WO2023038135A1 - ボンド磁石用磁石材料及び磁石 - Google Patents

ボンド磁石用磁石材料及び磁石 Download PDF

Info

Publication number
WO2023038135A1
WO2023038135A1 PCT/JP2022/034095 JP2022034095W WO2023038135A1 WO 2023038135 A1 WO2023038135 A1 WO 2023038135A1 JP 2022034095 W JP2022034095 W JP 2022034095W WO 2023038135 A1 WO2023038135 A1 WO 2023038135A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
magnet
phase
magnetic
grain boundary
Prior art date
Application number
PCT/JP2022/034095
Other languages
English (en)
French (fr)
Inventor
貴司 山▲崎▼
和宏 ▲高▼山
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023547019A priority Critical patent/JPWO2023038135A1/ja
Priority to CN202280061102.7A priority patent/CN117957620A/zh
Priority to EP22867456.0A priority patent/EP4401097A1/en
Publication of WO2023038135A1 publication Critical patent/WO2023038135A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Definitions

  • the present invention relates to a magnetic material for a bonded magnet and a magnet.
  • Patent Document 1 a heavy rare earth fluoride is applied to the surface of a bulk body of a sintered magnet, and heat treatment is performed to diffuse the heavy rare earth into the magnet, and the main phase is covered with a phase containing the heavy rare earth. discloses a magnet with improved coercivity. Further, Patent Document 2 discloses a magnet in which a rare earth-low melting point metal compound is applied to the surface of a bulk body of a hot-worked magnet, and heat-treated to diffuse the rare earth into the magnet and improve the coercive force. .
  • the magnet materials described in any of the patent documents include a step of heat-treating the bulk body, they are not used for bonded magnets in which the resin of the bulk body is denatured and melted by the heat treatment. Therefore, there has been a demand for a magnetic material for bonded magnets that exhibits a high intrinsic coercive force.
  • SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a magnet material for a bonded magnet and a magnet exhibiting a high intrinsic coercive force HcJ.
  • a magnetic material for a bonded magnet according to the present invention has an RE 2 Fe 14 B-type tetragonal compound as a main phase, and an amorphous grain boundary phase containing F, RE, Fe, and B surrounds the main phase.
  • RE is at least one rare earth element selected from Nd and Pr and always contains at least Nd.
  • the width of the grain boundary phase is preferably 1 nm or more and less than 10 nm.
  • the content of the main phase is preferably 70% by volume or more and 99% by volume or less, and the content of the grain boundary phase is preferably 1% by volume or more and 30% by volume or less.
  • a magnet according to the present invention comprises a binder and any of the above-described magnetic materials for bonded magnets dispersed in the binder.
  • a high intrinsic coercive force HcJ can be exhibited.
  • FIG. 1 is a cross-sectional view schematically showing an example of the magnet material of the present invention
  • FIG. 4 is a powder X-ray diffraction profile of the rapidly solidified alloy obtained in Example 5.
  • FIG. (a) is a device configuration diagram of a heat treatment furnace for realizing flash annealing
  • (b) is a diagram showing the state of a rapidly solidified alloy moving inside the core tube of the furnace.
  • FIG. 2 is a conceptual diagram of thermal history due to flash annealing performed in the present invention
  • 10 is a powder X-ray diffraction profile of the rapidly solidified alloy after flash annealing (crystallization heat treatment) obtained in Example 5.
  • FIG. 2 shows a bright-field image and elemental mapping of the magnet material obtained in Example 1 observed with a transmission electron microscope.
  • 2 shows a bright-field image and elemental mapping of the magnet material obtained in Example 2 observed with a transmission electron microscope.
  • 3 shows a bright-field image and elemental mapping of the magnet material obtained in Example 3 observed with a transmission electron microscope.
  • FIG. 2 shows a bright-field image and elemental mapping of the magnetic material obtained in Comparative Example observed with a transmission electron microscope.
  • the magnetic material for bonded magnets and the magnet of the present invention will be described below. It should be noted that the present invention is not limited to the following configurations, and may be modified as appropriate without departing from the gist of the present invention.
  • the present invention also includes a combination of a plurality of individual preferred configurations described below.
  • a magnetic material for a bonded magnet according to the present invention has an RE 2 Fe 14 B-type tetragonal compound as a main phase, and an amorphous grain boundary phase containing F, RE, Fe, and B surrounds the main phase.
  • RE is at least one rare earth element selected from Nd and Pr and always contains at least Nd.
  • FIG. 1 is a cross-sectional view schematically showing an example of this magnet material. As shown in FIG. 1, in this magnet material, a main phase 21 is surrounded by a grain boundary phase 22 .
  • the alloy composition of the magnetic material for a bonded magnet of the present invention has an RE 2 Fe 14 B-type tetragonal compound as a main phase, and an amorphous grain boundary phase containing F, RE, Fe, and B. , is not particularly limited as long as it has a structure surrounding the main phase .
  • the transition metal element necessarily containing Fe RE being at least one rare earth element selected from Nd and Pr necessarily containing at least Nd
  • M being Al, Si, V, Cr, one or more metal elements selected from the group consisting of Ti, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb), and the composition ratio x , y and z are respectively 4.2 atomic % ⁇ x ⁇ 5.6 atomic %, 11.5 atomic % ⁇ y ⁇ 13.0 atomic %, 0.0 atomic % ⁇ z ⁇ 5.0 atomic %, and , 0.0 ⁇ n ⁇ 0.5.
  • ICP mass spectrometry and combustion ion chromatography are used to analyze the composition of the magnet material according to the present invention. Also, if necessary, the combustion-infrared absorption method may be used in combination.
  • the transition metal element T containing Fe as an essential element accounts for the remainder of the above elements. Desired hard magnetic properties can be obtained by substituting part of Fe with one or both of Co and Ni, which are ferromagnetic elements like Fe. However, if the amount of substitution with respect to Fe exceeds 30%, the magnetic flux density will be greatly reduced, so the amount of substitution is preferably in the range of 0% or more and 30% or less.
  • the addition of Co not only contributes to the improvement of magnetization, but also has the effect of lowering the viscosity of the molten metal and stabilizing the ejection rate from the nozzle during rapid cooling of the molten metal. It is more preferably 0.5% or more and 30% or less, and from the viewpoint of cost effectiveness, the Co substitution amount is more preferably 0.5% or more and 10% or less.
  • the composition ratio x of B+C is less than 4.2 atomic %
  • the amount of B+C required for producing the RE 2 Fe 14 B-type tetragonal compound cannot be ensured. Since the magnetic properties may deteriorate and the ability to form amorphous material may greatly decrease, the ⁇ -Fe phase may precipitate during the rapid solidification of the molten metal, resulting in a loss of squareness of the demagnetization curve.
  • the composition ratio x of B+C exceeds 5.6 atomic %, there is a possibility that a grain boundary phase containing RE and Fe as main components may not be generated, and the magnetic properties described above may not be ensured.
  • the composition ratio x is preferably in the range of 4.2 atomic % or more and 5.6 atomic % or less.
  • the composition ratio x is preferably 4.2 atomic % or more and 5.2 atomic % or less, and more preferably 4.4 atomic % or more and 5.0 atomic % or less.
  • the substitution rate of C with respect to B exceeds 50%, the ability to form amorphous material is greatly reduced, which is not preferable. Therefore, the substitution rate of C with respect to B is preferably in the range of 0% or more and 50% or less, that is, 0.0 ⁇ n ⁇ 0.5. From the viewpoint of improving the intrinsic coercive force HcJ, the substitution ratio of C to B is preferably 2% or more and 30% or less, more preferably 3% or more and 15% or less.
  • the composition ratio y of at least one rare earth element RE which inevitably contains at least Nd among Nd and Pr
  • F, RE, Fe, and B A grain boundary phase containing may not be generated, and sufficient magnetic properties may not be ensured.
  • the composition ratio y exceeds 13.0 atomic %, the magnetization may be lowered. Therefore, the composition ratio y is preferably in the range of 11.5 atomic % or more and 13.0 atomic % or less. Note that F contained in the grain boundary phase is contained in Nd and Pr.
  • Nd metal the Nd content is 95% by weight or more
  • Pr metal the Pr content is 95% by weight or more
  • Nd-Pr metal the Nd/Pr weight ratio is 3 .4 to 4.9% by weight, and the total of Nd and Pr is 95% by weight or more
  • the composition ratio y is, for example, 11.76 atomic % or more and 13.0 atomic % or less, which is the stoichiometric composition of the RE 2 Fe 14 B-type tetragonal compound, from the viewpoint of ensuring the stability of the intrinsic coercive force HcJ. From the viewpoint of ensuring a high residual magnetic flux density Br, it is more preferably 11.76 atomic % or more and 12.5 atomic % or less.
  • the magnetic material for a bonded magnet of the present invention consists of Al, Si, V, Cr, Ti, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb.
  • One or more metal elements M selected from the group may be added.
  • the addition of the metal element M improves the ability to form an amorphous phase, improves the intrinsic coercive force HcJ due to uniform refinement of the metal structure after heat treatment for crystallization, improves the squareness of the demagnetization curve, and improves the magnetic properties. do.
  • the composition ratio z of these metal elements M exceeds 5.0 atomic percent, the magnetization may decrease. A range is preferred.
  • the composition ratio z is preferably 0.0 atomic % or more and 4.0 atomic % or less, and more preferably 0.0 atomic % or more and 3.0 atomic % or less.
  • the average crystal grain size of the main phase RE 2 Fe 14 B-type tetragonal compound is less than 10 nm, for example, the intrinsic coercive force HcJ may decrease. If the grain size is 70 nm or more, the squareness of the demagnetization curve may deteriorate due to a decrease in the exchange interaction acting between the crystal grains.
  • the average crystal grain size of the RE 2 Fe 14 B-type tetragonal compound is preferably in the range of 10 nm or more and less than 70 nm.
  • the average crystal grain size of the RE 2 Fe 14 B-type tetragonal compound is preferably 15 nm or more and 60 nm or less, more preferably 15 nm or more and 50 nm or less.
  • the average crystal grain size of the RE 2 Fe 14 B-type tetragonal compound is obtained by measuring the grain size of each grain at three or more locations using a transmission electron microscope (TEM) using a linear segment method. Means the average value of equivalent circle diameters.
  • TEM transmission electron microscope
  • the width of the grain boundary phase is, for example, less than 1 nm, the bonding force acting between the main phase grains increases, which may lead to a decrease in the intrinsic coercive force HcJ.
  • the width of the grain boundary phase is, for example, 10 nm or more, the coupling between grains is weakened, and the squareness of the demagnetization curve may be reduced. Therefore, the width of the grain boundary phase is preferably 1 nm or more and less than 10 nm, more preferably 2 nm or more and 8 nm or less, and even more preferably 2 nm or more and 5 nm or less.
  • the width of the grain boundary phase was determined by image analysis of a bright-field image taken using a scanning transmission electron microscope under conditions of an acceleration voltage of 200 kV and an observation magnification of 900,000 times.
  • the content of the main phase and the grain boundary phase is preferably 70% by volume or more and less than 99% by volume of the main phase, and 1% by volume or more and 30% by volume of the grain boundary phase. % is preferred.
  • the coverage of the grain boundary phase in the outer peripheral portion of the main phase it is preferable that 40% or more and less than 99% of the peripheral length of the outer peripheral portion of the main phase is covered with the grain boundary phase.
  • the proportion of the main phase is preferably 80% by volume or more and less than 99% by volume, more preferably 90% by volume or more and less than 98% by volume.
  • the composition ratio of the main phase and the grain boundary phase and the coverage of the grain boundary phase in the outer periphery of the main phase are bright field images taken using a scanning transmission electron microscope under the conditions of an acceleration voltage of 200 kV and an observation magnification of 900,000 times. It was obtained by performing image analysis on the image of
  • the inclusion of F in the grain boundary phase contributes to the formation of the amorphous grain boundary phase.
  • the present inventor believes that the RE 2 Fe 14 B phase, which is the main phase, and the grain boundary phase consisting mainly of F, RE, Fe, and B uniformly existing around the main phase have a magnetostatic interaction.
  • high remanent magnetic flux density Br and improved squareness of the demagnetization curve can be obtained without impairing the intrinsic coercive force HcJ of the RE 2 Fe 14 B phase.
  • BH maximum energy product
  • the magnet material for a bonded magnet of the present invention has, for example, a residual magnetic flux density Br of 0.82 T or more, an intrinsic coercive force HcJ of 700 kA/m or more and less than 1400 kA/m, and a maximum energy product (BH)max of 105 kJ/m 3 or more. It is preferable to express the magnetic properties of A magnetic circuit in which a reverse magnetic field is likely to be applied to permanent magnets such as surface magnet type rotors (SPM type rotors) when used in various rotating machines that are optimal for electrical equipment and white goods of 1 horsepower (750 W) or less.
  • SPM type rotors surface magnet type rotors
  • the intrinsic coercive force HcJ is preferably 800 kA/m or more, more preferably 950 kA/m or more.
  • the intrinsic coercive force HcJ is 1400 kA/m or more, the magnetization is remarkably lowered.
  • the residual magnetic flux density Br when a magnet-embedded rotor (IPM type rotor) or the like is adopted, it is possible to drive at a higher operating point (permeance) than the SPM type.
  • the magnetic flux density Br should be as high as possible, the residual magnetic flux density Br is preferably 0.85 T or more, more preferably 0.9 T or more, in consideration of the balance with the intrinsic coercive force HcJ.
  • the residual magnetic flux density Br is preferably 0.82 T or more as an example is that when the isotropic bonded magnet is applied to a DC brushless motor, the operating point (permeance Pc) of the magnet is about 3 or more and 10 or less. Therefore, if the residual magnetic flux density Br ⁇ 0.82 T, within this Pc range, the maximum energy product (BH) max is at the same level as an anisotropic Nd-Fe-B sintered magnet of 300 kJ/m 3 or more. This is because the magnetic flux Bm is obtained. In addition, it is more preferable that the residual magnetic flux density Br is 0.86 T or more.
  • the reason why the intrinsic coercive force HcJ is preferably 700 kA/m or more as an example is that when the intrinsic coercive force HcJ is less than 700 kA/m, the heat resistance temperature of the motor is 100°C when applied as an isotropic bonded magnet to a DC brushless motor. This is because there is a possibility that desired motor characteristics cannot be obtained due to thermal demagnetization.
  • the reason why the intrinsic coercive force HcJ is set to less than 1400 kA/m is that magnetization becomes difficult when the intrinsic coercive force HcJ is 1400 kA/m or more, and multipolar magnetization is required to ensure Pc: 3 or more and 10 or less. This is because it is difficult.
  • the reason why the maximum energy product (BH) max is preferably 105 kJ/m 3 or more as an example is that when the maximum energy product (BH) max is less than 105 kJ/m 3 , the squareness ratio of the demagnetization curve (residual magnetization Jr/saturation magnetization Js) is 0.8 or less, so when it is applied as an isotropic bonded magnet to a DC brushless motor, the reverse magnetic field generated during operation of the motor degrades the magnetic characteristics, and there is a possibility that the desired motor characteristics cannot be obtained. Because there is,
  • the magnetic material for bonded magnets of the present invention can be produced, for example, as follows. First, a molten alloy having the metal composition described above is prepared. Next, the molten alloy is Cu, Mo, W, or an alloy containing at least one of these metals at an average tapping rate of 200 g/min or more and less than 2000 g/min per orifice arranged at the tip of the nozzle. A rapidly solidified alloy having 1% by volume or more of either a crystalline phase containing an RE 2 Fe 14 B phase or an amorphous phase is produced by spraying onto the surface of a rotating roll as a main component. Note that RE is at least one rare earth element that does not substantially contain La and Ce, but as an example, as described above, at least one rare earth element that necessarily contains at least Nd among Nd and Pr be able to. Details are as described above.
  • the molten alloy is applied at a rate of 200 g / min or more per orifice arranged at the tip of the nozzle. , at an average tapping rate of less than 2000 g/min onto the surface of a rotating roll containing Cu, Mo, W, or an alloy containing at least one of these metals as a main component, to obtain a RE 2 Fe 14 B phase.
  • the average tapping rate per orifice provided at the tip of the nozzle is limited to a range of 200 g/min or more and less than 2000 g/min.
  • the average tapping rate is preferably 300 g/min or more and 1500 g/min or less, more preferably 400 g/min or more and 1300 g/min or less.
  • the hole at the tip of the nozzle through which the molten metal is discharged does not have to be a circular orifice, but may be of any shape such as square, triangular, elliptical, etc., and a slit-like shape is acceptable as long as the hole shape can ensure a predetermined molten metal discharge rate.
  • the nozzle material is acceptable as long as it is a refractory material that does not react or hardly reacts with the molten alloy, but a ceramic material, SiC, C, or BN, which causes less wear on the nozzle orifice due to the molten metal during tapping, is preferable. BN is more preferred, and hard BN containing additives is even more preferred.
  • an oxygen-free or low-oxygen atmosphere for the rapid solidification atmosphere because the increase in molten metal viscosity can be suppressed by preventing oxidation of the molten alloy, and a stable tapping rate can be maintained.
  • an inert gas is introduced into the rapid solidification device, It is preferable to set the oxygen concentration to 500 ppm or less, preferably 200 ppm or less, more preferably 100 ppm or less, and then perform rapid solidification.
  • the inert gas a rare gas such as helium or argon, or nitrogen can be used. Nitrogen reacts relatively easily with rare earth elements and iron. Argon gas is more preferred.
  • the rotating roll for rapidly cooling the molten alloy is mainly composed of Cu, Mo, W, or an alloy containing at least one of these metals. It is preferable to have a material. This is because these base materials are excellent in thermal conductivity and durability.
  • Cr, Ni, or a combination of plating to the surface of the base material of the rotating roll, the heat resistance and hardness of the surface of the base material of the rotating roll are increased, and the surface of the base material of the rotating roll is melted and solidified during rapid solidification. Deterioration can be suppressed.
  • the diameter of the rotating roll is, for example, ⁇ 200 mm or more and ⁇ 20000 mm or less.
  • the rapid solidification time is as short as 10 seconds or less, there is no need to water-cool the rotating roll. However, if the rapid solidifying time exceeds 10 seconds, cooling water is flowed inside the rotating roll to suppress the temperature rise of the rotating roll base material. preferably. It is preferable that the water-cooling capacity of the rotating roll is calculated according to the latent heat of solidification per unit time and the tapping rate, and optimally adjusted as appropriate.
  • Flash annealing In the method for producing a magnetic material of the present invention, the rapidly solidified alloy is heated to a constant temperature range from the crystallization temperature to 850° C. at a heating rate of 10° C./sec or more and less than 200° C./sec. A step of performing flash annealing for quenching after 0.1 sec or more and less than 7 min has elapsed after reaching the temperature can be further provided. This flash annealing step makes it possible to form the above-described metallographic structure while keeping the B content lower than the stoichiometric composition of the RE 2 Fe 14 B-type tetragonal compound.
  • the temperature increase rate is preferably 10°C/sec or more and less than 200°C/sec, more preferably 30°C/sec or more and 200°C/sec or less, and 40°C/sec or more and 180°C/sec. sec or less is more preferable.
  • the holding time from reaching the crystallization heat treatment temperature to quenching is substantially 0.1 sec or longer. It is not preferable because it leads to deterioration of characteristics. Therefore, the holding time is preferably 0.1 sec or more and less than 7 min, more preferably 0.1 sec or more and 2 min or less, and even more preferably 0.1 sec or more and 30 sec or less.
  • the temperature drop rate is preferably 2° C./sec or more and 200° C./sec or less, more preferably 5° C./sec or more and 200° C./sec or less, and 5° C./sec or more and 150° C./sec. More preferably:
  • the atmosphere of the above flash annealing is preferably an inert gas atmosphere in order to prevent oxidation of the rapidly solidified alloy.
  • an inert gas a rare gas such as helium or argon, or nitrogen can be used. Nitrogen reacts relatively easily with rare earth elements and iron. Argon gas is more preferred.
  • the method for producing a magnetic material for a bonded magnet according to the present invention may further include the step of pulverizing the rapidly solidified alloy or the flash annealed rapidly solidified alloy to produce magnet powder.
  • the ribbon-like rapidly solidified alloy may be coarsely cut or pulverized into, for example, 50 mm or less before flash annealing (heat treatment for crystallization). Furthermore, by pulverizing the rapidly solidified alloy after flash annealing (heat treatment for crystallization) to an appropriate average powder particle size in the range of 20 ⁇ m or more and 200 ⁇ m or less to make a powdery magnetic material, this magnet Various resin-bonded permanent magnets (commonly known as plastic magnets or bonded magnets) can be manufactured using the materials and processes known in the art.
  • the permanent magnet of the present invention can be manufactured, for example, as follows. First, the powdered magnet material manufactured as described above is prepared. Next, after adding a thermosetting resin to this magnet material, it is filled into a molding die, compression-molded to form a compression-molded body, and then heat-treated at a temperature higher than the polymerization temperature of the thermosetting resin.
  • thermoplastic resin can be added to the magnetic material to prepare an injection molding compound, and then injection molding can be performed.
  • the powdery magnet material is mixed with, for example, epoxy, polyamide, polyphenylene sulfide (PPS), liquid crystal polymer, acrylic, polyether, etc., and molded into a desired shape.
  • PPS polyphenylene sulfide
  • liquid crystal polymer acrylic, polyether, etc.
  • hybrid magnet powder in which permanent magnet powder such as SmFeN magnet powder or hard ferrite magnet powder is mixed may be used.
  • various rotating machines applicable to automobiles including electric vehicles and hybrid vehicles
  • white goods and various magnetic sensors are manufactured as brushless DC motors of about 1 horsepower (750 W) or less. Is possible.
  • the powdery magnet material When used for an injection-molded bonded magnet, it is preferably pulverized to an average particle size of 100 ⁇ m or less, and more preferably, the average crystal grain size of the powder is 20 ⁇ m or more and 100 ⁇ m or less.
  • the average crystal grain size of the powder When used for compression molded bond magnets, it is preferable to pulverize the powder to an average grain size of 200 ⁇ m or less, and more preferably, the average crystal grain size of the powder is 50 ⁇ m or more and 150 ⁇ m or less. More preferably, the grain size distribution has two peaks and the average crystal grain size is 80 ⁇ m or more and 130 ⁇ m or less.
  • resin-bonded permanent magnets By subjecting the surface of the magnetic material for bonded magnets of the present invention to surface treatments such as coupling treatment and chemical conversion treatment (including phosphoric acid treatment and glass coating treatment), resin-bonded permanent magnets can be obtained regardless of the molding method. It is possible to improve the moldability at the time of molding, and the corrosion resistance and heat resistance of the resulting resin-bonded permanent magnet. In addition, even if the surface of the resin-bonded permanent magnet after molding is subjected to surface treatment such as resin coating, chemical conversion treatment, and plating, the corrosion resistance and heat resistance of the resin-bonded permanent magnet are improved in the same manner as the surface treatment of the magnet alloy powder. can be improved.
  • the method for producing the magnetic material for a bonded magnet of the present invention is not limited to the one described above, and other production methods can be adopted as long as the magnetic material having the above-described composition, average crystal grain size, etc. can be produced. .
  • flash annealing it is possible to form a fine metal structure whose main phase is an RE 2 Fe 14 B-type tetragonal compound having an average crystal grain size of 10 nm or more and less than 70 nm.
  • the surface speed of the rotating roll that rapidly cools the molten alloy is adjusted to increase the rapidly solidified alloy structure by 5 degrees from the alloy structure that provides the optimum magnetic properties.
  • Good magnetic properties can be obtained in the case of a homogeneous fine metal structure consisting of crystal grains about 20% to 20% smaller.
  • Example 2 In addition to the main elements of Nd, Pr, Dy, B, C and Fe with a purity of 99.5% or more, Co, Al, Si, V, Cr, Ti, and Mn are added so that the alloy composition shown in Table 1, which will be described later, is obtained. , Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au, and Pb. set to the work coil of Then, after the inside of the vacuum melting furnace was evacuated to 0.02 Pa or less, argon gas was introduced to normal pressure, and then the alloy was melted by high-frequency induction heating. After that, the molten alloy was poured into a water-cooled copper mold to produce a master alloy.
  • the bottoms have appropriately different diameters (0.7 mm or more and 1.2 mm or less) so that the average tapping rate is 200 g/min or more and less than 2000 g/min.
  • the average tapping rate is 200 g/min or more and less than 2000 g/min.
  • a molten alloy was discharged from a nozzle orifice at a jet pressure of 30 kPa onto the surface of a rotating roll rotating at 70 m/s to prepare a rapidly solidified alloy.
  • the above method is called a melt spinning method.
  • the distance between the tip of the nozzle and the surface of the rotating roll was set to 0.8 mm.
  • the main component of the rotating roll was copper.
  • the obtained rapidly solidified alloy contained 1% by volume or more of either a crystalline phase containing a Nd 2 Fe 14 B phase or an amorphous phase.
  • FIG. 2 shows the powder X-ray diffraction profile of the rapidly solidified alloy obtained in Example 5 as a representative example. From FIG. 2, the presence of the Nd 2 Fe 14 B phase was already confirmed in the rapidly solidified state.
  • the rapidly solidified alloy obtained in the above process is coarsely pulverized to a size of several mm or less to obtain a rapidly solidified alloy powder, and then a flash annealing furnace (a crystallization heat treatment furnace, furnace core tube: made of transparent quartz, outer diameter 15 mm ⁇ inner diameter 12.5 mm). ⁇ length 1000 mm, heating zone 300 mm, cooling zone 500 mm with a cooling fan), the coarse powder of the rapidly solidified alloy was charged into the raw material hopper, and heat treatment was performed at a workpiece cutting speed of 20 g/min. Regarding the furnace core tube inclination angle, the furnace core tube rotation speed, and the furnace core tube vibration frequency, the heat treatment temperature was set to 550 to 750° C.
  • the rapidly solidified alloy powder passes through the core tube while performing a combination of agitation due to the rotary motion of the core tube and hopping phenomenon due to the vibration of the core tube. They were subjected to unique heat treatment conditions where they were individually subjected to a thermal history.
  • An example of the heat treatment furnace and heat history in the step of performing flash annealing are shown in FIGS. 3 and 4, respectively.
  • FIG. 5 shows the powder X-ray diffraction profile of the rapidly solidified alloy after flash annealing (heat treatment for crystallization) obtained in Example 5 as a representative example.
  • the magnetic material obtained by flash annealing was used as a magnetic property evaluation sample of about 7 mm in length x about 0.9 mm or more in width and 2.3 mm or less in width x 18 ⁇ m or more and 25 ⁇ m or less in thickness. After that, it was magnetized in the longitudinal direction with a pulse applied magnetic field of 3.2 MA/m. Thereafter, the sample for magnetic property evaluation was set in the longitudinal direction to suppress the influence of the demagnetizing field, and the room temperature magnetic property was measured with a vibrating sample magnetometer (VSM). Table 2 shows the results. In particular, it was found that Examples 2 and 3 containing Pr had a higher intrinsic coercive force HcJ than the other Examples.
  • VSM vibrating sample magnetometer
  • Example 5 the flash-annealed (heat-treated for crystallization) magnetic powder obtained in Example 5 was pulverized with a pin disk mill to an average particle size of 125 ⁇ m. Then, 2 mass % of an epoxy resin diluted with methyl ethyl ketone (MEK) was added to the pulverized magnetic powder, mixed and kneaded, and then 0.1 mass % of calcium stearate was added as a lubricant to prepare a compound for a compression-molded bond magnet.
  • MEK methyl ethyl ketone
  • the compound for a compression-molded bond magnet was compression-molded at a pressure of 1568 MPa (16 ton/cm 2 ) to obtain a compression-molded body having a shape of 10 mm in diameter and 7 mm in height.
  • An isotropic compression-molded bond magnet was obtained by performing curing heat treatment (curing) at 180° C. for 1 hour in a gas atmosphere.
  • the compact density of the obtained isotropic compression-molded bonded magnet was 6.3 g/cm 3 (the true specific gravity of the magnetic powder was 7.5 g/cm 3 ), so the magnetic powder filling rate was 84% by volume. .
  • the magnetic properties of the isotropic compression-molded bonded magnet obtained using the magnetic powder of Example 5 were measured with a BH tracer after being magnetized in the longitudinal direction with a pulse applied magnetic field of 3.2 MA/m. , residual magnetic flux density Br: 0.74 T, intrinsic coercive force HcJ: 1028 kA/m, and maximum energy product (BH) max: 89.4 kJ/m 3 .
  • the flash-annealed (heat-treated for crystallization) magnetic powder obtained in Example 5 was pulverized with a pin disk mill to an average particle size of 75 ⁇ m. Then, while the pulverized magnetic powder is heated and stirred, a titanate-based coupling agent is sprayed to 0.75 mass%, and after performing a coupling treatment, 0.5 mass% stearic acid amide as a lubricant and 4 nylon 12 resin powders. After adding and mixing 0.75% by mass, a compound for an injection-molded bond magnet was produced at an extrusion temperature of 170° C. using a continuous extrusion kneader.
  • injection molding was performed at an injection temperature of 250° C. to produce an isotropic injection-molded bonded magnet having a shape of 10 mm in diameter ⁇ 7 mm in height.
  • the compact density of the isotropic injection-molded bonded magnet obtained was 4.6 g/cm 3 (the true specific gravity of the magnetic powder was 7.5 g/cm 3 ), so the magnetic powder filling rate was 61% by volume. .
  • the magnetic properties of the isotropic injection-molded bonded magnet obtained using the magnetic powder of Example 5 were measured with a BH tracer after being magnetized in the longitudinal direction with a pulse applied magnetic field of 3.2 MA/m. , residual magnetic flux density Br: 0.54 T, intrinsic coercive force HcJ: 1014 kA/m, and maximum energy product (BH) max: 63.4 kJ/ m3. It was found that the same level of magnetic properties as those of the Nd--Fe--B compression-molded bond magnet can be obtained.
  • FIG. 9 shows a bright-field image and elemental mapping of the magnet material according to the comparative example observed with a transmission electron microscope.
  • the grain boundaries of the main phase composed of the main constituent elements of Nd, Fe, and B do not have grain boundary phases in which F and Nd or Pr are concentrated, as seen in Examples. It turns out not.
  • the magnet material according to the comparative example was made into a magnetic property evaluation sample having a length of about 7 mm x a width of about 0.9 mm or more and 2.3 mm or less x a thickness of 18 ⁇ m or more and 25 ⁇ m or less, and then pulsed at 3.2 MA / m. It was magnetized in the longitudinal direction by an applied magnetic field. After that, the magnetic property evaluation sample was set in the longitudinal direction to suppress the influence of the demagnetizing field, and the room temperature magnetic properties were measured with a vibrating sample magnetometer (VSM). From Table 3, it was found that the intrinsic coercive force HcJ was lower than that of the examples.
  • VSM vibrating sample magnetometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本発明に係る磁石材料は、RE2Fe14B型正方晶化合物を主相とし、F,RE,Fe,Bを含む非晶質である粒界相が、前記主相を取り囲む構造を有する(但し、REはNd及びPrのうち少なくともNdを必ず含む少なくとも1種の希土類元素)。

Description

ボンド磁石用磁石材料及び磁石
 本発明は、ボンド磁石用磁石材料及び磁石に関する。
 特許文献1には、焼結磁石のバルク体表面に重希土類フッ化物を塗布し、熱処理することで重希土類を磁石内部に拡散し、主相を重希土類を含む相で取り囲むように被覆することで、保磁力を向上させた磁石が開示されている。また、特許文献2には、熱間加工磁石のバルク体表面に希土類-低融点金属化合物を塗布し、熱処理することで希土類を磁石内部に拡散し保磁力を向上させた磁石が開示されている。
特許第4450239号公報 特開2015-82626号公報
 しかしながら、いずれの特許文献に記載の磁石材料も、バルク体に対して熱処理を行う工程を含むため、熱処理によってバルク体の樹脂が変性、溶融するボンド磁石用に用いられるものではない。このため、高い固有保磁力を発現するボンド磁石用の磁石材料が要望されていた。本発明は、上記問題を解決するためになされたものであり、高い固有保磁力HcJを発現するボンド磁石用磁石材料及び磁石を提供することにある。
 本発明に係るボンド磁石用磁石材料は、RE2Fe14B型正方晶化合物を主相とし、F,RE,Fe,及びBを含む非晶質である粒界相が、前記主相を取り囲む構造を有する(但し、REはNd及びPrのうち少なくともNdを必ず含む少なくとも1種の希土類元素)。
 上記ボンド磁石用磁石材料においては、前記粒界相の幅が、1nm以上、10nm未満であることが好ましい。
 上記ボンド磁石用磁石材料においては、前記主相の含有量が、70体積%以上99体積%以下、前記粒界相の含有量が、1体積%以上30体積%以下であることが好ましい。
 本発明に係る磁石は、バインダと、前記バインダ内に分散された、上述したいずれかのボンド磁石用磁石材料と、を備えている。
 本発明に係るボンド磁石用磁石材料及び磁石によれば、高い固有保磁力HcJを発現することができる。
本発明の磁石材料の一例を模式的に示す断面図である。 実施例5で得られた急冷凝固合金の粉末X線回折プロファイルである。 (a)はフラッシュアニールを実現する熱処理炉の装置構成図であり、(b)は炉心管内部を移動する急冷凝固合金の状態を示す図である。 本発明にて実施するフラッシュアニールによる熱履歴の概念図である。 実施例5で得られたフラッシュアニール(結晶化熱処理)後の急冷凝固合金の粉末X線回折プロファイルである。 実施例1で得られた磁石材料を透過型電子顕微鏡にて観察した明視野像及び元素マッピングである。 実施例2で得られた磁石材料を透過型電子顕微鏡にて観察した明視野像及び元素マッピングである。 実施例3で得られた磁石材料を透過型電子顕微鏡にて観察した明視野像及び元素マッピングである。 比較例で得られた磁石材料を透過型電子顕微鏡にて観察した明視野像及び元素マッピングである。
 以下、本発明のボンド磁石用磁石材料、及び磁石について説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更されてもよい。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。
 本発明に係るボンド磁石用磁石材料は、RE2Fe14B型正方晶化合物を主相とし、F,RE,Fe,及びBを含む非晶質である粒界相が、前記主相を取り囲む構造を有する(但し、REはNd及びPrのうち少なくともNdを必ず含む少なくとも1種の希土類元素)。図1は、この磁石材料の一例を模式的に示す断面図である。図1に示すように、この磁石材料では、主相21が粒界相22に取り囲まれている。なお、少なくともF及びBを含むような同様の組成で、ストリップキャスト法や金型鋳造法、遠心鋳造法などを用いて磁石材料を製造すると、Fを含む(Bを含まない、もしくは微量に含む)結晶質、または結晶質を含む粒界相が生成され、粒界相が本発明のような主相を均一に被覆する状態は実現できない。これは、本発明のような粒界相を作るには、後述するような微細組織(例えば、主相の平均結晶径が70nm未満の組織)を有するボンド磁石の製造に適した急冷法であるメルトスピニング法を採用する必要があることによる。以下、詳細に説明する。
[合金組成]
 本発明のボンド磁石用磁石材料の合金組成は、上述したように、RE2Fe14B型正方晶化合物を主相とし、F,RE,Fe,Bを含む非晶質である粒界相が、主相を取り囲む構造を有していれば特には限定されないが、例えば、組成式T100-x-y-z(B1-nnxREyz(TはFe、Co及びNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、REはNd及びPrのうち少なくともNdを必ず含む少なくとも1種の希土類元素、MはAl、Si、V、Cr、Ti、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の金属元素)で表現され、組成比率x、y及びzがそれぞれ、4.2原子%≦x≦5.6原子%、11.5原子%≦y≦13.0原子%、0.0原子%≦z≦5.0原子%、及び、0.0≦n≦0.5を満足する組成とすることができる。なお、本発明に係る磁石材料の組成の分析にはICP質量分析法や燃焼イオンクロマトグラフィー法を用いる。また、必要に応じて燃焼-赤外線吸収法を併用してもよい。
 Feを必須元素として含む遷移金属元素Tは、上述の元素の含有残余を占める。Feの一部をFeと同じく強磁性元素であるCo及びNiの1種又は2種で置換しても、所望の硬磁気特性を得ることができる。ただし、Feに対する置換量が30%を超えると、磁束密度の大幅な低下を招くため、置換量は0%以上、30%以下の範囲であることが好ましい。なお、Coを添加することは、磁化の向上に寄与するだけでなく、溶湯粘性を低下させて溶湯急冷時のノズルからの出湯レートを安定化するのに効果があるため、Co置換量は0.5%以上、30%以下であることがより好ましく、費用対効果の観点から、Coの置換量は0.5%以上、10%以下であることが更に好ましい。
 本発明のボンド磁石用磁石材料においては、例えば、B+Cの組成比率xが4.2原子%未満になると、RE2Fe14B型正方晶化合物の生成に必要なB+C量が確保できないおそれがあり、磁気特性が低下するとともにアモルファス生成能が大きく低下するおそれがあるため、溶湯急冷凝固の際にα-Fe相が析出し、結果的に、減磁曲線の角形性が損なわれるおそれがある。また、B+Cの組成比率xが5.6原子%を超えると、RE及びFeを主成分とする粒界相が生成されないおそれがあり、上述した磁気特性を確保できない可能性がある。よって、組成比率xは4.2原子%以上、5.6原子%以下の範囲にすることが好ましい。組成比率xは、4.2原子%以上、5.2原子%以下であることが好ましく、4.4原子%以上、5.0原子%以下であることがより好ましい。
 本発明のボンド磁石用磁石材料においては、Bの一部をCで置換することにより、合金溶湯の融点が低くなり急冷凝固の際に用いる耐火物の損耗量が減るため、急冷凝固に係る工程費用が低下できるとともに、固有保磁力HcJの向上効果が得られる。しかしながら、Bに対するCの置換率が50%を超えると、アモルファス生成能が大きく低下するため好ましくない。よって、Bに対するCの置換率は、0%以上、50%以下の範囲、すなわち、0.0≦n≦0.5であることが好ましい。なお、固有保磁力HcJの向上効果の観点から、Bに対するCの置換率は、2%以上、30%以下であることが好ましく、3%以上、15%以下であることがより好ましい。
 本発明のボンド磁石用磁石材料においては、Nd及びPrのうち少なくともNdを必ず含む少なくとも1種の希土類元素REの組成比率yが11.5原子%未満になると、F,RE,Fe,及びBを含む粒界相が生成されないおそれがあり、十分な磁気特性を確保できない可能性がある。また、組成比率yが13.0原子%を超えると、磁化の低下を招くおそれがある。よって、組成比率yは11.5原子%以上、13.0原子%以下の範囲であることが好ましい。なお、粒界相に含まれるFは、Nd,Prに含まれる。すなわち、製造時の原材料であるNdメタル(Ndの含有量が95重量%以上)、Prメタル(Prの含有量が95重量%以上)、またはNd-Prメタル(Nd/Prの重量比が3.4~4.9重量%、NdとPrの合計が95重量%以上)に含まれている。また、組成比率yは、固有保磁力HcJの安定確保の観点で、例えば、RE2Fe14B型正方晶化合物の化学量論組成である11.76原子%以上、13.0原子%以下であることが好ましく、高い残留磁束密度Brを確保する観点で、11.76原子%以上、12.5原子%以下であることがより好ましい。
 また、上記希土類REは、より高い固有保磁力HcJを得るにはREy=(Nd1-lPrlyとしても良く、その際、lは0.05以上0.7以下にすることが好ましい。なお、Ndに対するPrの置比率lが低すぎるとHcJ向上の効果が少なく、また、lが高すぎると当該磁石合金の保磁力に係る温度係数βの絶対値は小さくなるため耐熱性の低下が懸念されるため、lは0.15以上0.6以下が好ましく、0.2以上0.5以下がさらに好ましい。
 本発明のボンド磁石用磁石材料においては、Al、Si、V、Cr、Ti、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の金属元素Mを加えてもよい。金属元素Mの添加により、アモルファス生成能の向上、結晶化熱処理後の金属組織の均一微細化による固有保磁力HcJの向上、減磁曲線の角形性改善等々の効果が得られ、磁気特性が向上する。ただし、これらの金属元素Mの組成比率zは、5.0原子%を超えると、磁化の低下を招くおそれがあるため、組成比率zは0.0原子%以上、5.0原子%以下の範囲であることが好ましい。また、組成比率zは、0.0原子%以上、4.0原子%以下であることが好ましく、0.0原子%以上、3.0原子%以下であることがより好ましい。
[金属組織]
 本発明のボンド磁石用磁石材料においては、主相であるRE2Fe14B型正方晶化合物の平均結晶粒径が、例えば、10nm未満になると固有保磁力HcJの低下を招くおそれがあり、例えば、70nm以上になると結晶粒子間に働く交換相互作用の低下により減磁曲線の角形性が低下するおそれがある。したがって、例えば、残留磁束密度Br:0.85T以上、固有保磁力HcJ:700kA/m以上、1400kA/m未満、最大エネルギー積(BH)max:120kJ/m3以上の磁気特性を実現するためには、RE2Fe14B型正方晶化合物の平均結晶粒径は、10nm以上、70nm未満の範囲にすることが好ましい。また、RE2Fe14B型正方晶化合物の平均結晶粒径は、15nm以上、60nm以下であることが好ましく、15nm以上、50nm以下であることがより好ましい。
 RE2Fe14B型正方晶化合物の平均結晶粒径は、透過型電子顕微鏡(TEM)を用いて各粒子の粒径を線分法で3箇所以上測定したとき、当該視野に存在する各粒子の円相当径の平均値を意味する。
 粒界相の幅が、例えば、1nm未満の場合、主相粒子間に働く結合力が増し、固有保磁力HcJの低下を招くおそれがある。また、粒界相の幅が、例えば、10nm以上になると、逆に粒子間結合が弱まり、減磁曲線の角形が低下するおそれがある。したがって、粒界相の幅は、1nm以上、10nm未満であることが好ましく、2nm以上、8nm以下であることがより好ましく、2nm以上、5nm以下であることが更に好ましい。なお、粒界相の幅は、加速電圧200kV、観察倍率90万倍の条件で走査型透過電子顕微鏡を用いて撮影した明視野像の画像に対して画像解析を行うことで求めた。
 本発明のボンド磁石用磁石材料では、主相及び粒界相の含有量について、主相が70体積%以上、99体積%未満であることが好ましく、粒界相が1体積%以上、30体積%未満であることが好ましい。また、主相外周部の粒界相による被覆率については、主相外周部の周囲長の40%以上、99%未満が粒界相に被覆されていることが好ましい。これにより、例えば、残留磁束密度Br:0.85T以上、固有保磁力HcJ:700kA/m以上、1400kA/m未満、最大エネルギー積(BH)max:120kJ/m3以上の磁気特性を実現しやすくなる。主相の比率は、80体積%以上、99体積%未満であることが好ましく、90体積%以上、98体積%未満であることがより好ましい。なお、主相と粒界相の構成比及び主相外周部の粒界相による被覆率は、加速電圧200kV、観察倍率90万倍の条件で走査型透過電子顕微鏡を用いて撮影した明視野像の画像に対して画像解析を行うことで求めた。
 本発明のボンド磁石用磁石材料においては、粒界相にFが含まれることにより、非晶質の粒界相の形成に寄与している。本発明者は、主相であるRE2Fe14B相と、主相の周囲に均一に存在する、F,RE,Fe及びBを主成分とする粒界相とは、静磁気相互作用に加えて強い交換相互作用で結び付き、あたかも一体の硬磁性相として振る舞うことによって、RE2Fe14B相の固有保磁力HcJを損なうことなく、高い残留磁束密度Brと減磁曲線の角形性向上による高い最大エネルギー積(BH)maxが得られることを見出した。特に、上記のような粒界相を有することが、後述するように、高い固有保磁力HcJを発現することに寄与すると考えられる。
[磁気特性]
 本発明のボンド磁石用磁石材料は、例えば、残留磁束密度Brが0.82T以上、固有保磁力HcJが700kA/m以上、1400kA/m未満、最大エネルギー積(BH)maxが105kJ/m3以上の磁気特性を発現することが好ましい。1馬力(750W)以下程度の電装用及び白物家電用に最適な各種回転機に使用する際において、表面磁石型回転子(SPM型回転子)等の永久磁石に逆磁界がかかりやすい磁気回路構成となる場合は、固有保磁力HcJは800kA/m以上であることが好ましく、950kA/m以上であることがより好ましい。なお、固有保磁力HcJが1400kA/m以上になる場合は着磁性が著しく低下するため、固有保磁力HcJは1300kA/m以下であることが好ましく、1250kA/m以下であることがより好ましい。また、残留磁束密度Brについては、磁石埋込式回転子(IPM型回転子)等を採用した場合、SPM型に対してより高い動作点(パーミアンス)で駆動することが可能となるため、残留磁束密度Brはできるだけ高い方がよいものの、固有保磁力HcJとのバランスを考慮すると、残留磁束密度Brは、0.85T以上であることが好ましく、0.9T以上であることがより好ましい。
 なお、残留磁束密度Brを一例として0.82T以上が好ましい理由は、等方性ボンド磁石として直流ブラシレスモータに適用した場合、磁石の動作点(パーミアンスPc)は、3以上、10以下程度となるため、残留磁束密度Br≧0.82Tであれば、本Pc範内では、最大エネルギー積(BH)maxが300kJ/m3以上の異方性Nd-Fe-B焼結磁石と同等レベルの実行磁束Bmが得られるためである。なお、残留磁束密度Brは0.86T以上であることがさらに好ましい。
 また、固有保磁力HcJを一例として700kA/m以上が好ましい理由は、固有保磁力HcJが700kA/m未満では、等方性ボンド磁石として直流ブラシレスモータに適用した場合、モータの耐熱温度が100℃を担保できず、熱減磁により所望のモータ特性が得られない可能性があるためである。加えて、固有保磁力HcJを1400kA/m未満にした理由は、固有保磁力HcJが1400kA/m以上では着磁が困難となり、Pc:3以上、10以下を確保するための多極着磁が困難であるためである。
 更に、最大エネルギー積(BH)maxを一例として105kJ/m3以上が好ましい理由は、最大エネルギー積(BH)maxが105kJ/m3未満では、減磁曲線の角形比(残留磁化Jr/飽和磁化Js)が0.8以下となるため、等方性ボンド磁石として直流ブラシレスモータに適用した場合、モータ動作時に発生する逆磁界により磁気特性が低下し、所望のモータ特性が得られない可能性があるためである。
[磁石材料の製造方法]
 本発明のボンド磁石用磁石材料は、例えば、以下のように製造することができる。まず、上述した金属組成を有する合金溶湯を用意する。次に、この合金溶湯を、ノズル先端に配したオリフィス1孔当たり200g/min以上、2000g/min未満の平均出湯レートにて、Cu、Mo、W又はこれらの金属の少なくとも1種を含む合金を主成分とする回転ロールの表面上に噴射することで、RE2Fe14B相を含む結晶相と非晶質相とのいずれかを1体積%以上有する急冷凝固合金を作製する。なお、REはLa及びCeを実質的に含まない少なくとも1種の希土類元素であるが、一例としては、上述したように、Nd及びPrのうち少なくともNdを必ず含む少なくとも1種の希土類元素とすることができる。詳細は上述したとおりである。
[溶湯急冷]
 本発明の磁石材料の製造方法においては、所定の合金組成になるよう準備した素原料を溶解して合金溶湯とした後、上記の合金溶湯をノズル先端に配したオリフィス1孔当たり200g/min以上、2000g/min未満の平均出湯レートにて、Cu、Mo、W又はこれらの金属の少なくとも1種を含む合金を主成分とする回転ロールの表面上に噴射することで、RE2Fe14B相を含む結晶相と非晶質相とのいずれかを1体積%以上有する急冷凝固合金を作製するが、平均出湯レートが200g/min未満では生産性に劣り、2000g/min以上では粗大なα-Fe相を含む溶湯急冷合金組織となるために結晶化熱処理を施しても上述した磁気特性が得られない可能性がある。よって、ノズル先端に配したオリフィス1孔当たりの平均出湯レートは、200g/min以上、2000g/min未満の範囲に限定される。なお、平均出湯レートは300g/min以上、1500g/min以下であることが好ましく、400g/min以上、1300g/min以下であることがより好ましい。
 ノズル先端に配し溶湯出湯する孔は、円形のオリフィスでなくとも、四角、三角、楕円等のように形状を問わず、所定の出湯レートを確保できる孔形状であればスリット状も許容される。加えて、ノズル材質は、合金溶湯と反応しない、もしくは反応し難い耐火材であれば許容されるが、出湯中の溶湯によるノズルオリフィスの損耗が少ないセラミックス材、SiC、C、又はBNが好ましく、BNがより好ましく、添加材を含んだ硬質BNが更に好ましい。
 上記の急冷凝固合金を作製する際は、合金溶湯の酸化を防ぐことで溶湯粘性の上昇を抑え、安定した出湯レートを維持できることから、急冷凝固雰囲気は、無酸素又は低酸素雰囲気が好ましい。本雰囲気を実現するためには、急冷凝固装置内を20Pa以下、好ましくは10Pa以下、より好ましくは1Pa以下まで真空排気した後、不活性ガスを急冷凝固装置内へ導入し、急冷凝固装置内の酸素濃度を500ppm以下、好ましくは200ppm以下、より好ましくは100ppm以下にした上、急冷凝固を実施することが好ましい。不活性ガスとしては、ヘリウム、アルゴン等の希ガスや窒素を用いることができるが、窒素は希土類元素及び鉄と比較的反応しやすいため、ヘリウム、アルゴン等の希ガスが好ましく、コストの点からアルゴンガスがより好ましい。
 急冷凝固合金を作製する工程において、合金溶湯を急冷する回転ロールは、Cu、Mo、W又はこれらの金属の少なくとも1種を含む合金を主成分とするが、このような主成分を含有する基材を有していることが好ましい。これらの基材は、熱伝導性及び耐久性に優れるからである。また、回転ロールの基材表面にCr、Ni又はそれらを組み合わせためっきを施すことで、回転ロールの基材表面の耐熱性及び硬度を高め、急冷凝固時における回転ロールの基材表面の溶融及び劣化を抑制することができる。なお、回転ロールの直径は、例えばΦ200mm以上、Φ20000mm以下である。急冷凝固時間が10sec以下の短時間であれば回転ロールを水冷する必要はないが、急冷凝固時間が10secを超える場合は、回転ロール内部に冷却水を流し、回転ロール基材の温度上昇を抑制することが好ましい。回転ロールの水冷能力は、単位時間当たりの凝固潜熱と出湯レートとに応じて算出され、適宜最適調整されることが好ましい。
[フラッシュアニール]
 本発明の磁石材料の製造方法においては、上記急冷凝固合金に対して、10℃/sec以上、200℃/sec未満の昇温速度にて、結晶化温度以上、850℃以下の一定温度域に到達させてから、0.1sec以上、7min未満経過後に急冷するフラッシュアニールを施す工程を更に備えることができる。このフラッシュアニールを施す工程により、RE2Fe14B型正方晶化合物の化学量論組成よりも低いB含有濃度でありながら、上述した金属組織を形成することが可能になる。
 フラッシュアニール(結晶化熱処理)時の昇温速度が10℃/sec未満の場合、過剰粒成長により微細な金属組織が得られないおそれがあり、また、固有保磁力HcJ及び残留磁束密度Brの低下を招くおそれがある。昇温速度が200℃/sec以上の場合、結晶粒成長が間に合わず、上述した金属組織を形成することができないおそれがあり、10℃/sec未満の場合と同じく磁気特性の低下を招くおそれがある。よって、昇温速度は10℃/sec以上、200℃/sec未満であることが好ましく、30℃/sec以上、200℃/sec以下であることがより好ましく、40℃/sec以上、180℃/sec以下であることが更に好ましい。
 このフラッシュアニール(結晶化熱処理)では、良好な磁気特性を得るために、結晶化温度以上、850℃以下の一定温度域の結晶化熱処理温度(保持温度)に到達後、直ちに急冷することが好ましい。詳述すれば、上記の結晶化熱処理温度に到達後、急冷に至るまでの保持時間は、実質0.1sec以上あれば充分であり、7min以上保持すると均一微細な金属組織が損なわれ、各種磁気特性の低下を招くため好ましくない。よって、保持時間は0.1sec以上、7min未満であることが好ましく、0.1sec以上、2min以下であることがより好ましく、0.1sec以上、30sec以下であることが更に好ましい。
 このフラッシュアニール(結晶化熱処理)では、2℃/sec以上、200℃/sec以下の降温速度にて急冷凝固合金を400℃以下まで冷却することが好ましい。降温速度が2℃/sec未満であると結晶組織の粗大化が進行し、200℃/secを超えると合金が酸化する可能性がある。よって、降温速度は2℃/sec以上、200℃/sec以下であることが好ましく、5℃/sec以上、200℃/sec以下であることがより好ましく、5℃/sec以上、150℃/sec以下であることが更に好ましい。
 上記のフラッシュアニール(結晶化熱処理)の雰囲気は、急冷凝固合金の酸化を防止するために、不活性ガス雰囲気が好ましい。不活性ガスとしては、ヘリウム、アルゴン等の希ガスや窒素を用いることができるが、窒素は希土類元素及び鉄と比較的反応しやすいため、ヘリウム、アルゴン等の希ガスが好ましく、コストの点からアルゴンガスがより好ましい。
[粉砕及び成形]
 本発明のボンド磁石用磁石材料の製造方法は、上記急冷凝固合金又は上記フラッシュアニールが施された上記急冷凝固合金を粉砕することにより、磁石粉末を作製する工程を更に備えていてもよい。
 上記工程を経て得た急冷凝固合金は、フラッシュアニール(結晶化熱処理)前に薄帯状の急冷凝固合金を粗く、例えば50mm以下に切断又は粉砕しておいてもよい。更に、フラッシュアニール(結晶化熱処理)後の急冷凝固合金を、平均粉末粒径20μm以上、200μm以下の範囲にある適切な平均粉末粒径に粉砕した粉末状の磁石材料にすることで、この磁石材料を用いて公知の工程により種々の樹脂結合型永久磁石(通称、プラマグ又はボンド磁石)を製造することができる。
 本発明の永久磁石は、例えば、次のように製造することができる。まず、上記のように製造された粉末状の磁石材料を用意する。次に、この磁石材料に熱硬化性樹脂を加えた後、成形金型へ充填の上、圧縮成形により圧縮成形体とした後、前記熱硬化性樹脂の重合温度以上で熱処理する。
 あるいは、上記粉末状の磁石材料を用意した後、この磁石材料に熱可塑性樹脂を加えて、射出成形用コンパウンドを作製した後、射出成形することもできる。
 上記磁石を作製する場合、上記粉末状の磁石材料には、例えば、エポキシ、ポリアミド、ポリフェニレンサルファイド(PPS)、液晶ポリマー、アクリル、ポリエーテル等が混合され、所望の形状に成形される。この際、例えば、SmFeN系磁石粉、ハードフェライト磁石粉等の永久磁石粉末を混合したハイブリッド磁石粉を用いてもよい。
 上述の磁石を用いて、1馬力(750W)以下程度のブラシレスDCモータとして自動車(電気自動車、ハイブリッド車も含む)向け及び白物家電向けに適用可能な各種回転機、並びに各種磁気センサを製造することが可能である。
 上記粉末状の磁石材料を射出成形ボンド磁石用に用いる場合は、平均粒度が100μm以下になるように粉砕することが好ましく、より好ましい粉末の平均結晶粒径は20μm以上、100μm以下である。また、圧縮成形ボンド磁石用に用いる場合は、平均粒度が200μm以下になるように粉砕することが好ましく、より好ましい粉末の平均結晶粒径は50μm以上、150μm以下である。更に好ましくは、粒径分布に2つのピークを持ち、平均結晶粒径が80μm以上、130μm以下である。
 なお、本発明のボンド磁石用磁石材料の表面に、カップリング処理、化成処理(リン酸処理及びガラス被膜処理を含む)等の表面処理を施すことにより、成形方法を問わず樹脂結合型永久磁石の成形時における成形性や得られる樹脂結合型永久磁石の耐食性及び耐熱性を改善可能である。加えて、成形後の樹脂結合型永久磁石表面に樹指塗装、化成処理、鍍金等の表面処理を施した場合も、磁石合金粉末の表面処理と同様に樹脂結合型永久磁石の耐食性及び耐熱性を改善可能である。
 なお、本発明のボンド磁石用磁石材料の製造方法は、上述したものに限定されず、上述した組成、平均結晶粒径等を有する磁石材料が製造できれば、他の製造方法を採用することができる。例えば、フラッシュアニールを用いると、平均結晶粒径が10nm以上、70nm未満であるRE2Fe14B型正方晶化合物を主相とする微細な金属組織を形成することができるが、このような微細な金属組織を形成するには、フラッシュアニールに限定されず、他の方法も採用することができる。例えば、フラッシュアニールではなく、通常のアニール工程を採用する場合であっても、合金溶湯を急冷する回転ロールの表面速度を調整し、急冷凝固合金組織を最適な磁気特性が得られる合金組織より5%~20%程度小さい結晶粒からなる均質微細金属組織とした場合は良好な磁気特性を得ることができる。
 以下、本発明の実施例を説明する。なお、本発明は、これらの実施例のみに限定されるものではない。
(実施例)
 後述する表1に記載の合金組成となるよう、純度99.5%以上のNd、Pr、Dy、B、C及びFeの主要元素に加え、Co、Al、Si、V、Cr、Ti、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、Pb等の添加元素を配合した素原料100gをアルミナ製溶解坩堝へ投入した後、真空溶解炉内のワークコイルへセットした。そして、真空溶解炉内を0.02Pa以下まで真空排気した後、アルゴンガスを常圧まで導入した上で、高周波誘導加熱により合金溶湯とした。その後、水冷銅鋳型へ合金溶湯を鋳込み、母合金を作製した。
 次いで、得られた母合金を適当な大きさに割った後、底部に平均出湯レート200g/min以上、2000g/min未満となるよう適宜異なる直径(0.7mm以上、1.2mm以下)を有するオリフィスを配した透明石英製ノズルへ40g挿入した後、単ロール急冷装置内のワークコイルへセットした。そして、真空溶解炉内を0.02Pa以下まで真空排気した後、アルゴンガスを急冷雰囲気圧(40~65kPa)になるまで導入し高周波誘導加熱により母合金を再溶解した上、表面速度が50~70m/sで回転する回転ロールの表面へ、合金溶湯を噴射圧30kPaでノズルオリフィスより出湯し、急冷凝固合金を作製した。以上の方法をメルトスピニング法と称する。なお、この際、ノズル先端と回転ロール表面との距離を0.8mmとした。また、回転ロールの主成分は、銅であった。また、得られた急冷凝固合金は、Nd2Fe14B相を含む結晶相と非晶質相とのいずれかを1体積%以上有していた。
 図2に代表例として、実施例5で得られた急冷凝固合金の粉末X線回折プロファイルを示す。図2より、急冷凝固状態で既にNd2Fe14B相の存在が確認された。
 上記工程で得られた急冷凝固合金を数mm以下に粗粉砕し、急冷凝固合金粉末とした後、フラッシュアニール炉(結晶化熱処理炉、炉心管:透明石英製で外径15mm×内径12.5mm×長さ1000mm、加熱ゾーン300mm、冷却ファンによる冷却ゾーン500mm)を用い、急冷凝固合金の粗粉を原料ホッパーへ投入した上、20g/minのワーク切り出し速度で熱処理を実施した。なお、炉心管傾斜角度、炉心管回転数及び炉心管振動周波数については、昇温速度が10~200℃/secになるよう、熱処理温度を550~750℃、熱処理時間を10~30secとした。これにより、急冷凝固合金粉末は、炉心管回転運動による攪拌と炉心管振動によるホッピング現象とが組み合わせられた動きをしながら炉心管内を通過することで、急冷凝固合金粉末は、一体としてではなく粉末個々に熱履歴を受ける特異な熱処理条件下に置かれた。フラッシュアニールを施す工程における熱処理炉及び熱履歴については、各々、図3及び図4に一例を示した。
 フラッシュアニール(結晶化熱処理)後の急冷凝固合金粉末の構成相を粉末X線回折にて確認したところ、Nd2Fe14B相の存在が確認された。図5に代表例として、実施例5で得られたフラッシュアニール(結晶化熱処理)後の急冷凝固合金の粉末X線回折プロファイルを示す。
 図6~図8に、実施例1~3で得られた磁石材料を透過型電子顕微鏡にて観察した明視野像及びエネルギー分散型X線分析による元素マッピングを示す。明視野像からは、平均結晶粒径50nm以下のNd2Fe14B相と、Nd2Fe14B相を取り囲む明確な粒界相との存在を確認した。加えて、元素マッピングでは、Nd、Fe、Bの主要構成元素からなる主相の結晶粒界に、F及びNdもしくはPrが濃縮した粒界相が存在していることが確認できた。例えば、Fの元素マッピングでは、白で示される部分がFを示しており、粒界相に沿って分布していることが分かる。なお、図6~図8のような粒界相は、全ての実施例において形成されていることが本発明者により確認されている。またBの分析については必要に応じて電子エネルギー損失分光等の方法を用いても良い。
 上記のように、フラッシュアニール(結晶化熱処理)を施し得られた磁石材料を、長さ約7mm×幅約0.9mm以上、2.3mm以下×厚み18μm以上、25μm以下の磁気特性評価用サンプルとした後、3.2MA/mのパルス印加磁界にて長手方向に着磁した。その後、反磁界の影響を抑えるため長手方向に磁気特性評価用サンプルをセットした上、室温磁気特性を振動式試料磁力計(VSM)により測定した結果を表2に示す。特に、Prを含有する実施例2,3については、他の実施例に比べ、高い固有保磁力HcJが得られていることが分かった。
 次いで、実施例5で得られたフラッシュアニール(結晶化熱処理)済みの磁粉をピンディスクミルにて平均粒径125μmになるように粉砕した。そして、本粉砕磁粉にメチルエチルケトン(MEK)で希釈したエポキシ樹脂を2mass%加え、混合・混練した後、潤滑剤としてステアリン酸カルシウムを0.1mass%加えて圧縮成形ボンド磁石用コンパウンドを作製した。
 上記の圧縮成形ボンド磁石用コンパウンドを1568MPa(16ton/cm2)の圧力にて圧縮成形し、直径10mm×高さ7mmの形状を有する圧縮成形体を得た後、この圧縮成形体に対してアルゴンガス雰囲気にて180℃×1時間の硬化熱処理(キュアリング)を実施することにより、等方性圧縮成形ボンド磁石を得た。なお、得られた等方性圧縮成形ボンド磁石の成形体密度は6.3g/cm3(磁粉の真比重7.5g/cm3)であることから、磁粉充填率は84体積%であった。
 実施例5の磁粉を用いて得られた上記等方性圧縮成形ボンド磁石の磁気特性を、3.2MA/mのパルス印加磁界にて長手方向に着磁した後でBHトレーサにて測定したところ、残留磁束密度Br:0.74T、固有保磁力HcJ:1028kA/m、最大エネルギー積(BH)max:89.4kJ/m3の磁気特性を発現していることが分かった。
 次に、実施例5で得られたフラッシュアニール(結晶化熱処理)済みの磁粉をピンディスクミルにて平均粒径75μmになるように粉砕した。そして、本粉砕磁粉を加熱攪拌しながらチタネート系カップリング剤を0.75mass%となるよう噴霧し、カップリング処理を施した上、潤滑剤としてステアリン酸アミド0.5mass%、ナイロン12樹脂粉末4.75mass%を添加混合した後、連続押し出し混錬機を用い、押し出し温度170℃にて射出成形ボンド磁石用コンパウンドを作製した。
 上記の射出成形ボンド磁石用コンパウンドを用いて射出温度250℃にて射出成形を行い、直径10mm×高さ7mmの形状を有する等方性射出成形ボンド磁石を作製した。なお、得られた等方性射出成形ボンド磁石の成形体密度は4.6g/cm3(磁粉の真比重7.5g/cm3)であることから、磁粉充填率は61体積%であった。
 実施例5の磁粉を用いて得られた上記等方性射出成形ボンド磁石の磁気特性を、3.2MA/mのパルス印加磁界にて長手方向に着磁した後でBHトレーサにて測定したところ、残留磁束密度Br:0.54T、固有保磁力HcJ:1014kA/m、最大エネルギー積(BH)max:63.4kJ/m3の磁気特性を発現しており、射出成形ながら汎用的な等方性Nd-Fe-B圧縮成形ボンド磁石と同等レベルの磁気特性が得られることが分かった。
(比較例)
 比較例に係る磁石材料として、Magnequench製 MQP-14-12を準備した。図9に、比較例に係る磁石材料を透過型電子顕微鏡にて観察した明視野像及び元素マッピングを示す。明視野像では、平均結晶粒径50nm以下のNd2Fe14B相は確認できたものの、明確な粒界相は確認できなかった。加えて、元素マッピングからも、Nd、Fe、Bの主要構成元素からなる主相の結晶粒界には、実施例に見られたようなF及びNdもしくはPrが濃縮した粒界相が存在していないことが分かった。
 また、比較例に係る磁石材料を、長さ約7mm×幅約0.9mm以上、2.3mm以下×厚み18μm以上、25μm以下の磁気特性評価用サンプルとした後、3.2MA/mのパルス印加磁界にて長手方向に着磁した。その後、反磁界の影響を抑えるため長手方向に磁気特性評価用サンプルをセットした上、室温磁気特性を振動式試料磁力計(VSM)により測定した結果を表3に示す。表3より、特に、固有保磁力HcJが、実施例よりも低いことが分かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1 原料ホッパー
2 原料供給フィーダ
3 炉心管
3a 炉心管拡大図
3b 炉心管断面拡大図
4 管状炉
5 冷却塔
6 回収ホッパー
7 振動子
8 炉心管回転用モータ
9 炉心管回転軸
10 装置架台
11 炉心管傾斜角度
12 冷却ファン風
13 急冷凝固合金粉末(ワーク)
14 ワークの移動方向
15 ワークのホッピング現象
16 昇温速度
17 保持温度
18 降温速度
21 主相
22 粒界相

Claims (5)

  1.  RE2Fe14B型正方晶化合物を主相とし、F,RE,Fe,及びBを含む非晶質である粒界相が、前記主相を取り囲む構造を有する、
    ボンド磁石用磁石材料(但し、REはNd及びPrのうち少なくともNdを必ず含む少なくとも1種の希土類元素)。
  2.  前記REは、Nd及びPrを含有する、請求項1に記載のボンド磁石用磁石材料。
  3.  前記粒界相の幅が、1nm以上、10nm未満である、請求項1または2に記載の磁石材料。
  4.  前記主相の含有量が、70体積%以上99体積%以下、
     前記粒界相の含有量が、1体積%以上30体積%以下である、請求項1から3のいずれかに記載のボンド磁石用磁石材料。
  5.  バインダと、
     前記バインダ内に分散された、請求項1から4のいずれかに記載のボンド磁石用磁石材料と、
    を備えている、磁石。
PCT/JP2022/034095 2021-09-10 2022-09-12 ボンド磁石用磁石材料及び磁石 WO2023038135A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023547019A JPWO2023038135A1 (ja) 2021-09-10 2022-09-12
CN202280061102.7A CN117957620A (zh) 2021-09-10 2022-09-12 粘结磁体用磁体材料和磁体
EP22867456.0A EP4401097A1 (en) 2021-09-10 2022-09-12 Magnet material for bond magnets, and magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-148157 2021-09-10
JP2021148157 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023038135A1 true WO2023038135A1 (ja) 2023-03-16

Family

ID=85506477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034095 WO2023038135A1 (ja) 2021-09-10 2022-09-12 ボンド磁石用磁石材料及び磁石

Country Status (4)

Country Link
EP (1) EP4401097A1 (ja)
JP (1) JPWO2023038135A1 (ja)
CN (1) CN117957620A (ja)
WO (1) WO2023038135A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7568163B2 (ja) 2022-09-14 2024-10-16 株式会社村田製作所 鉄基希土類硼素系等方性ナノコンポジット磁石合金、鉄基希土類硼素系等方性ナノコンポジット磁石合金の製造方法、及び、樹脂結合型永久磁石の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201102A (ja) * 2006-01-25 2007-08-09 Neomax Co Ltd 鉄基希土類永久磁石およびその製造方法
JP4450239B2 (ja) 2004-10-19 2010-04-14 信越化学工業株式会社 希土類永久磁石材料及びその製造方法
JP2011023436A (ja) * 2009-07-14 2011-02-03 Fuji Electric Holdings Co Ltd 永久磁石用磁石粉末の製造方法、永久磁石粉末及び永久磁石
JP2015082626A (ja) 2013-10-24 2015-04-27 独立行政法人物質・材料研究機構 希土類磁石の製造方法
JP2017188661A (ja) * 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. ネオジム鉄ホウ素廃棄物で製造されるネオジム鉄ホウ素永久磁石およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450239B2 (ja) 2004-10-19 2010-04-14 信越化学工業株式会社 希土類永久磁石材料及びその製造方法
JP2007201102A (ja) * 2006-01-25 2007-08-09 Neomax Co Ltd 鉄基希土類永久磁石およびその製造方法
JP2011023436A (ja) * 2009-07-14 2011-02-03 Fuji Electric Holdings Co Ltd 永久磁石用磁石粉末の製造方法、永久磁石粉末及び永久磁石
JP2015082626A (ja) 2013-10-24 2015-04-27 独立行政法人物質・材料研究機構 希土類磁石の製造方法
JP2017188661A (ja) * 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. ネオジム鉄ホウ素廃棄物で製造されるネオジム鉄ホウ素永久磁石およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7568163B2 (ja) 2022-09-14 2024-10-16 株式会社村田製作所 鉄基希土類硼素系等方性ナノコンポジット磁石合金、鉄基希土類硼素系等方性ナノコンポジット磁石合金の製造方法、及び、樹脂結合型永久磁石の製造方法

Also Published As

Publication number Publication date
EP4401097A1 (en) 2024-07-17
CN117957620A (zh) 2024-04-30
JPWO2023038135A1 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5754232B2 (ja) 高保磁力NdFeB磁石の製法
JP6274216B2 (ja) R−t−b系焼結磁石、および、モータ
JP2843379B2 (ja) 等方性耐熱ボンド磁石およびその製造方法ならびにそれを用いる磁粉、それを用いたpm型モータ
JP4635832B2 (ja) 希土類焼結磁石の製造方法
CN107785139A (zh) 磁铁材料、永久磁铁、旋转电机及车辆
US20220415548A1 (en) Iron-based rare earth boron-based isotropic magnet alloy
JP5071409B2 (ja) 鉄基希土類系ナノコンポジット磁石およびその製造方法
WO1999062081A1 (fr) Materiau pour aimant permanent en terre rare de type nitrure et aimant lie utilisant ce materiau
WO2023038135A1 (ja) ボンド磁石用磁石材料及び磁石
CN107785140A (zh) 磁铁材料、永久磁铁、旋转电机及车辆
JP2003224010A (ja) 希土類系ボンド磁石用コンパウンドおよびそれを用いたボンド磁石
JP2008192903A (ja) 鉄基希土類合金磁石
JP6463293B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2021251071A1 (ja) 磁石合金、ボンド磁石およびこれらの製造方法
JP4449900B2 (ja) 希土類合金粉末の製造方法および希土類焼結磁石の製造方法
JP2008223052A (ja) 希土類磁石合金、希土類磁石合金薄帯の製造方法、およびボンド磁石
JP2010062326A (ja) ボンド磁石
CN115398574B (zh) 稀土类烧结磁铁及稀土类烧结磁铁的制造方法、转子以及旋转机
JP7568163B2 (ja) 鉄基希土類硼素系等方性ナノコンポジット磁石合金、鉄基希土類硼素系等方性ナノコンポジット磁石合金の製造方法、及び、樹脂結合型永久磁石の製造方法
JP3856869B2 (ja) 樹脂含有圧延シート磁石およびその製造方法
JP3773484B2 (ja) ナノコンポジット磁石
JP3763774B2 (ja) 鉄基希土類合金磁石用急冷合金、及び鉄基希土類合金磁石の製造方法
JPH0521219A (ja) 希土類永久磁石の製造方法
JP6278192B2 (ja) 磁石粉末、ボンド磁石およびモータ
JPH07176417A (ja) 鉄基ボンド磁石とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867456

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547019

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280061102.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022867456

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867456

Country of ref document: EP

Effective date: 20240410