WO2023042613A1 - 電動アクチュエータ - Google Patents

電動アクチュエータ Download PDF

Info

Publication number
WO2023042613A1
WO2023042613A1 PCT/JP2022/031684 JP2022031684W WO2023042613A1 WO 2023042613 A1 WO2023042613 A1 WO 2023042613A1 JP 2022031684 W JP2022031684 W JP 2022031684W WO 2023042613 A1 WO2023042613 A1 WO 2023042613A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
lubricating oil
electric actuator
electric motor
speed reducer
Prior art date
Application number
PCT/JP2022/031684
Other languages
English (en)
French (fr)
Inventor
慎太朗 石川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021149493A external-priority patent/JP2023042273A/ja
Priority claimed from JP2021149488A external-priority patent/JP2023042272A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023042613A1 publication Critical patent/WO2023042613A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to electric actuators.
  • an electric actuator capable of changing the rotational phase difference between an input rotor to which driving force is input from the outside and an output rotor to which the input driving force is output
  • an electric motor is used, and the rotation of the electric motor is decelerated and transmitted. and a speed reducer are known.
  • an electric actuator used in a variable valve timing device that changes the opening/closing timing of one or both of an intake valve and an exhaust valve of an automobile engine.
  • the speed reducer can change the rotation phase difference of the output rotor (eg, camshaft) with respect to the input rotor (eg, sprocket), thereby adjusting the opening/closing timing of the valve.
  • the speed reducer is generally filled with grease as a lubricant in order to improve operability and durability.
  • the speed reducer operates, the grease intervening in the meshing portions of the gears gradually flows out, and the grease is depleted over time, resulting in a problem of reduced operability and durability.
  • an object of the present invention is to provide an electric actuator that can improve operability and durability by using lubricating oil and that can prevent lubricating oil from entering the space where the electric motor is arranged.
  • a first invention provides an electric motor having a stator and a rotor, a motor shaft provided on the inner diameter side of the rotor and rotating integrally with the rotor, and a motor shaft disposed on the inner diameter side of the motor shaft. and a lubrication passage through which lubricating oil flows through the speed reducer, wherein the motor shaft includes a space in which the electric motor is arranged, It is characterized by partitioning the space in which the path is arranged over the entire axial direction of these spaces.
  • an electric actuator having such a configuration, it is possible to prevent lubricating oil from entering the space where the electric motor is arranged, and to avoid failures and malfunctions caused by adhesion of lubricating oil to the electric motor.
  • a method of supplying lubricating oil to the electric actuator can be adopted, and the operability and durability of the electric actuator can be improved over a long period of time. be able to maintain.
  • An electric actuator includes a casing that houses the electric motor and the speed reducer, and an output member provided on an inner diameter side of the speed reducer to which rotation reduced by the speed reducer is transmitted, Lubricating oil may be configured to be supplied to the speed reducer through the output member.
  • a first seal member for sealing between the motor shaft and the casing is provided on one axial end side of the space in which the electric motor is arranged, and the space in which the lubrication passage is arranged is provided with a first seal member.
  • a second seal member for sealing between the output member and the motor shaft is provided on the side opposite to the one end side in the axial direction.
  • a third seal member may be provided on the side opposite to the one axial end side of the space in which the electric motor is arranged to seal between the motor shaft and the casing.
  • the output member is composed of two members that are separable from each other, it is preferable to use a bolt having a flange portion on its head as the bolt that connects the two members.
  • a bolt having a flange portion on its head it is possible to effectively prevent leakage of lubricating oil from between the head of the bolt and the end surface of the output member.
  • a seal washer may be interposed between the flange portion of the bolt and the end face of the output member to which the flange portion is fastened.
  • a seal member may be interposed between the joint surfaces of the two members that are joined together.
  • An electric actuator includes a differential device including the speed reducer, wherein the differential device includes a drive rotor rotatable about a rotation shaft and an inner circumference eccentric with respect to the rotation shaft. an eccentric member as the motor shaft that has a surface and rotates integrally with the rotor; and a planetary rotor that is provided on the inner diameter side of the eccentric member and is rotatable by the electric motor and can revolve about the rotation shaft.
  • a driven rotor as the output member rotatable about the rotation shaft; a first speed reducer configured by meshing the planetary rotor and the drive rotor; the planetary rotor and the driven rotor; It may have a second speed reducer configured by meshing with a rotating body, and a bearing that supports the driving rotating body so as to be rotatable with respect to the eccentric member.
  • lubricating oil is supplied through the driven rotor, passes through the first reduction gear and the second reduction gear, and is discharged to the outside through the bearing that supports the drive rotor.
  • a second invention provides an electric motor having a stator and a rotor, a speed reducer arranged on the inner diameter side of the electric motor for transmitting the rotation of the electric motor by reducing the speed, and the speed reducer.
  • a lubrication passage through which lubricating oil flows through the machine the stator has a stator core made of a plurality of electromagnetic steel sheets, a bobbin made of an insulating material, and a stator coil wound around the bobbin, the stator coil is covered with an integral covering member, and the space in which the conducting portion is arranged and the lubricating flow path are separated by the covering member so as not to communicate with each other.
  • the electric actuator having such a configuration, it is possible to reliably prevent the adhesion of the lubricating oil to the energized parts, thereby avoiding failures and malfunctions caused by adhesion of the lubricating oil to the energized parts.
  • the power supply section may include a power supply member for supplying power to the electric motor.
  • a power supply member for supplying power to the electric motor.
  • the energizing section may include a rotation angle detection device that detects the rotation angle of the electric motor.
  • the rotation angle detection device since the rotation angle detection device is covered with the coating member in addition to the stator coil, it is possible to prevent the adhesion of lubricating oil to the stator coil and the rotation angle detection device.
  • An electric actuator comprises a differential device including the speed reducer, and a casing housing the differential device and the electric motor, wherein the differential device is a drive rotatable around a rotation shaft.
  • lubricating oil is supplied through the driven rotor, passes through the first reduction gear and the second reduction gear, and is discharged to the outside through the bearing that supports the drive rotor.
  • lubricity of each speed reducer and bearing is improved, and operability and durability are improved.
  • the differential gear may have an eccentric member that rotates integrally with the rotor and eccentrically rotates the planetary rotor, and a bearing that supports the eccentric member rotatably with respect to the casing. good.
  • the lubricating oil stored in the bearing can be supplied to the surroundings by the rotation of the bearing, thereby enhancing the lubricating effect. can be done.
  • one of the drive rotor and the driven rotor is provided with an intake camshaft, and the other of the drive rotor and the driven rotor is provided with an exhaust camshaft. It can be applied to an electric actuator provided with a camshaft.
  • FIG. 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the invention
  • FIG. 1 is an exploded perspective view of an electric actuator according to this embodiment
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 2 is a cross-sectional view taken along line BB of FIG. 1
  • FIG. 4 is a vertical cross-sectional view of the electric actuator showing a flow path through which lubricating oil flows
  • FIG. 4 is a vertical cross-sectional view of an actuator according to another embodiment of the invention
  • FIG. 6 is a vertical cross-sectional view of an electric actuator according to still another embodiment of the present invention
  • FIG. 8 is an exploded perspective view of the electric actuator shown in FIG. 7;
  • FIG. 7 is exploded perspective view of the electric actuator shown in FIG. 7;
  • FIG. 8 is an exploded perspective view of the electric actuator shown in FIG. 7;
  • FIG. 7 is exploded perspective view of the electric actuator shown in FIG. 7;
  • FIG. 8 is a cross-sectional view taken along the line AA in FIG. 7;
  • FIG. 8 is a cross-sectional view taken along line BB of FIG. 7;
  • FIG. 4 is a vertical cross-sectional view of the electric actuator showing a flow path through which lubricating oil flows; It is a longitudinal cross-sectional view of a stator. It is a perspective view of a stator, a bus-bar, and a rotation angle detection apparatus.
  • FIG. 4 is a vertical cross-sectional view of the electric actuator cut at the position of the sensor;
  • FIG. 1 is a longitudinal sectional view of an electric actuator according to this embodiment
  • FIG. 2 is an exploded perspective view of the electric actuator.
  • the electric actuator according to this embodiment is used as a variable valve timing device for a SOHC (Single Over Head Camshaft) type engine (drive source).
  • the electric actuator 1 according to the present embodiment includes a driving rotating body 2, a driven rotating body 3, an electric motor 4, a differential gear 5, and a casing 6 housing them. and are provided as main components.
  • the drive rotor 2 is a cylindrical member that is open at both ends in the axial direction.
  • An exhaust camshaft 22 and a sprocket 23 that serves as an input portion for driving force from the engine are coupled to the drive rotor 2 on the cylinder head side (the right side in FIG. 1).
  • One or a plurality of exhaust cams are provided on the cylinder head side of the exhaust camshaft 22 .
  • the sprocket 23 is attached to the outer peripheral surface of the drive rotor 2 so as to transmit torque, and is rotationally driven by an external driving force, for example, a driving force transmitted from an engine via a chain.
  • the drive rotor 2, the exhaust camshaft 22, and the sprocket 23 are all arranged coaxially with the rotation axis O as the center. Therefore, the driving rotor 2, the exhaust camshaft 22, and the sprocket 23 are rotated integrally about the rotation axis O by external driving force (driving force from the engine).
  • the drive rotor 2, the exhaust camshaft 22, and the sprocket 23 are configured as separate members. Any two of the driving rotor 2, the exhaust camshaft 22, and the sprocket 23 may be integrated, and the remaining portions may be configured as separate members, without being limited to this example. Alternatively, the driving rotor 2, the exhaust camshaft 22, and the sprocket 23 can all be formed integrally.
  • the driven rotor 3 is an output member that outputs the driving force transmitted from the drive rotor 2, and is composed of a cylindrical main body 31 provided on the side opposite to the cylinder head (left side in FIG. 1) and a cylinder head side (left side in FIG. 1). 1) on the right side), which is composed of two axially separable members.
  • the main body 31 and the shaft 32 are joined together by a center bolt 34 .
  • An intake camshaft 33 is coupled to the shaft 32 on the cylinder head side. Note that the shaft 32 and the intake camshaft 33 may be integrally formed.
  • the intake camshaft 33 is arranged on the inner periphery of the hollow exhaust camshaft 22 with both ends opened.
  • the axial end of the intake camshaft 33 on the cylinder head side projects axially from the axial end of the exhaust camshaft 22 on the cylinder head side (not shown). intake cam is provided.
  • the main body 31, the shaft 32, and the intake camshaft 33 are arranged coaxially on the rotation axis O and rotate about the rotation axis O together.
  • the casing 6 is divided into a bottomed cylindrical casing main body 6a and a lid portion 6b.
  • the casing main body 6a and the lid portion 6b are integrated using fastening means such as bolts.
  • the lid portion 6b has a cylindrical protrusion 6c for drawing out a power supply line for supplying power to the electric motor 4, a signal line connected to a rotation angle detection device for detecting the rotation angle of the electric motor 4, and the like. , 6d (see FIG. 2) are provided.
  • the electric motor 4 is a radial gap type motor having a stator 41 fixed to the casing body 6a and a rotor 42 arranged radially inward of the stator 41 so as to face each other with a gap.
  • a three-phase brushless motor having U, V and W phases is used.
  • the stator 41 is composed of a stator core 41a made of a plurality of magnetic steel sheets laminated in the axial direction, a bobbin 41b made of an insulating material attached to the stator core 41a, and a stator coil 41c wound around the bobbin 41b.
  • the rotor 42 is composed of an annular rotor core (rotor inner) 42a and a plurality of magnets 42b attached to the rotor core 42a.
  • the rotor 42 rotates about the rotation axis O due to the excitation force acting between the stator 41 and the rotor 42 .
  • the differential gear 5 includes a drive rotor 2, a driven rotor 3, an eccentric member 51 that is also a motor shaft that rotates integrally with the rotor 42, a planetary rotor 52 arranged on the inner periphery of the eccentric member 51, Two bearings 53 and 54 that rotatably support the planetary rotor 52 with respect to the eccentric member 51 are provided as main components.
  • the eccentric member 51 is an integral (one piece) tubular member having an inner peripheral surface whose diameter gradually decreases from the cylinder head side (right side in FIG. 1) toward the anti-cylinder head side (left side in FIG. 1). .
  • the eccentric member 51 includes a first cylindrical portion 51a having the smallest inner diameter, a second cylindrical portion 51b having a larger diameter than the first cylindrical portion 51a, and a third cylindrical portion 51b having a larger diameter than the second cylindrical portion 51b. It has a cylindrical portion 51c and a fourth cylindrical portion 51d having a larger diameter than the third cylindrical portion 51c.
  • Each cylindrical portion 51a to 51d of the eccentric member 51 has an outer peripheral surface with an outer diameter different from each other.
  • the inner peripheral surfaces of the second tubular portion 51b and the third tubular portion 51c of the eccentric member 51 are cylindrical eccentric inner peripheral surfaces that are eccentric with respect to the rotation axis O.
  • the region other than the eccentric inner peripheral surface is a cylindrical surface formed coaxially with the rotation axis O. be. Since the inner peripheral surfaces of the second tubular portion 51b and the third tubular portion 51c are thus eccentric with respect to the rotation axis O, the eccentric member 51 is arranged to move the second tubular portion 51b and the third tubular portion 51c eccentrically. When viewed in a radial cross section through the inner peripheral surface, it has a thick portion and a thin portion (see FIGS. 3 and 4).
  • the eccentric member 51 is supported by two bearings 17, 18 provided between its outer peripheral surface and the casing 6.
  • both bearings 17 and 18 are rolling bearings (deep groove ball bearings), but the configuration and type of both bearings 17 and 18 can be arbitrarily selected.
  • the eccentric member 51 is rotatably supported with respect to the casing main body 6a of the casing 6 by the bearing 17 provided on the outer peripheral surface of the eccentric member 51 on the cylinder head side (right side in FIG. 1).
  • the eccentric member 51 is rotatably supported with respect to the lid portion 6b of the casing 6 by the bearing 18 provided on the outer peripheral surface on the side (left side in FIG. 1).
  • a bearing 8 for rotatably supporting the driven rotor 3 is provided on the inner peripheral surface of the first tubular portion 51a of the eccentric member 51, and the inner peripheral surface of the fourth tubular portion 51d of the eccentric member 51 is provided with:
  • a bearing 7 is provided for rotatably supporting the drive rotor 2 .
  • These bearings 7 and 8 can be composed of rolling bearings (deep groove ball bearings), for example.
  • a bearing 9 is arranged between the inner peripheral surface of the drive rotor 2 and the outer peripheral surface of the shaft 32 of the driven rotor 3 .
  • This bearing 9 allows relative rotation between the drive rotor 2 and the driven rotor 3 .
  • This bearing 9 can also be composed of, for example, a rolling bearing (deep groove ball bearing).
  • the planetary rotor 52 has a cylindrical shape, and a first inner toothed portion 55 and a second inner toothed portion 56 are formed on the inner periphery thereof.
  • Each of the first inner toothed portion 55 and the second inner toothed portion 56 is composed of a plurality of teeth whose cross section in the radial direction draws a curved line (for example, a trocolloidal curved line).
  • the first internal toothed portion 55 and the second internal toothed portion 56 are formed to be offset in the axial direction. are provided on each side (left side in FIG. 1).
  • the pitch circle diameter of the second internal tooth portion 56 is smaller than the pitch circle diameter of the first internal tooth portion 55 .
  • the number of teeth of the second internal tooth portion 56 is smaller than the number of teeth of the first internal tooth portion 55 .
  • a first external toothed portion 57 that meshes with the first internal toothed portion 55 is formed on the outer peripheral surface of the drive rotor 2 .
  • a second external toothed portion 58 that meshes with the second internal toothed portion 56 is formed on the outer peripheral surface of the main body 31 of the driven rotating body 3 .
  • Each of the first external tooth portion 57 and the second external tooth portion 58 is formed of a plurality of teeth having a radial cross-section that draws a curve (for example, a trochoidal curve).
  • the pitch circle diameter of the second external tooth portion 58 is smaller than the pitch circle diameter of the first external tooth portion 57
  • the number of teeth of the second external tooth portion 58 is smaller than the number of teeth of the first external tooth portion 57 .
  • the number of teeth of the first external tooth portion 57 is less than the number of teeth of the first internal tooth portion 55 that mesh with each other, preferably one less.
  • the number of teeth of the second external toothing 58 is also less than the number of teeth of the second internal toothing 56 that mesh with each other, preferably one less.
  • the number of teeth of the first internal tooth portion 55 is 24, the number of teeth of the second internal tooth portion 56 is 20, the number of teeth of the first external tooth portion 57 is 23, and the number of teeth of the second external tooth portion 57 is 23.
  • the tooth portion 58 has 19 teeth.
  • the first internal toothed portion 55 and the first external toothed portion 57 that mesh with each other constitute the first speed reducer 5a
  • the second internal toothed portion 56 and the second external toothed portion 58 constitute the second speed reducer 5b.
  • Both the first reduction gear 5a and the second reduction gear 5b are called hypocycloid reduction gears.
  • the reduction ratios of the two reduction gears 5a and 5b are different, and in this embodiment, the reduction ratio of the first reduction gear 5a is made larger than the reduction ratio of the second reduction gear 5b.
  • the bearing 53 provided on the side opposite to the cylinder head is composed of, for example, a needle roller bearing having an outer ring 53a.
  • the bearing 53 is arranged between the inner peripheral surface (eccentric inner peripheral surface) of the second cylindrical portion 51 b of the eccentric member 51 and the cylindrical outer peripheral surface of the planetary rotor 52 .
  • the bearing 54 provided on the cylinder head side has an inner peripheral surface (eccentric inner peripheral surface) of the third cylindrical portion 51c of the eccentric member 51 and an outer peripheral surface of the planetary rotor 52. It is a rolling bearing (deep groove ball bearing) placed between the surfaces.
  • these bearings 53 and 54 allow the planetary rotor 52 to rotate relative to the eccentric member 51 . It is supported so as to be relatively rotatable. Further, since these bearings 53 and 54 rotatably support the planetary rotor 52 with respect to the eccentric inner peripheral surface of the eccentric member 51, the center P of the outer peripheral surface and the inner peripheral surface of the planetary rotor 52 (see FIGS. 3 and 4) is located eccentrically with respect to the rotation axis O.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 1 (cross-sectional view taken along line AA in FIG. 1)
