  • the content of the curing accelerator in the thermosetting resin composition of the present embodiment is not particularly limited, but from the viewpoints of storage stability and curability, it is preferably 0.1 to 1 mol of the epoxy group of the epoxy resin. 001 to 0.1 mol, more preferably 0.005 to 0.05 mol, still more preferably 0.007 to 0.03 mol.
  • thermosetting resin composition of the present embodiment includes, for example, resin components such as thermosetting resins and thermoplastic resins other than the above components; fillers such as inorganic fillers and organic fillers a coupling agent such as a silane coupling agent; a flame retardant; a thickener; a coloring agent; an antioxidant; Each of these other components may be used alone or in combination of two or more.
  • thermosetting resin composition of this embodiment can be produced by mixing the components described above.
  • Mixing of each component may be, for example, a method of melt-kneading each component under heating using a heating kneader, a heating roll, etc., or a method of dissolving or dispersing each component in an organic solvent and mixing.
  • the organic solvent include the same organic solvents as exemplified in the method for producing a polyfunctional phenol compound.
  • the amount of the organic solvent used is such that the concentration of the active ingredient is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and further The amount is preferably 30 to 50% by mass.
  • Conditions such as the order of mixing raw materials, mixing temperature, and mixing time are not particularly limited, and may be arbitrarily set according to the type of raw materials.
  • the form of the thermosetting resin composition of the present embodiment at 23° C. is not particularly limited, and may be solid or liquid. When the thermosetting resin composition of the present embodiment is liquid at 23° C., the thermosetting resin composition of the present embodiment may contain an organic solvent, or does not contain an organic solvent. may be As the organic solvent, the same one as that used in the method of dissolving or dispersing and mixing the above components can be used, and the suitable usage amount is also the same.
  • thermosetting resin composition of the present embodiment are not particularly limited, and may be appropriately adjusted according to the type of resin and curing accelerator. It can be a 24 hour condition.
  • thermosetting resin composition of the present embodiment will be explained in the same manner as the application field of the polyfunctional phenol compound of the present embodiment described above.
  • Example 1 (Production of polyfunctional phenol compound) As a plant-derived phenolic compound (A), CNSL containing 95% by mass of cardanol and 5% by mass of cardol (hereinafter also referred to as “raw material CNSL”) was prepared. The composition of cardanol determined by 1 H-NMR is shown in Table 1.
  • reaction liquid 100 parts by mass of the raw material CNSL and 200 parts by mass of dimethyl sulfoxide were charged into a glass reaction vessel and mixed to obtain a reaction liquid. Then, while bubbling air into the reaction liquid, the reaction liquid was oxidatively polymerized by a solution polymerization method for 24 hours while stirring at 160° C. to obtain a reaction product before purification. Next, the obtained reaction product before purification was diluted with 300 parts by mass of acetone, and reprecipitated by dropping into 2,000 parts by mass of methanol under stirring at 23° C. at a rate of 20 parts by mass/minute.
  • oxidatively polymerized CNSL which is a polyfunctional phenol compound that is solid at 23°C.
  • the oxidatively polymerized CNSL obtained above had a number average molecular weight (Mn) of 5,300 and a weight average molecular weight (Mw) of 46,200. Also, the rate of loss of aliphatic unsaturated bonds by oxidative polymerization was 53%.
  • the polyfunctional phenol compound of the present embodiment was a solid compound at 23°C.
  • the rate of disappearance of aliphatic unsaturated bonds suggests that polymerization is progressing in the aliphatic unsaturated bonds of raw material CNSL.
  • thermosetting resin composition was produced using an epoxy resin as a thermosetting resin and the polyfunctional phenol compound obtained in Example 1 as a curing agent for the epoxy resin.
  • an epoxy resin as a thermosetting resin
  • the polyfunctional phenol compound obtained in Example 1 as a curing agent for the epoxy resin.
  • oxidatively polymerized epoxidized CNSL which is an oxidatively polymerized epoxy resin (EA)
  • EA oxidatively polymerized epoxy resin
  • Production example 1 (Production of oxidatively polymerized epoxidized CNSL) 100 parts by mass of the raw material CNSL, 44 parts by mass of potassium hydroxide and 55 parts by mass of dimethyl sulfoxide were charged into a glass reaction vessel and reacted for 120 minutes while stirring at 23 ° C., followed by 92.5 parts of epichlorohydrin. A part by mass was put into a reaction vessel and reacted for 240 minutes. After that, it was extracted three times with 500 parts by mass of hexane, and then washed three times with 500 parts by mass of saturated saline.
  • the liquid epoxidized monomer obtained by the above reaction is used as a reaction solution for oxidative polymerization, and is oxidized by a bulk polymerization method for 24 hours with stirring at a temperature of 160° C. while bubbling air into the reaction solution.
  • Polymerization was performed to obtain a reaction product before purification.
  • the obtained reaction product before purification was diluted with 300 parts by mass of acetone, and reprecipitated by dropping into 2,000 parts by mass of methanol under stirring at 23° C. at a rate of 20 parts by mass/minute.
  • oxidatively polymerized epoxidized CNSL which is an oxidatively polymerized epoxy resin (EA) liquid at 23°C. rice field.
  • EA oxidatively polymerized epoxy resin
  • Mw weight average molecular weight
  • Examples 2-4 Comparative Example 1 (Manufacture of thermosetting resin composition)
  • the epoxy resin and phenol-based curing agent shown in Table 2, tributyl (methyl) phosphonium dimethyl phosphate as a curing accelerator, and toluene as an organic solvent are blended, and the solid content concentration is 40% by mass.
  • a solution of the resin composition was prepared.
  • the compounding ratio of the epoxy resin and the phenolic curing agent was such that the equivalent ratio [epoxy group/phenolic hydroxyl group] of the epoxy group of the epoxy resin and the phenolic hydroxyl group of the phenolic curing agent was 1.0.
  • the amount of the curing accelerator was such that the content of the curing accelerator was 0.01 mol per 1 mol of the epoxy group of the epoxy resin.
  • thermosetting resin composition (Production of cured product of thermosetting resin composition)
  • the solution of the thermosetting resin composition obtained above is applied to the process film 1 (manufactured by Lintec Corporation, product name “SP-PET382150”, polyethylene terephthalate film coated with silicone release agent, thickness 38 ⁇ m).
  • process film 2 manufactured by Lintec Corporation, product name “SP-PET381031”
  • a polyethylene terephthalate film coated with a silicone-based release agent (thickness: 38 ⁇ m).
  • the temperature showing the peak of tan ⁇ in the above measurement range is the glass transition temperature (Tg), the storage elastic modulus at a temperature 50 ° C. lower than Tg is the storage elastic modulus E 'of the glassy region, and the storage elastic modulus at a temperature 50 ° C. higher than Tg. was taken as the storage elastic modulus E' of the rubbery region.
  • Table 2 shows the measurement results.
  • the cured products obtained in Examples 2 to 4 using the polyfunctional phenol compound of the present embodiment as a phenolic curing agent have a sufficiently high thermal decomposition initiation temperature and melt even in the rubbery region. It had a storage elastic modulus E′ above a certain level. From this, it can be seen that the polyfunctional phenol compound of the present embodiment functions as a curing agent for epoxy resins and is a material with low environmental load that can increase the degree of biomass.
  • the cured products obtained in Examples 2 to 4 have a lower glass transition temperature and a lower storage elastic modulus E' at 23 ° C. than the cured product of Comparative Example 1 using a conventional phenolic curing agent. Nevertheless, the storage modulus E' in the rubbery region was higher than that of the cured product of Comparative Example 1. That is, the cured products obtained in Examples 2 to 4 have both flexibility and heat resistance at room temperature, and are useful, for example, as flexible adhesives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

植物に由来し、炭素数15~17の不飽和脂肪族炭化水素基を有するフェノール化合物(A)を酸化重合させてなる多官能フェノール化合物であって、23℃で固体状又は23℃における粘度が50,000mPa・s超である、多官能フェノール化合物及びその製造方法に関する。

Description

多官能フェノール化合物及びその製造方法
 本発明は、多官能フェノール化合物及びその製造方法に関する。
 近年、CO排出量の増大に伴う地球温暖化、化石資源の枯渇等の懸念から、再生可能資源であって、環境負荷が小さい非可食性バイオマスの有効利用が求められている。
 非可食性バイオマスを利用する検討として、例えば、植物由来のフェノール化合物を各種樹脂の原料モノマーとして用いる検討が行われている。植物由来のフェノール化合物としては、例えば、カシューナッツの殻から抽出される植物油(以下、「CNSL」ともいう。CNSLは、Cashew Nut Shell Liquidの略である。)、漆等に含まれる長鎖不飽和脂肪族炭化水素基を有するフェノール化合物が挙げられる。特に、カシューナッツの殻はカシューナッツの副産物として大量に廃棄処分されるものであるため、これを有効に利用する技術の確立は、環境負荷の低減に対して大きく寄与するものである。
 例えば、特許文献1には、動的粘弾性の経時変化が抑制された重合体として、CNSLに由来するアリルカルダノール(A)と、チオール化合物(B)との重合体であり、ジスルフィド結合を有し、532nmのレーザー光を照射したときのラマンシフト1450cm-1におけるピーク強度〔I(1450)〕に対するラマンシフト530cm-1におけるピーク強度〔I(530)〕の比〔I(530)/I(1450)〕が0.10以上である重合体が開示されている。
特開2021-011541号公報
 植物由来のフェノール化合物から合成された樹脂(以下、「植物由来樹脂」ともいう)は、例えば、接着剤、塗料、各種添加剤等として工業的な利用が検討されている。
 しかしながら、従来の植物由来樹脂は、製造方法、分子構造、物性等の制約によって、必ずしも広い分野に適用可能なものとは言えなかった。今後、益々高まることが予想される環境負荷低減の要求に応えるためには、多様な植物由来樹脂を開発し、これを幅広い用途に展開していくことが望まれる。
 本発明は、上記の問題点に鑑みてなされたものであって、環境負荷が小さい多官能フェノール化合物及びその製造方法を提供することを課題とする。
 本発明者等は、植物由来のフェノール化合物を酸化重合させてなる特定の性状を有する多官能フェノール化合物によって、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記[1]~[10]に関する。
[1]植物に由来し、炭素数15~17の不飽和脂肪族炭化水素基を有するフェノール化合物(A)を酸化重合させてなる多官能フェノール化合物であって、23℃で固体状又は23℃における粘度が50,000mPa・s超である、多官能フェノール化合物。
[2]前記フェノール化合物(A)が、下記一般式(A-1)で表される化合物から選択される1種以上である、上記[1]に記載の多官能フェノール化合物。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは、脂肪族不飽和結合を1~3個含む炭素数15~17の不飽和脂肪族炭化水素基であり、Xは、水素原子又はヒドロキシ基であり、Xは水素原子又は炭素数1~5のアルキル基であり、Xは、水素原子、ヒドロキシ基又はカルボキシ基である。)
[3]前記フェノール化合物(A)が、前記一般式(A-1)において、X、X及びXがいずれも水素原子である化合物を、90質量%以上含有する、上記[2]に記載の多官能フェノール化合物。
[4]質量平均分子量(Mw)が、8,000~200,000である、上記[1]~[3]のいずれかに記載の多官能フェノール化合物。
[5]23℃で固体状である、上記[1]~[4]のいずれかに記載の多官能フェノール化合物。
[6]熱硬化性樹脂の硬化剤として用いられる、上記[1]~[5]のいずれかに記載の多官能フェノール化合物。
[7]前記熱硬化性樹脂が、エポキシ樹脂である、上記[6]に記載の多官能フェノール化合物。
[8]上記[1]~[7]のいずれかに記載の多官能フェノール化合物を製造する方法であって、前記植物に由来し、炭素数15~17の不飽和脂肪族炭化水素基を有するフェノール化合物(A)を酸化重合させる、多官能フェノール化合物の製造方法。
[9]前記酸化重合を、酸素を含むガスを供給しながら、前記フェノール化合物(A)を加熱することによって行う、上記[8]に記載の多官能フェノール化合物の製造方法。
[10]前記酸化重合前の前記フェノール化合物(A)に含まれる脂肪族不飽和結合の総量のうち、前記酸化重合によって消失する比率を表す脂肪族不飽和結合消失率が、20~75%である、上記[8]又は[9]に記載の多官能フェノール化合物の製造方法。
 本発明によると、環境負荷が小さい多官能フェノール化合物及びその製造方法を提供することができる。
 本明細書において、数平均分子量(Mn)及び質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、水、有機溶媒等の希釈溶媒を除いた成分を指す。 
 本明細書中、「バイオマス」とは、再生可能な、生物由来の有機性資源であって、化石資源を除いたものを意味する。
 本明細書に記載されている作用機序は推測であって、本発明の効果を奏する機序を限定するものではない。
[多官能フェノール化合物]
 本実施形態の多官能フェノール化合物は、植物に由来し、炭素数15~17の不飽和脂肪族炭化水素基を有するフェノール化合物(A)(以下、単に「フェノール化合物(A)」ともいう)を酸化重合させてなる多官能フェノール化合物であって、23℃で固体状又は23℃における粘度が50,000mPa・s超である、多官能フェノール化合物である。
 本実施形態の多官能フェノール化合物は、植物由来のフェノール化合物(A)を原料モノマーとして用いるため、非可食性バイオマスの有効利用が可能であって環境負荷が小さい材料である。
(フェノール化合物(A))
 フェノール化合物(A)は、本実施形態の多官能フェノール化合物の原料モノマーであって、植物に由来し、炭素数15~17の不飽和脂肪族炭化水素基(以下、「長鎖不飽和脂肪族炭化水素基(R)」ともいう)を有するフェノール化合物である。
 本実施形態の多官能フェノール化合物は、フェノール化合物(A)が有する長鎖不飽和脂肪族炭化水素基(R)が反応することによって高分子量化したものである。当該反応は、例えば、不飽和脂肪酸の酸化機構として提唱されている公知の反応機構によって生じていると推測される。
 フェノール化合物(A)は、通常、1個のベンゼン環と、該ベンゼン環に直接結合する1個以上のフェノール性水酸基と、該ベンゼン環に直接結合する1個以上の長鎖不飽和脂肪族炭化水素基(R)と、を有する。
 フェノール化合物(A)が有するフェノール性水酸基の数は、入手容易性の観点から、好ましくは1~3個、より好ましくは1個又は2個、さらに好ましくは1個である。
 フェノール化合物(A)が有する長鎖不飽和脂肪族炭化水素基(R)の数は、入手容易性及び酸化重合中におけるゲル化抑制の観点から、好ましくは1~3個、より好ましくは1個又は2個、さらに好ましくは1個である。
 フェノール化合物(A)が有する長鎖不飽和脂肪族炭化水素基(R)の炭素数は、入手容易性の観点から、好ましくは15又は16、より好ましくは15である。
 フェノール化合物(A)が有する長鎖不飽和脂肪族炭化水素基(R)に含まれる脂肪族不飽和結合の数は、入手容易性の観点から、好ましくは1~5個、より好ましくは1~4個、さらに好ましくは1~3個である。
 フェノール化合物(A)が有する長鎖不飽和脂肪族炭化水素基(R)は、直鎖状であってもよく、分岐鎖状であってもよいが、入手容易性の観点から、直鎖状であることが好ましい。
 フェノール化合物(A)が有する長鎖不飽和脂肪族炭化水素基(R)としては、例えば、下記式(R-1)~(R-14)で表される不飽和脂肪族炭化水素基が挙げられる。
Figure JPOXMLDOC01-appb-C000003

(式中、*はベンゼン環に直接結合する部位である。)
 長鎖不飽和脂肪族炭化水素基(R)は、上記選択肢の中でも、入手容易性の観点から、上記式(R-1)、上記式(R-2)又は上記式(R-3)で表される不飽和脂肪族炭化水素基であることが好ましい。
 フェノール化合物(A)は、入手容易性の観点から、下記一般式(A-1)で表される化合物から選択される1種以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000004

(式中、Rは、脂肪族不飽和結合を1~3個含む炭素数15~17の不飽和脂肪族炭化水素基であり、Xは、水素原子又はヒドロキシ基であり、Xは水素原子又は炭素数1~5のアルキル基であり、Xは、水素原子、ヒドロキシ基又はカルボキシ基である。)
 上記一般式(A-1)中のRで表される脂肪族不飽和結合を1~3個含む炭素数15~17の不飽和脂肪族炭化水素基は、上記した長鎖不飽和脂肪族炭化水素基(R)の中で、脂肪族不飽和結合を1~3個含むものに相当する。そのため、当該基の炭素数、脂肪族不飽和結合の数及び具体例の好ましい態様は、上記した長鎖不飽和脂肪族炭化水素基(R)における説明の通りである。
 上記一般式(A-1)中のXは、水素原子又はヒドロキシ基であり、入手容易性の観点から、水素原子であることが好ましい。
 上記一般式(A-1)中のXは、水素原子又は炭素数1~5のアルキル基であり、入手容易性の観点から、水素原子であることが好ましい。Xで表される炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。これらの中でも、メチル基が好ましい。
 上記一般式(A-1)中のXは、水素原子、ヒドロキシ基又はカルボキシ基であり、入手容易性の観点から、水素原子であることが好ましい。
 フェノール化合物(A)は、入手容易性の観点から、上記一般式(A-1)において、X、X及びXがいずれも水素原子である化合物、すなわち、下記一般式(A-2)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005

(式中、Rは、上記一般式(A-1)におけるRと同じである。)
 フェノール化合物(A)中における、上記一般式(A-2)で表される化合物の含有量は、特に限定されないが、好ましくは90質量%以上、より好ましくは92質量%以上、さらに好ましくは94質量%以上である。また、フェノール化合物(A)中における、上記一般式(A-2)で表される化合物の含有量は、特に限定されないが、好ましくは99質量%以下、より好ましくは98質量%以下、さらに好ましくは96質量%以下である。
 フェノール化合物(A)は、入手容易性の観点から、上記一般式(A-1)において、Xがヒドロキシ基、X及びXがいずれも水素原子である化合物、すなわち、下記一般式(A-3)で表される化合物を含有していてもよい。
Figure JPOXMLDOC01-appb-C000006

(式中、Rは、上記一般式(A-1)におけるRと同じである。)
 フェノール化合物(A)中における、上記一般式(A-3)で表される化合物の含有量は、特に限定されないが、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは4質量%以上である。また、フェノール化合物(A)中における、上記一般式(A-3)で表される化合物の含有量は、特に限定されないが、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。
 フェノール化合物(A)としては、例えば、カシューナッツの殻から抽出されるCNSLに含まれるフェノール化合物であるカルダノール、カルド―ル、2-メチルカルド―ル及びアナカルド酸;漆に含まれるフェノール化合物であるウルシオール、チチオール及びラッコ―ル;等の植物由来のフェノール化合物に含まれるものが挙げられる。該植物由来のフェノール化合物としては、廃棄資源の有効活用及び入手容易性の観点から、カルダノール、カルド―ル、2-メチルカルド―ル、アナカルド酸が好ましく、カルダノール、カルド―ルがより好ましく、カルダノールがさらに好ましい。
 カルダノールは下記式(A-4)、カルド―ルは下記式(A-5)、2-メチルカルド―ルは下記式(A-6)、アナカルド酸は下記式(A-7)で表される構造を含むものである。
Figure JPOXMLDOC01-appb-C000007
 上記式(A-4)~(A-7)の各式において、Rは、上記式(R-1)、(R-2)、(R-3)又は(R-C)で表される基である。また、上記式(R-1)、(R-2)、(R-3)又は(R-C)において、*はベンゼン環に直接結合する部位である。
 カルダノール、カルド―ル、2-メチルカルド―ル及びアナカルド酸は、各々において、Rとして式(R-1)で表される基を有する化合物、Rとして式(R-2)で表される基を有する化合物、Rとして式(R-3)で表される基を有する化合物、及びRとして式(R-C)で表される基を有する化合物を含有する混合物である。
 精製条件等によっても異なるが、カルダノール、カルド―ル、2-メチルカルド―ル及びアナカルド酸は、各々において、通常、Rとして式(R-1)で表される基を有する化合物の含有量が25~40モル%、Rとして式(R-2)で表される基を有する化合物の含有量が10~25モル%、Rとして式(R-3)で表される基を有する化合物の含有量が40~60モル%、Rとして式(R-C)で表される基を有する化合物の含有量が1~5モル%である。
(フェノール化合物(A)以外の原料モノマー)
 本実施形態の多官能フェノール化合物は、フェノール化合物(A)と共に、フェノール化合物(A)以外のその他の原料モノマーを酸化重合させてなるものであってもよく、フェノール化合物(A)のみを酸化重合させてなるものであってもよい。その他の原料モノマーを用いる場合、環境負荷低減の観点から、その他の原料モノマーは、バイオマス由来の化合物であることが好ましい。
 本実施形態の多官能フェノール化合物の原料モノマーの総量中、フェノール化合物(A)の含有量は、好ましくは90~100質量%、より好ましくは92~100質量%、さらに好ましくは95~100質量%である。
 本実施形態の多官能フェノール化合物の酸素を除く原料中、バイオマス由来の原料の含有量は、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは98~100質量%である。
(多官能フェノール化合物の性状)
 本実施形態の多官能フェノール化合物は、23℃で固体状又は23℃における粘度が50,000mPa・s超である。
 なお、本実施形態において、「固体状」とは、1気圧下、23℃の環境下において、流動性を有していない状態を意味する。「流動性を有していない状態」とは、融点を有する化合物においては融点未満の温度条件にある状態を意味し、融点を有さない化合物においては溶融点未満の温度条件にある状態を意味する。
 また、本実施形態において、「23℃における粘度が50,000mPa・s超である」とは、1気圧下、23℃の環境下において、粘度を測定可能な流動性を有し、当該粘度が50,000mPa・s超である状態を意味する。
 本実施形態の多官能フェノール化合物が23℃で固体状であることによって、例えば、本実施形態の多官能フェノール化合物を熱硬化性樹脂組成物の主剤又は硬化剤として用いる場合に、室温で固形の熱硬化性樹脂組成物を形成することができる。室温で固形の熱硬化性樹脂組成物は取り扱い易く、従来よりも多様な用途に適用することが可能になる。
 一方、本実施形態の多官能フェノール化合物は、23℃における粘度が50,000mPa・s超であることによって、例えば、本実施形態の多官能フェノール化合物を熱硬化性樹脂組成物の主剤又は硬化剤として用いる場合に、室温で高粘度の熱硬化性樹脂組成物を形成することができる。室温で高粘度の熱硬化性樹脂組成物は、液垂れ等の抑制が求められる高粘度タイプの接着剤等に有用である。また、高粘度の多官能フェノール化合物は、反応性を有する増粘剤等としても使用することができる。
 多官能フェノール化合物の23℃における粘度は、JIS Z 8803(2011)に準拠して測定することができる。
 上記の通り、本実施形態の多官能フェノール化合物は、23℃で固体状であってもよく、23℃における粘度が50,000mPa・s超であってもよいが、より多様な用途に適用が可能であり、環境負荷の低減に効果的であるという観点からは、23℃で固体状であることが好ましい。
 一方、本実施形態の多官能フェノール化合物が、23℃における粘度が50,000mPa・s超である場合、本実施形態の多官能フェノール化合物の23℃における粘度は、本実施形態の多官能フェノール化合物による増粘効果を高めるという観点から、好ましくは60,000mPa・s以上、より好ましくは70,000mPa・s以上、さらに好ましくは100,000mPa・s以上である。本実施形態の多官能フェノール化合物の23℃における粘度の上限値は、特に限定されないが、例えば、300,000mPa・s以下であってもよく、200,000mPa・s以下であってもよい。
(多官能フェノール化合物の数平均分子量(Mn))
 本実施形態の多官能フェノール化合物の数平均分子量(Mn)は、特に限定されないが、取り扱い性の観点から、好ましくは3,000~10,000、より好ましくは3,500~8,000、さらに好ましくは4,000~6,000である。
(多官能フェノール化合物の質量平均分子量(Mw))
 本実施形態の多官能フェノール化合物の質量平均分子量(Mw)は、特に限定されないが、取り扱い性の観点から、好ましくは8,000~200,000、より好ましくは15,000~150,000、さらに好ましくは20,000~100,000、よりさらに好ましくは30,000~60,000である。
(多官能フェノール化合物の用途)
 本実施形態の多官能フェノール化合物は、例えば、熱硬化性樹脂組成物の主剤又は硬化剤、熱硬化性樹脂組成物の物性を改質するための添加剤等として有用である。
 多官能フェノール化合物を熱硬化性樹脂の硬化剤として用いる場合、熱硬化性樹脂は、エポキシ樹脂であることが好ましい。
 本実施形態の多官能フェノール化合物を用いた熱硬化性樹脂組成物の適用分野は特に限定されないが、例えば、接着剤、電気絶縁材料、塗料、土木・建築材料等が挙げられる。
 特に、23℃で固体状である本実施形態の多官能フェノール化合物は、固形の熱硬化性樹脂組成物を製造する際の主剤、硬化剤又は添加剤として有効である。
 また、23℃における粘度が50,000mPa・s超である本実施形態の多官能フェノール化合物は、高粘度タイプの熱硬化性樹脂組成物の主剤、硬化剤又は添加剤として有効である。
[多官能フェノール化合物の製造方法]
 次に、本実施形態の多官能フェノール化合物の製造方法について説明する。
 本実施形態の多官能フェノール化合物の製造方法は、フェノール化合物(A)を酸化重合させる、多官能フェノール化合物の製造方法である。
 酸化重合の方法としては、フェノール化合物(A)を含有する原料モノマーを、例えば、酸化剤の存在下で、撹拌しながら加熱する方法が好ましい。
 フェノール化合物(A)の酸化重合の方法は、フェノール化合物(A)の状態に応じて、例えば、塊状重合法であってもよく、溶液重合法であってもよい。
 フェノール化合物(A)は通常、反応温度で液状であるが、酸化重合が進行することによって増粘して撹拌効率が低下する傾向にあるため、撹拌効率を維持して生産性を良好にするという観点からは、溶液重合法が好ましい。
 溶液重合法を行う場合に用いる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらの中でも、原料モノマー及び生成物に対する溶解性の観点から、窒素原子含有溶媒、硫黄原子含有溶媒が好ましく、ジメチルスルホキシドがより好ましい。
 酸化重合を溶液重合法で行う場合、反応開始前の反応液中における原料モノマーの濃度は、反応速度及び撹拌効率の観点から、好ましくは15~50質量%、より好ましくは20~45質量%、さらに好ましくは25~40質量%である。
 酸化剤としては、例えば、酸素;過酸化水素、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酢酸、過安息香酸等のパーオキサイド;等が挙げられる。これらの中でも、生産性の観点から、酸素が好ましい。
 酸素は、酸素を含むガスとして供給されることが好ましい。すなわち、本実施形態の多官能フェノール化合物の製造方法は、酸化重合を、酸素を含むガスを供給しながら、フェノール化合物(A)を加熱することによって行う方法であることが好ましい。
 酸素を含むガスは、酸素ガスそのものであってもよいし、酸素と窒素等の不活性ガスとを混合したガスであってもよく、空気であってもよいが、環境負荷低減及び経済性の観点から、空気が好ましい。
 酸素を含むガスは、例えば、反応容器中にパージしてもよいし、反応液の上方を流通させてもよいし、反応液中にバブリングさせてもよい。これらの中でも、反応性の観点から、反応液中にバブリングさせる方法が好ましい。
 なお、酸化重合を行う際の圧力は、加圧であってもよく、常圧であってもよい。
 また、酸化反応を行う際には、例えば、金属触媒等の反応触媒を用いてもよいが、反応触媒を用いなくてもよい。
 酸化重合の反応温度は、特に限定されないが、適度な反応速度が得られながらも、多官能フェノール化合物の性状を調整し易いという観点から、好ましくは100~250℃、より好ましくは120~210℃、さらに好ましくは140~180℃である。
 酸化重合の反応時間は、特に限定されず、所望する性状を有する多官能フェノール化合物が得られる時間を適宜決定すればよいが、生産性の観点からは、好ましくは1~48時間、より好ましくは10~38時間、さらに好ましくは18~28時間である。
 本実施形態の製造方法において、酸化重合前のフェノール化合物(A)に含まれる脂肪族不飽和結合の総量のうち、酸化重合によって消失する脂肪族不飽和結合の比率を表す脂肪族不飽和結合消失率は、特に限定されないが、好ましくは20~75%、より好ましくは30~65%、さらに好ましくは35~60%である。
 なお、脂肪族不飽和結合消失率は、実施例に記載の方法によって測定することができる。
 酸化重合を終了して得られた多官能フェノール化合物は、必要に応じて、蒸留、再沈殿、遠心分離、洗浄等の公知の方法によって精製してもよい。
[熱硬化性樹脂組成物]
 本発明は、本実施形態の多官能フェノール化合物をエポキシ樹脂の硬化剤として用いる熱硬化性樹脂組成物も提供し得る。
 以下、エポキシ樹脂及び本実施形態の多官能フェノール化合物を含有する熱硬化性樹脂組成物について説明する。
(エポキシ樹脂)
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;ビフェノール骨格を有するエポキシ樹脂;アラルキル骨格を有するエポキシ樹脂;フルオレン骨格を有するエポキシ樹脂;ナフタレン骨格を有するエポキシ樹脂等のグリシジルエーテル型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、イプシロン-カプロラクトン変性-3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、ビス-(3,4-エポキシシクロヘキシル)アジペート等の脂環式エポキシ樹脂;等が挙げられる。
 エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 エポキシ樹脂は、例えば、上記選択肢の中から目的に応じて適宜選択すればよいが、環境負荷低減の観点からは、バイオマス由来のエポキシ樹脂が好ましく、植物由来のエポキシ樹脂がより好ましい。
 また、エポキシ樹脂は、環境負荷低減の観点から、酸化重合によって得られるエポキシ樹脂(以下、「酸化重合エポキシ樹脂」ともいう)が好ましい。
 酸化重合エポキシ樹脂としては、例えば、エポキシ基を有するモノマーを酸化重合させてなるエポキシ樹脂であってもよいし、フェノール化合物を酸化重合させてなるフェノール樹脂のフェノール性水酸基をグリシジルエーテル化したものであってもよい。
 エポキシ基を有するモノマーを酸化重合させてなるエポキシ樹脂としては、例えば、フェノール化合物(A)のフェノール性水酸基をグリシジルエーテル化してなるエポキシ化モノマーを酸化重合させて得られるエポキシ樹脂(以下、「酸化重合エポキシ樹脂(EA)」ともいう)、フェノール化合物(A)以外のフェノール化合物をグリシジルエーテル化してなるエポキシ化モノマーを酸化重合させて得られるエポキシ樹脂、グリシジルエーテル以外のエポキシ基を有するモノマーを酸化重合させて得られるエポキシ樹脂等が挙げられる。
 フェノール化合物を酸化重合させてなるフェノール樹脂のフェノール性水酸基をグリシジルエーテル化したものとしては、例えば、フェノール化合物(A)を酸化重合させて得られる多官能フェノール化合物のフェノール性水酸基をグリシジルエーテル化してなるエポキシ樹脂、フェノール化合物(A)以外のフェノール化合物を酸化重合させて得られる多官能フェノール化合物のフェノール性水酸基をグリシジルエーテル化してなるエポキシ樹脂等が挙げられる。
 酸化重合に用いることができるフェノール化合物(A)以外のフェノール化合物としては、例えば、長鎖不飽和脂肪族炭化水素基(R)以外の不飽和脂肪族炭化水素基を有するフェノール化合物が挙げられる。
 これらの中でも、酸化重合エポキシ樹脂としては、より環境負荷を低減できるという観点から、酸化重合エポキシ樹脂(EA)が好ましい。
 次に、酸化重合エポキシ樹脂(EA)について説明する。
〔酸化重合エポキシ樹脂(EA)〕
 酸化重合エポキシ樹脂(EA)は、フェノール化合物(A)のフェノール性水酸基をグリシジルエーテル化してなるエポキシ化モノマーを酸化重合させて得られるエポキシ樹脂である。
 フェノール化合物(A)のフェノール性水酸基をグリシジルエーテル化する方法としては、公知の方法を適用することができ、例えば、塩基性化合物の存在下で、フェノール化合物(A)とエピハロヒドリンとを反応させる方法が挙げられる。
 当該反応は、反応を均質に進行させる観点から、有機溶媒中で行うことが好ましい。有機溶媒としては、多官能フェノール化合物の製造方法で例示した有機溶媒と同じものが挙げられ、好ましい態様も同様である。
 エピハロヒドリンとしては、例えば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン等が挙げられる。これらの中でも、反応性の観点から、エピクロロヒドリンが好ましい。エピハロヒドリンの使用量は、特に限定されないが、フェノール性水酸基1モルに対して、好ましくは1~6モル、より好ましくは1.5~5モル、さらに好ましくは2~4モルである。
 塩基性化合物としては、例えば、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物等が好ましく挙げられる。これらの中でも、反応性の観点から、アルカリ金属水酸化物が好ましい。アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウムが好ましく、水酸化カリウムがより好ましい。
 塩基性化合物の使用量は、特に限定されないが、エピハロヒドリン1モルに対して、好ましくは1.2~5モル、より好ましくは1.5~4モル、さらに好ましくは1.8~3モルである。
 フェノール化合物(A)とエピハロヒドリンとの反応を開始する前に、フェノール化合物(A)と塩基性化合物とを反応させておくことが好ましい。当該反応の条件は、特に限定されず、例えば、15~40℃で0.5~4時間反応させればよい。
 フェノール化合物(A)とエピハロヒドリンとの反応条件は、特に限定されず、例えば、15~40℃で1~8時間反応させればよい。
 得られた反応物は、必要に応じて、蒸留、再沈殿、遠心分離、洗浄等の公知の方法によって精製してもよい。
 得られたエポキシ化モノマーを酸化重合させる方法及び条件は、本実施形態の多官能フェノール化合物の製造方法における酸化重合と同様に説明される。
 但し、エポキシ化モノマーを酸化重合させる場合は、溶媒を使用せずとも撹拌効率を良好に保てる傾向にある。そのため、エポキシ化モノマーを酸化重合する際には、反応性の観点から、有機溶媒は使用しないか、使用する場合でもその使用量を低く抑えることが好ましい。その他の方法及び条件の好適な態様は、多官能フェノール化合物の製造方法における酸化重合の方法及び条件の好適な態様と同様である。
 酸化重合エポキシ樹脂(EA)の質量平均分子量(Mw)は、特に限定されないが、取り扱い性の観点から、好ましくは6,000~300,000、より好ましくは12,000~100,000、さらに好ましくは18,000~30,000である。
 酸化重合エポキシ樹脂(EA)は、23℃において、液体状であってもよく、固体状であってもよいが、取り扱い性の観点から、23℃で液体状であることが好ましい。
(多官能フェノール化合物)
 本実施形態の熱硬化性樹脂組成物において、本実施形態の多官能フェノール化合物は、エポキシ樹脂の硬化剤として用いられる。
 多官能フェノール化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態の熱硬化性樹脂組成物中におけるエポキシ樹脂のエポキシ基と多官能フェノール化合物のフェノール性水酸基との当量比[エポキシ基/フェノール性水酸基]は、特に限定されないが、未反応官能基の残存による特性変動を抑制するという観点から、好ましくは0.7~1.5、より好ましくは0.8~1.3、さらに好ましくは0.9~1.2である。
 本実施形態の熱硬化性樹脂組成物は、エポキシ樹脂の硬化剤として、本実施形態の多官能フェノール化合物以外のフェノール系硬化剤を含有していてもよい。その場合における、エポキシ樹脂とフェノール系硬化剤との配合比は、エポキシ樹脂のエポキシ基と、本実施形態の多官能フェノール化合物を含むフェノール系硬化剤の全フェノール性水酸基の当量比[エポキシ基/フェノール性水酸基]が、上記範囲になることが好ましい。
(硬化促進剤)
 本実施形態の熱硬化性樹脂組成物は、さらに、硬化促進剤を含有することが好ましい。
 硬化促進剤としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、トリブチル(メチル)ホスホニウムジメチルホスファート等のホスホニウム塩;等が挙げられる。
 硬化促進剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、相溶性と反応性の観点からホスホニウム塩が好ましく、トリブチル(メチル)ホスホニウムジメチルホスファートがより好ましい。
 本実施形態の熱硬化性樹脂組成物中における硬化促進剤の含有量は、特に限定されないが、保存安定性及び硬化性の観点から、エポキシ樹脂のエポキシ基1モルに対して、好ましくは0.001~0.1モル、より好ましくは0.005~0.05モル、さらに好ましくは0.007~0.03モルである。
(その他の成分)
 本実施形態の熱硬化性樹脂組成物は、上記各成分以外にも、例えば、上記各成分以外の熱硬化性樹脂、熱可塑性樹脂等の樹脂成分;無機充填材、有機充填材等の充填材;シランカップリング剤等のカップリング剤;難燃剤;増粘剤;着色剤;酸化防止剤;帯電防止剤等を含有していてもよい。
 これらのその他の成分は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。
(熱硬化性樹脂組成物の製造方法)
 本実施形態の熱硬化性樹脂組成物は、上記各成分を混合することによって製造することができる。
 各成分の混合は、例えば、加熱ニーダー、加熱ロール等を用いて各成分を加熱下で溶融混練する方法であってもよく、有機溶媒中に各成分を溶解又は分散させて混合する方法であってもよい。有機溶媒としては、多官能フェノール化合物の製造方法で例示した有機溶媒と同じものが挙げられる。有機溶媒中に各成分を溶解又は分散させて混合する方法を行う場合、有機溶媒の使用量は、有効成分の濃度が、好ましくは10~70質量%、より好ましくは20~60質量%、さらに好ましくは30~50質量%になる量である。
 原料を混合する順序、混合温度、混合時間等の条件は、特に限定されず、原料の種類等に応じて任意に設定すればよい。
 本実施形態の熱硬化性樹脂組成物の23℃における形態は特に限定されず、固体状であってもよく、液体状であってもよい。本実施形態の熱硬化性樹脂組成物が23℃で液体状である場合、本実施形態の熱硬化性樹脂組成物は、有機溶媒を含有するものであってもよく、有機溶媒を含有しないものであってもよい。
 有機溶媒としては、上記各成分を溶解又は分散させて混合する方法に用いられるものと同じものを使用することができ、好適な使用量も同じである。
 本実施形態の熱硬化性樹脂組成物の硬化条件は、特に限定されず、樹脂及び硬化促進剤の種類等に応じて適宜調整すればよいが、例えば、50~250℃で、0.5~24時間の条件とすることができる。
 本実施形態の熱硬化性樹脂組成物の適用分野は、上記した本実施形態の多官能フェノール化合物の適用分野と同様に説明される。
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[数平均分子量(Mn)、質量平均分子量(Mw)]
 生成物の数平均分子量(Mn)及び質量平均分子量(Mw)は、ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した。
(測定条件)
・カラム:「TSK guard column SuperH-H」「TSK gel SuperHM-H」「TSK gel SuperHM-H」「TSK gel SuperH2000」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・注入量:20μl
・流速:1.0mL/min
・検出器:示差屈折計
H-NMR測定]
 原料及び生成物の分析におけるH-NMR測定は、下記の条件で行った。
 装置:ブルカー・バイオスピン社製、商品名「AV-500」
   H-NMR共鳴周波数:500MHz
   プローブ:5mmφ溶液プローブ
 重溶媒:重アセトン
 内部標準物質:TMS(テトラメチルシラン)
 サンプル量:20~50mg
 測定温度:25℃
 積算回数:16回
H-NMR測定試料作製方法〉
 測定サンプルを、測定サンプル濃度が3質量%となるように、内部標準としてTMSを含む重アセトンに溶解させたものをH-NMR測定試料とした。
[酸化重合による脂肪族不飽和結合消失率]
 酸化重合による脂肪族不飽和結合消失率は、H-NMRによって算出された、原料成分に含まれる脂肪族不飽和結合の総モル数(MA1)と、生成物に含まれる脂肪族不飽和結合の総モル数(MA2)とから、下記式(1)によって算出した。
 脂肪族不飽和結合消失率(%)=100×(MA1-MA2)/MA1   (1)
[多官能フェノール化合物の製造]
実施例1
(酸化重合CNSLの製造)
 植物由来のフェノール化合物(A)として、カルダノールを95質量%、カルド―ルを5質量%含有するCNSL(以下、「原料CNSL」ともいう)を準備した。なお、H-NMRによって定量したカルダノールの組成は表1に示す通りである。
Figure JPOXMLDOC01-appb-T000008
 上記の原料CNSL100質量部及びジメチルスルホキシド200質量部をガラス製の反応容器に投入して、混合したものを反応液とした。次いで、空気を反応液中にバブリングさせながら、反応液を160℃の条件下で撹拌しながら24時間、溶液重合法によって酸化重合させて、精製前の反応物を得た。
 次に、得られた精製前の反応物をアセトン300質量部で希釈し、23℃で、撹拌下のメタノール2,000質量部に20質量部/分の速度で滴下して再沈殿させた。得られた沈殿物を、メタノールで3回洗浄した後、エバポレータ中、40℃で120分間乾燥することによって、23℃で固体状の多官能フェノール化合物である酸化重合CNSLを得た。
 上記で得られた酸化重合CNSLは、数平均分子量(Mn)が5,300、質量平均分子量(Mw)が46,200であった。また、酸化重合による脂肪族不飽和結合消失率は53%であった。
 上記の通り、本実施形態の多官能フェノール化合物は、23℃で固体状の化合物であった。
 また、脂肪族不飽和結合消失率から、原料CNSLが有する脂肪族不飽和結合において重合が進行していることが示唆される。
[熱硬化性樹脂組成物の製造及び評価]
 次に、熱硬化性樹脂としてエポキシ樹脂、エポキシ樹脂の硬化剤として実施例1で得た多官能フェノール化合物を用いた熱硬化性樹脂組成物を製造した。
 なお、植物由来のエポキシ樹脂として、下記の製造例1によって、酸化重合エポキシ樹脂(EA)である酸化重合エポキシ化CNSLを合成した。
製造例1
(酸化重合エポキシ化CNSLの製造)
 上記の原料CNSL100質量部、水酸化カリウム44質量部及びジメチルスルホキシド55質量部をガラス製の反応容器に投入して、23℃で撹拌しながら120分間反応させた後に、エピクロロヒドリン92.5質量部を反応容器に投入して、240分間反応させた。その後、ヘキサン500質量部で3回抽出した後、飽和食塩水500質量部で3回洗浄した。その後、シリカゲルでろ過し、原料CNSLに含まれるフェノール性水酸基をグリシジルエーテル化してなる液状のエポキシ化モノマーを得た。
 次に、上記反応によって得られた液状のエポキシ化モノマーを酸化重合の反応液として、空気を反応液中にバブリングさせながら、温度160℃の条件下で撹拌しながら24時間、塊状重合法によって酸化重合させて、精製前の反応物を得た。
 次に、得られた精製前の反応物をアセトン300質量部で希釈し、23℃で、撹拌下のメタノール2,000質量部に20質量部/分の速度で滴下して再沈殿させた。得られた沈殿物を、メタノールで3回洗浄した後、エバポレータ中、40℃で120分間乾燥することによって、23℃で液体状の酸化重合エポキシ樹脂(EA)である酸化重合エポキシ化CNSLを得た。
 酸化重合エポキシ化CNSLの質量平均分子量(Mw)は、22,000であった。
実施例2~4、比較例1
(熱硬化性樹脂組成物の製造)
 表2に示すエポキシ樹脂及びフェノール系硬化剤、硬化促進剤としてのトリブチル(メチル)ホスホニウムジメチルホスファート、並びに、有機溶媒としてのトルエンを配合して、固形分濃度が40質量%である熱硬化性樹脂組成物の溶液を調製した。
 なお、エポキシ樹脂とフェノール系硬化剤の配合比は、エポキシ樹脂のエポキシ基とフェノール系硬化剤のフェノール性水酸基の当量比[エポキシ基/フェノール性水酸基]が1.0となる配合比とした。また、硬化促進剤の配合量は、エポキシ樹脂のエポキシ基1モルに対して、硬化促進剤の含有量が0.01モルになる量とした。
 なお、表2に示す各成分の詳細は、以下の通りである。
(エポキシ樹脂の種類)
 ・酸化重合エポキシ化CNSL:製造例1で製造した酸化重合エポキシ化CNSL
 ・ビスフェノール型エポキシ樹脂:2,2-ビス(4-グリシジルオキシフェニル)プロパン
 ・脂環式エポキシ樹脂:3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート
(フェノール系硬化剤の種類)
 ・酸化重合CNSL:実施例1で製造した酸化重合CNSL
 ・クレゾールノボラック樹脂:DIC株式会社製、商品名「KA-1160」
(熱硬化性樹脂組成物の硬化物の製造)
 上記で得た熱硬化性樹脂組成物の溶液を、工程フィルム1(リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレートフィルムにシリコーン系剥離剤を塗布したもの、厚さ38μm)の剥離処理面上に、乾燥及び硬化後に得られる硬化物の厚さが70μmになるように塗布し、80℃で3分間乾燥した後、工程フィルム2(リンテック株式会社製、製品名「SP-PET381031」、ポリエチレンテレフタレートフィルムにシリコーン系剥離剤を塗布したもの、厚さ38μm)の剥離処理面を貼り合わせた。その後、150℃で2時間硬化させて、2枚の工程フィルムに挟持された熱硬化性樹脂組成物の硬化物を得た。
[硬化物の熱分解開始温度の測定]
 上記で得た硬化物から2枚の工程フィルムを除去したものを測定試料として、示差熱熱重量同時測定装置(株式会社島津製作所製、商品名「DTG-60」)を用いて、窒素雰囲気下、昇温速度10℃/分で、40℃から500℃まで昇温し、測定試料の質量減少率が5%となる温度(Td5)、及び、測定試料の質量減少率が10%となる温度(Td10)を測定した。測定結果を表2に示す。
[硬化物のガラス転移温度及び貯蔵弾性率E’の測定]
 上記で得た硬化物から2枚の工程フィルムを剥離除去し、5mm×20mmに裁断したものを試験片とした。この試験片を、熱機械分析装置(NETZSCH社製、商品名「DMA242E」)にチャック間距離15mmで取り付け、周波数10Hzの歪みを与えながら、昇温速度5℃/分で、-100℃から200℃まで昇温させて、貯蔵弾性率E’及びtanδを測定した。
 上記測定範囲におけるtanδのピークを示す温度をガラス転移温度(Tg)として、Tgより50℃低い温度の貯蔵弾性率をガラス状領域の貯蔵弾性率E’、Tgより50℃高い温度の貯蔵弾性率をゴム状領域の貯蔵弾性率E’とした。測定結果を表2に示す。
[硬化物のバイオマス度]
 硬化物のバイオマス度は、硬化物の総質量に対して、硬化物を製造する際に使用したバイオマス由来の原料の質量割合であり、下記計算式によって算出した。測定結果を表2に示す。
 硬化物のバイオマス度(質量%)=100×[バイオマス由来の原料の質量(g)]/[硬化物の総質量(g)]
Figure JPOXMLDOC01-appb-T000009
 表2から、本実施形態の多官能フェノール化合物をフェノール系硬化剤として用いた実施例2~4で得られた硬化物は、十分高い熱分解開始温度を有し、ゴム状領域においても溶融することなく一定以上の貯蔵弾性率E’を有していた。このことから、本実施形態の多官能フェノール化合物が、エポキシ樹脂の硬化剤として機能し、且つ、バイオマス度を高めることが可能な環境負荷が小さい材料であることが分かる。
 また、実施例2~4で得られた硬化物は、従来のフェノール系硬化剤を用いた比較例1の硬化物よりも、ガラス転移温度が低く、23℃における貯蔵弾性率E’が低いにも関わらず、ゴム状領域における貯蔵弾性率E’は比較例1の硬化物よりも高かった。すなわち、実施例2~4で得られた硬化物は、室温における柔軟性と耐熱性を両立するものであり、例えば、可撓性接着剤として有用であることが分かる。

 

Claims (10)

  1.  植物に由来し、炭素数15~17の不飽和脂肪族炭化水素基を有するフェノール化合物(A)を酸化重合させてなる多官能フェノール化合物であって、23℃で固体状又は23℃における粘度が50,000mPa・s超である、多官能フェノール化合物。
  2.  前記フェノール化合物(A)が、下記一般式(A-1)で表される化合物から選択される1種以上である、請求項1に記載の多官能フェノール化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、脂肪族不飽和結合を1~3個含む炭素数15~17の不飽和脂肪族炭化水素基であり、Xは、水素原子又はヒドロキシ基であり、Xは水素原子又は炭素数1~5のアルキル基であり、Xは、水素原子、ヒドロキシ基又はカルボキシ基である。)
  3.  前記フェノール化合物(A)が、前記一般式(A-1)において、X、X及びXがいずれも水素原子である化合物を、90質量%以上含有する、請求項2に記載の多官能フェノール化合物。
  4.  質量平均分子量(Mw)が、8,000~200,000である、請求項1~3のいずれか1項に記載の多官能フェノール化合物。
  5.  23℃で固体状である、請求項1~3のいずれか1項に記載の多官能フェノール化合物。
  6.  熱硬化性樹脂の硬化剤として用いられる、請求項1~3のいずれか1項に記載の多官能フェノール化合物。
  7.  前記熱硬化性樹脂が、エポキシ樹脂である、請求項6に記載の多官能フェノール化合物。
  8.  請求項1~3のいずれか1項に記載の多官能フェノール化合物を製造する方法であって、前記植物に由来し、炭素数15~17の不飽和脂肪族炭化水素基を有するフェノール化合物(A)を酸化重合させる、多官能フェノール化合物の製造方法。
  9.  前記酸化重合を、酸素を含むガスを供給しながら、前記フェノール化合物(A)を加熱することによって行う、請求項8に記載の多官能フェノール化合物の製造方法。
  10.  前記酸化重合前の前記フェノール化合物(A)に含まれる脂肪族不飽和結合の総量のうち、前記酸化重合によって消失する比率を表す脂肪族不飽和結合消失率が、20~75%である、請求項8に記載の多官能フェノール化合物の製造方法。

     
PCT/JP2022/035110 2021-09-24 2022-09-21 多官能フェノール化合物及びその製造方法 WO2023048163A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023549714A JPWO2023048163A1 (ja) 2021-09-24 2022-09-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-155681 2021-09-24
JP2021155681 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048163A1 true WO2023048163A1 (ja) 2023-03-30

Family

ID=85720734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035110 WO2023048163A1 (ja) 2021-09-24 2022-09-21 多官能フェノール化合物及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2023048163A1 (ja)
WO (1) WO2023048163A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987424A (ja) * 1995-09-22 1997-03-31 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JPH11323258A (ja) * 1998-05-11 1999-11-26 Agency Of Ind Science & Technol 液状樹脂及び硬化性組成物
JP2001200051A (ja) * 2000-01-17 2001-07-24 Toyo Ink Mfg Co Ltd 硬化性組成物
JP2012107009A (ja) * 2010-10-29 2012-06-07 Fujifilm Corp 8−アリールオクタン酸誘導体及びそれを用いたポリエステルとその製造方法、並びに複合材料
JP2013082785A (ja) * 2011-10-07 2013-05-09 Nippon Kayaku Co Ltd フェノール樹脂、エポキシ樹脂及びその硬化物
CN103421163A (zh) * 2013-08-20 2013-12-04 上海美东生物材料有限公司 一种利用腰果酚生产中的重相料制备环氧树脂的方法
JP2014118507A (ja) * 2012-12-18 2014-06-30 Yokohama Rubber Co Ltd:The タイヤビードフィラー用ゴム組成物およびそれを用いた空気入りタイヤ
JP2017119764A (ja) * 2015-12-28 2017-07-06 株式会社ブリヂストン フェノール樹脂、ゴム組成物及びタイヤ
JP2020193270A (ja) * 2019-05-28 2020-12-03 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、樹脂付き金属箔、積層体、プリント配線板及び半導体パッケージ
JP2021011541A (ja) * 2019-07-05 2021-02-04 国立大学法人東京農工大学 重合体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987424A (ja) * 1995-09-22 1997-03-31 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JPH11323258A (ja) * 1998-05-11 1999-11-26 Agency Of Ind Science & Technol 液状樹脂及び硬化性組成物
JP2001200051A (ja) * 2000-01-17 2001-07-24 Toyo Ink Mfg Co Ltd 硬化性組成物
JP2012107009A (ja) * 2010-10-29 2012-06-07 Fujifilm Corp 8−アリールオクタン酸誘導体及びそれを用いたポリエステルとその製造方法、並びに複合材料
JP2013082785A (ja) * 2011-10-07 2013-05-09 Nippon Kayaku Co Ltd フェノール樹脂、エポキシ樹脂及びその硬化物
JP2014118507A (ja) * 2012-12-18 2014-06-30 Yokohama Rubber Co Ltd:The タイヤビードフィラー用ゴム組成物およびそれを用いた空気入りタイヤ
CN103421163A (zh) * 2013-08-20 2013-12-04 上海美东生物材料有限公司 一种利用腰果酚生产中的重相料制备环氧树脂的方法
JP2017119764A (ja) * 2015-12-28 2017-07-06 株式会社ブリヂストン フェノール樹脂、ゴム組成物及びタイヤ
JP2020193270A (ja) * 2019-05-28 2020-12-03 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、樹脂付き金属箔、積層体、プリント配線板及び半導体パッケージ
JP2021011541A (ja) * 2019-07-05 2021-02-04 国立大学法人東京農工大学 重合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OTSUKA TAKUMI; FUJIKAWA SHUN-ICHI; YAMANE HIDEKI; KOBAYASHI SHIRO: "Green polymer chemistry: the biomimetic oxidative polymerization of cardanol for a synthetic approach to ‘artificial urushi’", POLYMER JOURNAL, NATURE PUBLISHING GROUP UK, LONDON, vol. 49, no. 3, 21 December 2016 (2016-12-21), London , pages 335 - 343, XP037650067, ISSN: 0032-3896, DOI: 10.1038/pj.2016.118 *

Also Published As

Publication number Publication date
JPWO2023048163A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
KR102217397B1 (ko) 유연성 에폭시 수지 조성물
KR102585184B1 (ko) 경화성 에폭시/티올 수지 조성물을 포함하는 (메트)아크릴레이트 매트릭스를 포함하는 접착제 필름, 테이프 및 방법
JP4962675B2 (ja) 水分散性エポキシ樹脂、水性エポキシ樹脂組成物およびその硬化物
KR102334119B1 (ko) 광경화성 에폭시 수지 시스템
JP5801653B2 (ja) 低温硬化性エポキシ組成物
JP2019035087A (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP2013539804A (ja) アドバンストエポキシ樹脂組成物
KR20140009296A (ko) 에폭시 수지 조성물 및 그것을 사용한 반도체 봉지재
TWI586728B (zh) 固化性樹脂組合物
JP6429793B2 (ja) 液状エポキシ樹脂組成物
WO2017096187A1 (en) Biobased epoxy monomers, compositions, and uses thereof
JP2017214529A (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP2013108011A (ja) エポキシ樹脂溶液、エポキシ樹脂組成物、硬化物及び接着剤
WO2023048163A1 (ja) 多官能フェノール化合物及びその製造方法
CN115584204B (zh) 一种超低离型力有机硅uv涂料
JP6295048B2 (ja) 高分子量エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP6409487B2 (ja) エポキシ樹脂及びその製造方法、エポキシ樹脂含有組成物並びに硬化物
WO2023048164A1 (ja) 多官能フェノール化合物及びその製造方法
WO2023048170A1 (ja) 熱硬化性樹脂組成物
TW201237058A (en) Epoxy resin compositions comprising epoxy and vinyl ester groups
JP6950394B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP4632152B2 (ja) 重合性組成物
EP1602677A1 (en) Fluorocarbon-modified epoxy resin
KR20230083045A (ko) 고무로 변성된 에폭시 화합물로 가교된 무수당 알코올 조성물에 알킬렌 옥사이드를 부가시켜 제조된 폴리올 조성물을 포함하는 에폭시 수지용 경화제, 및 이를 포함하는 에폭시 수지 조성물 및 이의 경화물
JP2016539223A (ja) エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549714

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872915

Country of ref document: EP

Kind code of ref document: A1