WO2023035886A1 - 一种含氯离子废水高值化利用制氯化亚铜的方法 - Google Patents
一种含氯离子废水高值化利用制氯化亚铜的方法 Download PDFInfo
- Publication number
- WO2023035886A1 WO2023035886A1 PCT/CN2022/112968 CN2022112968W WO2023035886A1 WO 2023035886 A1 WO2023035886 A1 WO 2023035886A1 CN 2022112968 W CN2022112968 W CN 2022112968W WO 2023035886 A1 WO2023035886 A1 WO 2023035886A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chloride
- cuprous
- reaction
- cuprous chloride
- containing wastewater
- Prior art date
Links
- 229910021591 Copper(I) chloride Inorganic materials 0.000 title claims abstract description 77
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 title claims abstract description 77
- 229940045803 cuprous chloride Drugs 0.000 title claims abstract description 77
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 title claims abstract description 43
- 239000002351 wastewater Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 83
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims abstract description 51
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229940112669 cuprous oxide Drugs 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000006228 supernatant Substances 0.000 claims abstract description 21
- 239000012043 crude product Substances 0.000 claims abstract description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002253 acid Substances 0.000 claims abstract description 6
- 239000000460 chlorine Substances 0.000 claims description 64
- 229910052801 chlorine Inorganic materials 0.000 claims description 49
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 47
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 42
- 239000010881 fly ash Substances 0.000 claims description 36
- 238000003756 stirring Methods 0.000 claims description 25
- 238000005406 washing Methods 0.000 claims description 24
- 238000010517 secondary reaction Methods 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000005554 pickling Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 238000005660 chlorination reaction Methods 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000004065 wastewater treatment Methods 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 42
- 238000007792 addition Methods 0.000 description 28
- 230000000694 effects Effects 0.000 description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 239000010949 copper Substances 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000011780 sodium chloride Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000006298 dechlorination reaction Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004568 cement Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 238000004056 waste incineration Methods 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000009388 chemical precipitation Methods 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010882 bottom ash Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000005532 trapping Effects 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/04—Halides
- C01G3/05—Chlorides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/38—Treatment of water, waste water, or sewage by centrifugal separation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/38—Treatment of water, waste water, or sewage by centrifugal separation
- C02F1/385—Treatment of water, waste water, or sewage by centrifugal separation by centrifuging suspensions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/74—Treatment of water, waste water, or sewage by oxidation with air
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/18—Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/02—Temperature
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/04—Flow arrangements
- C02F2301/046—Recirculation with an external loop
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/08—Multistage treatments, e.g. repetition of the same process step under different conditions
Definitions
- the invention relates to a method for producing cuprous chloride by high-value utilization of chlorine ion-containing wastewater, in particular to a method for high-value utilization of chloride ion in waste incineration fly ash to produce cuprous chloride, which belongs to the field of wastewater treatment.
- fly ash contains a large amount of organic poisons such as chlorine salts, heavy metals, and dioxins.
- the technical research on fly ash treatment in my country started relatively late. At present, the treatment of fly ash is mainly through stabilized landfill.
- the main components of incineration fly ash are calcium oxide, silicon oxide and other substances, which are similar to cement components and can replace part of cement. Therefore, the existing technology has the technology of further processing fly ash by mixing it into cement.
- the fly ash produced by incineration contains a large amount of chloride ions, which will cause the following hazards when mixed into cement.
- cuprous oxide The principle of silver is expensive, and the dosage of calcium chloroaluminate is difficult to control, which is still in the research stage.
- the cuprous compound is extremely unstable, and it is easy to disproportionate if the pH is too low, and it is easy to oxidize if the pH is too high, and because the product amount is too large, it will cause serious losses in the processes of caustic soda treatment and high-temperature drying for reuse.
- chloride ions actually generate a large amount of sodium chloride waste salt, which still needs to be processed in the next step. Although the effect of recycling is achieved, the economic value is not large.
- the various dechlorination methods at present are mainly enrichment and concentration to be processed in the next step, and there are problems of high cost and poor effect. Chloride ion treatment technology is still lacking, and more green and effective chlorine removal methods need to be developed urgently.
- the existing chlorine removal methods have problems such as high cost and poor effect, especially the process of using cuprous oxide to remove chloride ions has the problems of large amount of chlorine removal, low recovery rate, and serious waste.
- the present invention separates the acid leaching liquid from the fly ash after acid leaching, and then adds cuprous oxide into the acid leaching liquid of the fly ash as a chlorine binder.
- the product of cuprous chloride, the method of the invention greatly reduces the consumption of cuprous oxide, greatly reduces the cost of chlorine ion treatment, improves the purity of cuprous chloride at the same time, enables the resource utilization of chloride ions, and improves economic benefits.
- the present invention provides a method for high-value utilization of chlorine ion-containing wastewater to produce cuprous chloride, the method comprising the following steps:
- step (3) The cuprous chloride crude product obtained in step (1) and step (2) is pickled, washed with alcohol and dried.
- high-value utilization refers to the process of waste resource treatment and reuse.
- the wastewater containing chloride ions includes any wastewater containing chloride ions, for example, fly ash washing liquid obtained from incinerating garbage, copper electrolyte, and the like.
- the concentration of chloride ions in the wastewater containing chloride ions is 10-100 g/L.
- the wastewater containing chloride ions is alkaline (such as fly ash washing liquid), before adjusting its pH to 2-3, it is preferable to pass air 2 into the wastewater system to -4h to make the pH to 7-7.5 for treatment, which can not only save the amount of subsequent acid, but also absorb CO 2 gas in the air and reduce the content of greenhouse gases.
- alkaline such as fly ash washing liquid
- the process of adjusting pH is preferably adjusted by adding sulfuric acid.
- the concentration of the sulfuric acid is 2-8 mol/L.
- sulfuric acid is kept continuously added to keep the pH of the system between 2-3.5.
- the stirring reaction is preferably carried out at room temperature, and the temperature of the room temperature is 10-40°C.
- the cuprous oxide can be purchased from the market or prepared by the following methods: anodic oxidation electrolysis and glucose reduction.
- step (1) in step (1), during one reaction, preferably, cuprous oxide is added in batches, preferably in 3-5 batches.
- step (2) during the secondary reaction, preferably, cuprous oxide is added in batches, preferably in 3-5 batches.
- it is added in 3 to 5 times with an interval of 0.5 to 1 min each time.
