WO2023040027A1 - 一种耐老化的聚氨酯材料、制备方法和应用 - Google Patents

一种耐老化的聚氨酯材料、制备方法和应用 Download PDF

Info

Publication number
WO2023040027A1
WO2023040027A1 PCT/CN2021/130450 CN2021130450W WO2023040027A1 WO 2023040027 A1 WO2023040027 A1 WO 2023040027A1 CN 2021130450 W CN2021130450 W CN 2021130450W WO 2023040027 A1 WO2023040027 A1 WO 2023040027A1
Authority
WO
WIPO (PCT)
Prior art keywords
aging
polyurethane material
resistant polyurethane
isocyanate
alcohol
Prior art date
Application number
PCT/CN2021/130450
Other languages
English (en)
French (fr)
Inventor
杨军
许双喜
曹彦海
彭超义
王进
冯兴卓
张坚强
朱军
李斌
Original Assignee
株洲时代新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲时代新材料科技股份有限公司 filed Critical 株洲时代新材料科技股份有限公司
Publication of WO2023040027A1 publication Critical patent/WO2023040027A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • C08G18/163Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2045Heterocyclic amines; Salts thereof containing condensed heterocyclic rings
    • C08G18/2063Heterocyclic amines; Salts thereof containing condensed heterocyclic rings having two nitrogen atoms in the condensed ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the technical field of polymer materials, and in particular relates to an aging-resistant polyurethane material, a preparation method and an application.
  • the preparation method of polyurethane resin comprises three kinds,
  • One-step method that is, directly mix polyisocyanate with polymer polyol, chain extender, catalyst, etc., and complete polymerization, chain extension, and curing during the heating process to obtain.
  • Prepolymer method prepare double raw materials, one part is chain extender and the other part is prepolymer.
  • the disadvantage is that after the reaction between isocyanate and polyol is complete, the viscosity of prepolymer is relatively high. The mixing process is difficult, and there is a greater process difficulty.
  • the semi-prepolymer method which includes two parts, namely a part containing an active group and a part containing -NCO, the part containing an active group is divided into two parts, one is a chain extender (such as alcohol, amine), and the other
  • the first kind is polymer polyol
  • the -NCO-containing part is prepared by reacting polymer alcohol and isocyanate by prepolymerization method, and then mixed with the remaining polyol and chain extender in this prepolymer.
  • This method uses aliphatic isocyanate IPDI and PTMG/MOCA as raw materials to prepare polyurethane materials, which are resistant to yellowing, but the initial viscosity of the material is high below 30°C, and it is difficult to defoam, and the operation time above 30°C is short, so it is not suitable for large-scale composite materials.
  • this method does not involve the method of improving the aging resistance and heat and humidity resistance of the material.
  • the 201410840608.5 patent discloses an acrylic compound containing hydroxyl groups, which reduces the viscosity of polyurethane resin and improves the wettability of the reinforcing material with the resin. If the viscosity of the material is too low, the air bubbles will penetrate the resin, resulting in air bubble defects in the blade matrix.
  • Wind turbine blades for offshore wind turbines have high requirements on the thermal aging resistance and humidity and heat aging resistance of materials.
  • wind turbine blades made of polyurethane materials cannot solve the above problems well.
  • the technical problem to be solved by the present invention is to provide a kind of aging-resistant polyurethane material, preparation method and application, which has higher heat aging resistance and damp heat aging resistance performance, and the specific performance is that after 1000h thermal oxygen aging, the tensile modulus is ⁇ 10%, compressive strength ⁇ 10%, flexural modulus ⁇ 10%. Tensile modulus ⁇ 10%, compressive strength ⁇ 10%, flexural modulus ⁇ 10% after 1000h damp heat aging.
  • An aging-resistant polyurethane material comprising a polyol composition and an isocyanate prepolymer
  • the polyol composition comprises the following components in weight percentage,
  • the isocyanate prepolymer comprises the following components in weight percentage,
  • the isocyanate prepolymer also includes a polymerization inhibitor in an amount of 0.01-0.03% by weight of the isocyanate prepolymer.
  • the weight ratio of the polyol composition and the isocyanate prepolymer is 1:0.8-0.95, or the polymerization inhibitor is one of benzoyl chloride, sulfonyl chloride, adipoyl chloride, hydrogen chloride gas, orthophosphoric acid or Various.
  • the bisphenol A/polyoxyalkylene is bisphenol A/polyoxyethylene ether or bisphenol A/polyoxypropylene ether, or the hydroxyl value of the bisphenol A/polyoxyalkylene is 150-300 mg/KOH/g, functional The degree is 2.
  • the polyoxyalkylene alcohol is polyoxypropylene trihydric alcohol, polyoxypropylene glycol, polyethylene oxide trihydric alcohol, polyoxyethylene glycol or polyoxypropylene-oxyethylene copolyether alcohol; or the polyoxyalkylene alcohol
  • the degree of unsaturation is less than 0.04mmol/g, the hydroxyl value is 200-800mg/KOH/g, and the functionality is 2-5, preferably 2-3.
  • the low-molecular alcohol compound is one or more of diols, polyols, alcoholamines and diamines with 2-6 carbon atoms, preferably diethylene glycol or 1,2-propylene glycol.
  • the wetting agent is polysiloxane, polyether/polyester polysiloxane copolymer or organic fluorine modified polymer, preferably BYK's model BYK310, BYK344 or BYK345, more preferably wetting agent BYK310;
  • the defoamer is polysiloxane, modified polysiloxane or a polysiloxane solution containing hydrophobic particles, preferably BYK-060N, BYK-088 or BYK-525 produced by BYK;
  • the oxazolidine water-absorbing agent is one or more of ALT-101, ALT-301, ALT-402 produced by Elite Chemical, and SL-101 produced by Sempora Chemical;
  • the catalyst is a mixture of a heat-activated catalyst containing DBU and its derivatives and bismuth isooctanoate, preferably the heat-activated catalyst containing DBU and its derivatives, more preferably DB30, B41, F22 produced by Japan Tozao Co., Ltd., Evonik One or more of chemically produced SA4 and SA8.
  • the polyether polyol prepared by this catalytic system has a narrow molecular weight distribution and low unsaturation, and the prepared polyurethane material has high strength and excellent thermal oxidation resistance.
  • isocyanate is diphenylmethane diisocyanate, polyphenylmethane diisocyanate, toluene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, p-phenylene diisocyanate, terexylylene diisocyanate a mixture of one or more.
  • the polyether amine is one or two of polyoxypropylene diamine and polyoxypropylene triamine, the total amine content accounts for ⁇ 90% of the total end groups, and the acetylation value is 80mg/KOH/g-500mg/KOH/g , preferably the total amine content accounts for more than 96% of the total end groups, and the acetylation value is 150 mg/KOH/g-380 mg/KOH/g.
  • the NCO content of the isocyanate prepolymer prepared by the present invention is 18%-48%, preferably 25%-35%.
  • a preparation method of an aging-resistant polyurethane material comprising the steps of,
  • the invention provides an application of an aging-resistant polyurethane material in the preparation of wind power blades.
  • the polyurethane resin can be used in large-scale composite products, such as wind power blades, and is especially suitable for offshore wind power blades with high humidity.
