WO2023035160A1 - 动力电池充电的方法和电池管理系统 - Google Patents

动力电池充电的方法和电池管理系统 Download PDF

Info

Publication number
WO2023035160A1
WO2023035160A1 PCT/CN2021/117310 CN2021117310W WO2023035160A1 WO 2023035160 A1 WO2023035160 A1 WO 2023035160A1 CN 2021117310 W CN2021117310 W CN 2021117310W WO 2023035160 A1 WO2023035160 A1 WO 2023035160A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
soc
interval value
soh
charging
Prior art date
Application number
PCT/CN2021/117310
Other languages
English (en)
French (fr)
Inventor
黄珊
李世超
李海力
赵微
谢岚
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020237018327A priority Critical patent/KR20230098832A/ko
Priority to JP2023534712A priority patent/JP2023553088A/ja
Priority to CN202180055585.5A priority patent/CN116134694B/zh
Priority to EP21956348.3A priority patent/EP4231483A4/en
Priority to PCT/CN2021/117310 priority patent/WO2023035160A1/zh
Publication of WO2023035160A1 publication Critical patent/WO2023035160A1/zh
Priority to US18/458,164 priority patent/US20230398902A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles

Definitions

  • the present application relates to the field of power batteries, in particular to a method for charging a power battery and a battery management system.
  • Embodiments of the present application provide a power battery charging method and a battery management system, which can improve the performance of the power battery.
  • a method for charging a traction battery is provided, which is applied to the battery management system BMS of the traction battery.
  • the method includes: obtaining the state of health SOH of the traction battery; during the charging process of the traction battery, obtaining According to the SOH of the power battery, determine the SOC interval value corresponding to the power battery discharge or stop charging; when the SOC of the power battery changes the SOC interval value, control the power battery to discharge or stop charging.
  • controlling the discharge of the power battery or temporarily stopping charging can prevent the risk of lithium analysis caused by continuous charging to the power battery, and improve the safety performance of the power battery.
  • the discharge interval value or the stop charging interval value can be determined according to the SOH of the power battery, and the interval value is the SOC interval value, and the SOH and SOC of the power battery are integrated to control the power battery.
  • the timing of discharging or stopping charging during the charging process makes the overall charging design of the power battery more reasonable, and improves the charging performance of the power battery on the basis of ensuring the safety performance of the power battery.
  • determining the SOC interval value corresponding to the discharge or stop charging of the power battery includes: if the SOH of the power battery is greater than or equal to a preset SOH threshold, determining the SOC interval value is the first SOC interval value; if the SOH of the power battery is less than the preset SOH threshold value, determine the SOC interval value as the second SOC interval value; wherein, the first SOC interval value is greater than the second SOC interval value.
  • the SOH of the power battery is divided into two intervals. If the SOH of the power battery is greater than or equal to the preset SOH threshold, the health of the power battery is good, and it is determined that the power battery
  • the SOC interval value corresponding to discharge or stop charging is the larger first SOC interval value. On the contrary, if the SOH of the power battery is less than the preset SOH threshold, the health of the power battery is poor.
  • the SOC interval value is a second smaller SOC interval value.
  • the health of the power battery When the health of the power battery is good, it not only ensures the safety performance of the power battery, but also improves the charging rate. , when the health of the power battery is poor, the safety performance of the power battery can be fully guaranteed, and lithium analysis can be prevented from further affecting the remaining life of the power battery.
  • determining the SOC interval value corresponding to the power battery discharge or stop charging includes: according to the power battery SOH and SOC, determining the power battery discharge or stop charging corresponding The SOC interval value.
  • the SOC interval value corresponding to the discharge or stop charging of the power battery is not only determined according to the SOH of the power battery, but the SOC interval corresponding to the discharge or stop charging of the power battery is determined comprehensively according to the SOH and SOC of the power battery Value, taking into account the state of health of the power battery and the state of charge, consider the discharge control or stop charging control of the power battery during the charging process, which is conducive to further improving the safety performance and charging performance of the power battery.
  • determining the SOC interval value corresponding to the power battery discharge or stop charging includes: if the SOH of the power battery is greater than or equal to a preset SOH threshold, and the The SOC of the power battery is less than the preset SOC threshold, and the SOC interval value is determined to be the third SOC interval value; if the SOH of the power battery is greater than or equal to the preset SOH threshold, and the SOC of the power battery is greater than or equal to the preset SOC threshold, Determine the SOC interval value as the fourth SOC interval value; if the SOH of the power battery is less than the preset SOH threshold value, and the SOC of the power battery is less than the preset SOC threshold value, determine the SOC interval value as the fifth SOC interval value; If the SOH of the power battery is less than the preset SOH threshold, and the SOC of the power battery is greater than or equal to the preset SOC threshold, determine that the SOC interval value is the
  • the relationship between the SOC of the power battery and the preset SOC threshold is also judged. If the SOC of the power battery is large (for example, greater than or equal to the preset SOC threshold), it means that the current remaining capacity of the power battery is relatively high, and the potential of the negative electrode of the power battery is low, which is prone to lithium precipitation. Therefore, in the power battery When the SOC is large, it is necessary to increase its discharge frequency or stop charging frequency, and the smaller SOC interval value controls the discharge or stop charging of the power battery to prevent the occurrence of lithium precipitation and ensure the safety performance of the power battery.
  • the SOC of the power battery is small (for example, less than the preset SOC threshold), it means that the current remaining capacity of the power battery is low, and the negative electrode potential of the power battery is high. Lithium precipitation occurs. Therefore, when the SOC of the power battery is small, the discharge frequency can be reduced or the charging frequency can be stopped. A larger SOC interval can control the discharge or stop charging of the power battery, which can also prevent the occurrence of lithium precipitation. The safety performance of the power battery, and relatively increase the charging rate.
  • the preset SOH threshold ranges from 80% to 99%.
  • the health status of the power battery can be well judged, and the safety performance and charging performance of the power battery can be guaranteed and balanced.
  • determining the SOC interval value corresponding to the power battery discharge or stop charging includes: according to the SOH of the power battery and a preset mapping relationship, determining whether the power battery discharge or SOC interval value corresponding to stop charging.
  • the SOC interval value corresponding to the discharge or stop charging of the power battery can be determined directly according to the SOH of the power battery and the preset mapping relationship, and the SOC corresponding to each SOH of the power battery can be determined more conveniently and accurately.
  • the interval value further improves the safety performance and charging performance of the power battery.
  • the SOC interval ranges from 3% to 95%.
  • the method before controlling the power battery to discharge, the method further includes: sending charging demand information, the current demand value carried in the charging demand information is zero, and the charging demand information is used to control the power battery to stop Charge.
  • the BMS sends charging demand information
  • the charging demand information is used to control the power battery to stop charging, and then the BMS controls the power battery to discharge, which can ensure the life and performance of the power battery and improve the charging and discharging of the power battery. process security.
  • the method before controlling the discharge of the power battery, further includes: obtaining the current of the power battery; controlling the discharge of the power battery includes: when the current of the power battery is less than or equal to a preset current threshold , to control the discharge of the power battery.
  • the BMS before controlling the discharge of the power battery, the BMS first obtains the current of the power battery.
  • the current of the power battery is small, for example, it is less than or equal to the preset current threshold. Only when the battery is small, the BMS controls the discharge of the power battery, which can further ensure the life and performance of the power battery and improve the safety of the power battery charging and discharging process.
  • the method further includes: when the discharge time of the power battery is greater than or equal to a first preset time threshold or the sent time of the charging demand information is greater than or equal to a second preset time threshold, controlling the power The battery stops discharging.
  • the charging device for charging the power battery can regularly or irregularly receive the charging demand information sent by the BMS.
  • the charging demand information is sent normally, the charging device and the power battery can maintain In the normal communication state, if the charging device does not receive the charging demand information sent by the BMS within a period of time, it may cause the charging device to disconnect the communication connection with the power battery. Therefore, in the technical solution of this embodiment, in addition to setting the first preset time threshold to control the discharge time of the power battery, a second time threshold is also set to compare with the sent time of the charging demand information to prevent the charging demand from The information has been sent for too long, which affects the normal charging process of the power battery, thereby improving the charging efficiency of the power battery.
  • the method further includes: obtaining the running state of the power battery; and controlling the power battery to discharge when the power battery is in a state of being drawn or fully charged.
  • the BMS also obtains the operating status of the power battery, and when the power battery is in the state of pulling out the gun or fully charged, the BMS can control the power battery to discharge briefly, for example, the discharge time is less than the preset time Threshold and/or discharge current less than the preset current threshold to prevent the power battery from directly charging the power battery after the charging device establishes a connection with the power battery during the subsequent charging process, which will further increase the power. Battery safety performance.
  • a battery management system BMS for a power battery including: an acquisition module, configured to acquire the state of health SOH of the power battery; the acquisition module is also used to acquire the power battery during the charging process of the power battery The state of charge SOC; the control module is used to determine the SOC interval value corresponding to the discharge or stop charging of the power battery according to the SOH of the power battery; and when the SOC of the power battery changes the SOC interval value, control the discharge of the power battery or stop charging.
  • control module is used to: if the SOH of the power battery is greater than a preset SOH threshold, determine that the SOC interval value is the first SOC interval value; if the SOH of the power battery is less than or equal to the preset SOH Threshold, determine that the SOC interval value is a second SOC interval value; wherein, the first SOC interval value is greater than the second SOC interval value.
  • control module is configured to: determine the SOC interval value corresponding to the power battery discharge or stop charging according to the SOH and SOC of the power battery.
  • control module is configured to: if the SOH of the power battery is greater than or equal to a preset SOH threshold, and the SOC of the power battery is less than a preset SOC threshold, determine that the SOC interval value is a third SOC interval value ; If the SOH of the power battery is greater than or equal to the preset SOH threshold, and the SOC of the power battery is greater than or equal to the preset SOC threshold, determine that the SOC interval value is the fourth SOC interval value; if the SOH of the power battery is less than the preset Set the SOH threshold, and the SOC of the power battery is less than the preset SOC threshold, determine that the SOC interval value is the fifth SOC interval value; if the SOH of the power battery is less than the preset SOH threshold, and the SOC of the power battery is greater than or equal to The preset SOC threshold determines that the SOC interval value is a sixth SOC interval value; wherein, the third SOC interval value is greater than the fourth SOC
  • the preset SOH threshold ranges from 80% to 99%.
  • control module is used to: determine the SOC interval value corresponding to the discharge or stop charging of the power battery according to the SOH of the power battery and a preset mapping relationship.
  • the SOC interval ranges from 3% to 95%.
  • the BMS further includes a sending module, configured to send charging demand information, the current demand value carried in the charging demand information is zero, and the charging demand information is used to control the power battery to stop charging.
  • the acquisition module is also used to: acquire the current of the power battery; the control module is used to control the power battery to discharge when the current of the power battery is less than or equal to a preset current threshold.
  • control module is configured to: when the discharge time of the power battery is greater than or equal to a first preset time threshold or the time that the charging demand information has been sent is greater than or equal to a second preset time threshold, control the The power battery stops discharging.
  • a battery management system BMS for a power battery including a processor and a memory, the memory is used to store a computer program, and the processor is used to call the computer program to execute any one of the first aspect or the first aspect.
  • controlling the discharge of the power battery or temporarily stopping charging can prevent the risk of lithium deposition caused by continuous charging to the power battery, and improve the safety performance of the power battery.
  • the discharge interval or stop charging interval value can be determined according to the SOH of the power battery, and the interval value is the SOC interval, and the SOH and SOC of the power battery are integrated to control the power battery during the charging process.
  • the timing of discharging or stopping charging in the battery makes the overall design of the power battery more reasonable, and improves the charging performance of the power battery on the basis of ensuring the safety performance of the power battery.
  • FIG. 1 is a structural diagram of a charging system applicable to an embodiment of the present application
  • Fig. 2 is a schematic flow diagram of a method for charging a power battery provided in an embodiment of the present application
  • Fig. 3 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 4 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 5 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 6 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 7 is a schematic flowchart of another power battery charging method provided by the embodiment of the present application.
