WO2023037430A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023037430A1
WO2023037430A1 PCT/JP2021/032950 JP2021032950W WO2023037430A1 WO 2023037430 A1 WO2023037430 A1 WO 2023037430A1 JP 2021032950 W JP2021032950 W JP 2021032950W WO 2023037430 A1 WO2023037430 A1 WO 2023037430A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
igbt region
region
main
igbt
Prior art date
Application number
PCT/JP2021/032950
Other languages
English (en)
French (fr)
Inventor
雅貴 須藤
智人 工藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180102038.8A priority Critical patent/CN117916891A/zh
Priority to JP2023546611A priority patent/JPWO2023037430A1/ja
Priority to DE112021008194.2T priority patent/DE112021008194T5/de
Priority to PCT/JP2021/032950 priority patent/WO2023037430A1/ja
Publication of WO2023037430A1 publication Critical patent/WO2023037430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to semiconductor devices.
  • Patent Document 1 proposes a configuration in which a peripheral region is provided to surround the collector layer of the sense IGBT region in a plan view in order to suppress fluctuations in the characteristics of a sense IGBT (Insulated Gate Bipolar Transistor), which is a semiconductor element for sensing.
  • sense IGBT Insulated Gate Bipolar Transistor
  • the present disclosure has been made in view of the above problems, and aims to provide a technique capable of improving the accuracy of detecting the current in the main IGBT region using the current in the sense IGBT region. aim.
  • a semiconductor device includes a semiconductor substrate, a first IGBT region and a diode region provided adjacent to each other on the semiconductor substrate, and provided on the semiconductor substrate apart from the first IGBT region and the diode region, a second IGBT region for detecting current flowing through the first IGBT region, the first IGBT region and the second IGBT region including one collector layer having a first conductivity type;
  • the first IGBT region includes a cathode layer having a second conductivity type adjacent to the collector layer, and the second IGBT region further includes an impurity layer having a second conductivity type adjacent to the collector layer of the second IGBT region.
  • the diode region is adjacent to the collector layer of the first IGBT region and includes a cathode layer having a second conductivity type
  • the second IGBT region is adjacent to the collector layer of the second IGBT region and is of the second conductivity type. including an impurity layer having According to such a configuration, it is possible to improve the accuracy of detecting the current in the main IGBT region using the current in the sense IGBT region.
  • FIG. 2 is a plan view showing the configuration of the back side of the semiconductor device according to Embodiment 1;
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to a first embodiment;
  • FIG. 9 is a cross-sectional view showing the configuration of a semiconductor device according to Modification 2 of Embodiment 1;
  • a portion having a lower density than another portion means, for example, that the average density of the certain portion is lower than the average density of the other portion.
  • the first conductivity type is p-type and the second conductivity type is n-type, but the first conductivity type may be p-type and the second conductivity type may be n-type. .
  • FIG. 1 is a plan view showing the configuration of the back side of the semiconductor device according to the first embodiment
  • FIG. 2 is a cross-sectional view showing the configuration along the line AB in FIG.
  • the semiconductor device includes a semiconductor substrate 1, a main IGBT region 2 as a first IGBT region, a main diode region 3 as a diode region, and a sense IGBT region 5 as a second IGBT region. Note that the main IGBT region 2 and the main diode region 3 are included in the main region 4 .
  • the main IGBT region 2 and the main diode region 3 are provided on the semiconductor substrate 1 adjacent to each other.
  • the sense IGBT region 5 is provided in the semiconductor substrate 1 apart from the main region 4 including the main IGBT region 2 and the main diode region 3 .
  • the semiconductor substrate 1 monolithically has the main IGBT region 2 , the main diode region 3 , and the sense IGBT region 5 .
  • the semiconductor substrate 1 may be composed of a normal semiconductor wafer, or may be composed of an epitaxial growth layer.
  • the material of semiconductor substrate 1 includes, for example, silicon (Si) or a wide bandgap semiconductor.
  • Wide bandgap semiconductors include, for example, silicon carbide (SiC), gallium nitride (GaN), or diamond.
  • the semiconductor substrate 1 that has undergone various manufacturing processes includes an n ⁇ -type drift layer 11, p-type base layers 12 and 32, n + -type source layers 13 and 33, and p + -type diffusion layers 14. , 34 , an n-type buffer layer 18 , a p-type collector layer 19 , an n-type cathode layer 20 and an n-type impurity layer 40 .
  • the impurity concentration of the drift layer 11 is assumed to be the same as that of the semiconductor substrate 1 before undergoing various manufacturing processes, but the impurity concentration is not limited to this.
  • the base layers 12 and 32 are selectively disposed on the drift layer 11, the source layer 13 and the diffusion layer 14 are selectively disposed on the base layer 12, and the source layer 33 and the diffusion layer 34 are disposed on the base layer. 32 is selectively arranged.
  • the buffer layer 18 is arranged below the drift layer 11 , and the collector layer 19 , the cathode layer 20 and the impurity layer 40 are selectively arranged below the drift layer 11 .
  • Main IGBT region 2 , main diode region 3 , and sense IGBT region 5 include one drift layer 11 , one buffer layer 18 , and one back electrode 21 .
  • the main IGBT region 2 and main diode region 3 include one base layer 12 and one surface electrode 17 corresponding to the main region 4 .
  • main IGBT region 2 and sense IGBT region 5 include one collector layer 19 .
  • the main IGBT region 2, the main diode region 3, and the sense IGBT region 5 will be individually described.
  • Main IGBT region 2 includes drift layer 11 , base layer 12 , source layer 13 , diffusion layer 14 , insulating film 15 , gate electrode 16 , surface electrode 17 , buffer layer 18 , collector layer 19 , and back electrode 21 .
  • a first trench is provided from the upper surface of the source layer 13 to reach the drift layer 11 through the source layer 13 and the base layer 12 .
  • the insulating film 15 is provided on the inner wall of the first trench, and the gate electrode 16 is provided above the first trench with the insulating film 15 interposed therebetween.
  • a surface electrode 17 is provided on the surface of the base layer 12, the source layer 13, and the diffusion layer 14 (that is, the surface of the semiconductor substrate 1).
  • a back surface electrode 21 is provided on the surface of the collector layer 19 (that is, the back surface of the semiconductor substrate 1).
  • the main IGBT region 2 configured as described above includes a region functioning as a main IGBT.
  • the main IGBT region 2 corresponds to the region of the main region 4 where the collector layer 19 is provided.
  • Main diode region 3 includes drift layer 11 , base layer 12 , diffusion layer 14 , insulating film 25 , conductive portion 26 , surface electrode 17 , buffer layer 18 , cathode layer 20 and back electrode 21 .
  • a second trench is provided from the upper surface of the base layer 12 to reach the drift layer 11 through the base layer 12 .
  • the insulating film 25 is provided on the inner wall of the second trench, and the conductive portion 26 is provided above the second trench with the insulating film 25 interposed therebetween.
  • Cathode layer 20 is adjacent to collector layer 19 of main IGBT region 2 .
  • a surface electrode 17 is provided on the surface of the base layer 12 and the diffusion layer 14 (that is, the surface of the semiconductor substrate 1).
  • a back surface electrode 21 is provided on the surface of the cathode layer 20 (that is, the back surface of the semiconductor substrate 1).
  • the main diode region 3 configured as described above includes a region functioning as a main diode.
  • the main diode region 3 corresponds to the region of the main region 4 where the cathode layer 20 is provided.
  • Sense IGBT region 5 includes drift layer 11, base layer 32, source layer 33, diffusion layer 34, insulating films 35 and 45, gate electrode 36, conductive portion 46, surface electrode 37, buffer layer 18, collector layer 19, and impurity layers. 40 and a back electrode 21 .
  • a third trench is provided from the upper surface of the source layer 33 to reach the drift layer 11 through the source layer 33 and the base layer 32 .
  • the insulating film 35 is provided on the inner wall of the third trench, and the gate electrode 36 is provided above the third trench with the insulating film 35 interposed therebetween.
