WO2023042849A1 - 透明導電性フィルム - Google Patents

透明導電性フィルム Download PDF

Info

Publication number
WO2023042849A1
WO2023042849A1 PCT/JP2022/034352 JP2022034352W WO2023042849A1 WO 2023042849 A1 WO2023042849 A1 WO 2023042849A1 JP 2022034352 W JP2022034352 W JP 2022034352W WO 2023042849 A1 WO2023042849 A1 WO 2023042849A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
layer
film
less
Prior art date
Application number
PCT/JP2022/034352
Other languages
English (en)
French (fr)
Inventor
望 藤野
泰介 鴉田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2023548482A priority Critical patent/JP7425266B2/ja
Priority to CN202280014562.4A priority patent/CN116848595A/zh
Priority to KR1020237023083A priority patent/KR20240019750A/ko
Publication of WO2023042849A1 publication Critical patent/WO2023042849A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to transparent conductive films.
  • Transparent conductive film that includes a transparent base film made of resin and a transparent conductive layer (transparent conductive layer) in order in the thickness direction.
  • Transparent conductive layers are used, for example, as conductive films for forming transparent electrodes in various devices such as liquid crystal displays, touch panels, and solar cells.
  • the transparent conductive layer is formed, for example, by depositing a conductive oxide on the substrate film by sputtering. Techniques related to such transparent conductive films are described, for example, in Patent Document 1 below.
  • a conventional transparent conductive film is manufactured, for example, as follows. First, an amorphous transparent conductive layer is formed on a substrate film in a film forming chamber of a sputtering film forming apparatus. Next, the transparent conductive layer on the substrate film is heated in a hot air heating oven. This heating converts the transparent conductive layer from amorphous to crystalline (crystallization step). The higher the heating temperature, the higher the crystallinity of the formed crystalline transparent conductive layer and the lower the resistance value of the same layer.
  • the heating temperature in the crystallization process is too high, problems such as dimensional changes and deformation will occur in the resin base film. Therefore, in the crystallization process, it is necessary to heat the transparent conductive layer at a temperature that does not cause such problems (a temperature that is not too high).
  • the resistance value of the transparent conductive layer may rise.
  • An increase in the resistance value of the transparent conductive layer in the transparent conductive film after production is not preferable because it affects device performance.
  • the present invention provides a transparent conductive film suitable for suppressing an increase in the resistance value of the transparent conductive layer due to heating during the device manufacturing process.
  • the present invention [1] is a transparent conductive film comprising a transparent resin substrate and a crystalline transparent conductive layer in this order in the thickness direction, wherein the transparent conductive layer has an atomic number greater than that of argon.
  • the transparent conductive layer containing rare gas atoms has a first resistance value R1 ( ⁇ / ⁇ ) and a second resistance value R2 ( ⁇ / ⁇ ) after heat treatment at 160° C. for 30 minutes. and the ratio of the second resistance value R2 to the first resistance value R1 is 0.650 or more and 0.990 or less.
  • the present invention [2] includes the transparent conductive film according to [1] above, wherein the transparent conductive layer includes an indium-tin composite oxide layer containing less than 10% by mass of tin oxide.
  • the present invention [3] includes the transparent conductive film according to [1] or [2] above, wherein the transparent conductive layer has a thickness of 150 nm or less.
  • the present invention [4] includes the transparent conductive film according to any one of [1] to [3] above, wherein the first resistance value R1 is 220 ⁇ / ⁇ or less.
  • the crystalline transparent conductive layer contains rare gas atoms having an atomic number larger than that of argon, and the transparent conductive layer is heated at 160° C. for 30 minutes.
  • a ratio (R2/R1) of the second resistance value R2 after heat treatment to the first resistance value R1 (before heat treatment) is 0.650 or more and 0.990 or less.
  • the second resistance value R2 after heat treatment 160° C., 30 minutes
  • Such a transparent conductive film is suitable for suppressing an increase in the resistance value of the transparent conductive layer due to heating during the device manufacturing process.
  • FIG. 3A represents a process of preparing a resin film
  • FIG. 3B represents a process of forming a functional layer on the resin film
  • FIG. 3C represents a process of forming a transparent conductive layer on the functional layer
  • FIG. 3D represents the step of crystallizing the transparent conductive layer.
  • the transparent conductive film shown in FIG. 1 it represents the case where the transparent conductive layer is patterned.
  • a transparent conductive film X as one embodiment of the transparent conductive film of the present invention comprises a transparent resin substrate 10 and a transparent conductive layer 20 in the thickness direction D in this order.
  • the transparent conductive film X has a sheet shape extending in a direction perpendicular to the thickness direction D (plane direction).
  • the transparent conductive film X is one element provided in a touch sensor device, a light control device, a photoelectric conversion device, a heat ray control member, an antenna member, an electromagnetic wave shield member, a heater member, a lighting device, an image display device, and the like.
  • the transparent resin base material 10 includes a resin film 11 and a functional layer 12 in this order in the thickness direction D in this embodiment.
  • the resin film 11 is a base material that secures the strength of the transparent conductive film X. Moreover, the resin film 11 is a transparent resin film having flexibility.
  • materials for the resin film 11 include polyester resin, polyolefin resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin.
  • Polyester resins include, for example, polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate.
  • Polyolefin resins include, for example, polyethylene, polypropylene, and cycloolefin polymers.
  • acrylic resins include polymethacrylate.
  • polyester resin is preferably used, and PET is more preferably used, for example, from the viewpoint of transparency and strength.
  • the functional layer 12 side surface of the resin film 11 may be subjected to a surface modification treatment.
  • Surface modification treatments include, for example, corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
  • the thickness of the resin film 11 is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the thickness of the resin film 11 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably, from the viewpoint of ensuring handleability of the resin film 11 in a roll-to-roll system. is 75 ⁇ m or less.
  • the total light transmittance (JIS K 7375-2008) of the resin film 11 is preferably 60% or higher, more preferably 80% or higher, and even more preferably 85% or higher. Such a configuration is applicable when the transparent conductive film X is provided in a touch sensor device, a light control element, a photoelectric conversion element, a heat ray control member, an antenna member, an electromagnetic wave shield member, a heater member, a lighting device, an image display device, or the like. It is suitable for securing the transparency required for the transparent conductive film X.
  • the total light transmittance of the resin film 11 is, for example, 100% or less.
  • the functional layer 12 is arranged on one side of the resin film 11 in the thickness direction D. In this embodiment, the functional layer 12 contacts the resin film 11 . Further, in the present embodiment, the functional layer 12 is a hard coat layer that makes it difficult for scratches to form on the exposed surface (the upper surface in FIG. 1) of the transparent conductive layer 20 .
  • the hard coat layer is a cured product of a curable resin composition.
  • the curable resin composition contains a curable resin.
  • curable resins include polyester resins, acrylic urethane resins, acrylic resins (excluding acrylic urethane resins), urethane resins (excluding acrylic urethane resins), amide resins, silicone resins, epoxy resins, and melamine resins. . These curable resins may be used alone, or two or more of them may be used in combination. From the viewpoint of ensuring high hardness of the hard coat layer, the curable resin is preferably at least one selected from the group consisting of acrylic urethane resins and acrylic resins.
  • curable resins include ultraviolet curable resins and thermosetting resins.
  • an ultraviolet curable resin is preferable from the viewpoint of improving the production efficiency of the transparent conductive film X because it can be cured without heating to a high temperature.
  • the curable resin composition may contain particles.
  • Particles include, for example, inorganic oxide particles and organic particles.
  • Materials for inorganic oxide particles include, for example, silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide.
  • Materials for the organic particles include, for example, polymethylmethacrylate, polystyrene, polyurethane, acrylic-styrene copolymers, benzoguanamine, melamine, and polycarbonate.
  • the surface of the functional layer 12 on the side of the transparent conductive layer 20 may be subjected to surface modification treatment.
  • Surface modification treatments include, for example, corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
  • the thickness of the functional layer 12 as the hard coat layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more, from the viewpoint of expressing sufficient scratch resistance in the transparent conductive layer 20 .
  • the thickness of the functional layer 12 as a hard coat layer is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less, from the viewpoint of ensuring the transparency of the functional layer 12 .
  • the thickness of the transparent resin substrate 10 is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the thickness of the transparent resin substrate 10 is preferably 520 ⁇ m or less, more preferably 320 ⁇ m or less, still more preferably 220 ⁇ m or less, even more preferably 120 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the total light transmittance (JIS K 7375-2008) of the transparent resin substrate 10 is preferably 60% or higher, more preferably 80% or higher, and even more preferably 85% or higher. Such a configuration is applicable when the transparent conductive film X is provided in a touch sensor device, a light control element, a photoelectric conversion element, a heat ray control member, an antenna member, an electromagnetic wave shield member, a heater member, a lighting device, an image display device, or the like. It is suitable for securing the transparency required for the transparent conductive film X.
  • the total light transmittance of the transparent resin substrate 10 is, for example, 100% or less.
  • the transparent conductive layer 20 is arranged on one side in the thickness direction D of the transparent resin substrate 10 .
  • the transparent conductive layer 20 is in contact with the transparent resin substrate 10 .
  • the transparent conductive layer 20 is a crystalline film having both optical transparency and electrical conductivity.
  • Such a transparent conductive layer 20 is made of, for example, a conductive oxide. The fact that the transparent conductive layer 20 is a crystalline film is suitable for suppressing large fluctuations in the resistance value of the transparent conductive layer 20 due to subsequent heating.
  • the transparent conductive layer (the transparent conductive layer 20 on the transparent resin substrate 10 in the transparent conductive film X) is a crystalline film
  • TEM transmission electron microscope
  • a microtome knife was set at an extremely acute angle with respect to the transparent conductive layer, The knife cuts the transparent conductive layer so as to be substantially parallel to the exposed surface of the transparent conductive layer. Thereby, a transparent conductive layer sample as a sample for planar observation can be obtained.
  • the transparent conductive layer is a crystalline film
  • FE-TEM field emission transmission electron microscope
  • the transparent conductive layer is a crystalline film
  • the transparent conductive layer is immersed in hydrochloric acid having a concentration of 5% by mass at 20° C. for 15 minutes.
  • the transparent conductive layer is washed with water and then dried.
  • the resistance between a pair of terminals separated by a distance of 15 mm between the terminals resistance. In this measurement, when the resistance between terminals is 10 k ⁇ or less, it can be determined that the transparent conductive layer is a crystalline film.
  • conductive oxides include indium-containing conductive oxides and antimony-containing conductive oxides.
  • Indium-containing conductive oxides include, for example, indium tin composite oxide (ITO), indium zinc composite oxide (IZO), indium gallium composite oxide (IGO), and indium gallium zinc composite oxide (IGZO). be done.
  • Antimony-containing conductive oxides include, for example, antimony-tin composite oxide (ATO). From the viewpoint of realizing high transparency and good electrical conductivity, as the conductive oxide, an indium-containing conductive oxide is preferably used, and ITO is more preferably used. This ITO may contain metals or metalloids other than In and Sn in amounts less than the respective contents of In and Sn.
  • the transparent conductive layer 20 (crystalline) preferably includes an indium-tin composite oxide layer (first ITO layer) containing less than 10% by mass of tin oxide.
  • the tin oxide ratio in the ITO layer is specifically the ratio of the tin oxide content to the total content of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) in the ITO forming the same layer.
  • the transparent conductive layer 20 including the first ITO layer is crystallized by heating the transparent conductive layer 20' after the amorphous transparent conductive layer 20' including the first ITO layer is formed. It is formed by Including the first ITO layer in the transparent conductive layer 20 is suitable for forming an amorphous transparent conductive layer (transparent conductive layer 20' described later) that suppresses an increase in resistance value due to heating after thermal crystallization. .
  • the proportion of tin oxide in the first ITO layer is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more, from the viewpoint of ensuring the durability of the transparent conductive layer 20. , more preferably 1.5% by mass or more, particularly preferably 2% by mass or more.
  • the proportion of tin oxide in the first ITO layer is determined from the standpoint of ease of formation of an amorphous transparent conductive layer in the later-described sputtering film formation, and an increase in the resistance value of the transparent conductive layer 20 due to heating after heat crystallization. From the viewpoint of suppressing the is 4% by mass or less.
  • the tin oxide ratio in ITO can be identified, for example, as follows. First, by X-ray Photoelectron Spectroscopy, the abundance ratio of indium atoms (In) and tin atoms (Sn) in ITO as an object to be measured is determined. The ratio of the number of Sn atoms to the number of In atoms in ITO is obtained from the abundance ratios of In and Sn in ITO. This gives the percentage of tin oxide in ITO. Further, the tin oxide ratio in ITO can also be specified from the tin oxide (SnO 2 ) content ratio of the ITO target used for sputtering film formation.
  • the transparent conductive layer 20 may include layers other than the first ITO layer (with a tin oxide content of less than 10% by mass).
  • Other layers include, for example, an ITO layer (second ITO layer) having a tin oxide ratio of 10% by mass or more, and a layer formed of a conductive oxide other than ITO.
  • the other layer is preferably the second ITO layer.
  • the tin oxide ratio of the second ITO layer (tin oxide ratio of 10% by mass or more) is preferably 11% by mass or more, more preferably 12% by mass, from the viewpoint of reducing the resistance value of the transparent conductive layer 20 after thermal crystallization. % or more, more preferably 13 mass % or more. From the viewpoint of ensuring the crystallinity of the transparent conductive layer 20 after heating, the proportion of tin oxide in the second ITO layer is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less. be.
  • FIG. 2 illustrates a case where the transparent conductive layer 20 is composed of two layers, a first layer 21 and a second layer 22, as an example of a case where the transparent conductive layer 20 is composed of a plurality of layers including a first ITO layer. show.
  • the first layer 21 or the second layer 22 is the first ITO layer.
  • the second layer 22 is preferably the first ITO layer.
  • the thickness of the transparent conductive layer 20 is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 30 nm or more.
  • the thickness of the transparent conductive layer 20 is preferably 300 nm or less, more preferably 150 nm or less, even more preferably 120 nm or less, still more preferably 100 nm or less, and particularly preferably, from the viewpoint of suppressing cracking of the transparent conductive layer 20 due to heating. is 80 nm or less.
