WO2023045487A1 - 电化学装置和电子装置 - Google Patents

电化学装置和电子装置 Download PDF

Info

Publication number
WO2023045487A1
WO2023045487A1 PCT/CN2022/103868 CN2022103868W WO2023045487A1 WO 2023045487 A1 WO2023045487 A1 WO 2023045487A1 CN 2022103868 W CN2022103868 W CN 2022103868W WO 2023045487 A1 WO2023045487 A1 WO 2023045487A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
lithium
electrochemical device
salt
positive electrode
Prior art date
Application number
PCT/CN2022/103868
Other languages
English (en)
French (fr)
Inventor
刘俊飞
周邵云
兰弟胜
许艳艳
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2023045487A1 publication Critical patent/WO2023045487A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of energy storage.
  • the present application relates to an electrochemical device and an electronic device.
  • Lithium-ion batteries have the advantages of high energy density, high working voltage, light weight, low self-discharge rate, long cycle life, no memory effect and environmental friendliness.
  • lithium-ion batteries In addition to being used in smart products, such as electronic products such as mobile phones, notebooks and cameras, lithium-ion batteries also have broad demand prospects in the fields of higher power products such as electric vehicles, power tools, drones and electric ships.
  • Power-type products require lower impedance, and have higher and higher requirements for high-temperature gas production and safety performance. Therefore, reducing the impedance inside and between components in the electrode assembly and reducing heat generation is a very important development direction.
  • the present application provides an electrochemical device, which includes a positive electrode, a negative electrode, a separator, and an electrolyte, and the positive electrode includes a positive electrode current collector, a positive electrode active material layer, and a conductive electrode disposed between the positive electrode current collector and the positive electrode active material layer.
  • the electrolyte solution includes a first fluorine-containing metal salt
  • the first fluorine-containing metal salt includes at least one of the fluorine-containing sulfonimide lithium salts
  • the electrochemical device satisfies the following relationship: 0.1 ⁇ X/d ⁇ 105, where X g/ m2 is the mass of fluorine-containing sulfonimide lithium salt per unit area on one side of the positive current collector, and d ⁇ m is the thickness of the conductive coating on one side of the positive current collector.
  • the fluorine-containing sulfonylimide lithium salt has a good dissociation effect, which can improve the conductivity of the electrolyte, but it can form soluble substances with metal ions, thereby increasing the risk of current collector corrosion.
  • the fluorine-containing sulfonyl imide lithium salt is combined with the conductive coating, and the contact resistance between the current collector and the active material is reduced through the introduction of the conductive coating, and at the same time, the fluorine-containing sulfonyl imide can also be reduced to a certain extent.
  • the risk of corrosion caused by the contact of amine lithium salt with the current collector can not only improve the high-rate cycle performance of the electrochemical device and reduce the temperature rise of the electrochemical device, but also slow down the corrosion of the fluorine-containing sulfonimide lithium salt on the positive electrode current collector influence and improve the long-term stability of electrochemical devices.
  • the first fluorine-containing metal salt satisfies at least one of the following conditions (a) to (b):
  • the fluorine-containing sulfonyl imide lithium salt includes lithium salts represented by formula I at least one of the Wherein, R 1 and R 2 are each independently selected from fluorine, C 1 -C 4 alkyl or fluoro C 1 -C 4 alkyl, wherein at least one of R 1 and R 2 contains fluorine element;
  • fluorine-containing The lithium sulfonyl imide salt includes at least one of lithium bisfluorosulfonyl imide or lithium bis(trifluoromethylsulfonyl)imide.
  • the first fluorine-containing metal salt further includes lithium hexafluorophosphate, and based on the total mass of the electrolyte, the mass percentage Y% of the first fluorine-containing metal salt satisfies: 8 ⁇ Y ⁇ 25.
  • the electrolyte solution further includes a second fluorine-containing metal salt, and the second fluorine-containing metal salt satisfies at least one of the following conditions (c) to (e): (c) the second fluorine-containing metal salt The mass percentage of fluorine atoms in the molecule is ⁇ 10%; (d) based on the total mass of the electrolyte, the mass percentage of the second fluorine-containing metal salt is 0.01% to 5.0%; (e) the second fluorine-containing metal salt Including at least one of fluorine-containing alkali metal salts, preferably the fluorine-containing alkali metal salts include at least one of fluorine-containing lithium salts, fluorine-containing sodium salts or fluorine-containing cesium salts, more preferably the second fluorine-containing metal salts include fluorine Boron-containing lithium salt, fluorinated boron-containing sodium salt, fluorinated boron-containing cesium salt, fluorine Boron-containing lithium salt, flu
  • the mass percentage of fluorine atoms in the molecules of the second fluorine-containing metal salt is ⁇ 10%, and the second fluorine-containing metal salt includes at least one of fluorine-containing alkali metal salts.
  • the mass percentage of the second fluorine-containing metal salt is 0.01% to 5.0%, and the second fluorine-containing metal salt includes at least one of fluorine-containing alkali metal salts.
  • the addition of the second fluorine-containing metal salt can form a protective layer on the surface of the electrode and reduce the occurrence of side reactions.
  • the F- generated by the decomposition of the second fluorine-containing metal salt will form a passivation layer of metal fluoride such as AlF 3 on the surface of the current collector, which can further reduce the risk of corrosion of the current collector.
  • the electrolyte solution further includes an additive, and the additive satisfies at least one of the following conditions (f) to (g): (f) the additive includes sultone, cyclic carbonate or fluorinated cyclic At least one of the carbonates; (g) based on the total mass of the electrolyte, the mass percentage of the additive is 0.01% to 10%.
  • the conductive coating satisfies at least one of the following conditions (h) to (i): (h) the thickness d ⁇ m of the conductive coating satisfies: 0.1 ⁇ d ⁇ 5; (i) the conductive coating
  • the layer includes at least one of a carbon material or a conductive polymer material.
  • the electrochemical device satisfies at least one of the following conditions (j) to (k): (j) the tensile strength of the positive current collector is R MPa, wherein R ⁇ 150; (k)
  • the active material layer includes at least one of lithium cobalt oxide, nickel cobalt manganese, lithium iron phosphate, lithium manganese oxide or lithium-rich manganese-based materials.
  • the present application provides an electronic device, which includes the electrochemical device described in the first aspect.
  • the high-rate cycle performance of the electrochemical device can be improved and the temperature rise of the electrochemical device can be reduced.
  • the corrosion effect of the organic lithium salt on the positive electrode current collector can be slowed down, and the long-term stability of the electrochemical device can be improved.
  • any lower limit can be combined with any upper limit to form an unexpressed range; and any lower limit can be combined with any other lower limit to form an unexpressed range, just as any upper limit can be combined with any other upper limit to form an unexpressed range.
  • each individually disclosed point or individual value may serve as a lower or upper limit by itself in combination with any other point or individual value or with other lower or upper limits to form an unexpressly recited range.
  • a list of items to which the terms "at least one of”, “at least one of”, “at least one of” or other similar terms are concatenated can mean any combination of the listed items. For example, if the items A and B are listed, the phrase “at least one of A and B" means only A; only B; or A and B. In another example, if the items A, B, and C are listed, the phrase “at least one of A, B, and C” means only A; or only B; only C; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B, and C.
  • Item A may comprise a single component or multiple components.
  • Item B may comprise a single component or multiple components.
  • Item C may comprise a single component or multiple components.
  • the present application provides an electrochemical device, which includes a positive electrode, a negative electrode, a separator, and an electrolyte, and the positive electrode includes a positive electrode current collector, a positive electrode active material layer, and a conductive electrode disposed between the positive electrode current collector and the positive electrode active material layer.
  • the electrolyte solution includes a first fluorine-containing metal salt
  • the first fluorine-containing metal salt includes at least one of the fluorine-containing sulfonyl imide lithium salts
  • the electrochemical device satisfies the following relationship: 0.1 ⁇ X/d ⁇ 105, where X g/ m2 is the mass of fluorine-containing sulfonimide lithium salt per unit area on one side of the positive current collector, and d ⁇ m is the thickness of the conductive coating on one side of the positive current collector.
  • the fluorine-containing sulfonylimide lithium salt has a good dissociation effect, which can improve the conductivity of the electrolyte, but it can form soluble substances with metal ions, thereby increasing the risk of current collector corrosion.
