WO2023047974A1 - リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 - Google Patents
リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2023047974A1 WO2023047974A1 PCT/JP2022/033802 JP2022033802W WO2023047974A1 WO 2023047974 A1 WO2023047974 A1 WO 2023047974A1 JP 2022033802 W JP2022033802 W JP 2022033802W WO 2023047974 A1 WO2023047974 A1 WO 2023047974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- heat treatment
- lithium
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 136
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 63
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 239000011164 primary particle Substances 0.000 claims abstract description 80
- 239000002245 particle Substances 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 238000000634 powder X-ray diffraction Methods 0.000 claims abstract description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 91
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 85
- 239000000203 mixture Substances 0.000 claims description 50
- 239000011148 porous material Substances 0.000 claims description 42
- 239000002131 composite material Substances 0.000 claims description 38
- 239000011163 secondary particle Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 31
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 28
- 238000010521 absorption reaction Methods 0.000 claims description 26
- 229910052748 manganese Inorganic materials 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910021314 NaFeO 2 Inorganic materials 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052753 mercury Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 239000006182 cathode active material Substances 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract description 7
- 230000002349 favourable effect Effects 0.000 abstract 1
- 229910006525 α-NaFeO2 Inorganic materials 0.000 abstract 1
- 229910006596 α−NaFeO2 Inorganic materials 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 167
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 105
- 229910052759 nickel Inorganic materials 0.000 description 50
- 239000002994 raw material Substances 0.000 description 41
- 229910052751 metal Inorganic materials 0.000 description 38
- 238000002156 mixing Methods 0.000 description 36
- 230000014759 maintenance of location Effects 0.000 description 35
- 238000010304 firing Methods 0.000 description 31
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 27
- 239000008187 granular material Substances 0.000 description 26
- 239000013078 crystal Substances 0.000 description 22
- 230000007423 decrease Effects 0.000 description 22
- 239000011572 manganese Substances 0.000 description 22
- 150000001768 cations Chemical class 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 239000002243 precursor Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 18
- 238000005469 granulation Methods 0.000 description 18
- 230000003179 granulation Effects 0.000 description 18
- 239000010936 titanium Substances 0.000 description 16
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 15
- 229910052808 lithium carbonate Inorganic materials 0.000 description 15
- 229910017052 cobalt Inorganic materials 0.000 description 13
- 239000010941 cobalt Substances 0.000 description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- 239000007921 spray Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 235000013339 cereals Nutrition 0.000 description 10
- 150000002642 lithium compounds Chemical class 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- -1 etc. Substances 0.000 description 7
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 6
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 6
- 239000011656 manganese carbonate Substances 0.000 description 6
- 229940093474 manganese carbonate Drugs 0.000 description 6
- 235000006748 manganese carbonate Nutrition 0.000 description 6
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 6
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 239000002905 metal composite material Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910003548 Li(Ni,Co,Mn)O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/19—Oil-absorption capacity, e.g. DBP values
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to positive electrode active materials for lithium ion secondary batteries and lithium ion secondary batteries.
- Lithium-ion secondary batteries are widely used as lightweight secondary batteries with high energy density. Lithium-ion secondary batteries are required to have higher capacities as their applications expand. In addition, good charge/discharge cycle characteristics and the like are also required.
- Lithium metal composite oxides having an ⁇ -NaFeO 2 -type crystal structure are widely known as positive electrode active materials for lithium ion secondary batteries.
- LiCoO 2 has been used as an oxide having a layered structure.
- Nickel-based materials in which LiNiO 2 is replaced with a different element have been developed.
- nickel-based ones have the disadvantage that their charge-discharge cycle characteristics are not necessarily good.
- nickel-based materials are composed of nickel, which is cheaper than cobalt and the like, and exhibit a relatively high capacity, and thus are expected to be applied to various uses.
- expectations are rising for chemical compositions in which the ratio of nickel to metals (Ni, Co, Mn, etc.) excluding lithium is increased.
- Patent Document 1 At least a nickel salt and a lithium salt are mixed in predetermined amounts to form a raw material mixture, and when the raw material mixture is calcined to synthesize LiNiO 2 , the raw material mixture is granulated to obtain granules.
- a method for manufacturing a LiNiO 2 -based layered composite oxide with good productivity including a working surface from a compound having a desired crystal structure is disclosed.
- Patent Document 2 discloses a non-aqueous electrolyte secondary battery having a negative electrode made of lithium metal or a material capable of intercalating and deintercalating lithium, and a positive electrode, wherein the positive electrode is Li X Ni 1-YZ Co Y as an active material.
- Patent Document 3 discloses a positive electrode active material for a lithium secondary battery which contains at least nickel, cobalt and manganese and has a layered structure, and which satisfies the following requirements (1) to (3). is disclosed.
- the primary particle diameter is 0.1 ⁇ m or more and 1 ⁇ m or less, and the 50% cumulative volume particle size D50 is 1 ⁇ m or more and 10 ⁇ m or less
- the ratio D90/D10 between the 90% cumulative volume particle size D90 and the 10% cumulative volume particle size D10 is 2 or more and 6 or less
- the amount of lithium carbonate contained in the residual alkali on the particle surface measured by neutralization titration is 0.1 mass% or more and 0.8 mass% or less.
- Patent Document 1 the electrode characteristics are unknown.
- the capacity and capacity retention rate of Patent Documents 2 and 3 were not sufficient for nickel-based positive electrode active materials that are expected to be applied to various applications because of their high capacity. In other words, the problem was that it was difficult to satisfy both high capacity and good charge-discharge cycle characteristics (high capacity retention rate) at the same time.
- An object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery and a lithium ion secondary battery that achieve both high capacity and good charge/discharge cycle characteristics.
- a positive electrode active material for a lithium ion secondary battery of the present invention includes primary particles of a lithium composite oxide represented by the following formula (1) and secondary particles in which the primary particles are aggregated, Li1 + aNibCocMdXeO2 + ⁇ ( 1 ) [However, in composition formula (1), M is at least one element selected from Al and Mn, and X is at least one element selected from the group consisting of Ti, Ga, Mg, Zr, and Zn.
- the average value of the particle size of the primary particles evaluated with a scanning electron microscope (hereinafter referred to as the average primary particle size) is 50 nm or more and 550 nm or less, and the ⁇ -NaFeO 2 type layered structure in X-ray powder diffraction measurement.
- the sum of the half width of the peak identified as the 104 plane and the R value in X-ray powder diffraction measurement is 0.480 or more and 0.595 or less. is preferably
- the positive electrode active material for lithium ion secondary batteries of the present invention preferably has a specific surface area of 0.30 m 2 /g or more and 1.00 m 2 /g or less.
- the positive electrode active material for lithium ion secondary batteries of the present invention has an oil absorption of N-methyl-2-pyrrolidone per 100 g of lithium composite oxide powder of 27 ml/100 g or more and 35 ml based on JIS K5101-13-1. /100 g or less.
- the positive electrode active material for lithium ion secondary batteries of the present invention preferably has a porosity of 8% or more and 24% or less.
- the positive electrode active material for lithium ion secondary batteries of the present invention preferably has a mode pore size of 0.22 ⁇ m or more and 0.30 ⁇ m or less.
- a in the formula (1) preferably satisfies 0.02 ⁇ a ⁇ 0.10.
- the present invention also provides a lithium ion secondary battery comprising a positive electrode containing the positive electrode active material for a lithium ion secondary battery described above.
- the present invention can provide a positive electrode active material for a lithium ion secondary battery and a lithium ion secondary battery that achieve both high capacity and good charge/discharge cycle characteristics.
- FIG. 1 is a partial cross-sectional view schematically showing an example of a lithium ion secondary battery; FIG. It is a figure which shows typically an example of the secondary particle of a positive electrode active material, and a primary particle. 1 is a SEM photograph showing an example of a positive electrode active material of an example.
- FIG. 4 is a diagram showing the relationship between initial capacity and R value; It is a figure which shows the relationship between an initial capacity rate and an R value.
- FIG. 10 is a diagram showing the relationship between the initial capacity, the half width of the peak identified on the 104 plane, and the sum of the R values.
- FIG. 4 is a diagram showing the relationship between the initial capacity ratio, the half width of the peak identified on the 104 plane, and the sum of the R value.
- FIG. 4 is a diagram showing the relationship between the capacity retention rate and the average primary particle size. It is a figure which shows the relationship between a capacity
- FIG. 4 is a diagram showing the relationship between capacity retention rate and oil absorption. It is a figure which shows the relationship between a capacity
- FIG. 4 is a diagram showing the relationship between capacity retention rate and mode pore size.
- a positive electrode active material for a lithium ion secondary battery according to this embodiment is a lithium composite oxide having an ⁇ -NaFeO 2 type layered structure.
- a layered structure it is possible to insert and desorb contained Li elements as ions, and further containing Ni elements makes it possible to achieve a high discharge capacity.
- the positive electrode active material according to the present embodiment includes, in addition to the lithium composite oxide, which is the main component, unavoidable impurities derived from raw materials and manufacturing processes, other components that coat the particles of the lithium composite oxide, such as boron components, phosphorus A sulfur component, a fluorine component, an organic substance, etc., and other components mixed with the particles of the lithium composite oxide may also be included.
- the lithium composite oxide which is the main component, unavoidable impurities derived from raw materials and manufacturing processes
- other components that coat the particles of the lithium composite oxide such as boron components, phosphorus A sulfur component, a fluorine component, an organic substance, etc., and other components mixed with the particles of the lithium composite oxide may also be included.
- the positive electrode active material for lithium ion secondary batteries of the present invention is a lithium composite oxide represented by the following formula (1).
- M is at least one element selected from Al and Mn
- a in the composition formula (1) is -0.10 or more and 0.10 or less. Moreover, it is preferably -0.04 or more and 0.08 or less. a represents the excess or deficiency of lithium relative to the stoichiometric ratio of Li(Ni,Co,M,X)O 2 .
- the value a is not the value charged at the time of raw material synthesis or the value after removing the Li compound from the surface of the positive electrode active material by washing with water or the like.
- a indicates the value in the lithium composite oxide obtained by sintering.
- a in the composition formula (1) is 0.02 or more and 0.10 or less
- the synthesis reaction proceeds appropriately during firing, the amount of cation mixing that nickel is mixed in the lithium site is reduced, and the R value is small.
- the cation mixing amount is further reduced, and the R value is further decreased, which is preferable. Therefore, a layered structure with fewer defects is formed, and a high discharge capacity can be obtained.
- the atomic concentration (number of moles) of lithium contained in the positive electrode active material and the total number of atoms of metal elements other than lithium is preferably 0.96 or more and 1.10 or less, more preferably 1.02 or more and 1.08 or less, and more preferably 1.04 or more and 1.08 or less.
- the calcined precursor calcined by heat treatment may be mixed with other components, and the reaction ratio during calcination may deviate from the stoichiometric ratio.
- a is preferably in the range of -0.90 to 0.10.
- the coefficient b of Ni (nickel) in the composition formula (1) is 0.80 or more and less than 1.00.
- b is 0.80 or more, compared to other nickel-based oxides with a low nickel content and ternary oxides represented by Li (Ni, Co, Mn, M1) O 2 , a high discharge capacity can be obtained.
- the amount of metals rarer than nickel can be reduced, raw material costs can be reduced.
- the coefficient b of nickel may be 0.85 or more, 0.90 or more, or 0.92 or more. A higher b tends to result in a higher discharge capacity. Also, the coefficient b of nickel may be 0.95 or less, 0.90 or less, or 0.85 or less. The smaller b is, the smaller the lattice strain or crystal structure change associated with the insertion and extraction of lithium ions, and the less likely cation mixing, in which nickel is mixed into the lithium sites, and the deterioration of crystallinity during firing. Discharge cycle characteristics tend to be obtained.