  • the ratio of the thickness of the second layer 22 to the total thickness of the first layer 21 and the second layer 22 is the lowest of the transparent conductive layer 20 . From the viewpoint of resistance, it is preferably 1% or more, more preferably 5% or more, and still more preferably 7% or more. In addition, the ratio of the thickness of the second layer 22 to the total thickness of the first layer 21 and the second layer 22 is preferably 99% or less from the viewpoint of ensuring high crystallinity in the transparent conductive layer 20 after heating. , more preferably 95% or less, still more preferably 90% or less, still more preferably 60% or less, and particularly preferably 50% or less.
  • the transparent conductive layer 20 contains rare gas atoms (atoms E) having an atomic number greater than that of argon.
  • noble gas atoms include krypton (Kr) and xenon (Xe), preferably Kr.
  • the transparent conductive layer 20 may contain argon (Ar).
  • the rare gas atoms in the transparent conductive layer 20 are derived from rare gas atoms used as a sputtering gas in the sputtering method for forming the transparent conductive layer 20, which will be described later.
  • the transparent conductive layer 20 is a film (sputtered film) formed by a sputtering method.
  • the transparent conductive layer 20 containing atoms E is formed by forming an amorphous transparent conductive layer 20′ containing atoms E and then crystallizing the transparent conductive layer 20′ by heating. be.
  • the content of the atom E in the transparent conductive layer 20 is suitable for forming an amorphous transparent conductive layer (transparent conductive layer 20' described later) that suppresses an increase in resistance value due to heating after thermal crystallization.
  • Methods for identifying whether or not the transparent conductive layer 20 contains atoms E include, for example, fluorescent X-ray analysis and Rutherford Backscattering Spectrometry (RBS).
  • the content of atoms E such as Kr in the transparent conductive layer 20 is preferably 1 atomic % or less, more preferably 0.5 atomic % or less, still more preferably 0.3 atomic % or less, in the entire thickness direction D, and particularly Preferably, it is 0.2 atomic % or less.
  • Such a configuration is suitable for achieving good crystal growth when the amorphous transparent conductive layer 20 ′ is crystallized by heating, and is therefore suitable for obtaining the transparent conductive layer 20 with low resistance.
  • the content of atoms E in the transparent conductive layer 20 is preferably 0.0001 atomic % or more in the entire thickness direction D.
  • Methods for identifying the content of rare gas atoms in the transparent conductive layer 20 include, for example, fluorescent X-ray analysis and Rutherford backscattering spectroscopy (RBS).
  • the transparent conductive layer 20 may include a layer containing the atom E (atom E containing layer) and a layer not containing the atom E (atom E non-containing layer).
  • the atom E-free layer is, for example, a layer formed by sputter deposition using argon as the sputtering gas.
  • the atoms E are contained in the first layer 21 or the second layer 22 . From the viewpoint of ensuring the crystallinity of the transparent conductive layer 20 after heating, the first layer 21 preferably contains atoms E.
  • the ratio of the thickness of the atom E-containing layer to the total thickness of the atom E-containing layer and the atom E-free layer is From the viewpoint of increasing the crystallinity of the transparent conductive layer 20 and improving the transmittance, it is preferably 5% or more, more preferably 10% or more, still more preferably 20% or more, still more preferably 30% or more, and particularly preferably 40%. That's it. From the viewpoint of reducing the dimensional shrinkage of the transparent conductive layer 20 after heating, the same ratio is preferably 99% or less, more preferably 90% or less, even more preferably 80% or less, even more preferably 70% or less, and particularly preferably 60% or less.
  • the transparent conductive layer 20 has a first resistance value R1 ( ⁇ / ⁇ ) and a second resistance value R2 ( ⁇ / ⁇ ) after heat treatment under heating conditions of 160° C. and 30 minutes.
  • the resistance values R1 and R2 are each represented by surface resistivity. Surface resistivity can be measured by the four-probe method according to JIS K7194 (1994). Specifically, the method of measuring the resistance values R1 and R2 is as described later with regard to the examples.
  • the ratio R2/R1 of the second resistance value R2 to the first resistance value R1 is 0.990 or less, preferably 0.950 or less, more preferably 0.950 or less, from the viewpoint of suppressing an increase in resistance value due to subsequent heating of the transparent conductive layer 20. is 0.900 or less, more preferably 0.880 or less.
  • the ratio R2/R1 is 0.650 or more, preferably 0.700 or more, and more preferably 0.800 or more.
  • the difference R1-R2 between the first resistance value R1 and the second resistance value R2 is preferably 1.5 ⁇ / ⁇ or more from the viewpoint of suppressing an increase in the resistance value of the transparent conductive layer 20 due to subsequent heating. It is more preferably 3 ⁇ / ⁇ or more, still more preferably 4 ⁇ / ⁇ or more, still more preferably 5 ⁇ / ⁇ or more, and particularly preferably 6 ⁇ / ⁇ or more.
  • the difference R1-R2 is preferably 10 ⁇ / ⁇ or less, more preferably 9.5 ⁇ / ⁇ or less, and still more preferably 9 ⁇ / ⁇ . Below, it is particularly preferably 8 ⁇ / ⁇ or less.
  • the first resistance value R1 is preferably 240 ⁇ / ⁇ or less, more preferably 220 ⁇ / ⁇ or less, even more preferably 200 ⁇ / ⁇ or less, and even more preferably 180 ⁇ / ⁇ or less. It is more preferably 160 ⁇ / ⁇ or less, and particularly preferably 150 ⁇ / ⁇ or less.
  • the first resistance value R1 is, for example, 1 ⁇ / ⁇ or more.
  • the first resistance value R1 can be controlled, for example, by adjusting various conditions when the transparent conductive layer 20 is formed by sputtering (the same applies to the second resistance value R2).
  • the conditions include, for example, the temperature of the base (transparent resin substrate 10 in this embodiment) on which the transparent conductive layer 20 is formed, the amount of oxygen introduced into the film formation chamber, the pressure in the film formation chamber, and the target of horizontal magnetic field strength.
  • the second resistance value R2 is preferably 240 ⁇ / ⁇ or less, more preferably 220 ⁇ / ⁇ or less, even more preferably 200 ⁇ / ⁇ or less, and even more preferably 180 ⁇ / ⁇ or less. It is more preferably 160 ⁇ / ⁇ or less, and particularly preferably 150 ⁇ / ⁇ or less.
  • the second resistance value R2 is, for example, 1 ⁇ / ⁇ or more.
  • the total light transmittance (JIS K 7375-2008) of the transparent conductive layer 20 is preferably 60% or higher, more preferably 80% or higher, still more preferably 85% or higher. Such a configuration is suitable for ensuring transparency in the transparent conductive layer 20 . Moreover, the total light transmittance of the transparent conductive layer 20 is, for example, 100% or less.
  • the transparent conductive film X is produced, for example, as follows.
  • a resin film 11 is prepared.
  • the functional layer 12 is formed on one surface of the resin film 11 in the thickness direction D.
  • a transparent resin substrate 10 is produced by forming the functional layer 12 on the resin film 11 .
  • the above-mentioned functional layer 12 as a hard coat layer can be formed by applying a curable resin composition on the resin film 11 to form a coating film, and then curing the coating film.
  • the curable resin composition contains an ultraviolet curable resin
  • the coating film is cured by ultraviolet irradiation.
  • the curable resin composition contains a thermosetting resin
  • the coating is cured by heating.
  • the exposed surface of the functional layer 12 formed on the resin film 11 is subjected to surface modification treatment as necessary.
  • argon gas for example, is used as an inert gas.
  • the discharge power in the plasma treatment is, for example, 10 W or more and, for example, 5000 W or less.
  • an amorphous transparent conductive layer 20' is formed on the transparent resin substrate 10 (transparent conductive layer forming step). Specifically, a sputtering method is used to form a film of material on the functional layer 12 of the transparent resin substrate 10 to form an amorphous transparent conductive layer 20 ′.
  • the transparent conductive layer 20' is an amorphous film having both light transmittance and conductivity (the transparent conductive layer 20' is converted into the crystalline transparent conductive layer 20 by heating in the crystallization step described later. ).
  • the sputtering method it is preferable to use a sputtering film forming apparatus that can carry out the film forming process by a roll-to-roll method.
  • a sputtering film forming apparatus that can carry out the film forming process by a roll-to-roll method.
  • the long transparent resin substrate 10 is run from a supply roll provided in the apparatus to a take-up roll, and the transparent A material is deposited on the resin base material 10 to form the transparent conductive layer 20'.
  • a sputtering film forming apparatus having one film forming chamber may be used, or a sputtering film forming apparatus having a plurality of film forming chambers arranged in order along the running path of the transparent resin substrate 10 may be used.
  • a film apparatus may be used (when forming the transparent conductive layer 20′ including the first layer 21 and the second layer 22 described above, a sputtering film forming apparatus having two or more film forming chambers is used. do).
  • a sputtering gas in the sputtering method, while introducing a sputtering gas (inert gas) under vacuum conditions into a film forming chamber provided in a sputtering film forming apparatus, a negative voltage is applied to a target placed on a cathode in the film forming chamber. is applied. As a result, glow discharge is generated to ionize the gas atoms, the gas ions collide with the target surface at high speed, the target material is ejected from the target surface, and the ejected target material is deposited on the transparent resin substrate 10.
  • the target material for example, the sintered body of the conductive oxide described above with regard to the transparent conductive layer 20 is used.
  • the sputtering gas include rare gases.
  • Noble gases include, for example, argon and krypton.
  • the sputtering gas may be a mixed gas of multiple rare gases.
  • the sputtering method is preferably a reactive sputtering method.
  • oxygen as a reactive gas is introduced into the deposition chamber in addition to the sputtering gas.
  • the ratio of the introduction amount of oxygen to the total introduction amount of the sputtering gas and oxygen introduced into the deposition chamber is, for example, 0.01 flow % or more and, for example, 15 flow % or less.
  • the sputtering film forming apparatus includes 1 or
  • the gas introduced into the two or more deposition chambers contains atoms E as sputtering gas and oxygen as reactive gas.
  • Atoms E include Kr and Xe, preferably Kr, as described above.
  • the sputtering gas may contain an inert gas other than the atoms E. Examples of inert gases other than atoms E include Ar.
  • the sputtering gas contains an inert gas other than atoms E, the content is preferably 80% by volume or less, more preferably 50% by volume or less.
  • the gas introduced into the film formation chamber for forming the atom E-containing layer is sputtering It contains atoms E as gas and oxygen as reactive gas.
  • the sputtering gas may contain an inert gas other than the atoms E.
  • the type and content of the inert gas other than the atom E are the same as those described above for the inert gas other than the atom E in the first case.
  • the gas introduced into the deposition chamber for forming the layer not containing atom E contains inert gas other than atom E as sputtering gas and oxygen as reactive gas. Examples of inert gases other than atoms E include Ar.
  • the atmospheric pressure in the film formation chamber during film formation by the sputtering method is, for example, 0.02 Pa or more and, for example, 1 Pa or less.
  • the temperature of the transparent resin substrate 10 during sputtering film formation is, for example, 180° C. or lower.
  • the temperature of the transparent resin substrate 10 during sputtering film formation is preferably set to It is 20° C. or lower, more preferably 10° C. or lower, still more preferably 5° C. or lower, still more preferably 0° C. or lower, and particularly preferably -5° C. or lower.
  • the temperature is, for example, -50°C or higher, -20°C or higher, or -10°C or higher.
  • the power supply for applying voltage to the target includes, for example, a DC power supply, an AC power supply, an MF power supply, and an RF power supply.
  • a DC power supply and an RF power supply may be used together.
  • the absolute value of the discharge voltage during sputtering film formation is, for example, 50 V or higher and, for example, 500 V or lower.
  • the amorphous transparent conductive layer 20' is converted into the crystalline transparent conductive layer 20 by heating under vacuum (crystallization step).
  • a vacuum heating device with a contact heating unit is used.
  • Contact heating units include, for example, heated rolls and heated blocks.
  • a vacuum heating apparatus equipped with a heating roll is preferable for carrying out the crystallization process by the roll-to-roll method. That is, in this step, it is preferable to heat the transparent conductive layer 20' on the transparent resin substrate 10 by bringing it into contact with a heating roll in a vacuum heating device.
  • Contact heating with a heating roll is suitable for efficiently crystallizing the transparent conductive layer 20' under vacuum.
  • the heating temperature is preferably 120°C or higher, more preferably 140°C or higher, and even more preferably 160°C or higher, from the viewpoint of ensuring a high crystallization rate.
  • the heating temperature is preferably less than 200° C., more preferably 180° C. or less, and even more preferably 170° C. or less, from the viewpoint of suppressing the influence of heating on the transparent resin substrate 10 .
  • the heating time is preferably 10 seconds or longer, preferably 30 seconds or longer, and more preferably 45 seconds or longer. From the viewpoint of shortening the tact time in this step, the heating time is preferably 60 minutes or less, more preferably 30 minutes or less, even more preferably 10 minutes or less, and particularly preferably 5 minutes or less.
  • the series of processes from the transparent conductive layer forming step to the crystallization step described above are carried out on one continuous line while the work film is run in a roll-to-roll manner. More preferably, the work film is never exposed to the atmosphere during the process in one continuous line.
  • the transparent conductive film X is manufactured as described above.
  • the transparent conductive layer 20 in the transparent conductive film X may be patterned as schematically shown in FIG. By etching the transparent conductive layer 20 through a predetermined etching mask, the transparent conductive layer 20 can be patterned. The patterning of the transparent conductive layer 20 may be performed before the crystallization process described above or after the crystallization process. The patterned transparent conductive layer 20 functions, for example, as a wiring pattern.
  • the crystalline transparent conductive layer 20 contains rare gas atoms having an atomic number greater than that of argon.
  • the fact that the transparent conductive layer 20 is a crystalline film is suitable for suppressing large fluctuations in the resistance value of the transparent conductive layer 20 due to subsequent heating.
  • the transparent conductive layer 20 containing rare gas atoms having an atomic number greater than that of argon is suitable for forming an amorphous transparent conductive layer 20' that suppresses an increase in resistance value due to heating after thermal crystallization. .
  • the first resistance value R1 (before heat treatment) is , preferably 0.650 or more, preferably 0.70 or more, more preferably 0.80 or more, and preferably 0.990 or less, more preferably 0.950 or less, further preferably 0.900 or less , and particularly preferably 0.880 or less. That is, in the transparent conductive film, the second resistance value R2 after heat treatment (160° C., 30 minutes) is moderately smaller than the first resistance value R1 before heat treatment.
  • the transparent conductive film as described above is suitable for suppressing an increase in the resistance value of the transparent conductive layer due to heating during the device manufacturing process.
  • the functional layer 12 may be an adhesion improving layer for achieving high adhesion of the transparent conductive layer 20 to the transparent resin substrate 10 .
  • the configuration in which the functional layer 12 is an adhesion improving layer is suitable for ensuring adhesion between the transparent resin substrate 10 and the transparent conductive layer 20 .
  • the functional layer 12 may be a refractive index adjusting layer (index-matching layer) for adjusting the reflectance of the surface (one side in the thickness direction D) of the transparent resin substrate 10 .