  • the fluorine-containing sulfonyl imide lithium salt is combined with the conductive coating, and the contact resistance between the current collector and the active material is reduced through the introduction of the conductive coating, and at the same time, the fluorine-containing sulfonyl imide can also be reduced to a certain extent.
  • the risk of corrosion caused by the contact of amine lithium salt with the current collector can not only improve the high-rate cycle performance of the electrochemical device and reduce the temperature rise of the electrochemical device, but also slow down the corrosion of the fluorine-containing sulfonimide lithium salt on the positive electrode current collector influence and improve the long-term stability of electrochemical devices.
  • X/d is 0.5, 5, 15, 25, 30, 35, 45, 47, 50, 53, 55, 57, 60, 43, 65, 67, 70, 73, 75, 77, 83, 85, 87, 90, 93, 95, 97, 103, or a range of any two of these values.
  • 0.1 ⁇ X ⁇ 25 In some embodiments, X is a range of 0.7, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, or a combination of any two of these values. In some embodiments, 2 ⁇ X ⁇ 20.
  • the fluorine-containing sulfonylimide lithium salt includes at least one of the lithium salts shown in formula I,
  • R 1 and R 2 are each independently selected from fluorine, C 1 -C 4 alkyl or fluoro C 1 -C 4 alkyl, wherein at least one of R 1 and R 2 contains fluorine element.
  • R 1 is fluorine, C 1 -C 4 alkyl or fluoro C 1 -C 4 alkyl
  • R 2 is fluorine or fluoro C 1 -C 4 alkyl.
  • R 1 and R 2 are the same, both fluorine or fluoro C 1 -C 4 alkyl.
  • the C 1 -C 4 alkyl is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl or tert-butyl.
  • the fluoro C 1 -C 4 alkyl is fluoromethyl, fluoroethyl, fluoro-n-propyl, fluoro-isopropyl, fluoro-n-butyl, fluoro-iso-butyl or Fluorinated tert-butyl, wherein fluorinated means that at least one hydrogen atom in the C 1 -C 4 alkyl group is replaced by a fluorine atom.
  • the fluoro C 1 -C 4 alkyl is monofluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl or hexafluoroisopropyl.
  • the lithium fluorine-containing sulfonyl imide salt includes at least one of lithium bisfluorosulfonyl imide or lithium bis(trifluoromethylsulfonyl)imide.
  • the first fluorine-containing metal salt further includes lithium hexafluorophosphate, and based on the total mass of the electrolyte, the mass percentage Y% of the first fluorine-containing metal salt satisfies: 8 ⁇ Y ⁇ 25.
  • Y is a range of 9, 10, 11, 13, 15, 17, 19, 20, 23, 24, or a combination of any two of these values.
  • the electrolytic solution further includes a second fluorine-containing metal salt.
  • the addition of the second fluorine-containing metal salt can form a protective layer on the surface of the electrode and reduce the occurrence of side reactions.
  • the F- generated by the decomposition of the second fluorine-containing metal salt will form a passivation layer of metal fluoride such as AlF 3 on the surface of the current collector, which can further reduce the risk of corrosion of the current collector.
  • the mass percentage of fluorine atoms in the second fluorine-containing metal salt molecule is ⁇ 10%.
  • the second fluorine-containing metal salt includes at least one of fluorine-containing alkali metal salts, such as fluorine-containing lithium salt, fluorine-containing sodium salt, or fluorine-containing cesium salt.
  • the mass percentage of the second fluorine-containing metal salt is 0.01% to 6.0%. In some embodiments, based on the total mass of the electrolyte, the mass percentage of the second fluorine-containing metal salt is 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.5%, 2.3%, 2.5%, 3.0% %, 3.5%, 4.0%, 4.5%, 5.5%, or ranges consisting of any two of these values. In some embodiments, based on the total mass of the electrolyte, the mass percentage of the second fluorine-containing metal salt is 0.01% to 5.0%. In some embodiments, the second fluorine-containing metal salt includes at least one of fluorine-containing alkali metal salts, such as fluorine-containing lithium salt, fluorine-containing sodium salt, or fluorine-containing cesium salt.
  • the second fluorine-containing metal salt includes at least one of fluorine-containing alkali metal salts.
  • the fluorine-containing alkali metal salt includes at least one of fluorine-containing lithium salt, fluorine-containing sodium salt, or fluorine-containing cesium salt.
  • the second fluorine-containing metal salt includes fluoroboron-containing lithium salt, fluoroboron-containing sodium salt, fluoroboron-containing cesium salt, fluorophosphate lithium salt, fluorophosphate sodium salt, fluorocesium phosphate cesium salt salt or at least one of lithium 4,5-dicyano-2-trifluoromethylimidazolium.
  • the second fluorine-containing metal salt includes at least one of the second fluorine-containing lithium salts.
  • the second fluorine-containing lithium salt includes at least one of fluorinated boron-containing lithium salt, fluorophosphate lithium salt or 4,5-dicyano-2-trifluoromethylimidazolium lithium .
  • the fluorinated boron-containing lithium salt includes at least one of the following substances:
  • the lithium fluorophosphate salt includes at least one of lithium difluorophosphate, lithium tetrafluorooxalatephosphate (LiOTFP) or lithium difluorooxalatephosphate.
  • the second fluorine-containing metal salt includes a second fluorine-containing cesium salt.
  • the second fluorine-containing cesium salt includes at least one of the fluorinated boron-containing cesium salts.
  • the fluorinated boron-containing cesium salt is cesium difluorooxalate borate.
  • the second fluorine-containing metal salt includes a second fluorine-containing sodium salt.
  • the second fluorine-containing sodium salt includes at least one of sodium fluorophosphate salts.
  • the sodium fluorophosphate salt is at least one of sodium monofluorophosphate or sodium difluorophosphate.
  • the electrolyte solution further includes an additive, and the additive includes at least one of sultone, cyclic carbonate or fluorinated cyclic carbonate.
  • the mass percentage of the additive is 0.01% to 11%. In some embodiments, based on the total mass of the electrolyte, the mass percentage of the additive is 0.05%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10.5%, or any combination of these values. In some embodiments, based on the total mass of the electrolyte, the mass percentage of the additive is 0.01% to 10%.
  • sultones include compounds of formula III:
  • R 11 , R 12 , and R 13 are each independently selected from hydrogen, halogen, hydrocarbon group or halogen-containing hydrocarbon group.
  • R 11 , R 12 , and R 13 are each independently selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, halogen-containing C 1 -C 6 alkyl, halogen-containing C 2 -C 6 alkenyl or halogen-containing C 2 -C 6 alkynyl.
  • the C 1 -C 6 alkyl group is methyl, ethyl, propyl, butyl or pentyl, etc.
  • the C 2 -C 6 alkenyl is ethenyl, propenyl or butenyl.
  • the C 2 -C 6 alkynyl group is ethynyl, propynyl, or butynyl.
  • Halogen in this application refers to F, Cl, Br or I.
  • sultone compounds include at least one of the
  • the fluorinated cyclic carbonate comprises at least one of the compounds of formula IV:
  • R 5 , R 6 , R 7 , and R 8 each independently represent a hydrogen atom, a fluorine atom, or a C 1 -C 4 alkyl group, and at least one of R 5 , R 6 , R 7 , and R 8 is fluorine atom, and p is 0, 1, 2, 3 or 4.
  • the fluorinated cyclic carbonates include fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), fluoropropylene carbonate, difluoropropylene carbonate, trifluoropropylene carbonate At least one of ester, trifluoromethylpropylene carbonate or fluorobutylene carbonate.
  • the cyclic carbonate comprises at least one of the compounds of formula V:
  • R 9 and R 10 each independently represent a hydrogen atom, a C 1 -C 4 alkyl group or a C 2 -C 4 alkenyl group.
  • the cyclic carbonate includes at least one of vinylene carbonate (VC) or vinylethylene carbonate.
  • the thickness d ⁇ m of the conductive coating satisfies: 0.2 ⁇ d ⁇ 5.
  • d is a range of 0.4, 0.6, 0.8, 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5, or a combination of any two of these values.
  • the thickness d ⁇ m of the conductive coating satisfies: 0.2 ⁇ d ⁇ 2.
  • the conductive coating includes at least one of a carbon material or a conductive polymer material.
  • the carbon material includes at least one of carbon nanotubes, carbon fibers, or conductive carbon black.
  • the tensile strength of the positive electrode collector in the electrochemical device is R MPa, where R ⁇ 150. In some embodiments, 150 ⁇ R ⁇ 350. In some embodiments, 150 ⁇ R ⁇ 300.
  • the active material layer in the positive electrode sheet of the electrochemical device includes at least one of lithium cobalt oxide, nickel cobalt manganese, lithium iron phosphate, lithium manganese oxide, or lithium-rich manganese-based materials.
  • the negative electrode used in the electrochemical device of the present application may include any technology disclosed in the prior art.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer includes a negative electrode active material
  • the negative electrode active material may include materials that reversibly intercalate/deintercalate lithium ions, lithium metal, lithium metal alloys, materials capable of doping/dedoping lithium Or transition metal oxides, such as Si or SiO x (0 ⁇ x ⁇ 2) and other materials.
  • the material that reversibly intercalates/deintercalates lithium ions may be a carbon material.
  • the carbon material can be any carbon-based negative active material commonly used in lithium-ion rechargeable electrochemical devices. Examples of carbon materials include crystalline carbon, amorphous carbon, and combinations thereof.