- the coefficient c of Co (cobalt) in the composition formula (1) is 0 or more and 0.20 or less.
- Cobalt may be intentionally added, or may have a composition ratio corresponding to unavoidable impurities. Addition of cobalt makes the crystal structure more stable, suppresses cation mixing in which nickel is mixed in the lithium site, and reduces the R value. On the other hand, even if cobalt is not added (even if cobalt is not used), the amount of cation mixing can be suppressed by controlling the firing conditions. Therefore, by setting the coefficient c of cobalt within the above range, high discharge capacity and good charge/discharge cycle characteristics can be obtained. On the other hand, if cobalt is excessive, the raw material cost of the positive electrode active material increases.
- the ratio of other metals such as nickel may decrease, and the discharge capacity may decrease, or the effect of the metal element represented by X may decrease.
- c is within the above numerical range, the raw material cost of the lithium composite oxide exhibiting high discharge capacity and good charge-discharge cycle characteristics can be reduced.
- the coefficient c of cobalt may be 0.06 or less, 0.03 or less, 0.01 or less, or 0. Raw material cost can be reduced, so that c is small. As the amount of cobalt added increases, the crystal structure tends to become more stable, and effects such as suppression of cation mixing, in which nickel is mixed into the lithium sites, can be obtained. is a desired value, a high initial capacity and good charge-discharge cycle characteristics can be obtained, and the amount of cobalt can be reduced and cobalt-free.
- the coefficient d of the element M in the composition formula (1) is 0 or more and 0.20 or less.
- M When nickel is substituted with at least one type of M selected from the group consisting of manganese and aluminum, the layered structure is more stably maintained even if lithium is desorbed by charging.
- M when M is excessive, the ratio of other metals such as nickel is low, and the charge/discharge capacity of the positive electrode active material is lowered.
- d is within the above numerical range, the crystal structure of the positive electrode active material can be stably maintained, and high charge/discharge capacity, good charge/discharge cycle characteristics, thermal stability, and the like can be obtained.
- Manganese is particularly preferable as the element represented by M. When manganese is substituted for nickel, a higher charge-discharge capacity can be obtained than when aluminum is substituted. Manganese also reacts with lithium carbonate as shown in the following formula (3) during firing of the lithium composite compound. Such a reaction suppresses the coarsening of crystal grains and allows the oxidation reaction of nickel to proceed at high temperature, so that it is possible to efficiently obtain a positive electrode active material exhibiting a high charge/discharge capacity.
- M' represents a metal element such as Ni, Co, Mn.
- the element represented by M preferably contains both manganese and aluminum.
- Aluminum promotes the formation of an ⁇ -NaFeO 2 -type crystal structure exhibiting a layered structure.
- manganese suppresses coarsening of crystal grains as described above. Therefore, by including both manganese and aluminum, it is possible to obtain a positive electrode active material with high crystallinity while suppressing coarsening of crystal grains.
- the coefficient d of M is preferably 0.02 or more, more preferably 0.04 or more.
- the greater the value of d the greater the effect of manganese and/or aluminum substitution. In other words, it becomes possible to proceed with the oxidation reaction of nickel at a higher temperature, more efficiently obtain a positive electrode active material exhibiting a high charge/discharge capacity, and to obtain a positive electrode active material having both an appropriate R value and primary particle size. Obtainable.
- d is preferably 0.18 or less. If d is 0.18 or less, a high charge/discharge capacity can be maintained even with substitution.
- X in the compositional formula (1) is at least one element selected from the group consisting of Ti, Ga, Mg, Zr and Zn. These elements promote or inhibit the formation of a layered ⁇ -NaFeO 2 -type crystal structure and the grain growth of primary grains. This effect makes it possible to reduce the R value while suppressing the primary particle size.
- the element X preferably contains Ti.
- Ti can suppress grain growth. Also, Ti reacts with Li to form a concentrated layer after Li and Ni react to form an ⁇ -NaFeO 2 -type crystal structure exhibiting a layered structure. In this case, Ti exists on the surface of the primary particles of the positive electrode active material in the relatively low-temperature firing step in which the reaction between Li and Ni starts, and Ti tends to form a concentrated layer on the surface of the primary particles in the subsequent high-temperature firing step. . Since Ti can be tetravalent, it has a strong bond with O and has the effect of suppressing deterioration of the crystal structure from the surface of the positive electrode active material during charging and discharging. In addition, the molecular weight is relatively small, and the decrease in the theoretical capacity of the positive electrode active material when added is small.
- the coefficient e of X in the composition formula (1) is 0 or more and 0.05 or less.
- X When X is added, the primary particle size can be suppressed as described above.
- the ratio of other metals such as nickel may decrease, and the discharge capacity may decrease.
- the proportion of divalent nickel relatively increases in the vicinity of the primary particle surface, and cation mixing tends to occur.
- e when e is in the above numerical range, a lithium composite oxide exhibiting high discharge capacity and good charge-discharge cycle characteristics can be obtained.
- e is 0.05 or less, a sufficient proportion of other metals such as nickel can be maintained, and a high discharge capacity can be obtained.
- a layered structure with fewer defects is formed, and high discharge capacity and good charge/discharge cycle characteristics can be obtained.
- ⁇ in the compositional formula (1) is -0.20 or more and 0.20 or less.
- ⁇ represents the excess or deficiency of oxygen relative to the stoichiometric ratio of Li (Ni, Co, M, XO 2) . Due to the crystal structure, high discharge capacity and good charge/discharge cycle characteristics can be obtained, and the ⁇ value can be measured by an inert gas fusion-infrared absorption method.
- the average composition of the particles of the positive electrode active material can be confirmed by inductively coupled plasma (ICP), atomic absorption spectrometry (AAS), etc. Quantitative analysis of the concentration of each element of Ni, Co, M, and X can be performed by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectrometry (EDX). .
- ICP inductively coupled plasma
- AAS atomic absorption spectrometry
- Quantitative analysis of the concentration of each element of Ni, Co, M, and X can be performed by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectrometry (EDX). .
- the positive electrode active material has primary particles of the lithium composite oxide and secondary particles composed of the primary particles.
- the positive electrode active material contains secondary particles in which a plurality of primary particles are aggregated, and the interior of the secondary particles is configured such that the plurality of primary particles are adjacent to each other via an interface.
- the secondary particles (granules) of the positive electrode active material are formed, for example, by dry granulating or wet granulating the primary particles produced by the method for producing the positive electrode active material described later to form secondary particles. can do.
- Specific granulating means include, for example, granulators such as spray dryers and tumbling fluidized bed devices. Since the specific surface area is reduced by forming the secondary particles composed of the primary particles in this manner, it is possible to obtain a positive electrode having a sufficiently high molding density and a sufficiently high filling rate of the positive electrode active material, which is preferable.
- the average value of the particle diameters of the primary particles is 50 nm or more and 550 nm or less.
- the smaller the average primary particle size the more the microcracks generated in the secondary particles are suppressed, and the charge/discharge cycle characteristics are improved. It is preferably 450 nm or less, more preferably 400 nm or less.
- the average primary particle size is 550 nm or less, microcracks generated in the secondary particles due to stress accompanying charge/discharge cycles are suppressed, and capacity reduction is suppressed.
- the diffusion resistance of Li ions in the primary particles increases with the charge-discharge cycle, the diffusion distance is short, so the decrease in capacity tends to be suppressed.
- the average primary particle diameter is 50 nm or more, bonding between adjacent primary particles can be ensured, and when the positive electrode active material is applied to the positive electrode and pressure-molded, or when the volume changes due to charging and discharging, breakage, Deformation, falling off of particles, etc. are less likely to occur.
- the above average primary particle size can be calculated by observing the surface of the positive electrode active material, that is, the surface of the secondary particles, using a scanning electron microscope (SEM). Specifically, as shown in FIG.
- the average particle size of the secondary particles is preferably, for example, 3 ⁇ m or more and 50 ⁇ m or less.
- the secondary particles have a form in which a plurality of primary particles are aggregated, and it is preferable that the average particle size of the secondary particles is 3 ⁇ m or more because the coating density can be increased when the positive electrode is formed. Further, when the thickness is 50 ⁇ m or less, it is possible to obtain a positive electrode having a smooth surface after coating, which is preferable.
- the average secondary particle size can be evaluated using a laser diffraction particle size distribution analyzer.
- the positive electrode active material of the embodiment of the present invention has an intensity I 006 calculated from the height of the peak identified as the 006 plane of the ⁇ -NaFeO 2 type layered structure in X-ray powder diffraction measurement, and the peak identified as the 102 plane. and the intensity I 101 calculated from the height of the peak identified as the 101 plane exceeds 0.420 and is 0.460 or less. It was found that this R value depends on the amount of cation mixing in which nickel ions are mixed into the lithium sites in the ⁇ -NaFeO 2 -type crystal structure.
- the diffusion resistance is small and the initial capacity is high.
- the R value is 0.460 or less, cation mixing is less and a high discharge capacity can be obtained.
- the R value is affected by the firing temperature, time, etc., but when the R value is 0.420 or less, the firing tends to be excessive, resulting in a coarse average primary particle size and good charge and discharge. There is a possibility that cycle characteristics cannot be obtained.
- the upper limit of the R value is preferably 0.450 or less, more preferably 0.435 or less.
- the lower limit side is preferably 0.425 or more, more preferably 0.430 or more.
- R value (I 006 +I 102 )/I 101 (2)
- the half width of the peak identified as the 104 plane in X-ray powder diffraction measurement (hereinafter sometimes referred to as the 104 plane half width), the crystallite size and the crystal lattice Focusing on the strain dependence, it was found that a narrow 104 plane half-value width indicates a large crystallite size and a tendency for lattice strain to be small. That is, it was found that the large crystallite size and the small lattice strain allowed the Li ions to move smoothly within the lithium site during charging and discharging, resulting in a low diffusion resistance, and as a result, the initial capacity tended to increase. .
- the initial capacity is affected by the amount of cation mixing, crystallite size, and lattice strain. Therefore, it is desirable to take into account both the R value, which correlates with the amount of cation mixing, and the half-value width of the 104 plane, which correlates with the crystallite size and lattice strain. It was found that in this embodiment, the smaller the sum of the 104 plane half width and the R value (half width + R value), the higher the initial capacitance tends to be obtained. However, if it is too small, sintering tends to be excessive and the average primary particle size becomes larger than necessary.
- the upper limit of the half width + R value is preferably 0.585 or less, more preferably 0.560 or less.
- the lower limit side is preferably 0.530 or more, more preferably 0.540 or more.
- the secondary particles of the positive electrode active material according to the embodiment of the present invention preferably have a specific surface area of 0.30 m 2 /g or more and 1.00 m 2 /g or less.
- the greater the specific surface area the wider the contact area between the electrolyte and the positive electrode active material, the lower the resistance to insertion/desorption of Li ions on the surface of the positive electrode active material, and the higher the initial capacity.
- the specific surface area is 0.30 m 2 /g or more, pores are formed in the secondary particles of the positive electrode active material. These pores can suppress stress caused by expansion/contraction of the volume of the positive electrode active material due to charge/discharge cycles.
- the specific surface area is 0.45 m 2 /g or more.
- the capacity is improved, and the capacity retention rate is also increased.
- the specific surface area is 0.60 m 2 /g or more, and particularly preferably 0.90 m 2 /g or more.
- the capacity is improved and the capacity retention rate is also increased. If the specific surface area is 1.00 m 2 /g or less, bonding between adjacent primary particles can be ensured, and a decrease in capacity due to charge-discharge cycles can be suppressed.
- the specific surface area of the positive electrode active material can be obtained by the Brunauer-Emett-Teller (BET) method or the like.