  • the molding process adopts a vacuum infusion process, which will control the water content of the reinforcing material, lay the reinforcing material evenly into the mold, set up more than 2 pouring gates at the parallel position of the highest position, and directly inject the polyurethane resin after defoaming from the mold after vacuuming.
  • the pouring machine is poured into the mold through the airtight pouring transfer container.
  • the pouring process is 30-40min. After being fully soaked, the mold is heated to 70°C for 1.5h-3h to release the mold. After 72h of natural parking, the performance tends to be stable.
  • the beneficial effect of the present invention is that the polyurethane resin configured by the technical solution can produce a polyurethane material resistant to thermal oxygen aging and damp heat aging, and the polyurethane resin can be used to prepare large-scale composite material products.
  • Product defects caused by a large number of bubbles caused by water content the polyurethane resin has good wettability with the reinforced material, which improves the wettability of the resin and the reinforced material, and multiple sprues are set at the highest parallel position, which can quickly pour the polyurethane resin and further extend the
  • the soaking time and operating time at room temperature are >50min, which can meet the requirements of large-scale composite product molding process.
  • the preparation process is energy-saving, the process is simple, and the molding efficiency is high. It is especially suitable for the development and production of offshore wind power blades.
  • the polyurethane resin provided by this technical solution has an operating time of more than 50 minutes at room temperature, and its reactivity meets the requirements of the product molding process, and the process is simple, energy-saving, and improves the production efficiency of the product.
  • a component preparation :
  • Hydroxyl value 250mg/KOH/g, bisphenol A/polyoxyethylene ether 65wt% with a functionality of 2, double metal cyanide complex catalysis, unsaturation 0.02mmol/g, hydroxyl value 350mg/KOH/g is poly Propylene oxide trihydric alcohol 25wt%, diethylene glycol 4wt%, wetting agent BYK310 0.5wt%, catalyst (B41 produced by Japan Tosao Co., Ltd.
  • the total amine content accounts for ⁇ 96% of the total end groups, the acetylation value is 280mg/KOH/g, the polyetheramine D400 with a functionality of 2 is dehydrated at 6.5wt%, and the water content is ⁇ 0.05%.
  • the material is cooled to room temperature, and the side reaction inhibitor is added.
  • Polymerizing agent benzoyl chloride (0.01% of the total weight of polyetheramine and diphenylmethane diisocyanate), slowly drop 93.5wt% diphenylmethane diisocyanate into polyetheramine, and react under inert gas protection for 2h-3h, After the measured theoretical value is consistent with the measured value, it is sealed and stored, and its NCO content is 30%.
  • component A hydroxyl value 300mg/KOH/g, bisphenol A/polyoxypropylene ether with a functionality of 2 60wt%, double metal cyanide complex catalysis, unsaturation 0.02mmol/g, hydroxyl value 300mg/ KOH/g is polyoxyethylene trihydric alcohol 30wt%, diethylene glycol 4wt%, wetting agent BYK310 0.5wt%, catalyst (B41 produced by Japan Tosao Co., Ltd.
  • component B the total amine content accounts for ⁇ 96% of the total end groups, the acetylation value is 200mg/KOH/g, the functionality is 2 polyetheramine SD401 7.2wt% dehydration, the water content is ⁇ 0.05%, the material is cooled to room temperature, Add 0.01wt% of side reaction polymerization inhibitor benzoyl chloride (0.01% of the total weight of polyetheramine and diphenylmethane diisocyanate), slowly drop 92.8wt% diphenylmethane diisocyanate into polyetheramine, in an inert Gas protection reaction for 2h-3h, after the measured theoretical value is consistent with the measured value, it is sealed and stored, and its NCO content is 30%.
  • side reaction polymerization inhibitor benzoyl chloride 0.01% of the total weight of polyetheramine and diphenylmethane diisocyanate
  • Preparation of polyurethane material products Mix the polyol composition (A component) at 20-25°C and the isocyanate prepolymer (B component) at 20-25°C in a mass ratio of 100:85.9 and defoam, and the mixture The material was poured into the mold at room temperature, and after 50 minutes, the temperature was raised to 70°C for 2.8 hours to release the mold, and it was placed at room temperature for 72 hours to obtain a polyurethane material.
  • component A hydroxyl value 150mg/KOH/g, bisphenol A/polyoxypropylene ether with a functionality of 2 55wt%, double metal cyanide complex catalysis, unsaturation 0.02mmol/g, hydroxyl value 600mg/ KOH/g is 35wt% of polyoxyethylene glycol, 4wt% of 1.2-propylene glycol, 0.5wt% of wetting agent BYK310, and 0.1wt% of catalyst (B41 and bismuth isooctanoate ratio 1:1 produced by Japan Tozao Co., Ltd.) for mixing , heat up to 110°C-125°C, dehydrate for 1.5h-2.5h under vacuum degree ⁇ -0.95MPa, control water content ⁇ 0.05%, cool down to room temperature and add defoamer BYK-060N 0.4wt%, oxazolidine water-absorbing agent SL-101 5wt% Mix evenly and keep sealed.
  • catalyst B41 and bismuth isooctano
  • component B the total amine content accounts for ⁇ 96% of the total end groups, the acetylation value is 370KOH/g, the functionality is 3 polyetheramine AMT403 5.7wt%, the water content is ⁇ 0.05%, the material is cooled to room temperature, and the side reaction is added Inhibitor benzoyl chloride (0.01% of the total weight of polyetheramine and diphenylmethane diisocyanate), slowly drop 94.3wt% diphenylmethane diisocyanate into polyetheramine, and react under inert gas protection for 2h-3h , After the measured theoretical value is consistent with the measured value, it is sealed and preserved, and its NCO content is 30%.
  • Inhibitor benzoyl chloride 0.01% of the total weight of polyetheramine and diphenylmethane diisocyanate
  • Preparation of polyurethane material products Mix the polyol composition (A component) at 20-25°C and the isocyanate prepolymer (B component) at 20-25°C in a mass ratio of 100:93 and defoam evenly, and the mixture The material was poured into the mold at room temperature, and after 50 minutes, the temperature was raised to 70°C for 2.8 hours to release the mold, and it was placed at room temperature for 72 hours to obtain a polyurethane material.
  • component A Preparation of component A: hydroxyl value 250mg/KOH/g, bisphenol A/polyoxyethylene ether 65wt% with a functionality of 2, double metal cyanide complex catalysis, unsaturation 0.02mmol/g, hydroxyl value 350mg/ KOH/g is 25wt% of polyoxypropylene trihydric alcohol, 4wt% of diethylene glycol, 0.5wt% of wetting agent BYK310, and 0.1wt of catalyst (B41 and bismuth isooctanoate produced by Japan Tosao Co., Ltd.
  • component B the total amine content accounts for ⁇ 96% of the total end groups, the acetylation value is 280mg/KOH/g, the functionality is 2 polyetheramine D400 11.9wt% dehydration, the water content is ⁇ 0.05%, the material is cooled to room temperature, Add the side reaction polymerization inhibitor benzoyl chloride (0.01% of the total weight of polyetheramine and diphenylmethane diisocyanate), slowly drop 88.1wt% diphenylmethane diisocyanate into polyetheramine, and react under the protection of inert gas. 2h-3h, after the measured theoretical value is consistent with the measured value, it is sealed and stored, and its NCO content is 27%.