  • a fourth trench is provided from the upper surface of the base layer 32 to reach the drift layer 11 through the base layer 32 .
  • the insulating film 45 is provided on the inner wall of the fourth trench, and the conductive portion 46 is provided above the fourth trench with the insulating film 45 interposed therebetween.
  • Impurity layer 40 is provided below conductive portion 46 and is adjacent to collector layer 19 of sense IGBT region 5 .
  • the impurity layer 40 is formed without ion implantation, and the impurity concentration of the impurity layer 40 is the same or substantially the same as the impurity concentration of the drift layer 11 .
  • a surface electrode 37 is provided on the surface of the base layer 32, the source layer 33, and the diffusion layer 34 (that is, the surface of the semiconductor substrate 1).
  • a back surface electrode 21 is provided on the surface of the collector layer 19 and the impurity layer 40 (that is, the back surface of the semiconductor substrate 1).
  • the sense IGBT region 5 configured as described above is a region for detecting current flowing through the main IGBT region 2 and includes a region functioning as a sense IGBT for detecting current flowing through the main IGBT region 2 .
  • the area of the sense IGBT region 5 is, for example, approximately one-thousandth of the area of the main IGBT region 2 .
  • the sense IGBT region 5 includes the impurity layer 40 , the hole injection reduction rate of the sense IGBT region 5 can be brought close to the hole injection reduction rate of the main IGBT region 2 . .
  • the difference between the current density of the collector layer 19 of the sense IGBT region 5 and the current density of the main IGBT region 2 becomes small, and the current density of the collector layer 19 of the sense IGBT region 5 and the current of the main IGBT region 2 increases.
  • the ratio can be approximated to their area ratio. Therefore, the accuracy of detecting the current in the main IGBT region 2 using the current in the collector layer 19 of the sense IGBT region 5 can be improved.
  • the area ratio of impurity layer 40 to collector layer 19 in sense IGBT region 5 in plan view corresponds to the area ratio of cathode layer 20 to collector layer 19 in main IGBT region 2 in plan view. good too. That is, the area ratio of the impurity layer 40 to the collector layer 19 in the sense IGBT region 5 in plan view is the same or substantially the same as the area ratio of the cathode layer 20 to the collector layer 19 in the main IGBT region 2 in plan view. There may be.
  • the two area ratios are substantially the same means that one of the two area ratios is within ⁇ 10% of the other area ratio, or ⁇ 5% depending on the configuration.
  • the ratio between the current in collector layer 19 of sense IGBT region 5 and the current in main IGBT region 2 can be brought closer to their area ratio. Therefore, the accuracy of detecting the current in the main IGBT region 2 using the current in the collector layer 19 of the sense IGBT region 5 can be enhanced.
  • the impurity concentration of the impurity layer 40 is the same or substantially the same as the impurity concentration of the drift layer 11 and different from the impurity concentration of the cathode layer 20.
  • the n-type impurity concentration of the impurity layer 40 may correspond to the n-type impurity concentration of the cathode layer 20 . That is, the n-type impurity concentration of the impurity layer 40 may be the same as or substantially the same as the n-type impurity concentration of the cathode layer 20 .
  • the two impurity concentrations are substantially the same means that one of the two impurity concentrations is within ⁇ 20% of the other impurity concentration, or ⁇ 5% depending on the configuration. means within the range of
  • the ratio between the current in the impurity layer 40 of the sense IGBT region 5 and the current in the main diode region 3 can be made close to their area ratio during the freewheeling operation of the main diode region 3 . Therefore, the current in the impurity layer 40 of the sense IGBT region 5 can be used to improve the accuracy of detecting the current in the main diode region 3 during the freewheeling operation.
  • the ratio of the current in the collector layer 19 of the sense IGBT region 5 and the current in the main IGBT region 2 can be brought closer to their area ratio. Therefore, the accuracy of detecting the current in the main IGBT region 2 using the current in the collector layer 19 of the sense IGBT region 5 can be enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