- oil absorption Further, based on JIS K5101-13-1, the oil absorption of N-methyl-2-pyrrolidone per 100 g of the lithium composite oxide powder (hereinafter sometimes referred to as oil absorption) is 27 ml/100 g or more, It is preferably 35 ml/100 g or less. As the oil absorption increases, the contact area between the electrolytic solution and the positive electrode active material increases, the resistance to insertion/desorption of Li ions on the surface of the positive electrode active material decreases, and the capacity improves. Here, when the oil absorption is 27 ml/100 g or more, pores are formed in the secondary particles of the positive electrode active material.
- the oil absorption is 28 ml/100 g or more.
- the capacity is improved, and the capacity retention rate is also increased.
- the oil absorption is 29 ml/100 g or more, and particularly preferably 32 ml/100 g or more.
- the capacity is improved and the capacity retention rate is also increased. If the oil absorption is 35 ml/100 g or less, bonding between adjacent primary particles can be ensured, and a decrease in capacity due to charge-discharge cycles can be suppressed.
- NMP N-methylpyrrolidone
- the porosity of the secondary particles of the positive electrode active material according to the embodiment of the present invention is preferably 8% or more and 24% or less.
- the porosity is 8% or more, the stress caused by expansion/contraction of the volume of the positive electrode active material due to charge/discharge cycles can be suppressed.
- the porosity is 12% or more. The capacity is improved, and the capacity retention rate is also increased. If the porosity is 24% or less, bonding between adjacent primary particles can be ensured, and a decrease in capacity due to charge-discharge cycles can be suppressed.
- the mode pore size is preferably 0.22 ⁇ m or more and 0.30 ⁇ m or less.
- the mode pore diameter is 0.22 ⁇ m or more, stress caused by expansion/contraction of the volume of the positive electrode active material due to charge/discharge cycles can be suppressed. As a result, microcracks generated in the secondary particles are suppressed, and a decrease in capacity is suppressed.
- the mode pore diameter is 0.26 ⁇ m or more. The capacity is improved, and the capacity retention rate is also increased. If the mode pore diameter is 0.30 ⁇ m or less, the bonding between adjacent primary particles can be ensured, and the decrease in capacity can be suppressed.
- the mode pore size can be measured by mercury porosimetry. Specifically, a pore distribution indicating pore diameter and frequency was measured by a mercury intrusion method, and the pore diameter with the highest frequency in the pore diameter range of 0.6 ⁇ m or less was defined as the mode pore diameter.
- Lithium ion secondary battery using the positive electrode active material (positive electrode active material for lithium ion secondary battery) containing the lithium composite oxide as a positive electrode will be described.
- FIG. 1 is a partial cross-sectional view schematically showing an example of a lithium ion secondary battery.
- a lithium ion secondary battery 100 includes a bottomed cylindrical battery can 101 containing a non-aqueous electrolyte, a wound electrode group 110 housed inside the battery can 101, and a battery can. and a disk-shaped battery lid 102 that seals the upper opening of the battery 101 .
- the battery can 101 and the battery lid 102 are made of, for example, metal materials such as stainless steel and aluminum.
- the positive electrode 111 includes a positive electrode current collector 111a and a positive electrode mixture layer 111b formed on the surface of the positive electrode current collector 111a.
- the negative electrode 112 includes a negative electrode current collector 112a and a negative electrode mixture layer 112b formed on the surface of the negative electrode current collector 112a.
- the lithium ion secondary battery 100 has a cylindrical shape, the shape and battery structure of the lithium ion secondary battery are not particularly limited. shape or other battery structures.
- the lithium ion secondary battery according to this embodiment can be used for various purposes.
- Applications include, for example, small power sources such as portable electronic devices and household electrical devices, stationary power sources such as power storage devices, uninterruptible power sources, and power leveling devices, ships, railroad vehicles, hybrid railroad vehicles, and hybrids. Examples include, but are not limited to, power sources for driving automobiles, electric vehicles, and the like.
- the lithium composite oxide has a high nickel content, exhibits high discharge capacity, and exhibits good charge-discharge cycle characteristics. Therefore, it is particularly suitable for use in vehicles, etc., where long life is required. can be done.
- the chemical composition of the positive electrode active material used in lithium ion secondary batteries can be determined by disassembling the battery, collecting the positive electrode active material that constitutes the positive electrode, and performing high-frequency inductively coupled plasma emission spectroscopy, atomic absorption spectrometry, etc. can be confirmed.
- the positive electrode active material of the present invention can be obtained, for example, by ensuring that the synthesis reaction between lithium and nickel or the like proceeds under appropriate firing conditions under raw material ratios such that the lithium composite oxide has a desired chemical composition. can be manufactured. As an example, a method for producing a positive electrode active material will be described below.
- a method for producing a positive electrode active material for a lithium ion secondary battery includes a step of obtaining a granule by either a granulation step or a coprecipitation step, and a firing step of firing the granule in an oxidizing atmosphere. .
- steps other than these steps may be added.
- a mixing step of mixing the granules with lithium carbonate or lithium hydroxide may be added.
- the slurry positive electrode mixture gels in the mixture coating step for producing the positive electrode. Therefore, following the firing process, a water washing process and a drying process may be added to reduce the remaining lithium hydroxide and lithium carbonate.
- Step of obtaining granules When the granules are obtained by the granulation process, the raw material mixing process is performed before the granulation process.
- a compound containing lithium and a compound containing a metal element other than Li may be mixed, or only a compound containing a metal element other than Li may be mixed. From the viewpoint of dispersing Li more uniformly, it is preferable to mix a compound containing lithium with a compound containing a metal element other than Li. For example, by weighing, pulverizing and mixing these raw materials, a powdery mixture in which the raw materials are uniformly mixed can be obtained.
- a pulverizer for pulverizing the raw material for example, general precision pulverizers such as ball mills, bead mills, jet mills, rod mills and sand mills can be used.
- the pulverization of the raw material may be dry pulverization or wet pulverization.
- a solvent such as water may be added to form a slurry composed of the raw material and the solvent, or a solvent such as water may be added to the raw material in advance to form a slurry, followed by wet pulverization. From the viewpoint of obtaining a uniform and fine powder, wet pulverization using a medium such as water is more preferable. Further, it is preferable to disperse the raw materials uniformly.
- a dispersant for example, in wet mixing, it is preferable to use a dispersant to improve the dispersibility of the raw materials in the slurry.
- Polycarboxylic acid-based, urethane-based, and acrylic resin-based dispersants can be used, and acrylic resin-based dispersants are preferred.
- the amount of dispersant added can be arbitrarily added to adjust the viscosity of the slurry.
- the mixture obtained in the raw material mixing step is granulated to obtain secondary particles (granules) in which particles are agglomerated.
- Granulation of the mixture may be performed using either dry granulation or wet granulation.
- Appropriate granulation methods such as tumbling granulation, fluidized bed granulation, compression granulation, and spray granulation can be used to granulate the mixture.
- a spray granulation method is particularly preferable as the granulation method for granulating the mixture.
- Various systems such as a two-fluid nozzle system, a four-fluid nozzle system, and a disk system can be used as the spray granulator.
- the slurry obtained by precision mixing and pulverization by wet pulverization can be granulated while being dried.
- the mixture obtained in the mixing step is preferably granulated so that the average particle size (D50) is 3 ⁇ m or more and 50 ⁇ m or less.
- the average particle size (D50) of the more preferable secondary particles of the granules is 5 ⁇ m or more and 20 ⁇ m or less.
- the coprecipitates may be obtained by adjusting the pH of the aqueous solution containing Ni, Co, M, and X.
- Ni, Co, M, and X may all be coprecipitated at once, or after coprecipitating (precipitating) one or more of Ni, Co, M, and X, other elements may be added simultaneously or individually. The elements may separately precipitate (coprecipitate) on the surface of the coprecipitate.
- the granules and the lithium compound are mixed.
- Mixing of the granules and the lithium compound can be performed by dry mixing.
- a mixer for mixing the granules and the lithium compound for example, a V-type mixer, an attritor, or the like can be used.
- the granules may be heat-treated before mixing the granules and the lithium compound. The particle strength of the granules is increased, and the lithium compound can be mixed without breaking the granules.
- Examples of compounds containing lithium include lithium carbonate, lithium acetate, lithium nitrate, lithium hydroxide, lithium chloride, and lithium sulfate.
- the gas generated in the firing step is water vapor or carbon dioxide, which causes little damage to the manufacturing apparatus and is excellent in industrial applicability and practicality.
- it is more preferable to use at least lithium carbonate and it is more preferable to use lithium carbonate at a rate of 80% by mass or more in the raw material containing lithium.
- Lithium carbonate is more stable in supply and cheaper than other lithium-containing compounds, and is readily available.
- since lithium carbonate is weakly alkaline, it causes little damage to manufacturing equipment and is excellent in industrial applicability and practicality.
- compounds containing metal elements other than Li compounds composed of C, H, O, N such as carbonates, hydroxides, oxyhydroxides, acetates, citrates and oxides are preferably used. . Carbonates, hydroxides, and oxides are particularly preferred from the viewpoint of ease of pulverization and the amount of gas released by thermal decomposition. Sulfate may also be used. It is easily dissolved in a solvent such as water and is preferred.
- the atomic concentration ratio (molar ratio) between the atomic concentration (number of moles) of lithium contained in the fired precursor and the total atomic concentration (number of moles) of the metal elements other than lithium is approximately 1 as the stoichiometric ratio. : It is desirable to react with 1.
- the atomic concentration ratio (molar ratio) between the atomic concentration (number of moles) of lithium contained in the fired precursor and the total atomic concentration (number of moles) of metal elements other than lithium is 0.90 or more and 1.10 or less. be. During sintering, the synthesis reaction proceeds appropriately, and the amount of cation mixing that nickel is mixed into the lithium sites is reduced.
- the amount of cation mixing decreases.
- the smaller the R value the higher the initial capacity.
- lithium contained in the fired precursor may react with the firing container or volatilize. Considering that part of the lithium is lost due to reaction with the firing vessel and evaporation during firing, it is not prohibited to add an excess amount of lithium at the time of charging.
- the granules are heat-treated to sinter the lithium composite oxide.
- a desired R value and primary particle size can be obtained by adjusting the firing conditions.
- the firing step may be performed by a single heat treatment in which the heat treatment temperature is controlled within a certain range, or by a plurality of heat treatments in which the heat treatment temperatures are controlled within different ranges.
- the first heat treatment step it is preferable to obtain the first precursor by heat treatment at a heat treatment temperature of 400° C. or more and less than 750° C. in an oxidizing atmosphere for 2 hours or more and 80 hours or less.
- the first heat treatment step may be a single heat treatment in which the heat treatment temperature is controlled within a certain range, or a plurality of heat treatments in which the heat treatment temperatures are controlled within different ranges.
- the primary purpose of the first heat treatment step is to remove water or carbonic acid components and to generate crystals of lithium composite oxide by reacting the lithium compound with the nickel compound or the like. Sufficient oxidation of nickel in the fired precursor suppresses cation mixing that nickel is mixed into lithium sites, and suppresses the formation of cubic domains due to nickel.
- the first heat treatment step is preferably performed at a heat treatment temperature of 600°C or more and less than 750°C for 2 hours or more and 80 hours or less to obtain the first precursor. Furthermore, in the first heat treatment step, a first heat treatment in which the heat treatment temperature is controlled within a certain range, and a second heat treatment at a temperature higher than the first heat treatment in a range of 10 ° C. or higher and 50 ° C. or lower may be performed. preferable.
- nickel in the fired precursor is sufficiently oxidized, and cation mixing that nickel is mixed into the lithium site can be suppressed.
- the first heat treatment step is preferably performed at a heat treatment temperature of 400°C or more and less than 550°C for 2 hours or more and 20 hours or less to obtain the first precursor.
- a heat treatment temperature 400°C or more and less than 550°C for 2 hours or more and 20 hours or less.
- the heat treatment temperature is more preferably 510° C. or less.