  • Fig. 8 is a schematic flowchart of another method for charging a power battery provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural block diagram of a battery management system provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural block diagram of a battery management system provided by an embodiment of the present application.
  • Lithium analysis not only reduces the performance of the power battery and greatly shortens the cycle life, but also limits the fast charging capacity of the power battery, and may cause catastrophic consequences such as combustion and explosion, seriously affecting the overall performance of the power battery.
  • the present application proposes a method for charging a power battery, which can solve the problem of lithium deposition in the power battery and improve the performance of the power battery.
  • Fig. 1 shows a battery system 100 applicable to the embodiments of the present application.
  • the battery system 100 may include: a power battery 110 and a battery management system (battery management system, BMS) 120 .
  • BMS battery management system
  • the power battery 110 may include at least one battery module, which can provide energy and power for the electric vehicle.
  • the power battery 110 can be lithium ion battery, lithium metal battery, lead acid battery, nickel battery, nickel metal hydride battery, lithium sulfur battery, lithium air battery or sodium ion battery, etc., implemented in this application
  • the battery module in the power battery 110 can be a battery cell/battery cell, or a battery pack or battery pack.
  • the example There is no specific limitation in the example.
  • the battery system 100 is generally equipped with a BMS 120 connected to the power battery 110 for monitoring and collecting power battery 110, and the BMS 120 can also realize the control and management of the power battery 110 according to the parameters.
  • the BMS 120 can be used to monitor and collect parameters such as voltage, current and temperature of the power battery 110.
  • the BMS 120 can collect the total voltage and total current of the power battery 110 in real time, the voltage and current of a single battery cell in the power battery 110, and the temperature of at least one temperature measurement point in the power battery 110, etc.
  • the real-time, fast and accurate measurement of the above parameters is the basis for the normal operation of the BMS 120.
  • the BMS 120 can further estimate the state of charge (state of charge, SOC), state of health (state of health, SOH), power state (state of power) of the power battery 110 according to the collected parameters of the power battery 110. , SOP) and other parameters.
  • the SOH can be used to indicate the aging state of the power battery 110 , and can also be understood as the remaining life of the power battery 110 .
  • the performance of the power battery 110 will continue to decline after long-term operation. How to accurately estimate the SOH is an important prerequisite for estimating other parameters of the power battery 110 (such as SOC and SOP).
  • the SOH can be estimated based on the available capacity of the power battery 110, it can be understood that the available capacity of the power battery 110 will vary with the As time increases, the SOH of the power battery 110 can be estimated through the ratio of the current available capacity of the power battery 110 to the initial capacity (or also called the nominal capacity).
  • the SOP can be used to indicate the power state of the power battery 110 , usually represented by a short-term peak power arrival.
  • the peak power output and input of the power battery 110 directly affects the quick start, acceleration and emergency braking capabilities of the vehicle, and further relates to the safety and reliability of the entire vehicle. Therefore, the BMS 120 must be capable of estimating the peak power of the power battery 110 , that is, the SOP.
  • BMS 120 can also be used to determine other parameters of power battery 110. This application The embodiment does not specifically limit this.
  • the BMS 120 acquires various parameters of the power battery 110, it can realize various control and management of the power battery 110 according to the various parameters.
  • the BMS 120 can control the charging and discharging of the power battery 110 according to parameters such as SOC, voltage, and current, so as to ensure the normal energy supply and release of the power battery 110.
  • the BMS 120 can also control components such as a cooling fan or a heating module according to parameters such as temperature, so as to realize thermal management of the power battery 110 .
  • the BMS 120 can also judge whether the power battery 110 is in a normal operating state according to parameters such as voltage and SOH, so as to realize fault diagnosis and early warning of the power battery 110.
  • the battery system 100 may establish a connection with a charging device 101 and an electrical device 102 to realize charging and discharging of the power battery 100 .
  • the BMS 120 in the battery system 100 can establish communication with the charging device 101 through a relevant communication protocol, and then realize charging of the power battery 110 through the charging device 101.
  • the BMS 120 can also establish a communication connection with the electric device 102, so that the BMS 120 can feed back the relevant information it obtains to the electric device 101 and even the user, and the BMS 120 can also obtain the relevant control of the electric device 101. Information, to better control and manage the power battery 110.
  • the charging device 101 shown in FIG. 1 includes, but is not limited to, a charging machine (or also called a charging pile).
  • the power consumption device 102 can be various types of power consumption devices, including but not limited to electric vehicles.
  • Fig. 2 shows a schematic flow diagram of a method 200 for charging a traction battery provided by an embodiment of the present application, and the method 200 for charging a traction battery may be applied to a battery management system of a traction battery.
  • the power battery can be the power battery 110 shown in FIG. 1 above, and the method 200 can be applied to the BMS 120 of the power battery 110.
  • the BMS 120 can be used as the method in the following application embodiments 200 executive body.
  • a method 200 for charging a power battery may include the following steps.
  • controlling the discharge of the power battery or temporarily stopping charging can prevent the risk of lithium analysis caused by continuous charging to the power battery, and improve the safety performance of the power battery.
  • the discharge interval or stop charging interval value can be determined according to the SOH of the power battery, and the interval is the SOC interval, and the SOH and SOC of the power battery are integrated to control the power battery during the charging process.
  • the timing of discharging or stopping charging makes the overall charging design of the power battery more reasonable, and improves the charging performance of the power battery on the basis of ensuring the safety performance of the power battery.
  • the SOH can be used to indicate the aging state of the power battery, and can also be understood as the remaining life of the power battery.
  • the performance of the power battery will continue to decline after long-term operation, so the remaining life will be shorter, that is, the SOH value expressed in common percentages will be smaller.
  • the BMS can obtain the SOH of the power battery before charging, and the method for obtaining the SOH of the power battery can refer to methods in related technologies, which will not be described in detail here.
  • the BMS can store the SOH in the storage unit.
  • the power battery is subsequently charged, it can determine the discharge interval or stop charging interval of the power battery according to the stored SOH. .
  • the SOC of the power battery will change in real time, and the BMS can periodically or irregularly obtain the SOC of the power battery and other batteries during the charging process of the power battery. parameters to monitor the state of charge of the power battery.
  • the BMS can obtain the SOC of the power battery according to the requirements in the relevant charging standards.
  • the BMS determines the SOC interval value corresponding to the discharge or stop charging of the power battery according to the SOH of the power battery obtained above, wherein the SOC interval value It can also be expressed as a percentage.
  • the SOC interval value used to control the discharge or stop charging of the power battery is related to the SOH of the power battery. If the SOH of the power battery changes, the SOC interval value can also change accordingly, that is, the power The discharge interval or stop charging interval of the battery also changes, so that the discharge interval or stop charging interval during the charging process of the power battery is related to the SOH of the power battery, and the charging performance of the power battery is taken into account while improving the safety performance of the power battery.
  • step 240 of the embodiment of the present application during the charging process of the power battery, the SOC of the power battery changes in real time, and when the SOC changes by the SOC interval value, the BMS controls the power battery to discharge or stop charging.
  • the SOC interval value is X%
  • the BMS controls the power battery to discharge or stop charging, where X is a positive number less than 100.
  • the BMS after the BMS acquires the current SOC of the power battery, it judges whether the SOC is the target SOC value.
  • the target SOC value is the SOC value determined according to the SOC interval value. For example, if the SOC interval value is 5%, the target The SOC can be 5%, 10%, 15%, etc.
  • the BMS judges that the current SOC of the power battery is the target SOC value, it controls the power battery to discharge or stop charging. Conversely, when the BMS judges that the current SOC of the power battery is not When the target SOC value is reached, the SOC of the power battery will continue to be detected continuously.
  • the BMS can control the power battery to discharge according to preset discharge parameters.
  • the BMS can control the power battery to discharge one or more times with preset discharge parameters, that is, to apply one or more negative pulses of preset waveforms to the power battery during the charging process.
  • the BMS can also determine the required discharge parameters according to the state parameters of the power battery, so as to control the discharge of the power battery.
  • the state parameters of the power battery may include at least one of the following parameters: state of charge SOC, state of health SOH and temperature, and the BMS may determine the discharge parameters according to at least one of the SOC, SOH and temperature of the power battery, To control the power battery discharge.
  • the discharge parameters include, but are not limited to: discharge current, discharge time, discharge waveform and the like.
  • the range of the above-mentioned discharge current may be between 1A and 5C. Specifically, the discharge current is greater than or equal to 1A, and the discharge rate of the discharge current is less than or equal to 5C.
  • the above discharge time may range from 1s to 60s.
  • the above discharge waveform includes any one or more of the discharge waveform including but not limited to square wave, trapezoidal wave, sine wave or triangular wave. The embodiment of the present application does not specifically limit the specific value of the discharge parameter of the power battery.
  • the discharge object of the power battery can be the electric device where the power battery is located, or it can also be the charging device for charging the power battery, or it can also be the power removing device and the charging device.
  • the embodiment of the present application does not specifically limit the discharge object of the power battery.
  • the BMS can also control the power battery to stop charging according to the preset time value.
  • the preset time value may be a stop time value determined according to state parameters of the power battery.
  • the BMS may control the power battery to discharge or stop charging every time the SOC of the power battery changes by the SOC interval value. In other words, during the entire charging process, the BMS can continue to control the charging of the power battery according to the change of the SOC of the power battery.
  • the SOC interval value is determined by the SOH of the power battery instead of other types of interval values, which can better control the discharge or stop charging during the charging process according to the current state of the power battery, and further improve Battery safety performance and charging performance.
  • step 220 is shown before step 230, the embodiment of the present application does not specifically limit the sequence of occurrence of step 220 and step 230.
  • step 220 can be executed Before step 230 , alternatively, step 220 may also be performed after step 230 .
  • Fig. 3 shows a schematic block flow diagram of another power battery charging method 300 provided by an embodiment of the present application.
  • a method 300 for charging a power battery may include the following steps.
  • step 310 and step 320 refer to the relevant description of step 210 and step 220 in FIG. 2 above, and details are not repeated here.
  • step 331 and step 332 in the embodiment of the present application may be a relatively specific implementation manner of step 230 in FIG. 2 above.
  • step 341 and step 342 in the embodiment of the present application may be a relatively specific implementation manner of step 240 in FIG. 2 above.
  • the SOH of the power battery can be compared with the preset SOH threshold, so as to determine different first SOC interval values and second SOC interval values, wherein the first SOC The interval value is greater than the second SOC interval value.
  • the power batteries with better health, higher SOH, and higher remaining life are low. Therefore, in the embodiment of the present application, if the health of the power battery is better and the SOH is higher (for example, it is greater than or equal to the preset SOH threshold), then its discharge frequency can be reduced or its charging frequency can be stopped, and a larger SOC interval value can be used. (For example, the first SOC interval value) controlling the power battery to discharge or stop charging can also ensure that the power battery will not undergo lithium deposition and relatively increase the charging rate.
  • the SOH interval value with a smaller interval controls Discharging or stopping charging of the power battery can ensure that the power battery will not undergo lithium precipitation and ensure the safety performance of the power battery.
  • the SOH of the power battery is divided into two intervals. If the SOH of the power battery is greater than or equal to the preset SOH threshold, the health of the power battery is good, and it is determined that the power battery is discharged. Or the SOC interval value corresponding to the stop charging is the larger first SOC interval value. On the contrary, if the SOH of the power battery is less than the preset SOH threshold, the health of the power battery is poor, and the SOC corresponding to the power battery discharge or stop charging is determined.
  • the interval value is a second smaller SOC interval value.
  • the preset SOH threshold can be used to evaluate whether the health status of the power battery is good.
  • the preset SOH threshold can be set according to the type of power battery, application scenarios, actual needs, etc. This example does not specifically limit the preset SOH threshold.
  • the range of the preset SOH threshold can be between 80% and 99%, so that the health status of the power battery can be well judged by the preset SOH threshold, and the safety performance of the power battery can be guaranteed and balanced. and charging performance.
  • the preset SOH threshold can be set higher, for example, it can be 99%, only when the SOH of the power battery Greater than or equal to 99%, the power battery can be controlled to discharge or stop charging at intervals of the larger first SOC interval value.
  • the preset SOH threshold may be other specific values between 80% and 99%.