  • the configuration in which the functional layer 12 is a refractive index adjusting layer is suitable for making the pattern shape of the transparent conductive layer 20 less visible when the transparent conductive layer 20 on the transparent resin substrate 10 is patterned.
  • the functional layer 12 may be a peeling functional layer for practically peeling the transparent conductive layer 20 from the transparent resin substrate 10 .
  • the configuration in which the functional layer 12 is a peeling functional layer is suitable for peeling the transparent conductive layer 20 from the transparent resin substrate 10 and transferring the transparent conductive layer 20 to another member.
  • the functional layer 12 may be a composite layer in which a plurality of layers are arranged in the thickness direction D.
  • the composite layer preferably includes two or more layers selected from the group consisting of a hard coat layer, an adhesion improving layer, a refractive index adjusting layer, and a release functional layer.
  • Such a configuration is suitable for compositely expressing the above-described functions of each selected layer in the functional layer 12 .
  • the functional layer 12 includes an adhesion improving layer, a hard coat layer, and a refractive index adjusting layer on the resin film 11 toward one side in the thickness direction D in this order.
  • the functional layer 12 includes, on the resin film 11, a release functional layer, a hard coat layer, and a refractive index adjusting layer in this order toward one side in the thickness direction D.
  • the transparent conductive film X is used in a state where it is fixed to an article and the transparent conductive layer 20 is patterned as necessary.
  • the transparent conductive film X is attached to an article via, for example, an adhesive functional layer.
  • Articles include, for example, elements, members, and devices. That is, examples of articles with a transparent conductive film include elements with a transparent conductive film, members with a transparent conductive film, and devices with a transparent conductive film.
  • Devices include, for example, light control devices and photoelectric conversion devices.
  • Examples of the light control device include a current-driven light control device and an electric field drive light control device.
  • Current-driven light control devices include, for example, electrochromic (EC) light control devices.
  • Examples of electric field-driven light control devices include PDLC (polymer dispersed liquid crystal) light control devices, PNLC (polymer network liquid crystal) light control devices, and SPD (suspended particle device) light control devices.
  • Examples of photoelectric conversion elements include solar cells. Solar cells include, for example, organic thin-film solar cells and dye-sensitized solar cells.
  • Examples of the member include an electromagnetic wave shield member, a heat ray control member, a heater member, and an antenna member.
  • Devices include, for example, touch sensor devices, lighting devices, and image display devices.
  • fixation functional layer examples include an adhesive layer and an adhesive layer.
  • a material for the fixing function layer any material can be used without particular limitation as long as it is transparent and exhibits a fixing function.
  • the fixation functional layer is preferably made of resin.
  • resins include acrylic resins, silicone resins, polyester resins, polyurethane resins, polyamide resins, polyvinyl ether resins, vinyl acetate/vinyl chloride copolymers, modified polyolefin resins, epoxy resins, fluorine resins, natural rubbers, and synthetic rubbers. be done.
  • an acrylic resin is preferable because it exhibits adhesive properties such as cohesiveness, adhesiveness, and moderate wettability, is excellent in transparency, and is excellent in weather resistance and heat resistance.
  • the fixing functional layer may contain a corrosion inhibitor to suppress corrosion of the transparent conductive layer 20 .
  • the fixing functional layer may contain a migration inhibitor (for example, the material disclosed in JP-A-2015-022397) in order to suppress migration of the transparent conductive layer 20 .
  • the fixing functional layer may contain an ultraviolet absorber in order to suppress deterioration of the article when it is used outdoors. Examples of ultraviolet absorbers include benzophenone compounds, benzotriazole compounds, salicylic acid compounds, oxalic acid anilide compounds, cyanoacrylate compounds, and triazine compounds.
  • the transparent conductive layer 20 (including the transparent conductive layer 20 after patterning) in the transparent conductive film X is exposed.
  • a cover layer may be arranged on the exposed surface of the transparent conductive layer 20 .
  • the cover layer is a layer that covers the transparent conductive layer 20 , and can improve the reliability of the transparent conductive layer 20 and suppress functional deterioration due to damage to the transparent conductive layer 20 .
  • Such a cover layer is preferably made of a dielectric material, more preferably a composite material of a resin and an inorganic material. Examples of the resin include the resins described above for the fixing functional layer.
  • Inorganic materials include, for example, inorganic oxides and fluorides.
  • Inorganic oxides include, for example, silicon oxide, titanium oxide, niobium oxide, aluminum oxide, zirconium dioxide, and calcium oxide.
  • fluorides include magnesium fluoride.
  • the cover layer may contain the above-described corrosion inhibitor, migration inhibitor, and ultraviolet absorber.
  • Example 1 An ultraviolet curable resin containing an acrylic resin was applied to one surface of a long polyethylene terephthalate (PET) film (thickness: 50 ⁇ m, manufactured by Toray Industries, Inc.) as a transparent resin film to form a coating film. Next, the coating film was cured by ultraviolet irradiation to form a hard coat layer (thickness: 2 ⁇ m). In this manner, a transparent resin base material including a resin film and a hard coat (HC) layer as a functional layer was produced.
  • PET polyethylene terephthalate
  • HC hard coat
  • an amorphous transparent conductive layer was formed on the HC layer of the transparent resin substrate by a reactive sputtering method (transparent conductive layer forming step).
  • a roll-to-roll type sputtering deposition apparatus DC magnetron sputtering deposition apparatus
  • the apparatus includes a first film-forming chamber and a second film-forming chamber in which the film-forming process can be performed while the work film is run in a roll-to-roll manner.
  • the first sputtering film formation in the first film formation chamber and the second sputtering film formation in the second film formation chamber were sequentially performed.
  • a first layer (thickness: 11 nm) was formed on the transparent resin substrate.
  • a second layer (thickness 11 nm) was formed on the first layer.
  • the conditions for each sputtering film formation in this example are as follows.
  • the sputtering deposition apparatus (first deposition chamber, second deposition chamber) is evacuated until the ultimate vacuum in the first deposition chamber reaches 0.9 ⁇ 10 -4 Pa.
  • krypton as a sputtering gas and oxygen as a reactive gas were introduced into the first film forming chamber, and the pressure inside the first film forming chamber was set to 0.2 Pa.
  • the ratio of the introduced amount of oxygen to the total introduced amount of krypton and oxygen introduced into the first deposition chamber was about 1.8 flow rate %.
  • a first sintered body of indium oxide and tin oxide (with a tin oxide concentration of 10% by mass) was used as a target.
  • a DC power supply was used as a power supply for applying voltage to the target.
  • the horizontal magnetic field strength on the target was set to 90 mT.
  • the film formation temperature (the temperature of the transparent resin base material on which the transparent conductive layer is laminated) was -5°C.
  • krypton as a sputtering gas and oxygen as a reactive gas are introduced into the second film forming chamber.
  • the ratio of the introduced amount of oxygen to the total introduced amount of krypton and oxygen introduced into the second film forming chamber was about 1.8 flow rate %.
  • a second sintered body of indium oxide and tin oxide (with a tin oxide concentration of 3% by mass) was used as a target.
  • a DC power supply was used as a power supply for applying voltage to the target.
  • the horizontal magnetic field strength on the target was set to 90 mT.
  • the film formation temperature was -5°C.
  • the transparent conductive layer on the transparent resin substrate was heated by being brought into contact with a heating roll in a vacuum heating device and crystallized (crystallization process).
  • the heating temperature was set to 160° C.
  • the heating time was set to 1 minute
  • the transparent conductive layer was heated and crystallized under vacuum.
  • the transparent conductive film of Example 1 was produced as described above.
  • the transparent conductive layer (thickness: 22 nm) of the transparent conductive film of Example 1 consisted of a first layer of ITO (percentage of tin oxide: 10% by mass, thickness: 11 nm) and a second layer of ITO (percentage of tin oxide: 3% by mass). , thickness 11 nm) in order from the transparent resin substrate side and is crystalline (the ratio of the thickness of the first layer to the thickness of the transparent conductive layer is 50%, and the thickness of the second layer is The thickness percentage is 50%).
  • Example 2 A transparent conductive film of Example 2 was produced in the same manner as the transparent conductive film of Example 1, except for the following.
  • a first layer (amorphous) with a thickness of 22 nm is formed in the first sputtering film formation in the transparent conductive layer forming step, and a second sintered body (tin oxide concentration is 10% by mass) is used as a target in the second sputtering film formation. ) was used to form a second layer (amorphous) with a thickness of 22 nm.
  • the transparent conductive layer of the transparent conductive film of Example 2 is made of an ITO film (tin oxide concentration: 10% by mass, thickness: 44 nm) and is crystalline.
  • Example 3 A transparent conductive film of Example 3 was produced in the same manner as the transparent conductive film of Example 1, except for the following.
  • a first layer (amorphous) having a thickness of 22 nm is formed in the first sputtering film formation in the transparent conductive layer forming step, and in the second sputtering film formation, argon is used as the sputtering gas, and the second sintered body ( A tin oxide concentration of 10% by mass) was used to form a second layer (amorphous) with a thickness of 22 nm.
  • the transparent conductive layer of the transparent conductive film of Example 3 consisted of a krypton-containing first layer (tin oxide concentration: 10% by mass, thickness: 22 nm) and an argon-containing second layer (tin oxide concentration: 10% by mass, thickness: 22 nm) and is crystalline.
  • Comparative Example 1 A transparent conductive film of Comparative Example 1 was produced in the same manner as the transparent conductive film of Example 1, except for the following. Argon was used as a sputtering gas in the first sputtering film formation and the second sputtering film formation in the transparent conductive layer forming step. In the crystallization process, the transparent conductive layer on the transparent resin substrate was heated in a hot air heating oven. The heating temperature was 160° C., and the heating time was 1 hour. In this step, the transparent conductive layer was heated and crystallized in the atmosphere.
  • Comparative Example 2 A transparent conductive film of Comparative Example 2 was produced in the same manner as the transparent conductive film of Example 1, except for the following. Argon was used as a sputtering gas in the first sputtering film formation and the second sputtering film formation in the transparent conductive layer forming step.
  • Comparative Example 3 A transparent conductive film of Comparative Example 3 was produced in the same manner as the transparent conductive film of Example 1 except for the following. In the crystallization process, the transparent conductive layer on the transparent resin substrate was heated in a hot air heating oven. The heating temperature was 160° C., and the heating time was 1 hour. In this step, the transparent conductive layer was heated and crystallized in the atmosphere.
  • Comparative Example 4 A transparent conductive film of Comparative Example 4 was produced in the same manner as the transparent conductive film of Example 1 except for the following. Argon was used as a sputtering gas in the first sputtering film formation and the second sputtering film formation in the transparent conductive layer forming step. A first layer (amorphous) with a thickness of 22 nm is formed in the first sputtering film formation, and a second sintered body (tin oxide concentration is 10% by mass) is used as a target in the second sputtering film formation, and the thickness A second layer (amorphous) of 22 nm was formed.
  • Argon was used as a sputtering gas in the first sputtering film formation and the second sputtering film formation in the transparent conductive layer forming step.
  • a first layer (amorphous) with a thickness of 22 nm is formed in the first sputtering film formation
  • a second sintered body titanium oxide concentration is 10% by mass
  • ⁇ Thickness of transparent conductive layer> The thickness of the transparent conductive layer of each transparent conductive film in Examples 1-3 and Comparative Examples 1-4 was measured by observation with a field emission transmission electron microscope (FE-TEM). Specifically, first, samples for cross-sectional observation of each transparent conductive layer in Examples 1 to 3 and Comparative Examples 1 to 4 were prepared by the FIB microsampling method. In the FIB microsampling method, an FIB device (product name "FB2200", manufactured by Hitachi) was used with an acceleration voltage of 10 kV. Next, the cross section of the transparent conductive layer in the sample for cross section observation was observed by FE-TEM, and the thickness of the transparent conductive layer was measured in the observed image. In the same observation, an FE-TEM apparatus (product name "JEM-2800", manufactured by JEOL) was used, and the acceleration voltage was set to 200 kV.
  • FE-TEM apparatus product name "JEM-2800", manufactured by JEOL
  • the thickness of the first layer of the transparent conductive layer in Examples 1 and 3 and Comparative Examples 1 to 3 was obtained by preparing a sample for cross-sectional observation from the intermediate product before forming the second layer on the first layer. , was measured by FE-TEM observation of the sample.
  • the thickness of the second layer of each transparent conductive layer in Examples 1 and 3 and Comparative Examples 1 to 3 was the total thickness of each transparent conductive layer in Examples 1 and 3 and Comparative Examples 1 to 3 to the thickness of the first layer. I asked for it after subtracting it.
  • an FE-TEM device product name “JEM-2800”, manufactured by JEOL
  • JEM-2800 manufactured by JEOL
  • the accelerating voltage was 200 kV.
  • the transparent conductive layers in Examples 1 to 3 and Comparative Examples 1 to 4 it was confirmed that crystal grains grew over the entire region in the plane direction and thickness direction of the same layer (plane direction/thickness direction confirmed to be crystalline across all directions).
  • the transparent conductive layers in Comparative Examples 2 and 4 it was confirmed that there were regions in which crystal grains did not grow in the plane direction and thickness direction of the same layer (in the plane direction and thickness direction).
  • the first resistance value R1 surface resistivity before heat treatment
  • the transparent conductive film was heat-treated in a hot air heating oven. In the heat treatment, the heating temperature was 160° C. and the heating time was 30 minutes.
  • the second resistance value R2 surface resistivity after heat treatment
  • the ratio (R2/R1) of the second resistance value R2 to the first resistance value R1 was obtained. The values are shown in Table 1. Table 1 also shows the difference R1-R2 between the first resistance value R1 and the second resistance value R2.
  • each transparent conductive layer in Examples 1 to 3 and Comparative Example 3 contained Kr atoms.
  • a scanning fluorescent X-ray analyzer (trade name "ZSX PrimusIV", manufactured by Rigaku)
  • the fluorescent X-ray analysis measurement was repeated five times under the following measurement conditions, and the average value of each scanning angle was calculated. and an X-ray spectrum was created.
  • Kr atoms were contained in the transparent conductive layer by confirming that a peak appeared in the vicinity of the scanning angle of 28.2° in the prepared X-ray spectrum.
  • each transparent conductive layer in Examples 1 to 3 and Comparative Example 3 contained Kr atoms, and that each transparent conductive layer in Comparative Examples 1, 2, and 4 did not contain Kr. bottom.
  • the transparent conductive film of the present invention can be used, for example, as a supply material for transparent conductive films for transparent electrodes in various devices such as liquid crystal displays, touch panels, and solar cells.

Abstract

本発明の透明導電性フィルム(X)は、透明樹脂基材(10)と、結晶質の透明導電層(20)とを、厚さ方向(D)にこの順で備える。透明導電層(20)は、アルゴンより原子番号が大きな希ガス原子を含有する。透明導電層(20)は、第1抵抗値R1(Ω/□)を有し、160℃および30分間の加熱条件での加熱処理後に第2抵抗値R2(Ω/□)を有する。第1抵抗値R1に対する第2抵抗値R2の比率が0.650以上0.990以下である。

Description

透明導電性フィルム
 本発明は、透明導電性フィルムに関する。
 従来、樹脂製の透明な基材フィルムと透明な導電層(透明導電層)とを厚さ方向に順に備える透明導電性フィルムが知られている。透明導電層は、例えば、液晶ディスプレイ、タッチパネル、および太陽電池などの各種デバイスにおける透明電極を形成するための導体膜として用いられる。透明導電層は、例えば、スパッタリング法で基材フィルム上に導電性酸化物を成膜することによって、形成される。このような透明導電性フィルムに関する技術については、例えば下記の特許文献1に記載されている。
特開2017-71850号公報
 従来の透明導電性フィルムは、例えば、次のように製造される。まず、スパッタ成膜装置の成膜室内で、基材フィルム上に非晶質の透明導電層が形成される。次に、熱風式の加熱オーブン内で、基材フィルム上の透明導電層が加熱される。この加熱により、透明導電層が非晶質から結晶質に転化される(結晶化工程)。当該加熱の温度が高いほど、形成される結晶質透明導電層の結晶性は高く、同層の抵抗値は小さい。
 結晶化工程での加熱温度が高すぎる場合、樹脂製の基材フィルムに寸法変化および変形などの不具合が生じる。そのため、結晶化工程では、そのような不具合が生じない温度(高すぎない温度)で、透明導電層を加熱する必要がある。
 しかし、上述の結晶化工程で結晶化された透明導電層を有する従来の透明導電性フィルムは、同フィルムを備えるデバイスの製造過程において比較的高温の加熱プロセスを経る場合、透明導電層の抵抗値が上昇することがある。製造後の透明導電性フィルムにおける透明導電層の抵抗値上昇は、デバイスの性能に影響を与えるので好ましくない。
 本発明は、デバイス製造過程での加熱による透明導電層の抵抗値上昇を抑制するのに適した透明導電性フィルムを提供する。
 本発明[1]は、透明樹脂基材と、結晶質の透明導電層とを、厚さ方向にこの順で備える透明導電性フィルムであって、前記透明導電層が、アルゴンより原子番号が大きな希ガス原子を含有し、前記透明導電層が、第1抵抗値R1(Ω/□)を有し、160℃および30分間の加熱条件での加熱処理後に第2抵抗値R2(Ω/□)を有し、第1抵抗値R1に対する第2抵抗値R2の比率が0.650以上0.990以下である透明導電性フィルムを含む。
 本発明[2]は、前記透明導電層が、酸化スズ含有割合10質量%未満のインジウムスズ複合酸化物層を含む、上記[1]に記載の透明導電性フィルムを含む。
 本発明[3]は、前記透明導電層が150nm以下の厚さを有する、上記[1]または[2]に記載の透明導電性フィルムを含む。
 本発明[4]は、第1抵抗値R1が220Ω/□以下である、上記[1]から[3]のいずれか一つに記載の透明導電性フィルムを含む。
 本発明の透明導電性フィルムは、上記のように、結晶質の透明導電層が、アルゴンより原子番号が大きな希ガス原子を含有し、当該透明導電層における、160℃および30分間の加熱条件での加熱処理後の第2抵抗値R2の、第1抵抗値R1(加熱処理前)に対する比率(R2/R1)が、0.650以上0.990以下である。透明導電性フィルムは、加熱処理(160℃,30分間)後の第2抵抗値R2が、加熱処理前の第1抵抗値R1より、適度に小さい。このような透明導電性フィルムは、デバイス製造過程での加熱による透明導電層の抵抗値上昇を抑制するのに適する。
本発明の透明導電性フィルムの一実施形態の断面模式図である。 透明導電層が複数の層を含む場合を示す。 図1に示す透明導電性フィルムの製造方法を表す。図3Aは、樹脂フィルムを用意する工程を表し、図3Bは、樹脂フィルム上に機能層を形成する工程を表し、図3Cは、機能層上に透明導電層を形成する工程を表し、図3Dは、透明導電層を結晶化させる工程を表す。 図1に示す透明導電性フィルムにおいて、透明導電層がパターニングされた場合を表す。
 本発明の透明導電性フィルムの一実施形態としての透明導電性フィルムXは、透明樹脂基材10と、透明導電層20とを、厚さ方向Dにこの順で備える。透明導電性フィルムXは、厚さ方向Dと直交する方向(面方向)に広がるシート形状を有する。透明導電性フィルムXは、タッチセンサ装置、調光素子、光電変換素子、熱線制御部材、アンテナ部材、電磁波シールド部材、ヒーター部材、照明装置、および画像表示装置などに備えられる一要素である。
 透明樹脂基材10は、本実施形態では、樹脂フィルム11と機能層12とを厚さ方向Dにこの順で備える。
 樹脂フィルム11は、透明導電性フィルムXの強度を確保する基材である。また、樹脂フィルム11は、可撓性を有する透明な樹脂フィルムである。樹脂フィルム11の材料としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、およびポリスチレン樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、およびポリエチレンナフタレートが挙げられる。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびシクロオレフィンポリマーが挙げられる。アクリル樹脂としては、例えばポリメタクリレートが挙げられる。樹脂フィルム11の材料としては、例えば透明性および強度の観点から、好ましくはポリエステル樹脂が用いられ、より好ましくはPETが用いられる。
 樹脂フィルム11における機能層12側表面は、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。
 樹脂フィルム11の厚さは、透明導電性フィルムXの強度を確保する観点から、好ましくは1μm以上、より好ましくは10μm以上、更に好ましくは30μm以上である。樹脂フィルム11の厚さは、ロールトゥロール方式における樹脂フィルム11の取り扱い性を確保する観点から、好ましくは500μm以下、より好ましくは300μm以下、更に好ましくは200μm以下、一層好ましくは100μm以下、特に好ましくは75μm以下である。
 樹脂フィルム11の全光線透過率(JIS K 7375-2008)は、好ましくは60%以上、より好ましくは80%以上、更に好ましくは85%以上である。このような構成は、タッチセンサ装置、調光素子、光電変換素子、熱線制御部材、アンテナ部材、電磁波シールド部材、ヒーター部材、照明装置、および画像表示装置などに透明導電性フィルムXが備えられる場合に当該透明導電性フィルムXに求められる透明性を確保するのに適する。樹脂フィルム11の全光線透過率は、例えば100%以下である。
 機能層12は、樹脂フィルム11における厚さ方向Dの一方面側に配置されている。本実施形態では、機能層12は樹脂フィルム11に接する。また、本実施形態では、機能層12は、透明導電層20の露出表面(図1では上面)に擦り傷が形成されにくくするためのハードコート層である。
 ハードコート層は、硬化性樹脂組成物の硬化物である。硬化性樹脂組成物は、硬化性樹脂を含有する。硬化性樹脂としては、例えば、ポリエステル樹脂、アクリルウレタン樹脂、アクリル樹脂(アクリルウレタン樹脂を除く)、ウレタン樹脂(アクリルウレタン樹脂を除く)、アミド樹脂、シリコーン樹脂、エポキシ樹脂、およびメラミン樹脂が挙げられる。これら硬化性樹脂は、単独で用いられてもよいし、二種類以上が併用されてもよい。ハードコート層の高硬度の確保の観点からは、硬化性樹脂としては、好ましくは、アクリルウレタン樹脂およびアクリル樹脂からなる群より選択される少なくとも一つが用いられる。
 また、硬化性樹脂としては、例えば、紫外線硬化型樹脂および熱硬化型樹脂が挙げられる。高温加熱せずに硬化可能であるために透明導電性フィルムXの製造効率向上に役立つ観点から、硬化性樹脂としては、紫外線硬化型樹脂が好ましい。
 硬化性樹脂組成物は、粒子を含有してもよい。粒子としては、例えば、無機酸化物粒子および有機粒子が挙げられる。無機酸化物粒子の材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、および酸化アンチモンが挙げられる。有機粒子の材料としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル・スチレン共重合体、ベンゾグアナミン、メラミン、およびポリカーボネートが挙げられる。
 機能層12における透明導電層20側表面は、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。
 ハードコート層としての機能層12の厚さは、透明導電層20において充分な耐擦過性を発現させる観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上である。ハードコート層としての機能層12の厚さは、機能層12の透明性を確保する観点から、好ましくは20μm以下、より好ましくは10μm以下、更に好ましくは5μm以下、特に好ましくは3μm以下である。
 透明樹脂基材10の厚さは、好ましくは1μm以上、より好ましくは10μm以上、更に好ましくは15μm以上、特に好ましくは30μm以上である。透明樹脂基材10の厚さは、好ましくは520μm以下、より好ましくは320μm以下、更に好ましくは220μm以下、一層好ましくは120μm以下、特に好ましくは80μm以下である。透明樹脂基材10の厚さに関するこれら構成は、透明導電性フィルムXの取り扱い性を確保するのに適する。
 透明樹脂基材10の全光線透過率(JIS K 7375-2008)は、好ましくは60%以上、より好ましくは80%以上、更に好ましくは85%以上である。このような構成は、タッチセンサ装置、調光素子、光電変換素子、熱線制御部材、アンテナ部材、電磁波シールド部材、ヒーター部材、照明装置、および画像表示装置などに透明導電性フィルムXが備えられる場合に当該透明導電性フィルムXに求められる透明性を確保するのに適する。透明樹脂基材10の全光線透過率は、例えば100%以下である。
 透明導電層20は、透明樹脂基材10における厚さ方向Dの一方面側に配置されている。本実施形態では、透明導電層20は透明樹脂基材10に接する。透明導電層20は、光透過性と導電性とを兼ね備える結晶質膜である。このような透明導電層20は、例えば、導電性酸化物から形成されている。透明導電層20が結晶質膜であることは、透明導電層20において、事後的な加熱によって抵抗値が大きく変動するのを抑制するのに適する。
 透明導電層(透明導電性フィルムXでは、透明樹脂基材10上の透明導電層20)が結晶質膜であることは、透過型電子顕微鏡(TEM)による透明導電層の平面視観察によって判断できる。TEMによる透明導電層の平面視観察において、非晶領域が確認されずに結晶粒が確認された場合に、当該透明導電層が結晶質膜であると判断できる。透明導電性フィルムにおける透明導電層の平面視観察用の試料の作製においては、透明導電性フィルムをウルトラミクロトームの試料ホルダに固定した後、透明導電層に対して極鋭角にミクロトームナイフを設置し、当該ナイフにより、透明導電層の露出表面と略平行となるように透明導電層を切削する。これにより、平面視観察用試料としての透明導電層試料を得ることができる。
 透明導電層が結晶質膜であることは、電界放射型透過電子顕微鏡(FE-TEM)による透明導電層の断面観察によっても判断できる。FE―TEMによる透明導電層の断面観察において、非晶領域が確認されずに結晶粒が確認された場合に、当該透明導電層が結晶質膜であると判断できる。透明導電層が結晶質膜であることの、FE-TEMによる確認方法については、具体的には、実施例に関して後述するとおりである。
 透明導電層が結晶質膜であることは、例えば、次の方法によっても判断できる。まず、透明導電層を、濃度5質量%の塩酸に、20℃で15分間、浸漬する。次に、透明導電層を、水洗した後、乾燥する。次に、透明導電層の露出平面(透明導電性フィルムXでは、透明導電層20における透明樹脂基材10とは反対側の表面)において、離隔距離15mmの一対の端子の間の抵抗(端子間抵抗)を測定する。この測定において、端子間抵抗が10kΩ以下である場合に、当該透明導電層が結晶質膜であると判断できる。