- step (1) the reaction is preferably carried out in an oxygen-free environment during one reaction.
- step (2) the reaction is preferably carried out in an oxygen-free environment during the secondary reaction.
- the alcohol washing includes: adding a certain volume of absolute ethanol to continue washing the acid-washed cuprous chloride obtained, centrifuging, and repeating the operation 1 to 2 times to obtain Alcohol wash cuprous chloride.
- step (3) the drying includes, putting the obtained alcohol-washed cuprous chloride into a vacuum drying oven, and drying at 30-100°C for 30-120min to obtain chlorine Cuprous products.
- the supernatant obtained by centrifugation in step (2) can be used as process water such as washing wastewater.
- the present invention also provides a fly ash treatment method, which comprises washing the fly ash with water to obtain a fly ash washing liquid, and then treating the chlorine-containing wastewater by using the above method.
- fly ash refers to waste incineration fly ash (incineration fly ash), specifically the trappings of the flue gas purification system and the bottom ash settled at the bottom of the flue and chimney.
- the present invention also provides a method for treating garbage, the method includes burning garbage, washing the obtained fly ash to obtain a fly ash washing solution, and then using the above method for treating chlorine-containing wastewater to treat.
- the present invention has the following advantages and effects:
- the present invention utilizes cuprous oxide as chlorine removal agent, combines two reactions to remove chlorine, and the final total chlorine removal effect can reach 96%, and obtains the cuprous chloride product of purity more than 95%, has realized chlorine-containing waste water Chlorine removal treatment, and the obtained cuprous chloride can be sold as a by-product, which improves economic benefits.
- the present invention makes the inventive method greatly reduce the consumption of cuprous chloride by improving technique (two-step reaction, maintaining pH stability, adding in batches, anaerobic operation), only uses the theoretical consumption 90 ⁇ 100% of Copper can realize the removal of chloride ions, which greatly reduces the consumption of cuprous oxide compared with the prior art, which is of great significance.
- Fig. 1 cuprous oxide chlorine removal flow chart of the present invention.
- c1, v1 represent initial solution Cl - concentration and volume
- c2, v2 represent solution Cl - concentration and volume after dechlorination
- Determination method of cuprous chloride purity measure according to GB/T 27562-2011 "Industrial Cuprous Chloride” standard method, and verify with ICP at the same time; characterize cuprous chloride by XRD;
- m2 represents the total mass of the product
- m1 represents the total mass of cuprous oxide input.
- Chlorine-containing wastewater is fly ash washing solution, which comes from a waste incineration company in Jiangsu, with a chloride ion concentration of 0.8-1.5mol/L.
- cuprous oxide glucose reduction method: under vigorous stirring, add 10 mL of glucose solution with a concentration of 50 g/L to 50 mL of copper acetate solution with a concentration of 10 g/L and stir for 10 min. Then, 25 mL of a 20 g/L sodium hydroxide solution was added to the mixture at 70° C. and kept stirring for 1 hour. The product was obtained by centrifugation, washed three times with deionized water and absolute ethanol (centrifuge speed 11000r/min), and the product was vacuum-dried at 60°C to constant weight.
- glucose reduction method under vigorous stirring, add 10 mL of glucose solution with a concentration of 50 g/L to 50 mL of copper acetate solution with a concentration of 10 g/L and stir for 10 min. Then, 25 mL of a 20 g/L sodium hydroxide solution was added to the mixture at 70° C. and kept stirring for 1 hour. The product was obtained by centrifugation, washed three times with de
- Electrolysis method Copper plate is used as anode, titanium mesh is used as cathode, salt solution is used as anolyte, CTAB (hexadecyltrimethylammonium bromide) is used as additive, and sodium hydroxide solution is used as cathode.
- the anolyte should be continuously stirred, and the areal current density during the reaction should be controlled to be 30, 40, and 50A/m 2 respectively. After 1 hour of reaction, the anode precipitate is separated, rinsed, filtered, and dried to obtain the finished cuprous oxide.
- (1) Primary reaction: prepare cuprous chloride crude product: get 100ml fly ash water washing solution (Cl - concentration 30g/L), feed air in the system for 4h, detect pH to about 7, add sulfuric acid dropwise to pH to be 2.5, then According to the addition amount of theoretical cuprous oxide (6.05g) 50%, 60%, 70%, 80%, 90%, 100%, 120% (respectively corresponding to NaCl: Cu 2 O 1:0.25, 1:0.3, 1:0.35, 1:0.4, 1:0.45, 1:0.5, 1:0.6) Add Cu 2 O in batches (add in three batches, add 62.5%, 25% and 12.5% of the added amount in sequence, and the addition interval is 1min ), add sulfuric acid continuously during the period to maintain the pH at about 2.5, stir at room temperature for 10min, and centrifuge after the reaction to obtain the cuprous chloride crude product and supernatant, the cuprous chloride crude product is post-treated, and the supernatant is treated for the second time reaction;
- step (2) secondary reaction get the supernatant obtained in step (1), add Cu 2 O so that the total addition of step (1) and step (2) is 96% or 100% of the theoretical addition (in three batches) Add, with the first reaction), the same steps repeat the reaction once, and the cuprous chloride crude product obtained after the reaction is combined with the cuprous chloride crude product obtained in the first reaction;
- the chlorine removal effect obtained by the secondary reaction is shown in Table 2.
- Table 2 Compared with table 1, it can be seen that, under the situation of adding the same amount with one time (even less, one reaction adds 100% or 120%, and the total amount of two times of reaction addition is 96%), cuprous oxide is added in two times to obtain
- the purity of the final product cuprous chloride can reach more than 97%, and the chlorine removal rate can also be as high as 95.8%, which is obviously high
- the effect of adding cuprous oxide 100% at one time the purity of cuprous chloride is 85.46%, and the chlorine removal rate is 88.87%).
- the method of adding cuprous oxide in two reactions is selected to treat the washed fly ash water.
- the first reaction addition is 50%-80% (corresponding to the second reaction addition is 50%-20%)
- the dechlorination effect and purity of more than 95% can be obtained More than 97% cuprous chloride product.
- Example 1 add 80% in the primary reaction and add 16% in the secondary reaction, change the time of the stirring reaction to 2, 5, 8, 10 (Example 1), 12, 15min respectively, and all the other operating steps are the same as in Example 1 , the results are shown in Table 3. It can be seen that when the reaction stirring time is 10 to 15 minutes, the chlorine removal rate can be guaranteed, and the purity of cuprous chloride can not be lower than 96%. Oxidation and disproportionation with cuprous ions, the product purity is slightly reduced, and the time is most preferably controlled at 10 to 12 minutes.
