WO2023038479A1 - 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼 - Google Patents

생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼 Download PDF

Info

Publication number
WO2023038479A1
WO2023038479A1 PCT/KR2022/013574 KR2022013574W WO2023038479A1 WO 2023038479 A1 WO2023038479 A1 WO 2023038479A1 KR 2022013574 W KR2022013574 W KR 2022013574W WO 2023038479 A1 WO2023038479 A1 WO 2023038479A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid sequence
plasmid
lamp2
sequence encoding
Prior art date
Application number
PCT/KR2022/013574
Other languages
English (en)
French (fr)
Inventor
장강원
최종현
Original Assignee
주식회사 꿈랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 꿈랩 filed Critical 주식회사 꿈랩
Priority to CA3231340A priority Critical patent/CA3231340A1/en
Priority to EP22867747.2A priority patent/EP4400590A1/en
Priority to CN202280061140.2A priority patent/CN117916379A/zh
Priority to GB2404561.9A priority patent/GB2625671A/en
Priority to JP2024515607A priority patent/JP2024531664A/ja
Priority to AU2022342997A priority patent/AU2022342997A1/en
Priority claimed from KR1020220114341A external-priority patent/KR102577502B1/ko
Publication of WO2023038479A1 publication Critical patent/WO2023038479A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a plasmid platform for the stable expression and delivery of biomolecules.
  • exosomes are produced in late endosome budding and fuse with the plasma membrane before being released into the extracellular space.
  • Exosomes are 40-200 nm vesicles composed of a lipid bilayer membrane rich in phosphocholine, cholesterol and ceramide, secreted from almost all types of cells, and stably present in all types of body fluids such as blood, lymph and sweat. do.
  • body fluids such as blood, lymph and sweat. do.
  • exosomes due to their small size and weak negative charge, exosomes have a long circulation time in the body and reach the inside of organs.
  • Exosomes can also deliver hydrophilic or hydrophobic drugs by evading phagocytosis and can penetrate the vascular endothelium to target cells.
  • Exosomes are known to exert targeted effects on specific cells due to specific surface proteins such as tetraspanin. It has been reported that encapsulation of exosomes increases the stability and bioavailability of curcumin in vitro and in vivo, and increases anti-inflammatory activity. In another study, exosomes cross the blood-brain barrier and enter the brain. It has been reported to deliver doxorubicin, deliver siRNA to cells, and effectively reduce the level of RAD 51 protein, a potent target for cancer treatment.
  • One object of the present invention is to provide a nucleic acid sequence encoding a modified protein in which an intracellular domain, an extracellular domain, or a combination thereof of LAMP-2B (Lysosome-Associated Membrane Glycoprotein 2B) is removed. , To provide a plasmid platform for the stable expression and delivery of biomolecules.
  • LAMP-2B Lisosome-Associated Membrane Glycoprotein 2B
  • One object of the present invention is to provide a recombinant plasmid for the stable expression and delivery of a biomolecule, further comprising a sequence encoding a biomolecule to be expressed and delivered within the plasmid platform.
  • One object of the present invention is to provide an exosome for the stable expression and delivery of biomolecules containing the recombinant plasmid.
  • One object of the present invention is to provide a composition for diagnosing cancer, including the exosome, wherein the biomolecule is a peptide that specifically binds to a protein specifically expressed on the surface of cancer cells.
  • the intracellular domain of LAMP-2B (Lysosome-Associated Membrane Glycoprotein 2B), the extracellular domain (extracellular domain), or a combination thereof is removed.
  • LAMP-2B Lysosome-Associated Membrane Glycoprotein 2B
  • extracellular domain extracellular domain
  • Including a nucleic acid sequence encoding a modified protein To provide a plasmid platform for the stable expression and delivery of biomolecules.
  • the plasmid platform significantly increases the stability of the expression of the target protein to be expressed inside or outside the cell together with LAMP-2B when intracellular, extracellular, or both of the conventionally known LAMP-2B is removed, It is based on the finding that delivery to cells is also significantly increased.
  • the LAMP-2B is for a conventionally known amino acid sequence or a nucleic acid sequence encoding the same, and may refer to a nucleic acid sequence to be loaded into a plasmid platform. According to a specific embodiment, it may be a sequence having an accession number of NM_013995.2, but is not particularly limited thereto.
  • the intracellular domain and extracellular domain may refer to a region expressed inside the phospholipid bilayer of the cell and a region expressed outside the cell when LAMP-2B is expressed on the cell, respectively.
  • the intracellular domain refers to a region expressed inside the exosome phospholipid bilayer
  • the extracellular domain refers to a region expressed outside the phospholipid bilayer of the exosome, respectively it may be
  • the modified protein is characterized in that the intracellular domain, the extracellular domain, or a combination thereof of LAMP-2B is removed, and the biomolecule (or target) to be expressed in the extracellular region (or the phospholipid bilayer external region) protein) and the intracellular domain may be preferably removed for the purpose of stabilizing the expression of a biomolecule (or an active protein) to be expressed in the intracellular region (or the intracellular region of the phospholipid bilayer).
  • the plasmid platform may include a nucleic acid sequence encoding a protein from which the intracellular domain of LAMP-2B has been removed.
  • the modified protein stabilizes the expression of the biomolecule to be expressed in the outer region of the cell and the biomolecule to be expressed in the inner region of the cell, and at the same time stably delivers the biomolecule to the desired cell.
  • both intracellular and extracellular domains may be removed.
  • the plasmid platform may be one in which both the intracellular and extracellular domains of LAMP-2B are removed.
  • the nucleic acid sequence may have any one of SEQ ID NOs: 2 to 4, and preferably for the purpose of stabilizing the expression of a biomolecule to be expressed in the inner region of the cell It may have a nucleic acid sequence of SEQ ID NO: 2 or 4, more preferably for the purpose of stably delivering the biomolecule to the desired cell while stabilizing the expression of the biomolecule to be expressed in the cell inner region. may have the nucleic acid sequence of SEQ ID NO: 4.
  • the plasmid platform may further include a nucleic acid sequence encoding a glycosylated region, which may be for the purpose of stabilizing the expression and delivery of a biomolecule to be expressed by loading onto the plasmid platform. More specifically, The purpose may be to stabilize the expression and delivery of both the biomolecule in the cell inner region and the cell outer region, but is not particularly limited thereto.
  • the glycosylated region can be freely introduced by well-known means as a means capable of introducing glycosylation into a protein expression structure, and in terms of application to the plasmid platform, a nucleic acid sequence encoding a glycosylated region can be introduced into a plasmid It may be in the form of inclusion within the platform.
  • NXS N-linked glycosylation
  • NXT X can be any amino acid sequence except proline
  • NXC X can be any amino acid sequence except proline
  • a method of including a sequence encoding a A method of further including a sequence encoding 1-5 amino acids at the C-terminal portion of the N-glycosylation amino acid sequence;
  • the nucleic acid sequence encoding the glycosylated region is not particularly limited as long as it can be included in the plasmid platform.
  • the extracellular region or , the outer region of the phospholipid bilayer
  • a sequence encoding a biomolecule or target protein
  • the nucleic acid sequence encoding the glycosylated region may be located in the direction of the extracellular region of the modified protein.
  • the nucleic acid sequence encoding the glycosylated region may be located in the direction of the extracellular region based on the nucleic acid sequence encoding the modified protein.
  • the nucleic acid sequence encoding the glycosylated region may include any one of SEQ ID NOs: 11 to 13, and is preferably SEQ ID NO: 11 in terms of simultaneously maximizing stable expression and delivery efficiency of biomolecules. It may contain a nucleic acid sequence.
  • the plasmid platform may have a coding sequence including the glycosylation region and simultaneously have the modified protein form, and detailed descriptions of each are as described above.
  • the plasmid platform may simultaneously include a sequence encoding a GNSTM motif and a sequence encoding a modified protein from which both the extracellular and intracellular domains of LAMP-2B are removed.
  • the sequence encoding the GNSTM motif may be included so as to be positioned above (or in the direction of the extracellular region) the sequence encoding the modified protein.
  • the plasmid platform may include the nucleic acid sequence of SEQ ID NO: 4 and the nucleic acid sequence of SEQ ID NO: 11.
  • a recombinant plasmid for stable expression and delivery of a biomolecule further comprising a nucleic acid sequence encoding a biomolecule to be expressed and delivered within the above-described plasmid platform, is provided.
  • the location of the nucleic acid sequence encoding the biomolecule is not particularly limited as long as it is located in the above-described plasmid platform to successfully express the desired biomolecule.
  • the glycosylated region It may be located between the nucleic acid sequence encoding the modified protein and the nucleic acid sequence encoding the modified protein, ii) in the direction of the intracellular region based on the nucleic acid sequence encoding the modified protein, or iii) both.
  • the purpose of expressing or delivering the biomolecule to the extracellular space when positioned in the extracellular direction based on the nucleic acid sequence encoding the modified protein, the purpose of expressing or delivering the biomolecule to the extracellular space (or, in the region outside the phospholipid bilayer) And, when positioned in the intracellular direction based on the nucleic acid sequence encoding the modified protein, it may be for the purpose of expressing or delivering a biomolecule within the cell (or the inner region of the phospholipid bilayer), but is particularly limited thereto. It is not.
  • the biomolecule is not particularly limited as long as it is to be expressed using the plasmid platform, and specific examples include nucleic acid molecules, aptamers, peptides, proteins, and the like. At least one selected from the group consisting of glycoproteins, lipoproteins, immunoglobulins, hormones, growth factors, recombinases, and fluorescent proteins. can
  • an exosome for stable expression and delivery of a biomolecule containing a product expressed from the above-described recombinant plasmid is provided.
  • the exosome contains modified proteins and biomolecules expressed from the above-described recombinant plasmid, and the biomolecules can be stably expressed by being located inside, outside, or both of the exosome, and delivered to the desired cell.
  • the biomolecule may include a substance that is expressed on the outside of the exosome and specifically binds to the surface of the target cell. It can be delivered effectively, it will be possible to determine the presence of target cells by detecting the expressed biomolecules, and in addition, exosomes can be used for various well-known purposes based on targeting to target cells without particular limitation.
  • the exosomes are cells infected with a specific virus or It will be able to specifically bind to cancer cells, and by using this, it will be possible to determine whether a specific virus is infected or whether cancer cells exist, and at the same time, biomolecules contained in exosomes can be delivered into virus-infected cells or cancer cells. .
  • composition for diagnosing cancer comprising the above-described exosome, wherein the biomolecule specifically binds to a cancer cell surface-specific expression protein.
  • the exosomes described above are included, the biomolecule specifically binds to a cancer cell surface-specific expression protein, and a therapeutic substance to be delivered into cancer cells is included.
  • a pharmaceutical composition for preventing or treating cancer is included.
  • the biomolecule may include one that specifically binds to a cancer cell surface-specific expression protein, and may include one that is expressed in a region outside the bilayer of the exosome.
  • the exosome targets the cancer cell, and can be used for diagnosis of cancer based on this targeting.
  • the biomolecule may include a therapeutic substance to be delivered into cancer cells, and such a therapeutic substance may be expressed in the inner region of the bilayer of the exosome.
  • a therapeutic substance to be delivered into cancer cells
  • such a therapeutic substance may be expressed in the inner region of the bilayer of the exosome.
  • the above-described exosomes interact with cancer cells (eg, surface receptor interaction, membrane fusion, receptor-mediated endocytosis, phagocytosis (phagocytosis or micropinocytosis, etc.), the therapeutic substance can be delivered into cancer cells, and through this, cancer prevention or treatment effects can be achieved.
  • the cancer includes carcinomas including bladder cancer, breast cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, prostate cancer, pancreatic cancer, gastric cancer, cervical cancer, thyroid cancer and skin cancer including squamous cell carcinoma; hematopoietic tumors of lymphoid origin, including leukemia, acute lymphocytic leukemia, acute lymphocytic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and Burkett's lymphoma; hematopoietic tumors of the myeloid type, including acute and chronic myelogenous leukemia and promyelocytic leukemia; tumors of mesenchymal origin including fibrosarcoma and rhabdomyomas; other tumors including melanoma, seminoma, teratocarcinoma, neuroblastoma and glioma; tumors of
  • composition of the present invention may further include a pharmaceutically acceptable carrier, and may be formulated with the carrier.
  • pharmaceutically acceptable carrier refers to a carrier or diluent that does not stimulate organisms and does not inhibit the biological activity and properties of the administered compound.
  • Acceptable pharmaceutical carriers for compositions formulated as liquid solutions are sterile and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added if necessary.
  • diluents such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
  • composition of the present invention can be applied in any formulation containing the exosome of the present invention as an active ingredient, and can be prepared as an oral or parenteral formulation.
  • the pharmaceutical formulations of the present invention may be taken oral, rectal, nasal, topical (including buccal and sublingual), subcutaneous, vaginal or parenteral (intramuscular, subcutaneous). and intravenous) or forms suitable for administration by inhalation or insufflation.
  • the composition of the present invention is administered in a pharmaceutically effective amount.
  • the effective dose level depends on the type and severity of the patient's disease, the activity of the drug, the sensitivity to the drug, the time of administration, the route of administration and the rate of excretion, the duration of treatment, factors including drugs used concurrently, and other factors well known in the medical field. can be determined
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple times. Considering all of the above factors, it is important to administer an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the dosage of the composition of the present invention varies greatly depending on the patient's body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of the disease, and the appropriate dosage is, for example, the patient's It may vary depending on the amount of drug accumulated in the body and/or the specific efficacy of the delivery system of the present invention used. In general, it can be calculated based on the EC50 measured to be effective in in vivo animal models and in vitro, and can be, for example, 0.01 ⁇ g to 1 g per 1 kg of body weight, in a unit period of daily, weekly, monthly or yearly, It may be administered once to several times per unit period, or may be administered continuously over a long period of time using an infusion pump. The number of repeated administrations is determined in consideration of the time the drug stays in the body, the concentration of the drug in the body, and the like.
  • the composition may be administered for recurrence even after treatment has been completed according to the course of disease treatment.
  • composition of the present invention may further contain one or more active ingredients exhibiting the same or similar functions in relation to cancer treatment, or a compound that maintains/increases the solubility and/or absorption of the active ingredient.
  • a chemotherapeutic agent, an anti-inflammatory agent, an antiviral agent, and/or an immunomodulatory agent may be further included.
  • compositions of the present invention can be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the dosage form may be in the form of a powder, granule, tablet, emulsion, syrup, aerosol, soft or hard gelatin capsule, sterile injectable solution, or sterile powder.
  • nucleic acid sequences described in the present invention can be modified to some extent.
  • a person skilled in the art will readily understand that a nucleic acid sequence having 70% or more homology maintained by such artificial modification is equivalent to that derived from the nucleic acid sequence of the present invention, as long as it retains the activity desired in the present invention.
  • the term 'homology' indicates the degree of identity with the nucleic acid sequence presented above, and the comparison of homology can be calculated as a percentage (%) of homology between two or more sequences using the naked eye or an easy-to-purchase comparison program. . preferably at least 70%, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95% identical to a nucleic acid sequence set forth herein.
  • the term 'plasmid' refers to a genetic construct containing essential regulatory elements such as a promoter so that a target gene can be expressed in a suitable host, and may be integrated into the genome of a host cell or microorganism. there is.
  • 'operably linked' means that a nucleic acid sequence of a promoter or a variant thereof and a nucleic acid sequence encoding a protein of interest are functionally linked so as to perform a general function.
  • Operational linkage with a plasmid can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cutting and linking uses enzymes generally known in the art.
  • a 'regulatory element' refers to an untranslated nucleic acid sequence that helps or influences the enhancement of transcription, translation, or expression of a nucleic acid sequence encoding a protein.
  • the plasmid platform of the present invention may include a promoter or a variant thereof as a control element, and an expression control sequence capable of affecting the expression of a protein, such as an initiation codon, a stop codon, a polyadenylation signal, an enhancer, a membrane Signal sequences for targeting or secretion may be included.
  • the plasmid in the present invention when it is a replicable expression plasmid, it may include a replication origin, which is a specific nucleic acid sequence at which replication is initiated.
  • the plasmid in the present invention may contain a selection marker.
  • Selectable markers are for selecting cells or microorganisms transformed with the plasmid, and markers conferring selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or expression of surface proteins may be used. Since only cells or microorganisms expressing the selectable marker survive in an environment treated with a selective agent, transformed individuals can be selected.
  • a gene encoding a biomolecule of interest may be operatively linked to the promoter, and specifically, may be linked to a lower region of the promoter.
  • the nucleic acid sequence encoding the modified protein may have the nucleic acid sequence of SEQ ID NO: 4.
  • the nucleic acid sequence encoding the glycosylated region may have at least one nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11 to 13, and in terms of simultaneously maximizing stable expression and delivery efficiency of biomolecules, preferably It may have the nucleic acid sequence of SEQ ID NO: 11.
  • the nucleic acid sequence encoding the glycosylated region is not particularly limited as long as it can be included in the plasmid platform.
  • the extracellular region or , the outer region of the phospholipid bilayer
  • a sequence encoding a biomolecule or target protein
  • the nucleic acid sequence encoding the glycosylated region may be located in the direction of the extracellular region of the modified protein.