センスIGBT領域の電流を用いてメインIGBT領域の電流を検出する精度を高めることが可能な技術を提供することを目的とする。半導体装置は、第1IGBT領域と、ダイオード領域と、第2IGBT領域とを備える。第1IGBT領域及び第2IGBT領域は、第1導電型を有する一のコレクタ層を含み、ダイオード領域は、第1IGBT領域のコレクタ層と隣接し、第2導電型を有するカソード層を含み、第2IGBT領域は、第2IGBT領域のコレクタ層と隣接し、第2導電型を有する不純物層をさらに含む。

Description

半導体装置
 本開示は、半導体装置に関する。
 半導体装置に含まれる半導体素子を保護するために、当該半導体素子に流れる電流を検出するセンス用の半導体素子を設ける技術が提案されている。例えば特許文献1では、センス用の半導体素子であるセンスIGBT(Insulated Gate Bipolar Transistor)の特性変動を抑制するために、センスIGBT領域のコレクタ層を平面視で囲む周辺領域を設ける構成が提案されている。
特開2019-21885号公報
 特許文献1の周辺領域は、センスIGBT領域を平面視で囲むため、周辺領域によるセンスIGBT領域のホール注入低下率が、メインダイオード領域のカソード層によるメインIGBT領域のホール注入低下率よりも大きくなるように作用する。この結果、センスIGBT領域の電流密度と、メインIGBT領域の電流密度との差が比較的大きくなるため、センスIGBT領域の電流を用いてメインIGBT領域の電流を検出する精度が低下するという問題があった。
 そこで、本開示は、上記のような問題点に鑑みてなされたものであり、センスIGBT領域の電流を用いてメインIGBT領域の電流を検出する精度を高めることが可能な技術を提供することを目的とする。
 本開示に係る半導体装置は、半導体基板と、互いに隣接して前記半導体基板に設けられた第1IGBT領域及びダイオード領域と、前記第1IGBT領域及び前記ダイオード領域と離間して前記半導体基板に設けられ、前記第1IGBT領域を流れる電流を検出するための第2IGBT領域とを備え、前記第1IGBT領域及び前記第2IGBT領域は、第1導電型を有する一のコレクタ層を含み、前記ダイオード領域は、前記第1IGBT領域の前記コレクタ層と隣接し、第2導電型を有するカソード層を含み、前記第2IGBT領域は、前記第2IGBT領域の前記コレクタ層と隣接し、第2導電型を有する不純物層をさらに含む。
 本開示によれば、ダイオード領域は、第1IGBT領域のコレクタ層と隣接し、第2導電型を有するカソード層を含み、第2IGBT領域は、第2IGBT領域のコレクタ層と隣接し、第2導電型を有する不純物層を含む。このような構成によれば、センスIGBT領域の電流を用いてメインIGBT領域の電流を検出する精度を高めることができる。
 本開示の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係る半導体装置の裏面側の構成を示す平面図である。 実施の形態1に係る半導体装置の構成を示す断面図である。 実施の形態1の変形例2に係る半導体装置の構成を示す断面図である。
 以下、添付される図面を参照しながら実施の形態について説明する。以下の各実施の形態で説明される特徴は例示であり、すべての特徴は必ずしも必須ではない。また、以下に示される説明では、複数の実施の形態において同様の構成要素には同じまたは類似する符号を付し、異なる構成要素について主に説明する。また、以下に記載される説明において、「上」、「下」、「左」、「右」、「表」または「裏」などの特定の位置及び方向は、実際の実施時の位置及び方向とは必ず一致しなくてもよい。また、ある部分が別部分よりも濃度が高いことは、例えば、ある部分の濃度の平均が、別部分の濃度の平均よりも高いことを意味するものとする。逆に、ある部分が別部分よりも濃度が低いことは、例えば、ある部分の濃度の平均が、別部分の濃度の平均よりも低いことを意味するものとする。また、以下では第1導電型がp型であり、第2導電型がn型であるとして説明するが、第1導電型がp型であり、第2導電型がn型であってもよい。
 <実施の形態1>
 図1は、本実施の形態1に係る半導体装置の裏面側の構成を示す平面図であり、図2は、図1のA-B線に沿った構成を示す断面図である。
 本実施の形態1に係る半導体装置は、半導体基板1と、第1IGBT領域であるメインIGBT領域2と、ダイオード領域であるメインダイオード領域3と、第2IGBT領域であるセンスIGBT領域5とを備える。なお、メインIGBT領域2及びメインダイオード領域3は、メイン領域4に含まれる。
 メインIGBT領域2及びメインダイオード領域3は、互いに隣接して半導体基板1に設けられている。センスIGBT領域5は、メインIGBT領域2及びメインダイオード領域3を含むメイン領域4と離間して半導体基板1に設けられている。このように本実施の形態1では、半導体基板1は、メインIGBT領域2、メインダイオード領域3、及び、センスIGBT領域5をモノシリックに有する。
 半導体基板1は、通常の半導体ウェハから構成されてもよいし、エピタキシャル成長層から構成されてもよい。半導体基板1の材料は、例えば珪素(Si)またはワイドバンドギャップ半導体を含む。ワイドバンドギャップ半導体は、例えば、炭化珪素(SiC)、窒化ガリウム(GaN)、または、ダイヤモンドなどを含む。半導体基板1の材料がワイドバンドギャップ半導体を含む場合には、高温下及び高電圧下の安定動作、及び、スイッチ速度の高速化が可能となる。
 様々な製造工程が行われた半導体基板1は、n型のドリフト層11と、p型のベース層12,32と、n型のソース層13,33と、p型の拡散層14,34と、n型のバッファ層18と、p型のコレクタ層19と、n型のカソード層20と、n型の不純物層40とを含む。なお、本実施の形態1では、ドリフト層11の不純物濃度は、様々な製造工程を経る前の半導体基板1の不純物濃度と同じであるものとするが、これに限ったものではない。
 ベース層12,32はドリフト層11の上部に選択的に配設され、ソース層13及び拡散層14はベース層12の上部に選択的に配設され、ソース層33及び拡散層34はベース層32の上部に選択的に配設されている。バッファ層18は、ドリフト層11の下部に配設され、コレクタ層19、カソード層20、及び、不純物層40は、ドリフト層11の下部に選択的に配設されている。
 次に、メインIGBT領域2、メインダイオード領域3、及び、センスIGBT領域5のいくつかに共通する共通の構成要素について説明する。メインIGBT領域2、メインダイオード領域3、及び、センスIGBT領域5は、一のドリフト層11と、一のバッファ層18と、一の裏面電極21とを含む。メインIGBT領域2及びメインダイオード領域3は、一のベース層12と、メイン領域4に対応する一の表面電極17とを含む。図1及び図2に示すように、メインIGBT領域2及びセンスIGBT領域5は、一のコレクタ層19を含む。次に、メインIGBT領域2、メインダイオード領域3、及び、センスIGBT領域5について個別に説明する。
 <メインIGBT領域>
 メインIGBT領域2は、ドリフト層11、ベース層12、ソース層13、拡散層14、絶縁膜15、ゲート電極16、表面電極17、バッファ層18、コレクタ層19、及び、裏面電極21を含む。
 ソース層13の上面から、ソース層13及びベース層12を貫通してドリフト層11に達する第1トレンチが設けられている。絶縁膜15は、第1トレンチの内壁に設けられ、ゲート電極16は、第1トレンチ上に絶縁膜15を介して設けられている。
 ベース層12、ソース層13、及び、拡散層14の面(つまり半導体基板1の表面)には表面電極17が設けられている。コレクタ層19の面(つまり半導体基板1の裏面)には裏面電極21が設けられている。
 以上のように構成されたメインIGBT領域2は、メインIGBTとして機能する領域を含む。なお、メインIGBT領域2は、メイン領域4のうちコレクタ層19が設けられた領域に対応する。
 <メインダイオード領域>
 メインダイオード領域3は、ドリフト層11、ベース層12、拡散層14、絶縁膜25、導電部分26、表面電極17、バッファ層18、カソード層20、及び、裏面電極21を含む。
 ベース層12の上面から、ベース層12を貫通してドリフト層11に達する第2トレンチが設けられている。絶縁膜25は、第2トレンチの内壁に設けられ、導電部分26は、第2トレンチ上に絶縁膜25を介して設けられている。カソード層20は、メインIGBT領域2のコレクタ層19と隣接している。
 ベース層12、及び、拡散層14の面(つまり半導体基板1の表面)には表面電極17が設けられている。カソード層20の面(つまり半導体基板1の裏面)には裏面電極21が設けられている。
 以上のように構成されたメインダイオード領域3は、メインダイオードとして機能する領域を含む。なお、メインダイオード領域3は、メイン領域4のうちカソード層20が設けられた領域に対応する。
 <センスIGBT領域>
 センスIGBT領域5は、ドリフト層11、ベース層32、ソース層33、拡散層34、絶縁膜35,45、ゲート電極36、導電部分46、表面電極37、バッファ層18、コレクタ層19、不純物層40、及び、裏面電極21を含む。
 ソース層33の上面から、ソース層33及びベース層32を貫通してドリフト層11に達する第3トレンチが設けられている。絶縁膜35は、第3トレンチの内壁に設けられ、ゲート電極36は、第3トレンチ上に絶縁膜35を介して設けられている。
 ベース層32の上面から、ベース層32を貫通してドリフト層11に達する第4トレンチが設けられている。絶縁膜45は、第4トレンチの内壁に設けられ、導電部分46は、第4トレンチ上に絶縁膜45を介して設けられている。不純物層40は、導電部分46の下方に設けられており、センスIGBT領域5のコレクタ層19と隣接している。本実施の形態1では、不純物層40は、イオン注入されずに形成され、不純物層40の不純物濃度は、ドリフト層11の不純物濃度と同じまたは実質的に同じである。
 ベース層32、ソース層33、及び、拡散層34の面(つまり半導体基板1の表面)には表面電極37が設けられている。コレクタ層19及び不純物層40の面(つまり半導体基板1の裏面)には裏面電極21が設けられている。
 以上のように構成されたセンスIGBT領域5は、メインIGBT領域2を流れる電流を検出するための領域であり、メインIGBT領域2を流れる電流を検出するためのセンスIGBTとして機能する領域を含む。センスIGBT領域5の面積は、例えば、メインIGBT領域2の面積の数千分の一程度である。
 <実施の形態1のまとめ>
 以上のように構成された半導体装置によれば、センスIGBT領域5が不純物層40を含むので、センスIGBT領域5のホール注入低下率を、メインIGBT領域2のホール注入低下率に近づけることができる。これにより、センスIGBT領域5のコレクタ層19の電流密度と、メインIGBT領域2の電流密度との差が小さくなり、センスIGBT領域5のコレクタ層19の電流と、メインIGBT領域2の電流との比率を、それらの面積比に近づけることができる。このため、センスIGBT領域5のコレクタ層19の電流を用いてメインIGBT領域2の電流を検出する精度を高めることができる。
 <変形例1>
 実施の形態1において、平面視でのセンスIGBT領域5のコレクタ層19に対する不純物層40の面積比は、平面視でのメインIGBT領域2のコレクタ層19に対するカソード層20の面積比に対応してもよい。つまり、平面視でのセンスIGBT領域5のコレクタ層19に対する不純物層40の面積比は、平面視でのメインIGBT領域2のコレクタ層19に対するカソード層20の面積比と同じまたは実質的に同じであってもよい。ここでいう二つの面積比が実質的に同じであるとは、二つの面積比のうち、一方の面積比が他方の面積比の±10%の範囲内であること、構成によっては±5%の範囲内であることを意味する。このような構成によれば、センスIGBT領域5のコレクタ層19の電流と、メインIGBT領域2の電流との比率を、それらの面積比にさらに近づけることができる。このため、センスIGBT領域5のコレクタ層19の電流を用いてメインIGBT領域2の電流を検出する精度を高めることができる。
 <変形例2>
 実施の形態1では、図1に示すように、不純物層40の不純物濃度は、ドリフト層11の不純物濃度と同じまたは実質的に同じであり、カソード層20の不純物濃度と異なっていたが、これに限ったものではない。例えば、図3に示すように、不純物層40のn型の不純物濃度は、カソード層20のn型の不純物濃度に対応してもよい。つまり、不純物層40のn型の不純物濃度は、カソード層20のn型の不純物濃度と同じまたは実質的に同じであってもよい。ここでいう二つの不純物濃度が実質的に同じであるとは、二つの不純物濃度のうち、一方の不純物濃度が他方の不純物濃度の±20%の範囲内であること、構成によっては±5%の範囲内であることを意味する。
 このような構成によれば、メインダイオード領域3の還流動作時に、センスIGBT領域5の不純物層40の電流と、メインダイオード領域3の電流との比率を、それらの面積比に近づけることができる。このため、センスIGBT領域5の不純物層40の電流を用いて還流動作時のメインダイオード領域3の電流を検出する精度を高めることができる。
 また、センスIGBT領域5のコレクタ層19の電流と、メインIGBT領域2の電流との比率を、それらの面積比にさらに近づけることができる。このため、センスIGBT領域5のコレクタ層19の電流を用いてメインIGBT領域2の電流を検出する精度を高めることができる。
 なお、実施の形態を適宜、変形、省略することが可能である。
 上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。
 1 半導体基板、2 メインIGBT領域、3 メインダイオード領域、5 センスIGBT領域、19 コレクタ層、20 カソード層、40 不純物層。

Claims (3)

  1.  半導体基板と、
     互いに隣接して前記半導体基板に設けられた第1IGBT領域及びダイオード領域と、
     前記第1IGBT領域及び前記ダイオード領域と離間して前記半導体基板に設けられ、前記第1IGBT領域を流れる電流を検出するための第2IGBT領域と
    を備え、
     前記第1IGBT領域及び前記第2IGBT領域は、第1導電型を有する一のコレクタ層を含み、
     前記ダイオード領域は、前記第1IGBT領域の前記コレクタ層と隣接し、第2導電型を有するカソード層を含み、
     前記第2IGBT領域は、前記第2IGBT領域の前記コレクタ層と隣接し、第2導電型を有する不純物層をさらに含む、半導体装置。
  2.  請求項1に記載の半導体装置であって、
     平面視での前記第2IGBT領域の前記コレクタ層に対する前記不純物層の面積比は、平面視での前記第1IGBT領域の前記コレクタ層に対する前記カソード層の面積比に対応する、半導体装置。
  3.  請求項1または請求項2に記載の半導体装置であって、
     前記不純物層の第2導電型の不純物濃度は、前記カソード層の第2導電型の不純物濃度に対応する、半導体装置。
PCT/JP2021/032950 2021-09-08 2021-09-08 半導体装置 WO2023037430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180102038.8A CN117916891A (zh) 2021-09-08 2021-09-08 半导体装置
JP2023546611A JPWO2023037430A1 (ja) 2021-09-08 2021-09-08
DE112021008194.2T DE112021008194T5 (de) 2021-09-08 2021-09-08 Halbleitervorrichtung
PCT/JP2021/032950 WO2023037430A1 (ja) 2021-09-08 2021-09-08 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032950 WO2023037430A1 (ja) 2021-09-08 2021-09-08 半導体装置

Publications (1)

Publication Number Publication Date
WO2023037430A1 true WO2023037430A1 (ja) 2023-03-16

Family

ID=85507330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032950 WO2023037430A1 (ja) 2021-09-08 2021-09-08 半導体装置

Country Status (4)

Country Link
JP (1) JPWO2023037430A1 (ja)
CN (1) CN117916891A (ja)
DE (1) DE112021008194T5 (ja)
WO (1) WO2023037430A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169348A (ja) * 2011-02-10 2012-09-06 Denso Corp 半導体装置
WO2014013618A1 (ja) * 2012-07-20 2014-01-23 三菱電機株式会社 半導体装置及びその製造方法
JP2019186510A (ja) * 2018-03-30 2019-10-24 富士電機株式会社 半導体装置、半導体パッケージ、半導体モジュール、および半導体回路装置
JP2020113709A (ja) * 2019-01-16 2020-07-27 株式会社デンソー 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958058B2 (ja) 2017-07-21 2021-11-02 株式会社デンソー 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169348A (ja) * 2011-02-10 2012-09-06 Denso Corp 半導体装置
WO2014013618A1 (ja) * 2012-07-20 2014-01-23 三菱電機株式会社 半導体装置及びその製造方法
JP2019186510A (ja) * 2018-03-30 2019-10-24 富士電機株式会社 半導体装置、半導体パッケージ、半導体モジュール、および半導体回路装置
JP2020113709A (ja) * 2019-01-16 2020-07-27 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JPWO2023037430A1 (ja) 2023-03-16
DE112021008194T5 (de) 2024-07-25
CN117916891A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
US9947741B2 (en) Field-effect semiconductor device having pillar regions of different conductivity type arranged in an active area
US7935983B2 (en) Nitride semiconductor device
US8618557B2 (en) Wide-band-gap reverse-blocking MOS-type semiconductor device
JP4929882B2 (ja) 半導体装置
US8124983B2 (en) Power transistor
KR101252628B1 (ko) 저주파 및 고주파 애플리케이션을 위한 안정한 다이오드
JPH0347593B2 (ja)
JP7394038B2 (ja) 半導体装置
US20230207636A1 (en) High Voltage Blocking III-V Semiconductor Device
KR101236498B1 (ko) 전력 반도체장치
JP2017174863A (ja) 半導体装置
JP6550869B2 (ja) 半導体装置
US10707300B2 (en) Semiconductor device
JP6408405B2 (ja) 半導体装置
WO2023037430A1 (ja) 半導体装置
JP2017017145A (ja) 半導体装置
KR20200039235A (ko) 반도체 소자 및 그 제조 방법
US5710444A (en) Insulated gate bipolar transistor having a coupling element
KR101121702B1 (ko) 반도체 장치
JP2020088054A (ja) パワー半導体装置
US20240088220A1 (en) Semiconductor device
JP2018117084A (ja) 半導体装置および半導体装置の製造方法
US20210066495A1 (en) Power Semiconductor Device and Method
KR20020095435A (ko) Ⅲ-ⅴ족 화합물층을 구비한 반도체 소자
JP2022163582A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546611

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18688228

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180102038.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021008194

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21956727

Country of ref document: EP

Kind code of ref document: A1