  • the crystalline carbon may be amorphous or plate-shaped, platelet-shaped, spherical or fibrous natural or artificial graphite.
  • the amorphous carbon may be soft carbon, hard carbon, mesophase pitch carbonization product, fired coke, or the like. Both low-crystalline carbon and high-crystalline carbon can be used as the carbon material.
  • soft carbon and hard carbon may be generally included.
  • highly crystalline carbon materials natural graphite, crystalline graphite, pyrolytic carbon, mesophase pitch-based carbon fibers, mesocarbon microbeads, mesophase pitch, and high-temperature calcined carbons (such as petroleum or coke derived from coal tar pitch) may generally be included. ).
  • the negative electrode active material layer contains a binder
  • the binder may include various binder polymers, such as vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP) , polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, containing Polymers of ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyethylene, polypropylene, styrene-butadiene rubber, acrylic (ester) styrene-butadiene rubber, epoxy resin or nylon, etc., but not limited thereto wait.
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF-co-HFP
  • the negative electrode active material layer further includes a conductive material to improve electrode conductivity.
  • a conductive material can be used as the conductive material as long as it does not cause a chemical change.
  • conductive materials include: carbon-based materials, such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, or carbon fibers, etc.; metal-based materials, such as metal powder or metal fibers including copper, nickel, aluminum, or silver, etc. ; Conductive polymers, such as polyphenylene derivatives, etc.; or their mixtures.
  • the current collector can be copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, polymer substrate coated with conductive metal, or a combination thereof.
  • the material and shape of the separator used in the electrochemical device of the present application are not particularly limited, and it can be any technology disclosed in the prior art.
  • the separator includes a polymer or an inorganic material formed of a material stable to the electrolyte of the present application.
  • a release film may include a substrate layer and a surface treatment layer.
  • the substrate layer is non-woven fabric, film or composite film with a porous structure, and the material of the substrate layer is at least one selected from polyethylene, polypropylene, polyethylene terephthalate and polyimide.
  • polypropylene porous film, polyethylene porous film, polypropylene non-woven fabric, polyethylene non-woven fabric or polypropylene-polyethylene-polypropylene porous composite film can be selected.
  • At least one surface of the substrate layer is provided with a surface treatment layer, and the surface treatment layer may be a polymer layer or an inorganic layer, or a layer formed by mixing polymers and inorganic materials.
  • the inorganic layer includes inorganic particles and a binder, and the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium oxide, tin oxide, cerium oxide, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, At least one of yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, copolymer of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinyl pyrrolidone, polyvinyl alkoxy , polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene at least one.
  • Polymer is contained in the polymer layer, and the material of polymer is selected from polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinyl pyrrolidone, polyvinyl alkoxide, polyvinylidene fluoride, At least one of poly(vinylidene fluoride-hexafluoropropylene).
  • the electrochemical devices of the present application include, but are not limited to: all kinds of primary batteries, secondary batteries, fuel cells, solar cells or capacitors.
  • the electrochemical device is a lithium secondary battery.
  • lithium secondary batteries include, but are not limited to: lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries, or lithium ion polymer secondary batteries.
  • the present application provides an electronic device, which includes the electrochemical device of the first aspect.
  • electronic devices of the present application include, but are not limited to, notebook computers, pen-input computers, mobile computers, e-book players, cellular phones, portable fax machines, portable copiers, portable printers, headsets , VCR, LCD TV, Portable Cleaner, Portable CD Player, Mini Disc, Transceiver, Electronic Notepad, Calculator, Memory Card, Portable Recorder, Radio, Backup Power, Motor, Automobile, Motorcycle, Assisted Bicycle, Bicycle , Lighting appliances, toys, game consoles, clocks, electric tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • the Super P conductive solution with a solid content of 65% is evenly coated on the surface of the positive electrode current collector aluminum foil to obtain an aluminum foil with a conductive coating.
  • the surface capacity density of the positive pole piece is 14.0 mg/cm 2
  • the compacted density is 3.3 g/cm 3 .
  • Negative electrode active material artificial graphite, conductive agent Super P, thickener sodium carboxymethylcellulose (CMC), binder styrene-butadiene rubber (SBR) were mixed according to the weight ratio of 96:2:0.8:1.2, and deionized Water, obtain the negative electrode slurry under the action of vacuum mixer, wherein the solid content of the negative electrode slurry is 54wt%;
  • the negative electrode slurry is evenly coated on the negative electrode current collector copper foil;
  • the copper foil after coating is baked at 85 °C dry, and then undergo cold pressing, cutting into pieces, slitting, and then drying under vacuum conditions at 120° C. for 12 hours to obtain negative electrode sheets.
  • additives additives
  • lithium salt lithium salt
  • a polyethylene (PE) isolation film with a thickness of 9 ⁇ m is selected, and the final isolation film is obtained after PVDF slurry and inorganic particles (the ratio of flake boehmite to Al 2 O 3 is 70:30) are coated and dried, and the coating thickness is 3 ⁇ m , The porosity of the separator is 55%.
  • PE polyethylene
  • X value test first measure the length and width of the current collector of the positive plate to obtain the area S m 2 of the current collector, then obtain the electrolyte in the battery by centrifugation, and use ion chromatography to detect the fluorine-containing sulfonimide lithium salt Accounting for the mass percentage of the electrolyte m%;
  • the total mass of the fluorine-containing sulfonyl imide lithium salt in the battery first weigh the total mass of the battery, then disassemble the battery to obtain the battery body (diaphragm, positive electrode sheet/negative electrode sheet), tabs and outer packaging aluminum-plastic film, The main part of the battery is soaked in dimethyl carbonate solvent for 48 hours, and then dried.
  • the total mass M g of the electrolyte in the final battery is the total mass of the battery minus the mass of the tabs, the mass of the outer packaging, and the mass of the main body of the battery after drying, including
  • the total mass of fluorosulfonimide lithium salt in the battery is m% ⁇ M g;
  • Lithium-ion battery discharge performance test Put the lithium-ion battery in a 25°C constant temperature box and let it stand for 30 minutes to make the lithium-ion battery reach a constant temperature.
  • the lithium-ion battery that has reached a constant temperature is charged at a constant current of 5.0C to a voltage of 4.35V, and then charged at a constant voltage of 4.35V to a current of 0.05C. Then discharge to 3.0V at a constant current of 11.0C.
  • a multi-channel thermometer is used to monitor the temperature rise of the battery surface.
  • Table 1 shows the thickness d ⁇ m of the conductive coating, the fluorine-containing sulfonyl imide lithium salt (lithium bisfluorosulfonyl imide (LiFSI) or bis(trifluoromethylsulfonyl)imide Lithium (LiTFSI)) mass X g/m 2 , the first fluorine-containing metal salt (fluorine-containing sulfonyl imide lithium salt and LiPF 6 ) mass percentage content Y% in the electrolyte on the temperature rise and The effect of capacity retention.
  • FEC stands for fluoroethylene carbonate.
  • the tensile strength of the aluminum foil in Comparative Example 1-1 to Comparative Example 1-9, Example 1-1 to Example 1-13 is 230MPa, and Example 1-
  • the tensile strength of aluminum foil in 14 is 140MPa.
  • the molar ratio of LiFSI and LiTFSI in Examples 1-13 is 2:1.
  • Table 2 shows the effects of the type and content of the second fluorine-containing metal salt in the electrolyte and the type and content of additives on the temperature rise and capacity retention of lithium-ion batteries.
  • the embodiments shown in Table 2 are further improvements based on Embodiments 1-7, that is, the only difference lies in the parameters in Table 2.
  • LiBF 4 stands for lithium tetrafluoroborate
  • LiDFOB stands for lithium difluorooxalate borate
  • CsDFOB cesium difluorooxalate borate
  • LiOTFP stands for lithium tetrafluorooxalate phosphate
  • LiPO2F2 stands for lithium difluorophosphate
  • NaPO2F2 stands for sodium difluorophosphate
  • FEC fluoroethylene carbonate
  • PS stands for 1,3-propane sultone
  • VC stands for ethylene carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及电化学装置和电子装置。本申请的电化学装置包括正极、负极、隔离膜和电解液,所述正极包括正极集流体、正极活性物质层和设置于所述正极集流体和所述正极活性物质层之间的导电涂层,所述电解液包括第一含氟金属盐,所述第一含氟金属盐包括含氟磺酰亚胺锂盐中的至少一种,所述电化学装置满足以下关系式:0.1≤X/d≤105,其中,X g/m 2为正极集流体单面单位面积的含氟磺酰亚胺锂盐的质量,dμm为正极集流体单面导电涂层的厚度。本申请通过将正极的导电涂层和电解液中的有机锂盐相结合,既可以提高电化学装置的大倍率循环性能和降低电化学装置的温升,又可以减缓有机锂盐对正极集流体可能的腐蚀影响,提升电化学装置的长期稳定性。

Description

电化学装置和电子装置
相关申请的交叉引用
本申请基于申请号为202111106361.0、申请日为2021年09月22日,发明名称为“电化学装置和电子装置”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容通过引用整体并入本申请。
技术领域
本申请涉及储能领域。具体地,本申请涉及一种电化学装置和电子装置。
背景技术
锂离子电池具有能量密度高、工作电压高、重量轻、自放电率低、循环寿命长、无记忆效应和环境友好等优点。除了应用于智能产品,例如手机、笔记本和相机等电子产品之外,锂离子电池在电动汽车、电动工具、无人机和电动轮船等功率更高的产品领域中的需求前景同样非常广阔。功率型产品需要更低的阻抗,对高温产气和安全性能要求也越来越高,因此降低电极组件中各部件内部和部件之间的阻抗,减少产热,是非常重要的开发方向。
发明内容
第一方面,本申请提供一种电化学装置,其包括正极、负极、隔离膜和电解液,正极包括正极集流体、正极活性物质层和设置于正极集流体和正极活性物质层之间的导电涂层,电解液包括第一含氟金属盐,该第一含氟金属盐包括含氟磺酰亚胺锂盐中的至少一种,该电化学装置满足以下关系式: 0.1≤X/d≤105,其中,X g/m 2为正极集流体单面单位面积的含氟磺酰亚胺锂盐的质量,dμm为正极集流体单面导电涂层的厚度。
含氟磺酰亚胺锂盐具有很好的解离效果,可以提升电解液的导电性,但可与金属离子形成可溶性物质,进而增加集流体腐蚀的风险。本申请将含氟磺酰亚胺锂盐和导电涂层相配合,通过导电涂层的引入降低了集流体与活性材料之间的接触电阻,同时还能够在一定程度上减少含氟磺酰亚胺锂盐与集流体接触而导致的腐蚀风险,既可以提高电化学装置的大倍率循环性能和降低电化学装置的温升,又能够减缓含氟磺酰亚胺锂盐对正极集流体的腐蚀影响,提升电化学装置的长期稳定性。
根据本申请的一些实施方式,0.2≤X/d≤100。在本申请的一些实施方式中,10≤X/d≤100。在本申请的一些实施方式中,40≤X/d≤100。X/d的值过高,第一含氟金属盐对集流体的腐蚀风险增加,影响电化学装置的长期稳定性。X/d的值过低会增加电子或离子的传输阻力,影响大倍率下的电化学装置的性能发挥。
根据本申请的一些实施方式,0.1≤X≤25。在一些实施方式中,2≤X≤20。
根据本申请的一些实施方式,第一含氟金属盐满足如下条件(a)至(b)中的至少一者:(a)含氟磺酰亚胺锂盐包括式I所示的锂盐中的至少一种,
Figure PCTCN2022103868-appb-000001
其中,R 1和R 2各自独立选自氟、C 1-C 4烷基或氟代C 1-C 4烷基,其中R 1和R 2中至少一者含有氟元素;(b)含氟磺酰亚胺锂盐包括双氟磺酰亚胺锂或双(三氟甲基磺酰)亚胺锂中的至少一种。
根据本申请的一些实施方式,第一含氟金属盐还包括六氟磷酸锂,基于电解液的总质量,第一含氟金属盐的质量百分含量Y%满足:8≤Y≤25。
根据本申请的一些实施方式,电解液还包括第二含氟金属盐,第二含氟金属盐满足如下条件(c)至(e)中的至少一者:(c)第二含氟金属盐分子中氟原子的质量百分含量≥10%;(d)基于电解液的总质量,第二含氟金属盐的质量百分含量为0.01%至5.0%;(e)第二含氟金属盐包括含氟碱金属盐中的至少一种,优选该含氟碱金属盐包括含氟锂盐、含氟钠盐或含氟铯盐中的至少一种,更优选第二含氟金属盐包括氟代含硼锂盐、氟代含硼钠盐、氟代含硼铯盐、氟代磷酸锂盐、氟代磷酸钠盐、氟代磷酸铯盐或4,5-二氰基-2-三氟甲基咪唑锂中的至少一种。在一些实施方式中,第二含氟金属盐分子中氟原子的质量百分含量≥10%,第二含氟金属盐包括含氟碱金属盐中的至少一种。在一些实施方式中,基于电解液的总质量,第二含氟金属盐的质量百分含量为0.01%至5.0%,第二含氟金属盐包括含氟碱金属盐中的至少一种。第二含氟金属盐的加入可以在电极表面形成保护层,减少副反应发生。同时第二含氟金属盐分解产生的F -会在集流体表面形成金属氟化物例如AlF 3钝化层,能够进一步降低集流体腐蚀的风险。
根据本申请的一些实施方式,电解液还包括添加剂,添加剂满足如下条件(f)至(g)中的至少一者:(f)添加剂包括磺酸内酯、环状碳酸酯或氟代环状碳酸酯中的至少一种;(g)基于电解液的总质量,添加剂的质量百分含量为0.01%至10%。
根据本申请的一些实施方式,该导电涂层满足如下条件(h)至(i)中的至少一者:(h)导电涂层的厚度dμm满足:0.1≤d≤5;(i)导电涂层包括碳材料或导电聚合物材料中的至少一种。
根据本申请的一些实施方式,该电化学装置满足如下条件(j)至(k)中的至少一者:(j)正极集流体的拉伸强度为R MPa,其中R≥150;(k)活性物质层包括钴酸锂、镍钴锰、磷酸铁锂、锰酸锂或富锂锰基材料中的至少一种。
第二方面,本申请提供了一种电子装置,其包括第一方面所述的电化学装置。
本申请通过将正极的导电涂层和电解液中的含氟磺酰亚胺锂盐类有机锂盐相配合,既可以提高电化学装置的大倍率循环性能和降低电化学装置的温升,又可以减缓有机锂盐对正极集流体的腐蚀影响,提升电化学装置的长期稳定性。
具体实施方式
为了简明,本文仅具体地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,每个单独公开的点或单个数值自身可以作为下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,除非另有说明,“以上”、“以下”包含本数。
除非另有说明,本申请中使用的术语具有本领域技术人员通常所理解的公知含义。除非另有说明,本申请中提到的各参数的数值可以用本领域常用的各种测量方法进行测量(例如,可以按照在本申请的实施例中给出的方法进行测试)。
术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个组分或多个组分。项目B可包含单个组分或多个组分。项目C可包含单个组分或多个组分。
第一方面,本申请提供一种电化学装置,其包括正极、负极、隔离膜和电解液,正极包括正极集流体、正极活性物质层和设置于正极集流体和正极活性物质层之间的导电涂层,电解液包括第一含氟金属盐,该第一含氟金属盐包括含氟磺酰亚胺锂盐中的至少一种,该电化学装置满足以下关系式:0.1≤X/d≤105,其中,X g/m 2为正极集流体单面单位面积的含氟磺酰亚胺锂盐的质量,dμm为正极集流体单面导电涂层的厚度。
含氟磺酰亚胺锂盐具有很好的解离效果,可以提升电解液的导电性,但可与金属离子形成可溶性物质,进而增加集流体腐蚀的风险。本申请将含氟磺酰亚胺锂盐和导电涂层相配合,通过导电涂层的引入降低了集流体与活性材料之间的接触电阻,同时还能够在一定程度上减少含氟磺酰亚胺锂盐与集流体接触而导致的腐蚀风险,既可以提高电化学装置的大倍率循环性能和降低电化学装置的温升,又能够减缓含氟磺酰亚胺锂盐对正极集流体的腐蚀影响,提升电化学装置的长期稳定性。
根据本申请的一些实施方式,X/d为0.5、5、15、25、30、35、45、47、50、53、55、57、60、43、65、67、70、73、75、77、83、85、87、90、93、95、97、103或这些值中任意两者组成的范围。根据本申请的一些实施方式,0.2≤X/d≤100。在本申请的一些实施方式中,10≤X/d≤100。在本申请的一些实施方式中,40≤X/d≤100。X/d的值过高,第一含氟金属盐对集流体的腐蚀风险增加,影响电化学装置的长期稳定性。X/d的值过低会增加电子或离子的传输阻力,影响大倍率下的电化学装置的性能发挥。
根据本申请的一些实施方式,0.1≤X≤25。在一些实施方式中,X为0.7、1、3、5、7、9、11、13、15、17、19、23或这些值中任意两者组成的范围。在一些实施方式中,2≤X≤20。
根据本申请的一些实施方式,含氟磺酰亚胺锂盐包括式I所示的锂盐中的 至少一种,
Figure PCTCN2022103868-appb-000002
其中,R 1和R 2各自独立选自氟、C 1-C 4烷基或氟代C 1-C 4烷基,其中R 1和R 2中至少一者含有氟元素。在一些实施方式中,R 1为氟、C 1-C 4烷基或氟代C 1-C 4烷基,R 2为氟或氟代C 1-C 4烷基。在一些实施方式中,R 1和R 2相同,均为氟或氟代C 1-C 4烷基。在一些实施方式中,C 1-C 4烷基为甲基、乙基、正丙基、异丙基、正丁基、异丁基或叔丁基。在一些实施方式中,氟代C 1-C 4烷基为氟代甲基、氟代乙基、氟代正丙基、氟代异丙基、氟代正丁基、氟代异丁基或氟代叔丁基,其中氟代表示C 1-C 4烷基中至少一个氢原子被氟原子取代。在一些实施方式中,氟代C 1-C 4烷基为一氟代甲基、二氟代甲基、三氟代甲基、三氟代乙基或六氟代异丙基。
在一些实施方式中,含氟磺酰亚胺锂盐包括双氟磺酰亚胺锂或双(三氟甲基磺酰)亚胺锂中的至少一种。
根据本申请的一些实施方式,第一含氟金属盐还包括六氟磷酸锂,基于电解液的总质量,第一含氟金属盐的质量百分含量Y%满足:8≤Y≤25。在一些实施方式中,Y为9、10、11、13、15、17、19、20、23、24或这些值中任意两者组成的范围。
根据本申请的一些实施方式,电解液还包括第二含氟金属盐。第二含氟金属盐的加入可以在电极表面形成保护层,减少副反应发生。同时第二含氟金属盐分解产生的F -会在集流体表面形成金属氟化物例如AlF 3钝化层,能够进一步降低集流体腐蚀的风险。
在本申请的一些实施方式中,第二含氟金属盐分子中氟原子的质量百分含量≥10%。在一些实施方式中,第二含氟金属盐包括含氟碱金属盐中的至少一种,例如含氟锂盐、含氟钠盐或含氟铯盐。
根据本申请的一些实施方式中,基于电解液的总质量,第二含氟金属盐的质量百分含量为0.01%至6.0%。在一些实施方式中,基于电解液的总质量,第二含氟金属盐的质量百分含量为0.2%、0.4%、0.6%、0.8%、1.0%、1.5%、2.3%、2.5%、3.0%、3.5%、4.0%、4.5%、5.5%或这些值中任意两者组成的范围。在一些实施方式中,基于电解液的总质量,第二含氟金属盐的质量百分含量为0.01%至5.0%。在一些实施方式中,第二含氟金属盐包括含氟碱金属盐中的至少一种,例如含氟锂盐、含氟钠盐或含氟铯盐。
根据本申请的一些实施方式,第二含氟金属盐包括含氟碱金属盐中的至少一种。在一些实施方式中,含氟碱金属盐包括含氟锂盐、含氟钠盐或含氟铯盐中的至少一种。在一些实施方式中,第二含氟金属盐包括氟代含硼锂盐、氟代含硼钠盐、氟代含硼铯盐、氟代磷酸锂盐、氟代磷酸钠盐、氟代磷酸铯盐或4,5-二氰基-2-三氟甲基咪唑锂中的至少一种。
在本申请的一些实施方式中,第二含氟金属盐包括第二含氟锂盐中的至少一种。在本申请的一些实施方式中,第二含氟锂盐包括氟代含硼锂盐、氟代磷酸锂盐或4,5-二氰基-2-三氟甲基咪唑锂中的至少一种。在本申请的一些实施方式中,氟代含硼锂盐包括以下物质中的至少一种:
Figure PCTCN2022103868-appb-000003
Figure PCTCN2022103868-appb-000004
Figure PCTCN2022103868-appb-000005
在本申请的一些实施方式中,氟代磷酸锂盐包括二氟磷酸锂、四氟草酸磷酸锂(LiOTFP)或二氟草酸磷酸锂中的至少一种。
根据本申请的一些实施方式,第二含氟金属盐包括第二含氟铯盐。在一些实施方式中,第二含氟铯盐包括氟代含硼铯盐中的至少一种。在一些实施方式中,氟代含硼铯盐为二氟草酸硼酸铯。
根据本申请的一些实施方式,第二含氟金属盐包括第二含氟钠盐。在一些实施方式中,第二含氟钠盐包括氟代磷酸钠盐中的至少一种。在一些实施方式中,氟代磷酸钠盐为单氟磷酸钠或二氟磷酸钠中的至少一种。
根据本申请的一些实施方式,电解液还包括添加剂,添加剂包括磺酸内酯、环状碳酸酯或氟代环状碳酸酯中的至少一种。根据本申请的一些实施方式,基于电解液的总质量,添加剂的质量百分含量为0.01%至11%。在一些实施方式中,基于电解液的总质量,添加剂的质量百分含量为0.05%、0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10.5%或这些值中任意两者组成的范围。在一些实施方式中,基于电解液的总质量,添加剂的质量百分含量为0.01%至10%。
根据本申请的一些实施方式,磺酸内酯包括式III化合物:
Figure PCTCN2022103868-appb-000006
其中,R 11、R 12、R 13各自独立选自氢、卤素、烃基或含卤素的烃基。
在一些实施方式中,R 11、R 12、R 13各自独立选自C 1-C 6的烷基、C 2-C 6的烯基、C 2-C 6的炔基、含卤素的C 1-C 6的烷基、含卤素的C 2-C 6的烯基或含卤素的C 2-C 6的炔基。在一些实施方式中,C 1-C 6的烷基为甲基、乙基、丙基、丁基或戊基等。在一些实施方式中,C 2-C 6的烯基为乙烯基、丙烯基或丁烯基。在一些实施方式中,C 2-C 6的炔基为乙炔基、丙炔基或丁炔基。本申请中卤素指F、Cl、Br或I。
在一些实施方式中,磺酸内酯化合物包括
Figure PCTCN2022103868-appb-000007
Figure PCTCN2022103868-appb-000008
Figure PCTCN2022103868-appb-000009
中的至少一种。
根据本申请的一些实施方式,氟代环状碳酸酯包含式IV的化合物中的至少一种:
Figure PCTCN2022103868-appb-000010
式IV中,R 5、R 6、R 7、R 8各自独立地表示氢原子、氟原子或C 1-C 4烷基,R 5、R 6、R 7、R 8中至少有一个为氟原子,且p为0、1、2、3或4。在一些实 施方式中,氟代环状碳酸酯包括氟代碳酸乙烯酯(FEC)、二氟代碳酸乙烯酯(DFEC)、氟代碳酸丙烯酯、二氟代碳酸丙烯酯、三氟代碳酸丙烯酯、三氟甲基碳酸丙烯酯或氟代碳酸丁烯酯中的至少一种。
根据本申请的一些实施方式,环状碳酸酯包含式V的化合物中的至少一种:
Figure PCTCN2022103868-appb-000011
式V中,R 9、R 10各自独立地表示氢原子、C 1-C 4烷基或C 2-C 4烯基。在一些实施方式中,环状碳酸酯包括碳酸亚乙烯酯(VC)或碳酸乙烯亚乙酯中的至少一种。
根据本申请的一些实施方式,导电涂层的厚度dμm满足:0.2≤d≤5。在一些实施方式中,d为0.4、0.6、0.8、1.0、1.5、2.5、3.0、3.5、4.0、4.5或这些值中任意两者组成的范围。在一些实施方式中,导电涂层的厚度dμm满足:0.2≤d≤2。
根据本申请的一些实施方式,导电涂层包括碳材料或导电聚合物材料中的至少一种。在一些实施方式中,碳材料包括碳纳米管、碳纤维或导电炭黑中的至少一种。
根据本申请的一些实施方式,该电化学装置中正极集流体的拉伸强度为R MPa,其中R≥150。在一些实施方式中,150≤R≤350。在一些实施方式中,150≤R≤300。根据本申请的一些实施方式,该电化学装置的正极极片中的活性物质层包括钴酸锂、镍钴锰、磷酸铁锂、锰酸锂或富锂锰基材料中的至少一种。
本申请的电化学装置中使用的负极的材料、构成和其制造方法可包括任何现有技术中公开的技术。根据本申请的一些实施方式,负极包括负极集流体和负极活性材料层。
根据本申请的一些实施方式,负极活性材料层包括负极活性材料,负极活性材料可以包括可逆地嵌入/脱嵌锂离子的材料、锂金属、锂金属合金、能够掺杂/脱掺杂锂的材料或过渡金属氧化物,例如Si或SiO x(0<x<2)等材料。可逆地嵌入/脱嵌锂离子的材料可以是碳材料。碳材料可以是在锂离子可再充电电化学装置中通常使用的任何碳基负极活性物质。碳材料的示例包括结晶碳、非晶碳和它们的组合。结晶碳可以是无定形的或板形的、小片形的、球形的或纤维形的天然石墨或人造石墨。非晶碳可以是软碳、硬碳、中间相沥青碳化产物、烧制焦炭等。低结晶碳和高结晶碳均可以用作碳材料。作为低结晶碳材料,可通常包括软碳和硬碳。作为高结晶碳材料,可通常包括天然石墨、结晶石墨、热解碳、中间相沥青基碳纤维、中间相碳微珠、中间相沥青和高温锻烧炭(如石油或衍生自煤焦油沥青的焦炭)。
根据本申请的一些实施方式,负极活性材料层包含有粘合剂,且该粘合剂可以包括各种粘合剂聚合物,如二氟乙烯-六氟丙烯共聚物(PVDF-co-HFP)、聚偏二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇、羧甲基纤维素、羟丙基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙等,但不限于此等。
根据本申请的一些实施方式,负极活性材料层还包括导电材料来改善电极导电率。可以使用任何导电的材料作为该导电材料,只要它不引起化学变化即可。导电材料的示例包括:碳基材料,例如天然石墨、人造石墨、炭黑、乙炔黑、科琴黑或碳纤维等;金属基材料,例如包括铜、镍、铝或银等的金属粉或金属纤维;导电聚合物,例如聚亚苯基衍生物等;或它们的混合物。 集流体可以为铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、包覆有导电金属的聚合物基板或它们的组合。
本申请的电化学装置中使用的隔离膜的材料和形状没有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
例如隔离膜可包括基材层和表面处理层。基材层为具有多孔结构的无纺布、膜或复合膜,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。具体的,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层包括无机颗粒和粘结剂,无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的至少一种。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯烷氧、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的至少一种。
聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯烷氧、聚偏氟乙烯、聚(偏氟乙烯-六氟丙烯)中的至少一种。
在一些实施例中,本申请的电化学装置包括,但不限于:所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容。在一些实施例中,电化学装置是锂二次电池。在一些实施例中,锂二次电池包括,但不限于:锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
在第二方面,本申请提供了一种电子装置,其包括第一方面的电化学装置。
本申请的电子设备或装置没有特别限定。在一些实施例中,本申请的电子设备包括但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面结合具体实施方式,进一步阐述本申请。应理解,这些具体实施方式仅用于说明本申请而不用于限制本申请的范围。
实施例及对比例中锂离子电池制备过程如下:
(1)正极极片制备
先采用固含量为65%的Super P导电溶液均匀涂敷在正极集流体铝箔表面,得到含导电涂层的铝箔。
将正极活性材料Li(Ni 0.5Co 0.2Mn 0.3)O 2、导电剂Super P、粘结剂聚偏二氟乙烯按照重量比96:2.2:1.8进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌均匀,获得正极浆料,其中正极浆料的固含量为72wt%;将正极浆料均匀涂覆于含导电涂层的铝箔上;将涂覆后的铝箔在85℃下烘干,然后经过冷压、裁片、分切,随后在85℃的真空条件下干燥4h,得到正极极片。正极极片的容量面密度为14.0mg/cm 2,压实密度为3.3g/cm 3
(2)负极极片制备
将负极活性材料人造石墨、导电剂Super P、增稠剂羧甲基纤维素钠(CMC)、粘结剂丁苯橡胶(SBR)按照重量比96:2:0.8:1.2进行混合,加入 去离子水,在真空搅拌机作用下获得负极浆料,其中负极浆料的固含量为54wt%;将负极浆料均匀涂覆在负极集流体铜箔上;将涂覆后的铜箔在85℃下烘干,然后经过冷压、裁片、分切,随后在120℃的真空条件下干燥12h,得到负极极片。
(3)电解液制备
在干燥的氩气气氛手套箱中,将溶剂(质量比EC/DEC/EMC=3/2/5)、添加剂、锂盐按照所需含量进行混合。具体地,先加入溶剂,接着加入添加剂,溶解并充分搅拌后加入锂盐,混合均匀后获得电解液。
(4)隔离膜的制备
选用9μm厚的聚乙烯(PE)隔离膜,经过PVDF浆液、无机颗粒(片状勃姆石和Al 2O 3比例为70:30)浆液涂覆烘干后得到最终隔离膜,涂层厚度为3μm,隔膜孔隙率为55%。
(5)锂离子电池的制备
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片、负极极片之间起到隔离的作用,然后卷绕得到裸电池;焊接极耳后将裸电池置于外包装箔铝塑膜中,将上述制备好的电解液注入到干燥后的裸电池中,经过真空封装、静置、化成(0.02C恒流充电到3.3V,再以0.1C恒流充电到3.6V)、整形、容量测试等工序,获得软包锂离子电池,测试电池内阻为1.5±0.5mΩ。
测试方法
1、导电涂层厚度测试:取包含导电涂层、活性物质涂层和铝箔的正极片,以极片长度方向中轴线为截面,以中心点为中心,取宽度为1cm的截面,通过SEM观察测量铝箔厚度h mm,铝箔厚度加导电涂层厚度H mm,导电涂层厚度d=(H-h)/2,选取5个点取平均值。
2、X值测试:首先测量正极片集流体的长度和宽度,得到集流体的面积S m 2,然后通过离心方式得到电池中电解液,采用离子色谱仪检测得到含氟磺酰亚胺锂盐占电解液的质量百分比m%;
含氟磺酰亚胺锂盐在电池中的总质量:首先称取电池的总质量,然后将电池拆解得到电池主体(隔膜、正极片/负极片)、极耳以及外包装铝塑膜,电池主体部分用碳酸二甲酯溶剂浸泡48小时、再烘干,最终电池中电解液的总质量M g为电池总质量减去极耳质量、外包装质量和烘干后的电池主体质量,含氟磺酰亚胺锂盐在电池中的总质量为m%×M g;
正极集流体单面单位面积的含氟磺酰亚胺锂盐的质量:X g/m 2=m%×M g/S m 2
3、正极集流体拉伸强度测试:取长度>30cm,宽度为8mm的铝箔,铝箔厚度为h mm,采用高铁拉力机以1mm/min的速度拉动,直到铝箔被拉断完成测试,根据仪器自带软件得到拉力值F(N),拉伸强度R=F/8/h。
4、锂离子电池放电性能测试:将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。将达到恒温的锂离子电池以5.0C恒流充电至电压为4.35V,然后以4.35V恒压充电至电流为0.05C。接着以11.0C恒流放电至3.0V,此过程采用多路测温仪监控电池表面温升。
5、锂离子电池高温循环测试:将锂离子电池置于45℃高温炉,以5.0C恒流充电至电压4.35V,恒压充电至电流为0.05C,静置15min,然后再以11C恒流放电至3.0V,静置30min,以此作为一个循环。以第一次循环的放电容量为初始容量C0,电池循环1000次的容量为C1,则此时的电池容量保持率为R=C1/C0×100%。
测试结果
表1展示了导电涂层的厚度dμm、正极集流体单面单位面积的含氟磺酰亚胺锂盐(双氟磺酰亚胺锂(LiFSI)或双(三氟甲基磺酰)亚胺锂(LiTFSI)) 的质量X g/m 2、第一含氟金属盐(含氟磺酰亚胺锂盐与LiPF 6)在电解液中的质量百分含量Y%对锂离子电池温升和容量保持率的影响。其中,FEC代表氟代碳酸乙烯酯。
在表1所示的各实施例和对比例中,对比例1-1至对比例1-9、实施例1-1至实施例1-13中铝箔的拉伸强度为230MPa,实施例1-14中铝箔的拉伸强度为140MPa。实施例1-13中LiFSI和LiTFSI的摩尔比为2:1。
表1
Figure PCTCN2022103868-appb-000012
如表1所示,通过实施例1-1至1-13与对比例1-1至1-9的对比可以看出:含氟磺酰亚胺锂盐与导电涂层的配合降低了电池放电过程的温升、提升了循环容量保持率。这主要是因为导电涂层增强了活性物质与集流体之间的电子电导、含氟磺酰亚胺锂盐增加了离子传导,两者协同改善了电池大倍率放电时的产热。
表2展示了电解液中第二含氟金属盐的种类与含量、添加剂种类与含量对锂离子电池温升和容量保持率的影响。表2所示的各实施例是基于实施例1-7的进一步改进,也即区别仅在于表2中的参数。
表2中,LiBF 4代表四氟硼酸锂、LiDFOB代表二氟草酸硼酸锂、CsDFOB代表二氟草酸硼酸铯、LiOTFP代表四氟草酸磷酸锂、LiPO2F2代表二氟磷酸锂、NaPO2F2代表二氟磷酸钠、FEC代表氟代碳酸乙烯酯、PS代表1,3-丙磺内酯、VC代表碳酸亚乙酯。
表2
Figure PCTCN2022103868-appb-000013
Figure PCTCN2022103868-appb-000014
如表2所示,通过实施例2-1至实施例2-9与实施例1-7的对比可以看出:第二含氟锂盐的加入可以进一步提高电池的循环寿命。这主要是因为第二含氟锂分子具有较高的含氟比例,可以与集流体表面形成更稳定保护层,从而提升电池长期使用的稳定性。
通过实施例2-10至实施例2-14与实施例1-7的对比可以看出:磺酸内酯类添加剂或环状碳酸酯添加剂的加入可进一步提高电池的容量保持率。这主要是因为添加剂增加了极片表面的成膜并能在循环过程中修复极片表面成膜。
通过实施例2-15和实施例2-16与实施例1-7的对比可以看出:第二含氟金属盐为钠盐或铯盐时,依然能得到较好的效果。
虽然已经说明和描述了本申请的一些示例性实施方式,然而本申请不限于所公开的实施方式。相反,本领域普通技术人员将认识到,在不脱离如所附权利要求中描述的本申请的精神和范围的情况下,可对所描述的实施方式进行一些修饰和改变。

Claims (12)

  1. 一种电化学装置,包括正极、负极、隔离膜和电解液,所述正极包括正极集流体、正极活性物质层和设置于所述正极集流体和所述正极活性物质层之间的导电涂层,所述电解液包括第一含氟金属盐,所述第一含氟金属盐包括含氟磺酰亚胺锂盐中的至少一种,
    所述电化学装置满足以下关系式:0.1≤X/d≤105,
    其中,X g/m 2为正极集流体单面单位面积的含氟磺酰亚胺锂盐的质量,d μm为正极集流体单面导电涂层的厚度。
  2. 根据权利要求1所述的电化学装置,其中,10≤X/d≤100。
  3. 根据权利要求1所述的电化学装置,其中,0.1≤X≤25。
  4. 根据权利要求1所述的电化学装置,其中,40≤X/d≤100;和/或2≤X≤20。
  5. 根据权利要求1所述的电化学装置,其中,所述第一含氟金属盐满足如下条件(a)至(b)中的至少一者:
    (a)所述含氟磺酰亚胺锂盐包括式I所示的锂盐中的至少一种,
    Figure PCTCN2022103868-appb-100001
    式I中,R 1和R 2各自独立选自氟、C 1-C 4的烷基或氟代C 1-C 4烷基,其中R 1和R 2中至少一者含有氟元素;
    (b)所述含氟磺酰亚胺锂盐包括双氟磺酰亚胺锂或双(三氟甲基磺酰)亚胺锂中的至少一种。
  6. 根据权利要求1所述的电化学装置,其中,所述第一含氟金属盐还包括六氟磷酸锂,基于所述电解液的总质量,所述第一含氟金属盐的质量百分含量Y%满足:8≤Y≤25。
  7. 根据权利要求1所述的电化学装置,其中,所述电解液还包括第二含氟金属盐,所述第二含氟金属盐满足如下条件(c)至(e)中的至少一者:
    (c)所述第二含氟金属盐分子中氟原子的质量百分含量≥10%;
    (d)基于所述电解液的总质量,所述第二含氟金属盐的质量百分含量为0.01%至6.0%;
    (e)所述第二含氟金属盐包括含氟碱金属盐中的至少一种。
  8. 根据权利要求7所述的电化学装置,其中,所述第二含氟金属盐满足如下条件(1)至(3)中的至少一者:
    (1)所述含氟碱金属盐包括含氟锂盐、含氟钠盐或含氟铯盐中的至少一种;
    (2)所述第二含氟金属盐包括氟代含硼锂盐、氟代含硼钠盐、氟代含硼铯盐、氟代磷酸锂盐、氟代磷酸钠盐、氟代磷酸铯盐或4,5-二氰基-2-三氟甲基咪唑锂中的至少一种;
    (3)基于所述电解液的总质量,所述第二含氟金属盐的质量百分含量为0.01%至5.0%。
  9. 根据权利要求1所述的电化学装置,其中,所述电解液还包括添加剂,所述添加剂满足如下条件(f)至(g)中的至少一者:
    (f)所述添加剂包括磺酸内酯、环状碳酸酯或氟代环状碳酸酯中的至少一种;
    (g)基于所述电解液的总质量,所述添加剂的质量百分含量为0.01%至10%。
  10. 根据权利要求1所述的电化学装置,其中,所述导电涂层满足如下条件(h)至(i)中的至少一者:
    (h)所述导电涂层的厚度dμm满足:0.2≤d≤5;
    (i)所述导电涂层包括碳材料或导电聚合物材料中的至少一种。
  11. 根据权利要求1所述的电化学装置,其中,所述电化学装置满足如下条件(j)至(k)中的至少一者:
    (j)所述正极集流体的拉伸强度为R MPa,其中R≥150;
    (k)所述正极活性物质层包括钴酸锂、镍钴锰、磷酸铁锂、锰酸锂或富锂锰基材料中的至少一种。
  12. 一种电子装置,包括根据权利要求1至11中任一项所述的电化学装置。
PCT/CN2022/103868 2021-09-22 2022-07-05 电化学装置和电子装置 WO2023045487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111106361.0A CN113851724B (zh) 2021-09-22 2021-09-22 电化学装置和电子装置
CN202111106361.0 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023045487A1 true WO2023045487A1 (zh) 2023-03-30

Family

ID=78975029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103868 WO2023045487A1 (zh) 2021-09-22 2022-07-05 电化学装置和电子装置

Country Status (2)

Country Link
CN (1) CN113851724B (zh)
WO (1) WO2023045487A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254113A (zh) * 2023-11-17 2023-12-19 宁德时代新能源科技股份有限公司 二次电池及用电装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851724B (zh) * 2021-09-22 2022-08-02 宁德新能源科技有限公司 电化学装置和电子装置
WO2023130423A1 (zh) * 2022-01-10 2023-07-13 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置
WO2024016097A1 (zh) * 2022-07-18 2024-01-25 宁德时代新能源科技股份有限公司 二次电池、电池模块、电池包和用电装置
CN117894993A (zh) * 2022-10-08 2024-04-16 珠海冠宇电池股份有限公司 一种高电压电池
CN116093252B (zh) * 2023-04-06 2023-06-27 宁德新能源科技有限公司 负极极片、以及包含其的电化学装置及电子装置
CN117254117A (zh) * 2023-11-17 2023-12-19 宁德时代新能源科技股份有限公司 二次电池及用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569816A (zh) * 2012-02-14 2012-07-11 中南大学 一种锂硫电池正极及其制备方法
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN103329331A (zh) * 2010-11-12 2013-09-25 利登能源股份有限公司 高性能锂电池或锂离子电池
CN105304903A (zh) * 2014-06-26 2016-02-03 Sk新技术株式会社 高温特性及低温特性优异的二次电池
WO2020079819A1 (ja) * 2018-10-18 2020-04-23 日本碍子株式会社 リチウム二次電池
CN112216864A (zh) * 2019-07-09 2021-01-12 宁德时代新能源科技股份有限公司 一种锂离子电池
CN112582667A (zh) * 2020-04-04 2021-03-30 骆驼集团武汉新能源科技有限公司 一种汽车启停电源用高功率锂离子电池
CN112736278A (zh) * 2020-12-31 2021-04-30 湖北亿纬动力有限公司 一种锂离子电池及其制备方法
CN113851724A (zh) * 2021-09-22 2021-12-28 宁德新能源科技有限公司 电化学装置和电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310483B (zh) * 2019-07-30 2021-09-17 宁德时代新能源科技股份有限公司 一种锂离子电池
CN115472895A (zh) * 2021-06-10 2022-12-13 宁德新能源科技有限公司 电化学装置和电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329331A (zh) * 2010-11-12 2013-09-25 利登能源股份有限公司 高性能锂电池或锂离子电池
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN102569816A (zh) * 2012-02-14 2012-07-11 中南大学 一种锂硫电池正极及其制备方法
CN105304903A (zh) * 2014-06-26 2016-02-03 Sk新技术株式会社 高温特性及低温特性优异的二次电池
WO2020079819A1 (ja) * 2018-10-18 2020-04-23 日本碍子株式会社 リチウム二次電池
CN112216864A (zh) * 2019-07-09 2021-01-12 宁德时代新能源科技股份有限公司 一种锂离子电池
CN112582667A (zh) * 2020-04-04 2021-03-30 骆驼集团武汉新能源科技有限公司 一种汽车启停电源用高功率锂离子电池
CN112736278A (zh) * 2020-12-31 2021-04-30 湖北亿纬动力有限公司 一种锂离子电池及其制备方法
CN113851724A (zh) * 2021-09-22 2021-12-28 宁德新能源科技有限公司 电化学装置和电子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254113A (zh) * 2023-11-17 2023-12-19 宁德时代新能源科技股份有限公司 二次电池及用电装置
CN117254113B (zh) * 2023-11-17 2024-04-02 宁德时代新能源科技股份有限公司 二次电池及用电装置

Also Published As

Publication number Publication date
CN113851724B (zh) 2022-08-02
CN113851724A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN113851724B (zh) 电化学装置和电子装置
CN108172823B (zh) 富锂锰材料、锂离子电池正极材料、锂离子电池正极片、锂离子电池及其制备方法
CN111525191B (zh) 一种电解液及电化学装置
CN112335090B (zh) 电解液和使用其的电化学装置
WO2021189255A1 (zh) 一种电解液及电化学装置
WO2021223181A1 (zh) 一种电解液及电化学装置
US11031630B2 (en) Electrolyte and electrochemical device
WO2021120434A1 (zh) 一种电解液及电化学装置
CN116864805A (zh) 电化学装置和电子装置
US20240021775A1 (en) Negative electrode, electrochemical device containing same, and electronic device
CN114824165B (zh) 负极极片、电化学装置及电子设备
CN112467220A (zh) 一种适用于硅碳体系锂离子电池的电解液
CN111697267A (zh) 电解液和包含电解液的电化学装置及电子装置
WO2023087209A1 (zh) 电化学装置及电子装置
WO2021128203A1 (zh) 一种电解液及电化学装置
WO2023078059A1 (zh) 电解液以及使用其的电化学装置和电子装置
WO2023178474A1 (zh) 电化学装置及包含该电化学装置的电子装置
WO2023077330A1 (zh) 电解液、二次电池及包含该二次电池的用电装置
WO2021196019A1 (zh) 一种电解液及电化学装置
CN116053567A (zh) 一种电解液及电化学装置
WO2021128205A1 (zh) 一种电解液及电化学装置
CN112886061B (zh) 一种电解液及包含该电解液的电化学装置
CN113889664B (zh) 电解液、电化学装置和电子装置
CN112117493B (zh) 一种锂离子电池用电解液及包括该电解液的锂离子电池
WO2023123427A1 (zh) 电化学装置和包含其的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871548

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871548

Country of ref document: EP

Effective date: 20240327

NENP Non-entry into the national phase

Ref country code: DE