  • the SOC interval value in the embodiment of the present application can also be based on the type and application of the power battery
  • the preset value set for scenarios, actual needs, etc., the embodiment of the present application does not specifically limit the SOC interval value.
  • the SOC interval may range from 3% to 95%.
  • the first SOC interval value and the second SOC interval value can be set relatively high to prevent the power battery from Lithium precipitation occurs in a low temperature or ultra-low temperature environment.
  • the first SOC interval value and the second SOC interval value may take other specific values between 3% and 95%.
  • two preset SOH thresholds can be set, 1# preset SOH threshold A% and 2# preset SOH threshold B%, wherein, if A% ⁇ B%, the SOH of the power battery is in the interval [0, A%)
  • the SOC interval value is 1#SOC interval value u%, and the SOH of the power battery is in the [A%, B%) interval
  • the SOC interval value is 2#SOC interval value v%
  • the SOH of the power battery is in [B% ,100%] interval
  • the SOC interval value is 3#SOC interval value w%, wherein, u% ⁇ v% ⁇ w%, A, B, u, v, w are all positive numbers.
  • the ranges of the above two or more preset SOH thresholds can also refer to the range of the preset SOH threshold value and the range of the SOC interval value in the embodiment shown in FIG. 3 above.
  • Fig. 4 shows a schematic flow diagram of another method 400 for charging a power battery provided by an embodiment of the present application.
  • a method 400 for charging a power battery may include the following steps.
  • step 410 for the relevant technical solutions of step 410, step 420 and step 440, refer to the relevant description of step 210, step 220 and step 240 in FIG. 2 above, and details are not repeated here.
  • step 430 in the embodiment of the present application may be another relatively specific implementation manner of step 230 shown in FIG. 2 .
  • the SOC interval value corresponding to the discharge or stop charging of the power battery is determined according to the SOH of the power battery, but the SOC interval corresponding to the discharge or stop charging of the power battery is determined comprehensively according to the SOH and SOC of the power battery Value, taking into account the state of health of the power battery and the state of charge, consider the discharge control or stop charging control of the power battery during the charging process, which is conducive to further improving the safety performance and charging performance of the power battery.
  • one or more preset The SOC threshold is divided into multiple SOC intervals, and the SOC interval value corresponding to the power battery discharge or stop charging is determined according to the SOH and SOC intervals of the power battery.
  • step 430 may specifically include the following steps.
  • the SOC of the power battery is greater than or equal to the preset SOH threshold, and the SOC of the power battery is less than the preset SOC threshold, determine the SOC interval value as the third SOC interval value.
  • the SOC interval value is determined to be a fourth SOC interval value.
  • the SOC of the power battery is less than the preset SOH threshold, and the SOC of the power battery is less than the preset SOC threshold, determine the SOC interval value as the fifth SOC interval value.
  • the SOC of the power battery is less than the preset SOH threshold, and the SOC of the power battery is greater than or equal to the preset SOC threshold, determine the SOC interval value as the sixth SOC interval value.
  • the third SOC interval value is greater than the fourth SOC interval value
  • the fifth SOC interval value is greater than the sixth SOC interval value
  • the relationship between the SOC of the power battery and the preset SOC threshold is also judged. If the SOC of the power battery is large (for example, greater than or equal to the preset SOC threshold), it means that the current remaining capacity of the power battery is relatively high, and the potential of the negative electrode of the power battery is low, which is prone to lithium precipitation. Therefore, in the power battery When the SOC is large, it is necessary to increase its discharge frequency or stop charging frequency, and the smaller SOC interval value controls the discharge or stop charging of the power battery to prevent the occurrence of lithium precipitation and ensure the safety performance of the power battery.
  • the SOC of the power battery is small (for example, less than the preset SOC threshold), it means that the current remaining capacity of the power battery is low, and the negative electrode potential of the power battery is high. Lithium precipitation occurs. Therefore, when the SOC of the power battery is small, the discharge frequency can be reduced or the charging frequency can be stopped. A larger SOC interval can control the discharge or stop charging of the power battery, which can also prevent the occurrence of lithium precipitation. The safety performance of the power battery, and relatively increase the charging rate.
  • the SOC interval value is the third SOC interval value, and if the SOC of the power battery is greater than or equal to the preset SOC threshold, determine The SOC interval value is a fourth SOC interval value, wherein the third SOC interval value is greater than the fourth SOC interval value.
  • the SOC interval value is the fifth SOC interval value, and if the SOC of the power battery is greater than or equal to the preset SOC threshold, determine The SOC interval value is the sixth SOC interval value, wherein the fifth SOC interval value is greater than the sixth SOC interval value.
  • the relationship between the fourth SOC interval value and the fifth SOC interval value is not specifically limited, and may be designed according to actual conditions.
  • the range of the preset SOH threshold can refer to the relevant description of the preset SOH threshold in FIG. 3 , and the range of the preset SOH threshold can be 80% to 99%.
  • the range of the above-mentioned preset SOC threshold is not specifically limited in this embodiment of the present application, and as an example, it includes but is not limited to 50%.
  • the range of the above-mentioned SOC interval value (including the third SOC interval value, the fourth SOC interval value, the fifth SOC interval value and the sixth SOC interval value) can also refer to the preset SOC in the embodiment shown in FIG. 3 above. Threshold range, the SOC interval value ranges from 3% to 95%.
  • Fig. 5 shows a schematic flow diagram of another method 500 for charging a power battery provided by an embodiment of the present application.
  • a method 500 for charging a power battery may include the following steps.
  • step 510 for the relevant technical solutions of step 510, step 520 and step 540, refer to the relevant description of step 210, step 220 and step 240 in FIG. 2 above, and details are not repeated here.
  • step 530 in the embodiment of the present application may be another relatively specific implementation manner of step 230 shown in FIG. 2 .
  • the SOC interval value corresponding to the discharge or stop charging of the power battery can be determined directly according to the SOH of the power battery and the preset mapping relationship, and the SOC corresponding to each SOH of the power battery can be determined more conveniently and accurately The interval value further improves the safety performance and charging performance of the power battery.
  • the preset mapping relationship may be a mapping table, and a mapping relationship between multiple SOHs and their corresponding SOC interval values may be established according to actual needs.
  • Table 1 below shows a schematic mapping table.
  • C 1 to C 6 are positive numbers less than 100, and C 1 >C 2 >C 3 >C 4 >C 5 >C 6 .
  • the mapping table can be stored in the storage unit of the BMS. If the current SOH of the power battery is an existing SOH value in the table, the BMS can directly determine the SOC interval value corresponding to the current SOH of the power battery. If the current SOH of the power battery is not the existing SOH value in the table, the BMS can also calculate the SOC interval value corresponding to the current SOH of the power battery according to the mapping table.
  • C x % can also satisfy the following relationship:
  • the corresponding SOC interval value can also be determined by referring to the above calculation method, and details will not be repeated here.
  • the SOC interval value corresponding to any SOH can be determined within a certain SOH range, and the change of the SOC interval value under different SOH can be controlled more accurately, and the safety performance and charging performance of the power battery can be balanced.
  • mapping table 1 is only an illustration of the mapping table and not a limitation.
  • the specific SOH value and SOC interval value in the mapping table are not limited in this embodiment of the application, which can be determined according to the charging rate requirements, safety requirements, and battery performance. etc. to set.
  • the preset mapping relationship in this embodiment of the present application may also be a mapping formula.
  • a mapping formula between the SOC interval value and the SOH value may be established, and the mapping formula includes but is not limited to an incremental function formula.
  • the SOC interval value is represented by C%
  • the SOH value is represented by H%
  • the mapping formula between the SOC interval value and the SOH value can be the following formula:
  • k 1 , k 2 , b 1 , and b 2 are constants, which can be set according to charging rate requirements, safety requirements, and battery performance, and are not specifically limited in this embodiment of the present application.
  • mapping formulas in the embodiment of the present application may be in other forms, which are not specifically limited in the embodiment of the present application.
  • the preset mapping relationship can also be other mapping forms, such as a map or a neural network model.
  • the form is also not specifically limited.
  • the preset mapping relationship may be a mapping relationship obtained by fitting a large amount of experimental data, which has high reliability and accuracy, so as to ensure the safety performance and charging performance of the power battery.
  • the SOH and/or SOC of the power battery can also be used. Wait for other parameters of the power battery and the preset mapping relationship to determine the SOC interval value corresponding to the power battery discharge or stop charging.
  • Fig. 6 shows a schematic flow diagram of another method 600 for charging a power battery provided by an embodiment of the present application.
  • the BMS determines the SOC interval value corresponding to the discharge of the power battery, and controls the discharge of the power battery when the SOC of the power battery changes the SOC interval value.
  • a method 600 for charging a power battery may include the following steps.
  • step 610 for the relevant technical solutions of step 610, step 620 and step 630, refer to the relevant description in the above embodiment, and details are not repeated here.
  • the BMS first sends charging demand information, and the current demand value carried in the charging demand information is zero, so the charging demand information can be used to control the power battery to stop charging.
  • the charging device such as a charger, is used to charge the power battery.
  • the BMS first sends a current demand value of zero to the charger.
  • the charger stops charging the power battery according to the charging demand information.
  • the charging demand information may be a communication message, which includes but is not limited to a communication message between the BMS and the charger that satisfies the relevant communication protocol.
  • the charging demand information may be a battery Charging demand message BCL.
  • step 650 may further include: obtaining the current of the power battery, and on this basis, step 650 may include: when the current of the power battery is less than or equal to a preset current threshold, controlling the power battery to discharge.
  • the BMS before controlling the discharge of the power battery, the BMS first obtains the current of the power battery.
  • the current of the power battery is small, for example, it is less than or equal to the preset current threshold, and at this time it has an impact on the discharge of the power battery. Only when the battery is small, the BMS controls the discharge of the power battery, which can further ensure the life and performance of the power battery and improve the safety of the power battery charging and discharging process.
  • the preset current threshold may be set according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the range of the preset current threshold may be less than or equal to 50A.
  • the BMS determines the SOC interval value corresponding to the stop charging of the power battery, and controls the power battery to stop charging when the SOC of the power battery changes the SOC interval value. Then in this technical solution, the BMS can execute the above step 640, that is, when the SOC of the power battery changes the SOC interval value, send a charging request message, and the current demand value carried in the charging demand message is zero, so as to control the power battery to stop charging .
  • the BMS may periodically or irregularly send charging demand information that the current demand value is zero, so as to control the time when the power battery stops charging.
  • FIG. 7 shows a schematic block flow diagram of another power battery charging method 700 provided by an embodiment of the present application.
  • a method 700 for charging a power battery may include the following steps.
  • step 710 for related technical solutions from step 710 to step 750, reference may be made to the relevant description in the above embodiment, and details are not repeated here.
  • the BMS controls the discharge of the power battery, it is determined whether to stop discharging according to the discharge time of the power battery and the sent time of the charging demand information. Specifically, when the discharge time of the power battery is greater than or equal to the first preset time threshold, control the power battery to stop discharging; or, when the sent time of the charging demand information is greater than or equal to the second preset time threshold, control the power battery to stop discharging .
  • the BMS when controlling the discharge of the power battery, the BMS counts the discharge time of the power battery, and judges whether the discharge time of the power battery is greater than or equal to a first preset time threshold.
  • the BMS may also time the sent time of the charging demand information after sending the charging demand information carrying a current demand value of zero, and judge whether the sent time of the charging demand information is greater than or equal to the second preset time threshold .
  • the first preset time threshold can be designed according to actual discharge requirements.
  • the first preset time threshold can be adjusted and changed according to the state parameters of the power battery.
  • the power battery is in different states.
  • the first preset time threshold can be adjusted and changed according to the SOH and/or SOC of the power battery.
  • the first preset time threshold may also be a fixed threshold, which is not specifically limited in this embodiment of the present application.
  • the first preset time threshold in this embodiment of the present application may be the discharge time in the discharge parameters of the embodiment described above in FIG. 2 .
  • the charging device for charging the power battery can regularly or irregularly receive the charging demand information sent by the BMS.