  • FIG. 4 is a cross-sectional view taken along line B--B in FIG. B line arrow directional cross-sectional view).
  • the center P of the first inner toothed portion 55 is radially eccentric with respect to the rotation axis O by a distance E. Therefore, the first inner toothed portion 55 and the first outer toothed portion 57 are meshed with each other in a partial region in the circumferential direction, and are not meshed with each other in a region on the opposite side in the radial direction. Further, as shown in FIG. 3, the center P of the first inner toothed portion 55 is radially eccentric with respect to the rotation axis O by a distance E. Therefore, the first inner toothed portion 55 and the first outer toothed portion 57 are meshed with each other in a partial region in the circumferential direction, and are not meshed with each other in a region on the opposite side in the radial direction. Further, as shown in FIG.
  • the center P of the second inner toothed portion 56 is also eccentric to the rotation axis O by a distance E in the radial direction, so the second inner toothed portion 56 and the second outer toothed portion 58 are meshed with each other in a partial region in the circumferential direction, and are not meshed in a region on the opposite side in the radial direction.
  • the directions of the arrows are different from each other, so the eccentric directions of the first inner toothed portion 55 and the second inner toothed portion 56 are shown in opposite left and right directions in each figure. However, the first inner toothed portion 55 and the second inner toothed portion 56 are eccentric by the same distance E in the same direction.
  • the reduction ratio is 120 from Equation 1 above.
  • the differential gear 5 it is possible to obtain high torque with a large reduction ratio.
  • the electric actuator 1 of this embodiment since the drive rotor 2 and the driven rotor 3 are arranged on the inner diameter side of the planetary rotor 52, a hollow motor is adopted as the electric motor 4 for driving the planetary rotor 52.
  • a layout in which this hollow motor is arranged on the outer diameter side of the planetary rotor 52 can be employed. Therefore, the space efficiency is improved, and there is an advantage that the electric actuator can be made compact (especially, the size in the axial direction) can be achieved.
  • FIG. 1 the operation of the electric actuator according to this embodiment will be described with reference to FIGS. 1 to 4.
  • FIG. 1 the operation of the electric actuator according to this embodiment will be described with reference to FIGS. 1 to 4.
  • the drive rotor 2 rotates due to the driving force from the engine transmitted to the sprocket 23, and the exhaust camshaft 22 rotates accordingly.
  • the rotation of the drive rotor 2 is transmitted to the driven rotor 3 via the planetary rotor 52 .
  • the rotational motion of the electric motor 4 changes the meshing state between the planetary rotor 52 and the drive rotor 2 (the meshing position between the first internal toothed portion 55 and the first external toothed portion 57), and the planetary rotor 52
  • the planetary rotor 52 rotates while maintaining the state of engagement with the driven rotor 3 (the position of engagement between the second inner toothed portion 56 and the second outer toothed portion 58).
  • the planetary rotor 52 and the driven rotor 3 rotate synchronously. Therefore, the driving rotor 2 and the driven rotor 3 rotate while maintaining the same rotational phase, and the exhaust camshaft 22 and the intake camshaft 33 rotate with a rotational phase difference of zero.
  • the rotor 42 is rotated relatively slower or faster than the rotation speed of the sprocket 23 .
  • the eccentric member 51 coupled to the rotor core 42a of the rotor 42 rotates about the rotation axis O together.
  • the pressing force due to the rotation of the eccentric member 51 having the thin-walled portion and the thick-walled portion acts on the planetary rotor 52 via the bearings 53 and 54 .
  • the engagement portion between the second internal tooth portion 56 and the second external tooth portion 58 is increased by one tooth for each revolution of the planetary rotor 52. It shifts in the circumferential direction.
  • the driven rotor 3 rotates while being decelerated with respect to the planetary rotor 52 .
  • the driving force from the electric motor 4 is superimposed on the driving force from the sprocket 23 , and the rotation of the driven rotor 3 is the driving force from the electric motor 4 . It becomes a differential state under the influence of force.
  • the input to the drive rotor 2 and the planetary rotor 52 (the former is the input of the driving force of the engine, the latter is the input of the driving force of the electric motor 4) and the driving rotation Output from the body 2 and the driven rotating body 3 (the former is output to the exhaust camshaft 22 and the latter is output to the intake camshaft 33), and two systems of input and two systems of output are allowed. ing. Therefore, it is possible to expand the application of the electric actuator 1 as compared with a general electric actuator having two systems of input and one system of output.
  • a lubricating flow path F for supplying lubricating oil to the differential gear 5 (reduction gear) is provided. formed.
  • the lubrication flow path F includes a supply flow path F1 for supplying lubricating oil (engine oil) from an engine (not shown) into the differential gear 5, and a first branch flow path branched from the supply flow path F1. It has F2, a second branch flow path F3, and a discharge flow path F4 for discharging the lubricating oil to the outside of the differential gear 5.
  • the supply flow path F1 mainly consists of a shaft inner flow path (driven rotor flow path) 70 provided in the shaft 32 of the driven rotor 3, an inner peripheral surface of the drive rotor 2, and an outer peripheral surface of the shaft 32. It is made up of gaps between The shaft inner flow path 70 extends radially outward from an introduction portion 71 provided to pass through the rotation axis O of the shaft 32 and an end portion of the introduction portion 71 opposite to the inlet side (right side in FIG. 5). It has a plurality of diffusing portions 72 extending to. The plurality of diffusion portions 72 open from the outer peripheral surface of the shaft 32 on the side opposite to the cylinder head (left side in FIG. 5) from the bearing 9 that supports the shaft 32 . and a gap formed between the inner peripheral surface of the shaft 32 and the outer peripheral surface of the shaft 32 .
  • the first branch channel F2 and the second branch channel F3 are provided so as to branch from the downstream end of the supply channel F1.
  • the first branch flow path F2 is provided so as to pass between the first external toothed portion 57 provided on the drive rotor 2 and the first internal toothed portion 55 provided on the planetary rotor 52 . That is, the first branch flow path F2 passes through the first speed reducer 5a composed of the first external toothed portion 57 and the first internal toothed portion 55 .
  • the second branch flow path F3 is located between the second outer toothed portion 58 provided on the main body 31 of the driven rotor 3 and the second inner toothed portion 56 provided on the planetary rotor 52.
  • the second branch flow path F3 passes between the second speed reducer 5b composed of the second external toothed portion 58 and the second internal toothed portion 56 and the outer and inner rings of the bearings 8, 53, 54.
  • the bearing 8 on the side opposite to the cylinder head that supports the driven rotor 3 and 53 and 54 that support the planetary rotor 52, open bearings without seals are used so that lubricating oil can pass.
  • the discharge flow path F4 is provided so as to pass through the bearing 7 supporting the drive rotor 2 from the position where the first branch flow path F2 and the second branch flow path F3 join, and reach the outside of the differential gear 5.
  • the bearing 7 that supports the drive rotor 2 is configured by an open bearing that does not have a seal so that lubricating oil can pass through.
  • the bearing 9 on the cylinder head side (on the right side in FIG. 5) that supports the driven rotor 3 is not of an open type. is composed of a so-called sealed bearing filled with Therefore, the bearing 9 functions as a sealing member that prevents the supplied lubricating oil from leaking to the outside and prevents foreign matter from entering the electric actuator 1 from the outside.
  • the lubricating oil when lubricating oil is supplied from the engine to the supply flow path F1, the lubricating oil first passes through the in-shaft flow path 70 provided in the shaft 32 to drive the actuator. It passes between the rotating body 2 and the shaft 32 and is sent to the first branch flow path F2 and the second branch flow path F3.
  • the lubricating oil sent to the first branched flow path F2 passes through the first reduction gear 5a (between the first external toothed portion 57 and the first internal toothed portion 55) and is sent to the second branched flow path F3.
  • the lubricating oil applied to the second speed reducer 5b (between the second external toothed portion 58 and the second internal toothed portion 56), the bearing 8 on the side opposite to the cylinder head supporting the driven rotor 3, and the planetary rotation It passes through each bearing 53 , 54 that supports body 52 . Then, the lubricating oil that has passed through the first branch flow path F2 and the second branch flow path F3 joins and is sent to the discharge flow path F4. The lubricating oil is then discharged through the bearings 7 supporting the drive rotor 2 and returned into the engine via a return passage (not shown). Then, the lubricating oil circulates between the engine and the electric actuator 1 by being supplied from the engine to the electric actuator 1 again.
  • lubricating oil is supplied from the engine to the electric actuator 1, so that sliding at the meshing portions of the first reduction gear 5a and the second reduction gear 5b through which the lubricating oil passes is prevented.
  • the rolling resistance of the balls or rollers in the raceway grooves of the outer rings and inner rings of the open-type bearings 53, 54, 7, 8 through which the lubricating oil passes can be reduced over a long period of time. That is, unlike the conventional method using grease, in the present embodiment, by continuously supplying lubricating oil from the engine to the electric actuator 1, an oil film can always be formed at the sliding portion such as the meshing portion. , sliding resistance can be reduced over a long period of time.
  • an eccentric member (motor shaft) 51 arranged on the inner diameter side of the electric motor 4 is formed long in the axial direction, and the electric motor 4 is rotated by the eccentric member 51. It separates the space where it is placed and the space where the lubricating oil flows. Specifically, the eccentric member 51 is continuously provided from one axial end to the other axial end of the casing 6 .
  • This integrated (one part) eccentric member 51 allows the motor space in which the electric motor 4 is arranged and the lubrication space in which the lubrication flow path F is arranged (the first reduction gear 5a, the second reduction gear 5b, and each The space in which the bearings 7, 8, 53, and 54 are arranged is partitioned over the entire axial direction.
  • an eccentric member 51 is provided at the end of the motor space on the cylinder head side (right side in FIG. 5).
  • a first sealing member 61 is provided for sealing between the outer peripheral surface of the casing 6 and the inner surface of the casing 6 .
  • a second seal member 62 is provided at the end to seal between the outer peripheral surface of the driven rotor 3 and the inner peripheral surface of the eccentric member 51 .
  • the motor space and the lubricating space are partitioned by the eccentric member 51 over the entire axial direction, and the two seal members 61 and 62 separate the motor space from the cylinder head side (shaft side) of the motor space. direction one end side) and the opposite side of the lubrication space (opposite to the axial direction one end side), lubricating oil can be reliably prevented from entering the motor space. As a result, it is possible to avoid failures and malfunctions caused by adhesion of the lubricating oil to current-carrying parts such as the stator and adhesion of foreign matter mixed in the lubricating oil to the magnets of the electric motor.
  • the first seal member 61 and the second seal member 62 are preferably oil seals so as to effectively prevent lubricating oil from entering or leaking.
  • an oil seal having a metal core and an elastic member made of rubber or the like provided around the core is used.
  • a third seal member 63 is provided to seal between the inner surface. This prevents lubricating oil from entering the motor space, as well as foreign matter such as water and dust from the opposite side of the cylinder head. do. It should be noted that the third seal member 63 is preferably an oil seal, like the first seal member 61 and the second seal member 62 .
  • the driven rotating body 3 is composed of two members, the main body 31 and the shaft 32, lubricating oil enters between the connecting surfaces of the main body 31 and the shaft 32, lubricating oil may leak from between the head of the main body 31 and the end face of the main body 31 . Therefore, in this embodiment, as the center bolt 34, a bolt having a flange portion 34a on the head portion is used. This effectively prevents lubricating oil from leaking from between the center bolt 34 and the end surface of the main body 31 .
  • a seal washer 35 is interposed between the flange portion 34a of the center bolt 34 and the end surface of the main body 31 in order to more reliably prevent leakage of lubricating oil.
  • the seal washer 35 has an annular washer body made of a metal material and a seal portion made of rubber or resin provided on the inner peripheral side of the washer body. When the seal washer 35 is tightened by the flange portion 34 a of the center bolt 34 , the seal portion is compressed to seal between the flange portion 34 a and the end face of the main body 31 .
  • a center bolt 34 having a seal portion on the flange portion 34a may be used.
  • FIG. 6 is a longitudinal sectional view of an electric actuator according to another embodiment of the invention.
  • an O-ring 36 as a sealing member is attached to the main body 31 in order to prevent leakage of lubricating oil from between the center bolt 34 and the end surface of the driven rotating body 3 (main body 31). and the inner peripheral surface of the shaft 32.
  • an O-ring 36 may be interposed between the connecting surfaces of the main body 31 and the shaft 32 respectively.
  • the space in which the electric motor is arranged (motor space) and the space in which the lubricating flow path is arranged (lubricating space) are formed by the motor shaft (eccentricity) that rotates integrally with the rotor.
  • the motor shaft eccentricity
  • partitioning by the member it is possible to avoid failures and malfunctions due to lubricating oil entering the motor space.
  • FIG. 7 is a longitudinal sectional view of an electric actuator according to still another embodiment
  • FIG. 8 is an exploded perspective view of the electric actuator.
  • the electric actuator according to this embodiment is used as a variable valve timing device for a SOHC (Single Over Head Camshaft) type engine (drive source).
  • the electric actuator 1 according to the present embodiment includes a drive rotor 2, a driven rotor 3, an electric motor 4, a differential gear 5, and a casing 6 housing them. and are provided as main components.
  • the drive rotor 2 is a cylindrical member that is open at both ends in the axial direction.
  • a bearing 7 is arranged between the outer peripheral surface of the driving rotor 2 and the inner peripheral surface of the casing 6 .
  • the drive rotor 2 is rotatably supported with respect to the casing 6 by the bearing 7 .
  • the bearing 7 can be composed of, for example, a rolling bearing (deep groove ball bearing).
  • An exhaust camshaft 22 and a sprocket 23 that serves as an input portion for driving force from the engine are coupled to the drive rotor 2 on the cylinder head side (the right side in FIG. 7).
  • One or a plurality of exhaust cams (not shown) are provided on the cylinder head side of the exhaust camshaft 22 .
  • the sprocket 23 is attached to the outer peripheral surface of the drive rotor 2 so as to transmit torque, and is rotationally driven by an external driving force, for example, a driving force transmitted from an engine via a chain.
  • the drive rotor 2, the exhaust camshaft 22, and the sprocket 23 are all arranged coaxially with the rotation axis O as the center. Therefore, the driving rotor 2, the exhaust camshaft 22, and the sprocket 23 are rotated integrally about the rotation axis O by external driving force (driving force from the engine).
  • the drive rotor 2, the exhaust camshaft 22, and the sprocket 23 are configured as separate members. Any two of the driving rotor 2, the exhaust camshaft 22, and the sprocket 23 may be integrated, and the remaining portions may be configured as separate members, without being limited to this example. Alternatively, the driving rotor 2, the exhaust camshaft 22, and the sprocket 23 can all be formed integrally.
  • the driven rotor 3 is an output member that outputs the driving force transmitted from the drive rotor 2, and is composed of a cylindrical main body 31 provided on the side opposite to the cylinder head (left side in FIG. 7) and a cylinder head side (left side in FIG. 7). 7) and a shaft 32 provided on the right side thereof.
  • the main body 31 and the shaft 32 are joined together by a center bolt 34 .
  • An intake camshaft 33 is coupled to the shaft 32 on the cylinder head side. Note that the shaft 32 and the intake camshaft 33 may be integrally formed.
  • the intake camshaft 33 is provided with one or more intake cams.
  • the main body 31, the shaft 32, and the intake camshaft 33 are arranged coaxially on the rotation axis O and rotate about the rotation axis O together.
  • the intake camshaft 33 is arranged on the inner periphery of the hollow exhaust camshaft 22 with both ends opened.
  • the cylinder head side shaft end of the intake camshaft 33 axially protrudes from the cylinder head side shaft end of the exhaust camshaft 22 (not shown).
  • a bearing 8 is arranged between the outer peripheral surface of the main body 31 of the driven rotor 3 and the inner peripheral surface of the casing 6 .
  • the driven rotor 3 is rotatably supported with respect to the casing 6 by the bearing 8 .
  • a bearing 9 is arranged between the inner peripheral surface of the drive rotor 2 and the outer peripheral surface of the shaft 32 of the driven rotor 3 . This bearing 9 allows relative rotation between the drive rotor 2 and the driven rotor 3 .
  • the bearings 8 and 9 can be composed of rolling bearings (deep groove ball bearings), for example.
  • the casing 6 is divided into a bottomed cylindrical casing main body 6a and a lid portion 6b.
  • the casing main body 6a and the lid portion 6b are integrated using fastening means such as bolts.
  • the lid portion 6b has a cylindrical protrusion 6c for drawing out a power supply line for supplying power to the electric motor 4, a signal line connected to a rotation angle detection device for detecting the rotation angle of the electric motor 4, and the like.
  • 6d (see FIG. 8) are provided.
  • the electric motor 4 is a radial gap type motor having a stator 41 fixed to the casing body 6a and a rotor 42 arranged radially inward of the stator 41 so as to face each other with a gap.
  • a three-phase brushless motor having U, V and W phases is used.
  • the stator 41 is composed of a stator core 41a made of a plurality of magnetic steel sheets laminated in the axial direction, a bobbin 41b made of an insulating material attached to the stator core 41a, and a stator coil 41c wound around the bobbin 41b.
  • the rotor 42 is composed of an annular rotor core (rotor inner) 42a and a plurality of magnets 42b attached to the rotor core 42a.
  • the rotor 42 rotates about the rotation axis O due to the excitation force acting between the stator 41 and the rotor 42 .
  • the differential gear 5 includes a drive rotor 2, a driven rotor 3, an eccentric member 51 that rotates integrally with the rotor 42, a planetary rotor 52 disposed on the inner periphery of the eccentric member 51, and the eccentric member 51.
  • Two bearings 53 and 54 for rotatably supporting the planetary rotor 52 are provided as main components.
  • the eccentric member 51 integrally has a small-diameter tubular portion 51a fixed to the inner circumference of the rotor core 42a and a large-diameter tubular portion 51b formed to have a larger diameter than the small-diameter tubular portion 51a and projecting axially from the rotor core 42a.
  • the outer peripheral surfaces of the small-diameter tubular portion 51a and the large-diameter tubular portion 51b of the eccentric member 51 are cylindrical surfaces formed coaxially with the rotation axis O. As shown in FIG.
  • the eccentric member 51 On the other hand, on the inner peripheral surfaces of the small-diameter tubular portion 51a and the large-diameter tubular portion 51b of the eccentric member 51, cylindrical eccentric inner peripheral surfaces eccentric with respect to the rotation axis O are formed. Therefore, the eccentric member 51 has a thick portion and a thin portion when viewed in a radial cross section passing through the eccentric inner peripheral surface (see FIGS. 9 and 10).
  • the eccentric member 51 is supported by two bearings 17, 18 provided between its outer peripheral surface and the casing 6.
  • both bearings 17 and 18 are rolling bearings (deep groove ball bearings), but the configuration and type of both bearings 17 and 18 can be arbitrarily selected.
  • the eccentric member 51 is rotatably supported with respect to the casing main body 6a of the casing 6 by the bearing 17 provided on the outer peripheral surface of the eccentric member 51 on the cylinder head side (the right side in FIG. 7).
  • An eccentric member 51 is rotatably supported with respect to the lid portion 6b of the casing 6 by a bearing 18 provided on the outer peripheral surface on the side (left side in FIG. 7).
  • the planetary rotor 52 has a cylindrical shape, and a first inner toothed portion 55 and a second inner toothed portion 56 are formed on the inner periphery thereof.
  • Each of the first inner toothed portion 55 and the second inner toothed portion 56 is composed of a plurality of teeth whose cross section in the radial direction draws a curved line (for example, a trocolloidal curved line).
  • the first internal toothed portion 55 and the second internal toothed portion 56 are formed to be offset in the axial direction. are provided on each side (left side in FIG. 7).
  • the pitch circle diameter of the second internal tooth portion 56 is smaller than the pitch circle diameter of the first internal tooth portion 55 .
  • the number of teeth of the second internal tooth portion 56 is smaller than the number of teeth of the first internal tooth portion 55 .
  • a first external toothed portion 57 that meshes with the first internal toothed portion 55 is formed on the outer peripheral surface of the drive rotor 2 .
  • a second external toothed portion 58 that meshes with the second internal toothed portion 56 is formed on the outer peripheral surface of the main body 31 of the driven rotating body 3 .
  • Each of the first external tooth portion 57 and the second external tooth portion 58 is formed of a plurality of teeth having a radial cross-section that draws a curve (for example, a trochoidal curve).
  • the pitch circle diameter of the second external tooth portion 58 is smaller than the pitch circle diameter of the first external tooth portion 57
  • the number of teeth of the second external tooth portion 58 is smaller than the number of teeth of the first external tooth portion 57 .
  • the number of teeth of the first external tooth portion 57 is less than the number of teeth of the first internal tooth portion 55 that mesh with each other, preferably one less.
  • the number of teeth of the second external toothing 58 is also less than the number of teeth of the second internal toothing 56 that mesh with each other, preferably one less.
  • the number of teeth of the first internal tooth portion 55 is 24, the number of teeth of the second internal tooth portion 56 is 20, the number of teeth of the first external tooth portion 57 is 23, and the number of teeth of the second external tooth portion 57 is 23.
  • the tooth portion 58 has 19 teeth.
  • the first internal toothed portion 55 and the first external toothed portion 57 that mesh with each other constitute the first speed reducer 5a
  • the second internal toothed portion 56 and the second external toothed portion 58 constitute the second speed reducer 5b.
  • Both the first reduction gear 5a and the second reduction gear 5b are called hypocycloid reduction gears.
  • the reduction ratios of the two reduction gears 5a and 5b are different, and in this embodiment, the reduction ratio of the first reduction gear 5a is made larger than the reduction ratio of the second reduction gear 5b.
  • the bearing 53 provided on the side opposite to the cylinder head is composed of, for example, a needle roller bearing having an outer ring 53a.
  • the bearing 53 is arranged between the inner peripheral surface (eccentric inner peripheral surface) of the small-diameter cylindrical portion 51 a of the eccentric member 51 and the cylindrical outer peripheral surface of the planetary rotor 52 .
  • the bearing 54 provided on the cylinder head side is composed of the inner peripheral surface (eccentric inner peripheral surface) of the large-diameter cylindrical portion 51 b of the eccentric member 51 and the cylindrical outer peripheral surface of the planetary rotor 52 .
  • FIG. 9 is a cross-sectional view taken along line AA in FIG. 7 (cross-sectional view taken along the line AA in FIG. 7), and FIG. 10 is a cross-sectional view taken along line B--B in FIG. B line arrow directional cross-sectional view).
  • the center P of the first inner toothed portion 55 is radially eccentric with respect to the rotation axis O by a distance E. Therefore, the first inner toothed portion 55 and the first outer toothed portion 57 are meshed with each other in a partial region in the circumferential direction, and are not meshed with each other in a region on the opposite side in the radial direction. Further, as shown in FIG. 9, the center P of the first inner toothed portion 55 is radially eccentric with respect to the rotation axis O by a distance E. Therefore, the first inner toothed portion 55 and the first outer toothed portion 57 are meshed with each other in a partial region in the circumferential direction, and are not meshed with each other in a region on the opposite side in the radial direction. Further, as shown in FIG.
  • the center P of the second inner toothed portion 56 is also eccentric to the rotation axis O by a distance E in the radial direction, so that the second inner toothed portion 56 and the second outer toothed portion 58 are meshed with each other in a partial region in the circumferential direction, and are not meshed in a region on the opposite side in the radial direction.
  • the directions of the arrows are different from each other, so the eccentric directions of the first inner toothed portion 55 and the second inner toothed portion 56 are shown in opposite left and right directions in each figure. However, the first inner toothed portion 55 and the second inner toothed portion 56 are eccentric by the same distance E in the same direction.
  • the reduction ratio is 120 from Equation 1 above.
  • the differential gear 5 it is possible to obtain high torque with a large reduction ratio.
  • the electric actuator 1 of this embodiment since the drive rotor 2 and the driven rotor 3 are arranged on the inner diameter side of the planetary rotor 52, a hollow motor is adopted as the electric motor 4 for driving the planetary rotor 52.
  • a layout in which this hollow motor is arranged on the outer diameter side of the planetary rotor 52 can be employed. Therefore, the space efficiency is improved, and there is an advantage that the electric actuator can be made compact (especially, the size in the axial direction) can be achieved.
  • FIG. 7 the operation of the electric actuator according to this embodiment will be described with reference to FIGS. 7 to 10.
  • the drive rotor 2 rotates due to the driving force from the engine transmitted to the sprocket 23, and the exhaust camshaft 22 rotates accordingly.
  • the rotation of the drive rotor 2 is transmitted to the driven rotor 3 via the planetary rotor 52 .
  • the rotational motion of the electric motor 4 changes the meshing state between the planetary rotor 52 and the drive rotor 2 (the meshing position between the first internal toothed portion 55 and the first external toothed portion 57), and the planetary rotor 52
  • the planetary rotor 52 rotates while maintaining the state of engagement with the driven rotor 3 (the position of engagement between the second inner toothed portion 56 and the second outer toothed portion 58).
  • the planetary rotor 52 and the driven rotor 3 rotate synchronously. Therefore, the driving rotor 2 and the driven rotor 3 rotate while maintaining the same rotational phase, and the exhaust camshaft 22 and the intake camshaft 33 rotate with a rotational phase difference of zero.
  • the rotor 42 is rotated relatively slower or faster than the rotation speed of the sprocket 23 .
  • the eccentric member 51 coupled to the rotor core 42a of the rotor 42 rotates about the rotation axis O together.
  • the pressing force due to the rotation of the eccentric member 51 having the thin-walled portion and the thick-walled portion acts on the planetary rotor 52 via the bearings 53 and 54 .
  • the engagement portion between the second internal tooth portion 56 and the second external tooth portion 58 is increased by one tooth for each revolution of the planetary rotor 52. It shifts in the circumferential direction.
  • the driven rotor 3 rotates while being decelerated with respect to the planetary rotor 52 .
  • the driving force from the electric motor 4 is superimposed on the driving force from the sprocket 23 , and the rotation of the driven rotor 3 is the driving force from the electric motor 4 . It becomes a differential state under the influence of force.
  • the input to the drive rotor 2 and the planetary rotor 52 (the former is the input of the driving force of the engine, the latter is the input of the driving force of the electric motor 4) and the driving rotation Output from the body 2 and the driven rotating body 3 (the former is output to the exhaust camshaft 22 and the latter is output to the intake camshaft 33), and two systems of input and two systems of output are allowed. ing. Therefore, it is possible to expand the application of the electric actuator 1 as compared with a general electric actuator having two systems of input and one system of output.
  • a lubricating flow path F for supplying lubricating oil into the differential gear 5 (reduction gear) is provided. formed.
  • the lubrication flow path F includes a supply flow path F1 for supplying lubricating oil (engine oil) from an engine (not shown) into the differential gear 5, and a first branch flow path branched from the supply flow path F1. It has F2, a second branch flow path F3, and a discharge flow path F4 for discharging the lubricating oil to the outside of the differential gear 5.
  • the supply flow path F1 mainly consists of a shaft inner flow path (driven rotor flow path) 70 provided in the shaft 32 of the driven rotor 3, an inner peripheral surface of the drive rotor 2, and an outer peripheral surface of the shaft 32. It is made up of gaps between The shaft inner flow path 70 extends radially outward from an introduction portion 71 provided so as to pass through the rotation axis O of the shaft 32 and an end portion of the introduction portion 71 opposite to the inlet side (right side in FIG. 11). It has a plurality of diffusing portions 72 extending to. The plurality of diffusion portions 72 are opened from the outer peripheral surface of the shaft 32 on the side opposite to the cylinder head (left side in FIG. 11) from the bearing 9 that supports the shaft 32 . and a gap formed between the inner peripheral surface of the shaft 32 and the outer peripheral surface of the shaft 32 .
  • the first branch channel F2 and the second branch channel F3 are provided so as to branch from the downstream end of the supply channel F1.
  • the first branch flow path F2 is provided so as to pass between the first external toothed portion 57 provided on the drive rotor 2 and the first internal toothed portion 55 provided on the planetary rotor 52 . That is, the first branch flow path F2 passes through the first speed reducer 5a composed of the first external toothed portion 57 and the first internal toothed portion 55 .
  • the second branch flow path F3 is formed between the second outer toothed portion 58 provided on the main body 31 of the driven rotor 3 and the second inner toothed portion 56 provided on the planetary rotor 52 and between the planetary rotor It is provided so as to pass through respective bearings 53 and 54 that support 52 . That is, the second branch flow path F3 passes between the second speed reducer 5b composed of the second external toothed portion 58 and the second internal toothed portion 56 and the outer and inner rings of the bearings 53,54.
  • the bearings 53 and 54 that support the planetary rotor 52 open bearings without seals are used so that lubricating oil can pass through.
  • the discharge flow path F4 is provided so as to pass through the bearing 7 supporting the drive rotor 2 from the position where the first branch flow path F2 and the second branch flow path F3 join, and reach the outside of the differential gear 5.
  • the bearing 7 that supports the drive rotor 2 is configured by an open bearing that does not have a seal so that lubricating oil can pass through.
  • the bearing 8 on the side opposite to the cylinder head (the left side in FIG. 11) and the bearing 9 on the side of the cylinder head (the right side in FIG. 11) supporting the driven rotor 3 are not of the open type, and have sealing members on both sides in the axial direction of the ball. is attached, and a lubricant such as grease is filled between both seal members. Accordingly, these bearings 8 and 9 function as sealing members that prevent the supplied lubricating oil from leaking to the outside and prevent foreign matter from entering the electric actuator 1 from the outside.
  • the lubricating oil when lubricating oil is supplied from the engine to the supply flow path F1, the lubricating oil first passes through the in-shaft flow path 70 provided in the shaft 32 to drive the actuator. It passes between the rotating body 2 and the shaft 32 and is sent to the first branch flow path F2 and the second branch flow path F3.
  • the lubricating oil sent to the first branched flow path F2 passes through the first reduction gear 5a (between the first external toothed portion 57 and the first internal toothed portion 55) and is sent to the second branched flow path F3.
  • the lubricating oil passes through the second speed reducer 5b (between the second external toothed portion 58 and the second internal toothed portion 56) and the bearings 53 and 54 that support the planetary rotor 52. Then, the lubricating oil that has passed through the first branch flow path F2 and the second branch flow path F3 joins and is sent to the discharge flow path F4. The lubricating oil is then discharged through the bearings 7 supporting the drive rotor 2 and returned into the engine via a return passage (not shown). Then, the lubricating oil circulates between the engine and the electric actuator 1 by being supplied from the engine to the electric actuator 1 again.
  • lubricating oil is supplied from the engine to the electric actuator 1, so that sliding at the meshing portions of the first reduction gear 5a and the second reduction gear 5b through which the lubricating oil passes is prevented.
  • the rolling resistance of the balls or rollers in the raceway grooves of the outer rings and inner rings of the open-type bearings 53, 54, 7 through which lubricating oil passes can be reduced over a long period of time. That is, unlike the conventional method using grease, in the present embodiment, by continuously supplying lubricating oil from the engine to the electric actuator 1, an oil film can always be formed at the sliding portion such as the meshing portion. , sliding resistance can be reduced over a long period of time.
  • the bearing 17 (right bearing 17 in FIG. 11) particularly close to the discharge flow path F4 is an open type.
  • a portion of the lubricating oil can be stored in the bearing 17 . That is, as shown in FIG. 11, since there is an axial gap between the inner ring of the bearing 17 near the discharge passage F4 and the casing 6, part of the lubricating oil flowing through the discharge passage F4 is removed from the casing. It flows into the bearing 17 through the gap between 6 and the bearing 17 .
  • the lubricating oil in the bearing 17 is supplied to the surroundings along with the rotational motion, so that the lubricating effect can be enhanced.
  • the stator coil 41c which is the current-carrying portion of the stator 41, is covered with an integral (one-piece) covering member 60.
  • the covering member 60 is made of, for example, heat-resistant resin.
  • the covering member 60 and the stator 41 are integrally formed by insert molding or the like, and the covering member 60 covers not only the entire stator coil 41c but also a part of the bobbin 41b and the stator core 41a. ing.
  • the stator coil 41c which is the current-carrying portion, is covered with the integrated covering member 60 so as not to be exposed, so that the space in which the stator coil 41c is arranged and the lubricating oil are separated from each other.
  • the flowing lubricating passage F is separated by the covering member 60 so as not to communicate with it (see FIG. 11).
  • each of the bobbin 41b and the stator core 41a is also covered with the covering member 60. It doesn't have to be. Therefore, as shown in FIG. 12, the inner diameter surface of the bobbin 41b, the inner diameter surface and the outer diameter surface of the stator core 41a, etc. do not have to be covered with the covering member 60.
  • FIG. 12 the inner diameter surface of the bobbin 41b, the inner diameter surface and the outer diameter surface of the stator core 41a, etc. do not have to be covered with the covering member 60.
  • the covering member 60 is in contact with the casing 6. Therefore, the electric motor can be 4 can be effectively released to the outside through the covering member 60 and the casing 6 .
  • the electric actuator according to this embodiment includes the bus bar 12 and the rotation angle detection device 25 shown in FIG. 13 as current-carrying parts other than the stator coil 41c.
  • the bus bar 12 is a power supply member for supplying power to the stator coil 41c from a power supply (not shown).
  • the busbar 12 includes three busbars of three phases (U-phase, V-phase, and W-phase) and one busbar at a neutral point.
  • the connection portion of the stator coil 41c is fixed by welding, caulking, screwing, or the like.
  • Each busbar 12 has a terminal 12a protruding from its annular portion, and each terminal 12a is arranged in projections 6c and 6d (see FIG. 8) provided on the casing 6. As shown in FIG.
  • the rotation angle detection device 25 is a device that detects the rotation angle of the electric motor 4 .
  • the rotation angle detection device 25 has an arc-shaped substrate 26 and three sensors 27 attached to the substrate 26 .
  • the timing of supplying current to each of the U-phase, V-phase, and W-phase of the electric motor 4 is determined.
  • each sensor 27 for example, a Hall sensor, which is a magnetic sensor, or the like is used.
  • a plurality of terminals 28 to which signal lines and the like are connected are provided on the board 26 , and each terminal 28 is arranged in one protrusion 6 c provided on the casing 6 .
  • the bus bar 12, the sensor 27, and the substrate 26 as described above are all current-carrying parts, even if the lubricating oil comes into contact with these current-carrying parts, it will cause a failure or malfunction. Therefore, in this embodiment, the bus bar 12, the sensor 27 and the substrate 26 are covered with the covering member 60 as well as the stator coil 41c. Note that the covering member 60 is omitted in FIG. 13 .
  • FIG. 14 is a longitudinal sectional view of the electric actuator 1 cut at the position of the sensor 27.
  • the busbar 12, the sensor 27 and the substrate 26 are covered by an integrated covering member 60 covering the stator coil 41c so as not to be exposed. Therefore, the space in which the bus bar 12, the sensor 27 and the substrate 26 are arranged and the lubricating flow path F through which the lubricating oil flows are also isolated by the covering member 60 so as not to communicate with each other. Therefore, in this embodiment, it is possible to prevent the lubricating oil from adhering to the busbar 12, the sensor 27 and the substrate 26, thereby avoiding failures and malfunctions due to the lubricating oil adhering to these members.
  • the conductive portion of the electronic component for rotating and controlling the electric motor is covered with the covering member, and the conductive portion is arranged.
  • the covering member covers not only the stator coil but also the busbar, the sensor and the substrate is taken as an example, but the lubricating oil adheres to the busbar, sensor and substrate. If there is little risk of this occurring, only the stator coil may be covered with the covering member. Alternatively, one or two of the busbar, sensor, and substrate, and the stator coil may be covered with a covering member.
  • the embodiments of the present invention are not limited to the above embodiments.
  • the electric actuator according to the present invention is used in a variable valve timing device for an SOHC engine. It can also be applied to a variable valve timing device for a DOHC (Double Over Head Camshaft) type engine in which the and are separately provided.
  • DOHC Double Over Head Camshaft
  • the speed reducer included in the electric actuator according to the present invention is not limited to the hypocycloid speed reducer as described above, and any speed reducer such as a cycloid speed reducer, strain wave gearing, or planetary gearing may be used.
  • a roller assembly in which a plurality of rollers are held by a retainer is used in place of the planetary rotor, and a speed reducer of a type that rolls the rollers along the first external toothed portion and the second externally toothed portion is used.
  • the case where the drive rotor is provided with the exhaust camshaft and the driven rotor is provided with the intake camshaft is exemplified.
  • a shaft may be provided, and the driven rotating body may be provided with an exhaust camshaft. It is also possible to form the intake camshaft into a hollow shape and arrange the exhaust camshaft on the inner periphery thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

電動アクチュエータ1は、ステータ41及びロータ42を有する電動モータ4と、ロータ42の内径側に設けられロータ42と一体に回転するモータ軸51と、モータ軸51の内径側に配置されてモータ軸51の回転を減速して伝達する減速機5a,5bと、減速機5a,5bを通過する潤滑油が流れる潤滑流路Fを備える。モータ軸51は、電動モータ4が配置される空間と、潤滑流路Fが配置される空間とを、これらの空間の軸方向全体に渡って仕切る。

Description

電動アクチュエータ
 本発明は、電動アクチュエータに関する。
 外部から駆動力が入力される入力回転体と入力された駆動力を出力する出力回転体との回転位相差を変更可能な電動アクチュエータとして、電動モータと、電動モータの回転を減速して伝達する減速機とを備えるものが知られている。
 この種の電動アクチュエータの一例として、例えば、自動車のエンジンの吸気バルブと排気バルブの一方又は両方の開閉タイミングを変更する可変バルブタイミング装置に用いられる電動アクチュエータがある。この電動アクチュエータにおいては、減速機によって入力回転体(例えば、スプロケット)に対する出力回転体(例えば、カムシャフト)の回転位相差を変更でき、これによってバルブの開閉タイミングが調整される。
特開2018-194151号公報
 ところで、上記のような減速機を備える電動アクチュエータにおいては、作動性及び耐久性を向上させるため、一般的に、減速機内に潤滑剤としてグリースが充填されている。しかしながら、減速機が作動すると、ギヤ同士の噛み合い部分などに介在するグリースが次第に流出するため、グリースが経時的に枯渇し、作動性及び耐久性が低下するという問題がある。
 このような問題に対して、グリースに代えて、減速機内に潤滑油を供給する方法が挙げられる。減速機内に潤滑油を供給し続けることにより、ギヤ同士の噛み合い部分などにおいて常に油膜を形成することができるため、長期に亘って摺動抵抗を抑制でき、作動性及び耐久性を継続して向上させることが可能である。しかしながら、電動アクチュエータ内には、電動モータのステータなどの通電部が存在するため、万が一、このような通電部に潤滑油が付着すると、故障あるいは動作不良の原因となる。また、潤滑油内に混入する異物が電動モータのマグネットなどに付着した場合も、故障あるいは動作不良の原因となる虞がある。
 そこで、本発明は、潤滑油を用いて作動性及び耐久性の向上を図れると共に、電動モータが配置される空間への潤滑油の侵入を防止できる電動アクチュエータを提供することを目的とする。
 上記課題を解決するため、第1の発明は、ステータ及びロータを有する電動モータと、前記ロータの内径側に設けられ前記ロータと一体に回転するモータ軸と、前記モータ軸の内径側に配置されて前記モータ軸の回転を減速して伝達する減速機と、前記減速機を通過する潤滑油が流れる潤滑流路を備え、前記モータ軸は、前記電動モータが配置される空間と、前記潤滑流路が配置される空間とを、これらの空間の軸方向全体に渡って仕切ることを特徴とする。
 このような構成の電動アクチュエータであれば、電動モータが配置される空間内に潤滑油が侵入するのを防止でき、潤滑油が電動モータに付着することによる故障及び動作不良を回避できる。また、このように、電動モータに対する潤滑油の付着を防止できるため、電動アクチュエータ内に潤滑油を供給する方法を採用できるようになり、電動アクチュエータの作動性及び耐久性を長期に亘って良好に維持できるようになる。
 第1の発明に係る電動アクチュエータは、前記電動モータと前記減速機を収容するケーシングと、前記減速機の内径側に設けられ前記減速機によって減速された回転が伝達される出力部材を備え、前記潤滑油は、前記出力部材内を通って前記減速機へ供給されるように構成されてもよい。その場合、前記電動モータが配置される空間の軸方向一端側に、前記モータ軸と前記ケーシングとの間を封止する第一シール部材が設けられ、前記潤滑流路が配置される空間の前記軸方向一端側とは反対側に、前記出力部材と前記モータ軸との間を封止する第二シール部材が設けられることが好ましい。このような第一シール部材及び第二シール部材が設けられていることにより、電動モータが配置される空間内への潤滑油の侵入をより確実に防止できるようになる。
 さらに、前記電動モータが配置される空間の前記軸方向一端側とは反対側に、前記モータ軸と前記ケーシングとの間を封止する第三シール部材が設けられてもよい。これにより、電動モータが配置される空間への潤滑油の侵入のほか、一端側とは反対側からの水及び塵埃などの異物の侵入も防止できる。
 前記出力部材が、互いに分離可能な二部材によって構成されている場合は、前記二部材を結合するボルトとして、頭部にフランジ部を有するボルトを用いることが好ましい。出力部材が二部材によって構成されている場合、二部材の結合面から潤滑油が侵入し、ボルトの頭部と出力部材の端面との間から潤滑油が漏出する虞がある。そのため、頭部にフランジ部を有するボルトを用いることにより、ボルトの頭部と出力部材の端面との間からの潤滑油の漏出を効果的に防止できるようになる。
 さらに、前記ボルトのフランジ部と前記フランジ部が締結される前記出力部材の端面との間に、シールワッシャを介在させてもよい。これにより、ボルトの頭部と出力部材の端面との間からの潤滑油の漏出をより効果的に防止できるようになる。
 また、前記シールワッシャに代えて、互いに結合される前記二部材の結合面同士の間に、シール部材を介在させてもよい。
 第1の発明に係る電動アクチュエータは、前記減速機を備える差動装置を備え、前記差動装置は、回転軸を中心として回転可能な駆動回転体と、前記回転軸に対して偏心する内周面を有し前記ロータと一体に回転する前記モータ軸としての偏心部材と、前記偏心部材の内径側に設けられ前記電動モータによって自転可能でかつ前記回転軸を中心として公転可能な遊星回転体と、前記回転軸を中心として回転可能な前記出力部材としての従動回転体と、前記遊星回転体と前記駆動回転体との噛み合いにより構成された第一の減速機と、前記遊星回転体と前記従動回転体との噛み合いにより構成された第二の減速機と、前記駆動回転体を前記偏心部材に対して回転可能に支持する軸受を有するものであってもよい。この場合、潤滑油が、前記従動回転体内を通って供給され、前記第一の減速機及び前記第二の減速機を通過し、前記駆動回転体を支持する軸受を通って外部へ排出されることにより、各減速機及び軸受の潤滑性が向上し、作動性及び耐久性が向上する。
 また、上記課題を解決するため、第2の発明は、ステータ及びロータを有する電動モータと、前記電動モータの内径側に配置され前記電動モータの回転を減速して伝達する減速機と、前記減速機を通過する潤滑油が流れる潤滑流路を備え、前記ステータは、複数の電磁鋼板から成るステータコアと、絶縁材料から成るボビンと、前記ボビンに巻き回されたステータコイルを有し、前記ステータコイルを少なくとも含む通電部が、一体の被覆部材によって覆われ、前記通電部が配置される空間と前記潤滑流路とが、前記被覆部材によって連通しないように隔離されていることを特徴とする。
 このような構成の電動アクチュエータであれば、通電部に対して潤滑油が付着するのを確実に防止でき、通電部に潤滑油が付着することによる故障及び動作不良を回避できる。また、通電部に対する潤滑油の付着を防止できるため、電動アクチュエータ内に潤滑油を供給する方法を採用できるようになり、電動アクチュエータの作動性及び耐久性を長期に亘って良好に維持できるようになる。
 前記通電部は、前記ステータコイルのほか、前記電動モータへ給電するための給電部材を含んでいてもよい。この場合、ステータコイルに加えて給電部材が被覆部材によって覆われることにより、ステータコイル及び給電部材に対する潤滑油の付着を防止できる。
 また、前記通電部は、前記ステータコイルのほか、前記電動モータの回転角度を検知する回転角度検知装置を含んでいてもよい。この場合、ステータコイルに加えて回転角度検知装置が被覆部材によって覆われることにより、ステータコイル及び回転角度検知装置に対する潤滑油の付着を防止できる。
 第2の発明に係る電動アクチュエータは、前記減速機を備える差動装置と、前記差動装置及び前記電動モータを収容するケーシングを備え、前記差動装置は、回転軸を中心として回転可能な駆動回転体と、前記電動モータによって自転可能でかつ前記回転軸を中心として公転可能な遊星回転体と、前記回転軸を中心として回転可能な従動回転体と、前記遊星回転体と前記駆動回転体との噛み合いにより構成された第一の減速機と、前記遊星回転体と前記従動回転体との噛み合いにより構成された第二の減速機と、前記駆動回転体を前記ケーシングに対して回転可能に支持する軸受を有するものであってもよい。この場合、潤滑油が、前記従動回転体内を通って供給され、前記第一の減速機及び前記第二の減速機を通過し、前記駆動回転体を支持する軸受を通って外部へ排出されることにより、各減速機及び軸受の潤滑性が向上し、作動性及び耐久性が向上する。
 また、前記差動装置は、前記ロータと一体に回転すると共に前記遊星回転体を偏心回転させる偏心部材と、前記偏心部材を前記ケーシングに対して回転可能に支持する軸受を有するものであってもよい。この場合、潤滑油の一部が、前記偏心部材を支持する軸受内に貯留されるようにすれば、軸受内に貯留された潤滑油を軸受の回転によって周囲に供給でき、潤滑効果を高めることができる。
 第1の発明及び第2の発明は、例えば、前記駆動回転体と前記従動回転体のいずれか一方に、吸気用カムシャフトが設けられ、前記駆動回転体と前記従動回転体の他方に、排気用カムシャフトが設けられる電動アクチュエータに適用できる。
 本発明によれば、潤滑油を用いて作動性及び耐久性の向上を図れると共に、電動モータが配置される空間への潤滑油の侵入を防止できる。
本発明の一実施形態に係る電動アクチュエータの縦断面図である。 本実施形態に係る電動アクチュエータの分解斜視図である。 図1のA-A線で矢視した断面図である。 図1のB-B線で矢視した断面図である。 潤滑油が流れる流路を示す電動アクチュエータの縦断面図である。 本発明の他の実施形態に係るアクチュエータの縦断面図である。 本発明のさらに別の実施形態に係る電動アクチュエータの縦断面図である。 図7に示される電動アクチュエータの分解斜視図である。 図7のA-A線で矢視した断面図である。 図7のB-B線で矢視した断面図である。 潤滑油が流れる流路を示す電動アクチュエータの縦断面図である。 ステータの縦断面図である。 ステータ、バスバー及び回転角度検知装置の斜視図である。 センサの位置において切断した電動アクチュエータの縦断面図である。
 以下、添付の図面に基づき、本発明について説明する。なお、本発明を説明するための各図面において、同一の機能もしくは形状を有する部材や構成部品等の構成要素については、判別が可能な限り同一符号を付すことにより一度説明した後ではその説明を省略する。
 図1は、本実施形態に係る電動アクチュエータの縦断面図、図2は、当該電動アクチュエータの分解斜視図である。
 本実施形態に係る電動アクチュエータは、SOHC(Single Over Head Camshaft)型のエンジン(駆動源)の可変バルブタイミング装置として用いられる。図1及び図2に示されるように、本実施形態に係る電動アクチュエータ1は、駆動回転体2と、従動回転体3と、電動モータ4と、差動装置5と、これらを収容するケーシング6とを主要な構成要素として備えている。
 駆動回転体2は、全体として軸方向両端が開口した円筒状の部材である。駆動回転体2のシリンダヘッド側(図1の右側)には、排気用カムシャフト22と、エンジンからの駆動力の入力部となるスプロケット23が結合される。排気用カムシャフト22のシリンダヘッド側には、一つ又は複数の図示しない排気用カムが設けられている。スプロケット23は、駆動回転体2の外周面にトルク伝達可能に取り付けられ、外部からの駆動力、例えばエンジンからチェーンを介して伝達された駆動力により回転駆動される。駆動回転体2、排気用カムシャフト22、及びスプロケット23は、何れも回転軸Oを中心として同軸上に配置される。従って、駆動回転体2、排気用カムシャフト22、及びスプロケット23は、外部からの駆動力(エンジンからの駆動力)により、回転軸Oを中心として一体に回転する。
 本実施形態では、駆動回転体2と排気用カムシャフト22とスプロケット23が、別部材で構成された場合を例示している。この例示に限らず、駆動回転体2、排気用カムシャフト22、及びスプロケット23のうち、任意の二つの部位を一体化し、残りの部位を別部材で構成することができる。あるいは駆動回転体2、排気用カムシャフト22、及びスプロケット23を全て一体に形成することもできる。
 従動回転体3は、駆動回転体2から伝達された駆動力を出力する出力部材であり、反シリンダヘッド側(図1の左側)に設けられた円筒状の本体31と、シリンダヘッド側(図1の右側)に設けられたシャフト32の、軸方向に分離可能な二部材によって構成されている。本体31とシャフト32は、センタボルト34によって互いに結合されている。また、シャフト32のシリンダヘッド側には、吸気用カムシャフト33が結合される。なお、シャフト32と吸気用カムシャフト33を一体に形成してもよい。吸気用カムシャフト33は、両端が開口した中空形状をなす排気用カムシャフト22の内周に配置される。吸気用カムシャフト33のシリンダヘッド側の軸端は、排気用カムシャフト22のシリンダヘッド側の軸端から軸方向に突出しており(図示省略)、吸気用カムシャフト33には、一つあるいは複数の吸気用カムが設けられている。本体31と、シャフト32、及び吸気用カムシャフト33は、回転軸O上で同軸に配置され、回転軸Oを中心として一体に回転する。
 ケーシング6は、組み立ての都合上、有底円筒状のケーシング本体6aと、蓋部6bとに分割されている。ケーシング本体6aと蓋部6bとは、ボルト等の締結手段を用いて一体化される。蓋部6bには、電動モータ4へ給電するための給電線や、電動モータ4の回転角度を検知する回転角度検知装置に接続される信号線などを、外部に引き出すための筒状の突起6c,6d(図2参照)が設けられている。
 電動モータ4は、ケーシング本体6aに固定されたステータ41と、ステータ41の半径方向内側に隙間をもって対向するように配置されたロータ42とを有するラジアルギャップ型のモータである。本実施形態においては、電動モータ4として、U相、V相及びW相を有する三相ブラシレスモータが用いられている。ステータ41は、軸方向に積層した複数の電磁鋼板から成るステータコア41aと、ステータコア41aに装着された絶縁材料から成るボビン41bと、ボビン41bに巻き回されたステータコイル41cとで構成されている。ロータ42は、環状のロータコア(ロータインナ)42aと、ロータコア42aに取り付けられた複数のマグネット42bとで構成されている。ステータ41とロータ42の間に作用する励磁力により、ロータ42が回転軸Oを中心として回転する。
 差動装置5は、駆動回転体2と、従動回転体3と、ロータ42と一体に回転するモータ軸でもある偏心部材51と、偏心部材51の内周に配置された遊星回転体52と、偏心部材51に対して遊星回転体52を回転可能に支持する2つの軸受53,54とを主要な構成要素として備える。
 偏心部材51は、シリンダヘッド側(図1の右側)から反シリンダヘッド側(図1の左側)へ向かって段階的に縮径する内周面を有する一体(一部品)の筒状部材である。本実施形態においては、偏心部材51が、最小内径の第一筒部51aと、第一筒部51aよりも大径の第二筒部51bと、第二筒部51bよりも大径の第三筒部51cと、第三筒部51cよりも大径の第四筒部51dを有している。偏心部材51の各筒部51a~51dは、互いに異なる外径の外周面を有しているが、これらの外周面は、いずれも回転軸Oと同軸に形成された円筒面である。これに対して、偏心部材51の第二筒部51b及び第三筒部51cの内周面は、回転軸Oに対して偏心した円筒面状の偏心内周面である。また、偏心部材51の内周面のうち、偏心内周面以外の領域(第一筒部51a及び第四筒部51dの内周面)は、回転軸Oと同軸に形成された円筒面である。このように、第二筒部51b及び第三筒部51cの内周面は、回転軸Oに対して偏心しているため、偏心部材51は、第二筒部51b及び第三筒部51cの偏心内周面を通る半径方向の断面で見ると、厚肉部分と薄肉部分とを有する(図3、図4参照)。
 偏心部材51は、その外周面とケーシング6との間に設けられた2つの軸受17,18によって支持される。本実施形態では、いずれの軸受17,18も転がり軸受(深溝玉軸受)で構成しているが、両軸受17,18の構成や種類は任意に選択することができる。偏心部材51のシリンダヘッド側(図1の右側)の外周面に設けられた軸受17により、偏心部材51がケーシング6のケーシング本体6aに対して回転可能に支持され、偏心部材51の反シリンダヘッド側(図1の左側)の外周面に設けられた軸受18により、偏心部材51がケーシング6の蓋部6bに対して回転可能に支持される。
 また、偏心部材51の第一筒部51aの内周面には、従動回転体3を回転可能に支持する軸受8が設けられ、偏心部材51の第四筒部51dの内周面には、駆動回転体2を回転可能に支持する軸受7が設けられている。これらの軸受7,8は、例えば転がり軸受(深溝玉軸受)で構成することができる。
 また、駆動回転体2の内周面と従動回転体3のシャフト32の外周面との間には、軸受9が配置されている。この軸受9により、駆動回転体2と従動回転体3の間の相対回転が許容される。この軸受9も、例えば転がり軸受(深溝玉軸受)で構成することができる。
 遊星回転体52は円筒状をなし、その内周に第一内歯部55と第二内歯部56とが形成される。第一内歯部55と第二内歯部56は、何れも半径方向の断面が曲線(例えばトロコロイド系曲線)を描く複数の歯で構成されている。第一内歯部55と第二内歯部56は軸方向にずらして形成され、第一内歯部55がシリンダヘッド側(図1の右側)に、第二内歯部56が反シリンダヘッド側(図1の左側)にそれぞれ設けられている。第二内歯部56のピッチ円径は第一内歯部55のピッチ円径よりも小さい。また、第二内歯部56の歯数は、第一内歯部55の歯数よりも少ない。
 駆動回転体2の外周面には、第一内歯部55と噛み合う第一外歯部57が形成される。また、従動回転体3の本体31の外周面には、第二内歯部56と噛み合う第二外歯部58が形成される。第一外歯部57及び第二外歯部58は、何れも半径方向の断面が曲線(例えばトロコイド系曲線)を描く複数の歯で形成されている。第二外歯部58のピッチ円径は第一外歯部57のピッチ円径よりも小さく、第二外歯部58の歯数は、第一外歯部57の歯数よりも少ない。
 第一外歯部57の歯数は、互いに噛み合う第一内歯部55の歯数よりも少なく、好ましくは一つ少ない。同様に、第二外歯部58の歯数も、互いに噛み合う第二内歯部56の歯数よりも少なく、好ましくは一つ少ない。一例として、本実施形態では、第一内歯部55の歯数を24個、第二内歯部56の歯数を20個、第一外歯部57の歯数を23個、第二外歯部58の歯数を19個としている。
 互いに噛み合う第一内歯部55と第一外歯部57は第一の減速機5aを構成し、第二内歯部56と第二外歯部58は第二の減速機5bを構成する。第一の減速機5a及び第二の減速機5bは、何れもハイポサイクロイド減速機と呼ばれるものである。二つの減速機5a,5bの減速比は異なっており、本実施形態では第一の減速機5aの減速比を第二の減速機5bの減速比よりも大きくしている。このように二つの減速機5a,5bの減速比を異ならせることで、後で述べるように、エンジンによって駆動される吸気用カムシャフト33の回転を、電動モータ4の作動状態に応じて変化させる(差動させる)ことが可能となる。
 遊星回転体52を支持する2つの軸受53,54のうち、反シリンダヘッド側(図1の左側)に設けられた軸受53は、例えば外輪53aを有する針状ころ軸受で構成される。この軸受53は、偏心部材51の第二筒部51bの内周面(偏心内周面)と、遊星回転体52の円筒面状の外周面との間に配置される。一方、シリンダヘッド側(図1の右側)に設けられた軸受54は、偏心部材51の第三筒部51cの内周面(偏心内周面)と、遊星回転体52の円筒面状の外周面との間に配置された転がり軸受(深溝玉軸受)である。このように、2つの軸受53,54が、偏心部材51と遊星回転体52との間に配置されていることにより、これらの軸受53,54によって、遊星回転体52が偏心部材51に対して相対回転可能に支持される。また、これらの軸受53,54が、偏心部材51の偏心内周面に対して遊星回転体52を回転可能に支持していることにより、遊星回転体52の外周面及び内周面の中心P(図3、図4参照)は、回転軸Oに対して偏心した位置にある。
 図3は、第一の減速機5aで切断した断面図(図1におけるA-A線矢視断面図)、図4は、第二の減速機5bで切断した断面図(図1におけるB-B線矢視断面図)である。
 図3に示されるように、第一内歯部55の中心Pは、回転軸Oに対して径方向に距離E偏心している。従って、第一内歯部55と第一外歯部57は、周方向の一部の領域で互いに噛み合った状態となり、これとは径方向反対側の領域で噛み合わない状態となる。また、図4に示されるように、第二内歯部56の中心Pも回転軸Oに対して径方向に距離E偏心しているため、第二内歯部56と第二外歯部58とは、周方向の一部の領域で互いに噛み合った状態となり、これとは径方向反対側の領域で噛み合わない状態となる。なお、図3及び図4では、互いの矢視方向が異なっているため、第一内歯部55と第二内歯部56のそれぞれの偏心方向が各図において互いに左右逆方向に示されているが、第一内歯部55及び第二内歯部56は同じ方向に同じ距離Eだけ偏心している。
 ここで、差動装置5の減速比をi、モータ回転速度をnm、スプロケット23の回転速度をnSとすると、出力回転位相角度差は(nm-nS)/iとなる。
 また、第一内歯部55の歯数をz1、第二内歯部56の歯数をz2とすると、本実施形態に係る差動装置5の減速比は、下記式1によって求められる。
 減速比=z1×z2/|z1-z2|・・・式1
 例えば、第一内歯部55の歯数(z1)が24、第二内歯部56の歯数(z2)が20の場合、上記式1から減速比は120となる。このように、本実施形態に係る差動装置5では、大きな減速比によって高トルクを得ることが可能である。
 本実施形態の電動アクチュエータ1では、遊星回転体52の内径側に駆動回転体2及び従動回転体3を配置しているため、遊星回転体52を駆動する電動モータ4として中空モータを採用し、この中空モータを遊星回転体52の外径側に配置するレイアウトを採用することができる。そのため、スペース効率が良好となり、電動アクチュエータのコンパクト化(特に軸方向寸法のコンパクト化)を達成できるメリットが得られる。
 続いて、図1~図4を参照しつつ本実施形態に係る電動アクチュエータの動作について説明する。
 エンジンの動作中は、スプロケット23に伝達されたエンジンからの駆動力によって駆動回転体2が回転し、これに伴って排気用カムシャフト22が回転する。
 また、駆動回転体2の回転は、遊星回転体52を介して従動回転体3に伝達される。このとき、電動モータ4の回転運動によって、遊星回転体52と駆動回転体2との噛み合い状態(第一内歯部55と第一外歯部57との噛み合い位置)、及び遊星回転体52と従動回転体3との噛み合い状態(第二内歯部56と第二外歯部58の噛み合い位置)が維持されたまま、遊星回転体52が回転する。これにより、遊星回転体52と従動回転体3とが同期して回転する。このため、駆動回転体2と従動回転体3は同じ回転位相を保持しながら回転し、排気用カムシャフト22と吸気用カムシャフト33とは回転位相差0で回転する。
 その後、例えばエンジンがアイドル運転などの低回転域に移行した際には、ロータ42をスプロケット23の回転数よりも相対的に遅く又は速く回転させる。電動モータ4を作動させると、ロータ42のロータコア42aに結合された偏心部材51が回転軸Oを中心として一体に回転する。これに伴い、薄肉部分と厚肉部分とを備えた偏心部材51の回転に伴う押圧力が軸受53,54を介して遊星回転体52に作用する。この押圧力により、第一内歯部55と第一外歯部57との噛み合い部で周方向の分力が生じるため、遊星回転体52が駆動回転体2に対して相対的に偏心回転運動を行う。つまり、遊星回転体52が回転軸Oを中心として公転しながら、第一内歯部55及び第二内歯部56の中心Pを中心として自転する。この際、遊星回転体52が1回公転するごとに、第一内歯部55と第一外歯部57との噛み合い位置が一歯分ずつ周方向にずれるため、遊星回転体52は減速されつつ回転(自転)する。
 また、遊星回転体52が上述の偏心回転運動を行うことにより、遊星回転体52の1回の公転ごとに、第二内歯部56と第二外歯部58との噛み合い箇所が一歯分ずつ周方向にずれる。これにより、従動回転体3が遊星回転体52に対して減速されつつ回転する。このように、遊星回転体52を電動モータ4で駆動することにより、スプロケット23からの駆動力に電動モータ4からの駆動力が重畳され、従動回転体3の回転が、電動モータ4からの駆動力の影響を受ける差動の状態となる。そのため、駆動回転体2に対する従動回転体3の相対的な回転位相差を正逆方向に変更することが可能となり、吸気用カムによる吸気バルブ(図示省略)の開閉タイミングを進角方向もしくは遅角方向に変更することができる。
 このように吸気バルブの開閉タイミングを変更することにより、アイドル運転時のエンジンの回転の安定化と燃費の向上を図ることができる。また、アイドル状態からエンジンの運転が通常運転に移行し、例えば、高速回転に移行した際には、スプロケット23に対する電動モータ4の相対回転の速度差を大きくすることで、スプロケット23に対する吸気用カムシャフト33の回転位相差を高回転に適した回転位相差に変更することができ、エンジンの高出力化を図ることが可能である。
 このように本実施形態の電動アクチュエータであれば、駆動回転体2及び遊星回転体52への入力(前者はエンジンの駆動力の入力、後者は電動モータ4の駆動力の入力)と、駆動回転体2及び従動回転体3からの出力(前者は排気用カムシャフト22への出力、後者は吸気用カムシャフト33への出力)が可能であり、2系統の入力と2系統の出力が許容されている。そのため、2系統の入力と1系統の出力が一般的な電動アクチュエータに比べ、電動アクチュエータ1の用途を拡大することができる。
 ここで、図5に示されるように、本実施形態の電動アクチュエータにおいては、作動性及び耐久性を向上させるため、差動装置5(減速機)内に潤滑油を供給する潤滑流路Fが形成されている。本実施形態に係る潤滑流路Fは、図示しないエンジンから差動装置5内に潤滑油(エンジンオイル)を供給するための供給流路F1と、供給流路F1から分岐する第一分岐流路F2及び第二分岐流路F3と、潤滑油を差動装置5外へ排出するための排出流路F4を有している。
 供給流路F1は、主に、従動回転体3のシャフト32内に設けられたシャフト内流路(従動回転体内流路)70と、駆動回転体2の内周面とシャフト32の外周面との間の隙間によって構成されている。シャフト内流路70は、シャフト32の回転軸Oを通るように設けられた導入部71と、導入部71の入口側(図5の右側)とは反対側の端部から外径方向に放射状に伸びる複数の拡散部72を有している。複数の拡散部72は、シャフト32を支持する軸受9よりも反シリンダヘッド側(図5の左側)においてシャフト32の外周面から開口し、各拡散部72の開口部72aは、駆動回転体2の内周面とシャフト32の外周面との間に形成された隙間に連通している。
 第一分岐流路F2及び第二分岐流路F3は、供給流路F1の下流端から分岐するように設けられている。第一分岐流路F2は、駆動回転体2に設けられた第一外歯部57と遊星回転体52に設けられた第一内歯部55との間を通過するように設けられている。すなわち、第一分岐流路F2は、第一外歯部57と第一内歯部55から成る第一の減速機5aを通過する。一方、第二分岐流路F3は、従動回転体3の本体31に設けられた第二外歯部58と遊星回転体52に設けられた第二内歯部56との間、従動回転体3を支持する反シリンダヘッド側(図5の左側)の軸受8、及び遊星回転体52を支持する各軸受53,54を通過するように設けられている。すなわち、第二分岐流路F3は、第二外歯部58と第二内歯部56から成る第二の減速機5bと、各軸受8,53,54の外輪と内輪の間を通過する。従動回転体3を支持する反シリンダヘッド側の軸受8、及び遊星回転体52を支持する各53,54としては、潤滑油が通過できるように、シールを有しない開放型の軸受が用いられている。
 排出流路F4は、第一分岐流路F2と第二分岐流路F3とが合流する位置から、駆動回転体2を支持する軸受7を通過し、差動装置5外へ達するように設けられている。また、駆動回転体2を支持する軸受7は、潤滑油が通過できるように、シールを有しない開放型の軸受によって構成されている。一方、従動回転体3を支持するシリンダヘッド側(図5の右側)の軸受9は、開放型ではなく、ボールの軸方向両側にシール部材が取り付けられ、両シール部材間にグリースなどの潤滑剤が充填された、いわゆる密封型の軸受によって構成されている。従って、この軸受9は、供給された潤滑油の外部への漏出を防止すると共に、外部から電動アクチュエータ1内への異物の侵入を防止するシール部材として機能する。
 上記のように構成された電動アクチュエータ1において、エンジンから供給流路F1へ潤滑油が供給されると、まず、潤滑油は、シャフト32内に設けられたシャフト内流路70を通過し、駆動回転体2及びシャフト32の間を通って、第一分岐流路F2及び第二分岐流路F3に送られる。第一分岐流路F2に送られた潤滑油は、第一の減速機5a(第一外歯部57と第一内歯部55との間)を通過し、第二分岐流路F3に送られた潤滑油は、第二の減速機5b(第二外歯部58と第二内歯部56との間)と、従動回転体3を支持する反シリンダヘッド側の軸受8と、遊星回転体52を支持する各軸受53,54を通過する。そして、第一分岐流路F2及び第二分岐流路F3を通過した潤滑油は、合流し、排出流路F4へ送られる。そして、潤滑油は、駆動回転体2を支持する軸受7を通って排出され、図示しない戻り流路を介してエンジン内へ戻される。そして、潤滑油は、再びエンジンから電動アクチュエータ1へ供給されることにより、エンジンと電動アクチュエータ1との間で循環する。
 このように、本実施形態においては、エンジンから電動アクチュエータ1へ潤滑油が供給されるため、潤滑油が通過する第一の減速機5a及び第二の減速機5bのそれぞれの噛み合い部における摺動抵抗、さらには、潤滑油が通過する開放型の各軸受53,54,7,8の外輪及び内輪の軌道溝におけるボール又はころの転がり抵抗を長期に亘って低減できる。すなわち、本実施形態においては、グリースを使用する従来の方法とは異なり、エンジンから電動アクチュエータ1内へ継続して潤滑油を供給することにより、噛み合い部などの摺動箇所において常に油膜を形成でき、摺動抵抗を長期に亘って低減できる。また、本実施形態においては、電動モータの回転駆動に伴う発熱のほか、減速機構(差動装置5)の偏心運動に伴う部材同士の接触により摩擦熱が生じるが、潤滑油を循環させることによる冷却効果も得られる。このため、本実施形態においては、作動性と耐久性の両方を長期に亘って良好に維持できる。
 上述のように、本実施形態においては、電動アクチュエータ1内に潤滑油を供給する構成を採用しているため、作動性及び耐久性を長期に亘って良好に維持できる。しかしながら一方で、電動アクチュエータ1内に侵入を供給すると、潤滑油がステータなどの通電部に付着したり、潤滑油内に混入する異物が電動モータのマグネットなどに付着したりする虞があるため、電動モータが配置される空間への潤滑油の侵入を防止する対策が必要である。
 そのため、本実施形態においては、図5に示されるように、電動モータ4の内径側に配置される偏心部材(モータ軸)51を軸方向に長く形成し、偏心部材51によって、電動モータ4が配置される空間と潤滑油が流れる空間を仕切っている。具体的に、偏心部材51は、ケーシング6の軸方向の一端から他端まで連続して設けられている。この一体(一部品)の偏心部材51によって、電動モータ4が配置されるモータ空間と、潤滑流路Fが配置される潤滑空間(第一の減速機5a、第二の減速機5b、及び各軸受7,8,53,54が配置される空間)とが、軸方向全体に渡って仕切られている。
 また、本実施形態においては、排出流路F4から排出された潤滑油がモータ空間内へ侵入するのを防止するため、モータ空間のシリンダヘッド側(図5の右側)の端に、偏心部材51の外周面とケーシング6の内面との間を封止する第一シール部材61が設けられている。さらに、本実施形態においては、潤滑油が従動回転体3を支持する反シリンダヘッド側(図5の左側)の軸受8から外部へ漏出するのを防止するため、潤滑空間の反シリンダヘッド側の端に、従動回転体3の外周面と偏心部材51の内周面との間を封止する第二シール部材62が設けられている。
 このように、本実施形態においては、モータ空間と潤滑空間とがそれぞれの軸方向全体に渡って偏心部材51によって仕切られ、さらに、2つのシール部材61,62によってモータ空間のシリンダヘッド側(軸方向一端側)と潤滑空間の反シリンダヘッド側(軸方向一端側とは反対側)が封止されているため、モータ空間内への潤滑油の侵入を確実に防止できる。これにより、潤滑油がステータなどの通電部に付着したり、潤滑油内に混入する異物が電動モータのマグネットなどに付着したりすることによる故障及び動作不良を回避できる。
 第一シール部材61及び第二シール部材62としては、潤滑油の侵入又は漏出を効果的に防止できるようにオイルシールであることが好ましい。本実施形態においては、第一シール部材61及び第二シール部材62として、金属製の芯材と、芯材の周囲に設けられたゴムなどから成る弾性部材を有するオイルシールが用いられている。
 また、本実施形態においては、第一シール部材61及び第二シール部材62に加え、モータ空間の反シリンダヘッド側(図5の左側)の端にも、偏心部材51の外周面とケーシング6の内面との間を封止する第三シール部材63が設けられている。これにより、モータ空間内への潤滑油の侵入のほか、反シリンダヘッド側からの水及び塵埃などの異物の侵入も防止できるため、故障及び動作不良の発生の虞が低減し、信頼性が向上する。なお、第三シール部材63は、第一シール部材61及び第二シール部材62と同様、オイルシールであることが好ましい。
 また、本実施形態においては、従動回転体3が本体31とシャフト32との二部材によって構成されているため、本体31とシャフト32の結合面同士の間に潤滑油が侵入し、センタボルト34の頭部と本体31の端面との間から潤滑油が漏出する虞がある。そのため、本実施形態においては、センタボルト34として、頭部にフランジ部34aを有するボルトを用いている。これにより、センタボルト34と本体31の端面との間から潤滑油が漏出するのを効果的に防止できるようになる。
 さらに、本実施形態においては、潤滑油の漏出をより確実に防止するため、センタボルト34のフランジ部34aと本体31の端面との間に、シールワッシャ35を介在させている。シールワッシャ35は、金属材料から成る環状のワッシャ本体と、ワッシャ本体の内周側に設けられたゴム又は樹脂などから成るシール部を有している。シールワッシャ35が、センタボルト34のフランジ部34aによって締め付けられると、シール部が圧縮されて、フランジ部34aと本体31の端面との間が封止される。なお、シールワッシャ35に代えて、フランジ部34aにシール部を有するセンタボルト34を用いてもよい。
 図6は、本発明の他の実施形態に係る電動アクチュエータの縦断面図である。
 図6に示される電動アクチュエータ1においては、センタボルト34と従動回転体3(本体31)の端面との間からの潤滑油の漏出を防止するため、シール部材としてのOリング36を、本体31の外周面とシャフト32の内周面との間に介在させている。このように、上記シールワッシャ35に代えて、本体31とシャフト32のそれぞれの結合面同士の間にOリング36を介在させてもよい。この場合、潤滑油が本体31とシャフト32のそれぞれの結合面の間を介してボルト孔に侵入するのを阻止できるため、センタボルト34と従動回転体3の端面との間からの潤滑油の漏出を防止できる。
 以上のように、本発明の実施形態においては、電動モータが配置される空間(モータ空間)と、潤滑流路が配置される空間(潤滑空間)が、ロータと一体に回転するモータ軸(偏心部材)によって仕切られていることにより、潤滑油がモータ空間内に侵入することによる故障及び動作不良を回避できる。また、このように、本実施形態においては、モータ空間内への潤滑油の侵入を防止できるため、電動アクチュエータ内に潤滑油を供給する方法を採用できるようになり、電動アクチュエータの作動性及び耐久性を長期に亘って良好に維持できるようになる。
 続いて、本発明のさらに別の実施形態について説明する。
 図7は、さらに別の実施形態に係る電動アクチュエータの縦断面図、図8は、当該電動アクチュエータの分解斜視図である。
 本実施形態に係る電動アクチュエータは、SOHC(Single Over Head Camshaft)型のエンジン(駆動源)の可変バルブタイミング装置として用いられる。図7及び図8に示されるように、本実施形態に係る電動アクチュエータ1は、駆動回転体2と、従動回転体3と、電動モータ4と、差動装置5と、これらを収容するケーシング6とを主要な構成要素として備えている。
 駆動回転体2は、全体として軸方向両端が開口した円筒状の部材である。駆動回転体2の外周面とケーシング6の内周面との間には、軸受7が配置されている。この軸受7によって、駆動回転体2は、ケーシング6に対して回転可能に支持されている。軸受7は、例えば転がり軸受(深溝玉軸受)で構成することができる。駆動回転体2のシリンダヘッド側(図7の右側)には、排気用カムシャフト22と、エンジンからの駆動力の入力部となるスプロケット23が結合される。排気用カムシャフト22のシリンダヘッド側には、一つ又は複数の図示しない排気用カムが設けられている。スプロケット23は、駆動回転体2の外周面にトルク伝達可能に取り付けられ、外部からの駆動力、例えばエンジンからチェーンを介して伝達された駆動力により回転駆動される。駆動回転体2、排気用カムシャフト22、及びスプロケット23は、何れも回転軸Oを中心として同軸上に配置される。従って、駆動回転体2、排気用カムシャフト22、及びスプロケット23は、外部からの駆動力(エンジンからの駆動力)により、回転軸Oを中心として一体に回転する。
 本実施形態では、駆動回転体2と排気用カムシャフト22とスプロケット23が、別部材で構成された場合を例示している。この例示に限らず、駆動回転体2、排気用カムシャフト22、及びスプロケット23のうち、任意の二つの部位を一体化し、残りの部位を別部材で構成することができる。あるいは駆動回転体2、排気用カムシャフト22、及びスプロケット23を全て一体に形成することもできる。
 従動回転体3は、駆動回転体2から伝達された駆動力を出力する出力部材であり、反シリンダヘッド側(図7の左側)に設けられた円筒状の本体31と、シリンダヘッド側(図7の右側)に設けられたシャフト32とを有する。本体31とシャフト32は、センタボルト34によって互いに結合されている。また、シャフト32のシリンダヘッド側には、吸気用カムシャフト33が結合される。なお、シャフト32と吸気用カムシャフト33を一体に形成してもよい。吸気用カムシャフト33には、一つあるいは複数の吸気用カムが設けられている。本体31と、シャフト32、及び吸気用カムシャフト33は、回転軸O上で同軸に配置され、回転軸Oを中心として一体に回転する。
 吸気用カムシャフト33は、両端が開口した中空形状をなす排気用カムシャフト22の内周に配置される。また、吸気用カムシャフト33のシリンダヘッド側の軸端は、排気用カムシャフト22のシリンダヘッド側の軸端から軸方向に突出している(図示省略)。従動回転体3の本体31の外周面とケーシング6の内周面との間には、軸受8が配置されている。この軸受8によって、従動回転体3は、ケーシング6に対して回転可能に支持されている。また、駆動回転体2の内周面と従動回転体3のシャフト32の外周面との間には、軸受9が配置されている。この軸受9により、駆動回転体2と従動回転体3の間の相対回転が許容される。軸受8,9は、例えば転がり軸受(深溝玉軸受)で構成することができる。
 ケーシング6は、組み立ての都合上、有底円筒状のケーシング本体6aと、蓋部6bとに分割されている。ケーシング本体6aと蓋部6bとは、ボルト等の締結手段を用いて一体化される。蓋部6bには、電動モータ4へ給電するための給電線や、電動モータ4の回転角度を検知する回転角度検知装置に接続される信号線などを、外部に引き出すための筒状の突起6c,6d(図8参照)が設けられている。
 電動モータ4は、ケーシング本体6aに固定されたステータ41と、ステータ41の半径方向内側に隙間をもって対向するように配置されたロータ42とを有するラジアルギャップ型のモータである。本実施形態においては、電動モータ4として、U相、V相及びW相を有する三相ブラシレスモータが用いられている。ステータ41は、軸方向に積層した複数の電磁鋼板から成るステータコア41aと、ステータコア41aに装着された絶縁材料から成るボビン41bと、ボビン41bに巻き回されたステータコイル41cとで構成されている。ロータ42は、環状のロータコア(ロータインナ)42aと、ロータコア42aに取り付けられた複数のマグネット42bとで構成されている。ステータ41とロータ42の間に作用する励磁力により、ロータ42が回転軸Oを中心として回転する。
 差動装置5は、駆動回転体2と、従動回転体3と、ロータ42と一体に回転する偏心部材51と、偏心部材51の内周に配置された遊星回転体52と、偏心部材51に対して遊星回転体52を回転可能に支持する2つの軸受53,54とを主要な構成要素として備える。
 偏心部材51は、ロータコア42aの内周に固定された小径筒部51aと、小径筒部51aより大径に形成され、ロータコア42aから軸方向に突出する大径筒部51bとを一体に有する。偏心部材51の小径筒部51a及び大径筒部51bの外周面は、回転軸Oと同軸に形成された円筒面である。これに対して、偏心部材51の小径筒部51a及び大径筒部51bの内周面には、回転軸Oに対して偏心した円筒面状の偏心内周面が形成される。このため、偏心部材51は、偏心内周面を通る半径方向の断面で見ると、厚肉部分と薄肉部分とを有する(図9、図10参照)。
 偏心部材51は、その外周面とケーシング6との間に設けられた2つの軸受17,18によって支持される。本実施形態では、いずれの軸受17,18も転がり軸受(深溝玉軸受)で構成しているが、両軸受17,18の構成や種類は任意に選択することができる。偏心部材51のシリンダヘッド側(図7の右側)の外周面に設けられた軸受17により、偏心部材51がケーシング6のケーシング本体6aに対して回転可能に支持され、偏心部材51の反シリンダヘッド側(図7の左側)の外周面に設けられた軸受18により、偏心部材51がケーシング6の蓋部6bに対して回転可能に支持される。
 遊星回転体52は円筒状をなし、その内周に第一内歯部55と第二内歯部56とが形成される。第一内歯部55と第二内歯部56は、何れも半径方向の断面が曲線(例えばトロコロイド系曲線)を描く複数の歯で構成されている。第一内歯部55と第二内歯部56は軸方向にずらして形成され、第一内歯部55がシリンダヘッド側(図7の右側)に、第二内歯部56が反シリンダヘッド側(図7の左側)にそれぞれ設けられている。第二内歯部56のピッチ円径は第一内歯部55のピッチ円径よりも小さい。また、第二内歯部56の歯数は、第一内歯部55の歯数よりも少ない。
 駆動回転体2の外周面には、第一内歯部55と噛み合う第一外歯部57が形成される。また、従動回転体3の本体31の外周面には、第二内歯部56と噛み合う第二外歯部58が形成される。第一外歯部57及び第二外歯部58は、何れも半径方向の断面が曲線(例えばトロコイド系曲線)を描く複数の歯で形成されている。第二外歯部58のピッチ円径は第一外歯部57のピッチ円径よりも小さく、第二外歯部58の歯数は、第一外歯部57の歯数よりも少ない。
 第一外歯部57の歯数は、互いに噛み合う第一内歯部55の歯数よりも少なく、好ましくは一つ少ない。同様に、第二外歯部58の歯数も、互いに噛み合う第二内歯部56の歯数よりも少なく、好ましくは一つ少ない。一例として、本実施形態では、第一内歯部55の歯数を24個、第二内歯部56の歯数を20個、第一外歯部57の歯数を23個、第二外歯部58の歯数を19個としている。
 互いに噛み合う第一内歯部55と第一外歯部57は第一の減速機5aを構成し、第二内歯部56と第二外歯部58は第二の減速機5bを構成する。第一の減速機5a及び第二の減速機5bは、何れもハイポサイクロイド減速機と呼ばれるものである。二つの減速機5a,5bの減速比は異なっており、本実施形態では第一の減速機5aの減速比を第二の減速機5bの減速比よりも大きくしている。このように二つの減速機5a,5bの減速比を異ならせることで、後で述べるように、エンジンによって駆動される吸気用カムシャフト33の回転を、電動モータ4の作動状態に応じて変化させる(差動させる)ことが可能となる。
 遊星回転体52を支持する2つの軸受53,54のうち、反シリンダヘッド側(図7の左側)に設けられた軸受53は、例えば外輪53aを有する針状ころ軸受で構成される。この軸受53は、偏心部材51の小径筒部51aの内周面(偏心内周面)と、遊星回転体52の円筒面状の外周面との間に配置される。一方、シリンダヘッド側(図7の右側)に設けられた軸受54は、偏心部材51の大径筒部51bの内周面(偏心内周面)と、遊星回転体52の円筒面状の外周面との間に配置された転がり軸受(深溝玉軸受)である。このように、2つの軸受53,54が、偏心部材51と遊星回転体52との間に配置されていることにより、これらの軸受53,54によって、遊星回転体52が偏心部材51に対して相対回転可能に支持される。また、これらの軸受53,54が、偏心部材51の偏心内周面に対して遊星回転体52を回転可能に支持していることにより、遊星回転体52の外周面及び内周面の中心P(図9、図10参照)は、回転軸Oに対して偏心した位置にある。
 図9は、第一の減速機5aで切断した断面図(図7におけるA-A線矢視断面図)、図10は、第二の減速機5bで切断した断面図(図7におけるB-B線矢視断面図)である。
 図9に示されるように、第一内歯部55の中心Pは、回転軸Oに対して径方向に距離E偏心している。従って、第一内歯部55と第一外歯部57は、周方向の一部の領域で互いに噛み合った状態となり、これとは径方向反対側の領域で噛み合わない状態となる。また、図10に示されるように、第二内歯部56の中心Pも回転軸Oに対して径方向に距離E偏心しているため、第二内歯部56と第二外歯部58とは、周方向の一部の領域で互いに噛み合った状態となり、これとは径方向反対側の領域で噛み合わない状態となる。なお、図9及び図10では、互いの矢視方向が異なっているため、第一内歯部55と第二内歯部56のそれぞれの偏心方向が各図において互いに左右逆方向に示されているが、第一内歯部55及び第二内歯部56は同じ方向に同じ距離Eだけ偏心している。
 ここで、差動装置5の減速比をi、モータ回転速度をnm、スプロケット23の回転速度をnSとすると、出力回転位相角度差は(nm-nS)/iとなる。
 また、第一内歯部55の歯数をz1、第二内歯部56の歯数をz2とすると、本実施形態に係る差動装置5の減速比は、下記式2によって求められる。
 減速比=z1×z2/|z1-z2|・・・式2
 例えば、第一内歯部55の歯数(z1)が24、第二内歯部56の歯数(z2)が20の場合、上記式1から減速比は120となる。このように、本実施形態に係る差動装置5では、大きな減速比によって高トルクを得ることが可能である。
 本実施形態の電動アクチュエータ1では、遊星回転体52の内径側に駆動回転体2及び従動回転体3を配置しているため、遊星回転体52を駆動する電動モータ4として中空モータを採用し、この中空モータを遊星回転体52の外径側に配置するレイアウトを採用することができる。そのため、スペース効率が良好となり、電動アクチュエータのコンパクト化(特に軸方向寸法のコンパクト化)を達成できるメリットが得られる。
 続いて、図7~図10を参照しつつ本実施形態に係る電動アクチュエータの動作について説明する。
 エンジンの動作中は、スプロケット23に伝達されたエンジンからの駆動力によって駆動回転体2が回転し、これに伴って排気用カムシャフト22が回転する。
 また、駆動回転体2の回転は、遊星回転体52を介して従動回転体3に伝達される。このとき、電動モータ4の回転運動によって、遊星回転体52と駆動回転体2との噛み合い状態(第一内歯部55と第一外歯部57との噛み合い位置)、及び遊星回転体52と従動回転体3との噛み合い状態(第二内歯部56と第二外歯部58の噛み合い位置)が維持されたまま、遊星回転体52が回転する。これにより、遊星回転体52と従動回転体3とが同期して回転する。このため、駆動回転体2と従動回転体3は同じ回転位相を保持しながら回転し、排気用カムシャフト22と吸気用カムシャフト33とは回転位相差0で回転する。
 その後、例えばエンジンがアイドル運転などの低回転域に移行した際には、ロータ42をスプロケット23の回転数よりも相対的に遅く又は速く回転させる。電動モータ4を作動させると、ロータ42のロータコア42aに結合された偏心部材51が回転軸Oを中心として一体に回転する。これに伴い、薄肉部分と厚肉部分とを備えた偏心部材51の回転に伴う押圧力が軸受53,54を介して遊星回転体52に作用する。この押圧力により、第一内歯部55と第一外歯部57との噛み合い部で周方向の分力が生じるため、遊星回転体52が駆動回転体2に対して相対的に偏心回転運動を行う。つまり、遊星回転体52が回転軸Oを中心として公転しながら、第一内歯部55及び第二内歯部56の中心Pを中心として自転する。この際、遊星回転体52が1回公転するごとに、第一内歯部55と第一外歯部57との噛み合い位置が一歯分ずつ周方向にずれるため、遊星回転体52は減速されつつ回転(自転)する。
 また、遊星回転体52が上述の偏心回転運動を行うことにより、遊星回転体52の1回の公転ごとに、第二内歯部56と第二外歯部58との噛み合い箇所が一歯分ずつ周方向にずれる。これにより、従動回転体3が遊星回転体52に対して減速されつつ回転する。このように、遊星回転体52を電動モータ4で駆動することにより、スプロケット23からの駆動力に電動モータ4からの駆動力が重畳され、従動回転体3の回転が、電動モータ4からの駆動力の影響を受ける差動の状態となる。そのため、駆動回転体2に対する従動回転体3の相対的な回転位相差を正逆方向に変更することが可能となり、吸気用カムによる吸気バルブ(図示省略)の開閉タイミングを進角方向もしくは遅角方向に変更することができる。
 このように吸気バルブの開閉タイミングを変更することにより、アイドル運転時のエンジンの回転の安定化と燃費の向上を図ることができる。また、アイドル状態からエンジンの運転が通常運転に移行し、例えば、高速回転に移行した際には、スプロケット23に対する電動モータ4の相対回転の速度差を大きくすることで、スプロケット23に対する吸気用カムシャフト33の回転位相差を高回転に適した回転位相差に変更することができ、エンジンの高出力化を図ることが可能である。
 このように本実施形態の電動アクチュエータであれば、駆動回転体2及び遊星回転体52への入力(前者はエンジンの駆動力の入力、後者は電動モータ4の駆動力の入力)と、駆動回転体2及び従動回転体3からの出力(前者は排気用カムシャフト22への出力、後者は吸気用カムシャフト33への出力)が可能であり、2系統の入力と2系統の出力が許容されている。そのため、2系統の入力と1系統の出力が一般的な電動アクチュエータに比べ、電動アクチュエータ1の用途を拡大することができる。
 ここで、図11に示されるように、本実施形態の電動アクチュエータにおいては、作動性及び耐久性を向上させるため、差動装置5(減速機)内に潤滑油を供給する潤滑流路Fが形成されている。本実施形態に係る潤滑流路Fは、図示しないエンジンから差動装置5内に潤滑油(エンジンオイル)を供給するための供給流路F1と、供給流路F1から分岐する第一分岐流路F2及び第二分岐流路F3と、潤滑油を差動装置5外へ排出するための排出流路F4を有している。
 供給流路F1は、主に、従動回転体3のシャフト32内に設けられたシャフト内流路(従動回転体内流路)70と、駆動回転体2の内周面とシャフト32の外周面との間の隙間によって構成されている。シャフト内流路70は、シャフト32の回転軸Oを通るように設けられた導入部71と、導入部71の入口側(図11の右側)とは反対側の端部から外径方向に放射状に伸びる複数の拡散部72を有している。複数の拡散部72は、シャフト32を支持する軸受9よりも反シリンダヘッド側(図11の左側)においてシャフト32の外周面から開口し、各拡散部72の開口部72aは、駆動回転体2の内周面とシャフト32の外周面との間に形成された隙間に連通している。
 第一分岐流路F2及び第二分岐流路F3は、供給流路F1の下流端から分岐するように設けられている。第一分岐流路F2は、駆動回転体2に設けられた第一外歯部57と遊星回転体52に設けられた第一内歯部55との間を通過するように設けられている。すなわち、第一分岐流路F2は、第一外歯部57と第一内歯部55から成る第一の減速機5aを通過する。一方、第二分岐流路F3は、従動回転体3の本体31に設けられた第二外歯部58と遊星回転体52に設けられた第二内歯部56との間、及び遊星回転体52を支持する各軸受53,54を通過するように設けられている。すなわち、第二分岐流路F3は、第二外歯部58と第二内歯部56から成る第二の減速機5bと、各軸受53,54の外輪と内輪の間を通過する。遊星回転体52を支持する各軸受53,54としては、潤滑油が通過できるように、シールを有しない開放型の軸受が用いられている。
 排出流路F4は、第一分岐流路F2と第二分岐流路F3とが合流する位置から、駆動回転体2を支持する軸受7を通過し、差動装置5外へ達するように設けられている。また、駆動回転体2を支持する軸受7は、潤滑油が通過できるように、シールを有しない開放型の軸受によって構成されている。一方、従動回転体3を支持する反シリンダヘッド側(図11の左側)の軸受8とシリンダヘッド側(図11の右側)の軸受9は、開放型ではなく、ボールの軸方向両側にシール部材が取り付けられ、両シール部材間にグリースなどの潤滑剤が充填された、いわゆる密封型の軸受によって構成されている。従って、これらの軸受8,9は、供給された潤滑油の外部への漏出を防止すると共に、外部から電動アクチュエータ1内への異物の侵入を防止するシール部材として機能する。
 上記のように構成された電動アクチュエータ1において、エンジンから供給流路F1へ潤滑油が供給されると、まず、潤滑油は、シャフト32内に設けられたシャフト内流路70を通過し、駆動回転体2及びシャフト32の間を通って、第一分岐流路F2及び第二分岐流路F3に送られる。第一分岐流路F2に送られた潤滑油は、第一の減速機5a(第一外歯部57と第一内歯部55との間)を通過し、第二分岐流路F3に送られた潤滑油は、第二の減速機5b(第二外歯部58と第二内歯部56との間)と、遊星回転体52を支持する各軸受53,54を通過する。そして、第一分岐流路F2及び第二分岐流路F3を通過した潤滑油は、合流し、排出流路F4へ送られる。そして、潤滑油は、駆動回転体2を支持する軸受7を通って排出され、図示しない戻り流路を介してエンジン内へ戻される。そして、潤滑油は、再びエンジンから電動アクチュエータ1へ供給されることにより、エンジンと電動アクチュエータ1との間で循環する。
 このように、本実施形態においては、エンジンから電動アクチュエータ1へ潤滑油が供給されるため、潤滑油が通過する第一の減速機5a及び第二の減速機5bのそれぞれの噛み合い部における摺動抵抗、さらには、潤滑油が通過する開放型の各軸受53,54,7の外輪及び内輪の軌道溝におけるボール又はころの転がり抵抗を長期に亘って低減できる。すなわち、本実施形態においては、グリースを使用する従来の方法とは異なり、エンジンから電動アクチュエータ1内へ継続して潤滑油を供給することにより、噛み合い部などの摺動箇所において常に油膜を形成でき、摺動抵抗を長期に亘って低減できる。また、本実施形態においては、電動モータの回転駆動に伴う発熱のほか、減速機構(差動装置5)の偏心運動に伴う部材同士の接触により摩擦熱が生じるが、潤滑油を循環させることによる冷却効果も得られる。このため、本実施形態においては、作動性と耐久性の両方を長期に亘って良好に維持できる。
 また、本実施形態においては、偏心部材51を支持する2つの軸受17,18のうち、特に排出流路F4に近い軸受17(図11における右側の軸受17)が開放型であることにより、この軸受17内に潤滑油の一部を貯留させることができる。すなわち、図11に示されるように、排出流路F4に近い軸受17の内輪とケーシング6との間に軸方向の隙間があることにより、排出流路F4を流れる潤滑油の一部が、ケーシング6と軸受17との間の隙間を通って軸受17内に流入する。これにより、軸受17が回転すると、その回転運動に伴って軸受17内の潤滑油が周囲に供給されるため、潤滑効果を高めることができる。
 上述のように、本実施形態においては、電動アクチュエータ1内に潤滑油を供給する構成を採用しているため、作動性及び耐久性を長期に亘って良好に維持できる。しかしながら一方で、電動アクチュエータ1内に潤滑油を供給すると、潤滑油がステータなどの通電部に付着する虞があるため、通電部に対する潤滑油の付着を防止する対策が必要である。
 そのため、本実施形態においては、図12に示されるように、ステータ41の通電部であるステータコイル41cを、一体(一部品)の被覆部材60によって覆っている。被覆部材60は、例えば、耐熱性を有する樹脂によって構成される。図12に示される例においては、被覆部材60とステータ41がインサート成形などにより一体成形されており、被覆部材60は、ステータコイル41cの全体ほか、ボビン41b及びステータコア41aのそれぞれの一部も覆っている。
 このように、本実施形態においては、一体の被覆部材60によって、通電部であるステータコイル41cが露出しないように覆われていることにより、ステータコイル41cが配置される空間と、上記潤滑油が流れる潤滑流路Fとが、被覆部材60によって連通しないように隔離される(図11参照)。これにより、電動アクチュエータ1内に潤滑油を供給しても、ステータコイル41cに対して潤滑油が付着するのを確実に防止でき、ステータコイル41cに潤滑油が付着することによる故障及び動作不良を回避できる。
 本実施形態においては、ステータコイル41cのほか、ボビン41bとステータコア41aのそれぞれの一部も被覆部材60によって覆われているが、通電部ではないボビン41b及びステータコア41aは被覆部材60によって覆われていなくてもよい。従って、図12に示されるように、ボビン41bの内径面、ステータコア41aの内径面及び外径面などは、被覆部材60によって覆われていなくても構わない。
 また、図11に示されるように、本実施形態においては、被覆部材60がケーシング6に接触しているため、被覆部材60及びケーシング6を熱伝導性の良い材料によって構成することにより、電動モータ4において生じる熱を被覆部材60及びケーシング6を介して外部へ効果的に放出できるようになる。
 また、本実施形態に係る電動アクチュエータは、ステータコイル41c以外の通電部として、図13に示されるバスバー12と回転角度検知装置25を備えている。
 バスバー12は、図示しない電源部からステータコイル41cへ給電するための給電部材である。具体的に、バスバー12は、三相(U相、V相、W相)の三つのバスバーと、中性点の一つのバスバーとを備え、円環状に形成された各バスバー12の円周上にステータコイル41cの結線部が溶接、加締め、ねじ止めなどにより固定される。また、各バスバー12は、それぞれの円環部から突出する端子12aを有しており、各端子12aはケーシング6に設けられた突起6c,6d(図8参照)内に配置される。
 回転角度検知装置25は、電動モータ4の回転角度を検知する装置である。具体的に、回転角度検知装置25は、円弧状の基板26と、基板26に取り付けられた3つのセンサ27を有している。各センサ27によって電動モータ4の回転角度が検知されることにより、電動モータ4のU相、V相、W相のそれぞれに電流を流すタイミングが決定される。各センサ27としては、例えば、磁気センサであるホールセンサなどが用いられる。基板26には、信号線などが接続される複数の端子28が設けられ、各端子28はケーシング6に設けられた一方の突起6c内に配置される。
 上記のようなバスバー12、センサ27及び基板26は、いずれも通電部であるため、万が一、潤滑油がこれらの通電部に接触した場合も故障あるいは動作不良の原因となる。そのため、本実施形態においては、ステータコイル41cと同様に、バスバー12、センサ27及び基板26も、上記被覆部材60によって覆っている。なお、図13においては、被覆部材60は省略されている。
 図14は、センサ27の位置において切断した電動アクチュエータ1の縦断面図である。
 図14に示されるように、バスバー12、センサ27及び基板26は、ステータコイル41cを覆う一体の被覆部材60によって露出しないように覆われている。このため、バスバー12、センサ27及び基板26が配置される空間と、上記潤滑油が流れる潤滑流路Fも、被覆部材60によって連通しないように隔離されている。従って、本実施形態においては、バスバー12、センサ27及び基板26に対して潤滑油が付着するのを防止でき、これらの部材に潤滑油が付着することによる故障及び動作不良を回避できる。
 以上のように、図7~図14に示される本発明の実施形態においては、電動モータを回転駆動させたり制御したりするための電子部品の通電部を被覆部材によって覆い、通電部が配置される空間と、潤滑油が流れる空間とが、連通しないように隔離されることにより、通電部(電子部品)に潤滑油が付着することによる故障及び動作不良を確実に回避できる。また、このように、本実施形態においては、電子部品と潤滑油とを確実に隔離できるため、電動アクチュエータ内に潤滑油を供給する方法を採用できるようになり、電動アクチュエータの作動性及び耐久性を長期に亘って良好に維持できるようになる。
 図7~図14に示される実施形態においては、被覆部材が、ステータコイルのほか、バスバー、センサ及び基板を覆う場合を例として挙げているが、バスバー、センサ及び基板に対して潤滑油が付着する虞が少ない場合は、ステータコイルのみを被覆部材によって覆ってもよい。また、バスバー、センサ及び基板のうち、いずれか1つ又は2つの部材と、ステータコイルとが、被覆部材によって覆われる構成としてもよい。
 また、本発明の実施形態は、上述の各実施形態に限らない。上述の各実施形態においては、本発明に係る電動アクチュエータを、SOHC型エンジン用の可変バルブタイミング装置に使用する場合を例に挙げているが、本発明は、吸気用カムシャフトと排気用カムシャフトとが分離独立して設けられるDOHC(Double Over Head Camshaft)型のエンジン用の可変バルブタイミング装置にも適用可能である。
 また、本発明に係る電動アクチュエータが備える減速機は、上述のようなハイポサイクロイド減速機に限らず、サイクロイド減速機、波動歯車装置、遊星歯車装置などの任意の構成の減速機を使用することができる。また、遊星回転体に代えて複数のローラを保持器で保持したローラアセンブリを使用し、ローラを第一外歯部及び第二外歯部に沿って転動させるタイプの減速機を使用することもできる。
 また、上述の各実施形態においては、駆動回転体に排気用カムシャフトを設け、従動回転体に吸気用カムシャフトを設ける場合を例示したが、これとは逆に、駆動回転体に吸気用カムシャフトを設け、従動回転体に排気用カムシャフトを設けてもよい。また、吸気用カムシャフトを中空形状とし、その内周に排気用カムシャフトを配置することも可能である。
 1   電動アクチュエータ
 2   駆動回転体
 3   従動回転体(出力部材)
 4   電動モータ
 5   差動装置
 5a  第一の減速機
 5b  第二の減速機
 6   ケーシング
 7   軸受
 8   軸受
 9   軸受
 12  バスバー(給電部材)
 17  軸受
 18  軸受
 22  排気用カムシャフト
 25  回転角度検知装置
 33  吸気用カムシャフト
 34  センタボルト
 34a フランジ部
 35  シールワッシャ
 36  Oリング(シール部材)
 41  ステータ
 41a ステータコア
 41b ボビン
 41c ステータコイル
 42  ロータ
 51  偏心部材(モータ軸)
 52  遊星回転体
 53  軸受
 54  軸受
 60  被覆部材
 61  第一シール部材
 62  第二シール部材
 63  第三シール部材
 F   潤滑流路

Claims (13)

  1.  ステータ及びロータを有する電動モータと、
     前記ロータの内径側に設けられ前記ロータと一体に回転するモータ軸と、
     前記モータ軸の内径側に配置されて前記モータ軸の回転を減速して伝達する減速機と、
     前記減速機を通過する潤滑油が流れる潤滑流路を備え、
     前記モータ軸は、前記電動モータが配置される空間と、前記潤滑流路が配置される空間とを、これらの空間の軸方向全体に渡って仕切ることを特徴とする電動アクチュエータ。
  2.  前記電動モータと前記減速機を収容するケーシングと、
     前記減速機の内径側に設けられ前記減速機によって減速された回転が伝達される出力部材を備え、
     前記潤滑油は、前記出力部材内を通って前記減速機へ供給され、
     前記電動モータが配置される空間の軸方向一端側に、前記モータ軸と前記ケーシングとの間を封止する第一シール部材が設けられ、
     前記潤滑流路が配置される空間の前記軸方向一端側とは反対側に、前記出力部材と前記モータ軸との間を封止する第二シール部材が設けられる請求項1に記載の電動アクチュエータ。
  3.  前記電動モータが配置される空間の前記軸方向一端側とは反対側に、前記モータ軸と前記ケーシングとの間を封止する第三シール部材が設けられる請求項2に記載の電動アクチュエータ。
  4.  前記出力部材は、互いに分離可能な二部材によって構成され、
     前記二部材を結合するボルトとして、頭部にフランジ部を有するボルトを用いる請求項1から3のいずれか1項に記載の電動アクチュエータ。
  5.  前記ボルトのフランジ部と前記フランジ部が締結される前記出力部材の端面との間に、シールワッシャが介在する請求項4に記載の電動アクチュエータ。
  6.  互いに結合される前記二部材の結合面同士の間に、シール部材が介在する請求項4に記載の電動アクチュエータ。
  7.  前記減速機を備える差動装置を備え、
     前記差動装置は、
     回転軸を中心として回転可能な駆動回転体と、
     前記回転軸に対して偏心する内周面を有し前記ロータと一体に回転する前記モータ軸としての偏心部材と、
     前記偏心部材の内径側に設けられ前記電動モータによって自転可能でかつ前記回転軸を中心として公転可能な遊星回転体と、
     前記回転軸を中心として回転可能な前記出力部材としての従動回転体と、
     前記遊星回転体と前記駆動回転体との噛み合いにより構成された第一の減速機と、
     前記遊星回転体と前記従動回転体との噛み合いにより構成された第二の減速機と、
     前記駆動回転体を前記偏心部材に対して回転可能に支持する軸受を有し、
     前記潤滑油は、前記従動回転体内を通って供給され、前記第一の減速機及び前記第二の減速機を通過し、前記駆動回転体を支持する軸受を通って外部へ排出される請求項1から6のいずれか1項に記載の電動アクチュエータ。
  8.  ステータ及びロータを有する電動モータと、
     前記電動モータの内径側に配置され前記電動モータの回転を減速して伝達する減速機と、
     前記減速機を通過する潤滑油が流れる潤滑流路を備え、
     前記ステータは、複数の電磁鋼板から成るステータコアと、絶縁材料から成るボビンと、前記ボビンに巻き回されたステータコイルを有し、
     前記ステータコイルを少なくとも含む通電部が、一体の被覆部材によって覆われ、
     前記通電部が配置される空間と前記潤滑流路とが、前記被覆部材によって連通しないように隔離されていることを特徴とする電動アクチュエータ。
  9.  前記通電部は、前記ステータコイルのほか、前記電動モータへ給電するための給電部材を含む請求項8に記載の電動アクチュエータ。
  10.  前記通電部は、前記ステータコイルのほか、前記電動モータの回転角度を検知する回転角度検知装置を含む請求項8又は9に記載の電動アクチュエータ。
  11.  前記減速機を備える差動装置と、
     前記差動装置及び前記電動モータを収容するケーシングを備え、
     前記差動装置は、
     回転軸を中心として回転可能な駆動回転体と、
     前記電動モータによって自転可能でかつ前記回転軸を中心として公転可能な遊星回転体と、
     前記回転軸を中心として回転可能な従動回転体と、
     前記遊星回転体と前記駆動回転体との噛み合いにより構成された第一の減速機と、
     前記遊星回転体と前記従動回転体との噛み合いにより構成された第二の減速機と、
     前記駆動回転体を前記ケーシングに対して回転可能に支持する軸受を有し、
     前記潤滑油は、前記従動回転体内を通って供給され、前記第一の減速機及び前記第二の減速機を通過し、前記駆動回転体を支持する軸受を通って外部へ排出される請求項8から10のいずれか1項に記載の電動アクチュエータ。
  12.  前記差動装置は、
     前記ロータと一体に回転すると共に前記遊星回転体を偏心回転させる偏心部材と、
     前記偏心部材を前記ケーシングに対して回転可能に支持する軸受を有し、
     前記潤滑油の一部は、前記偏心部材を支持する軸受内に貯留される請求項11に記載の電動アクチュエータ。
  13.  前記駆動回転体と前記従動回転体のいずれか一方に、吸気用カムシャフトが設けられ、 前記駆動回転体と前記従動回転体の他方に、排気用カムシャフトが設けられる請求項7、11、12のいずれか1項に記載の電動アクチュエータ。
PCT/JP2022/031684 2021-09-14 2022-08-23 電動アクチュエータ WO2023042613A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-149488 2021-09-14
JP2021149493A JP2023042273A (ja) 2021-09-14 2021-09-14 電動アクチュエータ
JP2021149488A JP2023042272A (ja) 2021-09-14 2021-09-14 電動アクチュエータ
JP2021-149493 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042613A1 true WO2023042613A1 (ja) 2023-03-23

Family

ID=85602764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031684 WO2023042613A1 (ja) 2021-09-14 2022-08-23 電動アクチュエータ

Country Status (1)

Country Link
WO (1) WO2023042613A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038099A (ja) * 2016-08-29 2018-03-08 Ntn株式会社 電動モータ
WO2019054218A1 (ja) * 2017-09-12 2019-03-21 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
JP2020153387A (ja) * 2019-03-18 2020-09-24 Ntn株式会社 電動アクチュエータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038099A (ja) * 2016-08-29 2018-03-08 Ntn株式会社 電動モータ
WO2019054218A1 (ja) * 2017-09-12 2019-03-21 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
JP2020153387A (ja) * 2019-03-18 2020-09-24 Ntn株式会社 電動アクチュエータ

Similar Documents

Publication Publication Date Title
JP5376288B2 (ja) 可変バルブタイミング装置
WO2018216421A1 (ja) 電動アクチュエータ
JP2007224865A (ja) バルブタイミング調整装置
JP3596932B2 (ja) 駆動モータ付き偏心差動減速機
JP2010138735A (ja) 内燃機関のバルブタイミング制御装置
WO2023042613A1 (ja) 電動アクチュエータ
JP2007071056A (ja) バルブタイミング調整装置
JP2023042273A (ja) 電動アクチュエータ
JP2023042272A (ja) 電動アクチュエータ
US11965437B2 (en) Electric actuator
WO2021182019A1 (ja) 電動アクチュエータ
WO2019059298A1 (ja) 電動アクチュエータ
KR20110104009A (ko) 소형 전기 캠 페이저
JP7240213B2 (ja) 電動アクチュエータ
JP5218249B2 (ja) バルブタイミング調整装置
JP5402571B2 (ja) バルブタイミング調整装置
JP7463140B2 (ja) 電動アクチュエータ
JP7535863B2 (ja) 電動アクチュエータ
JP2011111972A (ja) バルブタイミング調整装置
WO2021182357A1 (ja) 電動アクチュエータ
WO2020184135A1 (ja) 電動アクチュエータ
JP2020150716A (ja) 電動モータおよびこれを備えた電動アクチュエータ
US11852049B2 (en) Electric actuator
JP7175821B2 (ja) 電動アクチュエータ
JP7270426B2 (ja) 電動アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869760

Country of ref document: EP

Kind code of ref document: A1