  • the nucleic acid sequence encoding the glycosylated region may be located in the direction of the extracellular region based on the nucleic acid sequence encoding the modified protein.
  • the nucleic acid sequence encoding the protein that specifically binds to the nucleic acid molecule is included in the plasmid platform and can be expressed so that it can specifically bind to the nucleic acid molecule for delivery. However, for example, it may be included so as to be located in the direction of the intracellular region (or the internal region of the phospholipid bilayer) based on the nucleic acid sequence encoding the modified protein. As a more specific example, a sequence encoding a protein that specifically binds to a nucleic acid molecule may be located below (or in the direction of an intracellular region) the nucleic acid sequence encoding the modified protein, and encoding the glycosylated region. The nucleic acid sequence may be located upstream (or in the direction of the extracellular region) of the sequence encoding the modified protein, but is not particularly limited thereto.
  • Proteins that specifically bind to the nucleic acid molecule include a double strand binding motif, a binding protein derived from BIV (Bovine Immunodeficiency Virus), a binding protein derived from Jembrana Disease Virus (JDV), and a human immunodeficiency virus (HIV). It may be at least one selected from the group consisting of a derived binding protein and a variant derived from the above protein, and according to a preferred embodiment, it may be a JDV derived binding protein, but is not particularly limited thereto.
  • BIV Bovine Immunodeficiency Virus
  • JDV Jembrana Disease Virus
  • HAV human immunodeficiency virus
  • the nucleic acid sequence encoding a protein that specifically binds to the nucleic acid molecule is a nucleic acid sequence having 70% or more homology with at least one sequence selected from the group consisting of SEQ ID NOs: 30 to 34 It may include, but is not particularly limited thereto.
  • the protein that specifically binds to the nucleic acid molecule may include a domain that binds to a specific motif possessed by the nucleic acid molecule to be delivered. According to a specific embodiment, it may be a domain that specifically binds to a TAR sequence, but is not limited thereto.
  • a recombinant plasmid for stable delivery of a nucleic acid molecule comprising a sequence of a nucleic acid molecule to be delivered in the above-described plasmid platform is provided.
  • the sequence of the nucleic acid molecule is cleaved by an appropriate splicing process in the state of the plasmid injected into the cell, so that it can be stably bound to a protein that specifically binds to the nucleic acid molecule at a position included in the plasmid.
  • the sequence of the nucleic acid molecule may be located between a nucleic acid sequence encoding the modified protein and a nucleic acid sequence encoding a protein specifically binding to the nucleic acid molecule.
  • the nucleic acid molecule may be at least one selected from the group consisting of DNA, RNA and aptamer, but is not limited thereto.
  • the nucleic acid molecule may contain a specific motif that allows it to stably bind to a protein that specifically binds to the nucleic acid molecule, and as a specific example, a TAR sequence, a TAR sequence variant, a double DNA short strand (preferably Specifically, 7 to 27, 9 to 27, 11 to 27, 13 to 27, 7 to 25, 9 to 25, 11 to 25, 13 to 25, or 14 to 25 bp) and double RNA short strands (preferably , 7 to 27, 9 to 27, 11 to 27, 13 to 27, 7 to 25, 9 to 25, 11 to 25, 13 to 25, or 14 to 25 bp) may include at least one selected from the group consisting of However, it is not limited thereto.
  • an exosome for stable delivery of a nucleic acid molecule containing a product expressed from the above-described recombinant plasmid is provided.
  • the recombinant plasmid may further contain a sequence encoding a protein that is expressed outside the exosome and specifically binds to the surface of the target cell, which is targeted for delivery to the target cell It may be to increase the delivery efficiency of the nucleic acid molecule to be delivered by increasing the.
  • the protein that specifically binds to the nucleic acid molecule may be expressed inside the exosome and binds to the nucleic acid molecule, which stabilizes the nucleic acid molecule from degradation inside the exosome to obtain final It can play a role in enabling stable delivery to target cells.
  • composition for stable delivery of nucleic acid molecules including the above-described exosomes is provided.
  • RNA interference RNA interference
  • an exosome wherein the nucleic acid molecule has an RNA interference effect.
  • the non-coding RNA may preferably be at least one selected from the group consisting of miRNA, shRNA, siRNA, piwi-interacting RNA (piRNA) and long non-coding RNA (lncRNA), It is not limited thereto.
  • the recombinant plasmid includes the above-described exosome, and the recombinant plasmid further includes a sequence encoding a protein that is expressed outside the exosome and specifically binds to the surface of a cancer cell, and the nucleic acid molecule It provides a pharmaceutical composition for preventing or treating cancer, which has a preventive or therapeutic effect on cancer.
  • the composition includes exosomes in which an exosome specifically binding to a cancer cell surface-specific expression protein is expressed in an external region, and as the exosome expressed in the external region specifically binds to the surface of a cancer cell, the exosome is Cancer cells are targeted, and it is possible to utilize them for the purpose of preventing or treating cancer based on such targeting.
  • the nucleic acid molecules included in the exosomes have a preventive or therapeutic effect on cancer, and these substances may be expressed in the inner region of the bilayer of the exosomes and then delivered to target cancer cells to exert an effect.
  • the above-described exosomes interact with cancer cells (eg, surface receptor interaction, membrane fusion, receptor-mediated endocytosis, phagocytosis (phagocytosis or micropinocytosis, etc.), the nucleic acid molecule can be transferred into cancer cells, and through this, cancer prevention or treatment effects can be obtained.
  • the cancer includes carcinomas including bladder cancer, breast cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, prostate cancer, pancreatic cancer, gastric cancer, cervical cancer, thyroid cancer and skin cancer including squamous cell carcinoma; hematopoietic tumors of lymphoid origin, including leukemia, acute lymphocytic leukemia, acute lymphocytic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and Burkett's lymphoma; hematopoietic tumors of the myeloid type, including acute and chronic myelogenous leukemia and promyelocytic leukemia; tumors of mesenchymal origin including fibrosarcoma and rhabdomyomas; other tumors including melanoma, seminoma, teratocarcinoma, neuroblastoma and glioma; tumors of
  • the plasmid platform of the present invention includes a nucleic acid sequence encoding a modified protein in which the intracellular domain, the extracellular domain, or a combination thereof of LAMP-2B (Lysosome-Associated Membrane Glycoprotein 2B) is removed, Therefore, stable expression and delivery of biomolecules are possible.
  • LAMP-2B Lisosome-Associated Membrane Glycoprotein 2B
  • the recombinant plasmid of the present invention further includes a sequence encoding a biomolecule to be expressed and delivered within the plasmid platform, so that the biomolecule can be stably expressed and delivered.
  • the exosome of the present invention contains the recombinant plasmid, and thus enables stable expression and delivery of biomolecules.
  • composition for diagnosing cancer of the present invention includes the exosome, and the biomolecule is a peptide that specifically binds to a protein specifically expressed on the surface of cancer cells, enabling effective diagnosis of cancer.
  • the pharmaceutical composition for preventing or treating cancer of the present invention includes the exosome, the biomolecule specifically binds to a cancer cell surface-specific expression protein, and a therapeutic substance to be delivered into cancer cells. Thus, effective prevention and treatment of cancer is possible.
  • FIGS. 1 to 5 are diagrams of a plasmid platform presented as an aspect of the present invention.
  • Figure 7 is a quantitative graph of the Western blot results of Figure 6.
  • FIG. 8 is a result of microscopic observation of the level of GFP fluorescence after the recombinant plasmid used in the experiment of FIG. 6 was overexpressed.
  • Figure 11 is a quantitative graph of the Western blot results of Figure 10.
  • FIG. 12 is a result of microscopic observation of the level of GFP fluorescence after the recombinant plasmid used in the experiment of FIG. 10 was overexpressed.
  • FIG. 13 is a result of observing the GFP fluorescence level under a microscope after overexpression of SEL-LAMP2- ⁇ EC-GFP and SEL-LAMP2- ⁇ EC/IC-GFP, respectively.
  • FIG. 16 shows the results of microscopic observation of the specific binding ability of exosomes to cancer cells based on the level of GFP fluorescence when the cancer cell-targeting peptide is included as an active molecule.
  • FIG. 17 to 19 are exosomes of cell lines not transfected with plasmid (FIG. 17), GNSTM-LAMP2-GFP (FIG. 18), and GNSTM-LAMP2- ⁇ EC/IC-GFP (FIG. 19) after overexpression, exosomes This is the result of checking the size of the moth.
  • GNSTM-LAMP2- ⁇ EC/IC-shGFP w/o BIV
  • GNSTM-LAMP2- ⁇ EC/IC-shGFP-BIV w/BIV
  • GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV WT
  • JDV_WT GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV
  • MT GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV
  • FIG. 21 shows a cell line without plasmid transformation (Control), SEL-LAMP2- ⁇ EC/IC-RBP without miRNA (w/o miRNA), and SEL-LAMP2- ⁇ EC/IC-RBP with miRNA (w/ miRNA) This is the result of confirming the expression level of miRNA expressed in target cells when the transfected cell line and the exosomes secreted therefrom were treated by qPCR.
  • GNSTM-LAMP2- ⁇ EC/IC-scrambleGFP scramble GFP
  • GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV(MT)(JDV MT shGFP) exosomes isolated from each plasmid-transformed cell line were GFP This is the result of confirming the level of suppression of GFP RNA expression when treated with expressing cells.
  • GNSTM-LAMP2- ⁇ EC/IC-scrambleGFP scramble GFP
  • GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV(MT)(JDV MT shGFP) exosomes isolated from each plasmid-transformed cell line were GFP It is a graph quantifying the level of suppression of GFP expression after Western blotting when treated with expressing cells.
  • GNSTM-LAMP2- ⁇ EC/IC-scrambleGFP scramble GFP
  • GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV(MT)(JDV MT shGFP) exosomes isolated from each plasmid-transformed cell line were GFP This is the result of confirming the level of suppression of GFP fluorescence expression by microscopic observation when treated with cells expressing .
  • HA Hyaluronic Acid
  • target peptide coding sequence target peptide coding sequence
  • active protein active protein
  • the sequence encoding the extracellular domain (EC) region of LAMP-2B was converted to LEL (Large Extracellular Domain of CD9) of CD9 in tetraspanin.
  • LEL Large Extracellular Domain of CD9
  • PCR amplification was performed to prepare recombinant plasmids (LEL-LAMP- ⁇ EC-GFP, LEL-LAMP- ⁇ EC/IC-GFP) substituted by the infusion cloning kit method, and schematically shown in FIG. 2.
  • 1 GNSTM motif (GNSTM is an amino acid) Sequence that is most strongly N-glycosylated in cells) is introduced into the corresponding position by a Mutagenesis kit (EZchange Model Site-directed Mutagenesis kit, Enzynomics, Cat No.
  • EZ004S GNSTM-LAMP2-GFP , GNSTM-LAMP2- ⁇ IC-GFP, GNSTM-LAMP2- ⁇ EC/IC-GFP
  • CD9 SEL CD9's Small Extracellular Domain
  • PCR amplification was performed using Infusion cloning kit method, introduced into an existing LAMP2B-GFP modified plasmid (SEL-LAMP2- ⁇ EC-GFP, SEL-LAMP2- ⁇ EC/IC-GFP), 3 LAMP2- ⁇ EC/IC-GFP, or a lower level of the sequence encoding the FLAG protein of LAMP2- ⁇ EC/IC-GFP
  • Recombinant plasmids were prepared by introducing the N-glycosylation sequence AAC into a Mutagenesis kit (EZchange, Site-directed Mutagenesis kit, Enzynomics, Cat No. EZ004S) method (Gly-LAMP2- ⁇ EC/IC-GFP), respectively, and schematic
  • the Pri-miRNA base sequence of miRNA-199 and the shGFP Pri-miRNA sequence including the GFP target sequence in the miRNA-199 base sequence were used. Since the Pri-miRNA sequence contains the TAR sequence, it was intended to introduce a protein that specifically binds to the TAR site as RBP. Therefore, as the (sh)RNA-binding protein (RNA Binding protein; RBP), wild-type (WT) and mutant (MT) proteins derived from Bovine Immunodeficiency Virus (BIV) and wild-type proteins derived from Jembrana Disease Virus (JDV) protein was used.
  • RBP RNA Binding protein
  • WT wild-type
  • MT mutant proteins derived from Bovine Immunodeficiency Virus
  • JDV Jembrana Disease Virus
  • HEK293T cells 2.5X10 6 cells of HEK293T cells were cultured in a 100 mm 2 culture dish with 10% fetal bovine serum (10% Fetal Bovine Serum (FBS), Gibco TM , Cat No. 16000044) and 1% antibiotics (1% Penicllin). / Streptomycin, Gibco TM , Cat No. 15140122) was cultured for 24 hours in DMEM (Welgene, Cat No. LM001-05) medium. 2 ⁇ g of the recombinant plasmid pcDNA3.1(+) vector containing the target gene was introduced into the cells according to the method of the PolyJet TM transfection kit (Signagen® Laboratories, Cat No. SL100688) and cultured for 48 hours.
  • FBS Fetal Bovine Serum
  • Gibco TM fetal bovine Serum
  • 1% antibiotics 1% Penicllin
  • Streptomycin Gibco TM , Cat No. 15140122
  • the medium was replaced with DMEM medium without fetal calf serum and further cultured for 48 hours. After completion of the culture, intracellular expression of green fluorescence was confirmed using Cytation 5 (Biotek).
  • Example 2-2 Exosome isolation, protein expression, RNA expression, etc.
  • Example 2-1 After inserting a gene encoding the FLAG protein as a targeting peptide and a gene encoding GFP as an active protein into the plasmid backbone structures of FIGS. 1 and 2, respectively, Example 2-1 or Each recombinant plasmid was overexpressed according to the method of 2-2.
  • each recombinant plasmid was overexpressed according to the method of Example 2-1, and then fluorescence expression was measured.
  • the cells and culture medium were collected in a 50mL conical tube (SPL, Cat No. 50040), centrifuged at 1000 rpm for 2 minutes, and the collected cells were 1X After washing twice with PBS, proteins were separated from the cells by adding PMSF to 1X diluted Cell lysis buffer (10X Cell lysis buffer, Cell Signaling Technology, Cat No. 9803). Thereafter, the separated culture medium was further centrifuged at 4000 rpm for 30 minutes, and then cell residues were removed, and then the supernatant was placed in a 10kDa Filter tube (Mlliopore, Cat No.
  • Example 2-1 After inserting a gene encoding the FLAG protein as a targeting peptide and a gene encoding GFP as an active protein into the plasmid backbone structures of FIGS. 3 and 4, respectively, Example 2-1 and Each recombinant plasmid was overexpressed according to the method of 2-2. Other than this, the experimental method is as described in Experimental Example 1-1-(1).
  • the plasmid containing the entire LAMP2 sequence in the GNSTM motif sequence had very low expression levels of the target protein FLAG protein and the active protein GFP (FIG. 10). This is a result inconsistent with that reported in previous papers, which means that the GNSTM motif does not actually provide a stabilizing effect of the target protein in LAMP2.
  • the GNSTM motif is used to express target proteins. showed very stable results.
  • a plasmid into which a nucleic acid sequence encoding the lower 25 amino acid sequence of LAMP2 was inserted with the expectation that stabilization of the target protein could be further enhanced depending on the location and structure of glycosylation when a part of the extracellular domain of LAMP2 was included ( LAMP2-EC25 ⁇ IC-GFP, GNSTM-LAMP2-EC25 ⁇ IC-GFP, Gly-LAMP2-EC25 ⁇ IC-GFP) were additionally prepared, and the expression level of the target protein was confirmed.
  • the target protein FLAG protein and the active protein were The expression level of GFP was high, especially in GNSTM-LAMP2- ⁇ EC/IC-GFP.
  • LAMP2-EC25 ⁇ IC-GFP showed a higher target protein expression level, which is thought to indicate that the GNSTM motif does not exert an expression stabilization effect in the presence of the extracellular domain of LAMP2 (FIG. 15).
  • the obtained exosomes were quantified using a BCA kit, and 100 ⁇ g of exosomes were stained according to the PKH67 green fluorescence cell linker kit (sigma, Cat No. PKH67GL) method.
  • the dyed exosomes were put on a 100 kDa filter (Mlliopore, Cat No. UFC510008), centrifuged at 14000 rcm for 5 minutes, and 1X PBS was added to the supernatant followed by further centrifugation, and this process was repeated twice.
  • the final exosome product is filtered through a 0.2 ⁇ m filter equipped with a 27G needle, treated with SKOV3 cells, which are ovarian cancer cells expressing the folate receptor, and cultured for 24 hours. After the end of the culture, after washing twice with 1X DPBS, the culture medium was replaced with SKOV3, and the green fluorescence level was measured by cytation 5 (Biotek).
  • Exosomes without overexpression of plasmid exosomes (+)
  • exosomes inserted with FLAG of GNSTM-LAMP2- ⁇ EC/IC-GFP in FIG. 3 control peptide exosomes (+)
  • GNSTM-LAMP2- ⁇ control peptide exosomes (+)
  • GNSTM-LAMP2- ⁇ GNSTM-LAMP2- ⁇
  • the plasmid loaded with the sequence encoding the target peptide is stably expressed in cells and exosomes, and is active on the surface of the exosome, allowing it to migrate in large amounts to cells that selectively express cancer target peptide-coupled receptors. , it implies the possibility of using it as a therapeutic material based on cancer targeting through effective expression of biomolecules.
  • exosomes Figure 17
  • GNSTM-LAMP2-GFP Figure 18
  • GNSTM-LAMP2- ⁇ EC/IC-GFP Figure 19
  • Example 2-2 After inserting a gene encoding the FLAG protein as a targeting peptide and a gene encoding a protein that binds RNA as an active protein into the plasmid backbone structures of FIG. 5, respectively, Example 2-2 Each recombinant plasmid was overexpressed according to the method of.
  • the cells and the culture medium were collected in a 50mL conical tube (SPL, Cat No. 50040), centrifuged at 1000 rpm for 2 minutes, and collected. After washing the cells twice with 1X PBS, the RNA was isolated by the Trizol method (ThermoFisher Scientific, Cat No. 15596026), and then the poly A sequence was ligated to the RNA using a polyadenylation kit (Enzynomics, Cat No. EX041S) to 500ng RNA. Introduction of PrimeScript TM cDNA kit (Takara, Cat No.
  • cDNA was synthesized according to the gene-specific primer cDNA synthesis method. After cDNA synthesis, the amount of shRNA expression was measured with TOPrealTM Probe qPCR PreMix (Enzynomics, Cat. No. RT600S) using the target shRNA sequence Taqman probe.
  • the cells and culture medium were collected in a 50mL conical tube (SPL, Cat No. 50040), and centrifuged at 1000 rpm for 2 minutes. The supernatant was further centrifuged at 4000 rpm for 30 minutes, and cell residues were removed. The final supernatant was put into a 10kDa Filter tube (Mlliopore, Cat No. UFC9010) and centrifuged at 4000 rpm for 30 minutes. Finally, 1X PBS was added to the remaining supernatant, mixed, and further centrifuged.
  • TOPrealTM Probe qPCR PreMix Enzynomics, Cat. No. RT600S
  • SKOV3 cell line 1X10 5 cells were dispensed into each well of a 6-well plate and cultured for 24 hours.
  • 500 ng of pAcGFP1-N1 (Clonetech, PT3716), a GFP fluorescent vector was introduced into each well, and 24 hours later, it was replaced with a new culture medium, and the isolated shRNA was GFP fluorescence and protein expression levels were measured after 48 hours of treatment with 50 ⁇ g of exosomes per well.
  • GNSTM-LAMP2- ⁇ EC/IC-shGFP GNSTM-LAMP2- ⁇ EC/IC-shGFP-BIV, GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV(WT), GNSTM-LAMP2- ⁇ EC/IC-shGFP -JDV (MT)
  • All four plasmid overexpression models showed high expression levels in cells compared to the exosome-only treatment group and (NC) control group.
  • BIV-derived RBP and JDV-derived RBP were inserted as active proteins
  • the expression level of shGFP in the entire exosome was significantly higher than other groups, compared to the case without insertion (w/o BIV: structure without RBP).
  • JDV wild type-derived RBP was inserted, the effect was the most excellent, with a difference of about 80 times compared to when BIV-derived RBP was inserted (FIG. 20).
  • RNA and active protein can be stably expressed in both the transfected cells and exosomes therefrom, both in the form of LAMP2 in which both the extracellular and intracellular domains are removed and by the introduction of glycosylation. As showing that there is, it implies the possibility of finally delivering physiologically active nucleic acid molecules through exosomes.
  • WT GNSTM-LAMP2- ⁇ EC/IC-shGFP-JDV
  • MT glycosylation models using GNSTM