  • the charging demand information is sent normally, the charging device and the power battery can maintain In the normal communication state, if the charging device does not receive the charging demand information sent by the BMS within a period of time, it may cause the charging device to disconnect the communication connection with the power battery. Therefore, in this embodiment of the application, in addition to setting the first preset time threshold to control the discharge time of the power battery, a second time threshold is also set to compare with the sent time of the charging demand information to prevent the charging demand information from being sent. If the sending time is too long, it will affect the normal charging process of the power battery, thereby improving the charging efficiency of the power battery.
  • the method 700 of the embodiment of the present application further includes step 770: controlling charging of the power battery. That is, after the BMS controls the power battery to stop discharging, re-control the power battery charging.
  • the BMS can send a new charging demand message to the charging device, such as a charger, and the current demand value carried in the charging demand message is not zero, but can be the current demand determined according to the parameters of the power battery value, so that the charging device can charge the power battery according to the current demand value.
  • step 770 the above step 720 to step 760 can be re-executed to realize the process of BMS controlling the continuous charging and discharging of the power battery.
  • the BMS determines the SOC interval value corresponding to the stop charging of the power battery, and controls the power battery to stop charging when the SOC of the power battery changes the SOC interval value.
  • the stop charging time of the power battery is greater than or equal to the third preset time threshold, the power battery can be controlled to continue charging, so as to realize the process of BMS controlling the continuous charging of the power battery.
  • the third preset time threshold in this embodiment of the present application may be the stop time value in the embodiment described above in FIG. 2 .
  • Fig. 8 shows a schematic flow diagram of another method 800 for charging a power battery provided by an embodiment of the present application.
  • a method 800 for charging a power battery may include the following steps.
  • step 810 for the relevant technical solutions of step 810, step 830 to step 850, refer to the relevant description in the above embodiment, and details are not repeated here.
  • the BMS can first obtain the running state of the power battery, and when the power battery is in the charging state, perform step 830, that is, obtain the SOC of the power battery during the charging process of the power battery, and perform steps 840 to 850 .
  • the power battery is controlled to discharge when the power battery is in a drawn state or fully charged state.
  • the BMS can determine the current operating state of the power battery by acquiring the operating parameters of the power battery. Among them, when the power battery is disconnected from the charging gun of the charger, the BMS judges that the power battery can be in the state of drawing the gun, that is, the charger is not charging the power battery. In addition, the BMS can obtain parameters such as the voltage of the power battery to determine that when the SOC of the power battery reaches 100%, the SOC of the power battery reaches a fully charged state.
  • the BMS can control the power battery to discharge briefly, for example, perform discharge with a discharge time less than the preset time threshold and/or discharge current less than the preset current threshold, so as to prevent the power battery from In the subsequent charging process, after the charging device is connected to the power battery, the power battery is directly charged to cause the risk of lithium analysis of the power battery, which further improves the safety performance of the power battery.
  • FIG. 9 shows a schematic structural block diagram of a battery management system BMS 900 according to an embodiment of the present application.
  • the BMS 900 includes: an acquisition module 910 and a control module 920.
  • the acquisition module 910 is used to acquire the state of health SOH of the power battery, and the acquisition module 910 is also used to acquire the state of charge SOC of the power battery during the charging process of the power battery; the control module 920 , used to determine the SOC interval value corresponding to the power battery discharge or stop charging according to the SOH of the power battery, and control the discharge of the power battery when the SOC of the power battery changes the SOC interval value.
  • control module 920 is used to: if the SOH of the power battery is greater than the preset SOH threshold, determine that the SOC interval value is the first SOC interval value; if the SOH of the power battery is less than or equal to the preset SOH threshold, determine The SOC interval value is a second SOC interval value; wherein, the first SOC interval value is greater than the second SOC interval value.
  • control module 920 is configured to: determine the SOC interval value corresponding to the power battery discharge or stop charging according to the SOH and SOC of the power battery.
  • control module 920 is configured to: if the SOH of the power battery is greater than or equal to the preset SOH threshold, and the SOC of the power battery is less than the preset SOC threshold, determine the SOC interval value as the third SOC interval value; if The SOH of the power battery is greater than or equal to the preset SOH threshold, and the SOC of the power battery is greater than or equal to the preset SOC threshold, and the SOC interval value is determined to be the fourth SOC interval value; if the SOH of the power battery is less than the preset SOH threshold, and the SOC of the power battery If it is less than the preset SOC threshold value, determine the SOC interval value as the fifth SOC interval value; if the SOH of the power battery is less than the preset SOH threshold value, and the SOC of the power battery is greater than or equal to the preset SOC threshold value, determine the SOC interval value as the sixth SOC interval value ; Wherein, the third SOC interval value is greater than the
  • the preset SOH threshold ranges from 80% to 99%.
  • control module 920 is configured to: determine the SOC interval value corresponding to the discharge or stop charging of the power battery according to the SOH of the power battery and the preset mapping relationship.
  • the SOC interval ranges from 3% to 95%.
  • the BMS 900 provided in the embodiment of the present application may also include a sending module 930.
  • the sending module 930 is used to send charging demand information, and the charging demand information carries The current demand value is zero, and the charging demand information is used to control the power battery to stop charging.
  • the obtaining module 910 is also used to: obtain the current of the power battery; the control module 920 is used to control the discharge of the power battery when the current of the power battery is less than or equal to a preset current threshold.
  • control module 920 is configured to: when the discharge time of the power battery is greater than or equal to the first preset time threshold or the sent time of the charging demand information is greater than or equal to the second preset time threshold, control the power battery Stop discharging.
  • FIG. 10 shows a schematic structural block diagram of a BMS 1000 provided by another embodiment of the present application.
  • BMS 1000 includes a memory 1010 and a processor 1020, wherein the memory 1010 is used to store a computer program, and the processor 1020 is used to read the computer program and execute the aforementioned various embodiments of the present application based on the computer program method.
  • an embodiment of the present application further provides a readable storage medium for storing a computer program, and the computer program is used to execute the methods in the foregoing various embodiments of the present application.
  • the computer program may be the computer program in the above-mentioned BMS.
  • sequence numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Abstract

本申请实施例提供一种动力电池充电的方法和电池管理系统。该动力电池充电的方法应用于电池管理系统,该方法包括:获取动力电池的SOH;在动力电池的充电过程中,获取动力电池的SOC;根据动力电池的SOH,确定动力电池放电或停止充电对应的SOC间隔值;在动力电池的SOC变化SOC间隔值时,控制动力电池放电或停止充电。通过该技术方案,在动力电池的充电过程中控制动力电池放电或停止充电,可降低动力电池的析锂风险,提升动力电池的安全性能,进一步地,根据动力电池的SOH确定SOC间隔值,综合动力电池的SOH和SOC,控制动力电池在充电过程中的放电或停止充电时机,使得整体充电设计更为合理,在保证动力电池的安全性能的基础上,兼顾提高动力电池的充电性能。

Description

动力电池充电的方法和电池管理系统 技术领域
本申请涉及动力电池领域,特别是涉及一种动力电池充电的方法和电池管理系统。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利社会的发展和进步。
对于电动汽车而言,动力电池技术是关乎其发展的一项重要因素,会影响大众对电动汽车的接受度。因此,如何提升动力电池的性能,是一个待解决的技术问题。
发明内容
本申请实施例提供一种动力电池充电的方法和电池管理系统,能够提升动力电池的性能。
第一方面,提供一种动力电池充电的方法,应用于该动力电池的电池管理系统BMS,该方法包括:获取该动力电池的健康状态SOH;在该动力电池的充电过程中,获取该动力电池的荷电状态SOC;根据该动力电池的SOH,确定该动力电池放电或停止充电对应的SOC间隔值;在该动力电池的SOC变化该SOC间隔值时,控制该动力电池放电或停止充电。
通过本申请实施例的技术方案,在动力电池的充电过程中,控制动力电池放电或暂时停止充电,可以防止持续充电对动力电池造成的析锂风险,提升动力电池的安全性能。进一步地,在对动力电池进行充电的过程中,可根据动力电池的SOH确定放电间隔值或停止充电间隔值,且该间隔值为SOC间隔值,综合动力电池的SOH和SOC,控制动力电池在充电过程中的放电时机或停止充电时机,从而使得该动力电池的整体充电设计更为合理,在保证动力电池的安全性能的基础上,兼顾提高动力电池的充电性能。
在一些可能的实施方式中,该根据该动力电池的SOH,确定该动力电池放电或停止充电对应的SOC间隔值,包括:若该动力电池的SOH大于等于预设SOH阈值,确定该SOC间隔值为第一SOC间隔值;若该动力电池的SOH小于该预设SOH阈值,确定该SOC间隔值为第二SOC间隔值;其中,该第一SOC间隔值大于该第二SOC间隔值。
在该实施方式的技术方案中,通过设置一个预设SOH阈值,将动力电池的SOH划分为两个区间,若动力电池的SOH大于等于预设SOH阈值,则动力电池的健康良好,确定动力电池放电或停止充电对应的SOC间隔值为较大的第一SOC间隔值,反之,若动力电池的SOH小于预设SOH阈值,则动力电池的健康状况较差,确定动力电池放电或停止充电对应的SOC间隔值为较小的第二SOC间隔值。通过该技术方案,可以较为便捷的根据动力电池的SOH,确定动力电池放电或停止充电对应的SOC间隔值,在动力电池的健康状况良好时,不仅保证动力电池的安全性能,还提升了充电速率,在动力电池的健康状况较差时,可以充分保证动力电池的安全性能,防止析锂进一步影响动力电池的剩余寿命。
在一些可能的实施方式中,该根据该动力电池的SOH,确定该动力电池放电或停止充电对应的SOC间隔值,包括:根据该动力电池的SOH和SOC,确定该动力电池放电或停止充电对应的该SOC间隔值。
在该实施方式的技术方案中,不仅仅根据动力电池的SOH确定动力电池放电或停止充电对应的SOC间隔值,而是综合根据动力电池的SOH以及SOC确定动力电池放电或停止充电对应的SOC间隔值,兼顾了动力电池的健康状态以及电荷状态考虑动力电池在充电过程中的放电控制或停止充电控制,有利于进一步提升动力电池的安全性能和充电性能。
在一些可能的实施方式中,该根据该动力电池的SOH和SOC,确定该动力电池放电或停止充电对应的该SOC间隔值,包括:若该动力电池的SOH大于等于预设SOH阈值,且该动力电池的SOC小于预设SOC阈值,确定该SOC间隔值为第三SOC间隔值;若该动力电池的SOH大于等于该预设SOH阈值,且该动力电池的SOC大于等于该预设SOC阈值,确定该SOC间隔值为第四SOC间隔值;若该动力电池的SOH小于该预设SOH阈值,且该动力电池的SOC小于该预设SOC阈值,确定该SOC间隔值为第五SOC间隔值;若该动力电池的SOH小于该预设SOH阈值,且该动力电池的SOC大于等于该预设SOC阈值,确定该SOC间隔值为第六SOC间隔值;其中,该第三SOC间隔值大于该第四SOC间隔值,该第五SOC间隔值大于该第六SOC间隔值。
在该实施方式的技术方案中,除了判断动力电池的SOH与预设SOH阈值的关系以外,还判断动力电池的SOC与预设SOC阈值的关系。若动力电池的SOC较大(例如大于等于预设SOC阈值),则说明动力电池当前的剩余容量较高,动力电池的负极电位较低,其较容易发生析锂现象,因此,在动力电池的SOC较大时,需提高其放电频率或停止充电频率,间隔较小的SOC间隔值控制动力电池放电或停止充电,防止析锂现象的发生,保证动力电池的安全性能。对应的,若动力电池的SOC较小(例如小于预设SOC阈值),则说明动力电池当前的剩余容量较低,动力电池的负极电位较高,相比于负极电位较低的情况,其不易发生析锂现象,因此,在动力电池的SOC较小时,可降低其放电频率或停止充电频率,间隔较大的SOC间隔值控制动力电池放电或停止充电,也可防止析锂现象的发生,保证动力电池的安全性能,且相对提高充电速率。
在一些可能的实施方式中,该预设SOH阈值的范围为80%至99%。
在该实施方式的技术方案中,通过该预设SOH阈值的设置,能够良好的判断 动力电池的健康状况,保证和平衡动力电池的安全性能和充电性能。
在一些可能的实施方式中,该根据该动力电池的SOH,确定该动力电池放电或停止充电对应的SOC间隔值,包括:根据该动力电池的SOH和预设映射关系,确定该动力电池放电或停止充电对应的SOC间隔值。
在该实施方式的技术方案中,可直接根据动力电池的SOH和预设映射关系,确定动力电池放电或停止充电对应的SOC间隔值,可以较为便捷且精确的确定动力电池的各个SOH对应的SOC间隔值,进一步提升动力电池的安全性能和充电性能。
在一些可能的实施方式中,该SOC间隔值的范围为3%至95%。
在一些可能的实施方式中,在控制该动力电池放电之前,该方法还包括:发送充电需求信息,该充电需求信息中携带的电流需求值为零,该充电需求信息用于控制该动力电池停止充电。
若在对动力电池充电的过程中,直接控制动力电池放电,不仅会对动力电池造成损伤,影响动力电池的寿命,还会带来安全隐患,影响动力电池的安全性。在该实施方式的技术方案中,在BMS发送充电需求信息,该充电需求信息用于控制动力电池停止充电后,BMS再控制动力电池放电,可保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
在一些可能的实施方式中,在控制该动力电池放电之前,该方法还包括:获取该动力电池的电流;该控制该动力电池放电,包括:当该动力电池的电流小于等于预设电流阈值时,控制该动力电池放电。
在该实施方式的技术方案中,在控制动力电池放电之前,BMS先获取动力电池的电流,当动力电池的电流较小,例如小于等于预设电流阈值时,此时其对动力电池的放电影响较小,BMS才控制动力电池进行放电,能够进一步保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
在一些可能的实施方式中,该方法还包括:当该动力电池的放电时间大于等于第一预设时间阈值或该充电需求信息的已发送时间大于等于第二预设时间阈值时,控制该动力电池停止放电。
在动力电池的充电过程中,对动力电池进行充电的充电装置,例如充电机,可定时或不定时接收BMS发送的充电需求信息,当充电需求信息发送正常,充电装置与动力电池之间可保持正常的通信状态,若充电装置在一段时间内没有接收到BMS发送的充电需求信息,则可能会造成充电装置断开与动力电池的通信连接。因此,在该实施方式的技术方案中,除了设置第一预设时间阈值以控制动力电池的放电时间以外,还设置有第二时间阈值,与充电需求信息的已发送时间进行比较,防止充电需求信息的已发送时间过长,影响动力电池的正常充电过程,从而提升动力电池的充电效率。
在一些可能的实施方式中,该方法还包括:获取动力电池的运行状态;在动力电池处于拔枪状态或者满充状态时,控制动力电池放电。
在该实施方式的技术方案中,BMS还获取动力电池的运行状态,且在动力电池处于拔枪状态或者满充状态时,BMS可控制动力电池进行短暂放电,例如,执行放电时间小于预设时间阈值和/或放电电流小于预设电流阈值的放电,以防止动力电池在后 续充电过程中,充电装置与动力电池建立连接后,直接对动力电池进行充电造成动力电池的析锂风险,进一步提升动力电池的安全性能。
第二方面,提供一种动力电池的电池管理系统BMS,包括:获取模块,用于获取该动力电池的健康状态SOH;该获取模块还用于在该动力电池的充电过程中,获取该动力电池的荷电状态SOC;控制模块,用于根据该动力电池的SOH确定该动力电池放电或停止充电对应的SOC间隔值;并在该动力电池的SOC变化该SOC间隔值时,控制该动力电池放电或停止充电。
在一些可能的实施方式中,该控制模块用于:若该动力电池的SOH大于预设SOH阈值,确定该SOC间隔值为第一SOC间隔值;若该动力电池的SOH小于等于该预设SOH阈值,确定该SOC间隔值为第二SOC间隔值;其中,该第一SOC间隔值大于该第二SOC间隔值。
在一些可能的实施方式中,该控制模块用于:根据该动力电池的SOH和SOC,确定该动力电池放电或停止充电对应的该SOC间隔值。
在一些可能的实施方式中,该控制模块用于:若该动力电池的SOH大于等于预设SOH阈值,且该动力电池的SOC小于预设SOC阈值,确定该SOC间隔值为第三SOC间隔值;若该动力电池的SOH大于等于该预设SOH阈值,且该动力电池的SOC大于等于该预设SOC阈值,确定该SOC间隔值为第四SOC间隔值;若该动力电池的SOH小于该预设SOH阈值,且该动力电池的SOC小于该预设SOC阈值,确定该SOC间隔值为第五SOC间隔值;若该动力电池的SOH小于该预设SOH阈值,且该动力电池的SOC大于等于该预设SOC阈值,确定该SOC间隔值为第六SOC间隔值;其中,该第三SOC间隔值大于该第四SOC间隔值,该第五SOC间隔值大于该第六SOC间隔值。
在一些可能的实施方式中,该预设SOH阈值的范围为80%至99%。
在一些可能的实施方式中,该控制模块用于:根据该动力电池的SOH和预设映射关系,确定该动力电池放电或停止充电对应的SOC间隔值。
在一些可能的实施方式中,该SOC间隔值的范围为3%至95%。
在一些可能的实施方式中,该BMS还包括发送模块,用于发送充电需求信息,该充电需求信息中携带的电流需求值为零,该充电需求信息用于控制该动力电池停止充电。
在一些可能的实施方式中,该获取模块还用于:获取该动力电池的电流;该控制模块用于:当该动力电池的电流小于等于预设电流阈值时,控制该动力电池放电。
在一些可能的实施方式中,该控制模块用于:当该动力电池的放电时间大于等于第一预设时间阈值或该充电需求信息的已发送时间大于等于第二预设时间阈值时,控制该动力电池停止放电。
第三方面,提供一种动力电池的电池管理系统BMS,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用该计算机程序,执行如第一方面或第一方面中任一可能的实施方式中的动力电池充电的方法。
通过本申请实施例的技术方案,在动力电池的充电过程中,控制动力电池放电 或暂时停止充电,可以防止持续充电对动力电池造成的析锂风险,提升动力电池的安全性能。进一步地,在对动力电池进行充电的过程中,可根据动力电池的SOH确定放电间隔或停止充电间隔值,且该间隔值为SOC间隔,综合动力电池的SOH和SOC,控制动力电池在充电过程中的放电时机或停止充电时机,从而使得该动力电池的整体设计更为合理,在保证动力电池的安全性能的基础上,兼顾提高动力电池的充电性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例适用的一种充电系统的架构图;
图2是本申请实施例提供的一种动力电池充电的方法的示意性流程框图;
图3是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图4是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图5是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图6是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图7是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图8是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图9是本申请实施例提供的电池管理系统的示意性结构框图;
图10是本申请实施例提供的电池管理系统的示意性结构框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本 领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在新能源领域中,动力电池作为用电装置,例如车辆、船舶或航天器等的主要动力源,其重要性不言而喻。目前市面上的动力电池多为可充电的二次电池(Rechargeable battery),常见的是锂离子电池或锂离子聚合物电池。在低温下对动力电池进行充电,或者通过大的充电倍率或者充电电压对动力电池进行充电,会造成动力电池的析锂现象。
析锂不仅使动力电池性能下降,循环寿命大幅缩短,还限制了动力电池的快充容量,并有可能引起燃烧、爆炸等灾难性后果,严重影响了动力电池的整体性能。
鉴于此,本申请提出一种动力电池充电的方法,能够解决动力电池的析锂问题,提升动力电池的性能。
图1示出了本申请实施例适用的一种电池系统100。
如图1所示,该电池系统100可包括:动力电池110和电池管理系统(battery management system,BMS)120。
具体地,该动力电池110可包括至少一个电池模组,其可为电动汽车提供能量和动力。从电池的种类而言,该动力电池110可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中,动力电池110中的电池模组可以是电芯/电池单体(battery cell),也可以是电池组或电池包(battery pack),在本申请实施例中不做具体限定。
此外,为了智能化管理及维护该动力电池110,防止电池出现故障,延长电池的使用寿命,电池系统100中一般还设置有BMS 120,该BMS 120连接于动力电池110,用于监控采集动力电池110的参数,且BMS 120还可根据该参数实现对动力电池110的控制管理。
作为示例,该BMS 120可用于监控采集动力电池110的电压、电流和温度等参数。其中,BMS 120可实时采集动力电池110的总电压、总电流,动力电池110中单个电池单体的电压、电流、以及动力电池110中至少一个测温点的温度等等。上述参数的实时,快速,准确的测量是BMS 120正常运行的基础。
可选地,BMS 120可根据该采集的动力电池110的参数,进一步估算动力电池110的荷电状态(state of charge,SOC)、健康状态(state of health,SOH)、功率状态(state of power,SOP)等参数。
其中,SOC可用于表示动力电池110的剩余容量,其数值上定义为动力电池110当前的剩余容量与总的可用容量的比值,常用百分比表示。具体地,SOC=100%时,表示动力电池110完全充满;反之,SOC=0%时,表示动力电池110完全放电。对SOC的准确估算,既是电动汽车估算续航里程最基本的要求,又是提升动力电池110利用效率和安全性能的基本保证。
另外,SOH可用于表示动力电池110的老化状态,也可理解为动力电池110的剩余寿命。众所周知,动力电池110经过长期运行后性能将会不断衰减,如何精确的估算SOH是估算动力电池110其它参数(例如SOC和SOP等参数)的重要前提。一般情 况下,SOH也常用百分比表示,SOH=100%时,表示动力电池110为未经使用的新电池,随之使用时间增长,SOH逐渐下降,其剩余生命越短。在现有的相关技术中,可采用多种方式对动力电池110的SOH进行估算,例如,可基于动力电池110的可用容量对SOH进行估算,可以理解的是,动力电池110的可用容量会随着时间的增长逐渐下降,通过动力电池110当前的可用容量与初始容量(或者,也可称为标称容量)的比值,可估算得到动力电池110的SOH。
SOP可用于表示动力电池110的功率状态,通常用短时峰值功率至来表示。动力电池110输出输入的峰值功率直接影响车辆的快速启动、加速和紧急制动能力,进而关系到整车运行的安全性和可靠性。因此,BMS120必须具备对动力电池110峰值功率即SOP的估计能力。
可以理解的是,上文仅以SOC、SOH和SOP为例,简单了介绍了BMS 120可估算的部分参数,除此之外,BMS 120还可以用于确定动力电池110的其它参数,本申请实施例对此不做具体限定。
进一步地,BMS 120获取动力电池110的多种参数以后,可根据该多种参数实现对动力电池110各种控制和管理。
例如,BMS 120可根据SOC、电压、电流等参数实现对动力电池110的充放电控制,保证动力电池110正常的能量供给和释放。
又例如,BMS 120还可根据温度等参数,控制散热风扇或者加热模块等组件,实现动力电池110的热管理。
再例如,BMS 120还可根据电压、SOH等参数,判断动力电池110是否处于正常运行状态,以实现动力电池110的故障诊断和预警。
可选地,如图1所示,电池系统100可与充电装置101和用电装置102建立连接,以实现动力电池100的充放电。
具体地,电池系统100中的BMS 120可通过相关通信协议与充电装置101建立通信,进而通过充电装置101实现对动力电池110的充电。
可选地,BMS 120也可与用电装置102建立通信连接,从而使得BMS 120可将其获取的相关信息反馈给用电装置101乃至用户,且BMS 120也可获取用电装置101的相关控制信息,更好的对动力电池110进行控制和管理。
作为示例,图1中所示的充电装置101包括但不限于是充电机(或者也称充电桩)。另外,用电装置102可为各种类型的用电装置,其包括但不限于是电动汽车。
图2示出了本申请实施例提供的一种动力电池充电的方法200的示意性流程框图,该动力电池充电的方法200可应用于动力电池的电池管理系统。可选地,本申请实施例中,动力电池可为上述图1中所示的动力电池110,该方法200可应用于动力电池110的BMS 120,换言之,BMS 120可作为下文申请实施例中方法200的执行主体。
如图2所示,在本申请实施例中,动力电池充电的方法200可包括以下步骤。
210:获取动力电池的健康状态SOH。
220:在动力电池的充电过程中,获取动力电池的荷电状态SOC。
230:根据动力电池的SOH,确定动力电池放电或停止充电对应的SOC间隔值。
240:在动力电池的SOC变化SOC间隔值时,控制动力电池放电或停止充电。
通过本申请实施例的技术方案,在动力电池的充电过程中,控制动力电池放电或暂时停止充电,可以防止持续充电对动力电池造成的析锂风险,提升动力电池的安全性能。进一步地,在对动力电池进行充电的过程中,可根据动力电池的SOH确定放电间隔或停止充电间隔值,且该间隔为SOC间隔,综合动力电池的SOH和SOC,控制动力电池在充电过程中的放电时机或停止充电时机,从而使得该动力电池的整体充电设计更为合理,在保证动力电池的安全性能的基础上,兼顾提高动力电池的充电性能。
具体地,如上文图1所示实施例所述,SOH可用于表示动力电池的老化状态,也可理解为动力电池的剩余寿命。动力电池经过长期运行后性能将会不断衰减,因此,剩余寿命也就越短,即常用百分比表示的SOH数值也就越小。
可选地,在本申请实施例的步骤210中,BMS可在充电之前获取动力电池的SOH,该获取动力电池的SOH的方法可以参见相关技术中的方法,此处不做具体赘述。在一些实施方式中,BMS获取动力电池的SOH之后,可将该SOH存储至存储单元,当后续对动力电池充电时,可根据该存储的SOH确定动力电池充电过程中的放电间隔或停止充电间隔。
对于本申请实施例的步骤220,在动力电池的充电过程中,动力电池的SOC会实时发生变化,BMS可在动力电池的充电过程中,定期或者不定期的获取动力电池变化的SOC以及其它电池参数,以对动力电池的充电状态进行监控。
可选地,在一些实施方式中,若采用充电机对动力电池进行充电,BMS可按照相关充电标准中的要求获取动力电池的SOC。
进一步地,对于本申请实施例的步骤230,在动力电池的充电过程中,BMS根据上述获取到的动力电池的SOH,确定动力电池放电或停止充电对应的SOC间隔值,其中,该SOC间隔值也可用百分数来表示。
换言之,在本申请实施例中,用于控制动力电池放电或停止充电的SOC间隔值与动力电池的SOH相关,若动力电池的SOH发生变化,则SOC间隔值也可随之发生变化,即动力电池的放电间隔或停止充电间隔也发生变化,使得动力电池充电过程中的放电间隔或停止充电间隔与动力电池的SOH相关,在提升动力电池安全性能的同时兼顾动力电池的充电性能。
进一步地,对于本申请实施例的步骤240,在动力电池的充电过程中,动力电池的SOC实时变化,当SOC变化该SOC间隔值时,则BMS控制动力电池放电或停止充电。作为示例,SOC间隔值若为X%,检测动力电池的SOC变化X%时,则BMS控制动力电池放电或停止充电,其中,X为小于100的正数。
在一些具体实现方式中,BMS获取动力电池当前的SOC后,判断该SOC是否为目标SOC值,该目标SOC值为根据SOC间隔值确定的SOC值,例如,SOC间隔值为5%,则目标SOC可为5%,10%,15%……等,当BMS判断动力电池当前的SOC为目标SOC值时,则控制动力电池放电或停止充电,反之,当BMS判断动力电池当前的SOC不为目标SOC值时,则继续持续检测动力电池的SOC。
对于步骤240,可选地,在一些实施方式中,在动力电池的SOC变化SOC间 隔值时,BMS可按照预设的放电参数控制动力电池放电。作为示例,BMS可控制动力电池以预设放电参数放电一次或者多次,即在充电过程中,给动力电池施加一个或多个预设波形的负脉冲。
或者,在其它实施方式中,在动力电池的SOC变化SOC间隔值时,BMS也可根据动力电池的状态参数,确定所需的放电参数,以控制动力电池放电。作为示例,动力电池的状态参数可包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度,BMS可根据动力电池的SOC、SOH和温度中的至少一项,确定放电参数,以控制动力电池放电。
在上述实施方式中,放电参数包括但不限于:放电电流、放电时间、放电波形等等。
可选地,上述放电电流的范围可在1A至5C之间。具体地,放电电流大于等于1A,且放电电流的放电倍率小于等于5C。可选地,上述放电时间的范围可在可在1s至60s之间。可选地,上述放电波形包括该放电波形包括但不限于是方波、梯形波、正弦波或三角波中的任意一种或多种。本申请实施例对动力电池的放电参数的具体数值不做具体限定。
另外,本申请实施例中,动力电池的放电对象可为动力电池所在的用电装置,或者,也可为给动力电池进行充电的充电装置,又或者,还可为除用电装置和充电装置以外的其它外部装置,本申请实施例对该动力电池的放电对象也不做具体限定。
对于步骤240,除了上述BMS控制动力电池放电的技术方案以外,在动力电池的SOC变化SOC间隔值时,BMS也可按照预设时间值控制动力电池停止充电。可选地,该预设时间值可为根据动力电池的状态参数,确定得到的停止时间值。
可选地,动力电池的SOC每变化SOC间隔值时,BMS可控制动力电池放电或停止充电。换言之,在整个充电过程中,BMS可根据动力电池SOC的变化,持续对动力电池的充电控制。
通过本申请实施例的技术方案,通过动力电池的SOH确定SOC间隔值而非其它类型的间隔值,可以更好的针对动力电池的当前状态在充电过程中进行放电控制或停止充电控制,进一步提升电池的安全性能和充电性能。
需要说明的是,上文图2所示实施例中,虽然步骤220示意于步骤230之前,但本申请实施例对该步骤220和步骤230的发生顺序不做具体限定,换言之,步骤220可执行于步骤230之前,或者,步骤220也可执行于步骤230之后。
图3示出了本申请实施例提供的另一动力电池充电的方法300的示意性流程框图。
如图3所示,在本申请实施例中,动力电池充电的方法300可包括以下步骤。
310:获取动力电池的健康状态SOH。
320:在动力电池的充电过程中,获取动力电池的荷电状态SOC。
331:若动力电池的SOH大于等于预设SOH阈值,确定SOC间隔值为第一SOC间隔值。
341:在动力电池的SOC变化第一SOC间隔值时,控制动力电池放电或停止充 电。
332:若动力电池的SOH小于预设SOH阈值,确定SOC间隔值为第二SOC间隔值。
342:在动力电池的SOC变化第二SOC间隔值时,控制动力电池放电或停止充电。
具体地,在本申请实施例中,步骤310和步骤320的相关技术方案可参见上文图2中步骤210和步骤220的相关描述,此处不做过多赘述。
另外,本申请实施例中的步骤331和步骤332可为上文图2中步骤230的一种相对具体的实施方式。对应的,本申请实施例中的步骤341和步骤342可为上文图2中步骤240的一种相对具体的实施方式。
对于步骤331和步骤332,在本申请实施例中,可将动力电池的SOH与预设SOH阈值进行比较,从而确定出不同的第一SOC间隔值和第二SOC间隔值,其中,第一SOC间隔值大于第二SOC间隔值。