  • side reaction polymerization inhibitor benzoyl chloride 0.01% of the total weight of polyetheramine and diphenylmethane diisocyanate
  • Preparation of polyurethane material products mix the polyol composition (A component) at 20-25 °C and the isocyanate prepolymer (B component) at 20-25 °C in a mass ratio of 100:90 and defoam, and the mixture
  • the material was poured into the mold at room temperature, and after 50 minutes, the temperature was raised to 70°C for 2.8 hours to release the mold, and it was placed at room temperature for 72 hours to obtain a polyurethane material.
  • Example 1 Compared with Example 1, the bisphenol A/polyoxyethylene ether in component A is replaced with polyoxyethylene ether, and the others are the same as Example 1.
  • component A Preparation of component A: hydroxyl value 250mg/KOH/g, bisphenol A/polyoxyethylene ether 60wt% with a functionality of 2, double metal cyanide complex catalysis, unsaturation 0.02mmol/g, hydroxyl value 300mg/ KOH/g is mixed with 30wt% of polyoxypropylene glycol, 4wt% of diethylene glycol, 0.5wt% of wetting agent BYK310, and 0.1wt% of catalyst (B41 and bismuth isooctanoate ratio 1:1), and the temperature is raised to 110 °C-125°C, dehydration under vacuum ⁇ -0.95MPa for 1.5h-2.5h, control water content ⁇ 0.05%, cool down to room temperature, add defoamer BYK-088 0.4wt%, oxazolidine-type water-absorbing agent ALT-101 5wt % Mix evenly and keep sealed.
  • component B hydroxyl value 200mg/KOH/g, functionality 3 polyoxyethylene ether 11.3wt% dehydration, water content ⁇ 0.05%, material cooled to room temperature, adding side reaction polymerization inhibitor benzoyl chloride (polyetheramine and 0.01% of the total weight of diphenylmethane diisocyanate), slowly drop 88.7wt% diphenylmethane diisocyanate into polyether amine, and react under the protection of inert gas for 2h-3h, after the measured theoretical value is consistent with the measured value , sealed and preserved, its NCO content is 28%.
  • side reaction polymerization inhibitor benzoyl chloride polyetheramine and 0.01% of the total weight of diphenylmethane diisocyanate
  • Preparation of polyurethane and its composite material products mix the polyol composition (A component) at 20-25°C and the isocyanate prepolymer (B component) at 20-25°C in a mass ratio of 100:83.5 and defoam , inject the mixed material into the mold at room temperature, raise the temperature to 70°C for 2.8 hours after 50 minutes, and leave the mold for 72 hours at room temperature to obtain a polyurethane material.
  • Mix and defoam according to the above scheme then pour it smoothly into a mold with 4 pouring ports and laying reinforced substrates. After 50 minutes, heat the mold to 70°C for 2.8 hours to release the mold, leave it at room temperature for 72 hours, and take samples from the body to test the heat resistance of the polyurethane material.
  • Humid heat aging performance record the reaction start time and the proportion of bubbles on the surface of polyurethane composite products (the proportion of bubbles per unit area).
  • component A Preparation of component A: hydroxyl value 300mg/KOH/g, polyoxyethylene ether with a functionality of 2 73wt%, hydroxyl value 500mg/KOH/g, polyoxypropylene diol 20wt%, diethylene glycol 2wt% , Wetting agent BYK310 0.5wt%, catalyst stannous octoate 0.1wt%, mixed, heated to 110°C-125°C, dehydrated under vacuum ⁇ -0.95MPa for 1.5h-2.5h, controlled water content ⁇ 0.05%, cooled to room temperature Add defoamer BYK-088 0.4wt%, triethyl orthoformate dewatering agent 5wt%, mix evenly and seal it for storage.
  • component B hydroxyl value 200mg/KOH/g, functionality 2 polyoxypropylene ether 7.2wt% dehydration, water content ⁇ 0.05%, material cooled to room temperature, adding side reaction polymerization inhibitor benzoyl chloride (polyether amine and 0.01% of the total weight of diphenylmethane diisocyanate), slowly drop 92.8wt% diphenylmethane diisocyanate into polyether amine, and react under the protection of inert gas for 2h-3h, after the measured theoretical value is consistent with the measured value , sealed and preserved, its NCO content is 30%.
  • side reaction polymerization inhibitor benzoyl chloride polyether amine and 0.01% of the total weight of diphenylmethane diisocyanate
  • Preparation of polyurethane and its composite material products mix the polyol composition (A component) at 20-25°C and the isocyanate prepolymer (B component) at 20-25°C in a mass ratio of 100:82.7 and defoam , inject the mixed material into the mold at room temperature, raise the temperature to 70°C for 2.8 hours after 50 minutes, and leave the mold for 72 hours at room temperature to obtain a polyurethane material.
  • the performance of the polyurethane material prepared by the embodiment of the present application is significantly better than that of the comparative example.
  • More benzene rings, benzene rings have excellent heat resistance compared to -C-C-bonds in polyethers; polyols containing bisphenol groups are compared to other aromatic polyols, such as styrene graft polymer polyols
  • alcohol introduces benzene rings into the molecular chain, its viscosity is high, and the benzene rings on the side groups can improve the hardness and load resistance of the material, but it does not significantly improve the heat resistance of the material.
  • polyether amine instead of polyether synthetic prepolymer to introduce urea group in the molecular chain segment, the cohesive energy of urea group is greater than that of carbamate group, the heat resistance and hydrolysis resistance are improved, and the content of free isocyanate is reduced at the same time. Avoid isocyanate reacting with water to generate carbon dioxide, improve the performance of polyurethane materials; solve the traditional solution, when polyetheramine is located in the polyol component, polyetheramine reacts with isocyanate too quickly and has poor performance defects.
  • polyetheramine is a main and commonly used raw material for preparing sprayed polyurea elastomers. It has high reactivity, strong adaptability to the environment, and high elongation. It is applied to waterproof and anti-corrosion coatings on the surface of concrete and steel structures. And other component decorative coatings, such as used in railway bridge waterproofing and other fields; however, in the preparation of large composite materials, high wettability and slow reactivity of reinforcing materials are required, and such materials have not been popularized and applied.
  • the invention avoids the disadvantage of quick response, exerts the advantage of aging resistance, and applies this type of material to composite materials.
  • Polyetheramine reacts quickly with isocyanate, with large heat release, concentrated reaction, and many side reactions, especially the production of urea groups undergoes a large amount of crosslinking reaction with isocyanate at high temperature, and the product is brittle.
  • polyether amine is reacted with isocyanate under normal temperature to produce urea group-containing prepolymer.
  • the molecular weight of the produced prepolymer is regular and the flexibility is high. In this way, the material after the reaction of prepolymer and polyol takes into account a certain degree of toughness and hardness. Improve the heat resistance and hydrolysis resistance of polyurethane materials.
  • the solution does not contain volatile organic solvents, and is an environmentally friendly technical solution.
  • pouring large-scale composite products of wind power blades more than 2 pouring gates are designed in parallel positions at the highest point of the mold to shorten the pouring time, which is equivalent to prolonging the soaking time of the resin and reducing the requirements for resin viscosity and reactivity. It solves the disadvantages of the long pouring time of the current large-scale polyurethane composite products and further reduces the soaking time, improves the uniform soaking degree of the polyurethane resin, and reduces the defects of poor partial soaking of the product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及一种耐老化的聚氨酯材料、制备方法和应用,包括多元醇组合物和异氰酸酯预聚物,所述多元醇组合物包括如下重量百分数的组分,双酚A/聚氧化烯烃55-70%,聚氧化烯醇20-35%,低分子醇化合物2-8%,浸润剂0.2-0.7%,噁唑烷类化合物5-10%,消泡剂0.1-0.5%,催化剂0.05-0.2%;所述异氰酸酯预聚物包括如下重量百分数的组分,异氰酸酯85-95%,聚醚胺5-15%,还包括异氰酸酯和聚醚胺总重量0.01-0.03%的阻聚剂,其具有较高的耐热老化和耐湿热老化性能。

Description

一种耐老化的聚氨酯材料、制备方法和应用 技术领域
本发明属于一种高分子材料技术领域,具体涉及一种耐老化的聚氨酯材料、制备方法和应用。
背景技术
聚氨酯树脂复合材料制备及性能研究,赵庆波,北京化工大学硕士学位论文,公开聚氨酯分子结构中的氨基甲酸酯键结构,使得这种树脂材料的力学性能优异,并具备优良的耐化学性和耐老化性。其主要的原料包括多异氰酸酯(包括二异氰酸酯)和聚合多元醇(聚醚和聚酯),还包括扩链剂,如小分子二元醇BDO、TMP,或胺类如MOCA。
聚氨酯树脂的制备方法包括三种,
1、一步法,即直接将多异氰酸酯和聚合多元醇、扩链剂、催化剂等混合,在加热过程中完成聚合,扩链,固化,得到。
2、预聚体法,制备双份原料,一部分为扩链剂,另一部分为预聚物,其缺点为异氰酸酯与多元醇反应完全后,预聚物的粘度较大,在和扩链剂的混合过程中难度较大,存在较大的工艺难度。
3、半预聚体法,其包括两部分,即含活性基团部分和含-NCO部分,含活性基团部分分为两部分,一种为扩链剂(如醇、胺),另一种为聚合多元醇,含-NCO部分通过预聚的方法将聚合醇和异氰酸酯反应制备得到,然后在这种预聚物剩余的多元醇和扩链剂混合得到。其公开了一种半预聚体法制备双组份聚氨酯混合料,选用IPDI和PTMG-1000按照IPDI:PTMG-1000=8:1的摩尔比例制备端异氰酸酯预聚体,作为聚氨酯树脂料中的A组分使用;另外使用PTMG-1000与MOCA混合均匀,用作双组份混合树脂用的B组分。另外聚酯醇在使用前应该干燥除水,在110℃下,2Kpa的条件下抽真空化。将两种组分按照A:B=0.88:1的质量比例混合均匀,在烘箱中加热固化,室温冷却制得试样。
该方法采用脂肪族异氰酸酯IPDI同PTMG/MOCA为原料制备聚氨酯材料,耐黄变,但其低于30℃下物料初始粘度大,脱泡困难,30℃以上操作时间短,不适宜作为大型复合材料的成型工艺,另外该方法未涉及提高材料耐老化性耐湿热性能的方法。
其他专利,比如201280051640.4专利公开了一种采用异氰酸酯三聚体合成聚异氰脲酸酯的方法,此方法制备聚氨酯分子链中含有大量刚性基团,由于含有大量游离的异氰酸根,会使其同水反应生成二氧化碳,制得聚氨酯材料有缺陷且性能差;201510815382.8专利中采用季戊四醇为起始剂的多元醇替代甘油多元醇,改善了多元醇的吸水性,但未解决增强材料中水分同异氰酸酯的反应产生气泡的问题。201410840608.5专利中公开了一种含有羟基的丙烯酸酯类化合物,降低聚氨酯树脂粘度,提升了增强材质同树脂的浸润性,但该类物质刺激眼 睛且极易对皮肤过敏,且在真空灌注过程中因物料粘度过低导致气泡透过树脂致使叶片基体气泡缺陷。
海上风电发电机风轮叶片对于材料的耐热老化和耐湿热老化性能具有较高的要求,目前使用聚氨酯材料制备的风电叶片,其不能很好的解决上述问题。
发明内容
本发明要解决的技术问题是提供一种耐老化的聚氨酯材料、制备方法和应用,其具有较高的耐热老化和耐湿热老化性能,具体表现为在1000h热氧老化后拉伸模量≤10%,压缩强度≤10%,弯曲模量≤10%。1000h湿热老化后拉伸模量≤10%,压缩强度≤10%,弯曲模量≤10%。
一种耐老化的聚氨酯材料,包括多元醇组合物和异氰酸酯预聚物,
所述多元醇组合物包括如下重量百分数的组分,
双酚A/聚氧化烯烃55-70%
聚氧化烯醇20-35%
低分子醇化合物2-8%
浸润剂0.2-0.7%
噁唑烷类吸水剂5-10%
消泡剂0.1-0.5%
催化剂0.05-0.2%;
所述异氰酸酯预聚物包括如下重量百分数的组分,
异氰酸酯85-95%
聚醚胺5-15%,
异氰酸酯预聚物还包括异氰酸酯预聚物重量0.01-0.03%的阻聚剂。
所述多元醇组合物和异氰酸酯预聚物的重量比为1:0.8-0.95,或者所述阻聚剂为苯甲酰氯、本磺酰氯、己二酰氯、氯化氢气体、正磷酸中的一种或多种。
所述双酚A/聚氧化烯烃为双酚A/聚氧化乙烯醚或双酚A/聚氧化丙烯醚,或者所述双酚A/聚氧化烯烃的羟值150-300mg/KOH/g,官能度为2。
聚氧化烯醇为聚氧化丙烯三元醇、聚氧化丙烯二元醇、聚氧化乙烯三元醇、聚氧化乙烯二元醇或聚氧化丙烯-氧化乙烯共聚醚醇;或者所述聚氧化烯醇的不饱和度为小于0.04mmol/g,羟值200-800mg/KOH/g,官能度为2-5,优选官能度2-3。
所述低分子醇化合物为2-6个碳原子的二元醇、多元醇、醇胺、二元胺中的一种或多种,优选为一缩二乙二醇或1,2-丙二醇。
所述浸润剂为聚硅氧烷、聚醚/聚酯聚硅氧烷共聚物或者有机氟改性聚合物,优选为毕克公司型号为BYK310、BYK344或BYK345,更优选为浸润剂BYK310;
或者消泡剂为聚硅氧烷、改性聚硅氧烷或含疏水粒子的聚硅氧烷溶液,优选为毕克公司生产的BYK-060N、BYK-088或BYK-525;
或者噁唑烷类吸水剂为艾利特化工生产的ALT-101、ALT-301、ALT-402,森波拉化工生产的SL-101的一种或多种;
催化剂为含有DBU及其衍生物的热活化催化剂和异辛酸铋的混合物,优选所述含有DBU及其衍生物的热活化催化剂,更优选日本东槽株式会社生产的DB30、B41、F22,赢创化学生产的SA4、SA8中的一种或多种。相比于传统金属催化剂,该催化体系制备的聚醚多元醇分子量分布窄、不饱和度低所制备的聚氨酯材料强度高,耐热氧化性能优异。