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)

Abstract

본 발명에서 제시하는 플라스미드 플랫폼은 LAMP-2B(Lysosome-Associated Membrane Glycoprotein 2B)의 세포 내 도메인(intracellular domain), 세포 외 도메인(extracellular domain) 또는 이들의 조합이 제거된 변형 단백질을 코딩하는 핵산 서열을 포함하는 것으로서, LAMP-2B의 특정 도메인을 제거한 경우 발현시키고자 하는 생체분자의 발현이 현저히 안정화되고, 전달하고자 하는 생체분자의 전달효율이 현저히 상승함을 발견함에 기반한 것이다. 이는, 향후 목적 단백질의 발현과 전달, 특히 엑소좀을 이용한 발현과 전달에 있어 높은 기술적 효용을 제시할 것으로 기대하며, 이와 연계된 다양한 기술분야 또는 용도로 확장될 수 있을 것이다.

Description

생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼
본 발명은 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼에 관련된 것이다.
엑소좀은 후기 엔도좀의 출아 (budding)에서 생산되고 세포 외 공간으로 방출되기 전에 원형질막과 융합되는 것으로 알려져 있다. 엑소좀은 포스포콜린, 콜레스테롤 및 세라마이드가 풍부한 지질 이중층 막으로 구성된 40-200 nm 크기의 소낭이며, 거의 모든 종류의 세포에서 분비되고, 혈액, 림프 및 땀과 같은 모든 종류의 체액에서 안정하게 존재한다. 또한, 엑소좀은 작은 크기와 약한 음전하로 인해 오랜 체내 순환 시간과 기관의 내부까지 도달하는 이점을 가지고 있다. 엑소좀은 또한 식균 작용 (phagocytosis)에서 회피하여 친수성 또는 소수성 약물을 전달할 수 있으며, 표적 세포로 혈관 내피를 통과할 수 있다. 엑소좀은 테트라스파닌 (tetraspanin)과 같은 특정 표면 단백질로 인해 특정 세포에 표적 효과를 나타내는 것으로 알려져 있다. 엑소좀의 캡슐화는 in vitro 및 in vivo에서 커큐민 (curcumin)의 안정성과 생체 이용률을 증가시키고, 항염증 활성을 증가시키는 것으로 보고된 바 있으며, 다른 연구에서, 엑소좀은 혈액-뇌 장벽을 넘어 뇌로 독소루비신을 전달하고, siRNA를 세포에 전달하며, 암 치료에 강력한 표적인 RAD 51 단백질의 수준을 효과적으로 감소시키는 것으로 보고된 바 있다.
본 발명의 일 목적은 LAMP-2B(Lysosome-Associated Membrane Glycoprotein 2B)의 세포 내 도메인(intracellular domain), 세포 외 도메인(extracellular domain) 또는 이들의 조합이 제거된 변형 단백질을 코딩하는 핵산 서열을 포함하는, 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼을 제공함에 있다.
본 발명의 일 목적은 상기 플라스미드 플랫폼 내, 발현 및 전달을 목적하는 생체분자를 코딩하는 서열을 더 포함하는, 생체분자의 안정적 발현 및 전달을 위한 재조합 플라스미드를 제공함에 있다.
본 발명의 일 목적은 상기 재조합 플라스미드를 포함하는, 생체분자의 안정적 발현 및 전달을 위한 엑소좀을 제공함에 있다.
본 발명의 일 목적은 상기 엑소좀을 포함하고, 상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 펩타이드인, 암의 진단을 위한 조성물을 제공함에 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업계 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양태로서, LAMP-2B(Lysosome-Associated Membrane Glycoprotein 2B)의 세포 내 도메인(intracellular domain), 세포 외 도메인(extracellular domain) 또는 이들의 조합이 제거된 변형 단백질을 코딩하는 핵산 서열을 포함하는, 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼을 제공한다.
상기 플라스미드 플랫폼은 종래 알려진 LAMP-2B의 세포 내, 세포 외, 또는 이들 모두를 제거하는 경우 LAMP-2B와 함께 세포의 내부 또는 외부에 발현시키고자 하는 목적 단백질의 발현의 안정성이 현저히 상승하고, 목적세포에의 전달성 또한 현저히 상승함을 발견함에 기반한 것이다.
상기 LAMP-2B는 종래 공지된 아미노산 서열, 이를 코딩하는 핵산 서열에 대한 것으로서, 플라스미드 플랫폼 내 탑재되기 위해서는 핵산 서열을 의미하는 것일 수 있다. 구체적인 일 실시예에 따를 때, NM_013995.2의 accession number를 갖는 서열일 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 세포 내 도메인과 세포 외 도메인은 각각 LAMP-2B의 세포 상 발현시 세포의 인지질 이중층 내부에 발현되는 영역과, 외부에 발현되는 영역을 의미하는 것일 수 있다. LAMP-2B가 엑소좀 상에서 발현되는 경우를 고려할 때 바람직하게는, 세포 내 도메인은 엑소좀의 인지질 이중층 내부에 발현되는 영역을, 세포 외 도메인은 엑소좀의 인지질 이중층 외부에 발현되는 영역을 각각 의미하는 것일 수 있다.
상기 변형 단백질은 LAMP-2B의 세포 내 도메인, 세포 외 도메인, 또는 이들의 조합이 제거된 것을 특징으로 하는데, 세포 외부 영역(또는, 인지질 이중층 외부 영역)에서 발현시키고자 하는 생체분자(또는, 타겟 단백질)와, 세포 내부 영역(또는, 인지질 이중층 내부 영역)에 발현시키고자 하는 생체분자(또는, 활성 단백질)의 발현을 안정화하고자 하는 목적 하에 바람직하게는 세포 내 도메인이 제거된 것일 수 있다. 이러한 의미에서, 상기 플라스미드 플랫폼은 LAMP-2B의 세포 내 도메인이 제거된 단백질을 코딩하는 핵산 서열을 포함하는 것일 수 있다.
또한, 상기 변형 단백질은 상기 세포 외부 영역에서 발현시키고자 0하는 생체분자와 상기 세포 내부 영역에서 발현시키고자 하는 생체분자의 발현을 안정시킴과 동시에, 생체분자를 목적하는 세포에 안정적으로 전달하고자 하는 목적 하에 바람직하게는 세포 내 도메인과 세포 외 도메인이 모두 제거된 것일 수 있다. 이러한 의미에서, 상기 플라스미드 플랫폼은 LAMP-2B의 세포 내 도메인과 세포 외 도메인이 모두 제거된 것일 수 있다.
일 실시예에 따를 때, 상기 핵산 서열은 서열번호 2 내지 4 중 어느 하나의 핵산 서열을 갖는 것일 수 있고, 상기 세포 내부 영역에 발현시키고자 하는 생체분자의 발현을 안정화하고자 하는 목적 하에 바람직하게는 서열번호 2 또는 4의 핵산 서열을 갖는 것일 수 있으며, 상기 세포 내부 영역에서 발현시키고자 하는 생체분자의 발현을 안정시킴과 동시에, 생체분자를 목적하는 세포에 안정적으로 전달하고자 하는 목적 하에 보다 바람직하게는 서열번호 4의 핵산 서열을 갖는 것일 수 있다.
상기 플라스미드 플랫폼은 글리코실화된 영역을 코딩하는 핵산 서열을 더 포함할 수 있는데, 이는 상기 플라스미드 플랫폼에 탑재하여 발현시키고자 하는 생체분자의 발현과 전달을 안정화시키기 위한 목적일 수 있고, 보다 구체적으로는 상기 세포 내부 영역과 세포 외부 영역에서의 생체분자 모두에 대한 발현과 전달을 안정화시키기 위한 목적일 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 글리코실화된 영역은 단백질 발현 구조에 글리코실화를 도입할 수 있는 수단으로 주지된 수단을 자유로이 사용하여 도입할 수 있고, 상기 플라스미드 플랫폼에 적용하는 측면에서 글리코실화된 영역을 코딩하는 핵산 서열을 플라스미드 플랫폼 내 포함시키는 형태일 수 있다. 예를 들어, 상기 플라스미드 플랫폼 내 GNSTM 모티프를 코딩하는 핵산 서열을 포함시키는 방법; N-linked glycosylation을 유도할 수 있는 아미노산 특이 서열 NXS (X는 proline을 제외한 모든 아미노산 서열 가능), NXT (X는 proline을 제외한 모든 아미노산 서열 가능), NXC (X는 proline을 제외한 모든 아미노산 서열 가능)을 코딩하는 서열을 포함 시키는 방법; 상기 N-glycosylation 아미노산 서열의 C-terminal부위에 1-5개 아미노산을 코딩하는 서열을 더 포함 시키는 방법; 상기 N-glycosylation 아미노산 서열의 C-terminal부위에 1-5개 아미노산을 포함하는 서열의 N-terminal부위에 Glycine을 코딩하는 서열을 포함시키는 방법; 테트라스파닌에서의 N-linked glycosylation 모티프 (CD9 SEL: Small Extracellular Loop Domain, CD63 LEL: Large Extracellular Loop Domain 등)를 코딩하는 서열을 포함시키는 방법; O-glycosylation을 유도하는 아미노산 서열인 Serine 또는 Threonine을 포함시키는 방법으로 이루어진 군에서 선택된 적어도 어느 하나를 택할 수 있고, 생체분자의 안정적인 발현과 전달 효율을 동시에 극대화하는 측면에서 바람직하게는 상기 플라스미드 플랫폼 내 GNSTM 모티프를 코딩하는 핵산 서열을 포함시키는 방법을 택하여 도입할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 플라스미드 플랫폼 내 포함될 수 있는 방법이라면 특별한 포함 위치의 제한이 있는 것은 아니나, 예를 들면, 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 외 영역(또는, 인지질 이중층의 외부 영역) 방향에 위치할 수 있도록 포함시킬 수 있다. 보다 구체적인 예로서, 상기 변형 단백질을 코딩하는 핵산 서열의 세포 외 영역 방향에 생체분자(또는, 타겟 단백질)를 코딩하는 서열이 위치할 수 있고, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 생체분자를 코딩하는 서열의 상위(또는, 세포 외 영역 방향) 또는 하위(또는, 세포 내 영역 방향)에 위치할 수 있으나, 특별히 이에 제한되는 것은 아니다. 바람직한 일 실시예에 따를 때, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 외 영역 방향에 위치할 수 있다.
상기 글리코실화된 영역을 코딩하는 핵산 서열은 서열번호 11 내지 13 중 어느 하나의 핵산 서열을 포함하는 것일 수 있고, 생체분자의 안정적인 발현과 전달 효율을 동시에 극대화하는 측면에서 바람직하게는 서열번호 11의 핵산 서열을 포함하는 것일 수 있다.
상기 플라스미드 플랫폼은 상기 글리코실화 영역을 포함하면서 상기 변형 단백질 형태를 동시에 갖도록 코딩 서열이 구성될 수 있고, 각각에 대한 구체적인 설명은 상술한 바와 같다. 바람직한 일 실시예에 따를 때, 상기 플라스미드 플랫폼은 GNSTM 모티프를 코딩하는 서열과, LAMP-2B의 세포 외 도메인과 세포 내 도메인이 모두 제거된 변형 단백질을 코딩하는 서열을 동시에 포함할 수 있다. 보다 구체적인 예로서, 상기 GNSTM 모티프를 코딩하는 서열이 상기 변형 단백질을 코딩하는 서열의 상위(또는, 세포 외 영역 방향)에 위치하도록 포함할 수 있다. 추가적인 예로서, 상기 플라스미드 플랫폼은 서열번호 4의 핵산 서열 및 서열번호 11의 핵산 서열을 포함하는 것일 수 있다.
본 발명의 일 양태로서, 상술한 플라스미드 플랫폼 내, 발현 및 전달을 목적하는 생체분자를 코딩하는 핵산 서열을 더 포함하는, 생체분자의 안정적 발현 및 전달을 위한 재조합 플라스미드를 제공한다.
상기 생체분자를 코딩하는 핵산 서열은 상술한 플라스미드 플랫폼 내 위치하여 성공적으로 목적하는 생체분자를 발현시킬 수 있다면 그 위치에 특별한 제한이 있는 것은 아니나, 구체적인 예를 들면, i) 상기 글리코실화된 영역을 코딩하는 핵산 서열과 상기 변형 단백질을 코딩하는 핵산 서열 사이, ii) 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 내 영역 방향 또는 iii) 이들 모두에 위치하는 것일 수 있다.
상기 생체분자를 코딩하는 핵산 서열로서, 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 외 방향에 위치시키는 경우, 세포 외(또는, 인지질 이중층 외부영역)에 생체분자를 발현시키거나 전달하려는 목적일 수 있고, 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 내 방향에 위치시키는 경우, 세포 내(또는, 인지질 이중층 내부영역)에 생체분자를 발현시키거나 전달하려는 목적일 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 생체분자는 상기 플라스미드 플랫폼을 이용하여 발현시키고자 하는 것이라면 특별히 제한되는 것은 아니고, 구체적인 예를 들면 핵산분자(nucleic acid molecules), 압타머(aptamer), 펩타이드(peptides), 단백질(protein), 글라이코프로테인(glycoproteins), 리포프로테인(lipoproteins), 면역글로불린(immunoglobulins), 호르몬(hormone), 성장인자(growth factor), 재조합 효소(recombinase) 및 형광단백질(fluorescent protein)로 이루어진 군에서 선택된 적어도 하나일 수 있다.
본 발명의 일 양태로서, 상술한 재조합 플라스미드로부터 발현된 산물을 포함하는, 생체분자의 안정적 발현 및 전달을 위한 엑소좀을 제공한다.
상기 엑소좀은 상술한 재조합 플라스미드로부터 발현된 변형 단백질과 생체분자를 포함하고 있는데, 상기 생체분자는 엑소좀의 내부, 외부 또는 이들 모두에 위치하여 안정적으로 발현될 수 있고, 목적하는 세포에 전달될 수 있다.
상기 생체분자는 엑소좀의 외부에 발현되어 타겟하는 세포의 표면에 특이적으로 결합하는 물질을 포함하는 것일 수 있는데, 이러한 경우 엑소좀이 타겟하는 세포에의 표적성이 증가하여 발현된 생체분자를 효과적으로 전달할 수 있고, 발현된 생체분자를 탐지하여 타겟하는 세포의 존재 여부를 판별할 수 있을 것이며, 이 외 특별한 제한 없이 표적세포에 대한 타겟팅에 기반한 주지된 다양한 용도로 엑소좀이 사용될 수 있다. 구체적인 예로서, 특정 바이러스에 감염된 세포나 암 세포의 표면에 특이적으로 발현하는 물질에 특이적으로 결합할 수 있는 생체분자가 엑소좀의 외부에 발현되는 경우 상기 엑소좀은 특정 바이러스에 감염된 세포나 암 세포에 특이적으로 결합할 수 있을 것이고, 이를 이용하여 특정 바이러스의 감염여부나 암 세포의 존재여부를 판단함과 동시에 엑소좀 내 포함하는 생체분자를 바이러스 감염세포나 암 세포 내 전달할 수 있을 것이다.
본 발명의 일 양태로서, 상술한 엑소좀을 포함하고, 상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 것을 포함하는 것인, 암의 진단을 위한 조성물을 제공한다.
또한, 본 발명의 일 양태로서, 상술한 엑소좀을 포함하고, 상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 것과, 암 세포 내 전달하고자 하는 치료물질을 포함하는 것인, 암의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 것을 포함하는 것으로서, 상기 엑소좀의 이중층 외부 영역에 발현되는 것을 포함할 수 있다. 이러한 경우, 상기 외부 영역에 발현된 생체분자가 암 세포의 표면에 특이적으로 결합함에 따라 엑소좀이 암 세포를 타겟하게 되고, 이러한 타겟팅에 근거한 암의 진단 용도로의 활용이 가능하게 된다.
또한, 상기 생체분자는 암 세포 내 전달하고자 하는 치료물질을 포함할 수 있고, 이러한 치료물질은 상기 엑소좀의 이중층 내부 영역에 발현되는 것을 포함할 수 있다. 이러한 경우, 상술한 엑소좀이 암 세포와 상호작용(예를 들어, 표면 수용체 상호작용(surface receptor interaction), 멤브레인 융합(membrane fusion), 수용체 매개 엔도시토시스(receptor-mediated endocytosis), 파고시토시스(phagocytosis) 또는 마이크로피노시토시스(micropinocytosis) 등)에 의해 상기 치료물질을 암 세포 내 전달할 수 있게 되고, 이를 통해 암의 예방 또는 치료효과를 거둘 수 있게 된다.
상기 암은 방광암, 유방암, 결장암, 신장암, 간암, 폐암, 난소암, 전립선암, 췌장암, 위암, 경부암, 갑상선암 및 편평세포암종을 포함하는 피부암을 포함하는 암종; 백혈병, 급성 림프성 백혈병, 급성 림프구성 백혈병, B-세포 림프종, T-세포 림프종, 호지킨스 림프종, 비-호지킨스 림프종, 모발상 세포 림프종 및 버켓 림프종을 포함하는 림프계 조혈모 종양; 급성 및 만성 골수성 백혈병 및 전골수구 백혈병을 포함하는 골수형의 조혈 종양; 섬유 육종 및 횡문 근육종을 포함하는 간엽 유래 종양; 흑색종, 정상피종, 기형암종, 신경모세포종 및 신경교종을 포함하는 다른 종양; 성상세포종, 신경아세포종, 신경교종 및 신경초종을 포함하는 중추 및 말초 신경 시스템의 종양; 섬유육종, 횡문근육종 및 골육종을 포함하는 중간엽 유래 종양; 및 흑색종, 색소성 건피증, 각화극세포종, 정상피종, 갑상선 여포상암 및 기형 암종을 포함하는 기타 종양으로 이루어진 군으로부터 선택되는 어느 하나일 수 있고, 바람직한 일 실시예에 따를 때 난소암일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화될 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로오스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.
본 발명의 조성물은 본 발명의 엑소좀을 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 약학적 제형은 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여에 적당한 것 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여에 적당한 형태를 포함한다.
본 발명의 조성물은 약학적으로 유효한 양으로 투여한다. 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 매우 다양하며, 적정한 투여량은 예를 들면 환자의 체내에 축적된 약물의 양 및/또는 사용되는 본 발명의 전달체의 구체적 효능정도에 따라 달라질 수 있다. 일반적으로 인비보 동물모델 및 인비트로에서 효과적인 것으로 측정된 EC50을 기초로 계산될 수 있으며, 예를 들면 체중 1kg당 0.01 μg 내지 1 g 일 수 있으며, 일별, 주별, 월별 또는 연별의 단위 기간으로, 단위 기간 당 일회 내지 수회 나누어 투여될 수 있으며, 또는 인퓨전 펌프를 이용하여 장기간 연속적으로 투여될 수 있다. 반복투여 횟수는 약물이 체내 머무는 시간, 체내 약물 농도 등을 고려하여 결정된다. 질환 치료 경과에 따라 치료가 된 후라도, 재발을 위해 조성물이 투여될 수 있다.
본 발명의 조성물은 암의 치료와 관련하여 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 또는 유효성분의 용해성 및/또는 흡수성을 유지/증가시키는 화합물을 추가로 함유할 수 있다. 또한 선택적으로, 화학치료제, 항염증제, 항바이러스제 및/또는 면역조절제 등을 추가로 포함할 수 있다.
또한, 본 발명의 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말의 형태일 수 있다.
본 발명에서 서술하는 모든 핵산 서열은 일정 정도 변형이 가능하다. 본 기술 분야의 당업자라면 이러한 인위적인 변형에 의해 70% 이상의 상동성이 유지되는 핵산 서열이 본 발명에서 목적하는 활성을 보유하는 한, 본 발명의 핵산 서열로부터 유래된 것과 균등한 것임을 쉽게 이해할 것이다.
상기 용어 '상동성'이란, 상기 제시된 핵산 서열과의 동일한 정도를 나타내는 것으로 상동성의 비교는 육안으로나 구입이 용이한 비교 프로그램을 이용하여 2개 이상의 서열간의 상동성을 백분율(%)로 계산할 수 있다. 본 발명 내 제시된 핵산 서열과 바람직하게는 70% 이상, 보다 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상 동일한 핵산 서열을 포함한다.
본 발명에서 용어 '플라스미드'란, 적당한 숙주 내에서 목적 유전자가 발현할 수 있도록 프로모터 등의 필수적인 조절 요소를 포함하는 유전자 작제물을 의미하는 것으로서, 숙주 세포 또는 미생물의 게놈내로 통합되어 있는 형태일 수도 있다.
본 발명에서 '작동가능하게 연결된(operably linked)'는 일반적 기능을 수행하도록 프로모터 또는 그의 변이체 핵산 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결되어 있는 것을 말한다. 플라스미드와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용한다.
본 발명에서 '조절 요소'란 단백질을 암호화하는 핵산 서열의 전사, 번역 또는 발현의 증진을 돕거나 이에 영향을 미치는 비해독화된 핵산 서열을 의미한다. 본 발명의 플라스미드 플랫폼은 조절 요소로 프로모터 또는 그의 변이체를 포함할 수 있고, 단백질의 발현에 영향을 미칠 수 있는 발현 조절 서열, 예를 들어, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서, 막 표적화 또는 분비를 위한 신호서열 등을 포함할 수 있다.
또한, 본 발명에서의 플라스미드가 복제가능한 발현 플라스미드인 경우, 복제가 개시되는 특정 핵산 서열인 복제원점(replication origin)을 포함할 수 있다.
또한, 본 발명에서의 플라스미드는 선택마커(selection marker)를 포함할 수 있다. 선택마커는 플라스미드로 형질전환된 세포 또는 미생물을 선별하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서 선별 마커를 발현하는 세포 또는 미생물만 생존하므로 형질전환된 개체를 선별 가능하다.
본 발명에서의 플라스미드는 목적 생체분자를 코딩하는 유전자가 상기 프로모터와 작동가능하도록 연결된(operatively linked) 것일 수 있고, 구체적으로는 상기 프로모터의 하위 영역에 연결된 것일 수 있다.
본 발명의 일 양태로서, LAMP-2B(Lysosome-Associated Membrane Glycoprotein 2B)의 세포 내 도메인(intracellular domain)과 세포 외 도메인(extracellular domain)이 모두 제거된 변형 단백질을 코딩하는 핵산 서열; 전달을 목적하는 핵산분자에 특이적으로 결합하는 단백질을 코딩하는 핵산 서열; 및 글리코실화된 영역을 코딩하는 핵산 서열을 포함하는, 핵산분자의 안정적인 전달을 위한 플라스미드 플랫폼을 제공한다.
상기 변형 단백질을 코딩하는 핵산 서열은 서열번호 4의 핵산 서열을 갖는 것일 수 있다.
상기 글리코실화된 영역을 코딩하는 핵산 서열은 서열번호 11 내지 13으로 이루어진 군에서 선택된 적어도 어느 하나의 핵산 서열을 갖는 것일 수 있고, 생체분자의 안정적인 발현과 전달 효율을 동시에 극대화하는 측면에서 바람직하게는 서열번호 11의 핵산 서열을 갖는 것일 수 있다.
상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 플라스미드 플랫폼 내 포함될 수 있는 방법이라면 특별한 포함 위치의 제한이 있는 것은 아니나, 예를 들면, 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 외 영역(또는, 인지질 이중층의 외부 영역) 방향에 위치할 수 있도록 포함시킬 수 있다. 보다 구체적인 예로서, 상기 변형 단백질을 코딩하는 핵산 서열의 세포 외 영역 방향에 생체분자(또는, 타겟 단백질)를 코딩하는 서열이 위치할 수 있고, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 생체분자를 코딩하는 서열의 상위(또는, 세포 외 영역 방향) 또는 하위(또는, 세포 내 영역 방향)에 위치할 수 있으나, 특별히 이에 제한되는 것은 아니다. 바람직한 일 실시예에 따를 때, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 외 영역 방향에 위치할 수 있다.
상기 핵산분자에 특이적으로 결합하는 단백질을 코딩하는 핵산 서열은, 상기 플라스미드 플랫폼 내 포함되어 전달을 목적하는 핵산분자와 특이적으로 결합할 수 있도록 발현시킬 수 있는 방법이라면 특별한 포함 위치의 제한이 있는 것은 아니나, 예를 들면 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 내 영역(또는, 인지질 이중층의 내부영역) 방향에 위치할 수 있도록 포함시킬 수 있다. 보다 구체적인 예로서, 상기 변형 단백질을 코딩하는 핵산 서열의 하위(또는, 세포 내 영역 방향)에 핵산분자에 특이적으로 결합하는 단백질을 코딩하는 서열이 위치할 수 있고, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 변형 단백질을 코딩하는 서열의 상위(또는, 세포 외 영역 방향)에 위치할 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 핵산분자에 특이적으로 결합하는 단백질은 이중가닥 리보핵산 결합 모티프(double strand binding motif), BIV(Bovine Immunodeficiency Virus) 유래 결합 단백질, JDV(Jembrana Disease Virus) 유래 결합 단백질, HIV(Human Immunodeficiency Virus) 유래 결합 단백질 및 상기 단백질 유래 변이체로 이루어진 군에서 선택된 적어도 어느 하나일 수 있고, 바람직한 일 실시예에 따를 때 JDV 유래 결합 단백질일 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 핵산분자에 특이적으로 결합하는 단백질을 코딩하는 핵산 서열은, 구체적인 일 실시예에 따를 때, 서열번호 30 내지 34로 이루어진 군에서 선택된 적어도 어느 하나의 서열과 70% 이상의 상동성을 갖는 핵산 서열을 포함할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 핵산분자에 특이적으로 결합하는 단백질은, 전달을 목적하는 핵산분자가 가지고 있는 특이적 모티프에 결합하는 도메인을 포함할 수 있다. 구체적인 일 실시예에 따를 때, TAR 서열에 특이적으로 결합하는 도메인일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 양태로서, 상술한 플라스미드 플랫폼 내, 전달을 목적하는 핵산분자의 서열을 포함하는, 핵산분자의 안정적 전달을 위한 재조합 플라스미드를 제공한다.
상기 핵산분자의 서열은, 세포 내 주입된 플라스미드 상태에서 적절한 스플라이싱 공정에 의해 절단되어, 상기 핵산분자에 특이적으로 결합하는 단백질과 안정적으로 결합을 유지하도록 할 수 있다면 플라스미드 내 포함되는 위치에 특별한 제한이 있지는 아니한다. 바람직한 일 실시예로서, 상기 핵산분자의 서열은 상기 변형 단백질을 코딩하는 핵산 서열과 상기 핵산분자에 특이적으로 결합하는 단백질을 코딩하는 핵산 서열 사이에 위치할 수 있다.
상기 핵산분자는 DNA, RNA 및 압타머로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 이에 제한되는 것은 아니다.
상기 핵산분자는 상기 핵산분자에 특이적으로 결합하는 단백질과 안정적으로 결합을 유지할 수 있도록 하는 특이적 모티프를 포함하는 것일 수 있고, 구체적인 예로서, TAR 서열, TAR 서열 변형체, 이중 DNA 짧은 가닥 (바람직하게는, 7 내지 27, 9 내지 27, 11 내지 27, 13 내지 27, 7 내지 25, 9 내지 25, 11 내지 25, 13 내지 25, 또는 14 내지 25 bp) 및 이중 RNA 짧은 가닥 (바람직하게는, 7 내지 27, 9 내지 27, 11 내지 27, 13 내지 27, 7 내지 25, 9 내지 25, 11 내지 25, 13 내지 25, 또는 14 내지 25 bp)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 양태로서, 상술한 재조합 플라스미드로부터 발현된 산물을 포함하는, 핵산분자의 안정적 전달을 위한 엑소좀을 제공한다.
상기 엑소좀에 있어서, 상기 재조합 플라스미드는 엑소좀의 외부에 발현되어 타겟하는 세포의 표면에 특이적으로 결합하는 단백질을 코딩하는 서열을 더 포함하는 것일 수 있는데, 이는 타겟하는 세포에의 전달 표적성을 높여 전달하고자 하는 핵산분자의 전달 효율성을 높이기 위함일 수 있다.
상기 엑소좀에 있어서, 상기 핵산분자에 특이적으로 결합하는 단백질은 엑소좀의 내부에 발현되어 핵산분자와 결합하는 것일 수 있는데, 이는 엑소좀 내부에서 핵산분자가 분해(degradation)되지 않도록 안정화시켜 최종 타겟 세포에까지 안정적으로 전달될 수 있도록 하는 역할을 수행할 수 있다.
본 발명의 일 양태로서, 상술한 엑소좀을 포함하는 핵산분자의 안정적 전달을 위한 조성물을 제공한다.
또한, 본 발명의 일 양태로서, 엑소좀을 포함하고, 상기 핵산분자는 RNA 간섭효과를 갖는 것인, RNA 간섭(RNA interference)용 조성물을 제공한다.
상기 RNA 간섭효과를 갖는 핵산분자로서, non-coding RNA로서 바람직하게는 miRNA, shRNA, siRNA, piRNA(piwi-interacting RNA) 및 lncRNA(long non coding RNA)로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 양태로서, 상술한 엑소좀을 포함하고, 상기 재조합 플라스미드는 엑소좀의 외부에 발현되어 암 세포의 표면에 특이적으로 결합하는 단백질을 코딩하는 서열을 더 포함하고, 상기 핵산분자는 암에 대한 예방 또는 치료효과를 갖는 것인, 암의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 조성물은 외부 영역에 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 것이 발현된 엑소좀을 포함하는 것으로서, 상기 외부 영역에 발현된 것이 암 세포의 표면에 특이적으로 결합함에 따라 엑소좀이 암 세포를 타겟하게 되고, 이러한 타겟팅에 근거한 암의 예방 또는 치료 용도로의 활용이 가능하게 된다.
또한, 상기 엑소좀이 포함하는 핵산분자는 암에 대한 예방 또는 치료효과를 갖는 것으로서, 이러한 물질은 상기 엑소좀의 이중층 내부 영역에 발현된 후 타겟하는 암 세포에 전달되어 효과를 발휘하는 것일 수 있다. 이러한 경우, 상술한 엑소좀이 암 세포와 상호작용(예를 들어, 표면 수용체 상호작용(surface receptor interaction), 멤브레인 융합(membrane fusion), 수용체 매개 엔도시토시스(receptor-mediated endocytosis), 파고시토시스(phagocytosis) 또는 마이크로피노시토시스(micropinocytosis) 등)에 의해 상기 핵산분자를 암 세포 내 전달할 수 있게 되고, 이를 통해 암의 예방 또는 치료효과를 거둘 수 있게 된다.
상기 암은 방광암, 유방암, 결장암, 신장암, 간암, 폐암, 난소암, 전립선암, 췌장암, 위암, 경부암, 갑상선암 및 편평세포암종을 포함하는 피부암을 포함하는 암종; 백혈병, 급성 림프성 백혈병, 급성 림프구성 백혈병, B-세포 림프종, T-세포 림프종, 호지킨스 림프종, 비-호지킨스 림프종, 모발상 세포 림프종 및 버켓 림프종을 포함하는 림프계 조혈모 종양; 급성 및 만성 골수성 백혈병 및 전골수구 백혈병을 포함하는 골수형의 조혈 종양; 섬유 육종 및 횡문 근육종을 포함하는 간엽 유래 종양; 흑색종, 정상피종, 기형암종, 신경모세포종 및 신경교종을 포함하는 다른 종양; 성상세포종, 신경아세포종, 신경교종 및 신경초종을 포함하는 중추 및 말초 신경 시스템의 종양; 섬유육종, 횡문근육종 및 골육종을 포함하는 중간엽 유래 종양; 및 흑색종, 색소성 건피증, 각화극세포종, 정상피종, 갑상선 여포상암 및 기형 암종을 포함하는 기타 종양으로 이루어진 군으로부터 선택되는 어느 하나일 수 있고, 바람직한 일 실시예에 따를 때 난소암일 수 있으나, 이에 제한되는 것은 아니다.
상기 핵산분자의 안정적인 전달을 위한 플라스미드 플랫폼과 관련된 발명의 구체적인 설명에 있어, 상기 생체분자의 안정적인 발현 및 전달을 위한 플라스미드 플랫폼에 관련된 발명의 구체적인 설명을 참조하여 해석할 수 있음은 당업계 통상의 기술자에 자명한 것이다.
본 발명의 플라스미드 플랫폼은 LAMP-2B(Lysosome-Associated Membrane Glycoprotein 2B)의 세포 내 도메인(intracellular domain), 세포 외 도메인(extracellular domain) 또는 이들의 조합이 제거된 변형 단백질을 코딩하는 핵산 서열을 포함하고 있어, 생체분자의 안정적 발현 및 전달이 가능하다.
본 발명의 재조합 플라스미드는 상기 플라스미드 플랫폼 내, 발현 및 전달을 목적하는 생체분자를 코딩하는 서열을 더 포함하고 있어, 생체분자의 안정적 발현 및 전달이 가능하다.
본 발명의 엑소좀은 상기 재조합 플라스미드를 포함하고 있어, 생체분자의 안정적 발현 및 전달이 가능하다.
본 발명의 암의 진단을 위한 조성물은 상기 엑소좀을 포함하고, 상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 펩타이드로서, 암의 효과적인 진단이 가능하다.
본 발명의 암의 예방 또는 치료용 약학적 조성물은 상기 엑소좀을 포함하고, 상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 것과, 암 세포 내 전달하고자 하는 치료물질을 포함하고 있어, 암의 효과적인 예방과 치료가 가능하다.
다만, 상기한 효과로 한정되는 것은 아니며, 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1 내지 도 5는 본 발명의 일 양태로서 제시하는 플라스미드 플랫폼을 도식화한 것이다.
도 6은 LAMP2-GFP, LAMP2-△IC-GFP, LAMP2-△EC-GFP, LAMP2-△EC/IC-GFP 각각에 대해 발현 목표 생체분자의 발현수준을 웨스턴 블롯으로 확인한 결과이다.
도 7은 도 6의 웨스턴 블롯 결과를 정량적 그래프화 한 것이다.
도 8은 도 6의 실험에 사용된 재조합 플라스미드를 과발현시킨 후, GFP 형광 발광 수준을 현미경으로 관찰한 결과이다.
도 9는 LEL-LAMP2-△EC-GFP, LEL-LAMP2-△EC/IC-GFP 각각에 대해 과발현시킨 후, GFP 형광 발광 수준을 현미경으로 관찰한 결과이다.
도 10은 GNSTM-LAMP2-GFP, GNSTM-LAMP2-△IC-GFP, GNSTM-LAMP2-△EC/IC-GFP 각각에 대해 발현 목표 생체분자의 발현수준을 웨스턴 블롯으로 확인한 결과이다.
도 11은 도 10의 웨스턴 블롯 결과를 정량적 그래프화 한 것이다.
도 12는 도 10의 실험에 사용된 재조합 플라스미드를 과발현시킨 후, GFP 형광 발광 수준을 현미경으로 관찰한 결과이다.
도 13은 SEL-LAMP2-△EC-GFP, SEL-LAMP2-△EC/IC-GFP 각각에 대해 과발현시킨 후, GFP 형광 발광 수준을 현미경으로 관찰한 결과이다.
도 14는 GNSTM-LAMP2-△EC/IC-GFP, Gly-LAMP2-△EC/IC-GFP 각각에 대해 과발현시킨 후, GFP 형광 발광 수준을 현미경으로 관찰한 결과이다.
도 15는 GNSTM-LAMP2-GFP, GNSTM-LAMP2-△IC-GFP, GNSTM-LAMP2-△EC/IC-GFP, GNSTM-LAMP2-EC5△IC-GFP, Gly-LAMP2-EC△IC-GFP, LAMP2-EC25△IC-GFP 각각에 대해 발현 목표 생체분자의 발현수준을 웨스턴 블롯으로 확인한 결과이다.
도 16은 활성분자로서 암 세포 표적 펩타이드를 포함하는 경우, 암 세포에 대한 엑소좀의 특이적 결합능력을 GFP 형광 발광 수준을 토대로 현미경으로 관찰한 결과이다.
도 17 내지 19는 플라스미드를 형질전환 하지 않은 세포주의 엑소좀(도 17), GNSTM-LAMP2-GFP(도 18), GNSTM-LAMP2-△EC/IC-GFP(도 19)을 과발현시킨 후, 엑소좀의 크기를 확인한 결과이다.
도 20은 GNSTM-LAMP2-△EC/IC-shGFP(w/o BIV), GNSTM-LAMP2-△EC/IC-shGFP-BIV(w/BIV), GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT)(JDV_WT), GNSTM-LAMP2-△EC/IC-shGFP-JDV(MT)(JDV_MT) 각각에 대한 발현수준을 형질주입된 세포와 이로부터 분비된 엑소좀 내 각각 확인한 결과이다.
도 21은 플라스미드를 형질전환 하지 않은 세포주 (Control), miRNA가 없는 SEL-LAMP2-△EC/IC-RBP (w/o miRNA), miRNA가 있는 SEL-LAMP2-△EC/IC-RBP (w/ miRNA) 형질주입 세포주와 이로부터 분비된 엑소좀을 표적세포에서 처리시에 발현하는 miRNA발현 수준을 qPCR로 확인한 결과이다.
도 22는 플라스미드 형질 전환하지 않은 세포주(Control)와 GNSTM-LAMP2-△EC/IC-scrambleGFP(scramble GFP), GNSTM-LAMP2-△EC/IC-shGFP-BIV(BIV shGFP), GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT)(JDV WT shGFP), GNSTM-LAMP2-△EC/IC-shGFP-JDV(MT)(JDV MT shGFP) 각각의 플라스미드 형질전환한 세포주에서 분리한 엑소좀을 GFP의 발현 세포에 처리시에 GFP RNA 발현 억제 수준을 확인한 결과이다.
도 23은 플라스미드 형질 전환하지 않은 세포주(Control)와 GNSTM-LAMP2-△EC/IC-scrambleGFP(scramble GFP), GNSTM-LAMP2-△EC/IC-shGFP-BIV(BIV shGFP), GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT)(JDV WT shGFP), GNSTM-LAMP2-△EC/IC-shGFP-JDV(MT)(JDV MT shGFP) 각각의 플라스미드 형질전환한 세포주에서 분리한 엑소좀을 GFP의 발현 세포에 처리시에 GFP 발현 억제 수준을 웨스턴 블롯후 정량화한 그래프이다.
도 24는 상기 도 23 그래프의 웨스턴 블롯 결과이다.
도 25는 플라스미드 형질 전환하지 않은 세포주(Control)와 GNSTM-LAMP2-△EC/IC-scrambleGFP(scramble GFP), GNSTM-LAMP2-△EC/IC-shGFP-BIV(BIV shGFP), GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT)(JDV WT shGFP), GNSTM-LAMP2-△EC/IC-shGFP-JDV(MT)(JDV MT shGFP) 각각의 플라스미드 형질전환한 세포주에서 분리한 엑소좀을 GFP의 발현 세포에 처리시에 GFP 형광 발현 억제 수준을 현미경 관찰로 확인한 결과이다.
이하, 보다 구체적으로 설명하기 위해 실시예와 실험예를 들어 상세하게 설명하기로 한다. 그러나, 하기 실시예와 실험예는 예시적인 것으로, 발명의 범위가 이에 제한되는 것은 아니다.
실시예 1. 변형된 펩타이드를 코딩하는 유전자를 포함하는 재조합 플라스미드의 제조
LAMP-2B (NM_013995.2)를 코딩하는 전체서열을 합성후 PCR 증폭하여 Infusion cloning kit (In-Fusion® HD cloning kit, clontech, Cat No. 639648) 방법에 따라 pcDNA 3.1 (+) 벡터에 (또는 동물 세포 과발현 벡터에 삽입 가능) 삽입하여 LAMP2B가 포함된 플라스미드를 제작하였다. 본 플라스미드에 Michelle E. Hung 외 (The Journal of Biological Chemistry 2015. Mar 27) 보고와 동일하게 HA(Hyaluronic Acid)를 코딩하는 서열, 타겟 펩타이드(Target Peptide)를 코딩하는 서열, 활성 단백질(Active Protein)을 코딩하는 서열을 각각을 합성한 후, PCR 증폭하여 Infusion cloning kit을 이용하여 각 서열 위치에 삽입하여 재조합 플라스미드를 제작하였다(SP: Signal Peptide, 신호 펩타이드를 코딩하는 서열; HA: Hyaluronic Acid, 히알루론산을 코딩하는 서열; Target Peptide: 타겟 펩타이드를 코딩하는 서열, FLAG 단백질을 코딩하는 서열 사용; Active Protein: 활성 단백질, GFP를 코딩하는 서열 사용). 또한, 상기와 같은 방법에 Mutagenesis kit (EZchange쪠 Site-directed Mutagenesis kit, Enzynomics, Cat No. EZ004S) 방법으로 LAMP-2B의 세포 내 도메인(Intracellular Domain; IC)을 코딩하는 서열이 제거된 서열을 삽입한 재조합 플라스미드(LAMP2-△IC-GFP), LAMP-2B의 세포 외 도메인(Extracellular Domain; EC)을 코딩하는 서열이 제거된 서열을 삽입한 재조합 플라스미드(LAMP2-△EC-GFP), LAMP-2B의 세포 내 도메인과 세포 외 도메인을 코딩하는 서열 모두가 제거된 서열을 삽입한 재조합 플라스미드(LAMP2-△EC/IC-GFP)를 각각 제조하였고, 이를 도식화하면 도 1과 같다.
또한, 상기 도 1의 골격구조 중 일부에 대하여, LAMP-2B의 세포 외 도메인(EC) 영역을 코딩하는 서열을 테트라스파닌(tetraspanin)에서의 CD9의 LEL(CD9의 Large Extracellular Domain)을 코딩하는 서열을 합성 후 PCR증폭하여 Infusion cloning kit방법으로 치환한 재조합 플라스미드(LEL-LAMP-△EC-GFP, LEL-LAMP-△EC/IC-GFP)를 제조하였고, 이를 도식화하면 도 2와 같다.
또한, 상기 도 1 골격구조 중 일부에 대하여, Targeting Peptide의 상위(upstream; 세포 외부 방향) 또는 하위(downstream; 세포 내부 방향) 영역에서 글리코실화(glycosylation)를 도입하기 위해 ① GNSTM 모티프(GNSTM은 아미노산 서열로 세포 내에서 가장 강하게 N-glycosylation 되는 서열임)를 코딩하는 서열을 해당 위치에 Mutagenesis kit (EZchange쪠 Site-directed Mutagenesis kit, Enzynomics, Cat No. EZ004S)방법으로 도입하거나(GNSTM-LAMP2-GFP, GNSTM-LAMP2-△IC-GFP, GNSTM-LAMP2-△EC/IC-GFP), ② 테트라스파닌에서의 CD9 SEL(CD9의 Small Extracellular Domain)을 코딩하는 서열을 합성 후 PCR증폭하여 Infusion cloning kit방법으로 기존 LAMP2B-GFP 변형 플라스미드에 도입하거나(SEL-LAMP2-△EC-GFP, SEL-LAMP2-△EC/IC-GFP), ③ LAMP2-βEC/IC-GFP의 FLAG 단백질을 코딩하는 서열의 하위에 N-glycosylation서열 AAC를 Mutagenesis kit (EZchange쪠 Site-directed Mutagenesis kit, Enzynomics, Cat No. EZ004S)방법으로 도입(Gly-LAMP2-△EC/IC-GFP)하여 재조합 플라스미드를 각각 제조하였고, 이를 도식화하면 도 3과 같다.
또한, 도 3의 골격구조 중 일부에 대하여, LAMP-2B의 세포 외 도메인을 코딩하는 서열 중 일부 서열(EC25)을 Mutagenesis kit (EZchange쪠 Site-directed Mutagenesis kit, Enzynomics, Cat No. EZ004S)방법으로 삽입한 재조합 플라스미드(LAMP2-EC25△IC-GFP, GNSTM-LAMP2-EC25△IC-GFP, Gly-LAMP2-EC25△IC-GFP)를 제조하였고, 이를 도식화하면 도 4와 같다.
또한, 도 3의 골격구조 중 일부에 대하여, GNSTM-LAMP-GFP-△EC/IC 또는 SEL-LAMP2-ΔEC/IC에서의 활성 단백질을 코딩하는 서열을 (sh)RNA와 결합하는 단백질을 코딩하는 서열로 치환하고, HA를 코딩하는 서열과 상기 (sh)RNA 결합 단백질(RNA Binding protein; RBP)을 코딩하는 서열 사이에 Pri-miRNA 서열을 합성하여 PCR증폭한 후 Infusion kit을 이용하여 재조합 플라스미드(GNSTM-LAMP2-△EC/IC-RBP, SEL-LAMP2-△EC/IC-RBP)를 제조하였고, 이를 도식화하면 도 5와 같다. 상기 Pri-miRNA로는 miRNA-199의 Pri-miRNA 기본서열, miRNA-199 기본서열에 GFP 타겟 서열을 포함한 shGFP의 Pri-miRNA 서열을 사용하였다. 상기 Pri-miRNA 서열구조 내 TAR 서열을 포함하고 있는 바, RBP로는 TAR 부위에 특이적으로 결합하는 단백질을 도입하고자 하였다. 따라서, 상기 (sh)RNA와 결합하는 단백질(RNA Binding protein; RBP)로서, BIV(Bovine Immunodeficiency Virus) 유래 야생형 단백질과, JDV(Jembrana Disease Virus) 유래 단백질의 야생형(WT)과 돌연변이형(MT) 단백질을 이용하였다.
상기 제조된 재조합 플라스미드의 구체적인 서열은 하기 표 1에 나타낸 바와 같다.
재조합 플라스미드 구체적인 서열
LAMP2(서열번호 1) gagcatttcagataaatacctttgatctaagggttcagcctttcaatgtgacacaaggaaagtattctacagcccaagagtgttcgctggatgatgacaccattctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaagaaaaagttatgctggatatcagactctgTAA
LAMP2-△IC(서열번호 2) gagcatttcagataaatacctttgatctaagggttcagcctttcaatgtgacacaaggaaagtattctacagcccaagagtgttcgctggatgatgacaccattctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaTAA
LAMP2-△EC(서열번호 3) atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcactaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaagaaaaagttatgctggatatcagactctgTAA
LAMP2-△EC/IC(서열번호 4) atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcactaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaTAA
LAMP2-GFP(서열번호 5) GGACGAGCTGTACAAGTAA
LAMP2-△IC-GFP(서열번호 6) tgtgcaacaaagagcagactgtttcagtgtctggagcatttcagataaatacctttgatctaagggttcagcctttcaatgtgacacaaggaaagtattctacagcccaagagtgttcgctggatgatgacaccattctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctAAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
LAMP2-△EC-GFP(서열번호 7) AGCTGTACAAGTAA
LAMP2-△EC/IC-GFP(서열번호 8) atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcagactataaagatgacgatgacaagggctcgagtGgtggaggatctggtctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctAAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
LEL-LAMP2-△EC-GFP(서열번호 9) atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcagactataaagatgacgatgacaagggctcgagtGgtggaggatctggtTATTCCCACAAGGATGAGGTGATTAAGGAAGTCCAGGAGTTTTACAAGGACACCTACAACAAGCTGAAAACCAAGGATGAGCCCCAGCGGGAAACGCTGAAAGCCATCCACTATGCGTTGAACTGCTGTGGTTTGGCTGGGGGCGTGGAACAGTTTATCTCAGACATCTGCCCCAAGAAGGACGTACTCGAAACCTTCACCGTGAAGTCCTGTCCTGATGCCATCAAAGAGGTCTTCGACctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaagaaaaagttatgctggatatcagactctgggaagcggatacccatacgatgtgccagattacgcttaa
LEL-LAMP2-△EC/IC-GFP(서열번호 10) atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcagactataaagatgacgatgacaagggctcgagtGgtggaggatctggtTATTCCCACAAGGATGAGGTGATTAAGGAAGTCCAGGAGTTTTACAAGGACACCTACAACAAGCTGAAAACCAAGGATGAGCCCCAGCGGGAAACGCTGAAAGCCATCCACTATGCGTTGAACTGCTGTGGTTTGGCTGGGGGCGTGGAACAGTTTATCTCAGACATCTGCCCCAAGAAGGACGTACTCGAAACCTTCACCGTGAAGTCCTGTCCTGATGCCATCAAAGAGGTCTTCGACctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaGGTAGCGGTggaagcggatacccatacgatgtgccagattacgcttaa
GNSTM(서열번호 11) GGTAACTCGACTATG
SEL(서열번호 12) CTCCGATTCGACTCTCAGACCAAGAGCATCTTCGAGCAAGAAACTAATAATAATAATTCCAGCTTCTAC
Gly(서열번호 13) AAC
GNSTM-LAMP2-GFP(서열번호 14) GGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
GNSTM-LAMP2-△IC-GFP(서열번호 15) CGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
GNSTM-LAMP2-△EC/IC-GFP(서열번호 16) GCATGGACGAGCTGTACAAGTAA
SEL-LAMP2-△EC-GFP(서열번호 17) AAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGtaa
SEL-LAMP2-△EC/IC-GFP(서열번호 18) ATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGtaa
Gly-LAMP2-△EC/IC-GFP(서열번호 19) atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcagactataaagatgacgatgacaagggctcgagtGgtAACggatctggtctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctAAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
LAMP2-EC25△IC-GFP(서열번호 20) ACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGtaa
GNSTM-LAMP2-EC25△IC-GFP(서열번호 21) TGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
Gly-LAMP2-EC25△IC-GFP(서열번호 22) ACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGtaa
GNSTM-LAMP2-△EC/IC-shGFP(서열번호 23) ATGGTGTGCTTCCGCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTAGTCCTGGGAGCTGTGCGGTCTTATGCAGGTAACTCGACTATGGGCAGTGGAGACTATAAAGATGACGATGACAAGGGCAGTGGATCTGGATCCGGTGGCTCGAGTCTAATCCCAATTATAGTTGGTGCTGGTCTTTCAGGCTTGATTATCGTTATAGTGATTGCTTACGTAATTGGCAGAGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctGGATCGGGTAGGCACCAGgtaggggagctggctgggtggggcagccccgggaaggggggaaagctgaatgcaacccctggtgcaggaagggaggcttttcctgaggaccgggagaggattttaagtacatagaaggaagcttctggagatcctgctccgtcgcCGTCTATATCATGGCCGACATCTCTGAGCCTGGGAGCTCTGTCGGCCATGATATAGACGTTAgactgggcaagggagagcaacgccatggaccgctggggacaaaatgggctgtttccaaggagaagacatttgtttgctccttttttgattcttgtcctttccttcccagGGCGTGATGGGCAGCGGCTAA
GNSTM-LAMP2-△EC/IC-shGFP-BIV(서열번호 24) ATGGTGTGCTTCCGCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTAGTCCTGGGAGCTGTGCGGTCTTATGCAGGTAACTCGACTATGGGCAGTGGAGACTATAAAGATGACGATGACAAGGGCAGTGGATCTGGATCCGGTGGCTCGAGTCTAATCCCAATTATAGTTGGTGCTGGTCTTTCAGGCTTGATTATCGTTATAGTGATTGCTTACGTAATTGGCAGAGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctGGATCGGGTAGGCACCAG gtag gggagctggctgggtggggcagccccgggaaggggggaaagctgaatgcaacccctggtgcaggaagggaggcttttcctgaggaccgggagaggattttaagtacatagaaggaagcttctggagatcctgctccgtcgcCGTCTATATCATGGCCGACATCTCTGAGCCTGGGAGCTCTGTCGGCCATGATATAGACGTTAgactgggcaagggagagcaacgccatggaccgctggggacaaaatgggctgtttccaaggagaagacatttgtttgctccttttttgattcttgtcctttccttcccagGGCGTGATGGGCAGCGGCGGCAGCGGCCGACCACGTGGGACACGCGGCAAGGGCCGGCGCATTAGGCGGTAA
GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT)(서열번호 25) ATGGTGTGCTTCCGCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTAGTCCTGGGAGCTGTGCGGTCTTATGCAGGTAACTCGACTATGGGCAGTGGAGACTATAAAGATGACGATGACAAGGGCAGTGGATCTGGATCCGGTGGCTCGAGTCTAATCCCAATTATAGTTGGTGCTGGTCTTTCAGGCTTGATTATCGTTATAGTGATTGCTTACGTAATTGGCAGAGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctGGATCGGGTAGGCACCAGgtaggggagctggctgggtggggcagccccgggaaggggggaaagctgaatgcaacccctggtgcaggaagggaggcttttcctgaggaccgggagaggattttaagtacatagaaggaagcttctggagatcctgctccgtcgcCGTCTATATCATGGCCGACATCTCTGAGCCTGGGAGCTCTGTCGGCCATGATATAGACGTTAgactgggcaagggagagcaacgccatggaccgctggggacaaaatgggctgtttccaaggagaagacatttgtttgctccttttttgattcttgtcctttccttcccagGGCGTGATGGGCAGCGGCGGCAGCGGCCGACGAAAAAAGCGTGGGACACGCGGCAAGGGCCGGAAGATTCACTATTAACGGTAA
GNSTM-LAMP2-△EC/IC-shGFP-JDV(MT)(서열번호 26) ATGGTGTGCTTCCGCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTAGTCCTGGGAGCTGTGCGGTCTTATGCAGGTAACTCGACTATGGGCAGTGGAGACTATAAAGATGACGATGACAAGGGCAGTGGATCTGGATCCGGTGGCTCGAGTCTAATCCCAATTATAGTTGGTGCTGGTCTTTCAGGCTTGATTATCGTTATAGTGATTGCTTACGTAATTGGCAGAGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctGGATCGGGTAGGCACCAGgtaggggagctggctgggtggggcagccccgggaaggggggaaagctgaatgcaacccctggtgcaggaagggaggcttttcctgaggaccgggagaggattttaagtacatagaaggaagcttctggagatcctgctccgtcgcCGTCTATATCATGGCCGACATCTCTGAGCCTGGGAGCTCTGTCGGCCATGATATAGACGTTAgactgggcaagggagagcaacgccatggaccgctggggacaaaatgggctgtttccaaggagaagacatttgtttgctccttttttgattcttgtcctttccttcccagGGCGTGATGGGCAGCGGCGGCAGCGGCCGACGAAAAAAGCGTGGGACACGCGGCAAGGGCCGGCGCATTAGGCGGTAA
SEL-LAMP2-△EC/IC-BIV
(서열번호 27)
atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcagactataaagatgacgatgacaagggctcgagtGgtggaggatctggtCTCCGATTCGACTCTCAGACCAAGAGCATCTTCGAGCAAGAAACTAATAATAATAATTCCAGCTTCTACACAGGAGTCctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctGGCAGCGGCGGCAGCGGCCGACCACGTGGGACACGCGGCAAGGGCCGGCGCATTAGGCGGtaa
SEL-LAMP2-△EC/IC-(Pri-miRNA-199)-BIV
(서열번호 28)
atggtgtgcttccgcctcttcccggttccgggctcagggctcgttctggtctgcctagtcctgggagctgtgcggtcttatgcagactataaagatgacgatgacaagggctcgagtGgtggaggatctggtCTCCGATTCGACTCTCAGACCAAGAGCATCTTCGAGCAAGAAACTAATAATAATAATTCCAGCTTCTACACAGGAGTCctaatcccaattatagttggtgctggtctttcaggcttgattatcgttatagtgattgcttacgtaattggcagaGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctGGATCGGGTAGGCACCAGgtaggggagctggctgggtggggcagccccgggaaggggggaaagctgaatgcaacccctggtgcaggaagggaggcttttcctgaggaccgggagaggattttaagtacatagaaggaagcttctggagatcctgctccgtcgcCCCAGTGTTCAGACTACCTGTTCTCTGAGCCTGGGAGCTCACAGTAGTCTGCACATTGGTTAgactgggcaagggagagcaacgccatggaccgctggggacaaaatgggctgtttccaaggagaagacatttgtttgctccttttttgattcttgtcctttccttcccagGGCGTGATGGGCAGCGGCGGCAGCGGCCGACCACGTGGGACACGCGGCAAGGGCCGGCGCATTAGGCGGTAA
GNSTM-LAMP2-△EC/IC-scramble shGFP(서열번호 29) ATGGTGTGCTTCCGCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTAGTCCTGGGAGCTGTGCGGTCTTATGCAGGTAACTCGACTATGGGCAGTGGAGACTATAAAGATGACGATGACAAGGGCAGTGGATCTGGATCCGGTGGCTCGAGTCTAATCCCAATTATAGTTGGTGCTGGTCTTTCAGGCTTGATTATCGTTATAGTGATTGCTTACGTAATTGGCAGAGGTAGCGGTGGAAGCGGATACCCATACGATGTGCCAGATTACGCTGGATCGGGTAGGCACCAGgtaggggagctggctgggtggggcagccccgggaaggggggaaagctgaatgcaacccctggtgcaggaagggaggcttttcctgaggaccgggagaggattttaagtacatagaaggaagcttctggagatcctgctccgtcgcCTAAGGTTAAGTCGCCCTCGTCTCTGAGCCTGGGAGCTCCGAGGGCGACTTAACCTTAGTTAgactgggcaagggagagcaacgccatggaccgctggggacaaaatgggctgtttccaaggagaagacatttgtttgctccttttttgattcttgtcctttccttcccagGGCGTGATGGGCAGCGGCTAA
Double stranded RNA Binding Domain motif(DRBD)(서열번호 30) TTCTTCATGGAGGAACTTAATACATACCGTCAGAAGCAGGGAGTAGTACTTAAATATCAAGAACTGCCTAATT
CAGGACCTCCACATGATAGGAGGTTTACATTTCAAGTTATAATAGATGGAAGAGAATTTCCAGAAGGTGA
AGGTAGATCAAAGAAGGAAGCAAAAAATGCCGCAGCCAAATTAGCTGTTGAGATACTTAATAAGGAA
BIV 유래 RBD(BIV)
(서열번호 31)
CGACCACGTGGGACACGCGGCAAGGGCCGGCGCATTAGGCGG
JDV 유래 RBD(JDV(WT))
(서열번호 32)
CGACGAAAAAAGCGTGGGACACGCGGCAAGGGCCGGAAGATTCACTATTAA
JDV 유래 변이체 RBD(JDV(MT))
(서열번호 33)
CGACGAAAAAAGCGTGGGACACGCGGCAAGGGCCGGCGCATTAGGCGG
HIV 유래 RBD(서열번호 34) AGGAAGAAGAGGAGGCAGAGGAGGAGG
실시예 2. 재조합 플라스미드의 발현
재조합 플라스미드를 발현하기 위하여 HEK293T세포 2.5X106 세포수를 100mm2배양접시에서 10% 소태아 혈정 (10% Fetal Bovine Serum (FBS), GibcoTM, Cat No. 16000044)과 1% 항생제 (1% Penicllin/Streptomycin, GibcoTM, Cat No. 15140122)가 포함된 DMEM (Welgene, Cat No. LM001-05) 배양액상태에서 24시간 배양하였다. 표적 유전자를 포함하는 재조합 플라스미드 pcDNA3.1(+) 벡터를 PolyJetTM transfection kit (Signagen® Laboratories, Cat No. SL100688)의 방법에 따라 세포에 2μg을 도입하여 48시간 동안 배양하였다.
실시예 2-1. 형광 이미징 실험
세포 내 재조합 플라스미드 형광 발현을 확인하기 위하여, 소태아 혈청이 포함되지 않은 DMEM배지로 교체하고 48시간 동안 추가로 배양하였다. 배양 종료 후, Cytation 5 (Biotek)을 이용하여 세포내 녹색 형광 발현을 확인하였다.
실시예 2-2. 엑소좀 분리, 단백질 발현, RNA발현 등
1X DPBS (Welgene, Cat No. LB001-02)로 1회 세척후 1mL Trypsin-EDTA (Welgene, Cat No. LS015-10)를 배양접시 에 첨가하여 세포를 배양접시에서 떨어뜨린 후 소태아 혈청 및 항생제가 포함된 DMEM배지 10mL를 첨가하여 세포를 모아 1000 rpm에서 2분동안 원심 분리하였다. 배양액을 제거하고 모아진 세포를 소태아 혈청이 포함되지 않은 DMEM 배지 10mL를 첨가하여 세포를 풀어준 후, 부유 세포 전용 배양접시 (suspension culture dish, SPL life science, Cat No. 11151)에 첨가하여 1% 항생제만 포함된 DMEM배양액에서 48시간 추가 배양 후 엑소좀 및 세포를 분리하여 단백질 발현 및 RNA발현 실험을 진행하였다.
실험예 1. 변형된 펩타이드를 이용한 활성 단백질의 안정적 발현 및 타겟에의 전달
1. 세포 내 도메인(IC), 세포 외 도메인(EC)의 제거 후 목적 단백질 발현수준 상승효과 확인
(1) 실험방법
도 1과 도 2의 플라스미드 골격구조들에 타겟팅 펩타이드(Targeting peptide)로서 FLAG 단백질을 코딩하는 유전자를, 활성 단백질(Active protein)으로서 GFP를 코딩하는 유전자를 각각 삽입한 후, 실시예 2-1 또는 2-2의 방법에 따라 각각의 재조합 플라스미드들을 과발현시켰다.
즉, 세포의 실제 형광 발현을 확인하기 위해, 실시예 2-1의 방법에 따라 각각의 재조합 플라스미드를 과발현 시킨 후 형광 발현을 측정하였다.
또한, 단백질 발현수준을 확인하기 위해 실시예 2-2 방법에 따라 배양 종료 후 50mL conical tube (SPL, Cat No. 50040)에 세포와 배양액을 모아 1000 rpm에서 2분동안 원심 분리 후 모아진 세포는 1X PBS로 2회 세척 후 1X로 희석한 Cell lysis buffer (10X Cell lysis buffer, Cell Signaling Technology, Cat No. 9803)에 PMSF를 첨가하여 세포에서 단백질을 분리하였다. 이후, 분리한 배양액은 추가로 4000 rpm에서 30분간 원심 분리 후 세포 잔여물을 제거한 후, 상층액을 10kDa Filter tube (Mlliopore, Cat No. UFC9010)에 넣고 4000 rpm에서 30분간 원심분리 한다. 최종적으로 남은 상층액에 1X PBS를 넣고 섞은 후 추가 원심 분리하며 이 과정을 2회 반복한 후 filter tube에 남은 상층액을 27-G바늘이 장착된 주사기를 이용하여 0.2 μm필터로 여과하여 단일 크기의 엑소좀을 수득하였다. 상기 세포 lysate와 수득한 엑소좀을 웨스턴 블럿을 통하여, 세포와 엑소좀 안에 들어 있는 재조합 단백질 발현양을 비교하였다.
(2) 실험결과
도 1의 플라스미드들을 과발현시킨 경우, LAMP-2B를 코딩하는 전체서열을 삽입(LAMP2-GFP)한 재조합 플라스미드를 과발현시킨 경우 대비, 세포 내 도메인(LAMP2-△IC-GFP), 세포 외 도메인(LAMP2-△EC-GFP) 또는 이들 모두(LAMP2-△EC/IC-GFP)를 코딩하는 서열이 제거된 서열을 삽입한 재조합 플라스미드를 과발현시킨 경우 FLAG 단백질과 GFP의 발현 수준이 현저히 높았다(도 6, 7). 특히, LAMP2-△EC/IC-GFP의 경우, LAMP2-GFP 대비 세포에서 FLAG단백질은 약 6배-20배, GFP 단백질 은 세포에서 약 50-100배 세포 및 엑소좀에서 증가하였다(도 6A-B). 실제 형광 측정결과 역시, LAMP2-GFP 대비 LAMP2-△IC-GFP, LAMP2-△EC-GFP 및 LAMP2-△EC/IC-GFP에서 형광의 강도가 현저히 강함을 확인할 수 있었고, 특히 LAMP2-△EC/IC-GFP에서의 형광 강도가 가장 강함을 확인할 수 있었다(도 8).
이는, LAMP2의 세포 내 도메인을 제거하는 경우 엑소좀을 분비하는 세포 또는 엑소좀에서 타겟 단백질과 활성 단백질 모두의 안정적 발현을 증가시킬 수 있음을 입증하는 것이고, 더 나아가, LAMP2의 세포 외 도메인까지 제거하는 경우 발현의 안정성을 현저히 증가시킬 수 있음을 보여주는 것이다. 이는, LAMP2가 리소좀 분해에 관여하는 단백질로 알려져 있는데, 이의 세포 내 도메인을 제거함에 따라 리소좀 분해를 회피하여 목적 단백질들의 발현율이 높아지는 것으로 추측한다. 그러나, LAMP2의 세포 외 도메인까지 제거하는 경우, LAMP2 자체의 안정성이 현저히 낮아져 목적 단백질들의 발현율에 부정적인 역할을 예상하였으나, 오히려 발현율이 현저하게 상승하였다는 점은 예상하지 못한 효과이며, 이에 대한 추후 연구가 필요할 것으로 보인다.
또한, 도 2의 플라스미드들을 과발현시킨 경우, LAMP2의 세포 내 도메인을 코딩하는 서열이 제거되지 않은 경우(LEL-LAMP2-△EC) 대비, 제거된 경우(LEL-LAMP2-△EC/IC) 형광 강도가 현저히 강함을 확인할 수 있다(도 9).
이는, LAMP2의 세포 내 도메인을 제거하는 경우 세포 내 도메인에 의한 세포 내 외부 단백질 유입에 따른 세포의 리소좀 분해 작용을 억제함으로써 타겟 단백질과 활성 단백질의 발현수준을 높일 수 있음을 보다 명확하게 보여주는 것으로, LAMP2의 세포 외 도메인 영역에 타 단백질의 세포 외 도메인 영역으로 치환되더라도 같은 결과를 보여주었다.
2. 글리코실화에 의한 발현수준 상승효과 확인
(1) 실험방법
도 3과 도 4의 플라스미드 골격구조들에 타겟팅 펩타이드(Targeting peptide)로서 FLAG 단백질을 코딩하는 유전자를, 활성 단백질(Active protein)으로서 GFP를 코딩하는 유전자를 각각 삽입한 후, 실시예 2-1과 2-2의 방법에 따라 각각의 재조합 플라스미드들을 과발현시켰다. 이 외, 실험방법은 상기 실험예 1-1-(1)에 기재된 바와 같다.
(2) 실험결과
도 3의 플라스미드들을 과발현시킨 경우, GNSTM 모티프 서열에 LAMP2 전체 서열을 포함하는 플라스미드(GNSTM-LAMP2-GFP)는 타겟 단백질인 FLAG 단백질과 활성 단백질인 GFP의 발현량이 매우 낮았다(도 10). 이는, 기존 논문들에서 보고된 바와 불일치하는 결과로, GNSTM 모티프가 실제 LAMP2에서 목적 단백질의 안정화 효과를 제공하지 못하는 것을 의미한다. 그러나, LAMP2의 세포 내 도메인이 제거되거나(GNSTM-LAMP2-△IC-GFP), 이에 더해 세포 외 도메인까지 제거된 경우(GNSTM-LAMP2-△EC/IC-GFP), GNSTM 모티프가 목적 단백질들의 발현을 매우 안정화시키는 결과를 보여주었다. 특히, LAMP2의 세포 내 도메인과 세포 외 도메인 모두가 제거된 경우(GNSTM-LAMP2-△EC/IC-GFP)는 타겟 단백질인 FLAG 단백질과 활성 단백질인 GFP 모두 발현 수준이 현저히 높았는데, LAMP2 전체 서열에 GNSTM 모티프 서열이 결합된 경우 대비 FLAG은 200-900배 증가하였으며, GFP는 40-80배 증가하였다(도 11). 형광발광 수준 역시 이와 같은 결과를 동일하게 반영하듯, GNSTM-LAMP2-GFP 대비 GNSTM-LAMP2-△IC-GFP에서 형광의 세기가 더 높았고, GNSTM-LAMP2-△EC/IC-GFP에서는 그 세기가 현저한 차이를 보여주며 강하게 나타났다(도 12).
이러한 경향은 종래 글리코실화된 아미노산을 포함하는 것으로 알려진 CD9 SEL 도메인을 타겟 단백질의 하위 영역에 포함하는 경우에도 동일한 경향을 나타났는데, LAMP2의 세포 외 도메인을 SEL로 치환한 경우 대비(SEL-LAMP2-△EC-GFP), 세포 내 도메인을 더 제거한 경우(SEL-LAMP2-△EC/IC-GFP)에서 형광의 세기가 더 강하게 나타났다(도 13).
또한, LAMP2-△EC/IC-GFP 플라스미드에 FLAG하위에 위치한 링커의 중간 부위에 글리코실화 활성 아미노산인 "GNG (Glycine-Asparagine-Glycine)로 치환하기 위하여 Mutatgenesis kit을 이용하여 해당 위치에 DNA 서열을 치환하였다. 즉, 링커의 아미노산 서열 "GSSGGGSG (DNA서열: ggctcgagtGgtggaggatctggt)"을 "GSSGNGSG (DNA서열: ggctcgagtGgtAACggatctggt)"로 변형시킨 것이다. 그 결과, 타겟 단백질의 하위 영역에 글리코실화 시킨 경우(Gly-LAMP2-△EC/IC-GFP)에서도 동일한 경향을 나타내며, LAMP2의 세포 외 도메인과 세포 내 도메인을 모두 제거한 경우, GNSTM 모티프의 도입과 SEL의 도입의 경우와 같이 형광의 세기가 매우 강하게 나타남을 확인할 수 있었다(도 14).
또한, LAMP2의 세포 외 도메인 일부를 포함하는 경우 글리코실화의 위치와 구조에 따라 타겟 단백질의 안정화를 보다 높일 수 있을 것이라는 기대 하에, LAMP2의 하위 25개 아미노산 서열을 코딩하는 핵산 서열을 삽입한 플라스미드(LAMP2-EC25△IC-GFP, GNSTM-LAMP2-EC25△IC-GFP, Gly-LAMP2-EC25△IC-GFP)를 추가로 제조한 후, 목적 단백질의 발현량을 확인하였다. 그 결과, GNSTM-LAMP2-GFP 대비 GNSTM-LAMP2-EC25△IC-GFP, Gly-LAMP2-EC25△IC-GFP, GNSTM-LAMP2-△EC/IC-GFP 모두에서 타겟 단백질인 FLAG 단백질과 활성 단백질인 GFP의 발현 수준이 높았고, 특히 GNSTM-LAMP2-△EC/IC-GFP에서 현저하게 높았다. 즉, 동일한 경향성 하에, LAMP2의 세포 외 도메인과 세포 내 도메인이 모두 제거된 경우에 가장 높은 목적 단백질의 발현 효과가 나타남을 보여주는 것이다. 또한, LAMP2-EC25△IC-GFP의 경우 보다 높은 목적 단백질 발현수준을 보여주었는데, 이는 GNSTM 모티프가 LAMP2의 세포 외 도메인 존재 하에서는 발현 안정화 효과를 발휘하지 못하는 것을 보여주는 것이라 생각한다(도 15).
이는, 기존 알려진 GNSTM 모티프가 LAMP2와 함께 작용하여 목적 단백질의 발현 안정화 효과를 나타내기 위해서는 적어도 LAMP2의 세포 내 도메인이 제거된 형태여야 하고, 세포 외 도메인까지 제거된 경우 현저하게 목적 단백질의 발현수준을 상승시킬 수 있음을 보여주는 것으로서, 종전 알려진 바로부터 쉽게 예측할 수 없는 결과이다.
3. 엑소좀을 이용한 암 세포 타겟팅
(1) 실험방법
도 3의 플라스미드 골격구조들 중, GNSTM을 포함하는 플라스미드에서 GNSTM-LAMP2-△EC/IC-GFP의 FLAG발현율이 세포와 엑소좀에서의 발현율이 현저히 증가함을 확인하여, 이 플라스미드의 타겟 펩타이드 위치에 암 표적 펩타이드 서열("MHTAPGWGYNLS")(folate receptor binding peptide)을 코딩하는 핵산 서열로 치환(하기 표 2)한 후 실시예 2-2의 방법에 따라 각각의 재조합 플라스미드들을 과발현시키고, 배양 종료 후 50mL conical tube (SPL, Cat No. 50040)에 세포와 배양액을 모아 1000 rpm에서 2분동안 원심 분리 후 상층액을 추가로 4000 rpm에서 30분간 원심 분리 후 세포 잔여물을 제거하였다. 최종 상층액을 10kDa Filter tube (Mlliopore, Cat No. UFC9010)에 넣고 4000 rpm에서 30분간 원심분리 하였다. 최종적으로 남은 상층액에 1X PBS를 넣고 섞은 후 추가 원심 분리하며 이 과정을 2회 반복한 후 filter tube에 남은 상층액을 27-G바늘이 장착된 주사기를 이용하여 0.2μm필터로 여과하여 단일 크기의 엑소좀을 수득하였다. 수득한 엑소좀을 BCA kit 로 정량하여 100μg의 엑소좀을 PKH67 green fluorescence cell linker kit (sigma,Cat No. PKH67GL)방법에 따라 염색 하였다. 염색된 엑소좀을 100kDa filter (Mlliopore, Cat No. UFC510008)에 넣고 14000 rcm에서 5분간 원심 분리후 상층액에 1X PBS를 넣고 추가 원심 분리하였으며 이 과정을 2회 반복한다. 최종 엑소좀 산물은 27G바늘이 장착된 0.2μm filter로 여과 후 folate receptor를 발현하는 난소암 세포인 SKOV3 세포에 처리한 후 24시간 배양한다. 배양 종료 후, 1X DPBS로 2회 세척 후 SKOV3 배양액으로 교체하고 녹색 형광 정도를 cytation 5(Biotek)으로 측정하였다.
재조합 플라스미드 구체적인 서열
GNSTM-LAMP2-△EC/IC-SKOV3 (서열번호 35) ATGGTGTGCTTCCGCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTAGTCCTGGGAGCTGTGCGGTCTTATGCAGGTAACTCGACTATGGGCAGTGGAATGCATACCGCACCGGGATGGGGCTATAACCTGTCG GGCAGTGGATCTGGATCCGGTGGCTCGAGTCTAATCCCAATTATAGTTGGTGCTGGTCTTTCAGGCTTGATTATCGTTATAGTGATTGCTTACGTAATTGGCAGAGGTAGCGGTggaagcggatacccatacgatgtgccagattacgctAAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
(2) 실험결과
플라스미드를 과발현 하지 않은 엑소좀(엑소좀 (+)), 도 3의 GNSTM-LAMP2-△EC/IC-GFP의 FLAG을 삽입한 엑소좀(대조군 펩타이드 엑소좀 (+))과 GNSTM-LAMP2-△EC/IC-GFP의 FLAG위치에 암 표적 펩타이드를 삽입한 엑소좀(표적 펩타이드 엑소좀 (+))을 각각 처리한 SKOV3 세포의 형광 발현을 비교한 결과로서, 과발현된 엑소좀의 형광발현이 다른 두 그룹에 비해 현저히 강하고 많은양이 분포함을 확인할 수 있었다 (도 16).
이는 표적 펩타이드를 코딩하는 서열을 탑재한 플라스미드가 안정적으로 세포와 엑소좀에서 발현하고 엑소좀 표면에서 활성을 나타내 선택적으로 암 표적 펩타이드 결합 수용체를 발현하는 세포에 많은 양 이동하게 할 수 있음을 확인한 것으로, 생체분자의 효과적인 발현을 통해 암 타겟팅에 근간한 치료물질로의 사용가능성을 암시하는 것이다.
4. 엑소좀 크기의 분포도 측정
(1) 실험방법
실시예 2-2의 방법에 따라 플라스미드를 형질전환 하지 않은 세포주의 엑소좀(도 17), GNSTM-LAMP2-GFP(도 18), GNSTM-LAMP2-△EC/IC-GFP(도 19)을 과발현시키고, 배양 종료 후 50mL conical tube (SPL, Cat No. 50040)에 세포와 배양액을 모아 1000 rpm에서 2분동안 원심 분리 후 상층액을 추가로 4000 rpm에서 30분간 원심 분리 후 세포 잔여물을 제거하였다. 최종 상층액을 10kDa Filter tube (Mlliopore, Cat No. UFC9010)에 넣고 4000 rpm에서 30분간 원심분리 하였다. 최종적으로 남은 상층액에 1X PBS를 넣고 섞은 후 추가 원심 분리하며 이 과정을 2회 반복한 후 filter tube에 남은 상층액을 27-G바늘이 장착된 주사기를 이용하여 0.2 μm필터로 여과하여 단일 크기의 엑소좀을 수득하였다. 수득된 엑소좀의 크기를 DLS (Dynamic Light Scattering)로 측정하였다.
(2) 실험결과
도 17 내지 19에서 확인할 수 있듯, 플라스미드를 형질전환 하지 않은 세포주의 엑소좀 (도 17), GNSTM-LAMP2-GFP(도 18), GNSTM-LAMP2-△EC/IC-GFP(도 19)이 과발현된 엑소좀의 경우 크기에 차이가 없었다. LAMP2의 세포 외 도메인과 세포 내 도메인 모두를 제거하였음에도 불구하고, 과발현시 엑소좀의 크기에 차이가 없었다. 이는, 본 발명의 LAMP2-△EC/IC를 사용하여도 과발현 후 엑소좀의 기본적 성질에 변화가 없음을 의미하는 것으로 볼 수 있어, 종래 알려진 엑소좀을 사용한 다양한 생물학적 용도로의 활용에 문제가 없음을 시사한다.
실험예 2. 변형된 펩타이드를 이용한 활성 RNA의 안정적 발현 및 타겟에의 전달
1. 발현수준 확인
(1) 실험방법
도 5의 플라스미드 골격구조들에 타겟팅 펩타이드(Targeting peptide)로서 FLAG 단백질을 코딩하는 유전자를, 활성 단백질(Active protein) 로서 RNA와 결합하는 단백질을 코딩하는 유전자를 각각 삽입한 후, 실시예 2-2의 방법에 따라 각각의 재조합 플라스미드들을 과발현시켰다.
세포에서의 활성 shRNA 발현수준을 확인하기 위해, 실시예 2-2 방법에 따라 배양 종료 후 50mL conical tube (SPL, Cat No. 50040)에 세포와 배양액을 모아 1000 rpm에서 2분동안 원심 분리 후 모아진 세포는 1X PBS로 2회 세척 후 Trizol 방법으로 (ThermoFisher Scientific, Cat No. 15596026) RNA를 분리한 후 500ng RNA에 polyadenylation kit(Enzynomics, Cat No. EX041S)를 이용하여 RNA에 poly A서열을 결합 시키고 PrimeScriptTM cDNA kit (Takara,Cat No. 6210A)의 도입 shRNA서열 특이적 primer를 이용하여 gene specific primer cDNA합성방법에 따라 cDNA를 합성하였다. cDNA합성 후 표적 shRNA 서열 Taqman probe를 이용하여 TOPrealTM Probe qPCR PreMix (Enzynomics, Cat. No. RT600S)로 shRNA의 발현양을 측정하였다.
엑소좀에서의 활성 shRNA 발현수준을 확인하기 위해, 실시예 2-2 방법에 따라 배양 종료 후 50mL conical tube (SPL, Cat No. 50040)에 세포와 배양액을 모아 1000 rpm에서 2분동안 원심 분리 후 상층액을 추가로 4000 rpm에서 30분간 원심 분리 후 세포 잔여물을 제거하였다. 최종 상층액을 10kDa Filter tube (Mlliopore, Cat No. UFC9010)에 넣고 4000 rpm에서 30분간 원심분리 한다. 최종적으로 남은 상층액에 1X PBS를 넣고 섞은 후 추가 원심 분리하며 이 과정을 2회 반복한 후 filter tube에 남은 상층액을 27-G바늘이 장착된 주사기를 이용하여 0.2μm필터로 여과하여 단일 크기의 엑소좀을 수득하였다. 모아진 엑소좀은 Trizol 방법으로 (ThermoFisher Scientific, Cat No. 15596026) RNA를 분리한 후 500ng RNA에 polyadenylation kit(Enzynomics, Cat No. EX041S)를 이용하여 RNA에 poly A서열을 결합 시키고 PrimeScriptTM cDNA kit (Takara,Cat No. 6210A)의 도입 shRNA서열 특이적 primer를 이용하여 gene specific primer cDNA합성방법에 따라 cDNA 를 합성하였다. cDNA합성 후 표적 shRNA 서열 Taqman probe를 이용하여 TOPrealTM Probe qPCR PreMix (Enzynomics, Cat. No. RT600S)로 shRNA의 발현양을 측정하였다.
활성 shRNA포함 엑소좀 처리 SKOV3세포에서의 GFP발현양 측정을 위해, 엑소좀 분리 실시예 2-2의 방법에 따라 배양 종료 후 50mL conical tube (SPL, Cat No. 50040)에 세포와 배양액을 모아 1000 rpm에서 2분동안 원심 분리 후 상층액을 추가로 4000 rpm에서 30분간 원심 분리 후 세포 잔여물을 제거하였다. 최종 상층액을 10kDa Filter tube (Mlliopore, Cat No. UFC9010)에 넣고 4000 rpm에서 30분간 원심분리 한다. 최종적으로 남은 상층액에 1X PBS를 넣고 섞은 후 추가 원심 분리하며 이 과정을 2회 반복한 후 filter tube에 남은 상층액을 27-G바늘이 장착된 주사기를 이용하여 0.2 μm필터로 여과하여 단일 크기의 엑소좀을 수득하였다.
shGFP를 포함하는 엑소좀의 GFP 과발현 세포에서의 발현 억제 효능을 검증하기 위해, SKOV3 세포주 1X105세포수를 6well plate 각 well에 분주후 24시간 배양한다. PolyJetTM transfection kit (Signagen® Laboratories, Cat No. SL100688) 방법에 따라 GFP형광 벡터인 pAcGFP1-N1 (Clonetech, PT3716) 500ng을 각 well에 도입한 후 24시간 후에 새로운 배양액으로 교체하였으며 상기 분리한 shRNA를 포함하는 엑소좀을 각 well당 50μg 처리 48시간 후에 GFP형광 및 단백질 발현양을 측정하였다.
(2) 실험결과
GNSTM-LAMP2-△EC/IC-shGFP, GNSTM-LAMP2-△EC/IC-shGFP-BIV, GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT), GNSTM-LAMP2-△EC/IC-shGFP-JDV(MT) 4개의 플라스미드 과발현 모델 모두, 세포에서 엑소좀 단독 처리군 대비 (NC) 대조군 대비 높은 발현량을 나타냈다. 특히, BIV 유래 RBP와 JDV 유래 RBP를 활성 단백질로 삽입한 경우, 삽입하지 않은 경우 (w/o BIV: RBP없는 구조) 대비 엑소좀 전체에서 shGFP의 발현량이 다른 군 대비 현저하게 높았다. JDV 야생형 유래 RBP를 삽입한 경우, BIV 유래 RBP를 삽입한 경우 대비 약 80배의 차이가 날 정도로, 가장 효과가 우수했다(도 20).
또한, GNSTM이 아닌 SEL을 이용한 글리코실화 모델인 SEL-LAMP2-△EC/IC-(Pri-miRNA-199)-RBP 플라스미드를 과발현시킨 경우에도, 형질주입된 세포에서 miRNA-199가 우수하게 발현됨을 확인하였다(도 21).
이들 실험결과는, LAMP2의 세포 외 도메인과 세포 내 도메인이 모두 제거된 형태와, 글리코실화의 도입에 의해, 형질주입된 세포와 이로부터의 엑소좀 모두에서 안정적으로 RNA와 활성 단백질을 발현시킬 수 있음을 보여주는 것으로서, 최종적으로 엑소좀을 통해 생리활성 핵산분자를 전달할 수 있는 가능성을 암시하는 것이다.
2. 전달수준 확인
SEL을 이용한 글리코실화 모델인 SEL-LAMP2-△EC/IC-(Pri-miRNA-199)-RBP 플라스미드를 과발현시킨 경우, 이를 형질주입한 세포를 제거한 후 분리된 엑소좀을 처리한 세포에서도 miRNA-199가 우수하게 발현됨을 확인할 수 있었다(도 21).
또한, GNSTM을 이용한 글리코실화 모델인 GNSTM-LAMP2-△EC/IC-shGFP-BIV, GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT), GNSTM-LAMP2-△EC/IC-shGFP-JDV(MT) 4개 플라스미드를 과발현시킨 경우에서도, 이들을 형질주입한 세포를 제거한 후 분리된 엑소좀을 처리한 GFP 단백질 형질 전환 SKOV3 세포주에서 shGFP가 우수하게 발현되어 GFP의 발현(RNA 수준, Protein 수준)을 매우 효과적으로 억제함을 확인할 수 있었다(도 22, 23). 특히, RBP로서 JDV(WT) 유래 단백질을 활성 단백질로 사용한 경우에 가장 효과가 우수했고, 이러한 경향은 타겟 세포에서의 웨스턴 블롯 결과와, 형광 분석 결과에서도 동일하게 나타났다(도 24, 25). 형광 분석 결과는 특히, GNSTM-LAMP2-△EC/IC-shGFP-JDV(WT) 플라스미드 과발현의 경우에 GFP mRNA와 단백질을 90 내지 99%까지 억제시킬 수 있음을 보여주었다.
이들 실험결과는, LAMP2의 세포 외 도메인과 세포 내 도메인이 모두 제거된 형태와, 글리코실화의 도입에 의해, 형질주입된 세포와 이로부터의 엑소좀 모두에서 안정적으로 RNA와 활성 단백질을 발현시킴과 동시에, 최종적으로 엑소좀 내 RNA와 RBP간 결합이 효율적으로 해리되어 RNA가 표적 세포에 성공적으로 전달되었음을 의미한다. 특히, JDV 유래 RBP와 글리코실화된 LAMP2-△EC/IC가 삽입된 플라스미드의 경우, shRNA의 활성을 극대화시킬수 있음을 보여준다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. LAMP-2B(Lysosome-Associated Membrane Glycoprotein 2B)의 세포 내 도메인(intracellular domain), 세포 외 도메인(extracellular domain) 또는 이들의 조합이 제거된 변형 단백질을 코딩하는 핵산 서열을 포함하는, 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼.
  2. 청구항 1에 있어서, 상기 플라스미드 플랫폼은 LAMP-2B의 세포 내 도메인이 제거된 단백질을 코딩하는 핵산 서열을 포함하는 것인, 플라스미드 플랫폼.
  3. 청구항 1에 있어서, 상기 플라스미드 플랫폼은 LAMP-2B의 세포 내 도메인과 세포 외 도메인이 모두 제거된 것인, 플라스미드 플랫폼.
  4. 청구항 1에 있어서, 상기 핵산 서열은 서열번호 2 내지 4 중 어느 하나의 핵산 서열과 70% 이상의 상동성을 갖는 핵산 서열을 갖는 것인, 플라스미드 플랫폼.
  5. 청구항 1에 있어서, 상기 핵산 서열은 서열번호 2 또는 4의 핵산 서열과 70% 이상의 상동성을 갖는 핵산 서열을 갖는 것인, 플라스미드 플랫폼.
  6. 청구항 1에 있어서, 상기 핵산 서열은 서열번호 4의 핵산 서열과 70% 이상의 상동성을 갖는 핵산 서열을 갖는 것인, 플라스미드 플랫폼.
  7. 청구항 1에 있어서, 상기 플라스미드 플랫폼은 글리코실화된 영역을 코딩하는 핵산 서열을 더 포함하는 것인, 플라스미드 플랫폼.
  8. 청구항 7에 있어서, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 외 영역 방향에 위치하는 것인, 플라스미드 플랫폼.
  9. 청구항 7에 있어서, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 서열번호 11 내지 13 중 어느 하나의 핵산 서열과 70% 이상의 상동성을 갖는 핵산 서열을 포함하는 것인, 플라스미드 플랫폼.
  10. 청구항 7에 있어서, 상기 글리코실화된 영역을 코딩하는 핵산 서열은 서열번호 11의 핵산 서열과 70% 이상의 상동성을 갖는 핵산 서열을 포함하는 것인, 플라스미드 플랫폼.
  11. 청구항 1에 있어서, 상기 플라스미드 플랫폼은 서열번호 4의 핵산 서열과 70% 이상의 상동성을 갖는 핵산 서열 및 서열번호 11의 핵산 서열과 70% 이상의 상동성을 갖는 핵산 서열을 포함하는 것인, 플라스미드 플랫폼.
  12. 청구항 1 내지 11 중 어느 한 항의 플라스미드 플랫폼 내, 발현 및 전달을 목적하는 생체분자를 코딩하는 핵산 서열을 더 포함하는, 생체분자의 안정적 발현 및 전달을 위한 재조합 플라스미드.
  13. 청구항 12에 있어서, 상기 생체분자를 코딩하는 핵산 서열은 i) 상기 글리코실화된 영역을 코딩하는 핵산 서열과 상기 변형 단백질을 코딩하는 핵산 서열 사이, ii) 상기 변형 단백질을 코딩하는 핵산 서열을 기준으로 세포 내 영역 방향 또는 iii) 이들 모두에 위치하는 것인, 재조합 플라스미드.
  14. 청구항 12에 있어서, 상기 생체분자는 핵산분자(nucleic acid molecules), 압타머(aptamer), 펩타이드(peptides), 단백질(protein), 글라이코프로테인(glycoproteins), 리포프로테인(lipoproteins), 면역글로불린(immunoglobulins), 호르몬(hormone), 성장인자(growth factor), 재조합 효소(recombinase) 및 형광단백질(fluorescent protein)로 이루어진 군에서 선택된 적어도 하나인, 재조합 플라스미드.
  15. 청구항 12의 재조합 플라스미드로부터 발현된 산물을 포함하는, 생체분자의 안정적 발현 및 전달을 위한 엑소좀.
  16. 청구항 15에 있어서, 상기 생체분자는 엑소좀의 외부에 발현되어 타겟하는 세포의 표면에 특이적으로 결합하는 물질을 포함하는 것인, 엑소좀.
  17. 청구항 15의 엑소좀을 포함하고, 상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 것을 포함하는 것인, 암의 진단을 위한 조성물.
  18. 청구항 17에 있어서, 상기 암은 난소암인, 조성물.
  19. 청구항 15의 엑소좀을 포함하고, 상기 생체분자는 암 세포 표면 특이적 발현 단백질에 특이적으로 결합하는 것과, 암 세포 내 전달하고자 하는 치료물질을 포함하는 것인, 암의 예방 또는 치료용 약학적 조성물.
  20. 청구항 17에 있어서, 상기 암은 난소암인, 조성물.
PCT/KR2022/013574 2021-09-08 2022-09-08 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼 WO2023038479A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3231340A CA3231340A1 (en) 2021-09-08 2022-09-08 Plasmid platform for stable expression and delivery of biomolecules
EP22867747.2A EP4400590A1 (en) 2021-09-08 2022-09-08 Plasmid platform for stable expression and delivery of biomolecules
CN202280061140.2A CN117916379A (zh) 2021-09-08 2022-09-08 用于生物分子的稳定表达及递送的质粒平台
GB2404561.9A GB2625671A (en) 2021-09-08 2022-09-08 Plasmid platform for stable expression and delivery of biomolecules
JP2024515607A JP2024531664A (ja) 2021-09-08 2022-09-08 生体分子の安定的発現および伝達のためのプラスミドプラットフォーム
AU2022342997A AU2022342997A1 (en) 2021-09-08 2022-09-08 Plasmid platform for stable expression and delivery of biomolecules

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0119735 2021-09-08
KR20210119735 2021-09-08
KR10-2022-0114341 2022-09-08
KR1020220114341A KR102577502B1 (ko) 2021-09-08 2022-09-08 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼

Publications (1)

Publication Number Publication Date
WO2023038479A1 true WO2023038479A1 (ko) 2023-03-16

Family

ID=85506770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013574 WO2023038479A1 (ko) 2021-09-08 2022-09-08 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼

Country Status (5)

Country Link
JP (1) JP2024531664A (ko)
AU (1) AU2022342997A1 (ko)
CA (1) CA3231340A1 (ko)
GB (1) GB2625671A (ko)
WO (1) WO2023038479A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180104187A1 (en) * 2016-10-19 2018-04-19 Northwestern University Extracellular vesicle-based diagnostics and engineered exosomes for targeted therapeutics against cancer
US20200390700A1 (en) * 2015-09-28 2020-12-17 Northwestern University Targeted extracellular vesicles comprising membrane proteins with engineered glycosylation sites
KR20210030965A (ko) * 2018-07-12 2021-03-18 로켓 파마슈티컬스, 리미티드 다논병을 치료하기 위한 유전자 요법 벡터

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200390700A1 (en) * 2015-09-28 2020-12-17 Northwestern University Targeted extracellular vesicles comprising membrane proteins with engineered glycosylation sites
US20180104187A1 (en) * 2016-10-19 2018-04-19 Northwestern University Extracellular vesicle-based diagnostics and engineered exosomes for targeted therapeutics against cancer
KR20210030965A (ko) * 2018-07-12 2021-03-18 로켓 파마슈티컬스, 리미티드 다논병을 치료하기 위한 유전자 요법 벡터

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI ZHELONG, ZHOU XUEYING, GAO XIAOTONG, BAI DANNA, DONG YAN, SUN WENQI, ZHAO LIANBI, WEI MENGYING, YANG XUEKANG, YANG GUODONG, YUA: "Fusion protein engineered exosomes for targeted degradation of specific RNAs in lysosomes: a proof‐of‐concept study", JOURNAL OF EXTRACELLULAR VESICLES, TAYLOR & FRANCIS, UK, vol. 9, no. 1, 1 September 2020 (2020-09-01), UK , pages 1816710, XP093045220, ISSN: 2001-3078, DOI: 10.1080/20013078.2020.1816710 *
LYDIA ALVAREZ-ERVITI, YIQI SEOW, HAIFANG YIN, CORINNE BETTS, SAMIRA LAKHAL, MATTHEW J A WOOD: "Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes", NATURE BIOTECHNOLOGY, GALE GROUP INC., vol. 29, no. 4, 1 April 2011 (2011-04-01), pages 341 - 345, XP055089953, ISSN: 10870156, DOI: 10.1038/nbt.1807 *
MICHELLE E. HUNG ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, 27 March 2015 (2015-03-27)

Also Published As

Publication number Publication date
GB2625671A (en) 2024-06-26
JP2024531664A (ja) 2024-08-29
CA3231340A1 (en) 2023-03-16
GB202404561D0 (en) 2024-05-15
AU2022342997A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
CN108350467B (zh) 基因构建体
WO2016200219A1 (en) Modified interleukin-7 protein and uses thereof
WO2016137162A1 (ko) 청력 손상 방어용 펩타이드 및 이를 포함하는 조성물
JP6767096B2 (ja) 免疫チェックポイント阻害剤の組み合わせ
WO2014046478A1 (ko) 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물
WO2014046490A1 (ko) 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물
WO2022065919A1 (ko) 펩티드 핵산 복합체를 유효성분으로 함유하는 치매 예방 또는 치료용 조성물
WO2019039700A1 (ko) 멜리틴을 포함하는 m2형 종양관련 대식세포 제거용 조성물
WO2021096275A1 (ko) 변형된 인터루킨-7 및 tgf 베타 수용체 ii를 포함하는 융합단백질 및 이의 용도
WO2019078611A1 (ko) Cas9 단백질, SRD5A2 유전자의 발현을 억제하는 가이드 RNA 및 양이온성 폴리머의 복합체가 봉입된 나노 리포좀-마이크로버블 결합체 및 이를 함유하는 탈모 개선 또는 치료용 조성물
WO2021125762A1 (ko) 혈뇌장벽 투과능을 가지는 펩티드 핵산 복합체를 유효성분으로 함유하는 치매 예방 또는 치료용 조성물
WO2023038479A1 (ko) 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼
US20220305086A1 (en) Method for increasing lymphocyte count by using il-7 fusion protein in tumors
WO2020091463A1 (ko) 분리된 미토콘드리아를 포함하는 건병증 예방 또는 치료용 약학 조성물
WO2019156541A1 (ko) 코어-쉘 구조의 마이크로입자를 유효성분으로 포함하는 혈액응고 인자 유전자 발현 증가용 조성물
WO2020116810A1 (ko) Fas 신호전달 억제용 펩티드를 포함하는 비만, 지방간 또는 지방간염의 예방 또는 치료용 약학적 조성물
WO2019066519A1 (ko) 결합 조직 성장 인자를 표적으로 하는 rna 복합체를 함유하는 노인성 황반변성의 예방 또는 치료용 약학 조성물
WO2021045501A1 (ko) Il-2 표면 발현 세포외 소포체를 유효성분으로 포함하는 암 질환 예방 또는 치료용 조성물
KR102577502B1 (ko) 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼
WO2024054062A1 (ko) 세포 내 형질주입을 위한 신규한 폴리펩타이드 조성물
WO2023163562A1 (ko) 핵산 복합체를 포함하는 알츠하이머병의 예방 또는 치료용 조성물
WO2023017976A1 (ko) 양이온성 세포 투과성 펩타이드 및 이의 용도
WO2024101961A1 (ko) 유전자 조작된 세포 및 이의 용도
WO2021141368A2 (ko) 세포 투과성 핵산 복합체를 유효성분으로 함유하는 황반변성의 예방 또는 치료용 조성물
WO2022050720A1 (ko) 사이토카인 및 항체를 발현하는 세포외 소포체, 이를 제조하는 방법 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18690072

Country of ref document: US

Ref document number: 2022342997

Country of ref document: AU

Ref document number: AU2022342997

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2024515607

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280061140.2

Country of ref document: CN

Ref document number: 3231340

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022342997

Country of ref document: AU

Date of ref document: 20220908

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022867747

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867747

Country of ref document: EP

Effective date: 20240408