WO2023045042A1 - 基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法 - Google Patents

基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法 Download PDF

Info

Publication number
WO2023045042A1
WO2023045042A1 PCT/CN2021/129240 CN2021129240W WO2023045042A1 WO 2023045042 A1 WO2023045042 A1 WO 2023045042A1 CN 2021129240 W CN2021129240 W CN 2021129240W WO 2023045042 A1 WO2023045042 A1 WO 2023045042A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
film
intermediate film
preparing
ldh
Prior art date
Application number
PCT/CN2021/129240
Other languages
English (en)
French (fr)
Inventor
宋光铃
朱艺星
郑大江
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2023045042A1 publication Critical patent/WO2023045042A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment

Definitions

  • the disclosure relates to the field of surface technology, in particular to a method for preparing a layered double oxyhydroxide film based on in-situ transformation of a co-sputtered intermediate film.
  • Layered double metal hydroxide is a kind of hydrotalcite-like two-dimensional layered nanomaterials, whose general formula is [M 2+ 1-x M 3+ x (OH) 2 ] x+ [A n- ] x /n ⁇ mH 2 O, where M 2+ and M 3+ represent divalent and trivalent metal cations, and An- is an interlayer anion. Its unique layered structure and diverse chemical composition endow LDH materials with excellent nano-storage properties, catalytic properties, corrosion resistance, self-healing properties, etc. Medicine and many other fields have aroused extensive attention and applications.
  • LDH materials are required to be attached to the surface of substrate materials in the form of surface films. Therefore, the preparation of in-situ LDH films has important application and development prospects in recent years.
  • the metal (M1) substrate material is usually immersed in another metal (M2) salt solution to dissolve the M1 substrate or form a hydroxide to provide the M1 metal source, while the M2 metal salt Serves as another essential metal cation for the formation of LDH films.
  • M2 salt solution to dissolve the M1 substrate or form a hydroxide to provide the M1 metal source
  • M2 metal salt Serves as another essential metal cation for the formation of LDH films.
  • this method is severely limited by the substrate material, and it is still very difficult to prepare in-situ LDH films on some metal or non-metal surfaces.
  • the purpose of the present disclosure is to provide a simple, easy-to-control, high-efficiency and unrestricted substrate material-based in-situ conversion of co-sputtering intermediate film to prepare layered double hydroxyhydroxide film (LDH film) ) method, get rid of the problem that the traditional in-situ LDH surface film is limited by the substrate, realize the preparation of in-situ LDH film on substrates of different sizes, shapes, and materials, and get rid of the process bottleneck for the large-scale industrial production and application of LDH surface film.
  • LDH film layered double hydroxyhydroxide film
  • the method for preparing a layered double hydroxy metal hydroxide film based on the in-situ conversion of a co-sputtering intermediate film includes the step: S1, using co-sputtering technology to co-deposit two or more metals on the surface of the substrate material, A co-sputtered intermediate film is obtained; S2, and then the co-sputtered intermediate film is transformed in situ through a hydrothermal reaction process to realize hydroxylation to obtain a double hydroxy metal hydroxide film.
  • the substrate material includes at least one of a metal substrate and a non-metal substrate; wherein the metal substrate includes at least one of magnesium and its alloys, aluminum and its alloys, zinc and its alloys;
  • the non-metal substrate includes at least one of glass sheet, cotton cloth, foamed nickel, and foamed copper.
  • the base material is pretreated; wherein, the pretreatment of the metal base material includes mechanical grinding and polishing of the metal material; and/or the pretreatment of the non-metallic base material includes the use of absolute ethanol Ultrasonic cleaning, followed by deionized water cleaning and drying.
  • the co-sputtered intermediate film obtained in step S1 includes at least one of zinc-aluminum co-sputtered film, magnesium-aluminum co-sputtered film, and magnesium-zinc-aluminum co-sputtered film.
  • the zinc sputtering power is 30W-100W; and/or the magnesium sputtering power is 50W-100W; and/or the aluminum sputtering power is 50W-200W.
  • step S1 may be: place the base material on the sputtering table of the magnetron sputtering system, make the vacuum degree of the chamber below 7.8 ⁇ 10 -4 Pa through the vacuuming process, and continue Introduce argon gas to stabilize the pressure at 0.2-0.6Pa to realize the preparation of the co-sputtering interlayer film; wherein, the distance between the target and the base material is 60mm-80mm, the ambient temperature is 25 ⁇ 2°C, and the sputtering The time is 5 minutes to 180 minutes.
  • the pH of the hydrothermal solution of the hydrothermal reaction is adjusted to 4-10.
  • the hydrothermal temperature of the hydrothermal reaction process is 60°C-100°C.
  • the hydrothermal time of the hydrothermal reaction process is 2h-72h.
  • step S2 may be: placing the co-sputtered intermediate film sample obtained in step S1 in an aqueous solution with a pH of 4-10, and placing the sample vertically in a polytetrafluoroethylene hydrothermal reaction kettle for hydrothermal reaction After the reaction, the sample is taken out, washed with deionized water and absolute ethanol, and dried to obtain a double hydroxyl metal hydroxide film.
  • the preparation process of the LDH surface film introduces a co-sputtering intermediate film, which can provide metal ions for the synthesis of the LDH film, and reacts to the stimulation of the co-sputtering film under certain conditions, realizing the co-sputtering intermediate film.
  • a co-sputtering intermediate film which can provide metal ions for the synthesis of the LDH film, and reacts to the stimulation of the co-sputtering film under certain conditions, realizing the co-sputtering intermediate film.
  • the method provided by the present disclosure can realize the controllable growth of the thickness of the LDH film.
  • the problem of insufficient raw materials for the base material in the hydrothermal process is solved, and the growth of the LDH film is not limited, and the realization of The preparation of large-thickness in-situ LDH films further meets the needs of various functional properties such as technology and industry, and expands the application range of LDH surface films.
  • Fig. 1 is the microscopic topography figure of the Zn-Al LDH surface film prepared on the glass sheet in Example 1.
  • Fig. 2 is the XRD spectrum of the co-sputtered intermediate film and the zinc-aluminum LDH surface film prepared on the glass sheet in Example 1.
  • Example 3 is a microscopic cross-sectional view of the zinc-aluminum LDH surface film prepared in Example 2.
  • Example 4 is a microscopic cross-sectional view of the zinc-aluminum LDH surface film prepared in Example 3.
  • Fig. 5 is the surface topography diagram of the Zn-Al LDH surface film prepared on the cotton cloth in Example 4.
  • Fig. 6 is a surface topography diagram of the magnesium-aluminum LDH surface film prepared on the magnesium alloy in Example 5.
  • the co-sputtering technology is a technology well known to those skilled in the art, and the co-sputtering system (or instrument, equipment, method, etc.) used in it is familiar to and skillfully operated by those skilled in the art;
  • the terms “binary” metal and “ternary” metal refer to two different metals and three different metals, respectively;
  • the term “co-deposition” refers to co-deposition at the same time, regardless of the sequence.
  • “Target” refers to the sputtering source that forms various functional thin films on the substrate by sputtering under appropriate process conditions through magnetron sputtering or other types of coating systems.
  • unspecified terms and professional terms are the common knowledge of those skilled in the art, and methods not clearly specified are conventional methods known to those skilled in the art.
  • the present disclosure proposes a co-sputtering intermediate A method for preparing an LDH film by in situ conversion of the film.
  • the method for preparing a layered double oxyhydroxide film based on the in-situ transformation of the co-sputtering intermediate film includes the step: S1, using co-sputtering technology to co-deposit two or more metals on the surface of the substrate material to obtain A co-sputtered intermediate film; S2, and then converting the co-sputtered intermediate film in situ through a hydrothermal reaction process to achieve hydroxylation to obtain a double hydroxy metal hydroxide film.
  • the co-sputtering technology can be magnetron sputtering co-sputtering technology
  • magnetron sputtering is a green, simple and not limited by the substrate material deposition technology, can achieve any The shape, size and deposition process of the surface of the material substrate, and the co-sputtering intermediate film of two or even multiple metals can be realized by selecting different targets.
  • a co-sputtered intermediate film with controllable metal ratio and thickness can be realized, which provides sufficient favorable factors for the subsequent realization of the controllable transformation of LDH film.
  • the base material comprises at least one of a metal base and a non-metal base; wherein, in some embodiments, the metal base comprises at least one of magnesium and its alloys, aluminum and its alloys, zinc and its alloys species; the non-metal substrate includes at least one of glass sheet, cotton cloth, foamed nickel, and foamed copper.
  • the substrate material may be pretreated.
  • the pretreatment of the metal base material includes mechanical grinding and polishing of the metal material; in some embodiments, the mechanical grinding uses 400 mesh, 800 mesh, 1200 mesh and 2000 mesh SiC water-based sandpaper to polish the metal surface , Polished and smooth.
  • the pretreatment of the non-metallic material substrate includes cleaning and degreasing its surface; in some embodiments, the surface cleaning and degreasing process can be ultrasonically cleaned with absolute ethanol and deionized water, For example: ultrasonically clean the non-metallic material substrate with absolute ethanol for 15 minutes, then ultrasonically clean with deionized water for 10 minutes, take out the sample and dry it for later use.
  • the intermediate film is obtained by co-sputtering and co-depositing metal on the surface of the base material, which provides a metal source for the transformation of the LDH film.
  • the co-sputtered intermediate film comprises a binary metal and/or a ternary metal, for example, at least one of a zinc-aluminum co-sputtered film, a magnesium-aluminum co-sputtered film, and a magnesium-zinc-aluminum co-sputtered film .
  • the sputtering power of metal magnesium is 50W-100W; in some embodiments, the sputtering power of metal zinc is 30W-100W; in some embodiments, the sputtering power of metal aluminum is 50W-200W ; In some embodiments, the sputtering time ranges from 5 min to 180 min.
  • the co-sputtering pressure is 0.2Pa ⁇ 0.6Pa.
  • step S1 may be: place the base material on the sputtering table of the magnetron sputtering system, make the vacuum degree of the chamber below 7.8 ⁇ 10 -4 Pa through the vacuuming process, and continue Introduce argon gas to stabilize the pressure between 0.2Pa and 0.6Pa to realize the preparation of the co-sputtering intermediate film; wherein, the distance between the target and the base material is 60mm to 80mm, and the ambient temperature is 25 ⁇ 2°C , The sputtering time is 5min ⁇ 180min.
  • the intermediate film obtained in step S1 can provide divalent and trivalent metal sources (such as magnesium, aluminum or zinc) for the growth and transformation of the LDH film.
  • metals such as magnesium, aluminum, or zinc
  • metals will release ions or form hydroxides, providing the possibility for direct conversion of LDH films under mild conditions without introducing any additional metal ions.
  • the pH value in the hydrothermal process of step S2 is an important parameter in the formation and conversion process of the LDH film.
  • the present disclosure can create an acidic environment for the hydrothermal solution through dilute nitric acid, and simultaneously introduce nitrate anions during the preparation process of the LDH membrane, so that the preparation of the LDH-NO 3 -membrane can be realized in one step.
  • the alkaline environment of the hydrothermal solution can be created by the sodium hydroxide solution to simultaneously realize the growth of the LDH-OH - film.
  • the pH of the hydrothermal solution of the hydrothermal reaction is adjusted to 4-10.
  • the hydrothermal temperature and hydrothermal time are two other important factors in the conversion process of LDH film.
  • the conversion process of uniform and dense LDH film can be realized by adjusting the temperature and hydrothermal time.
  • the hydrothermal temperature of the hydrothermal reaction process is 60°C-100°C.
  • the hydrothermal time of the hydrothermal reaction process is 2h-72h.
  • step S2 may be: placing the co-sputtered intermediate film sample obtained in step S1 in an aqueous solution with a pH of 4-10, and placing the sample vertically in a polytetrafluoroethylene hydrothermal reaction kettle for hydrothermal reaction After the reaction, the sample is taken out and rinsed with deionized water and absolute ethanol, and dried to obtain a double hydroxyl metal hydroxide film; in some embodiments, the drying can be done by drying in an oven or blowing dry with cold air.
  • substrate material pretreatment ultrasonically clean the glass sheet with absolute ethanol for 15 minutes, then ultrasonically clean it with deionized water for 10 minutes, and dry the sample after taking it out.
  • co-sputtering interlayer film preparation place the treated glass substrate on the sputtering table of the magnetron sputtering system, make the vacuum degree of the chamber below 7.8 ⁇ 10 -4 Pa through the vacuuming process,
  • the argon gas is continuously fed inside to stabilize the pressure at 0.4Pa, and the zinc-aluminum co-sputtering technology is used to realize the preparation of the zinc-aluminum co-sputtering interlayer film, wherein the sputtering power of zinc is 40W, and the sputtering power of aluminum Using 100W, the distance between the target and the base material is 60m, the ambient temperature is 25 ⁇ 2°C, and the sputtering time is 60min.
  • base material pretreatment ultrasonically clean the glass sheet with absolute ethanol for 15 minutes, then ultrasonically clean it with deionized water for 10 minutes, and dry the glass after taking it out.
  • co-sputtering interlayer film preparation place the treated glass sheet on the sputtering table of the magnetron sputtering system, and make the vacuum degree of the cavity below 7.8 ⁇ 10 -4 Pa through the vacuuming process, and inject The argon gas was fed continuously to keep the pressure stable at 0.2 Pa, and the zinc-aluminum co-sputtering interlayer film was prepared by co-sputtering technology.
  • the sputtering power of zinc is 30W
  • the sputtering power of aluminum is 100W
  • the distance between the target and the base material is 80m
  • the ambient temperature is 25 ⁇ 2°C
  • the sputtering time is 5min.
  • the glass sheet was ultrasonically cleaned with absolute ethanol solution for 15 min, and deionized water for 10 min, and the sample was taken out and then dried.
  • co-sputtering interlayer film preparation place the treated glass sheet on the sputtering table of the magnetron sputtering system, and make the vacuum degree of the cavity below 7.8 ⁇ 10 -4 Pa through the vacuuming process, and inject Continuously feed argon gas to stabilize the pressure at 0.2Pa, and adopt co-sputtering technology to realize the preparation of zinc-aluminum co-sputtering interlayer film.
  • the sputtering power of zinc is 50W
  • the sputtering power of aluminum is 100W
  • the distance between the target material and the base material is 70m
  • the ambient temperature is 25 ⁇ 2°C.
  • Sputtering time is 90min.
  • the cotton cloth material was ultrasonically cleaned with anhydrous ethanol solution for 15 minutes, and deionized water for 10 minutes, and the sample was taken out and then dried.
  • co-sputtering intermediate film preparation arrange the treated cotton on the sputtering table of the magnetron sputtering system, make the vacuum degree of the cavity below 7.8 ⁇ 10 -4 Pa through the vacuuming process, and continue Argon gas was introduced to stabilize the pressure at 0.4 Pa, and the zinc-aluminum co-sputtering interlayer film was prepared by co-sputtering technology.
  • the sputtering power of zinc is 40W
  • the sputtering power of aluminum is 80W
  • the distance between the target and the base material is 70m
  • the ambient temperature is 25 ⁇ 2°C
  • the sputtering time is 30min.
  • the magnesium alloy samples were polished with 400-mesh, 800-mesh, 1200-mesh and 2000-mesh SiC water-based sandpaper, and polished smooth. Then the material was ultrasonically cleaned with absolute ethanol for 15 minutes, and deionized water for 10 minutes, and the sample was taken out and dried with cold air for later use.
  • co-sputtering interlayer film preparation place the processed magnesium alloy substrate on the sputtering table of the magnetron sputtering system, make the vacuum of the chamber below 7.8 ⁇ 10 -4 Pa through the vacuuming process, The argon gas is continuously fed inside to stabilize the pressure at 0.2Pa, and the co-sputtering technology is used to realize the preparation of the magnesium-aluminum co-sputtering interlayer film.
  • the sputtering power of magnesium is 60W
  • the sputtering power of aluminum is 90W
  • the distance between the target and the base material is 70mm
  • the ambient temperature is 25 ⁇ 2°C
  • the sputtering time is 50min.
  • Figure 1 is a microscopic topography diagram of the zinc-aluminum LDH surface film prepared in Example 1. It can be observed from the figure that the lamellar LDH structure uniformly covers the substrate surface, and the size distribution of the lamellar structure is between 500nm and 3 ⁇ m between.
  • the surface film of Zn-Al LDH forms the characteristic peaks (003), (006) and (012) of the typical LDH layered structure at 11.7°, 23.6° and 32.5°, and the intercalation anion is OH - , which shows that the intermediate film Has been successfully converted to LDH film.
  • Fig. 3 is a microscopic cross-sectional view of the zinc-aluminum LDH film prepared in Example 2, from which it can be observed that the thickness of the LDH film is 2 ⁇ m.
  • Figure 4 is a microscopic cross-sectional view of the zinc-aluminum LDH film prepared on the surface of a glass sheet in Example 3. It can be observed from the figure that the thickness of the LDH film can reach 13 ⁇ m, and the sheet-like structure of the lower part of the film has a smaller size and overall The structure is uniform and dense, and the lamellar structure on the surface of the membrane has a larger size. It can be known from Example 2 and Example 3 that the present disclosure can control the thickness of the co-sputtered film by adjusting the parameters of the magnetron sputtering, and then adjust the hydrothermal conversion process to completely transform the intermediate film, which can achieve a controllable thickness. LDH film growth, and can solve the problem that the current large-thickness LDH film is difficult to achieve.
  • Fig. 5 is a surface microscopic topography diagram of an LDH film prepared on a cotton cloth substrate in Example 4. It can be observed from the figure that the woven cotton cloth is evenly covered with a large number of nano-micron layered structures.
  • This example shows that the method provided by the present disclosure can not only achieve in-situ growth of LDH films on substrates such as magnesium alloys and aluminum alloys in the traditional sense, but also can achieve in-situ growth of LDH films on non-metals such as glass and cloth.
  • FIG. 6 is a surface topography diagram of the magnesium-aluminum LDH film prepared on the magnesium alloy substrate in Example 5, from which it can be observed that a large number of nanosheet structures cover the surface uniformly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物(LDH)膜的方法,包括步骤:S1,在基底材料表面利用共溅射技术共沉积两种或两种以上金属,得到共溅射中间膜;S2,随后通过水热反应过程将所述共溅射中间膜原位转化,实现羟基化,得到双羟基金属氢氧化物膜。该方法摆脱了传统原位LDH表面膜受基底限制的问题,可实现在不同尺寸、形状及材质基底上原位LDH膜的转化制备;并且可以简单、高效地实现厚度可控的LDH膜的原位生长。

Description

基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法 技术领域
本公开涉及表面技术领域,具体地涉及一种基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法。
背景技术
层状双羟基金属氢氧化物(LDH)是一种类水滑石二维层状纳米材料,其通式为[M 2+ 1-xM 3+ x(OH) 2] x+[A n-] x/n·mH 2O,其中M 2+和M 3+表示二价和三价的金属阳离子,A n-为层间阴离子。其独特的层状结构和多样的化学组成赋予了LDH材料优良的纳米存储性、催化性、耐蚀性、自愈合性等等,这些特性使其在储能、催化、防腐、环境和生物医学等众多领域引起了广泛的关注和应用。
在催化、防腐及环境等领域的应用中,要求LDH材料以表面膜的形式附着于基底材料表面,因此近年来原位LDH膜的制备具有重要的应用和发展前景。而典型的原位LDH转化膜工艺过程通常将金属(M1)基底材料浸泡在另一种金属(M2)盐溶液中,使M1基底溶解或形成氢氧化物以提供M1金属源,而M2金属盐充当形成LDH膜的另一个必要的金属阳离子。但这种方法严重受限于基底材料,目前在一些金属或非金属表面实现原位LDH膜的制备仍然十分困难。另一方面,由于水热生长过程受众多参数的影响,且对工艺的调控尤为繁琐,使得原位LDH膜很难实现可控生长,尤其是大厚度原位LDH膜难以得到。
发明内容
鉴于背景技术中存在的问题,本公开的目的在于提供一种简单、易控、高效且不受基底材料限制的基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜(LDH膜)的方法,摆脱传统原位LDH表面膜受基底限制的问题,实现在不同大小、形状、材质基底上原位LDH膜的制备,为LDH表面膜大 规模工业化生产及应用摆脱了工艺瓶颈。
本公开提供的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,包括步骤:S1,在基底材料表面利用共溅射技术共沉积两种或两种以上金属,得到共溅射中间膜;S2,随后通过水热反应过程将所述共溅射中间膜原位转化,实现羟基化,得到双羟基金属氢氧化物膜。
在一些实施例中,所述基底材料包括金属基底、非金属基底中的至少一种;其中,所述金属基底包括镁及其合金、铝及其合金、锌及其合金中的至少一种;所述非金属基底包括玻璃片、棉布、泡沫镍、泡沫铜中的至少一种。
在一些实施例中,对基底材料进行预处理;其中,所述金属基底材料的预处理包括对金属材料进行机械打磨、抛光;和/或所述非金属基底材料的预处理包括用无水乙醇超声清洗,再用去离子水清洗,并进行干燥处理。
在一些实施例中,S1步骤得到的共溅射中间膜包括锌铝共溅射膜、镁铝共溅射膜、镁锌铝共溅射膜中的至少一种。
在一些实施例中,在共溅射沉积过程中,锌溅射功率为30W~100W;和/或镁溅射功率为50W~100W;和/或铝溅射功率为50W~200W。
在一些实施例中,步骤S1可为:将基底材料置于磁控溅射系统的溅射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.2~0.6Pa,实现共溅射中间膜的制备;其中,靶材与基底材料之间的距离为60mm-80mm,环境温度为25±2℃,溅射时间为5min~180min。
在一些实施例中,所述水热反应的水热溶液的pH调节为4~10。
在一些实施例中,所述水热反应过程的水热温度为60℃~100℃。
在一些实施例中,所述水热反应过程的水热时间为2h~72h。
在一些实施例中,步骤S2可为:将S1步骤得到的共溅射中间膜样品置于pH为4~10的水溶液中,样品垂直放置于聚四氟乙烯水热反应釜中进行水热反应;反应结束后取出样品用去离子水及无水乙醇冲洗,干燥后得到双羟基金属氢氧化物膜。
本公开至少包括如下所述的有益效果:
本公开提供的LDH表面膜的制备过程引入了共溅射中间膜,该中间膜能够为LDH膜的合成提供金属离子,在一定条件下对共溅射膜的刺激反应,实现了共溅射中间膜向LDH膜的全部原位转化,通过中间膜的引入可实现不同基底上的LDH膜的制备。通过简单地参数调控,能够实现共溅射膜的厚度控制,随后对共溅射中间膜进行完全原位转化;
因此本公开提供的方法可实现LDH膜的厚度可控生长,特别地,通过中间膜的转化,解决了水热过程中基底材料提供原料不足的问题,可使LDH膜的生长不受限,实现大厚度原位LDH膜的制备,进一步满足科技、工业等各种功能特性的需求,扩大LDH表面膜的应用范围。
附图说明
图1为实施例1在玻璃片上制备的锌铝LDH表面膜的微观形貌图。
图2为实施例1在玻璃片上制备的共溅射中间膜及锌铝LDH表面膜的XRD图谱。
图3为实施例2所制备的锌铝LDH表面膜的微观截面图。
图4为实施例3所制备的锌铝LDH表面膜的微观截面图。
图5为实施例4在棉布上所制备的锌铝LDH表面膜的表面形貌图。
图6为实施例5在镁合金上所制备的镁铝LDH表面膜的表面形貌图。
具体实施方式
应理解的是,所公开的实施例仅是本公开的示例,本公开可以以各种形式实施,因此,本公开的具体细节不应被解释为限制,而是仅作为权利要求的基础且作为表示性的基础用于教导本领域普通技术人员以各种方式实施本公开。在本公开的说明中,共溅射技术是本领域技术人员所熟知的技术,其所采用的共溅射系统(或仪器、设备、方法等)是本领域技术人员熟悉且可熟练操作的;术语“二元”金属、“三元”金属分别指的是两种不同的金属、三种不同的金属;术语“共沉积”指的是同时共同沉积,不分先后顺序。“靶材”指的是通过磁控溅射或其他类型的镀膜系统在适当工艺条件下溅射在基板上形成各种功能薄膜的溅射源。在本公开的说明中,未明确说明的术语、专业用词均为本领域技术人员的公知常识,未明确说明的方法均为本领域技 术人员公知的常规方法。
接下来说明本公开的基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜(在本公开全文中简称为LDH膜)的方法。
为了以简单、高效、无污染的方式实现原位LDH膜的生长过程,解决LDH膜的生长受基底限制的问题、且实现LDH膜的可控生长,本公开提出了一种引入共溅射中间膜原位转化制备成LDH膜的方法。
本公开提供的基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法,包含步骤:S1,在基底材料表面利用共溅射技术共沉积两种或两种以上金属,得到共溅射中间膜;S2,随后通过水热反应过程将所述共溅射中间膜原位转化,实现羟基化,得到双羟基金属氢氧化物膜。
[步骤S1]
在本公开的步骤S1中间膜的制备中,共溅射技术可采用磁控溅射共溅射技术,磁控溅射是一种绿色、简单且不受基底材料限制的沉积技术,能够实现任意形状、尺寸及材料基底表面的沉积过程,且通过选择不同的靶材能够实现两种甚至多种金属的共溅射中间膜。另外,通过对溅射参数的简单调控,可实现可控金属比例、可控厚度的共溅射中间膜,为后续实现LDH膜的可控转化提供充分的有利因素。
在一些实施例中,基底材料包含金属基底、非金属基底中的至少一种;其中,在一些实施例中,金属基底包含镁及其合金、铝及其合金、锌及其合金中的至少一种;非金属基底包含玻璃片、棉布、泡沫镍、泡沫铜中的至少一种。
在一些实施例中,可对基底材料进行预处理。在一些实施例中,金属基底材料的预处理包含对金属材料进行机械打磨、抛光;在一些实施例中,机械打磨分别采用400目、800目、1200目及2000目的SiC水性砂纸将金属表面打磨、抛光平整。在一些实施例中,非金属材料基底的预处理包含对其表面进行清洗、除油;在一些实施例中,表面清洗除油过程可用无水乙醇及去离子水对非金属材料基底超声清洗,例如:将非金属材料基底用无水乙醇超声清洗15min,然后用去离子水超声清洗10min,样品取出后干燥备用。
在本公开的步骤S1中,所述中间膜是在基底材料表面共溅射共沉积金属得到,为LDH膜的转化提供金属源。在一些实施例中,共溅射中间膜包含二元金属和/或三元金属,例如,锌铝共溅射膜、镁铝共溅射膜、镁锌铝共溅射膜中的至少一种。在一些实施例中,金属镁的溅射功率为50W~100W;在一些实施例中,金属锌的溅射功率为30W~100W;在一些实施例中,金属铝的溅射功率为50W~200W;在一些实施例中,溅射时间为5min~180min。
在一些实施例中,共溅射压力为0.2Pa~0.6Pa。
在一些实施例中,步骤S1可为:将基底材料置于磁控溅射系统的溅射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.2Pa~0.6Pa之间,实现共溅射中间膜的制备;其中,靶材与基底材料之间的距离为60mm~80mm,环境温度为25±2℃,溅射时间为5min~180min。
[步骤S2]
步骤S1得到的中间膜能够为LDH膜的生长转化提供二价及三价金属源(例如:镁、铝或锌)。在一定的pH条件下,金属(例如:镁、铝或锌)会释放出离子或形成氢氧化物,在不引入任何外加金属离子的温和条件下,为LDH膜的直接转化提供可能性。
其中,步骤S2的水热过程中的pH值是LDH膜的形成转化过程的重要参数。在一些实施例中,本公开可通过稀硝酸为水热溶液创造酸性环境,同时在LDH膜的制备过程中同步引入了硝酸根阴离子,能够一步实现LDH-NO 3 -膜的制备。在一些实施例中,可通过氢氧化钠溶液创造水热溶液的碱性环境,同步实现LDH-OH -膜的生长。在一些实施例中,水热反应的水热溶液的pH调节为4~10。
同时,水热温度和水热时间是LDH膜转化过程的另外两个重要因素,通过对温度和水热时间的调节实现均匀、致密的LDH膜的转化过程。在一些实施例中,水热反应过程的水热温度为60℃~100℃。在一些实施例中,水热反应过程的水热时间为2h~72h。
在一些实施例中,步骤S2可为:将S1步骤得到的共溅射中间膜样品置于pH为4~10的水溶液中,样品垂直放置于聚四氟乙烯水热反应釜中 进行水热反应;反应结束后取出样品用去离子水及无水乙醇冲洗,干燥后得到双羟基金属氢氧化物膜;在一些实施例中,干燥可通过在烘箱中干燥或用冷气吹干。
下面结合实施例,进一步阐述本公开。应理解,这些实施例仅用于说明本公开而不用于限制本公开的范围。在下述实施例、对比例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均可商购获得或本领域中公知的方法制备获得。
实施例1
S0,基底材料预处理:将玻璃片用无水乙醇超声清洗15min,再用去离子水超声清洗10min,样品取出后进行干燥处理。
S1,共溅射中间膜制备:将已处理的玻璃片基底置于磁控溅射系统的溅射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.4Pa,采用锌-铝共溅射技术实现锌-铝共溅射中间膜的制备,其中,锌的溅射功率为40W,铝的溅射功率采用100W,靶材与基底材料之间的距离为60m,环境温度为25±2℃,溅射时间为60min。
S2,LDH膜的原位转化:将已沉积锌铝共溅射膜的样品置于pH为8的氢氧化钠溶液中,样品垂直放置于PTFE水热反应釜中进行水热反应。其中,水热反应温度为80℃,反应时间为12h,反应结束后取出样品用去离子水及无水乙醇冲洗,在烘箱中干燥或用冷气吹干后得到锌铝LDH膜样品。
实施例2
S0,基底材料预处理:将玻璃片用无水乙醇超声清洗15min,再用去离子水中超声清洗10min,样品取出后进行干燥处理。
S1,共溅射中间膜制备:将已处理的玻璃片置于磁控溅射溅系统的射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.2Pa,采用共溅射技术实现锌铝共溅射中间膜的制备。其中,锌的溅射功率为30W,铝的溅射功率采用100W,靶材与基底材料之间的距离为80m,环境温度为25±2℃,溅射时间为5min。
S2,LDH膜的原位转化:将已沉积锌铝共溅射膜的样品置于pH为9的 氢氧化钠溶液中,样品垂直放置于PTFE水热反应釜中进行水热反应。其中,水热反应温度为80℃,反应时间为2h,反应结束后取出样品用去离子水及无水乙醇冲洗,在烘箱中干燥或用冷气吹干后即得到锌铝LDH膜样品。
实施例3
S0,基底材料预处理:将玻璃片用无水乙醇溶液超声清洗15min,用去离子水中超声清洗10min,样品取出后进行干燥处理。
S1,共溅射中间膜制备:将已处理的玻璃片置于磁控溅射溅系统的射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.2Pa,采用共溅射技术实现锌-铝共溅射中间膜的制备。其中锌的溅射功率为50W,铝的溅射功率为100W,靶材与基底材料之间的距离为70m,环境温度为25±2℃。溅射时间为90min。
S2,锌铝LDH膜的原位转化:将已沉积锌铝共溅射膜的样品置于pH为9的氢氧化钠溶液中,样品垂直放置于PTFE水热反应釜中进行水热反应。其中,水热反应温度为70℃,反应时间为36h,反应结束后取出样品用去离子水及无水乙醇冲洗,在烘箱中干燥或用冷气吹干后即得到锌铝LDH膜样品。
实施例4
S0,基底材料预处理:将棉布材料用无水乙醇溶液超声清洗15min,用去离子水超声清洗10min,样品取出后进行干燥处理。
S1,共溅射中间膜制备:将已处理的棉布置于磁控溅射系统的溅射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.4Pa,采用共溅射技术实现锌铝共溅射中间膜的制备。其中锌的溅射功率为40W,铝的溅射功率为80W,靶材与基底材料之间的距离为70m,环境温度为25±2℃,溅射时间为30min。
S2,LDH膜的原位转化:将已沉积锌铝共溅射膜的样品置于pH为8的氢氧化钠水溶液中,样品垂直放置于PTFE水热反应釜中进行水热反应。其中,水热反应温度为80℃,反应时间为24h,反应结束后取出样品用去离子水及无水乙醇冲洗,在烘箱中干燥或用冷气吹干后即得到锌铝LDH膜样品。
实施例5
S0,基底材料预处理:将镁合金样品分别用400目、800目、1200目及2000目的SiC水性砂纸打磨、抛光平整。随后将材料用无水乙醇超声清洗15min,用去离子水超声清洗10min,样品取出后冷风吹干备用。
S1,共溅射中间膜制备:将已处理的镁合金基底置于磁控溅射系统的溅射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.2Pa,采用共溅射技术实现镁铝共溅射中间膜的制备。其中,镁的溅射功率为60W,铝的溅射功率为90W,靶材与基底材料之间的距离为70mm,环境温度为25±2℃,溅射时间为50min。
S2,LDH膜的原位转化:将已沉积镁-铝共溅射膜的样品置于pH为4的硝酸溶液中,样品垂直放置于PTFE水热反应釜中进行水热反应。其中,水热反应温度为100℃,反应时间为9h,反应结束后取出样品用去离子水及无水乙醇冲洗,在烘箱中干燥或用冷气吹干后即得到镁铝LDH膜样品。
图1是实施例1中所制备的锌铝LDH表面膜的微观形貌图,从图中可以观察到片层状的LDH结构均匀的覆盖在基底表面,片层结构的尺寸分布在500nm~3μm之间。
图2是实施例1中锌铝共溅射膜及锌铝LDH表面膜的XRD图谱,从XRD晶型结果分析可知,共溅射膜在2θ=36.3°、39.1°、43.2°、54.3°、70.1°、70.7°处,分别对应于Zn(002)、Zn(100)、Zn(101)、Zn(102)、Zn(103)和Zn(110)的特征峰,同时在2θ=38.6°、44.9°和65.4°处,分别对应于Al(111)、Al(200)和Al(220)的特征峰。而锌铝LDH表面膜在11.7°、23.6°及32.5°处形成了典型的LDH层状结构的特征峰(003)、(006)和(012),插层阴离子为OH -,说明了中间膜已经成功转化为LDH膜。
图3是实施例2中所制备的锌铝LDH膜的微观截面图,从图中可以观察到LDH膜的厚度为2μm。
图4是实施例3中在玻璃片表面所制备的锌铝LDH膜的微观截面图,从图中可以观察到LDH膜的厚度可达到13μm,其中膜的下部分片状结构尺寸更小、整体结构均匀致密,膜表面的片层结构具有更大的尺寸。通过实施例 2和实施例3可知,本公开通过对磁控溅射参数的调控能够控制共溅射膜的厚度,再对水热转化过程进行调节使中间膜完全转化,可实现厚度可控的LDH膜生长,且能够解决目前大厚度LDH膜难以实现的问题。
图5是实施例4中在棉布基底上所制备的LDH膜的表面微观形貌图。从图中可以观察到编织的棉布上均匀覆盖着大量的纳米-微米级层状结构。本实施例说明本公开提供的方法不仅能够实现传统意义上镁合金、铝合金等基底上LDH膜的原位生长,更能够实现非金属例如玻璃、布料上LDH膜的原位生长。
图6是实施例5中在镁合金基底上所制备的镁铝LDH膜的表面形貌图,从图中可以观察到大量的纳米片结构均匀的覆盖在表面。利用共溅射技术引入生长LDH所需要的镁-铝金属原料,通过水热过程的转化,能够实现多种LDH表面膜的原位生长过程,且通过稀硝酸对水热溶液提供酸性环境,直接引入的硝酸根可实现一步硝酸根阴离子插层的LDH结构。
以上所述,仅是本公开的示例,并非对本公开做任何形式的限制,虽然本公开以较佳实施例揭示如上,然而并非用以限制本公开,任何熟悉本专业的技术人员,在不脱离本公开技术方案的范围内,利用上述揭示的技术内容做出些许变动或修饰均等同于等效实施案例,均在本公开技术方案的范围内。

Claims (10)

  1. 一种基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,包括步骤:
    S1:在基底材料表面利用共溅射技术共沉积两种或两种以上金属,得到共溅射中间膜;
    S2:随后通过水热反应过程将所述共溅射中间膜原位转化,实现羟基化,得到双羟基金属氢氧化物膜。
  2. 根据权利要求1所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,所述基底材料包括金属基底、非金属基底中的至少一种;其中,
    所述金属基底包括镁及其合金、铝及其合金、锌及其合金中的至少一种;所述非金属基底包括玻璃片、棉布、泡沫镍、泡沫铜中的至少一种。
  3. 根据权利要求2所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,对基底材料进行预处理;其中,所述金属基底材料的预处理包括对金属材料进行机械打磨、抛光;和/或
    所述非金属基底材料的预处理包括用无水乙醇超声清洗,再用去离子水清洗,并进行干燥处理。
  4. 基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,S1步骤得到的共溅射中间膜包括锌铝共溅射膜、镁铝共溅射膜、镁锌铝共溅射膜中的至少一种。
  5. 根据权利要求2所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,在共溅射沉积过程中:
    锌溅射功率为30W~100W;和/或
    镁溅射功率为50W~100W;和/或
    铝溅射功率为50W~200W。
  6. 根据权利要求1所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,步骤S1可为:
    将基底材料置于磁控溅射系统的溅射台上,通过抽真空过程使腔体的真空度为7.8×10 -4Pa以下,向腔内持续通入氩气,使其压力稳定在0.2~0.6Pa,实现共溅射中间膜的制备;其中,靶材与基底材料之间的距离为60mm~80mm,环境温度为25±2℃,溅射时间为5min~180min。
  7. 根据权利要求1所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,所述水热反应的水热溶液的pH调节为4~10。
  8. 根据权利要求1所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,所述水热反应过程的水热温度为60℃~100℃。
  9. 根据权利要求1所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,所述水热反应过程的水热时间为2h~72h。
  10. 根据权利要求1所述的基于共溅射中间膜原位转化制备层状双羟基金属氢氧化物膜的方法,其特征在于,步骤S2可为:
    将S1步骤得到的共溅射中间膜样品置于pH为4~10的水溶液中,样品垂直放置于聚四氟乙烯水热反应釜中进行水热反应;反应结束后取出样品用去离子水及无水乙醇冲洗,干燥后得到双羟基金属氢氧化物膜。
PCT/CN2021/129240 2021-09-24 2021-11-08 基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法 WO2023045042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111120035.5 2021-09-24
CN202111120035.5A CN113846289A (zh) 2021-09-24 2021-09-24 基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法

Publications (1)

Publication Number Publication Date
WO2023045042A1 true WO2023045042A1 (zh) 2023-03-30

Family

ID=78979651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129240 WO2023045042A1 (zh) 2021-09-24 2021-11-08 基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法

Country Status (2)

Country Link
CN (1) CN113846289A (zh)
WO (1) WO2023045042A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117604455B (zh) * 2023-12-06 2024-08-23 河海大学 一种基于金属元素自供给的镁合金表面镁铝层状双金属氢氧化物膜层的水热制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221058A1 (en) * 2008-02-29 2009-09-03 Chung Yuan Christian University Potentiometric biosensor for detection of lactate in food and forming method thereof
CN103864156A (zh) * 2012-12-13 2014-06-18 北京市太阳能研究所集团有限公司 一种氧化镍复合薄膜的制备方法及制备得到的薄膜
US20170214019A1 (en) * 2014-10-28 2017-07-27 Ngk Insulators, Ltd. Method for forming layered double hydroxide dense membrane
CN111188058A (zh) * 2020-02-10 2020-05-22 桂林电子科技大学 一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用
CN112176338A (zh) * 2020-09-04 2021-01-05 重庆大学 氨基酸离子插层的ZnAL-LDHs薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221058A1 (en) * 2008-02-29 2009-09-03 Chung Yuan Christian University Potentiometric biosensor for detection of lactate in food and forming method thereof
CN103864156A (zh) * 2012-12-13 2014-06-18 北京市太阳能研究所集团有限公司 一种氧化镍复合薄膜的制备方法及制备得到的薄膜
US20170214019A1 (en) * 2014-10-28 2017-07-27 Ngk Insulators, Ltd. Method for forming layered double hydroxide dense membrane
CN111188058A (zh) * 2020-02-10 2020-05-22 桂林电子科技大学 一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用
CN112176338A (zh) * 2020-09-04 2021-01-05 重庆大学 氨基酸离子插层的ZnAL-LDHs薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN JAEHWAN, KIM KYUNGHWAN, HONG JEONGSOO: "Zn-Al Layered Double Hydroxide Thin Film Fabricated by the Sputtering Method and Aqueous Solution Treatment", COATINGS, vol. 10, no. 7, 13 July 2020 (2020-07-13), pages 1 - 6, XP093052439, DOI: 10.3390/coatings10070669 *

Also Published As

Publication number Publication date
CN113846289A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN106995914B (zh) 一种制备自支撑多孔金属薄膜的方法
CN104477892B (zh) 一种鳞片状石墨烯的制备方法和使用该方法制备的鳞片状石墨烯器件
WO2023045042A1 (zh) 基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法
CN111020573B (zh) 基于铜表面的导热防腐蚀的复合膜层及制备方法
CN101798680B (zh) 环境友好半导体材料Mg2Si薄膜的磁控溅射制备工艺
CN105039909B (zh) 一种光伏材料及其制备方法
CN105177468A (zh) 一种Cu-Ag非晶合金薄膜及其制备方法
CN108977806B (zh) Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法
CN110184564A (zh) 镁合金表面低应力、高结合强度Si/DLC厚膜的制备方法
CN102677029A (zh) 一种铜基三元水滑石薄膜及其制备方法
CN105385997B (zh) 一种Cr2O3薄膜体系及其制备方法
CN110129732B (zh) 一种高电阻率高熵合金薄膜及其制备方法
CN105002467B (zh) 一种Cu‑Ti非晶合金薄膜及其制备方法
CN100517572C (zh) 多晶硅薄膜制备方法
CN104532190A (zh) 一种Zr-Cu金属玻璃薄膜的制备方法
CN114182231B (zh) 一种基于衬底处理的六方氮化硼薄膜制备方法
CN102270695B (zh) 一种单晶硅太阳能电池表面v形槽绒面的制备方法
Lee et al. Large-area sodium titanate nanorods formed on titanium surface via NaOH alkali treatment
CN103290417A (zh) 一种不锈钢表面二氧化钛纳米管薄膜的制备方法
CN108359953A (zh) 一种Cu-Ni梯度薄膜材料及其制备方法
CN108060399A (zh) 一种Ag-Me共掺杂类石墨碳涂层及其制备方法
CN114774863A (zh) 一种镁合金表面的Li-Al LDH膜及其快速制备方法
CN112481593B (zh) 一种气固反应制备太阳能电池吸收层四硫化锑三铜薄膜的方法
CN108609588B (zh) 一种规则六边形六方氮化硼纳米片的制备方法
CN103741104A (zh) 通过磁控溅射在锆表面镀锆铜镍三元非晶合金薄膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958155

Country of ref document: EP

Kind code of ref document: A1