- Example 1 Adding 80% in the primary reaction of Example 1 and adding 16% in the secondary reaction are example, the initial concentration of the chloride ion of changing Example 1 is respectively 10, 40, 50, 100g/L, and all the other operating parameters are consistent with Example 1, The results are shown in Table 5.
- the initial concentration of chloride ion should not be too high, in order to guarantee product purity, control initial concentration below 100g/L, preferably not more than 50g/L, more preferably select below 30g/L.
- step (2) Secondary reaction: get the supernatant obtained in step (1), add Cu 2 O so that the total addition amount of step (1) and step (2) is 96% of the theoretical addition amount (one-time addition), the same The steps are repeated for one reaction, and the crude cuprous chloride obtained after the reaction is combined with the product of the first reaction; after the reaction, the Cl- concentration of the supernatant drops to 2.97g/L, and the chlorine removal effect reaches 90.1%.
- Example 1 the addition of 80% in the first reaction and the addition of 16% in the second reaction are examples, the stirring reaction process is carried out in an oxygen-free environment (passing nitrogen for protection), and other operating steps and parameters are the same as in the embodiment. It was found that after the supernatant was reacted, the Cl - concentration dropped to 1.41g/L, and the dechlorination effect reached 95.3%. Obtained 5.40 g of cuprous chloride product, the yield was 89.4%, and the measured product purity was 98.56%. It can be seen that the anaerobic environment will slightly improve the treatment effect, but the improvement is not obvious.
- Example 1 Taking Example 1 as an example by adding 80% in the primary reaction and adding 16% in the secondary reaction, adjust the pH to be 1, 1.5, 2, 2.5 (Example 1), 3, 3.5 respectively, and the remaining operating steps are the same as in Example 1.
- the results are shown in Table 7.
- the pH of the continuous control system is selected to be 2-3.5, and the most preferred pH is 2-3.
- Reaction conditions initial Cl - (30g/L), room temperature, 10min, stirring speed 400r/min, addition of 80% for the first reaction and 16% for the second reaction.
- Example 1 As an example by adding 80% in the primary reaction and adding 16% in the secondary reaction, change the chlorine-containing waste water in Example 1 to the copper electrolyte for preparing cuprous oxide, the content of chloride ions is 49.7g/L, and there is no need to feed into the air. All the other operating parameters are consistent with Example 1.
- Example 1 adding 80% in the first reaction and adding 16% in the second reaction, add cuprous oxide in batches during the first reaction and the second reaction (adding in 3 to 5 times, each time at an interval of 0.5 to 1min, when divided into 3
- add 10-70%, 10-70%, 10-70% of cuprous oxide in sequence when adding in 4 times, add 10-60%, 10-60%, 10-60%, 10- 60% cuprous oxide; when adding in 5 times, add 10-50%, 10-50%, 10-50%, 10-50%, 10-50% cuprous oxide in turn), and the rest of the operating parameters are implemented in the same way example 1.
- Reaction conditions initial Cl - (30g/L), room temperature, 10min, stirring speed 400r/min, addition of 80% for the first reaction and 16% for the second reaction. Among them, when adding three times, add 62.5%, 25% and 12.5% of the required addition amount respectively, and the addition interval is 1min; when adding four times, add 50%, 25%, 12.5% and 12.5%, the addition interval is 1min; when adding five times, add 30%, 30%, 20%, 10% and 10% of the required addition amount respectively, and the addition interval is 0.5min.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种含氯离子废水高值化利用制氯化亚铜的方法,属于废水处理领域。本发明取含有氯离子的废水,并调节其pH,按照Cl -浓度添加氧化亚铜理论用量的50~80%,期间维持pH在2-3.5,氧化亚铜添加完成后搅拌反应8-15min,离心,得到氯化亚铜粗品和上清液,在得到的上清液中加入氧化亚铜加入量,且两次反应共加入氧化亚铜为理论量的90~100%,期间维持pH,氧化亚铜添加完成后搅拌反应8-12min,反应结束后离心,得到氯化亚铜粗品,酸洗、醇洗、干燥即可。本发明方法大大降低了氧化亚铜用量,大幅减少氯离子处理成本,同时提高了氯化亚铜的纯度,使得氯离子实现了资源化利用,提高了经济效益。
Description
本发明涉及一种含氯离子废水高值化利用制氯化亚铜的方法,尤其涉及一种垃圾焚烧飞灰中氯离子高值化利用制氯化亚铜的方法,属于废水处理领域。
随着城市化进程加快,国内生活垃圾焚烧总规模近100万吨/天,年产生量1000万吨,且以每年5-9%的速度急剧增加。飞灰产生量约3万吨/天,飞灰中含有大量氯盐、重金属、二噁英等有机毒物。我国在飞灰处理的技术研究起步较晚,目前对飞灰处理主要通过稳定化填埋,由于固化/稳定化填埋存在增容量大、长期稳定性差等问题,因而急需开发减容量大、无害化彻底、资源化程度高的飞灰处置关键技术,实现氯盐、重金属、二噁英等有机毒物清洁化处理及资源化利用。
焚烧飞灰主要成分为氧化钙、氧化硅等物质,与水泥成分相似,可替代部分水泥,因此现有技术有通过将其掺入水泥以进一步处理飞灰的技术。但焚烧生成的飞灰中包含了大量的氯离子,掺入水泥中会产生如下危害,(1)腐蚀作用:溶液中氯离子能够不同程度的破坏金属以及合金表层钝化膜,使其产生晶间腐蚀、缝隙腐蚀以及点蚀等,影响工业设备的正常运行,产生安全隐患。(2)影响建筑物正常寿命:当混凝土中氯离子含量较大时,将腐蚀其中的钢筋,会使混凝土膨胀、疏松,降低了其抗化学腐蚀、耐磨性和强度,破坏建筑结构。(3)对人体的毒性:高含氯量的飞灰在后续处理时对工人人体代谢、气管、皮肤等方面产生毒性反应,严重时还可致癌。
现有针对飞灰中的氯离子的处理还有其他方法,例如利用氯离子有水溶性高的特点,通过水洗可洗出大部分的氯离子,但是仍需进一步处理含氯废水。含氯废水目前常用处理方法有离子交换法、蒸发浓缩法、化学沉淀法、电化学法。离子交换树脂吸附过程中存在管道易堵塞,吸附终点和解吸终点无法及时准确地确定等问题,蒸发浓缩和电化学法耗能高,不适合大量废水处理。化学沉淀法有银沉淀法、氯铝酸钙和铜粉法,银原理价格昂贵,氯铝酸钙投加量难以控制,尚处于研究阶段。现有也有通过氧化亚铜来除去氯离子的工艺,但是氧化亚铜除氯用量较大,一般为理论氧化亚铜用量的2~6倍,在氧化亚铜充分过量的情况下达到96%甚至更高的除氯效果,将得到的氧化亚铜与氯化亚铜混合物用火碱处理得到氢氧化亚铜,高温脱水得到氧化亚铜回用。但亚铜化合物极不稳定,pH过低容易歧化,pH过高易氧化,且由于产物量过大,在回用的火碱处理,高温干燥等过程中造成严重损失。另外氯离子其实生成大量的氯化钠废盐,仍需下一步处理。虽达到循环利用的效果,但经济价值不大。总的 来看,目前各种除氯方法主要是富集浓缩待下一步处理,并存在成本过高,效果欠佳的问题。氯离子处理技术还很欠缺,亟待研发出更多绿色有效的除氯方法。
发明内容
现有除氯方法存在成本高、效果差等问题,尤其是利用氧化亚铜来除去氯离子的工艺存在除氯用量较大且回收率低,浪费严重的问题。
[技术方案]
为了解决上述问题,本发明将飞灰酸浸后经固液分离得到酸浸液,再将氧化亚铜作为氯结合剂加入到飞灰酸浸液中,经过分步处理得到高纯度具有一定价值的产物氯化亚铜,本发明方法大大降低了氧化亚铜用量,大幅减少氯离子处理成本,同时提高了氯化亚铜的纯度,使得氯离子实现了资源化利用,提高了经济效益。
具体的,本发明提供了一种含氯离子废水高值化利用制氯化亚铜的方法,所述方法包括以下步骤:
(1)一次反应:取含有氯离子的废水,并调节其pH为2~3.5,之后按照Cl
-浓度添加氧化亚铜理论用量的50~80%,期间维持pH在2-3.5,氧化亚铜添加完成后搅拌反应8-15min,反应结束后离心,得到氯化亚铜粗品和上清液,上清液待二次反应;
(2)二次反应:在步骤(1)得到的上清液中加入氧化亚铜加入量,且一次反应和二次反应共加入氧化亚铜为理论量的90~100%,期间维持pH在2-3.5,氧化亚铜添加完成后搅拌反应8-12min,反应结束后离心,得到氯化亚铜粗品;
(3)将步骤(1)和步骤(2)得到的氯化亚铜粗品进行酸洗、醇洗、干燥即可。
在本发明的一种实施方式中,高值化利用是指:废弃物资源化处理、再利用的过程。
在本发明的一种实施方式中,所述含有氯离子的废水包括任意含有氯离子的废水,例如,焚烧垃圾等得到的飞灰水洗液,铜电解液等。
在本发明的一种实施方式中,所述含有氯离子的废水中氯离子浓度为10-100g/L。
在本发明的一种实施方式中,当所述含有氯离子的废水呈碱性时(例如飞灰水洗液),调节其pH为2~3之前,优选先通过在废水体系中通入空气2-4h使其pH到7-7.5的方式来进行处理,既能够节约后续酸的用量,又能吸收空气中的CO
2气体,减少温室气体的含量。
在本发明的一种实施方式中,调节pH的过程优选添加硫酸进行调节。
在本发明的一种实施方式中,所述硫酸的浓度为2-8mol/L。
在本发明的一种实施方式中,硫酸保持持续加入,维持体系pH恒定在2-3.5之间。
在本发明的一种实施方式中,所述搅拌反应优选在室温下进行,所述室温的温度为 10~40℃。
在本发明的一种实施方式中,所述氧化亚铜可以市购或者通过以下方法制备得到:阳极氧化电解法和葡萄糖还原法。
在本发明的一种实施方式中,步骤(1)中,一次反应过程中,优选的,氧化亚铜分批添加,优选分3~5批添加。
在本发明的一种实施方式中,步骤(2)中,二次反应过程中,优选的,氧化亚铜分批添加,优选分3~5批添加。
在本发明的一种实施方式中,分3~5次加入,每次间隔0.5~1min,当分3次加入时,依次加入该次反应加入量的10~70%、10~70%、10~70%的氧化亚铜;当分4次加入时,依次加入该次反应加入量的10~60%、10~60%、10~60%、10~60%的氧化亚铜;当分5次加入时,依次加入该次反应加入量的10~50%、10~50%、10~50%、10~50%、10~50%的氧化亚铜。
在本发明的一种实施方式中,步骤(1)中,一次反应过程中优选在无氧环境下进行反应。
在本发明的一种实施方式中,步骤(2)中,二次反应过程中优选在无氧环境下进行反应。
在本发明的一种实施方式中,步骤(3)中,所述酸洗包括:加入一定体积pH=2~3的硫酸溶液洗涤氯化亚铜粗品,再次离心,重复操作1~3次,得到酸洗氯化亚铜。
在本发明的一种实施方式中,步骤(3)中,所述醇洗包括:加入一定体积的无水乙醇继续洗涤得到的酸洗氯化亚铜,离心,重复操作1~2次,得到醇洗氯化亚铜。
在本发明的一种实施方式中,步骤(3)中,所述干燥包括,将得到的醇洗氯化亚铜放入真空干燥箱中,于30~100℃,干燥30~120min,得到氯化亚铜产品。
在本发明的一种实施方式中,步骤(2)中离心得到的上清液可作为水洗废水等工艺用水。
本发明还提供了一种飞灰处理方法,所述方法包括水洗飞灰得到飞灰水洗液,再利用上述处理含氯废水的方式进行处理。
在本发明的一种实施方式中,飞灰是指垃圾焚烧飞灰(incineration fly ash),具体是烟气净化系统捕集物和烟道及烟囱底部沉降的底灰。
本发明还提供了一种垃圾处理的方法,所述方法包括焚烧垃圾,将得到的飞灰进行水洗得到飞灰水洗液,再利用上述处理含氯废水的方式进行处理。
本发明相对于现有技术,具有以下的优点和效果:
(1)本发明利用氧化亚铜作为除氯剂,结合两次反应除氯,最终总除氯效果可达96%,且得到纯度95%以上的氯化亚铜产品,实现了含氯废水的除氯处理,且得到的氯化亚铜可以作为副产物进行售卖,提高了经济效益。
(2)本发明通过改进工艺(两步反应、维持pH稳定、分批加入、无氧操作)使得本发 明方法大大减少了氯化亚铜的用量,仅使用理论用量90~100%的氧化亚铜即可实现氯离子的脱除,较现有技术极大的减少了氧化亚铜的用量,具有十分重要的意义。
图1本发明的氧化亚铜除氯流程图。
氯离子的测定以及除氯率的计算公式:雷磁PXSJ-216F离子计
式(1)中c1、v1代表初始溶液Cl
-浓度和体积,c2、v2代表除氯后溶液Cl
-浓度和体积
氯化亚铜纯度的测定方法:按照GB/T 27562-2011《工业氯化亚铜》标准中方法测定,同时用ICP验证;通过XRD对氯化亚铜进行表征;
式(2)中m2代表产物总质量,m1代表投入氧化亚铜总质量。
下面结合实施例对本发明作进一步的描述,但本发明的实施方式不限于此。
含氯废水为飞灰水洗液,来自于江苏某垃圾焚烧厂公司,氯离子浓度为0.8-1.5mol/L。
氧化亚铜的制备方法:葡萄糖还原法:在剧烈搅拌下将溶液10mL浓度50g/L葡萄糖溶液加入到溶液50mL浓度为10g/L乙酸铜溶液中并搅拌10min。然后,在70℃下向该混合物中加入25mL浓度为20g/L氢氧化钠溶液并保持搅拌1小时。离心得到产物,用去离子水和无水乙醇冲洗3次(离心机转速11000r/min),产物在60℃下真空干燥至恒重。
电解法:铜板作阳极,钛网作阴极,食盐溶液作阳极电解液,CTAB(十六烷基三甲基溴化铵)为添加剂,阴极用氢氧化钠溶液。反应过程中阳极液要不断搅拌,分别控制反应时的面电流密度为30、40、50A/m
2。反应1h后阳极沉淀经分离、漂洗、过滤、于燥后即为成品氧化亚铜。
实施例1
(1)一次反应:制备氯化亚铜粗品:取100ml飞灰水洗液(Cl
-浓度30g/L),体系中通入空气4h,检测pH到7左右,滴加硫酸至pH为2.5,后分别按照理论氧化亚铜(6.05g)50%、60%、70%、80%、90%、100%、120%的添加量(分别对应NaCl:Cu
2O=1:0.25、1:0.3、1:0.35、1:0.4、1:0.45、1:0.5、1:0.6)分批加入Cu
2O(分三批加入,依次加入添加量的62.5%、25%和12.5%,添加间隔为1min),期间不断补加硫酸维持pH在2.5左右,在室温下搅拌10min,反应结束后离心,得到氯化亚铜粗品和上清液,氯化亚铜粗品进行后处理,上清液待二次反应;
(2)二次反应:取步骤(1)得到的上清液,添加Cu
2O使得步骤(1)和步骤(2)总的添加量为理论添加量的96%或100%(分三批添加,同第一次反应),同样步骤重复一次反应,反应后得氯化亚铜粗品与一次反应得的氯化亚铜粗品进行合并处理;
(3)产品后处理:酸洗:加入80mLpH=2.6的硫酸溶液洗涤上述粗品,再次离心,重复操作2次,得到酸洗氯化亚铜;醇洗:加入80ml的无水乙醇继续洗涤上述氯化亚铜,离心,重复操作2次,得到醇洗氯化亚铜;干燥:将上述氯化亚铜放入真空干燥箱中,于45℃,干燥60min,得到氯化亚铜产品。余氯的上清液可以回用洗飞灰。
此实施例的一次反应的结果见表1。综合考虑产物纯度和产率的影响因素,当NaCl:Cu
2O≥1:0.5时,尽管除氯效果有一定的提升,但是产品氯化亚铜的纯度却明显下降,因此,选择以NaCl:Cu
2O=1:0.25~0.45即一次反应按照Cu
2O理论量的50~90%添加,剩余氯离子进行二次反应。
表1 一次反应的摩尔量比对除氯效果以及氯化亚铜的影响
NaCl:Cu 2O | 1:0.25 | 1:0.3 | 1:0.35 | 1:0.4 | 1:0.45 | 1:0.5 | 1:0.6 |
除氯率(%) | 48.39 | 58.18 | 68.13 | 76.24 | 84.75 | 88.87 | 89.66 |
产品纯度(%) | 98.15 | 98.04 | 98.18 | 98.14 | 95.03 | 85.46 | 78.38 |
产品产率(%) | 83.13 | 83.63 | 85.9 | 87.8 | 86.39 | 88.52 | 90.63 |
反应条件:初始Cl
-(30g/L),pH值=2.5,室温,10min,搅拌速度400r/min。
二次反应得到的除氯效果见表2。与表1相比,可见,在与一次加入等量的情况下(甚至更少,一次反应加入100%或120%,两次反应加入总量为96%),氧化亚铜分两次加入得到了更好的除氯效果和更高的产物浓度,以80%+20%为例,最终得到的产物氯化亚铜的纯度可达97%以上,除氯率也可以高达95.8%,明显高于一次100%添加氧化亚铜的效果(氯化亚铜纯度为85.46%,除氯率为88.87%)。因此,选择两次反应添加氧化亚铜的方法处理水洗飞灰水。此外,从表2还可以看出,第一次反应加入量在50%-80%(对应第二次反应加入量为50%-20%)时,可以得到95%以上的除氯效果和纯度97%以上的氯化亚铜产物。以80%+20%为例,当第二次适当少的添加(16%)氧化亚铜时,虽然会降低稍稍降低除氯率但同时可以小幅提高产物纯度,因此,为了节约成本,优选80%+16%的投加方式。
表2 二次反应的摩尔量比对除氯效果以及氯化亚铜的影响
NaCl:Cu 2O | 1:0.25 | 1:0.2 | 1:0.15 | 1:0.1 | 1:0.08 | 1:0.05 |
对应一次反应 | 1:0.25 | 1:0.3 | 1:0.35 | 1:0.4 | 1:0.4 | 1:0.45 |
除氯率(%) | 48.63 | 38.91 | 29.36 | 19.56 | 18.86 | 9.85 |
产品纯度(%) | 96.05 | 96.39 | 96.14 | 96.26 | 96.61 | 92.14 |
产品产率(%) | 91.25 | 91.42 | 90.89 | 90.52 | 89.53 | 89.21 |
反应条件:初始Cl
-(30g/L),pH值=2.5,室温,10min,搅拌速度400r/min。
实施例2
以实施例1一次反应添加80%、二次反应添加16%为例,改变搅拌反应的时间分别为2、5、8、10(实施例1)、12、15min,其余操作步骤同实施例1,结果见表3。可见,当反应搅拌时间为10~15min时,既可以保证除氯率,又能保证氯化亚铜纯度不低于96%,反应效果在10min左右达到最佳,之后继续反应导致氯离子的释放和亚铜离子氧化和歧化,使产品纯度略有降低,时间最优选控制在10~12min。
表3 反应搅拌时间对总除氯效果以及氯化亚铜的影响
T/min | 2 | 5 | 8 | 10 | 12 | 15 |
除氯率(%) | 62.19 | 82.74 | 90.64 | 95.10 | 95.10 | 92.47 |
产品纯度(%) | 67.42 | 84.95 | 93.10 | 97.89 | 97.55 | 96.54 |
产品产率(%) | 94.92 | 92.43 | 89.34 | 88.1 | 87.5 | 87.7 |
反应条件:初始Cl
-(30g/L),pH值=2.5,室温,搅拌速度400r/min,添加80%+16%。
实施例3
以实施例1一次反应添加80%、二次反应添加16%为例,改变实施例1的反应搅拌速度为200r/min和600r/min,其余操作参数和实施例1一致,结果见表4,可见,搅拌速度对产品影响较小。
表4 搅拌速度对对总分批除氯效果以及氯化亚铜的影响
r/min | 200 | 400 | 600 |
除氯率(%) | 95.02 | 95.10 | 95.05 |
产品纯度(%) | 97.73 | 97.89 | 97.84 |
产品产率(%) | 88.6 | 88.1 | 88.3 |
反应条件:初始Cl
-(30g/L),pH值=2.5,室温,搅拌反应10min。
实施例4
以实施例1一次反应添加80%、二次反应添加16%为例,改变实施例1的氯离子的初始浓度分别为10、40、50、100g/L,其余操作参数和实施例1一致,结果见表5。
可见,氯离子的初始浓度不宜过高,为了保证产品纯度,控制初始浓度在100g/L以下,最好不要超过50g/L,更优选选择30g/L以下。
表5 Cl
-浓度对对总除氯效果以及氯化亚铜的影响
g/L | 10 | 30 | 40 | 50 | 100 |
除氯率(%) | 96.23 | 95.10 | 94.58 | 93.71 | 90.53 |
产品纯度(%) | 97.93 | 97.89 | 97.59 | 95.87 | 93.68 |
产品产率(%) | 88.2 | 88.1 | 89.2 | 89.7 | 91.4 |
反应条件:pH值=2.5,室温,10min,搅拌速度400r/min。
实施例5
(1)一次反应:制备氯化亚铜粗品:取100ml飞灰水洗液(Cl
-浓度30g/L),体系中通入空气4h,检测pH到7左右,滴加硫酸至pH在2.5,后按照理论氧化亚铜(6.05g)80%的添加量加入Cu
2O(一次性加入),期间不断补加硫酸维持pH在2.5左右,在室温下搅拌10min,反应结束后离心,得到氯化亚铜粗品和上清液,氯化亚铜粗品进行后处理,上清液待二次反应;
(2)二次反应:取步骤(1)得到的上清液,添加Cu
2O使得步骤(1)和步骤(2)总的添加量为理论添加量的96%(一次性加入),同样步骤重复一次反应,反应后得氯化亚铜粗品与一次反应产物合并处理;上清液反应后Cl
-浓度降至2.97g/L,除氯效果达到90.1%。
(3)产品后处理:酸洗:加入80ml pH=2.6的硫酸溶液洗涤上述粗品,再次离心,重复操作2次,得到酸洗氯化亚铜;醇洗:加入一定体积的无水乙醇继续洗涤上述氯化亚铜,离心,重复操作2次,得到醇洗氯化亚铜;干燥:将上述氯化亚铜放入真空干燥箱中,于45℃,干燥60min,得到氯化亚铜产品,得到氯化亚铜产品5.15g,产率85.2%,测得产品纯度为95.16%,反应液合并用于水洗飞灰。
实施例6
以实施例1一次反应添加80%、二次反应添加16%为例,搅拌反应过程在无氧环境下进行(通入氮气进行保护),其他操作步骤和参数同实施例。结果发现,上清液反应后Cl
-浓度降至1.41g/L,除氯效果达到95.3%。得到氯化亚铜产品5.40g,产率89.4%,测得产品纯度为98.56%。可见,无氧环境会稍微提高处理效果,但是提升不明显。
实施例7
备氯化亚铜粗品:取100ml飞灰水洗液(Cl
-浓度30g/L),体系中通入空气4h,检测pH到7左右,滴加硫酸至pH为0.5、1、1.5和2,后分别按照理论NaCl:Cu
2O=1:0.5分批加入Cu
2O(分三批加入,依次加入添加量的62.5%、25%和12.5%,添加间隔为1min),期间分别不断补加硫酸维持pH或一次添加硫酸(硫酸总量一致),在室温下搅拌10min,反应结束后离心,得到氯化亚铜粗品和上清液,氯化亚铜粗品进行后处理。
结果见表6,可以看出同样量的硫酸情况下,当采用将硫酸持续加入以维持体系pH值稳定状态可以得到更好的除氯效果和纯度更高的产品。
表6 硫酸一次加入和持续加入的对比
反应条件:初始Cl
-(30g/L),摩尔量比(NaCl:Cu
2O=1:0.5),室温,10min,搅拌速度400r/min。注:持续调节是将一次调节为0.5时的硫酸量分批持续加入,使体系pH值保持恒定。
实施例8
以实施例1一次反应添加80%、二次反应添加16%为例,调节pH分别为1、1.5、2、2.5(实施例1)、3、3.5,其余操作步骤同实施例1,结果见表7。综合考虑除氯效果和产物纯度两方面因素,选择持续控制体系pH为2-3.5,最优选pH为2~3。
表7 pH值对二次总反应的影响
pH值 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 |
除氯率(%) | 96.79 | 96.02 | 95.84 | 95.10 | 94.98 | 93.29 |
产品纯度(%) | 86.54 | 94.21 | 97.32 | 97.89 | 97.73 | 97.32 |
产品产率(%) | 87.42 | 86.75 | 86.3 | 88.1 | 88.26 | 88.28 |
反应条件:初始Cl
-(30g/L),室温,10min,搅拌速度400r/min,一次反应添加80%、二次反应添加16%。
实施例9
以实施例1一次反应添加80%、二次反应添加16%为例,改变实施例1的含氯废水为制备氧化亚铜的铜电解液,氯离子含量49.7g/L,无需通入空气,其余操作参数和实施例1一致。按照理论氧化亚铜添加量(10.02g)的80%+16%分批加入,上清液反应后Cl
-浓度降至2.2g/L,除氯效果达到95.2%。得到氯化亚铜产品8.95g,产率89.3%,测得产品纯度为98.63%。表明此方法不仅适用于飞灰水洗液,也适用于其他含氯废水的处理。
实施例10
以实施例1一次反应添加80%、二次反应添加16%为例,一次反应和二次反应过程中分批加入氧化亚铜(分3~5次加入,每次间隔0.5~1min,当分3次加入时,依次加入10~70%、10~70%、10~70%的氧化亚铜;当分4次加入时,依次加入10~60%、10~60%、10~60%、10~60%的氧化亚铜;当分5次加入时,依次加入10~50%、10~50%、10~50%、10~50%、10~50%的氧化亚铜),其余操作参数同实施例1。
经过检测,除氯率达95%以上;氯化亚铜产率88%以上、纯度97%以上。
表8 分批添加的次数对二次总反应的影响
次数 | 3 | 4 | 5 |
除氯率(%) | 95.10 | 95.12 | 95.09 |
产品纯度(%) | 97.89 | 97.88 | 97.90 |
产品产率(%) | 88.10 | 88.12 | 88.10 |
反应条件:初始Cl
-(30g/L),室温,10min,搅拌速度400r/min,一次反应添加80%、二次反应添加16%。其中,分三次添加时,分别添加所需添加量的62.5%、25%和12.5%,添加间隔为1min;分四次添加时,分别添加所需添加量的50%、25%、12.5%和12.5%,添加间隔为1min;分五次添加时,分别添加所需添加量的30%、30%、20%、10%和10%,添加间隔为0.5min。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
Claims (10)
- 一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,所述方法包括以下步骤:(1)一次反应:取含有氯离子的废水,并调节其pH为2~3.5,之后按照Cl -浓度添加氧化亚铜理论用量的50~80%,期间维持pH在2-3.5,氧化亚铜添加完成后搅拌反应8-15min,反应结束后离心,得到氯化亚铜粗品和上清液,上清液待二次反应;(2)二次反应:在步骤(1)得到的上清液中加入氧化亚铜加入量,且一次反应和二次反应共加入氧化亚铜为理论量的90~100%,期间维持pH在2-3.5之间,氧化亚铜添加完成后搅拌反应8-12min,反应结束后离心,得到氯化亚铜粗品;(3)将步骤(1)和步骤(2)得到的氯化亚铜粗品进行酸洗、醇洗、干燥即可。
- 根据权利要求1所述的一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,所述含有氯离子的废水中氯离子浓度为10-100g/L。
- 根据权利要求1所述的一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,所述调节其pH为2~3.5通过添加硫酸调节,硫酸保持持续加入,维持体系pH恒定在2-3.5之间。
- 根据权利要求1所述的一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,步骤(1)和步骤(2)中反应的温度为10~40℃。
- 根据权利要求1所述的一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,一次反应和二次反应过程中,氧化亚铜分批添加。
- 根据权利要求5所述的一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,所述分批添加包括分3~5批添加,每次间隔0.5~1min。
- 根据权利要求1所述的一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,步骤(1)中,一次反应或二次反应过程中在无氧环境下进行反应。
- 根据权利要求1~7任一项所述的一种含氯离子废水高值化利用制氯化亚铜的方法,其特征在于,步骤(3)中,所述酸洗包括:加入一定体积pH=2~3的硫酸溶液洗涤氯化亚铜粗品,再次离心,重复操作1~3次,得到酸洗氯化亚铜;所述醇洗包括:加入一定体积的无水乙醇继续洗涤得到的酸洗氯化亚铜,离心,重复操作1~2次,得到醇洗氯化亚铜。
- 一种飞灰处理方法,其特征在于,所述方法包括水洗飞灰得到飞灰水洗液,再利用权利要求1~8任一项所述的一种含氯离子废水高值化利用制氯化亚铜的方法进行处理。
- 一种垃圾处理的方法,其特征在于,首先焚烧垃圾,然后将得到的飞灰进行水洗得到飞灰水洗液,再利用权利要求1~8任一项所述的一种含氯离子废水高值化利用制氯化亚铜的方法进行处理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/221,356 US20230365426A1 (en) | 2021-09-13 | 2023-07-12 | Method for Preparing Cuprous Chloride by High-value Utilization of Chloride Ion-containing Wasterwater |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111068623.9A CN113800677B (zh) | 2021-09-13 | 2021-09-13 | 一种含氯离子废水高值化利用制氯化亚铜的方法 |
CN202111068623.9 | 2021-09-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/221,356 Continuation US20230365426A1 (en) | 2021-09-13 | 2023-07-12 | Method for Preparing Cuprous Chloride by High-value Utilization of Chloride Ion-containing Wasterwater |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023035886A1 true WO2023035886A1 (zh) | 2023-03-16 |
Family
ID=78940967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/112968 WO2023035886A1 (zh) | 2021-09-13 | 2022-08-17 | 一种含氯离子废水高值化利用制氯化亚铜的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230365426A1 (zh) |
CN (1) | CN113800677B (zh) |
WO (1) | WO2023035886A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113526747B (zh) * | 2021-08-30 | 2022-10-11 | 江苏理工学院 | 一种pta残渣高浓度含溴废水高值化利用的方法 |
CN113800677B (zh) * | 2021-09-13 | 2022-08-05 | 江苏理工学院 | 一种含氯离子废水高值化利用制氯化亚铜的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005174A (en) * | 1974-06-17 | 1977-01-25 | Fernand Jacques Joseph Bodson | Process for the elimination of chloride from zinc sulphate solutions |
JP2005047776A (ja) * | 2003-07-31 | 2005-02-24 | Sumitomo Metal Mining Co Ltd | 非鉄金属硫酸酸性溶液中の塩素イオン低減方法 |
US20060006115A1 (en) * | 2004-07-08 | 2006-01-12 | Chen-Hung Hsien | Method of fluoride-containing wastewater treatment |
CN101285119A (zh) * | 2008-05-23 | 2008-10-15 | 祥云县飞龙实业有限责任公司 | 一种锌电解溶液中除氯的方法 |
CN103993173A (zh) * | 2014-05-23 | 2014-08-20 | 中国恩菲工程技术有限公司 | 用于氢氧化镍钴除氯的方法 |
CN109371259A (zh) * | 2018-11-13 | 2019-02-22 | 衡阳市大宇锌业有限公司 | 一种从硫酸锌溶液中去除氯的方法 |
CN112062148A (zh) * | 2020-09-09 | 2020-12-11 | 东华大学 | 一种利用电镀线路板废水含铜污泥制取氯化亚铜的方法 |
CN113526747A (zh) * | 2021-08-30 | 2021-10-22 | 江苏理工学院 | 一种pta残渣高浓度含溴废水高值化利用的方法 |
CN113800677A (zh) * | 2021-09-13 | 2021-12-17 | 江苏理工学院 | 一种含氯离子废水高值化利用制氯化亚铜的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107055868A (zh) * | 2017-04-24 | 2017-08-18 | 北京晞柯源环保科技有限公司 | 一种含高浓度氯离子工业废水的处理方法 |
CN108147577A (zh) * | 2017-12-07 | 2018-06-12 | 青岛华拓科技有限公司 | 一种污水处理方法及污水处理剂 |
CN109536720A (zh) * | 2018-12-17 | 2019-03-29 | 广州科城环保科技有限公司 | 一种硫酸铜溶液中氯的脱除方法 |
-
2021
- 2021-09-13 CN CN202111068623.9A patent/CN113800677B/zh active Active
-
2022
- 2022-08-17 WO PCT/CN2022/112968 patent/WO2023035886A1/zh active Application Filing
-
2023
- 2023-07-12 US US18/221,356 patent/US20230365426A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005174A (en) * | 1974-06-17 | 1977-01-25 | Fernand Jacques Joseph Bodson | Process for the elimination of chloride from zinc sulphate solutions |
JP2005047776A (ja) * | 2003-07-31 | 2005-02-24 | Sumitomo Metal Mining Co Ltd | 非鉄金属硫酸酸性溶液中の塩素イオン低減方法 |
US20060006115A1 (en) * | 2004-07-08 | 2006-01-12 | Chen-Hung Hsien | Method of fluoride-containing wastewater treatment |
CN101285119A (zh) * | 2008-05-23 | 2008-10-15 | 祥云县飞龙实业有限责任公司 | 一种锌电解溶液中除氯的方法 |
CN103993173A (zh) * | 2014-05-23 | 2014-08-20 | 中国恩菲工程技术有限公司 | 用于氢氧化镍钴除氯的方法 |
CN109371259A (zh) * | 2018-11-13 | 2019-02-22 | 衡阳市大宇锌业有限公司 | 一种从硫酸锌溶液中去除氯的方法 |
CN112062148A (zh) * | 2020-09-09 | 2020-12-11 | 东华大学 | 一种利用电镀线路板废水含铜污泥制取氯化亚铜的方法 |
CN113526747A (zh) * | 2021-08-30 | 2021-10-22 | 江苏理工学院 | 一种pta残渣高浓度含溴废水高值化利用的方法 |
CN113800677A (zh) * | 2021-09-13 | 2021-12-17 | 江苏理工学院 | 一种含氯离子废水高值化利用制氯化亚铜的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230365426A1 (en) | 2023-11-16 |
CN113800677A (zh) | 2021-12-17 |
CN113800677B (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023035886A1 (zh) | 一种含氯离子废水高值化利用制氯化亚铜的方法 | |
CN106910959B (zh) | 一种从磷酸铁锂废料中选择性回收锂的方法 | |
CN1237192C (zh) | 硫酸锰溶液的深度净化方法 | |
WO2020233104A1 (zh) | 一种pcb硝酸型退锡废液的再生回用方法 | |
CN106834722B (zh) | 一种利用氢氧化钴镍冶炼渣和钛白废酸中和提取氧化铁、氧化铝、氧化钪的方法 | |
WO2022041845A1 (zh) | 一种镍钴锰溶液中除氟的回收方法 | |
CN103937973B (zh) | 一种有机-无机复合还原软锰矿的方法 | |
CN105238932B (zh) | 钴锰废料中钴和锰的分离回收方法 | |
CN103526021A (zh) | 一种锌冶炼浸出液净化除钴方法及其所用净化剂 | |
CN107354484A (zh) | 一种脱除锌电解废液中氯的方法 | |
WO2023036053A1 (zh) | 一种高盐固废灰与钢铁厂酸性废水协同处理的方法及处理系统 | |
CN113060754B (zh) | 掺杂型亚铜除氯剂及其制备方法和应用 | |
CN105274345B (zh) | 分离回收钴锰废料中钴和锰的方法 | |
CN108178370B (zh) | 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法 | |
CN111333741B (zh) | 一种高分子化合物除氯剂及其制备方法 | |
CN116259811B (zh) | 一种钒酸钠溶液制备钒电解液的方法 | |
JP2554113B2 (ja) | 高濃度塩化クロム溶液の製造方法 | |
CN112723493A (zh) | 一种四氧化三钴/氧化镁-钛复合电极及其制备方法和应用、含氨氮废水的处理方法 | |
CN116640928A (zh) | 一种氯化蒸馏锗残渣与铅锌冶炼酸性废水协同处置的方法 | |
CN105983707A (zh) | 一种从含铼高砷铜硫化物中制备高纯铼粉的方法 | |
JP4154052B2 (ja) | 硫酸第2鉄溶液の製造方法 | |
CN104528716A (zh) | 一种盐酸钢铁酸洗废液资源化利用技术 | |
CN110563016B (zh) | 一种利用白钨渣处理含氟氯废气的方法 | |
CN109250802B (zh) | 一种电镀废水综合处理工艺 | |
CN106319229A (zh) | 一种从银生产废液中的银颗粒回收银的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22866359 Country of ref document: EP Kind code of ref document: A1 |