- the temperature is 510° C. or lower, the amount of cation mixing can be suppressed while suppressing coarsening of the average primary particle size. That is, only the initial capacity can be increased without affecting the charge/discharge cycle characteristics.
- the first precursor obtained in the first heat treatment step is heat treated at a heat treatment temperature of 700° C. or higher and 900° C. or lower for 2 hours or more and 100 hours or less. to obtain a lithium composite oxide.
- the main purpose of the second heat treatment step is to grow the crystal grains of the lithium composite oxide having a layered structure to an appropriate grain size and specific surface area.
- the crystal grains of the lithium composite oxide can be grown to an appropriate grain size and specific surface area while sufficiently oxidizing nickel to suppress cation mixing. can.
- the heat treatment temperature is 900° C. or less, lithium is difficult to volatilize and the layered structure is difficult to decompose, so it is possible to obtain a lithium composite oxide with high crystal purity and good discharge capacity, charge-discharge cycle characteristics, etc. can be done.
- a heat treatment step at a lower temperature than the second heat treatment step may be added.
- the heat treatment temperature in the second heat treatment step is preferably 820°C or less.
- the heat treatment temperature of the second heat treatment step is preferably 820°C or less.
- a lithium composite oxide having an average primary particle size of 550 nm or less can be obtained, and good charge-discharge cycle characteristics can be obtained.
- the specific surface area, oil absorption, porosity, and mode pore size can be controlled.
- the mounting method it is possible to change the discharge state of carbon dioxide generated with the formation of the layered structure, and to change the amount of liquid phase during the second heat treatment step, the oxygen concentration in the atmosphere, and the carbon dioxide concentration. , the physical properties described above can be controlled.
- the heat treatment temperature in the second heat treatment step is preferably 850°C or less.
- the heat treatment temperature in the second heat treatment step is preferably 850°C or less.
- the heat treatment time of the second heat treatment step is 20 hours or more and 100 hours or less.
- the lithium composite oxide has a small average primary particle size, a small R value and a small half width, and achieves both a high initial capacity and good charge-discharge cycle characteristics. is obtained.
- the heat treatment time is preferably 100 hours or less.
- suitable heat treatment equipment such as a rotary furnace such as a rotary kiln, a roller hearth kiln, a tunnel furnace, a continuous furnace such as a pusher furnace, and a batch furnace can be used as means for heat treatment.
- the first heat treatment step and the second heat treatment step may be performed using the same heat treatment apparatus, or may be performed using different heat treatment apparatuses.
- a positive electrode active material composed of a lithium composite oxide can be manufactured through the above granulation process or coprecipitation process and firing process.
- the R value, the half width of the peak identified by the 104 plane (half width of the 104 plane), and the average primary particle size are mainly determined by the method of preparing the precursor before heat treatment, the composition ratio of the metal element such as nickel, and the first heat treatment step. can be controlled by adjusting the heat treatment temperature of , and the heat treatment temperature and heat treatment time of the second heat treatment step.
- the R value can be lowered while maintaining the average primary particle size.
- the amount of cobalt and the amount of titanium are increased, the heat treatment temperature in the first heat treatment step is lowered, the heat treatment time in the second heat treatment step is lengthened, and the average primary particle size is maintained by the above operations. , the R value can be reduced.
- the synthesized lithium composite oxide is subjected to a washing step in which it is washed with deionized water or the like after the firing step, and a drying step in which the washed lithium composite oxide is dried.
- a crushing step of crushing the synthesized lithium composite oxide may be subjected to a classification step of classifying the lithium composite oxide into a predetermined particle size, and the like.
- the specific surface area of the positive electrode active material was obtained by the BET method using a fully automatic specific surface area measuring device "Macsorb” (manufactured by Mountec).
- the oil absorption of the positive electrode active material was measured according to JIS K5101-13-1, and NMP (N-methylpyrrolidone) was used as the solvent.
- NMP N-methylpyrrolidone
- 5.0 g of positive electrode active material is weighed out and placed in a pile on a flat vat. NMP is sucked up with a poly dropper (2 mL capacity) and weighed. Next, while dropping NMP into the positive electrode active material, it is kneaded with a spatula, and the dropping and kneading are continued until the positive electrode active material becomes clay-like as a whole. When the amount of NMP was excessive, the droplets were not absorbed by the positive electrode active material and remained on the surface.
- the porosity of the positive electrode active material is determined by a mercury intrusion method using a pore size distribution measuring device "Autopore IV 9520" (manufactured by Shimadzu Corporation - Micromeritics) to determine the number of pores with a pore diameter of 0.6 ⁇ m or less.
- the pore size distribution was measured with a pore size distribution measuring device, and the pore size with the highest frequency in the pore size range of 0.6 ⁇ m or less was taken as the mode pore size.
- the X-ray diffraction pattern in the X-ray powder diffraction measurement of the positive electrode active material was obtained using an X-ray diffractometer "X'Pert PRO MPD" (manufactured by PANalyticalsei) with a radiation source CuK ⁇ , a tube voltage of 45 kV, a tube current of 40 mA, and a sampling interval of 0. 02°/step, a divergence slit of 0.5°, a scattering slit of 0.5°, a receiving slit of 0.15 mm, and a scanning range of 15° ⁇ 2 ⁇ 80°.
- X'Pert PRO MPD manufactured by PANalyticalsei
- Example 1 lithium carbonate, nickel hydroxide, cobalt carbonate, manganese carbonate, titanium oxide, and aluminum oxide were prepared as raw materials, and the molar ratios of the metal elements in each raw material were Li:Ni:Co:Mn:Ti:Al, and 1 03:0.85:0.03:0.08:0.03:0.01, and pure water was added so that the solid content ratio was 30% by mass. Then, a raw material slurry was prepared by wet pulverization (wet mixing) with a pulverizer so that the average particle diameter was less than 0.2 ⁇ m (raw material mixing step).
- the obtained raw material slurry was spray-dried with a nozzle-type spray dryer (ODL-20 type, manufactured by Ogawara Kakoki Co., Ltd.) to obtain granules having a D50 of 12 ⁇ m (granulation step).
- the spray pressure is 0.13 MPa and the spray amount is 260 g/min.
- the dried granules were heat-treated to bake the lithium composite oxide (baking step). Specifically, the granules were dehydrated at 400° C. for 5 hours in an air atmosphere in a continuous transfer furnace. Then, in a firing furnace replaced with an oxygen gas atmosphere, a first heat treatment (first stage) is performed at 650 ° C.
- first heat treatment step a first heat treatment (second stage) heat treatment is performed at 700 ° C. for 30 hours. to obtain a first precursor (first heat treatment step).
- first precursor is subjected to a second heat treatment (first stage) at 820° C. for 10 hours in an oxygen stream in a firing furnace replaced with an oxygen gas atmosphere, and then in a firing furnace replaced with an oxygen gas atmosphere.
- second heat treatment was performed at 740° C. for 4 hours in an oxygen stream to obtain a lithium composite oxide (second heat treatment step).
- the fired powder obtained by firing was classified using a sieve with an opening of 53 ⁇ m, and the powder under the sieve was used as a positive electrode active material as a sample.
- the heat treatment of the first heat treatment step will be referred to as the first heat treatment
- the heat treatment of the second heat treatment step will be referred to as the second heat treatment.
- Example 2 nickel hydroxide, manganese carbonate, titanium oxide, and aluminum oxide were prepared as raw materials, and the molar ratio of the metal elements in each raw material was Ni:Mn:Ti:Al, which was 0.88:0.08:0.03. : 0.01, and pure water was added so that the solid content ratio was 20% by mass. Then, a raw material slurry was prepared by wet pulverization (wet mixing) with a pulverizer so that the average particle diameter was less than 0.2 ⁇ m (raw material mixing step).
- the obtained raw material slurry was spray-dried with a nozzle-type spray dryer (ODL-20 type, manufactured by Ogawara Kakoki Co., Ltd.) to obtain granules having a D50 of 12 ⁇ m (granulation step).
- the spray pressure is 0.13 MPa and the spray amount is 260 g/min.
- the dried granules were heat-treated at 650° C. for 10 hours to bake the metal composite oxide.
- the lithium hydroxide and the obtained metal composite oxide were weighed so that the molar ratio of Li to the metal element other than lithium was 1.03:1.00, and mixed using a V-type mixer. Then, a first heat treatment was performed at 500° C.
- first heat treatment step For 14 hours in an oxygen stream in a sintering furnace replaced with an oxygen gas atmosphere to obtain a first precursor (first heat treatment step).
- first precursor is subjected to a second heat treatment (first stage) at 850° C. for 32 hours in an oxygen stream in a firing furnace replaced with an oxygen gas atmosphere, and then in a firing furnace replaced with an oxygen gas atmosphere.
- second heat treatment was performed at 740° C. for 4 hours in an oxygen stream to obtain a lithium composite oxide (second heat treatment step).
- the fired powder obtained by firing was classified using a sieve with an opening of 53 ⁇ m, and the powder under the sieve was used as a positive electrode active material as a sample.
- Example 3 A positive electrode active material was obtained in the same manner as in Example 2, except that the heat treatment temperature of the second heat treatment (first stage) was 835° C. and the heat treatment time was 64 hours. Note that the second heat treatment below refers to the first step, and the description of the (first step) is omitted.
- Example 4 A positive electrode active material was obtained in the same manner as in Example 2, except that the heat treatment temperature of the second heat treatment was 835° C. and the heat treatment time was 32 hours.
- Example 5 A positive electrode active material was obtained in the same manner as in Example 2, except that the ratio of Li:metal element other than lithium was 1.05:1.00, the heat treatment temperature of the second heat treatment was 835 ° C., and the heat treatment time was 32 hours. rice field.
- Example 6 Li: Ni: Co: Mn: Ti: Al was weighed so that the molar ratio of the metal elements was 1.03: 0.88: 0.03: 0.05: 0.03: 0.01. , to obtain a positive electrode active material in the same manner as in Example 1.
- Example 7 As raw materials, nickel hydroxide, cobalt carbonate, manganese carbonate, titanium oxide, and aluminum oxide were prepared, and the molar ratio of the metal elements of each raw material was Ni:Co:Mn:Ti:Al, 0.88:0.03: A positive electrode active material was obtained in the same manner as in Example 2 except that the weights were weighed so as to be 0.05:0.03:0.01, and the heat treatment temperature of the second heat treatment was 820° C. and the heat treatment time was 24 hours. .
- Example 8 As raw materials, nickel hydroxide, cobalt carbonate, manganese carbonate, titanium oxide, and aluminum oxide were prepared, and the molar ratio of the metal elements of each raw material was Ni:Co:Mn:Ti:Al, 0.88:0.03: It was weighed so as to be 0.05:0.03:0.01, the ratio of Li: metal elements other than lithium was 1.05:1.00, the heat treatment temperature of the second heat treatment was 820 ° C., and the heat treatment time was 820 ° C. A positive electrode active material was obtained in the same manner as in Example 2, except that the time was set to 12 hours.
- Example 9 Nickel hydroxide, cobalt carbonate, and manganese carbonate were prepared as raw materials, and each raw material was weighed so that the molar ratio of the metal elements Ni:Co:Mn was 0.88:0.09:0.03, A positive electrode active material was obtained in the same manner as in Example 2, except that the heat treatment temperature of the second heat treatment was 740° C. and the heat treatment time was 32 hours.
- Example 10 Nickel hydroxide, cobalt carbonate, titanium oxide, and aluminum oxide were prepared as raw materials, and the molar ratio of the metal elements in each raw material was Ni:Co:Ti:Al, which was 0.92:0.03:0.03:0.
- a positive electrode active material was obtained in the same manner as in Example 2 except that the second heat treatment was performed at a heat treatment temperature of 780° C. and a heat treatment time of 64 hours.
- Example 1 A positive electrode active material was obtained in the same manner as in Example 1, except that the heat treatment temperature of the second heat treatment was 810°C.
- Example 2 A positive electrode active material was obtained in the same manner as in Example 2, except that the ratio of Li:metal element other than lithium was 1.05:1.00, the heat treatment temperature of the second heat treatment was 840 ° C., and the heat treatment time was 64 hours. rice field.
- Example 3 A positive electrode active material was obtained in the same manner as in Example 2, except that the ratio of Li:metal element other than lithium was 1.01:1.00, the heat treatment temperature of the second heat treatment was 835 ° C., and the heat treatment time was 32 hours. rice field.
- a positive electrode active material was obtained in the same manner as in Example 2 except that the heat treatment temperature of the first heat treatment was 520° C., the heat treatment temperature of the second heat treatment was 820° C., and the heat treatment time was 96 hours.
- a positive electrode active material was obtained in the same manner as in Example 2, except that the heat treatment temperature of the second heat treatment was 835° C. and the heat treatment time was 10 hours.
- a positive electrode active material was obtained in the same manner as in Example 2 except that the heat treatment temperature of the first heat treatment was 520° C., the heat treatment temperature of the second heat treatment was 835° C., and the heat treatment time was 32 hours.
- a positive electrode active material was obtained in the same manner as in Example 6, except that the heat treatment temperature of the second heat treatment was 830°C.
- Example 8 A positive electrode active material was obtained in the same manner as in Example 6, except that the heat treatment temperature of the second heat treatment was 840°C.
- Example 9 A positive electrode active material was obtained in the same manner as in Example 8, except that the Li:metal element ratio other than lithium was 1.03:1.00.
- Table 1 shows the chemical composition of the positive electrode active materials of Examples 1 to 10 and Comparative Examples 1 to 9, the temperature of the first heat treatment, and the temperature and time of the second heat treatment (first stage).
- the first heat treatment (first stage) and the second heat treatment (second stage) in Example 1, Example 6, Comparative Example 1, Comparative Example 7, and Comparative Example 8 are omitted.
- the average primary particle size, R value, and half width of the peak identified on the 104 plane were evaluated. The results are also shown in Table 1.
- the average secondary particle size was in the range of 8 to 13 ⁇ m with the aim of 10 ⁇ m in both Examples and Comparative Examples.
- the half-value width of the peak identified by the 104 plane is described as "104 plane half-value width”
- the sum of the half-value width of the peak identified by the 104 plane and the R value is described as "half value width+R value”.
- the SEM image of Example 6 is shown in FIG.
- a lithium ion secondary battery was produced using the synthesized positive electrode active material as a positive electrode material, and the discharge capacity and capacity retention rate of the lithium ion secondary battery were determined.
- the prepared positive electrode active material, the carbon-based conductive material, and the binder previously dissolved in N-methyl-2-pyrrolidone (NMP) were mixed in a mass ratio of 94:4.5:1.5. mixed as Then, the uniformly mixed positive electrode material mixture slurry was applied onto a positive electrode current collector made of aluminum foil having a thickness of 20 ⁇ m so that the coating amount was 10 mg/cm 2 .
- the positive electrode mixture slurry applied to the positive electrode current collector was heat-treated at 120° C. to distill off the solvent to form a positive electrode mixture layer. After that, the positive electrode mixture layer was pressure-molded by a hot press, and punched into a circular shape with a diameter of 15 mm to obtain a positive electrode.
- a lithium ion secondary battery was produced using the produced positive electrode, negative electrode, and separator.
- Metallic lithium punched into a circular shape with a diameter of 16 mm was used as the negative electrode.
- As the separator a polypropylene porous separator having a thickness of 30 ⁇ m was used.
- a lithium ion secondary battery was assembled by facing the positive electrode and the negative electrode in the non-aqueous electrolyte with the separator interposed therebetween.
- the non-aqueous electrolyte a solution was used in which LiPF 6 was dissolved to a concentration of 1.0 mol/L in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 3:7.
- the prepared lithium ion secondary battery was charged at a constant current/voltage of 40 A/kg based on the weight of the positive electrode mixture and an upper limit potential of 4.3 V in an environment of 25°C. Then, the battery was discharged to a lower potential of 2.5 V at a constant current of 40 A/kg based on the weight of the positive electrode mixture, and the initial capacity (discharge capacity) was measured. The results are also shown in Table 1.
- a lithium ion secondary battery was produced using the produced positive electrode, negative electrode, and separator.
- As the negative electrode a circular negative electrode having a diameter of 16 mm was punched out from a negative electrode current collector made of copper foil coated with graphite.
- As the separator a polypropylene porous separator having a thickness of 30 ⁇ m was used.
- a lithium ion secondary battery was assembled by facing the positive electrode and the negative electrode in the non-aqueous electrolyte with the separator interposed therebetween.
- LiPF 6 was dissolved to 1.0 mol/L in a solvent in which ethylene carbonate and dimethyl carbonate were mixed so that the volume ratio was 3:7, and further 1.5% by mass. of vinylene carbonate was used.
- the prepared lithium ion secondary battery was charged at a constant current/voltage of 200 A/kg based on the weight of the positive electrode mixture and an upper limit potential of 4.3 V in an environment of 50°C. Then, a total of 10 cycles of discharging to the lower limit potential of 2.5 V were performed at a constant current of 200 A/kg based on the weight of the positive electrode mixture, and the discharge capacity after 10 cycles was measured. The fraction of the discharge capacity after 10 cycles to the initial capacity was calculated as the capacity retention rate. The results are also shown in Table 1.
- Example 5 Comparative Example 3
- the ratio of Li to a metal element other than lithium increases, the R value decreases while maintaining the average primary particle size within the range of the present invention. It was confirmed that the half-value width is narrow.
- the ratio of Li: metal element other than lithium is 1.01
- the R value is 0.467, which is outside the range of the present invention
- the ratio of Li: metal element other than lithium is 1.03 or more
- R The value was 0.453 or less, and the R value within the range of the present invention was obtained.
- Example 3 Example 4, and Comparative Example 5, when the heat treatment time of the second heat treatment was prolonged, the R value decreased while maintaining the average primary particle diameter within the range of the present invention, and the 104 plane half width It was confirmed that it was narrower.
- the heat treatment time of the second heat treatment is 10 hours, the R value is 0.464, which is outside the scope of the present invention. Yes, and an R value within the scope of the present invention was obtained.
- Example 4 and Comparative Example 6 when the heat treatment temperature of the first heat treatment is low, the R value decreases and the 104 plane half width narrows while maintaining the average primary particle size within the range of the present invention. I was able to confirm that.
- the heat treatment temperature of the first heat treatment is 520 ° C.
- the R value is 0.467, which is outside the range of the present invention. R values within the range of the invention were obtained.
- FIG. 4 shows the relationship between the initial capacity and the R value
- FIG. 6 shows the relationship
- FIG. 7 shows the relationship between the sum of the initial capacity ratio, the half-value width of the 104 plane, and the R value.
- FIG. 8 shows the relationship between the capacity retention rate and the average primary particle size (described as "average value of primary particle size").
- the black circles are examples, and the white circles are comparative examples.
- the initial capacity and initial capacity rate depend on the R value, and when the R value exceeds 0.420 and is 0.46 or less, a high initial capacity of 190 Ah / kg or more and a high initial capacity of 93% or more It was confirmed that the rate was obtained.
- the initial capacity and the initial capacity rate depend on the FWHM of the 104 plane + the R value, and when the sum of the FWHM of the 104 plane and the R value is 0.480 or more and 0.595 or less, the initial capacity and the initial capacity rate are 190 Ah/kg or more. It was confirmed that a high initial capacity and a high initial capacity rate of 93% or more can be obtained. Further, from FIG. 8, it was confirmed that the capacity retention rate depends on the average primary particle size, and that when the average primary particle size is 550 nm or less, good charge/discharge cycle characteristics of 81% or more can be obtained.
- Examples 1 to 10 had a primary particle diameter of 50 nm or more and 550 nm or less, and an R value of more than 0.420 and 0.460 or less. As a result, each example of the present invention achieved a high initial capacity exceeding 190 Ah/kg and a high initial capacity rate exceeding 93%. In addition, the capacity retention ratio exceeded 81%, showing good charge-discharge cycle characteristics, confirming that the positive electrode active material is an excellent positive electrode active material that achieves both a high initial capacity and good charge-discharge cycle characteristics.
- Examples 11 to 15 A positive electrode active material was obtained in the same manner as in Example 1 except for the method of loading the first precursor in the second heat treatment.
- the loading methods vary in loading weight, stack thickness, and loading container size.
- By changing these mounting methods it is possible to change the state of carbon dioxide discharge, the amount of liquid phase, and the concentration of oxygen and carbon dioxide in the atmosphere in the first precursor.
- the following physical properties such as specific surface area, oil absorption, porosity, and mode pore diameter are controlled.
- the mounting method and the control of various physical properties are not uniquely determined, and it is necessary to accumulate data for each site and associate them.
- Example 16 A positive electrode active material was obtained in the same manner as in Example 13, except that the heat treatment temperature of the second heat treatment was 815°C.
- the chemical composition of the positive electrode active materials of Examples 11 to 16, the temperature of the second heat treatment (first stage), the average primary particle size, the R value, the half width of the peak identified on the 104 plane, the specific surface area, and the oil absorption , porosity, and mode pore diameter were evaluated.
- Table 2 shows the results.
- Table 2 also shows the results of Example 1.
- the average secondary particle size was in the range of 8 to 13 ⁇ m, aiming at 10 ⁇ m.
- a positive electrode was produced in the same manner as in Experimental Example 1, and the initial capacity, initial capacity rate, and capacity retention rate were evaluated. The results are also shown in Table 2.
- FIG. 9 shows the relationship between the capacity retention rate and the specific surface area
- FIG. 10 shows the relationship between the capacity retention rate and the oil absorption amount
- FIG. 11 shows the relationship between the capacity retention rate and the pore ratio
- FIG. is shown in FIG.
- Examples 11 to 16 had a high initial capacity exceeding 190 Ah/kg. It was also confirmed that the initial capacity was higher than that of Example 1. In particular, Examples 15 and 16 had a higher initial capacity of 200 Ah/kg or more. However, although Examples 1 and 15 had a relatively small primary particle size among Examples 1 to 16 and showed a good capacity retention rate, they had the same chemical composition and the primary particle size was small. Among similar examples in Table 2, the capacity retention rate was rather low. This is probably because in Example 1, the porosity was as low as 4%, and the effect of improving the capacity retention rate was not sufficiently obtained. On the other hand, in Example 15, since the porosity was excessively high at 26%, the particle strength of the secondary particles was low, which is thought to have affected the decrease in the capacity retention rate.
- the specific surface area is 0.30 m 2 /g or more and 1.00 m 2 /g or less
- the oil absorption is 27 ml/100 g or more and 35 ml/100 g or less
- the porosity is 8% or more and 24% or less
- the mode pore diameter is It was confirmed that in the range of 0.22 ⁇ m or more and 0.30 ⁇ m or less, both higher initial capacity and better charge/discharge cycle characteristics can be achieved.
- Example 3 The Ni ratio was set to 90%.
- Example 17 Lithium carbonate, nickel hydroxide, cobalt carbonate, manganese carbonate, titanium oxide, and aluminum oxide were prepared as raw materials, and the molar ratio of the metal elements in each raw material was Li:Ni:Co:Mn:Ti:Al, which was 1.03. : 0.90: 0.03: 0.02: 0.03: 0.02. A positive electrode active material was obtained in the same manner as above.
- Example 18 A positive electrode active material was obtained in the same manner as in Example 17, except that the heat treatment temperature of the second heat treatment was 795°C.
- Table 3 shows the results. Also, although not described, the average secondary particle size was in the range of 8 to 13 ⁇ m, aiming at 10 ⁇ m. Also, a positive electrode was produced in the same manner as in Experimental Example 1, and the initial capacity, initial capacity rate, and capacity retention rate were evaluated. The results are also shown in Table 3.
- Examples 17 and 18 have a primary particle diameter of 50 nm or more and 550 nm or less, and an R value of more than 0.420 and 0.460 or less, which is within the scope of the present invention, and are further identified as 104 planes.
- the sum of the half width of the peak and the R value is 0.480 or more and 0.595 or less
- the specific surface area is 0.30 m 2 /g or more and 1.00 m 2 /g or less
- the oil absorption is 27 ml/100 g or more and 35 ml/ It was within the range of 100 g or less.
- a high initial capacity of 202 Ah/kg or more was obtained, and it was confirmed that the initial capacity rate was as high as 98%.
- Examples 17 and 18 and 14 which have similar oil absorption (because there is a positive correlation between oil absorption and porosity, the porosity is also similar), , Examples 17 and 18 have an initial capacity higher than those of Examples 12 and 14 by 5 to 10 Ah/kg, and a capacity retention rate lower by 4 to 6%. Since the former had a Ni ratio of 90% and the latter had a Ni ratio of 85%, it is considered that this difference resulted in a high capacity but a slightly low capacity retention rate. Thus, it was confirmed that both high initial capacity and good charge/discharge cycle characteristics can be achieved within the scope of the present invention, although there are some differences due to the Ni ratio.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
(1)一次粒子径が0.1μm以上1μm以下であり、50%累積体積粒度D50が1μm以上10μm以下
(2)90%累積体積粒度D90と10%累積体積粒度D10との比率D90/D10が2以上6以下
(3)中和滴定により測定された粒子表面の残存アルカリに含まれる炭酸リチウム量が0.1質量%以上0.8質量%以下
Li1+aNibCocMdXeO2+α ・・・(1)
[但し、組成式(1)において、Mは、Al及びMnから選ばれる少なくとも1種の元素であり、XはTi、Ga、Mg、Zr、Znからなる群から選択される少なくとも1種の元素であり、-0.10≦a≦0.10、0.80≦b<1.00、0≦c≦0.20、0≦d≦0.20、0≦e≦0.05、b+c+d+e=1.00、-0.20≦α≦0.20を満たす数である。]
走査型電子顕微鏡で評価した前記一次粒子の粒子径の平均値(以下、平均一次粒子径と記載する)が50nm以上、550nm以下であり、X線粉末回折測定における、α-NaFeO2型層状構造の006面と同定されたピークの高さより算出した強度I006と、102面と同定されたピークの高さより算出した強度I102と、101面と同定されたピークの高さより算出した強度I101とに基づき下記の式(2)
R値=(I006+I102)/I101 ・・・(2)
により算出されるR値が0.420超え、0.460以下である。
本実施形態に係るリチウムイオン二次電池用正極活物質は、α-NaFeO2型層状構造を有するリチウム複合酸化物である。層状構造を有することで、含まれるLi元素をイオンとして挿入及び脱離することが可能であり、さらにNi元素を含むことで高い放電容量を実現することができる。
本実施形態に係る正極活物質は、主成分であるリチウム複合酸化物の他、原料や製造過程に由来する不可避的不純物、リチウム複合酸化物の粒子を被覆する他成分、例えば、ホウ素成分、リン成分、硫黄成分、フッ素成分、有機物等や、リチウム複合酸化物の粒子と共に混合される他成分等を含んでもよい。
Li1+aNibCocMdXeO2+α ・・・(1)
[但し、組成式(1)において、Mは、Al及びMnから選ばれる少なくとも1種の元素であり、XはTi、Ga、Mg、Zr、Znからなる群から選択される少なくとも1種の元素であり、-0.10≦a≦0.10、0.80≦b<1.00、0≦c≦0.20、0≦d≦0.20、0≦e≦0.05、b+c+d+e=1、-0.20≦α≦0.20を満たす数である。]
(但し、前記式(3)中、M´は、Ni、Co、Mn等の金属元素を表す。)
正極活物質は、前記リチウム複合酸化物の一次粒子と、一次粒子からなる二次粒子を有する。このとき正極活物質は、複数の一次粒子が凝集した二次粒子を含み、二次粒子の内部は、複数の一次粒子同士が界面を介して隣接し合って構成されている。但し、全ての一次粒子同士が界面を形成しているものではなく、多くの一次粒子同士が界面を形成していることでよい。この正極活物質の二次粒子(造粒体)は、例えば、後述する正極活物質の製造方法によって製造された一次粒子を、乾式造粒又は湿式造粒によって造粒することによって二次粒子化することができる。具体的な造粒手段としては、例えば、スプレードライヤーや転動流動層装置等の造粒機が挙げられる。このように一次粒子からなる二次粒子とすることで比表面積が小さくなるため、成形密度や正極活物質の充填率が十分に高い正極を得ることができるため好ましい。
上述の平均一次粒子径は、走査型電子顕微鏡(SEM)を使用して、正極活物質表面、すなわち二次粒子の表面を観察することにより算出することができる。具体的には図3に示すように、SEM像より、一次粒子の最大径(長径と言う)と最大径と直交する方向の径(短径と言う)を測定し、長径と短径を足し、2で割った値を一次粒子径(一次粒子径=(長径+短径)/2)とした。そして、任意の50個の粒子の一次粒子径を計測し、一次粒子径が小さい順に6粒子目から44粒子目の一次粒子の粒子径を算術平均して平均値を算出する。
本発明の実施形態の正極活物質は、X線粉末回折測定における、α-NaFeO2型層状構造の006面と同定されたピークの高さより算出した強度I006と、102面と同定されたピークの高さより算出した強度I102と、101面と同定されたピークの高さより算出した強度I101とに基づき算出されるR値が0.420を超え、0.460以下である。このR値はα-NaFeO2型の結晶構造におけるリチウムサイトにニッケルイオンが混入するカチオンミキシング量に依存することが分かった。即ち、このR値が小さくなっていくと、カチオンミキシング量が少なくリチウムサイトへのニッケルイオンの混入が少なくなり、充放電時にLiイオンがリチウムサイト内をスムーズに移動できる。このため拡散抵抗が小さく、初期容量が高くなることが分かった。具体的にはR値が0.460以下であるとカチオンミキシングが少なく、高い放電容量が得られる。R値は後述するように焼成温度や時間等に影響されるが、R値が0.420以下になると焼成が過剰である傾向にあり、結果、平均一次粒子径が粗大となり、良好な充放電サイクル特性が得られない虞れがある。R値の上限側は、好ましくは0.450以下、より好ましくは0.435以下である。他方、下限側は、好ましくは0.425以上、より好ましくは0.430以上である。
R値=(I006+I102)/I101 ・・・(2)
R値を各ピークのピーク高さではなく、各ピークの積分強度より算出する手段もあるが、本実施形態では積分強度よりもピーク高さから算出した方が初期容量との相関関係が強く出ることが分かったため、本発明では式(2)のピーク高さを用いて算出する方法を採用した。
本発明の実施形態の正極活物質は、その二次粒子の比表面積は、0.30m2/g以上、1.00m2/g以下であることが好ましい。比表面積は大きいほど、電解液と正極活物質の接触面積が広くなり、正極活物質表面におけるLiイオンの挿入/脱離の抵抗が低くなり、初期容量が向上する。ここで比表面積が0.30m2/g以上では、正極活物質の二次粒子内に細孔が形成されている。この細孔が充放電サイクルに伴う正極活物質の体積の膨張/収縮により生じる応力を抑制することができる。結果、二次粒子に発生するマイクロクラックが抑制され、容量低下が抑制される。比表面積が0.45m2/g以上であることがより好ましい。容量が向上し、容量維持率も高くなる。比表面積が0.60m2/g以上であることがさらに好ましく、比表面積が0.90m2/g以上であることが特に好ましい。さらに、容量が向上し、容量維持率も高くなる。比表面積が1.00m2/g以下であれば、隣接し合った一次粒子同士の結合が確保でき、充放電サイクルに伴う容量低下が抑制される。
正極活物質の比表面積は、Brunauer-Emett-Teller(BET)法等により求めることができる。
また、JIS K5101-13-1に基づく、前記リチウム複合酸化物粉末100g当たりのN-メチル-2-ピロリドンの吸油量(以下では、吸油量と言うことがある。)は、27ml/100g以上、35ml/100g以下であることが好ましい。吸油量が多いほど、電解液と正極活物質の接触面積が広くなり、正極活物質表面におけるLiイオンの挿入/脱離の抵抗が低くなり、容量が向上する。ここで吸油量が27ml/100g以上では、正極活物質の二次粒子内に細孔が形成されている。この細孔が充放電サイクルに伴う正極活物質の体積の膨張/収縮により生じる応力を抑制することができる。結果、二次粒子に発生するマイクロクラックが抑制され、容量低下が抑制される。吸油量が28ml/100g以上であることがより好ましい。容量が向上し、容量維持率も高くなる。吸油量が29ml/100g以上であることがさらに好ましく、吸油量が32ml/100g以上であることが特に好ましい。さらに、容量が向上し、容量維持率も高くなる。吸油量が35ml/100g以下であれば、隣接し合った一次粒子同士の結合が確保でき、充放電サイクルに伴う容量低下が抑制される。
吸油量は、JIS K5101-13-1に準拠して測定し、溶媒はN-メチルピロリドン(NMP)を用いた。正極活物質5.0gを測りとり、平らなバットに山状に設置する。NMPはポリスポイト(2mL容量)で吸い上げ、質量を測定しておく。次に、正極活物質にNMPを滴下しながらスパチュラで混錬し、正極活物質が全体的に粘土状となるまで滴下・混錬を続ける。NMPが過剰となると正極活物質に液滴が吸収されず表面に残る様子を視認でき、この時までに滴下したNMP量を正極活物質100g当たりに換算して吸油量を算出することができる。
また、本発明の実施形態の正極活物質は、その二次粒子の細孔率は、8%以上、24%以下であることが好ましい。細孔率が8%以上であると、充放電サイクルに伴う正極活物質の体積の膨張/収縮により生じる応力を抑制することができる。結果、二次粒子に発生するマイクロクラックが抑制され、容量低下が抑制される。細孔率が12%以上であることがより好ましい。容量が向上し、容量維持率も高くなる。細孔率が24%以下であれば、隣接し合った一次粒子同士の結合が確保でき、充放電サイクルに伴う容量低下が抑制される。
細孔率は、水銀圧入法により測定することが出来る。具体的には、水銀圧入法により細孔径が0.6μm以下の細孔の体積(細孔体積)を測定し、正極活物質の体積で割る(細孔率=細孔径0.6μm以下の細孔体積/正極活物質の体積)ことにより細孔率を算出することができる。
また、最頻細孔径は、0.22μm以上、0.30μm以下であることが好ましい。最頻細孔径が0.22μm以上であると、充放電サイクルに伴う正極活物質の体積の膨張/収縮により生じる応力を抑制することができる。結果、二次粒子に発生するマイクロクラックが抑制され、容量低下が抑制される。最頻細孔径が0.26μm以上であることがより好ましい。容量が向上し、容量維持率も高くなる。最頻細孔径が0.30μm以下であれば、隣接し合った一次粒子同士の結合が確保でき、容量低下が抑制される。
最頻細孔径は、水銀圧入法により測定することが出来る。具体的には、水銀圧入法により細孔径と頻度を示す細孔分布を測定し、細孔径が0.6μm以下の範囲において最も頻度が高い細孔径を、最頻細孔径とした。
次に、前記のリチウム複合酸化物を含む正極活物質(リチウムイオン二次電池用正極活物質)を正極に用いたリチウムイオン二次電池について説明する。
本発明の正極活物質は、例えば、リチウム複合酸化物が所望の化学組成となるような原料比の下、適切な焼成条件によって、リチウムと、ニッケル等との合成反応を確実に進行させることにより製造できる。例として正極活物質の製造方法を、以下に説明する。
造粒体を造粒工程により得る場合は、造粒工程の前に、原料混合工程を行う。リチウムを含む化合物とLi以外の金属元素を含む化合物とを混合しても良いし、Li以外の金属元素を含む化合物のみを混合しても良い。Liをより均一に分散させるという観点からは、リチウムを含む化合物とLi以外の金属元素を含む化合物とを混合することが好ましい。例えば、これらの原料をそれぞれ秤量し、粉砕及び混合することにより、原料が均一に混和した粉末状の混合物を得ることができる。原料を粉砕する粉砕機としては、例えば、ボールミル、ビーズミル、ジェットミル、ロッドミル、サンドミル等の一般的な精密粉砕機を用いることができる。原料の粉砕は、乾式粉砕としてもよいし、湿式粉砕としてもよい。乾式粉砕の後、水等の溶媒を加えて原料と溶媒から構成されるスラリーとしてもよいし、予め原料に水等の溶媒を加えてスラリー化してから湿式粉砕してもよい。均一で微細な粉末を得る観点からは、水等の媒体を使用した湿式粉砕を行うことがより好ましい。また、原料を均一に分散させることが好ましく、例えば湿式混合においては分散剤を用いてスラリー中の原料の分散性を向上させるとよい。分散剤は、ポリカルボン酸系、ウレタン系、アクリル樹脂系を用いることができ、アクリル樹脂系が好ましい。分散剤の添加量はスラリーの粘度を調整するため任意に加えることができる。
焼成工程では、造粒体を熱処理してリチウム複合酸化物を焼成する。焼成条件を調整することにより、所望のR値や一次粒子径を得ることができる。焼成工程は、熱処理温度が一定の範囲に制御される一段の熱処理で行ってもよいし、熱処理温度が互いに異なる範囲に制御される複数段の熱処理で行ってもよい。但し、結晶の純度が高く、高い放電容量、良好な充放電サイクル特性を示すリチウム複合酸化物を得る観点からは、以下に示す第1熱処理工程と、第2熱処理工程とを含むことが好ましく、第1熱処理工程と第2熱処理工程の条件を満たすことが肝要である。
第1熱処理工程は、酸化性雰囲気下で400℃以上750℃未満の熱処理温度で、2時間以上80時間以下にわたって熱処理して第1前駆体を得ることが好ましい。第1熱処理工程は、熱処理温度が一定の範囲に制御される一段の熱処理で行ってもよいし、熱処理温度が互いに異なる範囲に制御される複数段の熱処理で行ってもよい。第1熱処理工程は、リチウム化合物とニッケル化合物等との反応により、水分または炭酸成分を除去すると共に、リチウム複合酸化物の結晶を生成させることを主な目的とする。焼成前駆体中のニッケルを十分に酸化させて、リチウムサイトにニッケルが混入するカチオンミキシングを抑制し、ニッケルによる立方晶ドメインの生成を抑制する。
第2熱処理工程では、第1熱処理工程で得られた第1前駆体を第1熱処理工程の熱処理温度より高く、かつ、700℃以上900℃以下の熱処理温度で、2時間以上100時間以下にわたって熱処理してリチウム複合酸化物を得る。第2熱処理工程は、層状構造を有するリチウム複合酸化物の結晶粒を、適切な粒径や比表面積まで粒成長させることを主な目的とする。
正極活物質の一次粒子径は、走査型電子顕微鏡「S-4700」(日立製作所製)を使用して次の手順で測定した。30000倍でSEM像を撮影して、一次粒子の長径と短径(図3を参照)を測定し、長径と短径を足して2で割り一次粒子径(一次粒子径=(長径+短径)/2)とした。任意の50粒子の一次粒子径を計測し、一次粒子径が小さい順に6粒子目から44粒子目の一次粒子の粒子径を算術平均して平均値を算出した。
正極活物質の比表面積は、全自動比表面積測定装置「Macsorb」(マウンテック社製)を使用してBET法により求めた。
正極活物質の吸油量はJIS K5101-13-1に準拠して測定し、溶媒はNMP(N-メチルピロリドン)を用いた。正極活物質5.0gを測りとり、平らなバットに山状に設置する。NMPはポリスポイト(2mL容量)で吸い上げ、質量を測定しておく。次に正極活物質にNMPを滴下しながらスパチュラで混錬し、正極活物質が全体的に粘土状となるまで滴下・混錬を続ける。NMPが過剰となると正極活物質に液滴が吸収されず表面に残る様子を視認でき、この時までに滴下したNMP量を正極活物質100g当たりに換算して吸油量とした。
正極活物質の細孔率は、細孔分布測定装置「オートポアIV 9520型」(島津製作所―マイクロメリティックス社製)を使用して水銀圧入法により細孔径が0.6μm以下の細孔の体積(細孔体積)を測定し、正極活物質の体積で割る(細孔率=細孔径0.6μm以下の細孔体積/正極活物質の体積)ことにより求めた。また、細孔分布測定装置により細孔分布を測定し、細孔径が0.6μm以下の範囲において最も頻度が高い細孔径を、最頻細孔径とした。
正極活物質のX線粉末回折測定におけるX線回折パターンは、X線回折装置「X‘Pert PRO MPD」(PANalyticalsei製)を使用し、線源CuKα、管電圧45kV、管電流40mA、サンプリング間隔0.02°/step、発散スリット0.5°、散乱スリット0.5 °、受光スリット0.15mm、走査範囲15 °≦2θ≦80 °の条件で測定した。得られたX線回折パターンより、解析ソフト「HighScorePlus」(PANalyticalsei製)を用いて、Kα2を除去後に、2θ=36°付近の006面、2θ=37°付近の102面、2θ=38°付近の101面の各ピークのピーク高さより、各ピークの強度I006、I102、I101を計測し、R値=(I006+I102)/I101によりR値を求めた。
正極活物質のX線粉末回折測定におけるX線回折パターンは、X線回折装置「X‘Pert PRO MPD」(PANalyticalsei製)を使用し、線源CuKα、管電圧45kV、管電流40mA、サンプリング間隔0.02°/step、発散スリット0.5°、散乱スリット0.5 °、受光スリット0.15mm、走査範囲15 °≦2θ≦80 °の条件で測定した。得られたX線回折パターンより、解析ソフト「HighScorePlus」(PANalyticalsei製)を用いて、Kα2を除去後、2θ=44°付近の104面のピークの半値幅を計測した。
合成した正極活物質の化学組成を、ICP-AES発光分光分析装置「OPTIMA8300」(パーキンエルマー社製)を使用して、高周波誘導結合プラズマ発光分光分析によって分析した。また、正極活物質の酸素量(組成式(1)におけるα)を不活性ガス融解-赤外線吸収法によって分析した。
[実施例1]
はじめに、原料として、炭酸リチウム、水酸化ニッケル、炭酸コバルト、炭酸マンガン、酸化チタン、酸化アルミニウムを用意し、各原料を金属元素のモル比でLi:Ni:Co:Mn:Ti:Alが、1.03:0.85:0.03:0.08:0.03:0.01となるように秤量し、固形分比が30質量%となるように純水を加えた。そして、粉砕機で湿式粉砕(湿式混合)して平均粒径が0.2μm未満となるよう原料スラリーを調製した(原料混合工程)。
はじめに、原料として、水酸化ニッケル、炭酸マンガン、酸化チタン、酸化アルミニウムを用意し、各原料を金属元素のモル比でNi:Mn:Ti:Alが、0.88:0.08:0.03:0.01となるように秤量し、固形分比が20質量%となるように純水を加えた。そして、粉砕機で湿式粉砕(湿式混合)して平均粒径が0.2μm未満となるよう原料スラリーを調製した(原料混合工程)。
第2熱処理(1段目)の熱処理温度を835℃、熱処理時間を64時間にした以外は、実施例2と同様に正極活物質を得た。なお、以下の第2熱処理は1段目を指しており(1段目)の記載は省略する。
第2熱処理の熱処理温度を835℃、熱処理時間を32時間にした以外は、実施例2と同様に正極活物質を得た。
Li:リチウム以外の金属元素の比を1.05:1.00とし、第2熱処理の熱処理温度を835℃、熱処理時間を32時間にした以外は、実施例2と同様に正極活物質を得た。
金属元素のモル比でLi:Ni:Co:Mn:Ti:Alが、1.03:0.88:0.03:0.05:0.03:0.01となるように秤量した以外は、実施例1と同様に正極活物質を得た。
原料として、水酸化ニッケル、炭酸コバルト、炭酸マンガン、酸化チタン、酸化アルミニウムを用意し、各原料を金属元素のモル比でNi:Co:Mn:Ti:Alが、0.88:0.03:0.05:0.03:0.01となるように秤量し、第2熱処理の熱処理温度を820℃、熱処理時間を24時間にした以外は、実施例2と同様に正極活物質を得た。
原料として、水酸化ニッケル、炭酸コバルト、炭酸マンガン、酸化チタン、酸化アルミニウムを用意し、各原料を金属元素のモル比でNi:Co:Mn:Ti:Alが、0.88:0.03:0.05:0.03:0.01となるように秤量し、Li:リチウム以外の金属元素の比を1.05:1.00とし、第2熱処理の熱処理温度を820℃、熱処理時間を12時間にした以外は、実施例2と同様に正極活物質を得た。
原料として、水酸化ニッケル、炭酸コバルト、炭酸マンガンを用意し、各原料を金属元素のモル比でNi:Co:Mnが、0.88:0.09:0.03となるように秤量し、第2熱処理の熱処理温度を740℃、熱処理時間を32時間にした以外は、実施例2と同様に正極活物質を得た。
原料として、水酸化ニッケル、炭酸コバルト、酸化チタン、酸化アルミニウムを用意し、各原料を金属元素のモル比でNi:Co:Ti:Alが、0.92:0.03:0.03:0.02となるように秤量し、第2熱処理の熱処理温度を780℃、熱処理時間を64時間にした以外は、実施例2と同様に正極活物質を得た。
第2熱処理の熱処理温度を810℃とした以外は、実施例1と同様に正極活物質を得た。
Li:リチウム以外の金属元素の比を1.05:1.00とし、第2熱処理の熱処理温度を840℃、熱処理時間を64時間にした以外は、実施例2と同様に正極活物質を得た。
Li:リチウム以外の金属元素の比を1.01:1.00とし、第2熱処理の熱処理温度を835℃、熱処理時間を32時間にした以外は、実施例2と同様に正極活物質を得た。
第1熱処理の熱処理温度を520℃とし、第2熱処理の熱処理温度を820℃、熱処理時間を96時間にした以外は、実施例2と同様に正極活物質を得た。
第2熱処理の熱処理温度を835℃、熱処理時間を10時間にした以外は、実施例2と同様に正極活物質を得た。
第1熱処理の熱処理温度を520℃とし、第2熱処理の熱処理温度を835℃、熱処理時間を32時間にした以外は、実施例2と同様に正極活物質を得た。
第2熱処理の熱処理温度を830℃とした以外は、実施例6と同様に正極活物質を得た。
第2熱処理の熱処理温度を840℃とした以外は、実施例6と同様に正極活物質を得た。
Li:リチウム以外の金属元素の比を1.03:1.00とし以外は、実施例8と同様に正極活物質を得た。
合成した正極活物質を正極の材料として用いてリチウムイオン二次電池を作製し、リチウムイオン二次電池の放電容量、容量維持率を求めた。はじめに、作製した正極活物質と、炭素系の導電材と、N-メチル-2-ピロリドン(NMP)に予め溶解させた結着剤とを質量比で94:4.5:1.5となるように混合した。そして、均一に混合した正極合剤スラリーを、厚さ20μmのアルミニウム箔の正極集電体上に、塗布量が10mg/cm2となるように塗布した。次いで、正極集電体に塗布された正極合剤スラリーを120℃で熱処理し、溶媒を留去することによって正極合剤層を形成した。その後、正極合剤層を熱プレスで加圧成形し、直径15mmの円形状に打ち抜いて正極とした。
続いて、作製した正極と負極とセパレータを用いて、リチウムイオン二次電池を作製した。負極としては、直径16mmの円形状に打ち抜いた金属リチウムを用いた。セパレータとしては、厚さ30μmのポリプロピレン製の多孔質セパレータを用いた。正極と負極とをセパレータを介して非水電解液中で対向させて、リチウムイオン二次電池を組み付けた。非水電解液としては、体積比が3:7となるようにエチレンカーボネートとジメチルカーボネートとを混合した溶媒に、1.0mol/LとなるようにLiPF6を溶解させた溶液を用いた。
初期容量(放電容量)は、ニッケル比率から影響を受けることが知られており、ニッケル比率が増加すると高容量となる。初期容量とR値の関係を比較するには、ニッケル比率の影響を除く必要がある。そこで、非特許文献Jaurnal of Materials Chemistry A、Issue5、874~901頁 、及び、Applied sciences、Issue 10、8988に記載されているLi(Ni,Co,Mn)O2の初期容量のデータから、各ニッケル比率において期待される初期容量(期待初期容量)を算出し、式(4)により初期容量率を求めた。その結果を表1に併記する。なお、初期容量はレートの影響も受けるため、期待初期容量の算出には0.02C~0.5Cのレートで測定したデータのみ用いた。また、本発明の正極活物質は添加元素を含むため、期待初期容量より低容量な傾向であった。
初期容量率 =(初期容量の実測値)/(期待初期容量)×100・・・(4)
作製した正極と負極とセパレータを用いて、リチウムイオン二次電池を作製した。負極としては、銅箔の負極集電体上に黒鉛を塗布した負極を直径16mmの円形状に打ち抜いて用いた。セパレータとしては、厚さ30μmのポリプロピレン製の多孔質セパレータを用いた。正極と負極とをセパレータを介して非水電解液中で対向させて、リチウムイオン二次電池を組み付けた。非水電解液としては、体積比が3:7となるようにエチレンカーボネートとジメチルカーボネートとを混合した溶媒に、1.0mol/LとなるようにLiPF6を溶解させ、さらに1.5質量%のビニレンカーボネートを溶解させた溶液を用いた。
[実施例11~15]
第2熱処理における第1前駆体の搭載方法以外は、実施例1と同様にして正極活物質を得た。前記搭載方法は、搭載重量、積層厚さ、搭載容器の大きさを変えている。これらの搭載方法を変えることにより、第1前駆体における二酸化炭素の排出状態、液相量、雰囲気中の酸素濃度および二酸化炭素濃度を変化させることができている。その結果、下記する比表面積、吸油量、細孔率、最頻細孔径等の諸物性を制御する結果になっていると考えている。但し、これらの搭載方法と諸物性の制御については一義的に定まるものではなく現場毎にデータの蓄積を行い関連付けていく必要がある。
第2熱処理の熱処理温度を815℃とした以外は、実施例13と同様に正極活物質を得た。
Ni比率を90%とした。
[実施例17]
原料として、炭酸リチウム、水酸化ニッケル、炭酸コバルト、炭酸マンガン、酸化チタン、酸化アルミニウムを用意し、各原料を金属元素のモル比でLi:Ni:Co:Mn:Ti:Alが、1.03:0.90:0.03:0.02:0.03:0.02となるように秤量し、第2熱処理の熱処理温度を800℃、熱処理時間を90時間にした以外は、実施例1と同様に正極活物質を得た。
第2熱処理の熱処理温度を795℃とした以外は、実施例17と同様に正極活物質を得た。
101 電池缶
102 電池蓋
103 正極リード片
104 負極リード片
105 絶縁板
106 シール材
110 捲回電極群
111 正極
111a 正極集電体
111b 正極合剤層
112 負極
112a 負極集電体
112b 負極合剤層
113 セパレータ
Claims (8)
- 下記式(1)で表されるリチウム複合酸化物の一次粒子と、前記一次粒子が凝集した二次粒子とを含み、
Li1+aNibCocMdXeO2+α ・・・(1)
[但し、組成式(1)において、Mは、Al及びMnから選ばれる少なくとも1種の元素であり、XはTi、Ga、Mg、Zr、Znからなる群から選択される少なくとも1種の元素であり、a、b、c、d及びeは、-0.10≦a≦0.10、0.80≦b<1.00、0≦c≦0.20、0≦d≦0.20、0≦e≦0.05、b+c+d+e=1.00、-0.20≦α≦0.20を満たす数である。]
走査型電子顕微鏡で評価した前記一次粒子の粒子径の平均値が50nm以上、550nm以下であり、
X線粉末回折測定における、α-NaFeO2型層状構造の006面と同定されたピークの高さより算出した強度I006と、102面と同定されたピークの高さより算出した強度I102と、101面と同定されたピークの高さより算出した強度I101とに基づき下記の式(2)
R値=(I006+I102)/I101 ・・・(2)
により算出されるR値が0.420超え、0.460以下であることを特徴とするリチウムイオン二次電池用正極活物質。 - X線粉末回折測定における、104面と同定されたピークの半値幅と前記R値との和が0.480以上、0.595以下であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。
- 比表面積が0.30m2/g以上、1.00m2/g以下であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池用正極活物質。
- JIS K5101-13-1に基づく、リチウム複合酸化物粉末100g当たりのN-メチル-2-ピロリドンの吸油量が27ml/100g以上、35ml/100g以下であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池用正極活物質。
- 水銀圧入法により測定した細孔率が8%以上、24%以下であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池用正極活物質。
- 最頻細孔径が0.22μm以上、0.30μm以下であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池用正極活物質。
- 前記式(1)におけるaが0.02≦a≦0.10であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池用正極活物質。
- 請求項1または請求項2に記載のリチウムイオン二次電池用正極活物質を含有する正極を備えるリチウムイオン二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22872729.3A EP4407713A1 (en) | 2021-09-22 | 2022-09-08 | Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
US18/577,997 US20240317605A1 (en) | 2021-09-22 | 2022-09-08 | Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
JP2023523648A JP7318842B1 (ja) | 2021-09-22 | 2022-09-08 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
KR1020247001228A KR20240056816A (ko) | 2021-09-22 | 2022-09-08 | 리튬 이온 이차 전지용 정극 활물질 및 리튬 이온 이차 전지 |
CN202280049597.1A CN117730436A (zh) | 2021-09-22 | 2022-09-08 | 锂离子二次电池用正极活性物质及锂离子二次电池 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-154554 | 2021-09-22 | ||
JP2021154554 | 2021-09-22 | ||
JP2021186684 | 2021-11-16 | ||
JP2021-186684 | 2021-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023047974A1 true WO2023047974A1 (ja) | 2023-03-30 |
Family
ID=85720595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/033802 WO2023047974A1 (ja) | 2021-09-22 | 2022-09-08 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240317605A1 (ja) |
EP (1) | EP4407713A1 (ja) |
JP (1) | JP7318842B1 (ja) |
KR (1) | KR20240056816A (ja) |
WO (1) | WO2023047974A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000072446A (ja) | 1998-08-21 | 2000-03-07 | Sumitomo Metal Mining Co Ltd | LiNiO2系層状複合酸化物の製造方法 |
JP2002042817A (ja) * | 2000-05-15 | 2002-02-08 | Denso Corp | リチウム二次電池およびその正極の製造方法 |
JP2002124257A (ja) | 2000-10-13 | 2002-04-26 | Denso Corp | 非水電解質二次電池 |
WO2015182665A1 (ja) | 2014-05-29 | 2015-12-03 | 住友化学株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
WO2017061633A1 (ja) * | 2015-10-09 | 2017-04-13 | 住友金属鉱山株式会社 | リチウムニッケル含有複合酸化物とその製造方法、および非水系電解質二次電池 |
KR101826612B1 (ko) * | 2017-06-07 | 2018-02-07 | 주식회사 엘 앤 에프 | 양극 활물질, 및 이를 포함하는 리튬 이차 전지 |
CN111435743A (zh) * | 2019-12-19 | 2020-07-21 | 蜂巢能源科技有限公司 | 四元正极材料、正极、电池 |
-
2022
- 2022-09-08 EP EP22872729.3A patent/EP4407713A1/en active Pending
- 2022-09-08 WO PCT/JP2022/033802 patent/WO2023047974A1/ja active Application Filing
- 2022-09-08 KR KR1020247001228A patent/KR20240056816A/ko active Search and Examination
- 2022-09-08 JP JP2023523648A patent/JP7318842B1/ja active Active
- 2022-09-08 US US18/577,997 patent/US20240317605A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000072446A (ja) | 1998-08-21 | 2000-03-07 | Sumitomo Metal Mining Co Ltd | LiNiO2系層状複合酸化物の製造方法 |
JP2002042817A (ja) * | 2000-05-15 | 2002-02-08 | Denso Corp | リチウム二次電池およびその正極の製造方法 |
JP2002124257A (ja) | 2000-10-13 | 2002-04-26 | Denso Corp | 非水電解質二次電池 |
WO2015182665A1 (ja) | 2014-05-29 | 2015-12-03 | 住友化学株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
WO2017061633A1 (ja) * | 2015-10-09 | 2017-04-13 | 住友金属鉱山株式会社 | リチウムニッケル含有複合酸化物とその製造方法、および非水系電解質二次電池 |
KR101826612B1 (ko) * | 2017-06-07 | 2018-02-07 | 주식회사 엘 앤 에프 | 양극 활물질, 및 이를 포함하는 리튬 이차 전지 |
CN111435743A (zh) * | 2019-12-19 | 2020-07-21 | 蜂巢能源科技有限公司 | 四元正极材料、正极、电池 |
Non-Patent Citations (2)
Title |
---|
APPLIED SCIENCES, pages 8988 |
JAURNAL OF MATERIALS CHEMISTRY A, pages 874 - 901 |
Also Published As
Publication number | Publication date |
---|---|
EP4407713A1 (en) | 2024-07-31 |
JP7318842B1 (ja) | 2023-08-01 |
US20240317605A1 (en) | 2024-09-26 |
JPWO2023047974A1 (ja) | 2023-03-30 |
KR20240056816A (ko) | 2024-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5971109B2 (ja) | ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP5614513B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池 | |
JP4915488B1 (ja) | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP7180532B2 (ja) | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 | |
JP4894969B1 (ja) | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 | |
JP7272345B2 (ja) | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 | |
WO2017221554A1 (ja) | リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質、並びにリチウムイオン二次電池 | |
JP6986211B2 (ja) | リチウムイオン二次電池用正極活物質、及びその製造方法、並びにリチウムイオン二次電池 | |
WO2015076323A1 (ja) | 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池 | |
WO2017033895A1 (ja) | マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池 | |
JP7464102B2 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池 | |
JP7273260B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
JP7135354B2 (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法 | |
JP2022052817A (ja) | リチウムイオン二次電池用正極活物質、及びその製造方法、並びにリチウムイオン二次電池 | |
JP7338133B2 (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法 | |
JP7318842B1 (ja) | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 | |
JP7532880B2 (ja) | リチウムイオン二次電池用正極活物質、及びその製造方法、並びにリチウムイオン二次電池 | |
CN117730436A (zh) | 锂离子二次电池用正极活性物质及锂离子二次电池 | |
KR102713885B1 (ko) | 리튬 이온 이차 전지용 정극 활물질 및 리튬 이온 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023523648 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872729 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18577997 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280049597.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022872729 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022872729 Country of ref document: EP Effective date: 20240422 |