所述异氰酸酯为二苯基甲烷二异氰酸酯、多苯基甲烷二异氰酸酯、甲苯二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、对苯二异氰酸酯、对苯二亚甲基二异氰酸酯中的一种或多种的混合物。
所述聚醚胺为聚氧化丙烯二胺、聚氧化丙烯三胺的一种或两种,总胺含量占端基总量≥90%,乙酰化值80mg/KOH/g-500mg/KOH/g,优选总胺含量占端基总量≥96%,乙酰化值150mg/KOH/g-380mg/KOH/g。
本发明制备得到的异氰酸酯预聚物的NCO含量为18%-48%,优选为25%-35%。
一种耐老化的聚氨酯材料的制备方法,包括如下步骤,
将多元醇组合物的除消泡剂、噁唑烷类吸水剂之外的其他各组分混合,升温(优选为110-125℃),真空(优选为真空度≤-0.95MPa)下脱水(一般为1.5-2.5h),控制水含量(优选为≤0.05%),降温至室温后加入消泡剂、噁唑烷类吸水剂,混合均匀,密封保存,得到多元醇组合物;
将聚醚胺脱水(优选为至水含量≤0.05%),加入阻聚剂,得到聚醚胺混合物,然后将异氰酸酯加入到聚醚胺混合物中,在惰性气体保护下反应,得到异氰酸酯预聚物;
将多元醇组合物和异氰酸酯预聚物混合,脱泡(一般为放置一段时间,放置时间一般大于50min),注入模具,加热(温度一般为70℃),熟化1.5-3h后,出模,放置室温停放3天,得到聚氨酯材料。
本发明提供一种耐老化的聚氨酯材料在制备风电叶片上的应用。
所述聚氨酯树脂可应用大型复合材料制品中,比如风电叶片,特别适用于对湿度较大的海上风电叶片。其成型工艺采用真空灌注工艺,将控制增强材料的含水量,将增强材质均匀铺设至模具内,在最高位置的平行位置设置注浇口>2个,抽真空后直接将脱泡后聚氨酯树脂从浇注机内经密闭浇注传送容器灌注至模具内,灌注过程30-40min,待充分浸润后将模具加热至70℃熟化1.5h-3h出模,自然停放72h性能趋于稳定。
本发明的有益效果为,通过本技术方案配置的聚氨酯树脂可制得一种耐热氧老化、耐湿 热老化的聚氨酯材料,该聚氨酯树脂可用于制备大型复合材料制品,制备过程中解决增强材料中因含水产生大量气泡导致的制品缺陷,该聚氨酯树脂同增强材质有良好的浸润性,提升树脂同增强材质的浸润效果,在最高位置平行位置设置多个浇注口,可快速灌注聚氨酯树脂,进一步延长浸润时间,常温操作时间>50min,满足大型复合材料制品成型工艺,制备过程中节能、工艺简单且成型效率高,特别适用于海上风电叶片的研制及生产。
①不同于传统将聚醚胺同异氰酸酯反应生成含脲的终端聚氨酯材料,通过将聚醚胺同异氰酸酯反应合成预聚体,将分子链中引入脲基,另一方面设计合适的芳香族多元醇将苯环引入分子链中,因脲基及苯环的引入提升了材料耐热、耐湿热等老化性能。该材料可用于大型聚氨酯复合材料,尤其是适用于海上风电叶片领域。
②利用反应性噁唑烷类吸水剂同水分迅速的特点,可以除去多元醇吸水问题,也可以解决增强材质在烘房搬出操作过程中吸水问题,避免水同异氰酸酯反应生成气泡夹杂在复合材料制品中,导致的制品缺陷,该技术方案解决了现有技术方案中将增强材料铺设至模具内壁后开启真空加热除去增强材料中的水分,干燥后还需要将模具冷却至室温在进行树脂的灌注,利用本技术方案既节约了能耗有提升了生产效率。
③添加聚氨酯树脂同增强材质浸润剂,使聚氨酯树脂快速浸润至增强基材中,避免聚氨酯树脂中添加非环境友好型低粘度稀释剂,同时摆脱了对超低粘度聚氨酯树脂的依赖。本技术方案不含有易挥发有机溶剂,是一种环境友好型技术方案。
④灌注风电叶片大型复合材料制品中,在模具最高点中平行位置设计>2个浇注口,缩短浇注时间,等效于延长树脂的浸润时间,降低了对树脂粘度及反应性的要求。解决了目前大型聚氨酯复合制品灌注时间长,进一步缩减浸润时间的弊端,改善了聚氨酯树脂的均匀浸润程度,减少制品局部浸润不良的缺陷。
⑤该技术方案提供的聚氨酯树脂,常温下操作时间>50min,其反应性满足制品成型工艺要求,且工艺简单,节能,提升了制品生产效率。
具体实施方式
实施例1
A组分制备:
羟值250mg/KOH/g,官能度为2的双酚A/聚氧化乙烯醚65wt%、双金属氰化物络合物催化,不饱和度0.02mmol/g,羟值350mg/KOH/g为聚氧化丙烯三元醇25wt%、一缩二乙二醇4wt%、浸润剂BYK310 0.5wt%、催化剂(日本东槽株式会社生产的B41及异辛酸铋比例1:1)进行混合,升温至120℃,真空度≤-0.95MPa下脱水2h,控制水含量≤0.05%,降温至室温加入消泡剂BYK-088 0.4wt%、噁唑烷类吸水剂ALT-301 5wt%混合均匀后密封保存。
B组分制备:
总胺含量占端基总量≥96%,乙酰化值280mg/KOH/g,官能度为2的聚醚胺D400 6.5wt%脱水,水含量≤0.05%,物料冷却至室温,加入副反应阻聚剂苯甲酰氯(聚醚胺和二苯基甲烷二异氰酸酯总重量的0.01%),将93.5wt%二苯基甲烷二异氰酸酯缓慢滴入聚醚胺中,在惰性气体保护反应2h-3h,测得理论值同实测值相符后,密封保存,其NCO含量30%。
聚氨酯材料制品制备:
将20-25℃下多元醇组合料(A组分)和20-25℃下异氰酸酯预聚体(B组分)按质量比100:81比例混合均匀并脱泡,将混合物料注入室温模具内,50min后升温至70℃熟化2.8h出模,放置室温停放72h,得到聚氨酯材料。
按上述方案混合脱泡然后平稳灌注至有4个浇注口、铺设增强基材的模具内,50min后加热模具至70℃熟化2.8h出模,放置室温停放72h,本体取样测试聚氨酯材料耐热、湿热老化性能,记录开始反应时间及聚氨酯复合材料制品表面气泡面积占比(单位面积内气泡的占比)。
实施例2
A组分制备:羟值300mg/KOH/g,官能度为2的双酚A/聚氧化丙烯醚60wt%、双金属氰化物络合物催化,不饱和度0.02mmol/g,羟值300mg/KOH/g为聚氧化乙烯三元醇30wt%、一缩二乙二醇4wt%、浸润剂BYK310 0.5wt%、催化剂(日本东槽株式会社生产的B41及异辛酸铋比例1:1)0.1wt%进行混合,升温至110℃-125℃,真空度≤-0.95MPa下脱水1.5h-2.5h,控制水含量≤0.05%,降温至室温加入消泡剂BYK-060N 0.4wt%、噁唑烷类吸水剂ALT-101 5wt%混合均匀后密封保存。
B组分制备:总胺含量占端基总量≥96%,乙酰化值200mg/KOH/g,官能度为2聚醚胺SD401 7.2wt%脱水,水含量≤0.05%,物料冷却至室温,加入副反应阻聚剂苯甲酰氯(聚醚胺和二苯基甲烷二异氰酸酯总重量的0.01%)0.01wt%,将92.8wt%二苯基甲烷二异氰酸酯缓慢滴入聚醚胺中,在惰性气体保护反应2h-3h,测得理论值同实测值相符后,密封保存,其NCO含量30%。
聚氨酯材料制品制备:将20-25℃下多元醇组合料(A组分)和20-25℃下异氰酸酯预聚体(B组分)按质量比100:85.9比例混合均匀并脱泡,将混合物料注入室温模具内,50min后升温至70℃熟化2.8h出模,放置室温停放72h,得到聚氨酯材料。
按上述方案混合脱泡然后平稳灌注至有4个浇注口、铺设增强基材的模具内,50min后加热模具至70℃熟化2.8h出模,放置室温停放72h,本体取样测试聚氨酯材料耐热、湿热老化性能,记录开始反应时间及聚氨酯复合材料制品表面气泡面积占比(单位面积内气泡的占比)。
实施例3
A组分制备:羟值150mg/KOH/g,官能度为2的双酚A/聚氧化丙烯醚55wt%、双金属氰化物络合物催化,不饱和度0.02mmol/g,羟值600mg/KOH/g为聚氧化乙烯二元醇35wt%、1.2-丙二醇4wt%、浸润剂BYK310 0.5wt%、催化剂(日本东槽株式会社生产的B41及异辛酸铋比例1:1)0.1wt%进行混合,升温至110℃-125℃,真空度≤-0.95MPa下脱水1.5h-2.5h,控制水含量≤0.05%,降温至室温加入消泡剂BYK-060N 0.4wt%、噁唑烷类吸水剂SL-101 5wt%混合均匀后密封保存。
B组分制备:总胺含量占端基总量≥96%,乙酰化值370KOH/g,官能度为3聚醚胺AMT403 5.7wt%,水含量≤0.05%,物料冷却至室温,加入副反应阻聚剂苯甲酰氯(聚醚胺和二苯基甲烷二异氰酸酯总重量的0.01%),将94.3wt%二苯基甲烷二异氰酸酯缓慢滴入聚醚胺中,在惰性气体保护反应2h-3h,测得理论值同实测值相符后,密封保存,其NCO含量30%。
聚氨酯材料制品制备:将20-25℃下多元醇组合料(A组分)和20-25℃下异氰酸酯预聚体(B组分)按质量比100:93比例混合均匀并脱泡,将混合物料注入室温模具内,50min后升温至70℃熟化2.8h出模,放置室温停放72h,得到聚氨酯材料。
按上述方案混合脱泡然后平稳灌注至有4个浇注口、铺设增强基材的模具内,50min后加热模具至70℃熟化2.8h出模,放置室温停放72h,本体取样测试聚氨酯材料耐热、湿热老化性能,记录开始反应时间及聚氨酯复合材料制品表面气泡面积占比(单位面积内气泡的占比)。
实施例4
A组分制备:羟值250mg/KOH/g,官能度为2的双酚A/聚氧化乙烯醚65wt%、双金属氰化物络合物催化,不饱和度0.02mmol/g,羟值350mg/KOH/g为聚氧化丙烯三元醇25wt%、一缩二乙二醇4wt%、浸润剂BYK310 0.5wt%、催化剂(日本东槽株式会社生产的B41及异辛酸铋比例1:1)0.1wt%进行混合,升温至110℃-125℃,真空度≤-0.95MPa下脱水1.5h-2.5h,控制水含量≤0.05%,降温至室温加入消泡剂BYK-088 0.4wt%、噁唑烷类吸水剂ALT-301 5wt%混合均匀后密封保存。
B组分制备:总胺含量占端基总量≥96%,乙酰化值280mg/KOH/g,官能度为2聚醚胺D400 11.9wt%脱水,水含量≤0.05%,物料冷却至室温,加入副反应阻聚剂苯甲酰氯(聚醚胺和二苯基甲烷二异氰酸酯总重量的0.01%),将88.1wt%二苯基甲烷二异氰酸酯缓慢滴入聚醚胺中,在惰性气体保护反应2h-3h,测得理论值同实测值相符后,密封保存,其NCO含量27%。
聚氨酯材料制品制备:将20-25℃下多元醇组合料(A组分)和20-25℃下异氰酸酯预聚体(B组分)按质量比100:90比例混合均匀并脱泡,将混合物料注入室温模具内,50min后升温至70℃熟化2.8h出模,放置室温停放72h,得到聚氨酯材料。
按上述方案混合脱泡然后平稳灌注至有4个浇注口、铺设增强基材的模具内,50min后 加热模具至70℃熟化2.8h出模,放置室温停放72h,本体取样测试聚氨酯材料耐热、湿热老化性能,记录开始反应时间及聚氨酯复合材料制品表面气泡面积占比(单位面积内气泡的占比)。
对比例1
同实施例1相比,A组分中的双酚A/聚氧化乙烯醚替换为聚氧化乙烯醚,其他同实施例1相同。
对比例2
A组分制备:羟值250mg/KOH/g,官能度为2的双酚A/聚氧化乙烯醚60wt%、双金属氰化物络合物催化,不饱和度0.02mmol/g,羟值300mg/KOH/g为聚氧化丙烯二元醇30wt%、一缩二乙二醇4wt%、浸润剂BYK310 0.5wt%、催化剂(B41及异辛酸铋比例1:1)0.1wt%进行混合,升温至110℃-125℃,真空度≤-0.95MPa下脱水1.5h-2.5h,控制水含量≤0.05%,降温至室温加入消泡剂BYK-088 0.4wt%、噁唑烷类吸水剂ALT-101 5wt%混合均匀后密封保存。
B组分制备:羟值200mg/KOH/g,官能度为3聚氧化乙烯醚11.3wt%脱水,水含量≤0.05%,物料冷却至室温,加入副反应阻聚剂苯甲酰氯(聚醚胺和二苯基甲烷二异氰酸酯总重量的0.01%),将88.7wt%二苯基甲烷二异氰酸酯缓慢滴入聚醚胺中,在惰性气体保护反应2h-3h,测得理论值同实测值相符后,密封保存,其NCO含量28%。
聚氨酯及其复合材料制品制备:将20-25℃下多元醇组合料(A组分)和20-25℃下异氰酸酯预聚体(B组分)按质量比100:83.5比例混合均匀并脱泡,将混合物料注入室温模具内,50min后升温至70℃熟化2.8h出模,放置室温停放72h,得到聚氨酯材料。按上述方案混合脱泡然后平稳灌注至有4个浇注口、铺设增强基材的模具内,50min后加热模具至70℃熟化2.8h出模,放置室温停放72h,本体取样测试聚氨酯材料耐热、湿热老化性能,记录开始反应时间及聚氨酯复合材料制品表面气泡面积占比(单位面积内气泡的占比)。
对比例3
A组分制备:羟值300mg/KOH/g,官能度为2的聚氧化乙烯醚73wt%、羟值500mg/KOH/g为聚氧化丙烯二元醇20wt%、一缩二乙二醇2wt%、浸润剂BYK310 0.5wt%、催化剂辛酸亚锡0.1wt%进行混合,升温至110℃-125℃,真空度≤-0.95MPa下脱水1.5h-2.5h,控制水含量≤0.05%,降温至室温加入消泡剂BYK-088 0.4wt%、原甲酸三乙酯除水剂5wt%混合均匀后密封保存。
B组分制备:羟值200mg/KOH/g,官能度为2聚氧化丙烯醚7.2wt%脱水,水含量≤0.05%,物料冷却至室温,加入副反应阻聚剂苯甲酰氯(聚醚胺和二苯基甲烷二异氰酸酯总重量的0.01%),将92.8wt%二苯基甲烷二异氰酸酯缓慢滴入聚醚胺中,在惰性气体保护反应2h-3h,测得理论值同实测值相符后,密封保存,其NCO含量30%。
聚氨酯及其复合材料制品制备:将20-25℃下多元醇组合料(A组分)和20-25℃下异氰酸酯预聚体(B组分)按质量比100:82.7比例混合均匀并脱泡,将混合物料注入室温模具内,50min后升温至70℃熟化2.8h出模,放置室温停放72h,得到聚氨酯材料。
按上述方案混合脱泡然后平稳灌注至有4个浇注口、铺设增强基材的模具内,50min后加热模具至70℃熟化2.8h出模,放置室温停放72h,本体取样测试聚氨酯材料耐热、湿热老化性能,记录开始反应时间及聚氨酯复合材料制品表面气泡面积占比(单位面积内气泡的占比)。
测试上述实施例和对比例的聚氨酯材料的性能,得到如表1的性能数据
表1实施例和对比例的聚氨酯材料的性能数据
Figure PCTCN2021130450-appb-000001
从表1的数据可以看出,本申请的实施例制得的聚氨酯材料想性能显著优于对比例,其可能的原因为用含有双酚基团的多元醇,使聚氨酯分软链段中引入更多苯环,苯环相比于聚醚中-C-C-键,具有优异的耐热性能;含有双酚基团的多元醇相比于其他芳香族多元醇,比如苯乙烯接枝聚合物多元醇虽然在分子链上引入苯环,其粘度大,侧基上苯环可以提升材料的硬度及抗承载性,但对材料耐热性能提升不明显。
用聚醚胺替代聚醚合成预聚体在分子链段中引入脲基,脲基的内聚能大于氨基甲酸酯基团,耐热及耐水解性能提升,同时降低了游离异氰酸酯的含量,避免异氰酸酯同水反应生成二氧化碳,提高聚氨酯材料的性能;解决传统方案中,聚醚胺位于多元醇组分中时,聚醚胺同异氰酸酯反应过快,性能差的缺陷。
现有技术中,聚醚胺是一种制备喷涂聚脲弹性体的主要且常用原料,其反应性高,对环境适应性强,延伸率大,应用于混凝土和钢结构表面的防水防腐涂层以及其他构件装饰涂层,例如应用于铁路桥梁防水等领域;但在大型复合材料制备中要求对增强材料高的浸润性、反应性慢等受限,该类材料一直未得到推广应用。本发明避开其反应快的劣势,发挥其耐老化优势,将该类材料应用于复合材料中。
聚醚胺同异氰酸酯反应快,且放热大,反应集中,且副反应较多,尤其生产脲基在高温 下同异氰酸酯发生大量交联反应,制品脆性大。本方案中控制常温下使聚醚胺同异氰酸酯反应生产含脲基预聚体,生产预聚体分子量规整,柔顺度高,以此预聚体和多元醇反应后的材料兼顾一定韧性及硬度,提升了聚氨酯材料耐热及耐水解性能。
利用反应性噁唑烷类活性剂同水分快速反应的特点,可以除去多元醇吸水问题,更可以解决增强材质在烘房搬出操作过程中吸水问题,大幅度减少了水同异氰酸酯反应生成气泡夹杂在复合材料制品中导致的制品缺陷,该技术方案解决了现有技术方案中将增强材料铺设至模具内壁后开启真空加热除去增强材料中的水分,干燥后还需要将模具冷却至室温在进行树脂的灌注,利用本技术方案既节约了能耗又提升了生产效率。
添加聚氨酯树脂同增强材质浸润剂,使聚氨酯树脂快速浸润至增强基材中,避免聚氨酯树脂中添加非环境友好型低粘度稀释剂,摆脱了对超低粘度聚氨酯树脂的依赖。该方案不含有易挥发有机溶剂,是一种环境友好型技术方案。
灌注风电叶片大型复合材料制品中,在模具最高点中平行位置设计>2个浇注口,缩短浇注时间,等效于延长树脂的浸润时间,降低了对树脂粘度及反应性的要求。解决了目前大型聚氨酯复合制品灌注时间长,进一步缩减浸润时间的弊端,改善了聚氨酯树脂的均匀浸润程度,减少制品局部浸润不良的缺陷。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本公开的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请中一个或多个实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。
本申请中一个或多个实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本申请中一个或多个实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种耐老化的聚氨酯材料,其特征是,包括多元醇组合物和异氰酸酯预聚物,
    所述多元醇组合物包括如下重量百分数的组分,
    双酚A/聚氧化烯烃55-70%
    聚氧化烯醇20-35%
    低分子醇化合物2-8%
    浸润剂0.2-0.7%
    噁唑烷类吸水剂5-10%
    消泡剂0.1-0.5%
    催化剂0.05-0.2%;
    所述异氰酸酯预聚物包括如下重量百分数的组分,
    异氰酸酯85-95%
    聚醚胺5-15%,
    异氰酸酯预聚物还包括异氰酸酯预聚物重量0.01-0.03%的阻聚剂。
  2. 如权利要求1所述的耐老化的聚氨酯材料,其特征是,所述多元醇组合物和异氰酸酯预聚物的重量比为1:0.8-0.95。
  3. 如权利要求1所述的耐老化的聚氨酯材料,其特征是,所述阻聚剂为苯甲酰氯、本磺酰氯、己二酰氯、氯化氢气体、正磷酸中的一种或多种。
  4. 如权利要求1所述的耐老化的聚氨酯材料,其特征是,所述聚醚胺为聚氧化丙烯二胺、聚氧化丙烯三胺的一种或两种,总胺含量占端基总量≥90%,乙酰化值80-500mg/KOH/g。
  5. 如权利要求1所述的耐老化的聚氨酯材料,其特征是,所述双酚A/聚氧化烯烃为双酚A/聚氧化乙烯醚或双酚A/聚氧化丙烯醚;或者所述双酚A/聚氧化烯烃的羟值150-300mg/KOH/g,官能度为2。
  6. 如权利要求1-5任一项所述的耐老化的聚氨酯材料,其特征是,聚氧化烯醇为聚氧化丙烯三元醇、聚氧化丙烯二元醇、聚氧化乙烯三元醇、聚氧化乙烯二元醇或聚氧化丙烯-氧化乙烯共聚醚醇;或者所述聚氧化烯醇的不饱和度为小于0.04mmol/g,羟值200-800mg/KOH/g,官能度为2-5。
  7. 如权利要求1-5任一项所述的耐老化的聚氨酯材料,其特征是,所述低分子醇化合物为2-6个碳原子的二元醇、多元醇、醇胺、二元胺中的一种或多种。
  8. 如权利要求1-5任一项所述的耐老化的聚氨酯材料,其特征是,所述浸润剂为聚硅氧烷、聚醚/聚酯聚硅氧烷共聚物或者有机氟改性聚合物。
  9. 如权利要求1-5任一项所述的耐老化的聚氨酯材料,其特征是,所述消泡剂为聚硅氧烷、改性聚硅氧烷或含疏水粒子的聚硅氧烷溶液。
  10. 如权利要求1-5任一项所述的耐老化的聚氨酯材料,其特征是,噁唑烷类吸水剂为艾利特化工生产的ALT-101、ALT-301、ALT-402,森波拉化工生产的SL-101的一种或多种。
  11. 如权利要求1-5任一项所述的耐老化的聚氨酯材料,其特征是,催化剂为含有DBU及其衍生物的热活化催化剂和异辛酸铋的混合物。
  12. 如权利要求1-5任一项所述的耐老化的聚氨酯材料,其特征是,所述异氰酸酯为二苯基甲烷二异氰酸酯、多苯基甲烷二异氰酸酯、甲苯二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、对苯二异氰酸酯、对苯二亚甲基二异氰酸酯中的一种或多种的混合物。
  13. 一种如权利要求1-12任一项所述的耐老化的聚氨酯材料的制备方法,其特征是,包括如下步骤,
    将多元醇组合物的除消泡剂、噁唑烷类吸水剂之外的其他各组分混合,升温,真空脱水,控制水含量,降温至室温后加入消泡剂、噁唑烷类吸水剂,混合均匀,得到多元醇组合物;
    将聚醚胺脱水,加入阻聚剂,得到聚醚胺混合物,然后将异氰酸酯加入到聚醚胺混合物中,在惰性气体保护下反应,得到异氰酸酯预聚物;
    将多元醇组合物和异氰酸酯预聚物混合,脱泡,注入模具,加热,得到聚氨酯材料。
  14. 如权利要求13所述的耐老化的聚氨酯材料的制备方法,其特征是,异氰酸酯滴加加入到聚醚胺混合物中。
  15. 一种如权利要求1-12任一项所述的耐老化的聚氨酯材料在制备风电叶片上的应用。
PCT/CN2021/130450 2021-09-16 2021-11-12 一种耐老化的聚氨酯材料、制备方法和应用 WO2023040027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111089294.6 2021-09-16
CN202111089294.6A CN113773470A (zh) 2021-09-16 2021-09-16 一种耐老化的聚氨酯材料、制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023040027A1 true WO2023040027A1 (zh) 2023-03-23

Family

ID=78851658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130450 WO2023040027A1 (zh) 2021-09-16 2021-11-12 一种耐老化的聚氨酯材料、制备方法和应用

Country Status (2)

Country Link
CN (1) CN113773470A (zh)
WO (1) WO2023040027A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805714B (zh) * 2022-03-14 2024-02-23 四川东树新材料有限公司 真空导入聚氨酯体系、frp材料及其制备方法
CN116948589B (zh) * 2023-09-20 2023-12-12 山东一诺威新材料有限公司 封闭型高模量中空玻璃封边胶及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093528A (en) * 1989-08-19 1992-03-03 Bp Chemicals Limited Process for the production of secondary amine terminated polyethers and their use
JP2002080555A (ja) * 2000-09-07 2002-03-19 Mitsui Chemicals Inc 2液硬化型樹脂、その製造方法およびその用途
US20090171060A1 (en) * 2008-01-02 2009-07-02 Richard Gerkin Impact-Resistant Polyurethane
CN104448289A (zh) * 2014-11-27 2015-03-25 山东一诺威新材料有限公司 提高聚氨酯阻尼性能的聚醚多元醇、其制备方法及其制备的阻尼材料的制备方法
CN105255333A (zh) * 2015-10-09 2016-01-20 佛山市科顺建筑材料有限公司 一种喷涂聚脲弹性涂料及其制备方法
CN109265639A (zh) * 2018-08-10 2019-01-25 上纬新材料科技股份有限公司 一种具有耐热性的改性聚氨酯组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093528A (en) * 1989-08-19 1992-03-03 Bp Chemicals Limited Process for the production of secondary amine terminated polyethers and their use
JP2002080555A (ja) * 2000-09-07 2002-03-19 Mitsui Chemicals Inc 2液硬化型樹脂、その製造方法およびその用途
US20090171060A1 (en) * 2008-01-02 2009-07-02 Richard Gerkin Impact-Resistant Polyurethane
CN104448289A (zh) * 2014-11-27 2015-03-25 山东一诺威新材料有限公司 提高聚氨酯阻尼性能的聚醚多元醇、其制备方法及其制备的阻尼材料的制备方法
CN105255333A (zh) * 2015-10-09 2016-01-20 佛山市科顺建筑材料有限公司 一种喷涂聚脲弹性涂料及其制备方法
CN109265639A (zh) * 2018-08-10 2019-01-25 上纬新材料科技股份有限公司 一种具有耐热性的改性聚氨酯组合物

Also Published As

Publication number Publication date
CN113773470A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN107602817B (zh) 一种高耐寒聚氨酯减震垫及其制备方法
CN106397706B (zh) 高硬度环氧改性聚氨酯复合材料及其制备方法
CN107522841B (zh) 一种无溶剂法制备羧酸/磺酸混合型高固含量水性聚氨酯的方法
WO2023040027A1 (zh) 一种耐老化的聚氨酯材料、制备方法和应用
US9580527B2 (en) Dual cure composite resins containing uretdione and unsaturated sites
CN104628980B (zh) 一种无溶剂合成革用聚氨酯树脂及应用该聚氨酯树脂制成合成革的方法
CN111154062B (zh) 用于聚氨酯-纤维复合材料的异氰酸酯预聚体及其制备方法与用途
CN110627985B (zh) 一种聚乳酸基热塑性聚氨酯弹性体材料及其制备方法
CN101173032A (zh) 大分子量聚氨酯丙烯酸酯及其合成方法
CN105801793B (zh) 环状二醇改性水性多异氰酸酯固化剂及其制备方法与应用
CN105778005B (zh) 可自由基聚合的聚氨酯组合物
CN107793548A (zh) 一种双组份聚氨酯树脂、其制备方法以及将其用于制备聚氨酯拉挤复合材料的工艺
CN110105525B (zh) 一种耐湿热老化ndi基聚氨酯微孔弹性体及其制备方法
CN111217974A (zh) 一种可自修复聚氨酯材料及其制备方法与应用
CN109734875A (zh) 一种氨基硅烷偶联剂改性水性聚氨酯及其制备方法
CN109880050B (zh) 一种石墨烯类物质改性的弹性体材料及其制备方法
CN109762459B (zh) 一种光可逆的疏水自修复无溶剂聚氨酯及其制备方法
US11965076B2 (en) Self-healing polyurethane (PU) material, double-layer self-healing PU film, and preparation method and use thereof
JP2024055880A (ja) テレケリックポリウレタン、その調製方法及び使用
CN110229298B (zh) 一种聚脲基多元醇及制备方法和聚醚型鞋底原液及制备方法
CN112011029A (zh) 一种环碳酸酯基封端聚氨酯预聚体、制备方法及应用
CN113307941B (zh) 一种丙烯酸酯齐聚物及其制备方法与应用方法
CN113831830B (zh) 一种高阻隔聚氨酯自修复组合物及其制备方法
CN107903371A (zh) 一种高温自交联改性水性聚氨酯树脂及其制备方法
CN109642006A (zh) 具有耐高温性的聚氨酯材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE