WO2023037710A1 - ポリヒドロキシアルカン酸の製造方法およびその利用 - Google Patents

ポリヒドロキシアルカン酸の製造方法およびその利用 Download PDF

Info

Publication number
WO2023037710A1
WO2023037710A1 PCT/JP2022/025442 JP2022025442W WO2023037710A1 WO 2023037710 A1 WO2023037710 A1 WO 2023037710A1 JP 2022025442 W JP2022025442 W JP 2022025442W WO 2023037710 A1 WO2023037710 A1 WO 2023037710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pha
compound
acid
aqueous suspension
polyhydroxyalkanoic acid
Prior art date
Application number
PCT/JP2022/025442
Other languages
English (en)
French (fr)
Inventor
優 平野
準 服部
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023546786A priority Critical patent/JPWO2023037710A1/ja
Priority to CN202280059009.2A priority patent/CN117881717A/zh
Publication of WO2023037710A1 publication Critical patent/WO2023037710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • C08G63/90Purification; Drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a method for producing polyhydroxyalkanoic acid and its use.
  • PHA Polyhydroxyalkanoic acid
  • PHA produced by microorganisms accumulates within the cells of the microorganisms, so in order to use PHA as a plastic, it is necessary to separate and purify the PHA from the cells of the microorganisms.
  • the step of separating and purifying PHA the cells of PHA-containing microorganisms are crushed or biological components other than PHA are solubilized, and then PHA is taken out from the resulting aqueous suspension.
  • separation operations such as centrifugation, filtration, and drying are performed.
  • a spray dryer, a fluidized bed dryer, a drum dryer, or the like is used for the drying operation, and the spray dryer is preferably used because of its simple operation.
  • the present inventors have used an alkylene oxide-based dispersion before adjusting the pH of the aqueous suspension to 7 or less in order to prevent aggregation of PHA in the aqueous suspension of pH 7 or less and prevent an increase in viscosity.
  • Patent Document 2 discloses a method for producing a target product including mixing a polyhydroxyalkanoate and an acid having a pKa of 3 to 10.
  • an object of one aspect of the present invention is to provide a method for producing a PHA with good thermal stability in a pH range that does not require the use of a corrosion-resistant device.
  • PHA aqueous suspension containing PHA (hereinafter sometimes referred to as "PHA aqueous suspension”) is produced in the PHA production process. It was found for the first time that a PHA with good thermal stability can be produced even at a pH that does not require a corrosion-resistant device by including a specific additive in , and this has led to the completion of the present invention.
  • the method for producing a PHA according to one aspect of the present invention comprises (a) a PHA, an alkylene oxide dispersant, a compound having a plurality of carboxyl groups and/or phosphorus and a compound having one or more acid groups, wherein the amount of the compound having multiple carboxyl groups and/or the compound having one or more phosphoric acid groups is 400 to 15000 ppm relative to the amount of PHA, and
  • a method for producing PHA comprising the steps of preparing an aqueous suspension having a pH of 3.5 to 7.0, and (b) drying the aqueous suspension prepared in step (a). .
  • an aqueous suspension of PHA (hereinafter referred to as "this aqueous suspension”) comprises PHA, an alkylene oxide dispersant, a compound having a plurality of carboxyl groups and/or phosphorus. and a compound having one or more acid groups, the amount of the compound having multiple carboxyl groups and/or the compound having one or more phosphoric acid groups is 400 to 15000 ppm relative to the amount of PHA, and pH is an aqueous suspension of PHA with a .
  • FIG. 4 is a diagram showing the results of thermal stability measurements according to examples of the present invention.
  • the present inventors have made intensive studies to provide a method for producing a PHA having good thermal stability without using a corrosion-resistant device.
  • the inventors have obtained new knowledge that by including a compound having one or more phosphate groups, a PHA with good thermal stability can be produced even at a pH that does not require a corrosion-resistant device. That is, in the conventional technology, in order to obtain a PHA with good thermal stability, it was necessary to set the pH of the PHA aqueous suspension to about 2 to 3, but in the range of pH 3.5 to 7.0 It is surprising that the present invention can produce PHAs with good thermal stability.
  • PHA with good thermal stability can be produced without using corrosion-resistant equipment, which is advantageous from the viewpoint of cost.
  • the present PHA powder is useful in various applications because of its good thermal stability.
  • the present aqueous suspension has a pH closer to neutrality, which is advantageous from a handling point of view.
  • the amount of plastic waste generated can be reduced. conservee and sustainably use sea and marine resources.”
  • the composition of the present production method and the present aqueous suspension will be described in detail below.
  • This production method is a method comprising the following steps (a) to (b): - Step (a): PHA, an alkylene oxide-based dispersant, a compound having a plurality of carboxyl groups and/or a compound having one or more phosphoric acid groups, wherein the compound having a plurality of carboxyl groups and/or phosphorus
  • Step (b) of preparing an aqueous suspension in which the amount of the compound having one or more acid groups is 400 to 15000 ppm relative to the amount of PHA and the pH is 3.5 to 7.0 A step of drying the aqueous suspension prepared in step (a).
  • Step (a) In the step (a) of the present production method, a compound having a plurality of carboxyl groups containing a PHA, an alkylene oxide-based dispersant, and a compound having a plurality of carboxyl groups and/or a compound having at least one phosphoric acid group. and/or an amount of a compound having one or more phosphate groups is 400 to 15000 ppm with respect to the amount of PHA, and an aqueous suspension having a pH of 3.5 to 7.0 is prepared.
  • PHA is a general term for polymers having hydroxyalkanoic acid as a monomer unit.
  • the hydroxyalkanoic acid constituting PHA is not particularly limited, but examples include 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 3-hydroxypropionic acid, 3-hydroxypentanoic acid, 3-hydroxyhexanoic acid, 3-hydroxy heptanoic acid, 3-hydroxyoctanoic acid, and the like.
  • These polymers may be homopolymers or copolymers containing two or more monomer units.
  • PHA includes, for example, poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HB3HH), poly(3-hydroxybutyrate) -co-3-hydroxyvalerate) (P3HB3HV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (P3HB3HO), Poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate) (P3HB3HOD), Poly(3-hydroxybutyrate-co-3-hydroxydecanoate) (P3HB3HD), Poly(3 -hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH) and the like.
  • P3HB, P3HB3HH, P3HB3HV, and P3HB4HB are preferable
  • the melting point and crystallinity can be changed.
  • a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid is used from the viewpoint that it is possible to impart it and that it is a plastic that is easy to produce industrially and has physical properties as described above.
  • Some P3HB3HH are more preferred.
  • the composition ratio of the repeating units of P3HB3HH is 3-hydroxybutyrate unit/3-hydroxyhexanoate unit composition ratio of 80/20 to 80/20 from the viewpoint of balance between flexibility and strength. It is preferably 99.9/0.1 (mol/mol), more preferably 85/15 to 97/3 (mol/mol).
  • the composition ratio of 3-hydroxybutyrate units/3-hydroxyhexanoate units is 99.9/0.01 (mol/mol) or less, sufficient flexibility can be obtained, and 80/20 (mol/ mol) or more, sufficient hardness can be obtained.
  • This production method may include a step of obtaining a PHA aqueous suspension before step (a).
  • the step of obtaining the PHA aqueous suspension includes, for example, a culturing step of culturing a microorganism capable of intracellularly producing PHA, and a purification step of decomposing and/or removing substances other than PHA after the culturing step. , can include
  • microorganisms used in the process are not particularly limited as long as they are capable of producing PHA in their cells.
  • microorganisms that have been deposited in depositories of microorganisms and strains isolated from nature (eg, IFO, ATCC, etc.), or mutants and transformants that can be prepared therefrom can be used.
  • Bacillus megaterium which was discovered in 1925, was the first bacterial cell that produced P3HB, which is an example of PHA.
  • natural microorganisms such as Ralstonia eutropha and Alcaligenes latus. These microorganisms are known to accumulate PHA in their cells.
  • Alcaligenes eutrophus In particular, regarding P3HB3HH, Alcaligenes eutrophus AC32 strain (Alcaligenes eutrophus AC32, FERM BP-6038) (T.Fukui, Y.Doi, J.Bateriol) into which PHA synthase group genes were introduced in order to increase the productivity of P3HB3HH ., 179, p4821-4830 (1997)) and the like are more preferable.
  • the microbial cells may be genetically modified microorganisms into which various PHA-synthesis-related genes have been introduced according to the PHA to be produced.
  • a purification step for decomposing and/or removing impurities other than PHA is usually performed.
  • This purification step is not particularly limited, and physical treatments, chemical treatments, biological treatments, etc. that can be considered by those skilled in the art can be applied. method is preferably applicable.
  • the above purification process largely determines the amount of impurities remaining in the final product, it is preferable to reduce these impurities as much as possible.
  • impurities may be mixed as long as the physical properties of the final product are not impaired.
  • impurities should be reduced as much as possible. preferable.
  • the amount of protein in the PHA aqueous suspension is exemplified.
  • the amount of protein is preferably 30000 ppm or less, more preferably 15000 ppm or less, still more preferably 10000 ppm or less, most preferably 7500 ppm or less relative to the PHA amount.
  • Purification means are not particularly limited, and for example, the known methods described above can be applied.
  • concentration of the organic solvent compatible with water is not particularly limited as long as it is equal to or less than the solubility of the organic solvent used in water.
  • the organic solvent compatible with water is not particularly limited, but examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, pentanol, hexanol, heptanol, and the like.
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as tetrahydrofuran and dioxane
  • nitriles such as acetonitrile and propionitrile
  • amides such as dimethylformamide and acetamide
  • methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, acetonitrile, propionitrile and the like are preferable because they are easy to remove.
  • the aqueous medium constituting the PHA aqueous suspension may contain other solvents, components derived from bacterial cells, compounds generated during purification, etc., as long as they do not impair the essence of the present invention.
  • the aqueous medium that constitutes the PHA aqueous suspension in this production method preferably contains water.
  • the content of water in the aqueous medium is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more, and particularly preferably 50% by weight or more.
  • the concentration of PHA in the aqueous PHA suspension prepared in step (a) of the present production method is economically advantageous in terms of drying utility and improves productivity, so it is preferably 30% by weight or more. , is more preferably 32.5% by weight or more, still more preferably 35% by weight or more, and particularly preferably 37.5% by weight or more.
  • the upper limit of the PHA concentration is preferably 65% by weight or less, more preferably 60% by weight or less, from the viewpoint of avoiding close packing and ensuring sufficient fluidity.
  • the method for adjusting the PHA concentration is not particularly limited, and includes methods such as adding an aqueous medium or removing a portion of the aqueous medium (for example, by removing the supernatant after centrifugation). .
  • the adjustment of the PHA concentration may be carried out at any stage of step (a), or may be carried out at a stage prior to step (a).
  • the PHA aqueous suspension contains a compound having a plurality of carboxyl groups, so that PHA with good thermal stability can be produced even at a pH in the range of 3.5 to 7.0.
  • a PHA with good thermal stability can be obtained without using a corrosion-resistant device.
  • the compound having multiple carboxyl groups in step (a) of this production method is not particularly limited as long as it is a compound having multiple carboxyl groups per molecule.
  • the number of carboxyl groups per molecule is not particularly limited, but may be, for example, 2, 3, 4, 5, 6, 7, 8, and the like.
  • the compound having a plurality of carboxyl groups is a polymer, the polymer as a whole may have a plurality of carboxyl groups.
  • the polymer as a whole can have a plurality of carboxyl groups.
  • the form of the compound having multiple carboxyl groups is not particularly limited, and may be, for example, a hydrate form.
  • compounds having multiple carboxyl groups include, for example, citric acid (e.g., citric acid monohydrate), trisodium citrate (e.g., trisodium citrate dihydrate), tartaric acid, disodium tartrate ( Examples thereof include disodium tartrate dihydrate), polyacrylic acid, sodium polyacrylate, and the like.
  • citric acid and polyacrylic acid are preferred, and citric acid is more preferred.
  • citric acid is more preferred.
  • One of these compounds may be used, or a plurality thereof may be used.
  • the amount of the compound having multiple carboxyl groups in the PHA aqueous suspension is 400 to 15000 ppm, preferably 420 to 10000 ppm, preferably 450 to 10000 ppm, relative to the amount of PHA. 8000 ppm is more preferred.
  • the pH of the PHA aqueous suspension is in a higher range (e.g., pH 3.5 to 7 .0), a PHA with good thermal stability can be obtained.
  • the aqueous PHA suspension may contain a compound having one or more phosphate groups in addition to or instead of the compound having multiple carboxyl groups.
  • compounds with one or more phosphate groups are used in place of compounds with multiple carboxyl groups. Even when the PHA aqueous suspension contains a compound having one or more phosphate groups, the same effects as when containing a compound having a plurality of carboxyl groups can be obtained.
  • the compound having one or more phosphate groups in step (a) of this production method is not particularly limited as long as it is a compound having one or more phosphate groups per molecule.
  • the number of phosphate groups per molecule is preferably plural, and is not particularly limited.
  • compounds having a plurality of phosphate groups include, for example, tetrapotassium pyrophosphate, disodium dihydrogen pyrophosphate, tetrasodium pyrophosphate, potassium polyphosphate, sodium polyphosphate, potassium metaphosphate, sodium metaphosphate, phosphoric acid tripotassium, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, trisodium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate and the like.
  • sodium polyphosphate, tetrasodium pyrophosphate, and sodium metaphosphate are preferable.
  • One of these compounds may be used, or a plurality thereof may be used.
  • the content of the compound having a plurality of phosphate groups in the PHA aqueous suspension can be appropriately referred to the above description of ⁇ Compound having a plurality of carboxyl groups>.
  • the alkylene oxide-based dispersant in step (a) of the present production method can prevent aggregation of PHA when adjusting the pH of the PHA aqueous suspension to 7 or less, and can prevent extrusion during powder processing. It also has the effect of suppressing adhesion to the shaft of the machine.
  • the alkylene oxide-based dispersant is not particularly limited as long as it exhibits the above effects. It is preferably constructed and in the form of PEO-PPO-PEO.
  • poly(ethylene oxide) (PEO) block means a polymer portion formed by polymerizing ethylene oxide (EO) in the structure of an alkylene oxide dispersant.
  • poly(propylene oxide) (PPO) block means a polymer portion formed by polymerizing propylene oxide (PO) in the structure of an alkylene oxide dispersant.
  • the viscosity of the PHA aqueous suspension is kept low, and PHA (for example, PHA) is produced with high productivity. , PHA powder) can be produced.
  • the PEO molecular weight and the range of PEO molecular weight/PPO molecular weight in the alkylene oxide dispersant are preferably the following combinations.
  • the "PEO molecular weight” is sometimes referred to as the "EO amount”
  • the "PPO molecular weight” is sometimes referred to as the "PO amount”.
  • the PEO molecular weight in the alkylene oxide-based dispersant should be 1,500 or more, preferably 1,750 or more, and more preferably 2,000 or more.
  • the upper limit of the PEO molecular weight in the alkylene oxide dispersant is, for example, 30,000 or less, preferably 25,000 or less, and more preferably 20,000 or less.
  • the ratio of PEO molecular weight/PPO molecular weight in the alkylene oxide dispersant may be 0.5 or more, preferably 0.6 or more, and more preferably 0.7 or more. be.
  • the upper limit of the ratio of PEO molecular weight/PPO molecular weight is 5.0 or less, preferably 4.8 or less, and more preferably 4.5 or less.
  • the alkylene oxide dispersant has hydrophilicity and the number of molecules relative to the added weight of the alkylene oxide dispersant is large. Therefore, it is easy to maintain the dispersibility of the PHA aqueous suspension.
  • the alkylene oxide dispersant has a PEO molecular weight of 1500 or more and a PEO molecular weight/PPO molecular weight ratio of 0.5 to 5.0.
  • the alkylene oxide dispersant preferably has at least one or more, more preferably at least two or more, PEO blocks with a molecular weight of 750 or more.
  • the upper limit is not particularly limited, it is, for example, 4 or less, preferably 3 or less. If the number of PEO blocks is within the above range, the alkylene oxide dispersant has hydrophilicity.
  • the PPO molecular weight in the alkylene oxide-based dispersant is not particularly limited, but is, for example, 500 or more, preferably 1500 or more. In one embodiment of the present invention, the upper limit of the PPO molecular weight in the alkylene oxide dispersant is, for example, 6700 or less, preferably 6250 or less. If the PPO molecular weight in the alkylene oxide dispersant is within the above range, the alkylene oxide dispersant will have hydrophobic properties.
  • the number of PPO blocks in the alkylene oxide-based dispersant is not particularly limited as long as the above effects can be achieved. ).
  • the alkylene oxide-based dispersant is, for example, a compound represented by the following formula (1).
  • X is, for example, 17-340, preferably 20-285, more preferably 22-226.
  • X is 340 or less, the number of molecules with respect to the added weight of the alkylene oxide dispersant increases, so the dispersibility of the PHA aqueous suspension can be easily maintained.
  • Y is, for example, 8-115, preferably 10-110, more preferably 24-107. When Y is 115 or less, it is easily dissolved in water, and when Y is 8 or more, it has hydrophobicity.
  • Z is, for example, 17-340, preferably 20-285, more preferably 22-226.
  • the alkylene oxide dispersant When Z is 340 or less, the number of molecules with respect to the added weight of the alkylene oxide dispersant increases, so the dispersibility of the PHA aqueous suspension is easily maintained, and when Z is 17 or more, the alkylene oxide dispersant is It has hydrophilic properties.
  • the sum of X and Z (hereinafter sometimes referred to as "X + Z") is, for example, 34 to 680, preferably 40 to 570, more preferably is 44-452.
  • X + Z is 680 or less, the number of molecules with respect to the added weight of the alkylene oxide dispersant increases, so the dispersibility of the PHA aqueous suspension is easily maintained, and when X is 34 or more, the alkylene oxide dispersant is hydrophilic.
  • the alkylene oxide-based dispersant used in step (a) of this production method is not particularly limited, and for example, commercially available products can be used.
  • Commercially available products include, for example, Pluronic 10400 (manufactured by BASF), Pluronic 10500 (manufactured by BASF), Genapol PF80 (manufactured by Clariant), Unilube DP60-600B (manufactured by NOF), Unilube DP60-950B (manufactured by NOF).
  • Pronon 208 manufactured by NOF Corporation
  • Epan U105 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Epan U108 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Epan 750 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the amount of the alkylene oxide-based dispersant added to the aqueous PHA suspension in step (a) of the present production method is not particularly limited, but is 0.1 to 20 parts per 100 parts by weight of PHA contained in the aqueous PHA suspension. Parts by weight are preferred, 0.5 to 10 parts by weight are more preferred, and 0.75 to 5 parts by weight are even more preferred.
  • the pH of the aqueous PHA suspension is 3.5 to 7.0, preferably 3.52 to 6.8, and more preferably 3.54 to 6.6. It is more preferable to have If the pH of the PHA aqueous suspension is 3.5 or higher, corrosion-resistant equipment is not required for the preparation of the PHA aqueous suspension. Also, if the pH of the PHA aqueous suspension is 7.0 or less, the thermal stability of the obtained PHA is improved.
  • the aqueous PHA suspension contains a polyhydroxyalkanoic acid, an alkylene oxide-based dispersant, and a compound having a plurality of carboxyl groups
  • the pH of the PHA aqueous suspension is preferably 3.5 to 6.0, more preferably 3.52 to 5.8, even more preferably 3.54 to 5.6.
  • the step (a) of the present production method is ), the pH of the PHA aqueous suspension is preferably 3.5 to 7.0, more preferably 3.5 to 6.8, and 3.5 to 6.6. More preferred.
  • the method of adjusting the pH of the PHA aqueous suspension in step (a) is not particularly limited, but includes, for example, a method of adding an acid.
  • the acid is not particularly limited, and may be either an organic acid or an inorganic acid, and may or may not be volatile. More specifically, examples of acids that can be used include sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid.
  • the compound having a plurality of carboxyl groups and/or the compound having one or more phosphate groups may assist in adjusting the pH of the aqueous PHA suspension in step (a).
  • the temperature at which the aqueous PHA suspension is prepared is, for example, 30 to 80°C, preferably 50 to 75°C, more preferably 60 to 75°C. preferable. If the temperature during preparation of the PHA aqueous suspension is 30 to 80° C., the viscosity of the PHA aqueous suspension can be reduced.
  • step (b) In step (b) of the production method, the PHA aqueous suspension prepared in step (a) is dried to obtain PHA. That is, step (b) can also be rephrased as a step of removing water contained in the PHA aqueous suspension prepared in step (a).
  • the method for drying the PHA aqueous suspension is not particularly limited, and can be performed using, for example, a dryer, oven, spray dryer, fluidized bed dryer, drum dryer, or the like.
  • the drying temperature during drying may be a temperature that can remove most of the aqueous medium from the droplets of the PHA aqueous suspension, and can be dried to the desired moisture content and does not cause quality deterioration (molecular weight reduction). , deterioration of color tone, etc.), melting, etc., can be set as appropriate.
  • This production method may include a step of further drying the obtained PHA (eg, PHA powder, etc.) (eg, a step of drying under reduced pressure, etc.) after step (b).
  • the production method may include other steps (for example, a step of adding various additives to the PHA aqueous suspension, etc.).
  • Aqueous suspension of PHA contains a PHA, an alkylene oxide-based dispersant, a compound having a plurality of carboxyl groups and/or a compound having one or more phosphoric acid groups, and the compound having a plurality of carboxyl groups and/or phosphorous
  • the amount of the compound having at least one acid group is 400-15000 ppm with respect to the amount of PHA, and the pH is 3.5-7.0.
  • the present aqueous suspension has a pH closer to neutrality, which is advantageous from a handling point of view.
  • PHA poly(ethylene oxide)
  • alkylene oxide dispersant compound having multiple carboxyl groups
  • compound having one or more phosphoric acid groups and “pH of aqueous suspension”
  • PHA Production method of PHA
  • Specific examples of compounds having multiple carboxyl groups include, for example, citric acid (e.g., citric acid monohydrate), trisodium citrate (e.g., trisodium citrate dihydrate), tartaric acid, disodium tartrate ( Examples thereof include disodium tartrate dihydrate), polyacrylic acid, sodium polyacrylate, and the like. Among them, citric acid and polyacrylic acid are preferred, and citric acid is more preferred.
  • One of these compounds may be used, or a plurality thereof may be used.
  • Specific examples of compounds having a plurality of phosphate groups include, for example, tetrapotassium pyrophosphate, disodium dihydrogen pyrophosphate, tetrasodium pyrophosphate, potassium polyphosphate, sodium polyphosphate, potassium metaphosphate, sodium metaphosphate, phosphoric acid tripotassium, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, trisodium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate and the like.
  • the alkylene oxide-based dispersant is not particularly limited as long as it exhibits the above effects. It is preferably constructed and in the form of PEO-PPO-PEO.
  • the concentration of PHA in the PHA aqueous suspension is economically advantageous in terms of drying utility and improves productivity, so it is preferably 30% by weight or more, and preferably 32.5% by weight or more. More preferably, it is 35% by weight or more, and particularly preferably 37.5% by weight or more.
  • the upper limit of the PHA concentration is preferably 65% by weight or less, more preferably 60% by weight or less, from the viewpoint of avoiding close packing and ensuring sufficient fluidity.
  • the method for adjusting the PHA concentration is not particularly limited, and includes methods such as adding an aqueous medium or removing a portion of the aqueous medium (for example, by removing the supernatant after centrifugation). .
  • the content of the alkylene oxide dispersant in the PHA aqueous suspension is not particularly limited, but is preferably 0.1 to 20 parts by weight, preferably 0.5 to 20 parts by weight, based on 100 parts by weight of PHA contained in the PHA aqueous suspension. 10 parts by weight is more preferred, and 0.75 to 5 parts by weight is even more preferred.
  • the amount of protein in the PHA aqueous suspension is preferably 30000 ppm or less, more preferably 15000 ppm or less, still more preferably 10000 ppm or less, most preferably 7500 ppm or less relative to the PHA amount.
  • the aqueous suspension is produced by step (a) of the production method.
  • the present aqueous suspension may contain various components generated or not removed during the course of the present production method as long as the effects of the present invention are exhibited.
  • the present PHA powder has good thermal stability and is useful in various applications.
  • PHA PHA
  • alkylene oxide dispersant compound having multiple carboxyl groups
  • compound having one or more phosphoric acid groups are defined in [2. Production method of PHA] is incorporated.
  • the present PHA powder has a thermal stability of 50% or more, preferably 52% or more, and more preferably 54% or more.
  • the thermal stability is 50% or more, deterioration of the resin obtained by processing the present PHA powder can be suppressed.
  • the present PHA powder may contain various components generated or not removed during the course of the present production method as long as the effects of the present invention are exhibited.
  • This PHA powder can be used for various purposes such as paper, film, sheet, tube, plate, stick, container (for example, bottle container, etc.), bag, and parts.
  • one aspect of the present invention includes the following.
  • ⁇ 1> (a) contains a polyhydroxyalkanoic acid, an alkylene oxide dispersant, a compound having a plurality of carboxyl groups and/or a compound having one or more phosphoric acid groups, The amount of the compound having a plurality of carboxyl groups and/or the compound having one or more phosphoric acid groups is 400 to 15000 ppm relative to the amount of the polyhydroxyalkanoic acid, and the pH is 3.5 to 7.0.
  • a method for producing a polyhydroxyalkanoic acid comprising the steps of preparing an aqueous suspension, and (b) drying the aqueous suspension prepared in step (a).
  • the compound having a plurality of carboxyl groups is at least one selected from the group consisting of citric acid, trisodium citrate, tartaric acid, disodium tartrate, polyacrylic acid, and sodium polyacrylate, ⁇ 1 >, the method for producing a polyhydroxyalkanoic acid.
  • the dispersant is composed of poly(ethylene oxide) (PEO) blocks and poly(propylene oxide) (PPO) blocks, and is in the form of PEO-PPO-PEO ⁇ 1> to ⁇ 3>
  • ⁇ 6> Any one of ⁇ 1> to ⁇ 5>, wherein the amount of the dispersant added is 0.1 to 20 parts by weight with respect to 100 parts by weight of the polyhydroxyalkanoic acid contained in the aqueous suspension.
  • ⁇ 7> Containing a polyhydroxyalkanoic acid, an alkylene oxide dispersant, and a compound having a plurality of carboxyl groups and/or a compound having one or more phosphoric acid groups,
  • the amount of the compound having multiple carboxyl groups and/or the compound having one or more phosphoric acid groups is 400 to 15000 ppm with respect to the amount of polyhydroxyalkanoic acid, An aqueous suspension of a polyhydroxyalkanoic acid having a pH of 3.5-7.0.
  • the compound having a plurality of carboxyl groups is at least one selected from the group consisting of citric acid, trisodium citrate, tartaric acid, disodium tartrate, polyacrylic acid, and sodium polyacrylate, ⁇ 7 Aqueous suspension of polyhydroxyalkanoic acid according to >.
  • the polyhydroxyalkane according to ⁇ 7> or ⁇ 8>, wherein the compound having one or more phosphate groups is at least one selected from the group consisting of sodium metaphosphate and sodium polyphosphate. Aqueous suspension of acid.
  • the dispersant is composed of poly(ethylene oxide) (PEO) blocks and poly(propylene oxide) (PPO) blocks, and is in the form of PEO-PPO-PEO ⁇ 7> to ⁇
  • ⁇ 12> Any one of ⁇ 7> to ⁇ 11>, wherein the content of the dispersant is 0.1 to 20 parts by weight with respect to 100 parts by weight of the polyhydroxyalkanoic acid contained in the aqueous suspension.
  • Aqueous suspension of polyhydroxyalkanoic acid according to . ⁇ 13> The aqueous suspension of polyhydroxyalkanoic acid according to any one of ⁇ 7> to ⁇ 12>, wherein the amount of protein in the aqueous suspension of polyhydroxyalkanoic acid is 30000 ppm or less relative to the amount of PHA. .
  • ⁇ 14> containing a polyhydroxyalkanoic acid, an alkylene oxide dispersant, a compound having a plurality of carboxyl groups and/or a compound having one or more phosphoric acid groups, and represented by the following formula (2)
  • Polyhydroxyalkanoic acid powder having a thermal stability of 50% or more: Thermal stability (%) weight average molecular weight of polyhydroxyalkanoic acid sheet obtained by pressing polyhydroxyalkanoic acid powder at 160°C and 5 MPa for 20 minutes/weight average molecular weight of polyhydroxyalkanoic acid powder x 100.
  • PHA powders obtained in the following examples and comparative examples were used. This PHA powder was preheated at 160° C. for 7 minutes and then pressed at 5 MPa for 20 minutes to prepare a PHA sheet. After dissolving 10 mg of this PHA sheet in 10 ml of chloroform, insoluble matter was removed by filtration. This solution (filtrate) was subjected to molecular weight measurement using a Shimadzu GPC system equipped with "Shodex K805L (300 ⁇ 8 mm, two connected)" (manufactured by Showa Denko) using chloroform as a mobile phase. Commercially available standard polystyrene was used as a molecular weight standard sample. The molecular weight of the PHA powder was also measured in the same manner as described above, except that the PHA sheet was not prepared.
  • Example 1 (Preparation of cell culture solution) Ralstonia eutropha described in International Publication No. 2019/142717 was cultured by the method described in paragraphs [0041] to [0048] of the same document to obtain a cell culture solution containing cells containing PHA. Ralstonia eutropha is now classified as Capriavidus necator.
  • the cell culture solution obtained above was heated and stirred at an internal temperature of 60 to 80° C. for 20 minutes for sterilization.
  • High pressure crushing treatment 0.2% by weight of sodium dodecylsulfate was added to the sterilized cell culture solution obtained above. Furthermore, after adding sodium hydroxide aqueous solution so that pH might be set to 11.0, it heat-retained at 50 degreeC for 1 hour. After that, high-pressure crushing was performed at a pressure of 450 to 550 kgf/cm 2 using a high-pressure crusher (high-pressure homogenizer model PA2K manufactured by Nirosoavi).
  • the operation of adding water to adjust the pH to 10 and removing the supernatant by centrifugation was repeated several times to adjust the PHA concentration to 52.8% by weight.
  • the amount of protein contained in the resulting PHA aqueous suspension was 1100 ppm with respect to the amount of PHA.
  • An ethylene oxide/propylene oxide copolymer nonionic dispersant (polyethylene oxide molecular weight 8000, polypropylene oxide molecular weight 2000, Trade name: Pronon 208) was added at 0.95 phr (0.95 parts by weight per 100 parts by weight of PHA present in the aqueous suspension).
  • the dispersant is a dispersant having the form of PEO-PPO-PEO.
  • a predetermined amount of citric acid monohydrate manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd. was added thereto as a compound having a plurality of carboxyl groups, and the mixture was stirred at 60° C. for 30 minutes.
  • Example 2 A PHA powder was obtained in the same manner as in Example 1, except that trisodium citrate dihydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was used as the compound having multiple carboxyl groups. Table 2 shows the results of evaluating the concentration and pH of trisodium citrate dihydrate in the PHA aqueous suspension and the thermal stability of the resulting PHA powder.
  • Example 3 A PHA powder was obtained in the same manner as in Example 1, except that polyacrylic acid (manufactured by BASF, Sokalan PA110s (MW250,000)) was used as the compound having multiple carboxyl groups. Table 3 shows the results of evaluating the concentration and pH of polyacrylic acid in the PHA aqueous suspension and the thermal stability of the obtained PHA powder.
  • Example 4 A PHA powder was obtained in the same manner as in Example 1, except that sodium polyacrylate (Sokalan PA40, manufactured by BASF) was used as the compound having multiple carboxyl groups. Table 4 shows the results of evaluating the concentration and pH of sodium polyacrylate in the PHA aqueous suspension and the thermal stability of the obtained PHA powder.
  • sodium polyacrylate Sokalan PA40, manufactured by BASF
  • Example 5 A PHA powder was obtained in the same manner as in Example 1, except that disodium tartrate dihydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was used as the compound having a plurality of carboxyl groups. Table 5 shows the results of evaluating the concentration and pH of disodium tartrate dihydrate in the PHA aqueous suspension and the thermal stability of the resulting PHA powder.
  • Example 1 A PHA powder was obtained in the same manner as in Example 1, except that no compound having multiple carboxyl groups was added. Table 6 shows the results of evaluating the pH of the PHA aqueous suspension and the thermal stability of the obtained PHA powder.
  • Example 2 A PHA powder was obtained in the same manner as in Example 5, except that the amount of disodium tartrate dihydrate added was 340 ppm. Table 7 shows the results of evaluating the concentration and pH of disodium tartrate dihydrate in the PHA aqueous suspension and the thermal stability of the resulting PHA powder.
  • Example 3 A PHA powder was obtained in the same manner as in Example 1, except that the amount of citric acid monohydrate added was 20000 ppm. Table 8 shows the results of evaluating the concentration and pH of citric acid monohydrate in the PHA aqueous suspension and the thermal stability of the obtained PHA powder.
  • Example 6 Example 1 except that Polyrinsan 1A (26% sodium polyphosphate, 72% sodium metaphosphate, 2% tetrasodium pyrophosphate, manufactured by Organo Foodtech Co., Ltd.) was used as a compound having one or more phosphate groups. PHA powder was obtained in the same manner as. Table 9 shows the results of evaluating the concentration and pH of Polyrinsan 1A in the PHA aqueous suspension and the thermal stability of the obtained PHA powder.
  • Polyrinsan 1A 26% sodium polyphosphate, 72% sodium metaphosphate, 2% tetrasodium pyrophosphate, manufactured by Organo Foodtech Co., Ltd.
  • Example 7 A PHA powder was obtained in the same manner as in Example 1, except that sodium polyphosphate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used as the compound having a phosphate group.
  • Table 10 shows the results of evaluating the concentration and pH of sodium polyphosphate in the PHA aqueous suspension and the thermal stability of the obtained PHA powder.
  • Example 8 A PHA powder was obtained in the same manner as in Example 1, except that Polyphosphorus 1A was used as the compound having a phosphate group. 10000 ppm of Polyrinsan 1A was contained in the PHA aqueous suspension, and the pH was adjusted to 3.5 to obtain a powder. The weight change at 200° C. of the obtained powder was measured by TG-DTA (TG-DTA2000SE manufactured by NETZCN). The results are shown in FIG.
  • Example 4 A PHA powder was obtained in the same manner as in Example 1, except that the compound having a plurality of carboxyl groups and the compound having a phosphoric acid group were not added. The pH of the PHA aqueous suspension was adjusted to 3.5. The weight change at 200° C. of the obtained powder was measured by TG-DTA. The results are shown in FIG.
  • Example 5 A PHA powder was obtained in the same manner as in Example 1, except that the amount of citric acid monohydrate added was 850 ppm and the pH was adjusted to 7.5. Table 11 shows the results of evaluating the concentration and pH of citric acid monohydrate in the PHA aqueous suspension and the thermal stability of the obtained PHA powder.
  • Tables 1 to 6 show that PHA powders in Examples 1 to 5 have higher thermal stability than Comparative Example 1. From this, it can be seen that by adding a compound having a plurality of carboxyl groups, PHA with good thermal stability can be obtained even if the pH of the aqueous PHA suspension does not require a corrosion-resistant device.
  • Tables 5 and 7 also show that Comparative Example 2 has lower thermal stability of the PHA powder than Example 5. From this, it can be seen that when the amount of the compound having a plurality of carboxyl groups added is less than a certain amount, a PHA with good thermal stability cannot be obtained. Moreover, from Tables 1 and 8, it can be seen that a PHA with good thermal stability cannot be obtained even when the amount of the compound having a plurality of carboxyl groups added is a certain amount or more. Furthermore, from Table 11, it can be seen that a PHA with good thermal stability cannot be obtained even when the pH exceeds 7.0.
  • Tables 9 and 10 show that PHA powder exhibits high thermal stability even when a compound having one or more phosphate groups is used.
  • Example 8 has less weight change at 200° C. than Comparative Example 4 and has high thermal stability.
  • this production method can produce PHA (for example, PHA powder) with good thermal stability, it can be advantageously used in the production of PHA.
  • the PHA powder and the like obtained by this production method can be suitably used in agriculture, fishery, forestry, gardening, medicine, hygiene products, clothing, non-clothing, packaging, automobiles, building materials, and other fields. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

本発明は、耐腐食性装置を使用する必要がないpH範囲で、熱安定性が良好なPHAの製造方法を提供することを目的とする。以下の工程(a)および(b)を含む、ポリヒドロキシアルカン酸の製造方法を提供することにより、上記課題を解決する:(a)ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、特定量のカルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、pHが3.5~7.0である水性懸濁液を調製する工程、および(b)前記工程(a)で調製した水性懸濁液を乾燥する工程。

Description

ポリヒドロキシアルカン酸の製造方法およびその利用
 本発明は、ポリヒドロキシアルカン酸の製造方法およびその利用に関する。
 ポリヒドロキシアルカン酸(以下、「PHA」と称する場合がある。)は、生分解性を有することが知られている。
 微生物が生成するPHAは、微生物の菌体内に蓄積されるため、PHAをプラスチックとして利用するためには、微生物の菌体内からPHAを分離・精製する工程が必要となる。PHAを分離・精製する工程では、PHA含有微生物の菌体を破砕もしくはPHA以外の生物由来成分を可溶化した後、得られた水性懸濁液からPHAを取り出す。このとき、例えば、遠心分離、ろ過、乾燥等の分離操作を行う。乾燥操作には、噴霧乾燥機、流動層乾燥機、ドラムドライヤー等が用いられるが、操作が簡便であることから、好ましくは噴霧乾燥機が用いられる。
 これまで、本発明者は、pH7以下の水性懸濁液中でのPHAの凝集を防止し、粘度の増加を防ぐために、水性懸濁液のpHを7以下に調整する前にアルキレンオキサイド系分散剤を添加し、その後、得られたpH7以下の水性懸濁液を噴霧乾燥する技術を開発している(特許文献1参照)。
 また、特許文献2には、ポリヒドロキシアルカノエートとpKaが3~10である酸とを混合することを含む目的物の製造方法等が開示されている。
国際公開第2021/085534号公報 米国特許出願2013/0093119
 しかしながら、上述のようなPHAの製造方法に関する技術は、さらなる改善の余地があった。
 したがって、本発明の一態様は、耐腐食性装置を使用する必要がないpH範囲で、熱安定性が良好なPHAの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、PHAの製造工程において、PHAを含む水性懸濁液(以下、「PHA水性懸濁液」と称する場合がある。)に特定の添加剤を含ませることにより、耐腐食性装置が不要なpHでも、熱安定性が良好なPHAを製造できることを初めて見出し、本発明を完成させるに至った。
 したがって、本発明の一態様に係るPHAの製造方法(以下、「本製造方法」と称する。)は、(a)PHAと、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記PHA量に対して400~15000ppmであり、かつ、pHが3.5~7.0である水性懸濁液を調製する工程、および(b)前記工程(a)で調製した水性懸濁液を乾燥する工程、を含む、PHAの製造方法である。
 また、本発明の一態様にPHAの水性懸濁液(以下、「本水性懸濁液」と称する。)は、PHAと、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物とを含み、前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記PHA量に対して400~15000ppmであり、かつ、pHが3.5~7.0である、PHAの水性懸濁液である。
 さらに、本発明の一態様にPHA粉体(以下、「本PHA粉体」と称する。)は、PHAと、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、かつ、以下の式(2)で示される熱安定性が、50%以上である、PHA粉体である:
 熱安定性(%)=PHA粉体を160℃、5MPaで20分間プレスして得られたPHAシートの重量平均分子量/PHA粉体の重量平均分子量×100・・・(2)。
 本発明の一態様によれば、耐腐食性装置を使用することなく、熱安定性が良好なPHAの製造方法を提供することができる。
本発明の実施例に係る熱安定性測定の結果を示す図である。
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
 〔1.本発明の概要〕
 PHAの熱安定性(加熱時の分子量保持率)を高くするためには、一般に、硫酸等を用いて、PHA水性懸濁液のpHを低くする必要がある(通常、pH2~3程度)。しかしながら、低いpHのPHA水性懸濁液を扱うには、耐腐食性装置が必要となるために装置コストが高くなってしまうという課題があった。
 そこで、本発明者らは、耐腐食性装置を使用しなくとも、熱安定性が良好なPHAの製造方法を提供すべく鋭意検討を重ねた結果、添加剤としてカルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物を含ませることにより、耐腐食性装置が不要なpHでも、熱安定性が良好なPHAを製造できるとの新規知見を得た。すなわち、従来の技術では、熱安定性が良好なPHAを得るためには、PHA水性懸濁液のpHを2~3程度とする必要があったところ、pH3.5~7.0の範囲で熱安定性が良好なPHAを製造できる本発明は驚くべきことである。
 本製造方法によれば、耐腐食性装置を使用することなく、熱安定性が良好なPHAを製造できるため、コストの観点から有利である。また、本PHA粉体は、熱安定性が良好なため、種々の用途において有用である。さらに、本水性懸濁液は、中性により近いpHであるため、取扱いの観点からも有利である。
 また、上述したような構成によれば、プラスチックゴミの発生量を低減でき、これにより、例えば、目標12「持続可能な消費生産形態を確保する」や目標14「持続可能な開発のために、海・海洋資源を保全し、持続可能な形で利用する」等の持続可能な開発目標(SDGs)の達成に貢献できる。以下、本製造方法および本水性懸濁液の構成について詳説する。
 〔2.PHAの製造方法〕
 本製造方法は、以下の工程(a)~(b)を含む方法である:
・工程(a):PHAと、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記PHA量に対して400~15000ppmであり、かつ、pHが3.5~7.0である水性懸濁液を調製する工程
・工程(b):前記工程(a)で調製した水性懸濁液を乾燥する工程。
 (工程(a))
 本製造方法における工程(a)では、PHAと、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物との量が、前記PHA量に対して400~15000ppmであり、かつ、pHが3.5~7.0である水性懸濁液を調製する。
 <PHA>
 本明細書において、「PHA」とは、ヒドロキシアルカン酸をモノマーユニットとする重合体の総称である。PHAを構成するヒドロキシアルカン酸としては、特に限定されないが、例えば、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、3-ヒドロキシプロピオン酸、3-ヒドロキシペンタン酸、3-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸等が挙げられる。これらの重合体は、単独重合体でも、2種以上のモノマーユニットを含む共重合体でもよい。
 より詳しくは、PHAとしては、例えば、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(P3HB3HV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)(P3HB3HO)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)(P3HB3HOD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)(P3HB3HD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HV3HH)等が挙げられる。中でも、工業的に生産が容易であることから、P3HB、P3HB3HH、P3HB3HV、P3HB4HBが好ましい。
 また、繰り返し単位の組成比を変えることで、融点、結晶化度を変化させ、結果として、ヤング率、耐熱性等の物性を変化させることができ、かつ、ポリプロピレンとポリエチレンとの間の物性を付与することが可能であること、および上記したように工業的に生産が容易であり、物性的に有用なプラスチックであるという観点から、3-ヒドロキシ酪酸と3-ヒドロキシヘキサン酸の共重合体であるP3HB3HHがより好ましい。
 本発明の一実施形態において、P3HB3HHの繰り返し単位の組成比は、柔軟性および強度のバランスの観点から、3-ヒドロキシブチレート単位/3-ヒドロキシヘキサノエート単位の組成比が、80/20~99.9/0.1(mol/mol)であることが好ましく、85/15~97/3(mol/mol)であることがより好ましい。3-ヒドロキシブチレート単位/3-ヒドロキシヘキサノエート単位の組成比が、99.9/0.01(mol/mol)以下であると、十分な柔軟性が得られ、80/20(mol/mol)以上であると、十分な硬度が得られる。
 本製造方法は、工程(a)の前に、PHA水性懸濁液を得る工程を含んでいてもよい。前記PHA水性懸濁液を得る工程は、例えば、細胞内にPHAを生成する能力を有する微生物を培養する培養工程、および当該培養工程の後、PHA以外の物質を分解および/または除去する精製工程、を含み得る。
 当該工程において用いられる微生物は、細胞内にPHAを生成し得る微生物である限り、特に限定されない。例えば、天然から単離された微生物および菌株の寄託機関(例えば、IFO、ATCC等)に寄託されている微生物、またはそれらから調製し得る変異体および形質転換体等を使用できる。例えば、PHAの一例であるP3HBを生成する菌体としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネカトール(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus)、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)等の天然微生物が挙げられる。これらの微生物ではPHAが菌体内に蓄積されることが知られている。
 また、PHAの一例である、ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体を生成する菌体としては、P3HB3HVおよびP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)等が挙げられる。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、PHA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))等がより好ましい。また、菌体は、上記以外にも、生産したいPHAに合わせて、各種PHA合成関連遺伝子を導入した遺伝子組換え微生物であっても良い。
 上記の微生物を培養することにより作製されたPHA含有微生物には、不純物である菌体由来成分が多量に含まれているため、通常、PHA以外の不純物を分解および/または除去するための精製工程を実施され得る。この精製工程においては、特に限定されず、当業者が考え得る物理学的処理、化学的処理、生物学的処理等を適用することができ、例えば、国際公開第2010/067543号に記載の精製方法が好ましく適用できる。
 上記の精製工程により、最終製品に残留する不純物量が概ね決定されるため、これらの不純物は、できる限り低減させた方が好ましい。当然に、用途によっては、最終製品の物性を損なわない限り不純物が混入しても構わないが、医療用用途等、高純度のPHAが必要とされる場合は、できる限り不純物を低減させることが好ましい。その際の精製度の指標としては、例えば、PHA水性懸濁液中のタンパク質量が挙げられる。当該タンパク質量は、好ましくは、PHA量に対して30000ppm以下、より好ましくは、15000ppm以下、さらに好ましくは、10000ppm以下、最も好ましくは、7500ppm以下である。精製手段は、特に限定されず、例えば、上記した公知の方法を適用可能である。
 なお、本製造方法におけるPHA水性懸濁液を構成する溶媒(「溶媒」は、「水性媒体」とも称する。)は、水、または水と有機溶媒との混合溶媒であってもよい。また、当該混合溶媒において、水と相溶性のある有機溶媒の濃度としては、使用する有機溶媒の水への溶解度以下であれば特に限定されない。また、水と相溶性のある有機溶媒としては特に限定されないが、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、iso-ブタノール、ペンタノール、ヘキサノール、ヘプタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジオキサン等のエーテル類;アセトニトリル、プロピオニトリル等のニトリル類;ジメチルホルムアミド、アセトアミド等のアミド類;ジメチルスルホキシド、ピリジン、ピペリジン等が挙げられる。中でも、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、iso-ブタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、アセトニトリル、プロピオニトリル等が、除去しやすい点から好ましい。また、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、アセトン等が、入手容易であることからより好ましい。さらに、メタノール、エタノール、アセトンが、特に好ましい。なお、PHA水性懸濁液を構成する水性媒体は、本発明の本質を損なわない限り、他の溶媒、菌体由来の成分、精製時に発生する化合物等を含んでいても構わない。
 本製造方法におけるPHA水性懸濁液を構成する水性媒体には、水が含まれていることが好ましい。水性媒体中の水の含有量は、5重量%以上が好ましく、より好ましくは、10重量%以上であり、さらに好ましくは、30重量%以上であり、特に好ましくは、50重量%以上である。
 本製造方法の工程(a)で調製するPHA水性懸濁液におけるPHAの濃度は、乾燥ユーティリティーの面から経済的に有利であり、生産性が向上するため、30重量%以上であることが好ましく、32.5重量%以上であることがより好ましく、35重量%以上であることがさらに好ましく、37.5重量%以上であることが特に好ましい。また、PHAの濃度の上限は、最密充填を回避し、十分な流動性が確保する観点から、65重量%以下であることが好ましく、60重量%以下であることがより好ましい。PHAの濃度を調整する方法は、特に限定されず、水性媒体を添加したり、水性媒体の一部を除去する(例えば、遠心分離した後、上清を取り除く等による)等の方法が挙げられる。PHAの濃度の調整は、工程(a)のいずれの段階で実施してもよいし、工程(a)の前の段階で実施してもよい。
 <カルボキシル基を複数有する化合物>
 本製造方法の工程(a)において、PHA水性懸濁液がカルボキシル基を複数有する化合物を含むことにより、pHが3.5~7.0の範囲でも熱安定性が良好なPHAを製造できる。換言すれば、PHA水性懸濁液がカルボキシル基を複数有する化合物を含むことにより、耐腐食性装置を使用することなく、熱安定性が良好なPHAを得ることができる。
 本製造方法の工程(a)におけるカルボキシル基を複数有する化合物は、1分子あたりにカルボキシル基を複数有する化合物であれば特に限定されない。1分子あたりのカルボキシル基の数は、特に限定されないが、例えば、2つ、3つ、4つ、5つ、6つ、7つ、8つ等であり得る。また、カルボキシル基を複数有する化合物がポリマーである場合、ポリマー全体として、複数のカルボキシル基を有していればよい。例えば、前記ポリマーを構成するモノマー単位中に一つ以上カルボキシル基を含むことにより、ポリマー全体として複数のカルボキシル基を有することができる。カルボキシル基を複数有する化合物の形態は特に限定されず、例えば、水和物の形態であってもよい。
 カルボキシル基を複数有する化合物の具体例としては、例えば、クエン酸(例えば、クエン酸1水和物)、クエン酸3ナトリウム(例えば、クエン酸3ナトリウム2水和物)、酒石酸、酒石酸2ナトリウム(例えば、酒石酸2ナトリウム2水和物)、ポリアクリル酸、ポリアクリル酸ナトリウム等が挙げられる。なかでも、クエン酸、ポリアクリル酸が好ましく、クエン酸がより好ましい。これらの化合物は、1種を用いてもよいし、複数を用いてもよい。
 本製造方法の工程(a)において、PHA水性懸濁液中のカルボキシル基を複数有する化合物の量は、前記PHA量に対して400~15000ppmであり、420~10000ppmであることが好ましく、450~8000ppmであることがより好ましい。前記PHA水性懸濁液中のカルボキシル基を複数有する化合物の量が、前記PHA量に対して400~15000ppmであると、PHA水性懸濁液のpHがより高い範囲(例えば、pH3.5~7.0)であっても、熱安定性が良好なPHAを得ることができる。
 <リン酸基を1つ以上有する化合物>
 本製造方法の工程(a)において、PHA水性懸濁液は、カルボキシル基を複数有する化合物に加えて、またはその代わりにリン酸基を1つ以上有する化合物を含んでもよい。好ましくは、リン酸基を1つ以上有する化合物は、カルボキシル基を複数有する化合物の代わりに用いられる。PHA水性懸濁液がリン酸基を1つ以上有する化合物を含む場合でも、カルボキシル基を複数有する化合物を含む場合と同様の効果が得られる。
 本製造方法の工程(a)におけるリン酸基を1つ以上有する化合物は、1分子当りにリン酸基を1つ以上有する化合物であれば特に限定されない。1分子当りのリン酸基の数は、複数であることが好ましく、特に限定されないが、例えば、2つ、3つ、4つ、5つ、6つ、7つ、8つ等であり得る。
 リン酸基を複数有する化合物の具体例としては、例えば、ピロリン酸四カリウム、ピロリン酸二水素二ナトリウム、ピロリン酸四ナトリウム、ポリリン酸カリウム、ポリリン酸ナトリウム、メタリン酸カリウム、メタリン酸ナトリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸三ナトリウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム等が挙げられる。なかでも、ポリリン酸ナトリウム、ピロリン酸四ナトリウム、メタリン酸ナトリウムが好ましい。これらの化合物は、1種を用いてもよいし、複数を用いてもよい。
 本製造方法の工程(a)において、PHA水性懸濁液中のリン酸基を複数有する化合物の含有量については、上述した<カルボキシル基を複数有する化合物>の記載を適宜援用することができる。
 <アルキレンオキサイド系分散剤>
 本製造方法の工程(a)におけるアルキレンオキサイド系分散剤は、PHA水性懸濁液のpHを7以下に調整する際に、PHAの凝集を防ぐことができ、かつ、粉体加工の際の押出機の軸への付着も抑制する効果を奏する。
 本発明の一実施形態において、アルキレンオキサイド系分散剤は、上記の効果を奏する限り特に限定されないが、ポリ(エチレンオキサイド)(PEO)のブロックと、ポリ(プロピレンオキサイド)(PPO)のブロックとから構成され、PEO-PPO-PEOの形態であることが好ましい。
 本明細書において、「ポリ(エチレンオキサイド)(PEO)のブロック」とは、アルキレンオキサイド系分散剤の構造中、エチレンオキサイド(EO)が重合して形成された重合体部分を意味する。
 本明細書において、「ポリ(プロピレンオキサイド)(PPO)のブロック」とは、アルキレンオキサイド系分散剤の構造中、プロピレンオキサイド(PO)が重合して形成された重合体部分を意味する。
 本発明の一実施形態において、アルキレンオキサイド系分散剤中のPEO分子量およびPEO分子量/PPO分子量を特定の範囲とすることにより、PHA水性懸濁液の粘度を低く保ち、高い生産性でPHA(例えば、PHA粉体)を製造することができる。
 本発明の一実施形態において、アルキレンオキサイド系分散剤中のPEO分子量およびPEO分子量/PPO分子量の範囲は、以下の組み合わせであることが好ましい。
 なお、本明細書において、「PEO分子量」を「EO量」と称し、「PPO分子量」を「PO量」と称することもある。
 すなわち、本発明の一実施形態において、アルキレンオキサイド系分散剤中のPEO分子量は、1500以上であればよく、好ましくは、1750以上であり、より好ましくは、2000以上である。また、本発明の一実施形態において、アルキレンオキサイド系分散剤中のPEO分子量の上限は、例えば、30000以下であり、好ましくは、25000以下であり、より好ましくは、20000以下である。
 本発明の一実施形態において、アルキレンオキサイド系分散剤中のPEO分子量/PPO分子量は、0.5以上であればよく、好ましくは、0.6以上であり、より好ましくは、0.7以上である。PEO分子量/PPO分子量の上限は、5.0以下であり、好ましくは、4.8以下であり、より好ましくは、4.5以下である。
 アルキレンオキサイド系分散剤中のPEO分子量およびPEO分子量/PPO分子量が上記の範囲内であれば、アルキレンオキサイド系分散剤が親水性を有し、かつ、アルキレンオキサイド系分散剤添加重量に対する分子数が多くなるため、PHA水性懸濁液の分散性を保ちやすい。
 本発明の一実施形態において、アルキレンオキサイド系分散剤は、PEO分子量が1500以上であり、かつ、PEO分子量/PPO分子量が0.5~5.0である。
 本発明の一実施形態において、アルキレンオキサイド系分散剤は、分子量が750以上であるPEOブロックを、少なくとも1つ以上有することが好ましく、少なくとも2つ以上有することがより好ましい。また、その上限は特に限定されないが、例えば、4以下であり、好ましくは、3以下である。PEOブロックの数が上記の範囲内であれば、アルキレンオキサイド系分散剤が親水性を有する。
 本発明の一実施形態において、アルキレンオキサイド系分散剤中のPPO分子量は、特に限定されないが、例えば、500以上であり、好ましくは、1500以上である。また、本発明の一実施形態において、アルキレンオキサイド系分散剤中のPPO分子量の上限は、例えば、6700以下であり、好ましくは、6250以下である。アルキレンオキサイド系分散剤中のPPO分子量が上記の範囲内であれば、アルキレンオキサイド系分散剤が疎水性を有する。
 本発明の一実施形態において、アルキレンオキサイド系分散剤中のPPOブロックの数は、上記の効果を奏する限り特に限定されず、1つであってもよいし、複数(例えば、2、3、4)であってもよい。
 本発明の一実施形態において、アルキレンオキサイド系分散剤は、例えば、下記の式(1)で示される化合物である。
Figure JPOXMLDOC01-appb-C000001
 上記の式(1)において、Xは、例えば、17~340であり、好ましくは、20~285であり、より好ましくは、22~226である。Xが、340以下であると、アルキレンオキサイド系分散剤の添加重量に対する分子数が多くなるため、PHA水性懸濁液の分散性を保ちやすく、Xが、17以上あると、親水性を有する。Yは、例えば、8~115であり、好ましくは、10~110であり、より好ましくは、24~107である。Yが、115以下であると、水への溶解が容易であり、Yが、8以上あると、疎水性を有する。Zは、例えば、17~340であり、好ましくは、20~285であり、より好ましくは、22~226である。Zが、340以下であると、アルキレンオキサイド系分散剤添加重量に対する分子数が多くなるため、PHA水性懸濁液の分散性を保ちやすく、Zが、17以上あると、アルキレンオキサイド系分散剤が親水性を有する。
 また、上記の式(1)において、XとZとの和(以下、「X+Z」と称する場合がある。)は、例えば、34~680であり、好ましくは、40~570であり、より好ましくは、44~452である。X+Zが、680以下であると、アルキレンオキサイド系分散剤の添加重量に対する分子数が多くなるため、PHA水性懸濁液の分散性を保ちやすく、Xが、34以上あると、アルキレンオキサイド系分散剤が親水性を有する。
 本製造方法の工程(a)において使用されるアルキレンオキサイド系分散剤は、特に限定されず、例えば、市販品を用いることができる。市販品としては、例えば、Pluronic 10400(BASF社製)、Pluronic 10500(BASF社製)、Genapol PF80(Clariant社製)、ユニルーブDP60-600B(日油社製)、ユニルーブDP60-950B(日油社製)、プロノン208(日油社製)、エパンU105(第一工業製薬社製)、エパンU108(第一工業製薬社製)、エパン750(第一工業製薬社製)等が使用され得る。
 本製造方法の工程(a)におけるPHA水性懸濁液に対するアルキレンオキサイド系分散剤の添加量は、特に限定されないが、PHA水性懸濁液に含まれるPHA100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましく、0.75~5重量部がさらに好ましい。アルキレンオキサイド系分散剤の添加量を上記の範囲とすることにより、PHA水性懸濁液におけるPHAの分散安定性がより向上し、PHAの生産性が向上する傾向がある。
 <水性懸濁液>
 本製造方法の工程(a)において、PHA水性懸濁液のpHは、3.5~7.0であり、3.52~6.8であることが好ましく、3.54~6.6であることがより好ましい。PHA水性懸濁液のpHが3.5以上であれば、PHA水性懸濁液の調製に耐腐食性の装置を必要としない。また、PHA水性懸濁液のpHが7.0以下であれば、得られるPHAの熱安定性が向上する。
 本発明の一実施形態において、PHA水性懸濁液が、ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物と、を含む場合、本製造方法の工程(a)において、PHA水性懸濁液のpHは、3.5~6.0であることが好ましく、3.52~5.8であることがより好ましく、3.54~5.6であることがさらに好ましい。
 本発明の一実施形態において、PHA水性懸濁液が、ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、リン酸基を1つ以上有する化合物と、を含む場合、本製造方法の工程(a)において、PHA水性懸濁液のpHは、3.5~7.0であることが好ましく、3.5~6.8であることがより好ましく、3.5~6.6であることがさらに好ましい。
 工程(a)におけるPHA水性懸濁液のpHを調整する方法は、特に限定されないが、例えば、酸を添加する等の方法が挙げられる。酸は、特に限定されず、有機酸、無機酸のいずれでもよく、揮発性の有無は問わない。より具体的には、酸としては、例えば、硫酸、塩酸、リン酸、酢酸等が使用できる。なお、前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物は、工程(a)におけるPHA水性懸濁液のpHの調整に、補助的に関与し得る。
 <その他>
 本製造方法の工程(a)において、PHA水性懸濁液の調製時の温度は、例えば、30~80℃であり、50~75℃であることが好ましく、60~75℃であることがより好ましい。PHA水性懸濁液の調製時の温度が、30~80℃であると、PHA水性懸濁液の粘度を低くできる効果を奏する。
 (工程(b))
 本製造方法における工程(b)では、工程(a)で調製したPHA水性懸濁液を乾燥し、PHAを得る。すなわち、工程(b)は、工程(a)で調製したPHA水性懸濁液に含まれる水分を除去する工程、と換言することもできる。
 PHA水性懸濁液の乾燥方法は特に限定されず、例えば、乾燥機、オーブン、噴霧乾燥機、流動乾燥機、ドラムドライヤー等を用いて行うことができる。また、乾燥時の乾燥温度は、PHA水性懸濁液の液滴から水性媒体の大半を除去できる温度であればよく、目的とする含水率まで乾燥させることができ、かつ、品質悪化(分子量低下、色調低下等)、溶融等を極力生じさせないような条件で、適宜設定できる。
 本製造方法は、工程(b)の後に、得られたPHA(例えば、PHA粉体等)をさらに乾燥させる工程(例えば、減圧乾燥に付す工程等)を含んでいてもよい。また、本製造方法は、その他の工程(例えば、PHA水性懸濁液に各種添加物を添加する工程等)を含んでいてもよい。
 〔3.PHAの水性懸濁液〕
 本水性懸濁液は、PHAと、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物とを含み、前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記PHA量に対して400~15000ppmであり、かつ、pHが3.5~7.0である。本水性懸濁液は、中性により近いpHであるため、取扱いの観点から有利である。
 本水性懸濁液において、「PHA」、「アルキレンオキサイド系分散剤」、「カルボキシル基を複数有する化合物」、「リン酸基を1つ以上有する化合物」、「水性懸濁液のpH」は、〔2.PHAの製造方法〕の記載が援用される。
 カルボキシル基を複数有する化合物の具体例としては、例えば、クエン酸(例えば、クエン酸1水和物)、クエン酸3ナトリウム(例えば、クエン酸3ナトリウム2水和物)、酒石酸、酒石酸2ナトリウム(例えば、酒石酸2ナトリウム2水和物)、ポリアクリル酸、ポリアクリル酸ナトリウム等が挙げられる。なかでも、クエン酸、ポリアクリル酸が好ましく、クエン酸がより好ましい。これらの化合物は、1種を用いてもよいし、複数を用いてもよい。
 リン酸基を複数有する化合物の具体例としては、例えば、ピロリン酸四カリウム、ピロリン酸二水素二ナトリウム、ピロリン酸四ナトリウム、ポリリン酸カリウム、ポリリン酸ナトリウム、メタリン酸カリウム、メタリン酸ナトリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸三ナトリウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム等が挙げられる。なかでも、ポリリン酸ナトリウム、ピロリン酸四ナトリウム、メタリン酸ナトリウムが好ましい。これらの化合物は、1種を用いてもよいし、複数を用いてもよい。
 本発明の一実施形態において、アルキレンオキサイド系分散剤は、上記の効果を奏する限り特に限定されないが、ポリ(エチレンオキサイド)(PEO)のブロックと、ポリ(プロピレンオキサイド)(PPO)のブロックとから構成され、PEO-PPO-PEOの形態であることが好ましい。
 PHA水性懸濁液におけるPHAの濃度は、乾燥ユーティリティーの面から経済的に有利であり、生産性が向上するため、30重量%以上であることが好ましく、32.5重量%以上であることがより好ましく、35重量%以上であることがさらに好ましく、37.5重量%以上であることが特に好ましい。また、PHAの濃度の上限は、最密充填を回避し、十分な流動性が確保する観点から、65重量%以下であることが好ましく、60重量%以下であることがより好ましい。PHAの濃度を調整する方法は、特に限定されず、水性媒体を添加したり、水性媒体の一部を除去する(例えば、遠心分離した後、上清を取り除く等による)等の方法が挙げられる。
 PHA水性懸濁液におけるアルキレンオキサイド系分散剤の含有量は、特に限定されないが、PHA水性懸濁液に含まれるPHA100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましく、0.75~5重量部がさらに好ましい。アルキレンオキサイド系分散剤の添加量を上記の範囲とすることにより、PHA水性懸濁液におけるPHAの分散安定性がより向上し、PHAの生産性が向上する傾向がある。
 PHA水性懸濁液中のタンパク質量は、好ましくは、PHA量に対して30000ppm以下、より好ましくは、15000ppm以下、さらに好ましくは、10000ppm以下、最も好ましくは、7500ppm以下である。
 本発明の一実施形態において、本水性懸濁液は、本製造方法の工程(a)により製造される。
 本水性懸濁液は、本発明の効果を奏する限り、本製造方法の過程で生じた、または除去されなかった種々の成分を含んでいてもよい。
 〔4.PHA粉体〕
 本PHA粉体は、PHAと、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、かつ、以下の式(2)で示される熱安定性が、50%以上である:
 熱安定性(%)=ポリヒドロキシアルカン酸粉体を160℃、5MPaで20分間プレスして得られたPHAシートの重量平均分子量/ポリヒドロキシアルカン酸粉体の重量平均分子量×100・・・(2)。
 本PHA粉体は、熱安定性が良好なため、種々の用途において有用である。
 本PHA粉体において、「PHA」、「アルキレンオキサイド系分散剤」、「カルボキシル基を複数有する化合物」、「リン酸基を1つ以上有する化合物」は、〔2.PHAの製造方法〕の記載が援用される。
 本PHA粉体は、上記で示される熱安定性が50%以上であり、好ましくは、52%以上であり、より好ましくは、54%以上である。熱安定性が50%以上であると、本PHA粉体を加工して得られる樹脂の劣化を抑制することができる。熱安定性は高いほどよく、上限は特に限定されないが、例えば、95%以下である。
 本PHA粉体は、本発明の効果を奏する限り、本製造方法の過程で生じた、または除去されなかった種々の成分を含んでいてもよい。
 本PHA粉体は、紙、フィルム、シート、チューブ、板、棒、容器(例えば、ボトル容器等)、袋、部品等、種々の用途に利用できる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 すなわち、本発明の一態様は、以下を含む。
<1>(a)ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、
 前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記ポリヒドロキシアルカン酸量に対して400~15000ppmであり、かつ、pHが3.5~7.0である水性懸濁液を調製する工程、および
 (b)前記工程(a)で調製した水性懸濁液を乾燥する工程、を含む、ポリヒドロキシアルカン酸の製造方法。
<2>前記カルボキシル基を複数有する化合物が、クエン酸、クエン酸3ナトリウム、酒石酸、酒石酸2ナトリウム、ポリアクリル酸、およびポリアクリル酸ナトリウムからなる群より選択される少なくとも一つである、<1>に記載の、ポリヒドロキシアルカン酸の製造方法。
<3>前記リン酸基を1つ以上有する化合物が、メタリン酸ナトリウム、およびポリリン酸ナトリウムからなる群より選択される少なくとも1つ以上である、請求項1に記載のポリヒドロキシアルカン酸の製造方法。
<4>前記分散剤が、ポリ(エチレンオキサイド)(PEO)のブロックと、ポリ(プロピレンオキサイド)(PPO)のブロックとから構成され、PEO-PPO-PEOの形態である、<1>~<3>のいずれかに記載のポリヒドロキシアルカン酸の製造方法。
<5>前記工程(a)で調製する水性懸濁液におけるポリヒドロキシアルカン酸の濃度が、30~65重量%である、<1>~<4>のいずれかに記載のポリヒドロキシアルカン酸の製造方法。
<6>前記分散剤の添加量が、前記水性懸濁液に含まれるポリヒドロキシアルカン酸100重量部に対して、0.1~20重量部である、<1>~<5>のいずれかに記載のポリヒドロキシアルカン酸の製造方法。
<7>ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物とを含み、
 前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記ポリヒドロキシアルカン酸量に対して400~15000ppmであり、
 pHが3.5~7.0である、ポリヒドロキシアルカン酸の水性懸濁液。
<8>前記カルボキシル基を複数有する化合物が、クエン酸、クエン酸3ナトリウム、酒石酸、酒石酸2ナトリウム、ポリアクリル酸、およびポリアクリル酸ナトリウムからなる群より選択される少なくとも一つである、<7>に記載のポリヒドロキシアルカン酸の水性懸濁液。
<9>前記リン酸基を1つ以上有する化合物が、メタリン酸ナトリウム、およびポリリン酸ナトリウムからなる群より選択される少なくとも1つ以上である、<7>または<8>に記載のポリヒドロキシアルカン酸の水性懸濁液。
<10>前記分散剤が、ポリ(エチレンオキサイド)(PEO)のブロックと、ポリ(プロピレンオキサイド)(PPO)のブロックとから構成され、PEO-PPO-PEOの形態である、<7>~<9>のいずれかに記載のポリヒドロキシアルカン酸の製造方法。
<11>水性懸濁液におけるポリヒドロキシアルカン酸の濃度が、30~65重量%である、<7>~<10>のいずれかに記載のポリヒドロキシアルカン酸の水性懸濁液。
<12>前記分散剤の含有量が、前記水性懸濁液に含まれるポリヒドロキシアルカン酸100重量部に対して、0.1~20重量部である、<7>~<11>のいずれかに記載のポリヒドロキシアルカン酸の水性懸濁液。
<13>ポリヒドロキシアルカン酸の水性懸濁液中のタンパク質量が、PHA量に対して30000ppm以下である、<7>~<12>のいずれかに記載のポリヒドロキシアルカン酸の水性懸濁液。
<14>ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、かつ、以下の式(2)で示される熱安定性が、50%以上である、ポリヒドロキシアルカン酸粉体:
 熱安定性(%)=ポリヒドロキシアルカン酸粉体を160℃、5MPaで20分間プレスして得られたポリヒドロキシアルカン酸シートの重量平均分子量/ポリヒドロキシアルカン酸粉体の重量平均分子量×100・・・(2)
 以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 〔測定および評価方法〕
 実施例および比較例における測定および評価を、以下の方法で行った。
 (熱安定性)
 評価用サンプルとして、下記の実施例および比較例で得られたPHA粉体を用いた。このPHA粉体に対して160℃で7分間予熱し、その後、5MPaで20分間プレスして、PHAシートを作製した。このPHAシート10mgを、クロロホルム10mlに溶解させた後、不溶物を濾過により除いた。この溶液(濾液)を、「Shodex K805L(300x8mm、2本連結)」(昭和電工社製)を装着した島津製作所製GPCシステムを用い、クロロホルムを移動相として分子量測定に付した。分子量標準サンプルには、市販の標準ポリスチレンを用いた。PHA粉体の分子量についても、PHAシートの作製を行わなかったこと以外は上記と同様の手順で測定した。
 熱安定性は、以下の式(2)に基づき、評価した:
 熱安定性(%)=PHA粉体を160℃、5MPaで20分間プレスして得られたPHAシートの重量平均分子量/PHA粉体の重量平均分子量×100・・・(2)。
 〔実施例1〕
 (菌体培養液の調製)
 国際公開第2019/142717号に記載のラルストニア・ユートロファを、同文献の段落〔0041〕~〔0048〕に記載の方法で培養し、PHAを含有する菌体を含む菌体培養液を得た。なお、ラルストニア・ユートロファは、現在では、カプリアビダス・ネカトールに分類されている。
 (滅菌処理)
 上記で得られた菌体培養液を内温60~80℃で20分間加熱・攪拌処理し、滅菌処理を行った。
 (高圧破砕処理)
 上記で得られた滅菌済みの菌体培養液に、0.2重量%のドデシル硫酸ナトリウムを添加した。さらに、pHが11.0になるように水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)を用いて、450~550kgf/cmの圧力で高圧破砕を行った。
 (精製処理)
 上記で得られた高圧破砕後の破砕液に対して、等量の蒸留水を添加した。これを遠心分離した後、上清を除去して2倍濃縮した。この濃縮したPHAの水性懸濁液に、除去した上清と同量の水酸化ナトリウム水溶液(pH11)を添加して遠心分離し、上清を除去した。そこに再度水を添加して懸濁させ、0.2重量%のドデシル硫酸ナトリウムと、PHAの1/100重量のプロテアーゼ(ノボザイム社、エスペラーゼ)を添加し、pH10で50℃に保持したまま、2時間攪拌した。その後、遠心分離により上清を除去して4倍濃縮した。水を添加して、pH10に調整し、遠心分離により上清を除去する操作を数回繰り返し、PHA濃度が52.8重量%になるように調整した。得られたPHA水性懸濁液に含有されるタンパク質量は、PHA量に対して1100ppmであった。
 上記で得られたPHA水性懸濁液(固形分濃度52.8重量%)に、分散剤であるエチレンオキサイド/プロピレンオキサイド共重合体非イオン性分散剤(ポリエチレンオキサイド分子量8000、ポリプロピレンオキサイド分子量2000、商品名:プロノン208)を0.95phr(水性懸濁液中に存在するPHA100重量部に対して0.95重量部)添加した。なお、前記分散剤はPEO-PPO-PEOの形態を有する分散剤である。そこに、カルボキシル基を複数有する化合物としてクエン酸1水和物(富士フイルム和光純薬製)を所定量添加し、60℃で30分攪拌した。9%硫酸を添加し、PHA水性懸濁液を所定pHに調整し、得られたPHA水性懸濁液の水を乾燥機(EYELA製NDO-600ND)により揮発させ、PHA粉体を得た。PHA水性懸濁液中のクエン酸1水和物の濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表1に記載する。
Figure JPOXMLDOC01-appb-T000002
 〔実施例2〕
 カルボキシル基を複数有する化合物としてクエン酸3ナトリウム2水和物(富士フイルム和光純薬製)を用いたこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のクエン酸3ナトリウム2水和物の濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表2に記載する。
Figure JPOXMLDOC01-appb-T000003
 〔実施例3〕
 カルボキシル基を複数有する化合物としてポリアクリル酸(BASF製、SokalanPA110s(MW250,000))を用いたこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のポリアクリル酸の濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表3に記載する。
Figure JPOXMLDOC01-appb-T000004
 〔実施例4〕
 カルボキシル基を複数有する化合物としてポリアクリル酸ナトリウム(BASF製、SokalanPA40)を用いたこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のポリアクリル酸ナトリウムの濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表4に記載する。
Figure JPOXMLDOC01-appb-T000005
 〔実施例5〕
 カルボキシル基を複数有する化合物として酒石酸2ナトリウム2水和物(富士フイルム和光純薬製)を用いたこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中の酒石酸2ナトリウム2水和物の濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表5に記載する。
Figure JPOXMLDOC01-appb-T000006
 〔比較例1〕
 カルボキシル基を複数有する化合物を添加しなかったこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液のpH、および得られたPHA粉体の熱安定性を評価した結果を、表6に記載する。
Figure JPOXMLDOC01-appb-T000007
 〔比較例2〕
 酒石酸2ナトリウム2水和物の添加量を340ppmとした以外は、実施例5と同様の方法でPHA粉体を得た。PHA水性懸濁液中の酒石酸2ナトリウム2水和物の濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表7に記載する。
Figure JPOXMLDOC01-appb-T000008
 〔比較例3〕
 クエン酸1水和物の添加量を20000ppmとした以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のクエン酸1水和物の濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表8に記載する。
Figure JPOXMLDOC01-appb-T000009
 〔実施例6〕
 リン酸基を1つ以上有する化合物としてポリリンサン1A(ポリリン酸ナトリウム26%、メタリン酸ナトリウム72%、ピロリン酸四ナトリウム2%、オルガノフードテック株式会社製)を用いたこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のポリリンサン1Aの濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表9に記載する。
Figure JPOXMLDOC01-appb-T000010
 〔実施例7〕
 リン酸基を有する化合物としてポリリン酸ナトリウム(富士フィルム和光純薬株式会社製)を用いたこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のポリリンサンナトリウムの濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表10に記載する。
Figure JPOXMLDOC01-appb-T000011
 〔実施例8〕
 リン酸基を有する化合物としてポリリンサン1Aを用いたこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のポリリンサン1Aを10000ppm含有させ、pH3.5にし、粉体を得た。得られた粉体をTG-DTA(NETZCN製TG-DTA2000SE)にて、200℃における重量変化を測定した。結果を図1に示す。
 〔比較例4〕
 カルボキシル基を複数有する化合物やリン酸基を有する化合物を添加しなかったこと以外は、実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液のpHは3.5にした。得られた粉体をTG-DTAにて、200℃における重量変化を測定した。結果を図1に示す。
 〔比較例5〕
 クエン酸1水和物の添加量を850ppmとし、pHを7.5に調整した以外は実施例1と同様の方法でPHA粉体を得た。PHA水性懸濁液中のクエン酸1水和物の濃度およびpH、ならびに得られたPHA粉体の熱安定性を評価した結果を、表11に記載する。
Figure JPOXMLDOC01-appb-T000012
 <結果>
 表1~6より、実施例1~5は、比較例1と比して、PHA粉体が高い熱安定性を有することが示された。これにより、カルボキシル基を複数有する化合物を添加することで、PHA水性懸濁液のpHが耐腐食性装置を要しない範囲であっても、熱安定性が良好なPHAを得られることがわかる。
 また、表5および7より、比較例2は、実施例5と比して、PHA粉体の熱安定性が低くなることが示された。これにより、カルボキシル基を複数有する化合物の添加量が一定量以下であると、熱安定性が良好なPHAが得られないことがわかる。また、表1および表8より、カルボキシル基を複数有する化合物の添加量が一定量以上の場合も、熱安定性が良好なPHAが得られないことがわかる。さらに、表11より、pHが7.0を超えた場合も、熱安定性が良好なPHAが得られないことがわかる。
 さらに、表9、10より、リン酸基を1つ以上有する化合物を用いた場合でも、PHA粉体は高い熱安定性を示すことが示された。加えて、図1より比較例4に比して実施例8は200℃における重量変化が少なく、熱安定性が高いことがわかる。
 以上より、本製造方法において、カルボキシル基を複数有する化合物を所定量添加することで、PHA水性懸濁液のpHが耐腐食性装置を要しない範囲であっても、熱安定性が良好なPHAを得られることがわかった。
 本製造方法は、熱安定性が良好なPHA(例えば、PHA粉体)を製造することができることから、PHAの製造において有利に使用できる。また、本製造方法により得られたPHA粉体等は、農業、漁業、林業、園芸、医学、衛生品、衣料、非衣料、包装、自動車、建材、その他の分野に好適に利用することができる。

 

Claims (14)

  1.  (a)ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、
     前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記ポリヒドロキシアルカン酸量に対して400~15000ppmであり、かつ、pHが3.5~7.0である水性懸濁液を調製する工程、および
     (b)前記工程(a)で調製した水性懸濁液を乾燥する工程、を含む、ポリヒドロキシアルカン酸の製造方法。
  2.  前記カルボキシル基を複数有する化合物が、クエン酸、クエン酸3ナトリウム、酒石酸、酒石酸2ナトリウム、ポリアクリル酸、およびポリアクリル酸ナトリウムからなる群より選択される少なくとも一つである、請求項1に記載の、ポリヒドロキシアルカン酸の製造方法。
  3.  前記リン酸基を1つ以上有する化合物が、メタリン酸ナトリウム、およびポリリン酸ナトリウムからなる群より選択される少なくとも1つ以上である、請求項1に記載のポリヒドロキシアルカン酸の製造方法。
  4.  前記分散剤が、ポリ(エチレンオキサイド)(PEO)のブロックと、ポリ(プロピレンオキサイド)(PPO)のブロックとから構成され、PEO-PPO-PEOの形態である、請求項1~3のいずれか1項に記載のポリヒドロキシアルカン酸の製造方法。
  5.  前記工程(a)で調製する水性懸濁液におけるポリヒドロキシアルカン酸の濃度が、30~65重量%である、請求項1~3のいずれか1項に記載のポリヒドロキシアルカン酸の製造方法。
  6.  前記分散剤の添加量が、前記水性懸濁液に含まれるポリヒドロキシアルカン酸100重量部に対して、0.1~20重量部である、請求項1~3のいずれか1項に記載のポリヒドロキシアルカン酸の製造方法。
  7.  ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物とを含み、
     前記カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物の量が、前記ポリヒドロキシアルカン酸量に対して400~15000ppmであり、
     pHが3.5~7.0である、ポリヒドロキシアルカン酸の水性懸濁液。
  8.  前記カルボキシル基を複数有する化合物が、クエン酸、クエン酸3ナトリウム、酒石酸、酒石酸2ナトリウム、ポリアクリル酸、およびポリアクリル酸ナトリウムからなる群より選択される少なくとも一つである、請求項7に記載のポリヒドロキシアルカン酸の水性懸濁液。
  9.  前記リン酸基を1つ以上有する化合物が、メタリン酸ナトリウム、およびポリリン酸ナトリウムからなる群より選択される少なくとも1つ以上である、請求項7に記載のポリヒドロキシアルカン酸の水性懸濁液。
  10.  前記分散剤が、ポリ(エチレンオキサイド)(PEO)のブロックと、ポリ(プロピレンオキサイド)(PPO)のブロックとから構成され、PEO-PPO-PEOの形態である、請求項7~9のいずれか1項に記載のポリヒドロキシアルカン酸の水性懸濁液。
  11.  ポリヒドロキシアルカン酸の濃度が、30~65重量%である、請求項7~9のいずれか1項に記載のポリヒドロキシアルカン酸の水性懸濁液。
  12.  前記分散剤の含有量が、前記水性懸濁液に含まれるポリヒドロキシアルカン酸100重量部に対して、0.1~20重量部である、請求項7~9のいずれか1項に記載のポリヒドロキシアルカン酸の水性懸濁液。
  13.  ポリヒドロキシアルカン酸の水性懸濁液中のタンパク質量が、PHA量に対して30000ppm以下である、請求項7~9のいずれか1項に記載のポリヒドロキシアルカン酸の水性懸濁液。
  14.  ポリヒドロキシアルカン酸と、アルキレンオキサイド系分散剤と、カルボキシル基を複数有する化合物および/またはリン酸基を1つ以上有する化合物と、を含み、かつ、以下の式(2)で示される熱安定性が、50%以上である、ポリヒドロキシアルカン酸粉体:
     熱安定性(%)=ポリヒドロキシアルカン酸粉体を160℃、5MPaで20分間プレスして得られたポリヒドロキシアルカン酸シートの重量平均分子量/ポリヒドロキシアルカン酸粉体の重量平均分子量×100・・・(2)

     
PCT/JP2022/025442 2021-09-07 2022-06-27 ポリヒドロキシアルカン酸の製造方法およびその利用 WO2023037710A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023546786A JPWO2023037710A1 (ja) 2021-09-07 2022-06-27
CN202280059009.2A CN117881717A (zh) 2021-09-07 2022-06-27 聚羟基烷酸酯的制造方法及其利用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-145534 2021-09-07
JP2021145534 2021-09-07
JP2022-023190 2022-02-17
JP2022023190 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023037710A1 true WO2023037710A1 (ja) 2023-03-16

Family

ID=85506409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025442 WO2023037710A1 (ja) 2021-09-07 2022-06-27 ポリヒドロキシアルカン酸の製造方法およびその利用

Country Status (2)

Country Link
JP (1) JPWO2023037710A1 (ja)
WO (1) WO2023037710A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023154457A1 (en) * 2022-02-11 2023-08-17 Novomer, Inc. Stabilizers for polyhydroxyalkonoates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040039092A1 (en) * 1997-07-25 2004-02-26 Metabolix, Inc. PHA compositions and methods for their use in the production of PHA films
US20130093119A1 (en) * 2010-06-30 2013-04-18 Archer Daniels Midland Company Processes for producing thermostable polyhydroxyalkanoate and products produced therefrom
CN110128804A (zh) * 2019-06-03 2019-08-16 北京化工大学 一种提高聚羟基脂肪酸酯熔融加工性能和力学性能的方法
WO2021085534A1 (ja) * 2019-10-31 2021-05-06 株式会社カネカ ポリヒドロキシアルカン酸の製造方法およびその利用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040039092A1 (en) * 1997-07-25 2004-02-26 Metabolix, Inc. PHA compositions and methods for their use in the production of PHA films
US20130093119A1 (en) * 2010-06-30 2013-04-18 Archer Daniels Midland Company Processes for producing thermostable polyhydroxyalkanoate and products produced therefrom
CN110128804A (zh) * 2019-06-03 2019-08-16 北京化工大学 一种提高聚羟基脂肪酸酯熔融加工性能和力学性能的方法
WO2021085534A1 (ja) * 2019-10-31 2021-05-06 株式会社カネカ ポリヒドロキシアルカン酸の製造方法およびその利用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023154457A1 (en) * 2022-02-11 2023-08-17 Novomer, Inc. Stabilizers for polyhydroxyalkonoates

Also Published As

Publication number Publication date
JPWO2023037710A1 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
JP7340029B2 (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
CN110475868B (zh) 聚羟基烷酸酯粒子及其水分散液
WO2021251049A1 (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
US11920030B2 (en) Method for producing polyhydroxyalkanoic acid
WO2023037710A1 (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
JP7209434B2 (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
JPH11500613A (ja) ポリヒドロキシアルカノエートのラテックス
JP2021088662A (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
JP2021195470A (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
CN117881717A (zh) 聚羟基烷酸酯的制造方法及其利用
US20230102977A1 (en) Method for producing polyhydroxyalkanoate and use of same
WO2021251162A1 (ja) ポリヒドロキシアルカン酸シートの製造方法およびその利用
JP2023076176A (ja) ポリヒドロキシアルカン酸シートの製造方法およびその利用
WO2022091685A1 (ja) ポリヒドロキシ酪酸共重合体の製造方法およびその利用
US20230123797A1 (en) Method for producing polyhydroxyalkanoate and use of same
WO2024029514A1 (ja) ポリヒドロキシアルカノエートの製造方法およびその利用
JP2023086317A (ja) ポリヒドロキシアルカン酸粒子およびその製造方法
WO2024029220A1 (ja) ポリヒドロキシアルカノエートの製造方法およびその利用
WO2022113530A1 (ja) ポリ(3-ヒドロキシアルカノエート)の製造方法
WO2023120193A1 (ja) ポリヒドロキシアルカノエートの製造方法およびその利用
JP2024028034A (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
EP4108776A1 (en) Production of biopolymers
JP2023178063A (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
EP4081573A1 (en) Novel bioplastics
Tudorachi et al. Biodegradable poly (vinyl alcohol-lactic acid-aspartic acid) copolymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546786

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059009.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE