WO2023035638A1 - 一种聚合物固态电解质及应用 - Google Patents

一种聚合物固态电解质及应用 Download PDF

Info

Publication number
WO2023035638A1
WO2023035638A1 PCT/CN2022/091132 CN2022091132W WO2023035638A1 WO 2023035638 A1 WO2023035638 A1 WO 2023035638A1 CN 2022091132 W CN2022091132 W CN 2022091132W WO 2023035638 A1 WO2023035638 A1 WO 2023035638A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
conjugated
polymer solid
block polymer
polymer
Prior art date
Application number
PCT/CN2022/091132
Other languages
English (en)
French (fr)
Inventor
晁流
杨凡
Original Assignee
南京博驰新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京博驰新能源股份有限公司 filed Critical 南京博驰新能源股份有限公司
Publication of WO2023035638A1 publication Critical patent/WO2023035638A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of electrochemical energy storage, and relates to a polymer electrolyte material with ion transport capability and its application.
  • lithium-ion batteries have developed rapidly. Due to their excellent energy storage performance, cycle performance and rate performance, they have been widely used in the consumer electronics industry, power vehicles, and energy storage industries. With the continuous improvement of product demand, batteries are also constantly being developed and updated, and solid-state lithium-ion batteries are the development direction of the next generation of lithium-ion batteries.
  • High-quality solid electrolyte materials must have the following conditions:
  • solid-state electrolytes include sulfides, oxides, polymers, etc.
  • sulfide solid-state electrolytes have high room temperature conductivity, their intrinsic stability is poor, and the production and use conditions are very demanding, which is not conducive to commercialization.
  • oxide solid electrolyte has good ionic conductivity, the material is hard and brittle, and has a large interface resistance.
  • Traditional polymer solid electrolytes mainly transfer ions by segmental movement, are easy to process and have low interface impedance, but the conductivity of polymer solid electrolytes at room temperature is generally low, and must be used under heating conditions. Therefore, it is an important research and development direction to develop a polymer solid electrolyte material with high room temperature conductivity, easy processing, and low interfacial impedance.
  • the present invention provides a polymer solid electrolyte to meet the needs of lithium batteries.
  • the present invention provides a polymer solid electrolyte comprising a polymer and at least one electrolyte salt; the polymer consists of a plurality of conjugated units/segments and non-conjugated units / segment composition; the general formula is R-(A n -B m ) k -R; in the general formula, the A n is a conjugated unit/segment with fully delocalized electrons, and the B m As a non-conjugated unit/segment, there are no fully delocalized electrons within the main chain.
  • n is an integer greater than or equal to 1 and less than or equal to 6
  • m is an integer greater than or equal to 0 and less than or equal to 10
  • k is an integer greater than or equal to 1 and less than or equal to 1000.
  • the conjugated structure in An can be a chain structure or a ring structure.
  • the ring structure can be an aromatic ring or a heteroatom ring.
  • the heteroatom contained in the heteroatom ring can be sulfur , nitrogen, oxygen, boron.
  • the conjugated unit A may be a 1-4 ring structure:
  • A may be the above ring structure, or a combination of the above multiple ring structures.
  • the conjugated unit/segment An may also contain different side chains Rs to improve the physical properties of the material, including crystallinity, solubility, melting temperature, processability and the like.
  • the conjugated unit/segment An can form and transport holes. Cations and anions can migrate across conjugated units/segments.
  • the non-conjugated unit B can be an ether group, a thioether group, an ester group, a carbonate group, a phenylene ether group, a phenylene sulfide group, a propenyl group, etc., such as:
  • R in the general formula of the polymer can be a common capping group such as an alkane group, an ether group, an ester group or hydrogen.
  • the cations in the electrolyte salt contain monovalent cations or divalent metal cations, and further, the cations may be lithium ions.
  • the anions in the electrolyte salt are hexafluorophosphate ion PF 6 - , bistrifluoromethanesulfonimide anion TFSI - , bisoxalate borate anion BOB - , tetrafluoroborate ion BF 4 - , difluorooxalic acid
  • hexafluorophosphate ion PF 6 - bistrifluoromethanesulfonimide anion TFSI -
  • bisoxalate borate anion BOB - bisoxalate borate anion BOB -
  • tetrafluoroborate ion BF 4 - tetrafluoroborate ion BF 4 -
  • difluorooxalic acid One or more of boric acid anion ODFB - , bisfluorosulfonimide anion FSI - and the like.
  • each conjugated unit/segment contains at least one cation and at least one anion.
  • the ionic conductivity of the solid electrolyte at room temperature is greater than or equal to 1 ⁇ 10 -4 S/cm, preferably (1 ⁇ 10 -4 -1 ⁇ 10 -2 ) S/cm.
  • the present invention also provides the application of the above-mentioned solid electrolyte in the preparation of electrochemical devices.
  • the conjugated unit/segment of the polymer interacts with the electrolyte salt to provide a migration channel for ions, while the function of the non-conjugated unit/segment is to reduce the electronic conductivity of the polymer itself.
  • the solid electrolyte has extremely high ion conductivity, which can reach above 1 ⁇ 10 -4 S/cm at room temperature, and can conduct various ion systems. It can be formed separately to prepare solid-state ion-conducting membranes, and can also be mixed with positive and negative active materials and conductive agents to prepare dry electrodes, and can also be used to prepare electrochemical devices such as solid-state batteries and solid-state supercapacitors.
  • the all-solid-state lithium battery prepared by using the solid-state electrolyte of the present invention with nickel-cobalt lithium manganese oxide as the positive electrode and graphite as the negative electrode has good electrical performance and safety performance. It can pass safety performance tests such as acupuncture and heavy impact.
  • Example 1 is an electrochemical impedance diagram of a polymer solid electrolyte sheet in Example 1-1 of the present invention
  • Fig. 2 is the electrochemical impedance diagram of polypyrrole polymer electrolyte in comparative example 1-1 of the present invention
  • Fig. 3 is the electrochemical impedance diagram of polyoxyethylene polymer electrolyte in comparative example 1-2 of the present invention.
  • Figure 4 is a comparison of the ionic conductivity of polymer solid electrolytes containing different ratios of conjugated/non-conjugated units in Examples 1-4 of the present invention
  • Example 5 is a schematic structural view of a solid-state lithium battery assembled using a polymer electrolyte in Example 2-1 of the present invention
  • Fig. 6 is a charge-discharge curve of a solid-state lithium battery assembled with a polymer electrolyte in Example 2-1 of the present invention.
  • the polymer electrolyte of the present invention is composed of a polymer and an electrolyte salt, wherein the general formula of the polymer is R-(A n -B m ) k -R.
  • n is greater than or equal to 1 and less than or equal to 6
  • m is greater than or equal to 0 and less than or equal to 10
  • k is greater than or equal to 1 and less than or equal to 1000.
  • An has a conjugated structure, which is called a conjugated unit/segment.
  • B m is a non-conjugated structure, called a non-conjugated unit/segment or a spacer unit/segment.
  • the polymer electrolyte according to the exemplary embodiment of the present invention can be obtained by the following method.
  • the monomers of the conjugated unit/segment and the monomers of the non-conjugated unit/segment are mixed and dissolved in a solvent.
  • the monomer of the conjugate unit/segment may be one or more of pyrrole, thiophene, carbazole, furan or derivatives thereof.
  • the monomers of the non-conjugated units/segments may be one or more of olefins, carboxylic acids, alcohols, amines, ketones, ethers or derivatives thereof.
  • Organic solvents may include ether solvents, alcohol solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents.
  • the target polymer is obtained by chemically oxidatively polymerizing the above monomers using an oxidizing agent.
  • an oxidizing agent for oxidative polymerization method, and various methods such as coupling, condensation, and transesterification can also be used to prepare polymers.
  • Persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate can be used as oxidizing agents; inorganic salts such as ferric chloride and arsenic oxide can also be used as oxidizing agents to carry out chemical oxidative polymerization on the appealing monomers.
  • inorganic salts such as ferric chloride and arsenic oxide can also be used as oxidizing agents to carry out chemical oxidative polymerization on the appealing monomers.
  • One kind or a combination of two or more kinds of oxidizing agents may be used.
  • the chemical oxidative polymerization of the monomers is preferably carried out with stirring.
  • Chemical oxidative polymerization can also be carried out in the presence of surfactants.
  • solubility of the monomer in the solvent is low, the dispersion ability of the monomer can be improved by using a surfactant.
  • the desired polymer obtained above is subsequently washed.
  • the polymer can be separated from the wash liquor by filtration or centrifugation.
  • the electrolyte salt is dissolved in a suitable solvent and mixed with the polymer, and the polymer electrolyte of the present invention can be obtained after the solvent is volatilized.
  • the electrolyte salt can be selected from lithium salt, sodium salt, potassium salt, ammonium salt and the like.
  • the cation of the electrolyte salt is a monovalent or divalent cation
  • the anion is hexafluorophosphate ion PF 6 - , bistrifluoromethanesulfonimide anion TFSI - , bisoxalate borate anion BOB - , tetrafluoroborate ion BF 4 - , one or more of difluorooxalate borate anion ODFB - , bisfluorosulfonimide anion FSI - and the like.
  • the ionic conductivity of the polymer electrolyte was measured by electrochemical impedance curve, and the ionic conductivity of the polymer electrolyte was calculated by equivalent circuit fitting.
  • the reaction liquid is filtered with a filter paper with a retention diameter of 3um, the polymer cannot pass through the filter paper, and a polymer product can be obtained.
  • the solvent to wash the polymer to remove excess oxidant and unreacted monomer until the pH of the washing solution reaches 6-7.
  • the obtained polymer was baked in the air at 120 degrees for 3 hours to remove the solvent, thereby obtaining the polymer, which was black.
  • the electrochemical workstation was used to measure the AC impedance.
  • the AC impedance is shown in Example 1.
  • the measured ionic impedance of the polymer electrolyte sheet with a thickness of 900 mm is 310 ohms, and the calculated ionic conductivity is 2.9 ⁇ 10 -4 S/cm.
  • 6.7g pyrrole was added in the 500mL deionized water solvent, and the solution was stirred in a closed environment at room temperature for 1 hour to obtain a uniform colorless solution.
  • the reaction solution is filtered with a filter paper with a retention diameter of 3um, the polymer cannot pass through the filter paper, and the polymer product—polypyrrole can be obtained.
  • the solvent to wash the polymer to remove excess oxidant and unreacted monomer until the pH of the washing solution reaches 6-7.
  • the obtained polymer was baked in the air at 120 degrees for 3 hours to remove the solvent, thereby obtaining the polymer, which was black.
  • the electrochemical workstation was used to measure the AC impedance.
  • the AC impedance is shown in Example 2.
  • the material is an electronic conductor.
  • Comparative example 1-2 a large number of non-conjugated units
  • Polyethylene oxide (PEO) with a molecular weight of 1 million was used as the polymer.
  • 8g of polymer PEO and 14g of electrolyte salt LiTFSI were added to 200mL of acetonitrile, mixed and stirred evenly and transparently. The mixed slurry was vacuum-baked at 120 degrees for 12 hours to remove moisture, and a polymer electrolyte was finally obtained.
  • the material was pressed into 200um sheets in two stainless steel gaskets, and its AC impedance was measured using an electrochemical workstation. As shown in Figure 3, the ionic impedance of the material was 3.3 ⁇ 10 5 ohms, and the calculated ionic conductivity was 1.7 ⁇ 10 -7 S/cm.
  • the reaction solution is filtered using a filter paper with a retention diameter of 3um, the polymer cannot pass through the filter paper, and the polymer product can be obtained.
  • the solvent to wash the polymer to remove excess oxidant and unreacted monomer until the pH of the washing solution reaches 6-7.
  • the obtained polymer was baked in the air at 80 degrees for 3 hours to remove the solvent, thereby obtaining the polymer, which was dark brown.
  • the AC impedance was measured using an electrochemical workstation.
  • the measured ionic impedance of the polymer electrolyte sheet with a thickness of 860 mm was 78 ohms, and the calculated ionic conductivity was 1.1 ⁇ 10 -3 S/cm.
  • the reaction liquid is filtered with a filter paper with a retention diameter of 3um, the polymer cannot pass through the filter paper, and a polymer product can be obtained.
  • the solvent to wash the polymer to remove excess oxidant and unreacted monomer until the pH of the washing solution reaches 6-7.
  • the obtained polymer was baked in the air at 100 degrees for 3 hours to remove the solvent, thereby obtaining the polymer, which was black.
  • the AC impedance was measured using an electrochemical workstation.
  • the measured ionic impedance of the polymer electrolyte sheet with a thickness of 570 mm was 93 ohms, and the calculated ionic conductivity was 6.1 ⁇ 10 -4 S/cm.
  • the reaction liquid is filtered with a filter paper with a retention diameter of 3um, the polymer cannot pass through the filter paper, and a polymer product can be obtained.
  • the solvent to wash the polymer to remove excess oxidant and unreacted monomer until the pH of the washing solution reaches 6-7.
  • the obtained polymer was baked in the air at 120 degrees for 3 hours to remove the solvent, thereby obtaining the polymer, which was dark brown.
  • Example 1-1 Comparing Example 1-1 with Comparative Example 1-2, it is found that an excessively large number of non-conjugated units/segments also affects the ion conductance of the polymer electrolyte material.
  • a conjugated benzene ring in polyethylene oxide (PEO) combines with a non-conjugated ether group, and its ion conductivity is only 2.0 ⁇ 10 -6 S/cm.
  • Examples 1-2 and 1-3 were polymerized using a variety of different conjugated and non-conjugated monomers, all of which obtained ion conductivities exceeding 1.0 ⁇ 10 -4 S/cm.
  • Example 1-1 900 310 2.9 ⁇ 10-4
  • Example 1-2 860 78 1.1 ⁇ 10-3
  • Example 1-3 570 93 6.1 ⁇ 10-4
  • Examples 1-4 illustrate that the ionic conductivity of this solid electrolyte material is mainly affected by the ratio of conjugated units/segments and non-conjugated units/segments, and polymers with more conjugated segments have Higher ionic conductivity, polymers with more non-conjugated segments have lower ionic conductivity.
  • Example 1-1 The solid electrolyte obtained in Example 1-1, nickel cobalt lithium manganese oxide positive electrode material, conductive carbon black, binder polyvinylidene fluoride and solvent N-methylpyrrolidone according to the mass ratio of 10%: 80%: 5%: 5%: 100% uniform mixing, high-speed stirring for 6 hours to obtain a uniform slurry.
  • the slurry was coated on an aluminum foil material, baked at 120° C. for 3 hours in a vacuum environment, and then rolled to obtain an electrolyte composite positive electrode.
  • Example 1-1 Mix the solid electrolyte obtained in Example 1-1 with the graphite negative electrode material, conductive carbon black, binder and solvent deionized water according to the mass ratio of 10%: 85%: 1%: 4%: 130%, and stir at a high speed for 6 hours to obtain a homogeneous slurry.
  • the slurry was coated on the copper foil material, baked at 120°C for 3 hours in a vacuum environment, and then rolled to obtain an electrolyte composite negative electrode.
  • the electrolyte composite positive electrode, the electrolyte sheet, and the electrolyte composite negative electrode are laminated, welded, and packaged to obtain a polymer lithium battery.
  • the structure is shown in example Figure 5.
  • the charge and discharge performance test is shown in Figure 6 as an example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

一种固态电解质,其由聚合物和电解质盐构成。其中,聚合物由多个共轭单元/链段和非共轭单元/链段组成。固态电解质的室温离子电导率可以达到1×10 -4S/cm以上,与不同电解质盐配合可以传导各种离子。固态电解质可以用于电化学储能器件如二次电池、电容器中。

Description

一种聚合物固态电解质及应用 技术领域
本发明涉及电化学储能领域,涉及一种具有离子传输能力的聚合物电解质材料及其应用。
背景技术
近年来,锂离子电池飞速发展,由于其优良的储能性能,循环性能和倍率性能,在消费电子产业、动力汽车、储能行业具有广泛的应用。随着产品需求的不断提高,电池也在不断的发展和更新换代,而固态锂离子电池是下一代锂离子电池的发展方向。
不流动的、不易燃的固态离子电解质替代液态电解质作为电池中的离子传导媒介被认为是锂电池安全问题解决的重要因素。
优质的固态电解质材料必须具有以下几个条件:
1)室温下良好的离子电导率;
2)高的电化学窗口;
3)与活性材料低界面电阻;
4)易于加工成型;
5)良好的热稳定性和化学稳定性;
6)生产及使用成本低廉。
目前固态电解质有硫化物、氧化物、聚合物等种类,其中硫化物固态电解质虽然具有很高的室温电导率,但材料本征稳定性差,生产和使用条件要求非常苛刻,不利于商业化。氧化物固态电解质虽然具有良好的离子电导率,但材料硬度高且脆,具有很大的界面阻抗。传统聚合物固态电解质主要靠链段运动转移离子,容易加工成型,具有较低的界面阻抗,但室温下的聚合物固态电解质的电导率普遍较低,必须在加热条件下使用。因此,开发一种室温电导率高且易于加工成型,具有低界面阻抗的聚合物固态电解质材料是一个重要的研发方向。
发明内容
针对现有固态电解质存在的上述问题,本发明提供了一种聚合物固态电解质以满足锂电池使用的需求。
根据本发明的发明目的之一,本发明提供了一种聚合物固态电解质,包含一种聚合 物,至少一种电解质盐;所述聚合物由多个共轭单元/链段和非共轭单元/链段组成;通式为R-(A n-B m) k-R;所述通式中,所述A n为共轭单元/链段,具有完全离域的电子,所述B m为非共轭单元/链段,在主链范围内不存在完全离域电子。
n为大于等于1且小于等于6的整数,m为大于0且小于等于10的整数,k为大于等于1小于等于1000的整数。
优选地,A n中共轭结构可以是链结构,也可以是含有环结构,进一步地,该环结构可以是芳香环或者是杂原子环,更进一步地,杂原子环所含杂原子可以为硫,氮,氧,硼。
优选地,所述共轭单元A可以是1-4环的结构:
(1)A可以是单环,如苯基、噻吩基、吡咯基、呋喃基、噻唑基、吡啶基等,可以含有杂原子或支链,例如
Figure PCTCN2022091132-appb-000001
Figure PCTCN2022091132-appb-000002
此时n=1-6,
(2)A可以是双环,如喹啉基、萘基、薁基等,可以含有杂原子或支链,例如
Figure PCTCN2022091132-appb-000003
Figure PCTCN2022091132-appb-000004
此时n=1-4,
(3)A可以是三环,如芴基、咔唑基、菲基、蒽基等,也可以含杂原子或支链,例如
Figure PCTCN2022091132-appb-000005
Figure PCTCN2022091132-appb-000006
此时n=1-3,
(4)A可以是四环,如苯并蒽基、苯并菲基等,也可以含有杂原子或支链,此时n=1-2。
(5)A可以是以上环结构,也可以是以上多种环结构的组合。
优选地,所述共轭单元/链段A n还可以含有不同侧链Rs来改善材料的物理性质,包括结晶度,溶解性,熔融温度,加工性能等。
优选地,所述共轭单元/链段A n可形成并传输空穴。阳离子和阴离子可以在共轭单元/链段上迁移。
优选地,非共轭单元B可以是醚基、硫醚基、酯基、碳酸酯基、苯醚基、苯硫醚基、 丙烯基等基团,如:
Figure PCTCN2022091132-appb-000007
Figure PCTCN2022091132-appb-000008
优选地,所述聚合物通式中R可以为常见的封端基团如烷烃基、醚基、酯基或氢。
优选地,所述电解质盐中阳离子含有一价阳离子或二价金属阳离子,进一步地,阳离子可以是锂离子。
优选地,所述电解质盐中阴离子为六氟磷酸根离子PF 6 -,双三氟甲磺酰亚胺阴离子TFSI -,双草酸硼酸阴离子BOB -,四氟硼酸根离子BF 4 -,二氟草酸硼酸阴离子ODFB -,双氟磺酰亚胺阴离子FSI -等一种或多种。
优选地,所述聚合物中,每一个共轭单元/链段含有至少一个阳离子,至少一个阴离子。
优选地,所述固态电解质室温下离子电导率大于等于1×10 -4S/cm,优选地,为(1×10 -4-1×10 -2)S/cm。
作为本发明的另一项发明目的,本发明还提供了上述固态电解质在制备电化学器件中的应用。
聚合物的共轭单元/链段与电解质盐相互作用,提供离子的迁移通道,而非共轭单元/链段的作用在于降低聚合物本身的电子导电能力。该固态电解质具有极高的离子电导率,室温可以达到1×10 -4S/cm以上,且可以传导各种离子体系。可以单独成型用于制备固态离子导电膜,也可与正负极活性材料以及导电剂混合制备干电极,也可用于制备固态电池、固态超级电容器等电化学器件。
使用本发明的固态电解质制作的以镍钴锰酸锂为正极,石墨为负极制备的全固态锂电池具有良好的电性能和安全性能。可以通过针刺、重物冲击等安全性能测试。
附图说明
图1是本发明实施例1-1中聚合物固态电解质片的电化学阻抗图;
图2是本发明对比例1-1中聚吡咯聚合物电解质电化学阻抗图;
图3是本发明对比例1-2中聚氧化乙烯聚合物电解质电化学阻抗图;
图4是本发明实施例1-4中含有不同比例共轭/非共轭单元聚合物固态电解质的离子电导率对比;
图5是本发明实施例2-1中使用聚合物电解质组装的固态锂电池的结构示意图;
图6是本发明实施例2-1中使用聚合物电解质组装的固态锂电池的充放电曲线。
具体实施方式:
本发明的聚合物电解质由一种聚合物及电解质盐构成,其中聚合物通式为R-(A n-B m) k-R。其中n大于等于1且小于等于6,其中m大于等于0且小于等于10,其中k大于等于1小于等于1000。其中A n具有共轭结构,称为共轭单元/链段。其中B m为非共轭结构,称为非共轭单元/链段或间隔单元/链段。
可以通过以下方法获得根据本发明的示例性实施方案的聚合物电解质。
首先,将共轭单元/链段的单体及非共轭单元/链段的单体混合溶解到溶剂中。所述轭单元/链段的单体可以是吡咯、噻吩、咔唑、呋喃或者其衍生物的一种或几种。所述非共轭单元/链段的单体可以是烯烃、羧酸、醇、胺、酮、醚或者其衍生物的一种或几种。
关于溶剂,优选选择与共轭单元/链段单体和非共轭单元/链段单体都具有良好相容性的溶剂,可以为水、有机溶剂或者多种溶剂的混合。有机溶剂可以包括醚溶剂,醇溶剂、芳香烃溶剂、脂族烃溶剂。
在本发明的示例性实施方案中,使用氧化剂对上诉单体进行化学氧化聚合获得目标聚合物。但并不限于氧化聚合方式,也可以使用偶联,缩合,酯交换等多种方式组合制备聚合物。
可以使用过硫酸盐如过硫酸铵、过硫酸钠和过硫酸钾作为氧化剂;也可以使用无机盐如三氯化铁、氧化砷等作为氧化剂对上诉单体进行化学氧化聚合。可以使用一种或者组合两种以上的氧化剂。
优选在搅拌的情况下进行单体的化学氧化聚合。
化学氧化聚合也可以在表面活性剂的存在下进行。当单体在溶剂中溶解度低时,可以通过使用表面活性剂提高单体的分散能力。
在本发明的实施案例中,随后洗涤以上获得的所需聚合物。可以通过过滤法或离心法浆聚合物从洗液中分离出来。
电解质盐使用合适的溶剂溶解后与聚合物混合,将溶剂挥发后可以得到本发明的聚合物电解质。其中电解质盐可以选择锂盐、钠盐、钾盐、铵盐等。电解质盐的阳离子为一价或二价阳离子,阴离子为六氟磷酸根离子PF 6 -,双三氟甲磺酰亚胺阴离子TFSI -,双草酸硼酸阴离子BOB -,四氟硼酸根离子BF 4 -,二氟草酸硼酸阴离子ODFB -,双氟磺酰亚胺阴离子FSI -等一种或多种。
聚合物电解质的离子电导率通过电化学交流阻抗测试阻抗曲线,通过等效电路拟合后计算得到聚合物电解质的离子电导率。
以下为本发明聚合物电解质材料的制备及应用实施例,但是本发明的实施方案不限于这些实施例。
实施例1-1
将6.7g吡咯及2.9g环氧乙烷加入到500mL去离子水溶剂中,将该溶液在室温密闭环境中搅拌1小时得到均匀无色溶液。
随后,将500g的含有重量比40%的作为氧化剂的过硫酸铵的水溶液按5等分的量以10分钟的间隔加入到此溶液中,然后,将溶液在室温搅拌50小时进行化学氧化聚合,从而合成。此时,溶液出现不溶产物变浑浊。
随后,使用保留直径为3um的滤纸对反应液进行过滤,聚合物无法穿过滤纸,可以获得聚合物产物。重复使用溶剂洗涤聚合物以除去过量的氧化剂及未反应的单体,直至洗液PH达到6-7为止。然后将获得的聚合物在空气中120度烘烤3个小时除去溶剂,从而获得聚合物,聚合物呈黑色。
将电解质盐LiTFSI 14g溶解到50g水中。将8g上述所得共轭聚合物投入LiTFSI溶液中搅拌,然后将混合物在120度真空烘烤12小时除去水分,最终得到成品聚合物电解质。
将该聚合物电解质颗粒压片成型后使用电化学工作站测量其交流阻抗,交流阻抗如图例1所示。测得厚度900mm的聚合物电解质片离子阻抗为310欧姆,计算得到离子电导率为2.9╳10 -4S/cm。
对比例1-1完全共轭单元
将6.7g吡咯加入到500mL去离子水溶剂中,将该溶液在室温密闭环境中搅拌1小 时得到均匀无色溶液。
随后,将500g的含有重量比40%的作为氧化剂的过硫酸铵的水溶液按5等分的量以10分钟的间隔加入到此溶液中,然后,将溶液在室温搅拌50小时进行化学氧化聚合,从而合成。此时,溶液出现不溶产物变浑浊。
随后,使用保留直径为3um的滤纸对反应液进行过滤,聚合物无法穿过滤纸,可以获得聚合物产物——聚吡咯。重复使用溶剂洗涤聚合物以除去过量的氧化剂及未反应的单体,直至洗液PH达到6-7为止。然后将获得的聚合物在空气中120度烘烤3个小时除去溶剂,从而获得聚合物,聚合物呈黑色。
将电解质盐LiTFSI 14g溶解到50g水中。将8g上述所得聚吡咯投入LiTFSI溶液中搅拌,然后将混合物在120度真空烘烤12小时除去水分,得到电解质混合聚合物材料。
将该材料颗粒压片成型后使用电化学工作站测量其交流阻抗,交流阻抗如图例2所示。材料呈电子导体性质。
对比例1-2大量非共轭单元
聚合物使用分子量100万的聚氧化乙烯(PEO),将8g聚合物PEO和14g电解质盐LiTFSI加入到200mL乙腈中,混合搅拌均匀透明。将混合浆料在120度真空烘烤12小时除去水分,最终得到聚合物电解质。
将该材料在两不锈钢垫片中压片成200um薄片,使用电化学工作站测量其交流阻抗,如图3所示,材料离子阻抗为3.3╳10 5欧姆,计算得离子电导率1.7╳10 -7S/cm。
实施例1-2
将6.7g吡咯及5.9g苯丙烯投到500mL乙腈溶剂中,将该溶液在室温密闭环境中搅拌1小时得到均匀无色溶液。
随后,将600g的含有重量比40%的作为氧化剂的三氯化铁的乙醇溶液按5等分的量以10分钟的间隔加入到此溶液中,然后,将溶液在室温搅拌50小时进行化学氧化聚合,从而合成。此时,溶液出现不溶产物变浑浊。
随后,使用保留直径为3um的滤纸对反应液进行过滤,聚合物无法穿过滤纸,可以 获得聚合物产物。重复使用溶剂洗涤聚合物以除去过量的氧化剂及未反应的单体,直至洗液PH达到6-7为止。然后将获得的聚合物在空气中80度烘烤3个小时除去溶剂,从而获得聚合物,聚合物呈黑褐色。
将电解质盐LiTFSI 17g溶解到50g水中。将10g上述所得共轭聚合物投入LiTFSI溶液中搅拌,然后将混合物在120度真空烘烤12小时除去水分,最终得到成品聚合物电解质。
将上述聚合物电解质颗粒压片成型后使用电化学工作站测量其交流阻抗,测得厚度860mm的聚合物电解质片离子阻抗为78欧姆,计算得到离子电导率为1.1╳10 -3S/cm。
实施例1-3
将9.3g苯胺及3.8g氯丙烯按照引入到500mL乙腈溶剂中,将该溶液在室温密闭环境中搅拌1小时得到均匀无色溶液。
随后,将600g的含有重量比40%的作为氧化剂的三氯化铁的乙腈溶液按5等分的量以10分钟的间隔加入到此溶液中,然后,将溶液在室温搅拌40小时进行化学氧化聚合,从而合成。
随后,使用保留直径为3um的滤纸对反应液进行过滤,聚合物无法穿过滤纸,可以获得聚合物产物。重复使用溶剂洗涤聚合物以除去过量的氧化剂及未反应的单体,直至洗液PH达到6-7为止。然后将获得的聚合物在空气中100度烘烤3个小时除去溶剂,从而获得聚合物,聚合物呈黑色。
将电解质盐LiTFSI 17g溶解到50g水中。将10g上述所得共轭聚合物投入LiTFSI溶液中搅拌,然后将混合物在120度真空烘烤12小时除去水分,最终得到成品聚合物电解质。
将上述聚合物电解质颗粒压片成型后使用电化学工作站测量其交流阻抗,测得厚度570mm的聚合物电解质片离子阻抗为93欧姆,计算得到离子电导率为6.1╳10 -4S/cm。
实施例1-4
将吡咯及苯乙烯按照摩尔比1:3、1:1、2:1、3:1,总量保持9.6g。引入到500mL去离子水溶剂中,将所得溶液在室温密闭环境中搅拌1小时。
随后,将500g的含有重量比40%的作为氧化剂的过硫酸铵水溶液按5等分的量以10分钟的间隔加入到此溶液中,然后,将溶液在室温搅拌50小时进行化学氧化聚合,从而合成目标聚合物。
随后,使用保留直径为3um的滤纸对反应液进行过滤,聚合物无法穿过滤纸,可以获得聚合物产物。重复使用溶剂洗涤聚合物以除去过量的氧化剂及未反应的单体,直至洗液PH达到6-7为止。然后将获得的聚合物在空气中120度烘烤3个小时除去溶剂,从而获得聚合物,聚合物呈黑褐色。
将电解质盐LiTFSI 14g溶解到50g水中。将8g上述所得的几种共轭聚合物投入LiTFSI溶液中搅拌,然后将混合物在120度真空烘烤12小时除去水分,最终得到四种成品聚合物电解质。
将该聚合物电解质颗粒压片成型后使用电化学工作站测量其交流阻抗,计算离子电导率并比较。结果如示例图4。
实施例1-1与对比例1-1对比,发现不含非共轭单元/链段的全共轭结构聚合物具有极高的电子电导,这违反了固态电解质本身对高离子电导,低电子电导的要求。而非共轭单元/链段,也可以说是间隔单元/链段可以有效地大幅度降低材料本身的电子电导,凸显出固态电解质对离子的传导能力。
实施例1-1与对比例1-2对比,发现过于大量的非共轭单元/链段对聚合物电解质材料的离子电导也有影响。例如聚氧化乙烯(PEO)中一个共轭苯环即和一个非共轭醚基结合,它的离子电导率仅仅只有2.0╳10 -6S/cm。
实施例1-2、1-3使用多种不同的共轭和非共轭单体进行聚合,都得到了超过1.0╳10 -4S/cm的离子电导率。
表1:各实施例聚合物固态电解质参数
序号 试样厚度(μm) 离子阻抗(Ω) 离子电导率(S/cm)
实施例1-1 900 310 2.9╳10 -4
实施例1-2 860 78 1.1╳10 -3
实施例1-3 570 93 6.1╳10 -4
实施例1-4说明了这种固态电解质材料的离子电导率主要受到共轭单元/链段和非共轭单元/链段的比例的影响,具有更多的共轭链段的聚合物则拥有更高的离子电导率,具有更多的非共轭链段的聚合物则离子电导率更低。
实施例2-1
将实施例1-1所得的固态电解质与镍钴锰酸锂正极材料、导电炭黑、粘结剂聚偏四氟乙烯与溶剂N-甲基吡咯烷酮按照质量比10%:80%:5%:5%:100%均匀混合,高速搅拌6个小时得到均匀浆料。将浆料涂布到铝箔材料上,真空环境下120度烘烤3h后辊压得到电解质复合正极。
将实施例1-1所得的固态电解质与石墨负极材料、导电炭黑、粘结剂与溶剂去离子水按照质量比10%:85%:1%:4%:130%均匀混合,高速搅拌6个小时得到均匀浆料。将浆料涂布到铜箔材料上,真空环境下120度烘烤3h后辊压得到电解质复合负极。
将电解质复合正极、电解质片、电解质复合负极三者层叠后焊接后封装得到聚合物锂电池。结构如示例图5所示。充放电性能测试如示例图6所示。

Claims (12)

  1. 一种嵌段聚合物固态电解质,其特征在于,包含一种聚合物,至少一种电解质盐;所述聚合物由多个共轭单元/链段和非共轭单元/链段组成,通式为R-(A n-B m) k-R;所述通式中,所述A n为共轭单元/链段,具有完全离域的电子,所述B m为非共轭单元/链段,在主链范围内不存在完全离域电子;n为大于等于1且小于等于6的整数,m为大于0且小于等于10的整数,k为大于等于1小于等于1000的整数。
  2. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,A n中共轭结构可以是链结构,也可以是含有环结构,进一步地,该环结构可以是芳香环或者是杂原子环,更进一步地,杂原子环所含杂原子可以为硫、氮、氧、硼。
  3. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述共轭单元A可以是以下结构:
    (1)A为单环,如苯基、噻吩基、吡咯基、呋喃基、噻唑基或吡啶基,任选地,可以含有杂原子或支链,例如
    Figure PCTCN2022091132-appb-100001
    Figure PCTCN2022091132-appb-100002
    此时n=1-6;
    (2)A可以是双环,如喹啉基、萘基、薁基;任选地,可以含有杂原子或支链,例如
    Figure PCTCN2022091132-appb-100003
    此时n=1-4;
    (3)A可以是三环,如芴基、咔唑基、菲基、蒽基;任选地,也可以含杂原子或支链,例如
    Figure PCTCN2022091132-appb-100004
    Figure PCTCN2022091132-appb-100005
    此时n=1-3;
    (4)A可以是四环,如苯并蒽基、苯并菲基;任选地,可以含有杂原子或支链,此时n=1-2;
    (5)A可以是(1)至(4)中的多种环结构的组合。
  4. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述共轭单元/链段A n还含有不同侧链Rs。
  5. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述共轭单元 /链段A n可形成并传输空穴,阳离子和阴离子可以在共轭单元/链段上迁移。
  6. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,非共轭单元B可以是醚基、硫醚基、酯基、碳酸酯基、苯醚基、苯硫醚基、丙烯基,如:
    Figure PCTCN2022091132-appb-100006
    Figure PCTCN2022091132-appb-100007
  7. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述聚合物通式中R可以是常见的封端基团,如烷烃基、醚基、酯基或氢。
  8. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述电解质盐中阳离子含有一价阳离子或二价金属阳离子,进一步地,阳离子可以是锂离子。
  9. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述电解质盐中阴离子为六氟磷酸根离子PF 6 -,双三氟甲磺酰亚胺阴离子TFSI -,双草酸硼酸阴离子BOB -,四氟硼酸根离子BF 4 -,二氟草酸硼酸阴离子ODFB -,双氟磺酰亚胺阴离子FSI -中的一种或多种。
  10. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述聚合物中,每一个共轭单元/链段含有至少一个阳离子以及至少一个阴离子。
  11. 根据权利要求1所述的一种嵌段聚合物固态电解质,其特征在于,所述固态电解质室温下离子电导率大于等于1×10 -4S/cm,优选地,为(1×10 -4-1×10 -2)S/cm。
  12. 权利要求1-11任一项所述的一种嵌段聚合物固态电解质在制备电化学器件中的应用。
PCT/CN2022/091132 2021-09-07 2022-05-06 一种聚合物固态电解质及应用 WO2023035638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111044424.4 2021-09-07
CN202111044424.4A CN115775913A (zh) 2021-09-07 2021-09-07 一种聚合物固态电解质及应用

Publications (1)

Publication Number Publication Date
WO2023035638A1 true WO2023035638A1 (zh) 2023-03-16

Family

ID=85387616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091132 WO2023035638A1 (zh) 2021-09-07 2022-05-06 一种聚合物固态电解质及应用

Country Status (2)

Country Link
CN (1) CN115775913A (zh)
WO (1) WO2023035638A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342322A (ja) * 2000-05-31 2001-12-14 Nippon Kayaku Co Ltd 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
CN103003356A (zh) * 2010-05-19 2013-03-27 西奥公司 基于pxe的聚合物组合物
CN103515649A (zh) * 2012-06-14 2014-01-15 东丽先端材料研究开发(中国)有限公司 有机/无机复合电解质及其制备方法
CN103936972A (zh) * 2014-04-14 2014-07-23 东南大学 一种全共轭嵌段共聚物及其制备方法
CN104804176A (zh) * 2015-05-08 2015-07-29 东南大学 一种全共轭嵌段聚电解质及其制备方法
CN112912421A (zh) * 2018-09-30 2021-06-04 罗伯特·博世有限公司 基于pxe的聚合物组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342322A (ja) * 2000-05-31 2001-12-14 Nippon Kayaku Co Ltd 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
CN103003356A (zh) * 2010-05-19 2013-03-27 西奥公司 基于pxe的聚合物组合物
CN103515649A (zh) * 2012-06-14 2014-01-15 东丽先端材料研究开发(中国)有限公司 有机/无机复合电解质及其制备方法
CN103936972A (zh) * 2014-04-14 2014-07-23 东南大学 一种全共轭嵌段共聚物及其制备方法
CN104804176A (zh) * 2015-05-08 2015-07-29 东南大学 一种全共轭嵌段聚电解质及其制备方法
CN112912421A (zh) * 2018-09-30 2021-06-04 罗伯特·博世有限公司 基于pxe的聚合物组合物

Also Published As

Publication number Publication date
CN115775913A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
Wang et al. In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries
Song et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage
Jung et al. New approaches to improve cycle life characteristics of lithium–sulfur cells
Rolland et al. Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries
US9466839B2 (en) Electrode active material for electricity storage device, and electricity storage device using same
KR102107373B1 (ko) 비수계 이차 전지 부극용 활물질 그리고 그것을 사용한 부극 및 비수계 이차 전지
JP6876050B2 (ja) 固体電解質、固体電解質膜及びその製造方法、並びに二次電池
KR101782856B1 (ko) 카바졸 폴리머
Su et al. Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for Li-ion batteries
CA2662423C (en) Polymer electrolyte comprising a ketonic carbonyl group and electrochemical device comprising said electrolyte
US10340551B2 (en) Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
US11196049B2 (en) Coated lithium-nickel composite oxide particles, and method for producing coated lithium-nickel composite oxide particles
CN104885260A (zh) 电化学元件电极用导电性粘接剂组合物的制造方法
CN108604683A (zh) 电化学设备用正极活性物质、电化学设备用正极和电化学设备、以及电化学设备用正极活性物质的制造方法
Ma et al. Three-dimensional hierarchical walnut kernel shape conducting polymer as water soluble binder for lithium-ion battery
CN109888369A (zh) 一种全固态电解质及其制备方法和一种锂电池
CN107887573B (zh) 具有拓扑结构的正极活性物质及其应用
Su et al. Poly [tris (thienylphenyl) amine] derivatives as a performance-improved cathode material for lithium ion batteries
JP2010044951A (ja) 電極活物質及びこれを用いた電極
CN110661034A (zh) 聚合物电解质组合物、聚合物电解质片及其制造方法、电化学装置用电极、聚合物二次电池
WO2023035638A1 (zh) 一种聚合物固态电解质及应用
EP4398362A1 (en) Polymer solid electrolyte and application
Yang et al. In situ electrolyte gelation to prevent chemical crossover in Li metal batteries
KR100574639B1 (ko) 리튬 고분자 전지용 술폰화 바인더, 이를 함유하는 전극조성물 및 이 전극 조성물을 함유하는 리튬 고분자 전지
WO2024135777A1 (ja) ポリマー電解質及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866116

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866116

Country of ref document: EP

Effective date: 20240404