 導電性酸化物としては、例えば、インジウム含有導電性酸化物およびアンチモン含有導電性酸化物が挙げられる。インジウム含有導電性酸化物としては、例えば、インジウムスズ複合酸化物(ITO)、インジウム亜鉛複合酸化物(IZO)、インジウムガリウム複合酸化物(IGO)、およびインジウムガリウム亜鉛複合酸化物(IGZO)が挙げられる。アンチモン含有導電性酸化物としては、例えば、アンチモンスズ複合酸化物(ATO)が挙げられる。高い透明性と良好な電気伝導性とを実現する観点からは、導電性酸化物としては、好ましくはインジウム含有導電性酸化物が用いられ、より好ましくはITOが用いられる。このITOは、InおよびSn以外の金属または半金属を、InおよびSnのそれぞれの含有量より少ない量で含有してもよい。
 透明導電層20(結晶質)は、好ましくは、酸化スズ割合10質量%未満のインジウムスズ複合酸化物層(第1のITO層)を含む。ITO層における酸化スズ割合とは、具体的には、同層を形成するITOにおける酸化インジウム(In)および酸化スズ(SnO)の合計含有量に対する酸化スズの含有量の割合である。第1のITO層を含む透明導電層20は、後述するように、第1のITO層を含む非晶質の透明導電層20’が形成された後、当該透明導電層20’の加熱による結晶化によって形成される。透明導電層20が第1のITO層を含むことは、加熱結晶化後の加熱による抵抗値上昇が抑制される非晶質透明導電層(後記の透明導電層20’)を形成するのに適する。
 第1のITO層の酸化スズ割合は、透明導電層20の耐久性を確保する観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、一層好ましくは1.5質量%以上、特に好ましくは2質量%以上である。第1のITO層の酸化スズ割合は、後述のスパッタ成膜での非晶質透明導電層の形成のしやすさの観点、および、加熱結晶化後の加熱による透明導電層20の抵抗値上昇を抑制する観点から、好ましくは9.9質量%以下、より好ましくは9質量%以下、更に好ましくは8質量%以下、一層好ましくは6質量%以下、より一層好ましくは5質量%以下、特に好ましくは4質量%以下である。
 ITOにおける酸化スズ割合は、例えば次のようにして同定できる。まず、X線光電子分光法(X-ray Photoelectron Spectroscopy)により、測定対象物としてのITOにおけるインジウム原子(In)とスズ原子(Sn)の存在比率を求める。ITO中のInおよびSnの各存在比率から、ITO中のInの原子数に対するSnの原子数の比率を求める。これにより、ITOにおける酸化スズ割合が得られる。また、ITOにおける酸化スズ割合は、スパッタ成膜時に用いるITOターゲットの酸化スズ(SnO)含有割合からも特定できる。
 透明導電層20は、第1のITO層(酸化スズ割合10質量%未満)以外の他の層を含んでもよい。他の層は、例えば、酸化スズ割合10質量%以上のITO層(第2のITO層)、および、ITO以外の他の導電性酸化物から形成された層が、挙げられる。透明導電層20の高い透明性と良好な電気伝導性とを両立する観点から、他の層は、第2のITO層が好ましい。
 第2のITO層(酸化スズ割合10質量%以上)の酸化スズ割合は、加熱結晶化後の透明導電層20の抵抗値を低減する観点から、好ましくは11質量%以上、より好ましくは12質量%以上、更に好ましくは13質量%以上である。第2のITO層の酸化スズ割合は、加熱後の透明導電層20の結晶性を確保する観点から、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
 図2は、透明導電層20が、第1のITO層を含む複数の層から形成されている場合の一例として、第1層21と第2層22との2層からなる場合を例示的に示す。図2では、第1層21または第2層22が第1のITO層である。加熱結晶化後の透明導電層20の加熱による抵抗値上昇を抑制する観点から、第2層22が第1のITO層であるのが好ましい。
 透明導電層20の厚さは、透明導電層20の低抵抗化の観点から、好ましくは10nm以上、より好ましくは20nm以上、更に好ましくは30nm以上である。また、透明導電層20の厚さは、透明導電層20において加熱による割れを抑制する観点から、好ましくは300nm以下、より好ましくは150nm以下、更に好ましくは120nm以下、一層好ましくは100nm以下、特に好ましくは80nm以下である。
 透明導電層20が第1層21および第2層22を含む場合、第1層21と第2層22との合計厚さに対する第2層22の厚さの割合は、透明導電層20の低抵抗化の観点から、好ましくは1%以上、より好ましくは5%以上、更に好ましくは7%以上である。また、第1層21と第2層22との合計厚さに対する第2層22の厚さの割合は、加熱後の透明導電層20において高い結晶性を確保する観点から、好ましくは99%以下、より好ましくは95%以下、更に好ましくは90%以下、一層好ましくは60%以下、特に好ましくは50%以下である。
 透明導電層20は、アルゴンより原子番号が大きな希ガス原子(原子E)を含有する。そのような希ガス原子としては、例えば、クリプトン(Kr)およびキセノン(Xe)が挙げられ、好ましくはKrが用いられる。また、透明導電層20は、アルゴン(Ar)を含有してもよい。透明導電層20における希ガス原子は、本実施形態では、透明導電層20を形成するための後述のスパッタリング法においてスパッタリングガスとして用いられる希ガス原子に由来する。本実施形態において、透明導電層20は、スパッタリング法で形成された膜(スパッタ膜)である。原子Eを含有する透明導電層20は、後述するように、原子Eを含有する非晶質の透明導電層20’が形成された後、当該透明導電層20’の加熱による結晶化によって形成される。透明導電層20が原子Eを含有することは、加熱結晶化後の加熱による抵抗値上昇が抑制される非晶質透明導電層(後記の透明導電層20’)を形成するのに適する。透明導電層20が原子Eを含有するか否かの特定方法としては、例えば、蛍光X線分析、および、ラザフォード後方散乱分光分析(Rutherford Backscattering Spectrometry:RBS)が挙げられる。
 透明導電層20におけるKrなど原子Eの含有割合は、厚さ方向Dの全域において、好ましくは1原子%以下、より好ましくは0.5原子%以下、更に好ましくは0.3原子%以下、特に好ましくは0.2原子%以下である。このような構成は、非晶質の透明導電層20’を加熱により結晶化させる時に良好な結晶成長を実現するのに適し、従って、低抵抗の透明導電層20を得るのに適する。透明導電層20における原子E含有割合は、好ましくは、厚さ方向Dの全域において0.0001原子%以上である。透明導電層20における希ガス原子の含有割合の同定方法としては、例えば、蛍光X線分析およびラザフォード後方散乱分光分析(RBS)が挙げられる。
 透明導電層20が複数の層を含む場合、透明導電層20は、原子Eを含有する層(原子E含有層)と、原子Eを含有しない層(原子E非含有層)とを含んでもよい。原子E非含有層は、例えば、スパッタリングガスとしてアルゴンが用いられるスパッタ成膜によって形成される層である。図2に示す透明導電層20では、第1層21または第2層22が原子Eを含有する。加熱後の透明導電層20の結晶性を確保する観点から、第1層21が原子Eを含有するのが好ましい。
 透明導電層20が原子E含有層と原子E非含有層とを含む場合、原子E含有層と原子E非含有層との合計厚さに対する原子E含有層の厚さの割合は、加熱後の透明導電層20の結晶性を高めて透過率を向上する観点から、好ましくは5%以上、より好ましくは10%以上、更に好ましくは20%以上、一層好ましくは30%以上、特に好ましくは40%以上である。同割合は、加熱後の透明導電層20の寸法収縮率を低減する観点から、好ましくは99以下、より好ましくは90%以下、更に好ましくは80%以下、一層好ましくは70%以下、特に好ましくは60%以下である。
 透明導電層20は、第1抵抗値R1(Ω/□)を有し、160℃および30分間の加熱条件での加熱処理後に第2抵抗値R2(Ω/□)を有する。抵抗値R1,R2は、それぞれ、表面抵抗率で表される。表面抵抗率は、JIS K7194(1994年)に準拠した4端子法によって測定できる。抵抗値R1,R2の測定方法は、具体的には、実施例に関して後述するとおりである。
 第1抵抗値R1に対する第2抵抗値R2の比率R2/R1は、透明導電層20の事後的加熱による抵抗値上昇の抑制の観点から、0.990以下、好ましくは0.950以下、より好ましくは0.900以下、更に好ましくは0.880以下である。また、透明導電層20の事後的加熱による抵抗値変動量の抑制の観点から、比率R2/R1は、0.650以上、好ましくは0.700以上、より好ましくは0.800以上である。
 第1抵抗値R1と第2抵抗値R2との差R1-R2は、透明導電層20において事後的な加熱によって抵抗値が上昇するのを抑制する観点から、好ましくは1.5Ω/□以上、より好ましくは3Ω/□以上、更に好ましくは4Ω/□以上、一層好ましくは5Ω/□以上、特に好ましくは6Ω/□以上である。また、透明導電層20の事後的加熱による抵抗値変動量の抑制の観点から、差R1-R2は、好ましくは10Ω/□以下、より好ましくは9.5Ω/□以下、更に好ましくは9Ω/□以下、特に好ましくは8Ω/□以下である。
 第1抵抗値R1は、透明導電層20の低抵抗化の観点から、好ましくは240Ω/□以下、より好ましくは220Ω/□以下、更に好ましくは200Ω/□以下、一層好ましくは180Ω/□以下、より一層好ましくは160Ω/□以下、特に好ましくは150Ω/□以下である。第1抵抗値R1は、例えば1Ω/□以上である。第1抵抗値R1は、例えば、透明導電層20をスパッタ成膜する時の各種条件の調整によって制御できる(第2抵抗値R2についても同様である)。その条件としては、例えば、透明導電層20が成膜される下地(本実施形態では透明樹脂基材10)の温度、成膜室内への酸素導入量、成膜室内の気圧、および、ターゲット上の水平磁場強度が挙げられる。
 第2抵抗値R2は、透明導電層20の低抵抗化の観点から、好ましくは240Ω/□以下、より好ましくは220Ω/□以下、更に好ましくは200Ω/□以下、一層好ましくは180Ω/□以下、より一層好ましくは160Ω/□以下、特に好ましくは150Ω/□以下である。第2抵抗値R2は、例えば1Ω/□以上である。
 透明導電層20の全光線透過率(JIS K 7375-2008)は、好ましくは60%以上、より好ましくは80%以上、更に好ましくは85%以上である。このような構成は、透明導電層20において透明性を確保するのに適する。また、透明導電層20の全光線透過率は、例えば100%以下である。
 透明導電性フィルムXは、例えば以下のように製造される。
 まず、図3Aに示すように、樹脂フィルム11を用意する。
 次に、図3Bに示すように、樹脂フィルム11の厚さ方向Dの一方面上に機能層12を形成する。樹脂フィルム11上への機能層12の形成により、透明樹脂基材10が作製される。
 ハードコート層としての上述の機能層12は、樹脂フィルム11上に、硬化性樹脂組成物を塗布して塗膜を形成した後、この塗膜を硬化させることによって形成できる。硬化性樹脂組成物が紫外線硬化型樹脂を含有する場合には、紫外線照射によって前記塗膜を硬化させる。硬化性樹脂組成物が熱硬化型樹脂を含有する場合には、加熱によって前記塗膜を硬化させる。
 樹脂フィルム11上に形成された機能層12の露出表面は、必要に応じて、表面改質処理される。表面改質処理としてプラズマ処理する場合、不活性ガスとして例えばアルゴンガスを用いる。また、プラズマ処理における放電電力は、例えば10W以上であり、また、例えば5000W以下である。
 次に、図3Cに示すように、透明樹脂基材10上に、非晶質の透明導電層20’を形成する(透明導電層形成工程)。具体的には、スパッタリング法により、透明樹脂基材10における機能層12上に材料を成膜して非晶質の透明導電層20’を形成する。透明導電層20’は、光透過性と導電性とを兼ね備える非晶質膜である(透明導電層20’は、後述の結晶化工程において、加熱によって結晶質の透明導電層20に転化される)。
 スパッタリング法では、ロールトゥロール方式で成膜プロセスを実施できるスパッタ成膜装置を使用するのが好ましい。透明導電性フィルムXの製造において、ロールトゥロール方式のスパッタ成膜装置を使用する場合、長尺状の透明樹脂基材10を、装置が備える繰出しロールから巻取りロールまで走行させつつ、当該透明樹脂基材10上に材料を成膜して透明導電層20’を形成する。また、当該スパッタリング法では、一つの成膜室を備えるスパッタ成膜装置を使用してもよいし、透明樹脂基材10の走行経路に沿って順に配置された複数の成膜室を備えるスパッタ成膜装置を使用してもよい(上述の第1層21および第2層22を含む透明導電層20’を形成する場合には、2以上の複数の成膜室を備えるスパッタ成膜装置を使用する)。
 スパッタリング法では、具体的には、スパッタ成膜装置が備える成膜室内に真空条件下でスパッタリングガス(不活性ガス)を導入しつつ、成膜室内のカソード上に配置されたターゲットにマイナスの電圧を印加する。これにより、グロー放電を発生させてガス原子をイオン化し、当該ガスイオンを高速でターゲット表面に衝突させ、ターゲット表面からターゲット材料を弾き出し、弾き出たターゲット材料を透明樹脂基材10上に堆積させる。ターゲットの材料としては、例えば、透明導電層20に関して上述した導電性酸化物の焼結体が用いられる。スパッタリングガスとしては、例えば、希ガスが挙げられる。希ガスとしては、例えば、アルゴンおよびクリプトンが挙げられる。スパッタリングガスは、複数の希ガスの混合ガスでもよい。
 スパッタリング法は、好ましくは、反応性スパッタリング法である。反応性スパッタリング法では、例えば、スパッタリングガスに加えて反応性ガスとしての酸素が、成膜室内に導入される。反応性スパッタリング法において成膜室に導入されるスパッタリングガスおよび酸素の合計導入量に対する、酸素の導入量の割合は、例えば0.01流量%以上であり、また、例えば15流量%以下である。
 厚さ方向Dの全域にわたって、アルゴン(Ar)より原子番号が大きな希ガス原子(原子E)を含有する透明導電層20を形成する場合(第1の場合)、スパッタ成膜装置が備える1または2以上の成膜室に導入されるガスは、スパッタリングガスとしての原子Eと反応性ガスとしての酸素とを含有する。原子Eとしては、上述のように、KrおよびXeが挙げられ、好ましくはKrが用いられる。スパッタリングガスは、原子E以外の不活性ガスを含有してもよい。原子E以外の不活性ガスとしては、例えばArが挙げられる。スパッタリングガスが原子E以外の不活性ガスを含有する場合、その含有割合は、好ましくは80体積%以下、より好ましくは50体積%以下である。
 上述の原子E含有層と原子E非含有層とを含む透明導電層20を形成する場合(第2の場合)、原子E含有層を形成するための成膜室に導入されるガスは、スパッタリングガスとしての原子Eと反応性ガスとしての酸素とを含有する。スパッタリングガスは、原子E以外の不活性ガスを含有してもよい。原子E以外の不活性ガスの種類および含有割合については、第1の場合における原子E以外の不活性ガスについて上述した種類および含有割合と同様である。また、原子E非含有層を形成するための成膜室に導入されるガスは、スパッタリングガスとして原子E以外の不活性ガスと反応性ガスとしての酸素とを含有する。原子E以外の不活性ガスとしては、例えばArが挙げられる。
 スパッタリング法による成膜(スパッタ成膜)中の成膜室内の気圧は、例えば0.02Pa以上であり、また、例えば1Pa以下である。
 スパッタ成膜中の透明樹脂基材10の温度は、例えば180℃以下である。スパッタ成膜中の透明樹脂基材10の温度は、スパッタ成膜中に透明樹脂基材10からのアウトガスを抑制して非晶質の透明導電層20’を適切に形成する観点から、好ましくは20℃以下、より好ましくは10℃以下、更に好ましくは5℃以下、一層好ましくは0℃以下、特に好ましくは-5℃以下である。同温度は、例えば、-50℃以上、-20℃以上または-10℃以上である。
 ターゲットに対する電圧印加のための電源としては、例えば、DC電源、AC電源、MF電源、およびRF電源が挙げられる。電源としては、DC電源とRF電源とを併用してもよい。スパッタ成膜中の放電電圧の絶対値は、例えば50V以上であり、また、例えば500V以下である。
 本製造方法では、次に、図3Dに示すように、真空下での加熱により、非晶質の透明導電層20’を結晶質の透明導電層20へと転化させる(結晶化工程)。本工程では、接触加熱ユニットを備える真空加熱装置を使用する。接触加熱ユニットとしては、例えば、加熱ロールおよび加熱ブロックが挙げられる。ロールトゥロール方式で結晶化工程を実施するためには、加熱ロールを備えた真空加熱装置が好ましい。すなわち、本工程では、透明樹脂基材10上の透明導電層20’を、真空加熱装置内の加熱ロールに接触させて加熱するのが好ましい。加熱ロールによる接触加熱は、真空下において透明導電層20’を効率よく結晶化するのに適する。
 本工程において、加熱温度は、高い結晶化速度を確保する観点からは、好ましくは120℃以上、より好ましくは140℃以上、更に好ましくは160℃以上である。加熱温度は、透明樹脂基材10への加熱の影響を抑制する観点から、好ましくは200℃未満、より好ましくは180℃以下、更に好ましくは170℃以下である。加熱時間は、透明導電層20の十分な結晶化の観点から、好ましくは10秒以上、好ましくは30秒以上、更に好ましくは45秒以上である。加熱時間は、本工程におけるタクト時間の短縮の観点から、好ましくは60分以下、より好ましくは30分以下、更に好ましくは10分以下、特に好ましくは5分以下である。
 好ましくは、上述の透明導電層形成工程から結晶化工程までの一連のプロセスを、ロールトゥロール方式でワークフィルムを走行させながら一つの連続ラインで実施する。より好ましくは、一つの連続ラインでのプロセス中、ワークフィルムは一度も大気中に出されない。
 以上のようにして、透明導電性フィルムXが製造される。
 透明導電性フィルムXにおける透明導電層20は、図4に模式的に示すように、パターニングされてもよい。所定のエッチングマスクを介して透明導電層20をエッチング処理することにより、透明導電層20をパターニングできる。透明導電層20のパターニングは、上述の結晶化工程より前に実施されてもよいし、結晶化工程より後に実施されてもよい。パターニングされた透明導電層20は、例えば、配線パターンとして機能する。
 透明導電性フィルムXは、上述のように、結晶質の透明導電層20が、アルゴンより原子番号が大きな希ガス原子を含有する。透明導電層20が結晶質膜であることは、透明導電層20において事後的な加熱によって抵抗値が大きく変動するのを抑制するのに適する。透明導電層20が、アルゴンより原子番号が大きな希ガス原子を含有することは、加熱結晶化後の加熱による抵抗値上昇が抑制される非晶質の透明導電層20’を形成するのに適する。そして、透明導電性フィルムXは、160℃および30分間の加熱条件での加熱処理後の第2抵抗値R2の、第1抵抗値R1(加熱処理前)に対する比率(R2/R1)が、上述のように、0.650以上、好ましくは0.70以上、更に好ましくは0.80以上であり、また、好ましくは0.990以下、より好ましくは0.950以下、更に好ましくは0.900以下、特に好ましくは0.880以下である。すなわち、透明導電性フィルムは、加熱処理(160℃,30分間)後の第2抵抗値R2が、加熱処理前の第1抵抗値R1より、適度に小さい。以上のような透明導電性フィルムは、デバイス製造過程での加熱による透明導電層の抵抗値上昇を抑制するのに適する。
 透明導電性フィルムXにおいて、機能層12は、透明樹脂基材10に対する透明導電層20の高い密着性を実現するための密着性向上層であってもよい。機能層12が密着性向上層である構成は、透明樹脂基材10と透明導電層20との間の密着力を確保するのに適する。
 機能層12は、透明樹脂基材10の表面(厚さ方向Dの一方面)の反射率を調整するための屈折率調整層(index-matching layer)であってもよい。機能層12が屈折率調整層である構成は、透明樹脂基材10上の透明導電層20がパターニングされている場合に、当該透明導電層20のパターン形状を視認されにくくするのに適する。
 機能層12は、透明樹脂基材10から透明導電層20を実用的に剥離可能にするための剥離機能層であってもよい。機能層12が剥離機能層である構成は、透明樹脂基材10から透明導電層20を剥離して、当該透明導電層20を他の部材に転写するのに適する。
 機能層12は、複数の層が厚さ方向Dに連なる複合層であってもよい。複合層は、好ましくは、ハードコート層、密着性向上層、屈折率調整層、および剥離機能層からなる群より選択される2以上の層を含む。このような構成は、選択される各層の上述の機能を、機能層12において複合的に発現するのに適する。好ましい一形態では、機能層12は、樹脂フィルム11上において、密着性向上層と、ハードコート層と、屈折率調整層とを、厚さ方向Dの一方側に向かってこの順で備える。好ましい他の形態では、機能層12は、樹脂フィルム11上において、剥離機能層と、ハードコート層と、屈折率調整層とを、厚さ方向Dの一方側に向かってこの順で備える。
 透明導電性フィルムXは、物品に対して固定され、且つ必要に応じて透明導電層20がパターニングされた状態で、利用される。透明導電性フィルムXは、例えば、固着機能層を介して、物品に対して貼り合わされる。
 物品としては、例えば、素子、部材、および装置が挙げられる。すなわち、透明導電性フィルム付き物品としては、例えば、透明導電性フィルム付き素子、透明導電性フィルム付き部材、および透明導電性フィルム付き装置が挙げられる。
 素子としては、例えば、調光素子および光電変換素子が挙げられる。調光素子としては、例えば、電流駆動型調光素子および電界駆動型調光素子が挙げられる。電流駆動型調光素子としては、例えば、エレクトロクロミック(EC)調光素子が挙げられる。電界駆動型調光素子としては、例えば、PDLC(polymer dispersed liquid crystal)調光素子、PNLC(polymer network liquid crystal)調光素子、および、SPD(suspendedparticle device)調光素子が挙げられる。光電変換素子としては、例えば太陽電池などが挙げられる。太陽電池としては、例えば、有機薄膜太陽電池および色素増感太陽電池が挙げられる。部材としては、例えば、電磁波シールド部材、熱線制御部材、ヒーター部材、およびアンテナ部材が挙げられる。装置としては、例えば、タッチセンサ装置、照明装置、および画像表示装置が挙げられる。
 上述の固着機能層としては、例えば、粘着層および接着層が挙げられる。固着機能層の材料としては、透明性を有し且つ固着機能を発揮する材料であれば、特に制限なく用いられる。固着機能層は、好ましくは、樹脂から形成されている。樹脂としては、例えば、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリビニルエーテル樹脂、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン樹脂、エポキシ樹脂、フッ素樹脂、天然ゴム、および合成ゴムが挙げられる。凝集性、接着性、適度な濡れ性などの粘着特性を示すこと、透明性に優れること、並びに、耐候性および耐熱性に優れることから、前記樹脂としては、アクリル樹脂が好ましい。
 固着機能層(固着機能層を形成する樹脂)には、透明導電層20の腐食抑制のために、腐食防止剤を配合してもよい。固着機能層(固着機能層を形成する樹脂)には、透明導電層20のマイグレーション抑制のために、マイグレーション防止剤(例えば、特開2015-022397号に開示の材料)を配合してもよい。また、固着機能層(固着機能層を形成する樹脂)には、物品の屋外使用時の劣化を抑制するために、紫外線吸収剤を配合してもよい。紫外線吸収剤としては、例えば、ベンゾフェノン化合物、ベンゾトリアゾール化合物、サリチル酸化合物、シュウ酸アニリド化合物、シアノアクリレート化合物、および、トリアジン化合物が挙げられる。
 また、透明導電性フィルムXの透明樹脂基材10を、物品に対して固着機能層を介して固定した場合、透明導電性フィルムXにおいて透明導電層20(パターニング後の透明導電層20を含む)は露出する。このような場合、透明導電層20の当該露出面にカバー層を配置してもよい。カバー層は、透明導電層20を被覆する層であり、透明導電層20の信頼性を向上させ、また、透明導電層20の受傷による機能劣化を抑制できる。そのようなカバー層は、好ましくは、誘電体材料から形成されており、より好ましくは、樹脂と無機材料との複合材料から形成されている。樹脂としては、例えば、固着機能層に関して上記した樹脂が挙げられる。無機材料としては、例えば、無機酸化物およびフッ化物が挙げられる。無機酸化物としては、例えば、酸化ケイ素、酸化チタン、酸化ニオブ、酸化アルミニウム、二酸化ジルコニウム、および酸化カルシウムが挙げられる。フッ化物としては、例えばフッ化マグネシウムが挙げられる。また、カバー層(樹脂および無機材料の混合物)には、上記の腐食防止剤、マイグレーション防止剤、および紫外線吸収剤を配合してもよい。
 本発明について、以下に実施例を示して具体的に説明する。ただし、本発明は、実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。
〔実施例1〕
 透明な樹脂フィルムとしての長尺のポリエチレンテレフタレート(PET)フィルム(厚さ50μm,東レ社製)の一方の面に、アクリル樹脂を含有する紫外線硬化型樹脂を塗布して塗膜を形成した。次に、紫外線照射によって当該塗膜を硬化させてハードコート層(厚さ2μm)を形成した。このようにして、樹脂フィルムと、機能層としてのハードコート(HC)層とを備える透明樹脂基材を作製した。
 次に、反応性スパッタリング法により、透明樹脂基材におけるHC層上に、非晶質の透明導電層を形成した(透明導電層形成工程)。本工程では、ロールトゥロール方式のスパッタ成膜装置(DCマグネトロンスパッタ成膜装置)を使用した。同装置は、ロールトゥロール方式でワークフィルムを走行させつつ成膜プロセスを実施できる第1成膜室および第2成膜室を備える。本工程では、具体的には、第1成膜室での第1スパッタ成膜と、第2成膜室での第2スパッタ成膜とを、順次に実施した。第1スパッタ成膜では、透明樹脂基材上に第1層(厚さ11nm)を形成した。続く第2スパッタ成膜では、第1層上に第2層(厚さ11nm)を形成した。本実施例における各スパッタ成膜の条件は、次のとおりである。
 第1スパッタ成膜においては、第1成膜室内の到達真空度が0.9×10-4Paに至るまでスパッタ成膜装置(第1成膜室,第2成膜室)内を真空排気した後、第1成膜室内に、スパッタリングガスとしてのクリプトンと、反応性ガスとしての酸素とを導入し、第1成膜室内の気圧を0.2Paとした。第1成膜室に導入されるクリプトンおよび酸素の合計導入量に対する酸素導入量の割合は約1.8流量%とした。また、ターゲットとしては、酸化インジウムと酸化スズとの第1焼結体(酸化スズ濃度が10質量%)を用いた。ターゲットに対する電圧印加のための電源としては、DC電源を用いた。ターゲット上の水平磁場強度は90mTとした。成膜温度(透明導電層が積層される透明樹脂基材の温度)は-5℃とした。
 第2スパッタ成膜においては、スパッタ成膜装置の真空排気の後、第2成膜室内に、スパッタリングガスとしてのクリプトンと、反応性ガスとしての酸素とを導入し、第2成膜室内の気圧を0.2Paとした。第2成膜室に導入されるクリプトンおよび酸素の合計導入量に対する酸素導入量の割合は約1.8流量%とした。また、ターゲットとしては、酸化インジウムと酸化スズとの第2焼結体(酸化スズ濃度が3質量%)を用いた。ターゲットに対する電圧印加のための電源としては、DC電源を用いた。ターゲット上の水平磁場強度は90mTとした。成膜温度は-5℃とした。
 次に、透明樹脂基材上の透明導電層を、真空加熱装置内で加熱ロールに接触させて加熱し、結晶化させた(結晶化工程)。本工程において、加熱温度は160℃とし、加熱時間は1分間とし、透明導電層は真空下で加熱結晶化された。
 上述の透明導電層形成工程から結晶化工程までの一連のプロセスは、ロールトゥロール方式でワークフィルムを走行させながら一つの連続ラインで実施した。このプロセス中、ワークフィルムは一度も大気中に出されていない。
 以上のようにして、実施例1の透明導電性フィルムを作製した。実施例1の透明導電性フィルムの透明導電層(厚さ22nm)は、ITOの第1層(酸化スズ割合10質量%,厚さ11nm)と、ITOの第2層(酸化スズ割合3質量%,厚さ11nm)とを、透明樹脂基材側から順に有し、結晶質である(透明導電層の厚さに対し、第1層の厚さの割合は50%であり、第2層の厚さの割合は50%である)。
〔実施例2〕
 次のこと以外は、実施例1の透明導電性フィルムと同様にして、実施例2の透明導電性フィルムを作製した。透明導電層形成工程の第1スパッタ成膜において厚さ22nmの第1層(非晶質)を形成し、第2スパッタ成膜において、ターゲットとして第2焼結体(酸化スズ濃度が10質量%)を用い、厚さ22nmの第2層(非晶質)を形成した。
 実施例2の透明導電性フィルムの透明導電層は、ITO膜(酸化スズ濃度10質量%,厚さ44nm)からなり、結晶質である。
〔実施例3〕
 次のこと以外は、実施例1の透明導電性フィルムと同様にして、実施例3の透明導電性フィルムを作製した。透明導電層形成工程の第1スパッタ成膜において厚さ22nmの第1層(非晶質)を形成し、第2スパッタ成膜において、スパッタリングガスとしてアルゴンを用い、ターゲットとして第2焼結体(酸化スズ濃度が10質量%)を用い、厚さ22nmの第2層(非晶質)を形成した。
 実施例3の透明導電性フィルムの透明導電層は、クリプトン含有の第1層(酸化スズ濃度10質量%,厚さ22nm)と、アルゴン含有の第2層(酸化スズ濃度10質量%,厚さ22nm)とからなり、結晶質である。
〔比較例1〕
 次のこと以外は、実施例1の透明導電性フィルムと同様にして、比較例1の透明導電性フィルムを作製した。透明導電層形成工程の第1スパッタ成膜および第2スパッタ成膜において、スパッタリングガスとしてアルゴンを用いた。結晶化工程において、熱風式の加熱オーブン内で、透明樹脂基材上の透明導電層を加熱した。加熱温度は160℃とし、加熱時間は1時間とした。本工程では、透明導電層は大気下で加熱結晶化された。
〔比較例2〕
 次のこと以外は、実施例1の透明導電性フィルムと同様にして、比較例2の透明導電性フィルムを作製した。透明導電層形成工程の第1スパッタ成膜および第2スパッタ成膜において、スパッタリングガスとしてアルゴンを用いた。
〔比較例3〕
 次のこと以外は、実施例1の透明導電性フィルムと同様にして、比較例3の透明導電性フィルムを作製した。結晶化工程において、熱風式の加熱オーブン内で、透明樹脂基材上の透明導電層を加熱した。加熱温度は160℃とし、加熱時間は1時間とした。本工程では、透明導電層は大気下で加熱結晶化された。
〔比較例4〕
 次のこと以外は、実施例1の透明導電性フィルムと同様にして、比較例4の透明導電性フィルムを作製した。透明導電層形成工程の第1スパッタ成膜および第2スパッタ成膜において、スパッタリングガスとしてアルゴンを用いた。第1スパッタ成膜において厚さ22nmの第1層(非晶質)を形成し、第2スパッタ成膜において、ターゲットとして第2焼結体(酸化スズ濃度が10質量%)を用い、厚さ22nmの第2層(非晶質)を形成した。
〈透明導電層の厚さ〉
 実施例1~3および比較例1~4における各透明導電性フィルムの透明導電層の厚さを、電界放射型透過電子顕微鏡(FE-TEM)での観察により測定した。具体的には、まず、FIBマイクロサンプリング法により、実施例1~3および比較例1~4における各透明導電層の断面観察用サンプルを作製した。FIBマイクロサンプリング法では、FIB装置(品名「FB2200」,Hitachi製)を使用し、加速電圧を10kVとした。次に、断面観察用サンプルにおける透明導電層の断面をFE-TEMによって観察し、当該観察画像において透明導電層の厚さを測定した。同観察では、FE-TEM装置(品名「JEM-2800」,JEOL製)を使用し、加速電圧を200kVとした。
 実施例1,3および比較例1~3における透明導電層の第1層の厚さは、当該第1層の上に第2層を形成する前の中間作製物から断面観察用サンプルを作製し、当該サンプルのFE-TEM観察により測定した。実施例1,3および比較例1~3における各透明導電層の第2層の厚さは、実施例1,3および比較例1~3における各透明導電層の総厚から第1層の厚さを差し引いて求めた。
〈結晶性〉
 実施例1~3および比較例1~4における各透明導電層について、FE-TEMによる断面観察によって結晶性を調べた。具体的には、まず、FIBマイクロサンプリング法により、実施例1~3および比較例1~4における各透明導電層の断面観察用サンプルを作製した。FIBマイクロサンプリング法では、FIB装置(品名「FB2200」,Hitachi製)を使用し、加速電圧を10kVとした。次に、FE-TEM装置(品名「JEM-2800」,JEOL製)により、断面観察用サンプルにおける透明導電層の断面を、結晶粒が明瞭に確認できる倍率で撮影した(加速電圧は200kVとした)。実施例1~3および比較例1~4における各透明導電層では、同層の面方向および厚さ方向の全領域にわたって結晶粒が成長していることが、確認された(面方向・厚さ方向の全域で結晶質であることを確認した)。これに対し、比較例2,4における各透明導電層では、同層の面方向および厚さ方向において結晶粒が成長していない領域があることが、確認された(面方向・厚さ方向の全域で結晶質であることは、確認されなかった)。これらの結果から、実施例1~3および比較例1,3の各透明導電層の結晶性については“良”と評価し、比較例2,4の各透明導電層の結晶性については“不良”と評価した。評価結果を表1に示す。
〈透過率〉
 実施例1~3および比較例1~4の各透明導電性フィルムについて、透過率測定装置(品名「HM-150」,村上色彩技術研究所製)によって全光線透過率(JIS K 7375-2008)を測定した。測定結果を、透過率(%)として表1に示す。
〈加熱による抵抗変化〉
 実施例1~3および比較例1~4の各透明導電性フィルムについて、事後加熱による抵抗値の変化を調べた。具体的には、次のとおりである。
 まず、JIS K 7194(1994年)に準拠した四端子法により、透明導電性フィルムの透明導電層の第1抵抗値R1(加熱処理前の表面抵抗率)を測定した。次に、熱風式の加熱オーブン内で、透明導電性フィルムを加熱処理した。加熱処理において、加熱温度は160℃とし、加熱時間は30分間とした。次に、JIS K 7194(1994年)に準拠した四端子法により、透明導電性フィルムの透明導電層の第2抵抗値R2(加熱処理後の表面抵抗率)を測定した。そして、第1抵抗値R1に対する第2抵抗値R2の比率(R2/R1)を求めた。その値を表1に示す。また、第1抵抗値R1と第2抵抗値R2との差R1-R2も表1に示す。
〈透明導電層内のKr原子の確認〉
 実施例1~3および比較例3における各透明導電層がKr原子を含有することは、次のようにして確認した。まず、走査型蛍光X線分析装置(商品名「ZSX PrimusIV」,リガク社製)を使用して、下記の測定条件にて蛍光X線分析測定を5回繰り返し、各走査角度の平均値を算出し、X線スペクトルを作成した。そして、作成されたX線スペクトルにおいて、走査角度28.2°近傍にピークが出ていることを確認することにより、透明導電層にKr原子が含有されることを確認した。このようにして、実施例1~3および比較例3における各透明導電層がKr原子を含有すること、および、比較例1,2,4における各透明導電層がKrを含有しないことを、確認した。
<測定条件>
 スペクトル;Kr-KA
 測定径:30mm
 雰囲気:真空
 ターゲット:Rh
 管電圧:50kV
 管電流:60mA
 1次フィルタ:Ni40
 走査角度(deg):27.0~29.5
 ステップ(deg):0.020
 速度(deg/分):0.75
 アッテネータ:1/1
 スリット:S2
 分光結晶:LiF(200)
 検出器:SC
 PHA:100~300
Figure JPOXMLDOC01-appb-T000001
 本発明の透明導電性フィルムは、例えば、液晶ディスプレイ、タッチパネル、および太陽電池などの各種デバイスにおける透明電極用の透明導体膜の供給材として、用いることができる。
X  透明導電性フィルム
D  厚さ方向
10 透明樹脂基材
11 樹脂フィルム
12 機能層
20 透明導電層
21 第1層
22 第2層

Claims (4)

  1.  透明樹脂基材と、結晶質の透明導電層とを、厚さ方向にこの順で備える透明導電性フィルムであって、
     前記透明導電層が、アルゴンより原子番号が大きな希ガス原子を含有し、
     前記透明導電層が、第1抵抗値R1(Ω/□)を有し、160℃および30分間の加熱条件での加熱処理後に第2抵抗値R2(Ω/□)を有し、
     第1抵抗値R1に対する第2抵抗値R2の比率が0.650以上0.990以下である、透明導電性フィルム。
  2.  前記透明導電層が、酸化スズ含有割合10質量%未満のインジウムスズ複合酸化物層を含む、請求項1に記載の透明導電性フィルム。
  3.  前記透明導電層が150nm以下の厚さを有する、請求項1または2に記載の透明導電性フィルム。
  4.  第1抵抗値R1が220Ω/□以下である、請求項1または2に記載の透明導電性フィルム。
PCT/JP2022/034352 2021-09-17 2022-09-14 透明導電性フィルム WO2023042849A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023548482A JP7425266B2 (ja) 2021-09-17 2022-09-14 透明導電性フィルム
CN202280014562.4A CN116848595A (zh) 2021-09-17 2022-09-14 透明导电性薄膜
KR1020237023083A KR20240019750A (ko) 2021-09-17 2022-09-14 투명 도전성 필름

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2021152346 2021-09-17
JP2021-152344 2021-09-17
JP2021152348 2021-09-17
JP2021-152345 2021-09-17
JP2021152345 2021-09-17
JP2021152347 2021-09-17
JP2021-152346 2021-09-17
JP2021-152348 2021-09-17
JP2021152344 2021-09-17
JP2021-152347 2021-09-17
JP2022-106521 2022-06-30
JP2022106521 2022-06-30

Publications (1)

Publication Number Publication Date
WO2023042849A1 true WO2023042849A1 (ja) 2023-03-23

Family

ID=85602929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034352 WO2023042849A1 (ja) 2021-09-17 2022-09-14 透明導電性フィルム

Country Status (3)

Country Link
JP (1) JP7425266B2 (ja)
KR (1) KR20240019750A (ja)
WO (1) WO2023042849A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (ja) * 1992-05-29 1993-12-17 Tonen Corp 透明導電薄膜の製造法
WO2014112535A1 (ja) * 2013-01-16 2014-07-24 日東電工株式会社 透明導電フィルムおよびその製造方法
JP2018078090A (ja) * 2016-10-31 2018-05-17 日東電工株式会社 透明導電性フィルム及びそれを用いたタッチパネル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578575B2 (ja) 2008-07-30 2010-11-10 京セラ株式会社 分波器、通信用モジュール部品、及び通信装置
KR20170008195A (ko) 2014-05-20 2017-01-23 닛토덴코 가부시키가이샤 투명 도전성 필름

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (ja) * 1992-05-29 1993-12-17 Tonen Corp 透明導電薄膜の製造法
WO2014112535A1 (ja) * 2013-01-16 2014-07-24 日東電工株式会社 透明導電フィルムおよびその製造方法
JP2018078090A (ja) * 2016-10-31 2018-05-17 日東電工株式会社 透明導電性フィルム及びそれを用いたタッチパネル

Also Published As

Publication number Publication date
KR20240019750A (ko) 2024-02-14
JPWO2023042849A1 (ja) 2023-03-23
JP7425266B2 (ja) 2024-01-30

Similar Documents

Publication Publication Date Title
JP7237150B2 (ja) 透明導電性フィルム
WO2021187575A1 (ja) 光透過性導電膜および透明導電性フィルム
WO2023042849A1 (ja) 透明導電性フィルム
WO2023042848A1 (ja) 透明導電性フィルム
JP7418506B1 (ja) 透明導電性フィルム
JP7237171B2 (ja) 透明導電性フィルム
JP7240513B2 (ja) 透明導電性フィルム
JP7451505B2 (ja) 透明導電性フィルムの製造方法
WO2021187577A1 (ja) 透明導電性フィルム
WO2021187578A1 (ja) 光透過性導電膜および透明導電性フィルム
WO2022092190A2 (ja) 透明導電性フィルム、および透明導電性フィルムの製造方法
WO2021187576A1 (ja) 透明導電性フィルム
CN116848595A (zh) 透明导电性薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548482

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280014562.4

Country of ref document: CN