具体地,相较于健康状况较差、SOH较低、剩余寿命较低的动力电池来讲,在相同的充电环境和充电条件下,健康状况较优、SOH较高、剩余寿命较高的动力电池发生析锂的可能性较低。因此,在本申请实施例中,若动力电池的健康状况较优、SOH较高(例如大于等于预设SOH阈值),则可降低其放电频率或停止充电频率,可间隔较大的SOC间隔值(例如第一SOC间隔值)控制动力电池放电或停止充电,也可保证动力电池不会发生析锂,且相对提高充电速率。对应的,若动力电池的健康状况较差,SOH较低(例如小于预设SOH阈值),则需增加其放电频率或停止充电,间隔较小的SOC间隔值(例如第二SOC间隔值)控制动力电池放电或停止充电,才能保证动力电池不会发生析锂,保证动力电池的安全性能。
在本申请实施例中,通过设置一个预设SOH阈值,将动力电池的SOH划分为两个区间,若动力电池的SOH大于等于预设SOH阈值,则动力电池的健康状况良好,确定动力电池放电或停止充电对应的SOC间隔值为较大的第一SOC间隔值,反之,若动力电池的SOH小于预设SOH阈值,则动力电池的健康状况较差,确定动力电池放电或停止充电对应的SOC间隔值为较小的第二SOC间隔值。通过该技术方案,可以较为便捷的根据动力电池的SOH,确定动力电池放电或停止充电对应的SOC间隔值,在动力电池的健康状况良好时,不仅保证动力电池的安全性能,还提升了充电速率,在动力电池的健康状况较差时,可以充分保证动力电池的安全性能,防止析锂进一步影响动力电池的剩余寿命。
可选地,本申请实施例中,预设SOH阈值可用于评价动力电池的健康状况是否良好,该预设SOH阈值可根据动力电池的类型、应用场景、实际需求等进行设定,本申请实施例对该预设SOH阈值不做具体限定。
在一些可能的实施方式中,该预设SOH阈值的范围可在80%至99%之间,以能够通过该预设SOH阈值良好的判断动力电池的健康状况,保证和平衡动力电池的安全性能和充电性能。
在一些对动力电池的性能要求较为严苛的场景下,例如动力电池运行于低温或 超低温环境下,该预设SOH阈值可设置的较高,例如,可为99%,仅当动力电池的SOH大于等于99%,可间隔较大的第一SOC间隔值控制动力电池放电或停止充电。当然,在其它不同应用场景和不同电池类型的情况下,该预设SOH阈值可取值为80%至99%之间的其它特定值。
除了预设SOH阈值以外,可选地,本申请实施例中的SOC间隔值(包括上文实施例中的第一SOC间隔值和第二SOC间隔值)也可为根据动力电池的类型、应用场景、实际需求等进行设定的预设值,本申请实施例对该SOC间隔值不做具体限定。
在一些可能的实施方式中,该SOC间隔值的范围可在3%至95%之间。在一些对动力电池的性能要求较为严苛的场景下,例如动力电池运行于低温或超低温环境下,该第一SOC间隔值和第二SOC间隔值均可设置相对较高,以避免动力电池在低温或超低温环境下发生析锂。当然,在其它不同应用场景和不同电池类型的情况下,该第一SOC间隔值和第二SOC间隔值可取值为3%至95%之间的其它特定值。
上文图3所示申请实施例中,仅设置了一个预设SOH阈值,将动力电池的SOH划分为两个区间,从而对应设置两个不同的SOC间隔值,类似地,还可设置两个或两个以上的预设SOH阈值,将动力电池的SOH划分为三个或更多的区间,从而对应设置更多不同的SOC间隔值,以适应性提高不同SOH区间下,在充电过程中放电控制或停止充电控制的精确度,进一步精确兼顾动力电池的安全性能和充电速率。
作为示例,可设置两个预设SOH阈值,1#预设SOH阈值A%和2#预设SOH阈值B%,其中,A%<B%,动力电池的SOH位于[0,A%)区间时,SOC间隔值为1#SOC间隔值u%,动力电池的SOH位于[A%,B%)区间时,SOC间隔值为2#SOC间隔值值v%,动力电池的SOH位于[B%,100%]区间时,SOC间隔值为3#SOC间隔值w%,其中,u%<v%<w%,A、B、u、v、w均为正数。
可选地,上述两个或两个以上的预设SOH阈值(包括1#预设SOH阈值和2#预设SOH阈值)的范围,以及更多不同的SOC间隔值(包括1#SOC间隔值、2#SOC间隔值和3#SOC间隔值)的范围同样可参见上文图3所示实施例中预设SOH阈值的范围以及SOC间隔值的范围。
图4示出了本申请实施例提供的另一动力电池充电的方法400的示意性流程框图。
如图4所示,在本申请实施例中,动力电池充电的方法400可包括以下步骤。
410:获取动力电池的健康状态SOH。
420:在动力电池的充电过程中,获取动力电池的荷电状态SOC。
430:根据动力电池的SOH和SOC,确定动力电池放电或停止充电对应的SOC间隔值。
440:在动力电池的SOC变化SOC间隔值时,控制动力电池放电或停止充电。
具体地,在本申请实施例中,步骤410、步骤420和步骤440的相关技术方案可参见上文图2中步骤210、步骤220和步骤240的相关描述,此处不做过多赘述。
另外,本申请实施例中的步骤430可为图2所示步骤230的另一种相对具体的实施方式。
通过本申请实施例的技术方案,不仅仅根据动力电池的SOH确定动力电池放电或停止充电对应的SOC间隔值,而是综合根据动力电池的SOH以及SOC确定动力电池放电或停止充电对应的SOC间隔值,兼顾了动力电池的健康状态以及电荷状态考虑动力电池在充电过程中的放电控制或停止充电控制,有利于进一步提升动力电池的安全性能和充电性能。
可选地,在一些实施方式中,综合上文图3中所示的技术方案,在设置一个或多个预设SOH阈值且划分多个SOH区间的基础上,进一步设置一个或多个预设SOC阈值且划分多个SOC区间,根据动力电池的SOH和SOC所处的区间,确定动力电池放电或停止充电对应的SOC间隔值。
作为示例,若设置一个预设SOH阈值,且设置一个预设SOC阈值,上述步骤430具体可包括如下步骤。
若动力电池的SOH大于等于预设SOH阈值,且动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第三SOC间隔值。
若动力电池的SOH大于等于预设SOH阈值,且动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第四SOC间隔值。
若动力电池的SOH小于预设SOH阈值,且动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第五SOC间隔值。
若动力电池的SOH小于预设SOH阈值,且动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第六SOC间隔值。
其中,第三SOC间隔值大于第四SOC间隔值,第五SOC间隔值大于第六SOC间隔值。
具体地,在本申请实施例中,除了判断动力电池的SOH与预设SOH阈值的关系以外,还判断动力电池的SOC与预设SOC阈值的关系。若动力电池的SOC较大(例如大于等于预设SOC阈值),则说明动力电池当前的剩余容量较高,动力电池的负极电位较低,其较容易发生析锂现象,因此,在动力电池的SOC较大时,需提高其放电频率或停止充电频率,间隔较小的SOC间隔值控制动力电池放电或停止充电,防止析锂现象的发生,保证动力电池的安全性能。对应的,若动力电池的SOC较小(例如小于预设SOC阈值),则说明动力电池当前的剩余容量较低,动力电池的负极电位较高,相比于负极电位较低的情况,其不易发生析锂现象,因此,在动力电池的SOC较小时,可降低其放电频率或停止充电频率,间隔较大的SOC间隔值控制动力电池放电或停止充电,也可防止析锂现象的发生,保证动力电池的安全性能,且相对提高充电速率。
因此,当动力电池的SOH大于等于预设SOH阈值时,若动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第三SOC间隔值,若动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第四SOC间隔值,其中,第三SOC间隔值大于第四SOC间隔值。同样的,当动力电池的SOH小于预设SOH阈值时,若动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第五SOC间隔值,若动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第六SOC间隔值,其中,第五SOC间隔值大于第六SOC间隔值。
在本申请实施例中,第四SOC间隔值与第五SOC间隔值的相互关系不做具体限定,可根据实际情况进行设计。
需要说明的是,本申请实施例中,上述预设SOH阈值的范围可参见图3中预设SOH阈值的相关说明,该预设SOH阈值的范围可为80%至99%。另外,上述预设SOC阈值的范围本申请实施例不做具体限定,作为示例,其包括但不限于是50%。再者,上述SOC间隔值(包括第三SOC间隔值、第四SOC间隔值、第五SOC间隔值和第六SOC间隔值)的范围同样可参见上文图3所示实施例中预设SOC阈值的范围,该SOC间隔值的范围为3%至95%。
图5示出了本申请实施例提供的另一动力电池充电的方法500的示意性流程框图。
如图5所示,在本申请实施例中,动力电池充电的方法500可包括以下步骤。
510:获取动力电池的健康状态SOH。
520:在动力电池的充电过程中,获取动力电池的荷电状态SOC。
530:根据动力电池的SOH和预设映射关系,确定动力电池放电或停止充电对应的SOC间隔值。
540:在动力电池的SOC变化SOC间隔值时,控制动力电池放电或停止充电。
具体地,在本申请实施例中,步骤510、步骤520和步骤540的相关技术方案可参见上文图2中步骤210、步骤220和步骤240的相关描述,此处不做过多赘述。
另外,本申请实施例中的步骤530可为图2所示步骤230的另一种相对具体的实施方式。
通过本申请实施例的技术方案,可直接根据动力电池的SOH和预设映射关系,确定动力电池放电或停止充电对应的SOC间隔值,可以较为便捷且精确的确定动力电池的各个SOH对应的SOC间隔值,进一步提升动力电池的安全性能和充电性能。
作为示例,预设映射关系可以为映射表,可根据实际需要,建立多个SOH其对应的SOC间隔值的映射关系。例如,如下表1示出了一种示意性映射表。
表1
SOH值 100% 95% 90% 85% 80% 75%
SOC间隔值 C 1 C 2 C 3 C 4 C 5 C 6
其中,C 1至C 6为小于100的正数,且C 1>C 2>C 3>C 4>C 5>C 6。该映射表可存储于BMS的存储单元中,若动力电池当前的SOH为表中已存在的SOH值,BMS可直接确定动力电池当前的SOH对应的SOC间隔值。若动力电池当前的SOH不为表中已存在的SOH值,BMS也可根据映射表计算得到动力电池当前的SOH对应的SOC间隔值。
作为示例,若动力电池当前的SOH为98%,其对应的SOC间隔值C x%可满足如下关系式:
Figure PCTCN2021117310-appb-000001
或者,C x%也可满足如下关系式:
Figure PCTCN2021117310-appb-000002
若动力电池当前的SOH为其它值,同样可参照上述计算方式确定其对应的SOC间隔值,此处不再过多赘述。
通过上述映射表,可以确定一定的SOH范围内,任意SOH对应的SOC间隔值,可较为精确的控制不同SOH下SOC间隔值的变化,均衡动力电池的安全性能以及充电性能。
需要说明的是,上述表1仅为映射表的示意而非限定,映射表中具体的SOH值和SOC间隔值本申请实施例不做限定,其可根据充电速率需求、安全性需求和电池性能等进行设置。
除了上述映射表以外,本申请实施例中的预设映射关系还可以为映射公式。具体地,可建立SOC间隔值与SOH值之间的映射公式,该映射公式包括但不限于是递增函数公式。
作为示例,SOC间隔值用C%表示,SOH值用H%表示,该SOC间隔值与SOH值之间的映射公式可为如下公式:
C%=k 1×H%+b 1;或者
C%=k 2×(H%) 2+b 2
其中,k 1,k 2,b 1,b 2为常数,其可根据充电速率需求、安全性需求和电池性能等设置,本申请实施例对此不做具体限定。
需要说明的是,上述公式仅作为示意而非限定,本申请实施例中的映射公式除了可为以上两种公式以外,还可为其它其它形式,本申请实施例对此不做具体限定。
还需要说明的是,预设映射关系除了可以为上述映射表或者映射公式以外,还可以为其它映射形式,例如映射图或者神经网络模型等等,本申请实施例对该预设映射关系的具体形式也不做具体限定。具体地,该预设映射关系可以是由大量的实验数据拟合得到的映射关系,具有较高的可信度和准确度,以保证动力电池的安全性能和充电性能。
还需要说明的是,在本申请实施例中,除了根据动力电池的SOH和预设映射关系,确定动力电池放电或停止充电对应的SOC间隔值以外,还可以根据动力电池的SOH和/或SOC等动力电池的其它参数以及预设映射关系,确定动力电池放电或停止充电对应的SOC间隔值。
图6示出了本申请实施例提供的另一动力电池充电的方法600的示意性流程框图。在本申请实施例中,BMS确定动力电池放电对应的SOC间隔值,并在动力电池的SOC变化SOC间隔值时,控制动力电池放电。
如图6所示,在本申请实施例中,动力电池充电的方法600可包括以下步骤。
610:获取动力电池的健康状态SOH。
620:在动力电池的充电过程中,获取动力电池的荷电状态SOC。
630:根据动力电池的SOH,确定动力电池放电对应的SOC间隔值。
640:在动力电池的SOC变化SOC间隔值时,发送充电请求信息,该充电需求 信息中携带的电流需求值为零。
650:控制动力电池放电。
具体地,在本申请实施例中,步骤610、步骤620和步骤630的相关技术方案可参见上文实施例中的相关描述,此处不做过多赘述。
另外,在动力电池的SOC变化SOC间隔值时,BMS先发送充电需求信息,该充电需求信息中携带的电流需求值为零,因而该充电需求信息可用于控制动力电池停止充电。
在一些可能的实施方式中,充电装置,例如充电机,用于对动力电池进行充电,在充电过程中,在动力电池的SOC变化SOC间隔值时,BMS先向充电机发送电流需求值为零的充电需求信息,充电机根据该充电需求信息,停止向动力电池进行充电。
可选地,该充电需求信息可为一种通信报文,该通信报文包括但不限于是BMS与充电机之间满足相关通信协议的通信报文,作为示例,该充电需求信息可为电池充电需求报文BCL。
若在对动力电池充电的过程中,直接控制动力电池放电,不仅会对动力电池造成损伤,影响动力电池的寿命,还会带来安全隐患,影响动力电池的安全性。通过本申请实施例的技术方案,在BMS发送充电需求信息,该充电需求信息用于控制动力电池停止充电后,BMS再控制动力电池放电,可保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
当BMS发送上述充电需求信息后,动力电池的电流是缓慢变化的,且需要一定时间逐步下降为零,因此,为了进一步提升动力电池充放电过程的安全性,在上述步骤650之前,本申请实施例的方法600还可包括:获取动力电池的电流,在此基础上,步骤650可包括:当动力电池的电流小于等于预设电流阈值时,控制动力电池放电。
通过本申请实施例的技术方案,在控制动力电池放电之前,BMS先获取动力电池的电流,当动力电池的电流较小,例如小于等于预设电流阈值时,此时其对动力电池的放电影响较小,BMS才控制动力电池进行放电,能够进一步保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
可选地,上述预设电流阈值可根据实际需求进行设定,本申请实施例对此不做具体限定,作为示例,该预设电流阈值的范围可小于等于50A。
另外,需要说明的是,若BMS确定动力电池停止充电对应的SOC间隔值,并在动力电池的SOC变化SOC间隔值时,控制动力电池停止充电。则在该技术方案中,BMS可执行上述步骤640,即在动力电池的SOC变化SOC间隔值时,发送充电请求信息,该充电需求信息中携带的电流需求值为零,以控制动力电池停止充电。可选地,BMS可通过定期或不定期发送该电流需求值为零的充电需求信息,以控制动力电池停止充电的时间。
在图6所示实施例的基础上,图7示出了本申请实施例提供的另一动力电池充电的方法700的示意性流程框图。
如图7所示,在本申请实施例中,动力电池充电的方法700可包括以下步骤。
710:获取动力电池的健康状态SOH。
720:在动力电池的充电过程中,获取动力电池的荷电状态SOC。
730:根据动力电池的SOH,确定动力电池放电对应的SOC间隔值。
740:在动力电池的SOC变化SOC间隔值时,发送充电请求信息,该充电需求信息中携带的电流需求值为零。
750:控制动力电池放电。
760:当动力电池的放电时间大于等于第一预设时间阈值或当充电需求信息的已发送时间大于等于第二预设时间阈值时,控制动力电池停止放电。
具体地,在本申请实施例中,步骤710至步骤750的相关技术方案可参见上文实施例中的相关描述,此处不做过多赘述。
另外,在BMS控制动力电池放电后,根据动力电池的放电时间和充电需求信息的已发送时间确定是否停止放电。具体地,当动力电池的放电时间大于等于第一预设时间阈值时,控制动力电池停止放电;或者,当充电需求信息的已发送时间大于等于第二预设时间阈值时,控制动力电池停止放电。可选地,BMS在控制动力电池放电时,对动力电池的放电时间进行计时,判断动力电池的放电时间是否大于等于第一预设时间阈值。另外,BMS也可在发送携带的电流需求值为零的充电需求信息之后,对该充电需求信息的已发送时间进行计时,判断该充电需求信息的已发送时间是否大于等于第二预设时间阈值。
其中,第一预设时间阈值可根据实际放电需求进行设计,在动力电池处于不同状态下,该第一预设时间阈值可根据动力电池的状态参数进行调整变化,作为示例,动力电池处于不同的SOH和/或SOC状态下,该第一预设时间阈值可根据动力电池的SOH和/或SOC调整变化。或者,在其它示例中,该第一预设时间阈值也可为固定阈值,本申请实施例对此不做具体限定。可选地,本申请实施例中的第一预设时间阈值可为上文图2所述实施例的放电参数中的放电时间。
在动力电池的充电过程中,对动力电池进行充电的充电装置,例如充电机,可定时或不定时接收BMS发送的充电需求信息,当充电需求信息发送正常,充电装置与动力电池之间可保持正常的通信状态,若充电装置在一段时间内没有接收到BMS发送的充电需求信息,则可能会造成充电装置断开与动力电池的通信连接。因此,在本申请实施例中,除了设置第一预设时间阈值以控制动力电池的放电时间以外,还设置有第二时间阈值,与充电需求信息的已发送时间进行比较,防止充电需求信息的已发送时间过长,影响动力电池的正常充电过程,从而提升动力电池的充电效率。
可选地,如图7所示,本申请实施例的方法700还包括步骤770:控制动力电池充电。即在BMS控制动力电池停止放电之后,重新控制动力电池充电。
在一些实施方式中,BMS可向充电装置,例如充电机,发送新的充电需求消息,该充电需求消息中携带的电流需求值不为零,而可为根据动力电池的参数确定得到的电流需求值,从而使得充电装置可根据该电流需求值对动力电池进行充电。
经过步骤770之后,可重新执行上述步骤720至步骤760,以实现BMS控制对动力电池持续充放电的过程。
另外,需要说明的是,若BMS确定动力电池停止充电对应的SOC间隔值,并在动力电池的SOC变化SOC间隔值时,控制动力电池停止充电。则在该技术方案中,若动力电池的停止充电时间大于等于第三预设时间阈值,则可控制动力电池继续充电,以实现BMS控制对动力电池持续充电的过程。可选地,本申请实施例中的第三预设时间阈值可为上文图2所述实施例中的停止时间值。
图8示出了本申请实施例提供的另一动力电池充电的方法800的示意性流程框图。
如图8所示,在本申请实施例中,动力电池充电的方法800可包括以下步骤。
810:获取动力电池的健康状态SOH。
820:获取动力电池的运行状态。
830:在动力电池的充电过程中,获取动力电池的荷电状态SOC。
840:根据动力电池的SOH,确定动力电池放电或停止充电对应的SOC间隔值。
850:在动力电池的SOC变化SOC间隔值时,控制动力电池放电或停止充电。
860:在动力电池处于拔枪状态或者满充状态时,控制动力电池放电。
具体地,在本申请实施例中,步骤810、步骤830至步骤850的相关技术方案可参见上文实施例中的相关描述,此处不做过多赘述。
另外,在步骤830之前,BMS可先获取动力电池的运行状态,在动力电池处于充电状态,执行步骤830,即在动力电池的充电过程中,获取动力电池的SOC,并执行步骤840至步骤850。
对于步骤860,在动力电池处于拔枪状态或者满充状态时,控制动力电池放电。具体地,BMS可通过获取动力电池的运行参数,判断动力电池当前的运行状态。其中,动力电池与充电机的充电枪断开连接时,BMS判断动力电池可处于拔枪状态,即充电机未对动力电池进行充电。另外,BMS可通过获取动力电池的电压等参数,确定动力电池的SOC达到100%时,动力电池的SOC达到满充状态。
在动力电池处于拔枪状态或者满充状态时,BMS可控制动力电池进行短暂放电,例如,执行放电时间小于预设时间阈值和/或放电电流小于预设电流阈值的放电,以防止动力电池在后续充电过程中,充电装置与动力电池建立连接后,直接对动力电池进行充电造成动力电池的析锂风险,进一步提升动力电池的安全性能。
上文结合图2至图8说明了本申请提供的电池充电的方法的具体实施例,下面,结合图9至图10说明本申请提供的相关装置的具体实施例,可以理解的是,下述各装置实施例中的相关描述可以参考前述各方法实施例,为了简洁,不再赘述。
图9示出了本申请一个实施例的电池管理系统BMS 900的示意性结构框图。如图9所示,该BMS 900包括:获取模块910,控制模块920。
在本申请的一个实施例中,获取模块910,用于获取动力电池的健康状态SOH,且获取模块910还用于在动力电池的充电过程中,获取动力电池的荷电状态SOC;控制模块920,用于根据动力电池的SOH确定动力电池放电或停止充电对应的SOC间隔值,并在动力电池的SOC变化SOC间隔值时,控制动力电池放电。
在本申请的一个实施例中,控制模块920用于:若动力电池的SOH大于预设 SOH阈值,确定SOC间隔值为第一SOC间隔值;若动力电池的SOH小于等于预设SOH阈值,确定SOC间隔值为第二SOC间隔值;其中,第一SOC间隔值大于第二SOC间隔值。
在本申请的一个实施例中,控制模块920用于:根据动力电池的SOH和SOC,确定动力电池放电或停止充电对应的SOC间隔值。
在本申请的一个实施例中,控制模块920用于:若动力电池的SOH大于等于预设SOH阈值,且动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第三SOC间隔值;若动力电池的SOH大于等于预设SOH阈值,且动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第四SOC间隔值;若动力电池的SOH小于预设SOH阈值,且动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第五SOC间隔值;若动力电池的SOH小于预设SOH阈值,且动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第六SOC间隔值;其中,第三SOC间隔值大于第四SOC间隔值,第五SOC间隔值大于第六SOC间隔值。
在本申请的一个实施例中,预设SOH阈值的范围为80%至99%。
在本申请的一个实施例中,控制模块920用于:根据动力电池的SOH和预设映射关系,确定动力电池放电或停止充电对应的SOC间隔值。
在本申请的一个实施例中,SOC间隔值的范围为3%至95%。
可选地,如图9所示,本申请实施例提供的BMS 900还可包括发送模块930,在本申请的一个实施例中,发送模块930用于发送充电需求信息,该充电需求信息中携带的电流需求值为零,充电需求信息用于控制动力电池停止充电。
在本申请的一个实施例中,获取模块910还用于:获取动力电池的电流;控制模块920用于:当动力电池的电流小于等于预设电流阈值时,控制动力电池放电。
在本申请的一个实施例中,控制模块920用于:当动力电池的放电时间大于等于第一预设时间阈值或充电需求信息的已发送时间大于等于第二预设时间阈值时,控制动力电池停止放电。
图10示出了本申请另一实施例提供的BMS 1000的示意性结构框图。如图10所示,BMS 1000包括存储器1010和处理器1020,其中,存储器1010用于存储计算机程序,处理器1020用于读取该计算机程序并基于该计算机程序执行前述本申请各种实施例的方法。
此外,本申请实施例还提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。可选地,该计算机程序可以为上述BMS中的计算机程序。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实 施,本申请实施例对此并不限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (21)

  1. 一种动力电池充电的方法,其特征在于,应用于所述动力电池的电池管理系统BMS,所述方法包括:
    获取所述动力电池的健康状态SOH;
    在所述动力电池的充电过程中,获取所述动力电池的荷电状态SOC;
    根据所述动力电池的SOH,确定所述动力电池放电或停止充电对应的SOC间隔值;
    在所述动力电池的SOC变化所述SOC间隔值时,控制所述动力电池放电或停止充电。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述动力电池的SOH,确定所述动力电池放电或停止充电对应的SOC间隔值,包括:
    若所述动力电池的SOH大于等于预设SOH阈值,确定所述SOC间隔值为第一SOC间隔值;
    若所述动力电池的SOH小于所述预设SOH阈值,确定所述SOC间隔值为第二SOC间隔值;
    其中,所述第一SOC间隔值大于所述第二SOC间隔值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述动力电池的SOH,确定所述动力电池放电或停止充电对应的SOC间隔值,包括:
    根据所述动力电池的SOH和SOC,确定所述动力电池放电或停止充电对应的所述SOC间隔值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述动力电池的SOH和SOC,确定所述动力电池放电或停止充电对应的所述SOC间隔值,包括:
    若所述动力电池的SOH大于等于预设SOH阈值,且所述动力电池的SOC小于预设SOC阈值,确定所述SOC间隔值为第三SOC间隔值;
    若所述动力电池的SOH大于等于所述预设SOH阈值,且所述动力电池的SOC大于等于所述预设SOC阈值,确定所述SOC间隔值为第四SOC间隔值;
    若所述动力电池的SOH小于所述预设SOH阈值,且所述动力电池的SOC小于所述预设SOC阈值,确定所述SOC间隔值为第五SOC间隔值;
    若所述动力电池的SOH小于所述预设SOH阈值,且所述动力电池的SOC大于等于所述预设SOC阈值,确定所述SOC间隔值为第六SOC间隔值;
    其中,所述第三SOC间隔值大于所述第四SOC间隔值,所述第五SOC间隔值大于所述第六SOC间隔值。
  5. 根据权利要求2或4所述的方法,其特征在于,所述预设SOH阈值的范围为80%至99%。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述动力电池的SOH,确定所述动力电池放电或停止充电对应的SOC间隔值,包括:
    根据所述动力电池的SOH和预设映射关系,确定所述动力电池放电或停止充电对 应的SOC间隔值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述SOC间隔值的范围为3%至95%。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在控制所述动力电池放电之前,所述方法还包括:
    发送充电需求信息,所述充电需求信息中携带的电流需求值为零,所述充电需求信息用于控制所述动力电池停止充电。
  9. 根据权利要求8所述的方法,其特征在于,在控制所述动力电池放电之前,所述方法还包括:
    获取所述动力电池的电流;
    所述控制所述动力电池放电,包括:
    当所述动力电池的电流小于等于预设电流阈值时,控制所述动力电池放电。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    当所述动力电池的放电时间大于等于第一预设时间阈值或所述充电需求信息的已发送时间大于等于第二预设时间阈值时,控制所述动力电池停止放电。
  11. 一种动力电池的电池管理系统BMS,其特征在于,包括:
    获取模块,用于获取所述动力电池的健康状态SOH;
    所述获取模块还用于在所述动力电池的充电过程中,获取所述动力电池的荷电状态SOC;
    控制模块,用于根据所述动力电池的SOH确定所述动力电池放电或停止充电对应的SOC间隔值;
    并在所述动力电池的SOC变化所述SOC间隔值时,控制所述动力电池放电或停止充电。
  12. 根据权利要求11所述的BMS,其特征在于,所述控制模块用于:
    若所述动力电池的SOH大于预设SOH阈值,确定所述SOC间隔值为第一SOC间隔值;
    若所述动力电池的SOH小于等于所述预设SOH阈值,确定所述SOC间隔值为第二SOC间隔值;
    其中,所述第一SOC间隔值大于所述第二SOC间隔值。
  13. 根据权利要求11或12所述的BMS,其特征在于,所述控制模块用于:
    根据所述动力电池的SOH和SOC,确定所述动力电池放电或停止充电对应的所述SOC间隔值。
  14. 根据权利要求13所述的BMS,其特征在于,所述控制模块用于:
    若所述动力电池的SOH大于等于预设SOH阈值,且所述动力电池的SOC小于预设SOC阈值,确定所述SOC间隔值为第三SOC间隔值;
    若所述动力电池的SOH大于等于所述预设SOH阈值,且所述动力电池的SOC大于等于所述预设SOC阈值,确定所述SOC间隔值为第四SOC间隔值;
    若所述动力电池的SOH小于所述预设SOH阈值,且所述动力电池的SOC小于所 述预设SOC阈值,确定所述SOC间隔值为第五SOC间隔值;
    若所述动力电池的SOH小于所述预设SOH阈值,且所述动力电池的SOC大于等于所述预设SOC阈值,确定所述SOC间隔值为第六SOC间隔值;
    其中,所述第三SOC间隔值大于所述第四SOC间隔值,所述第五SOC间隔值大于所述第六SOC间隔值。
  15. 根据权利要求12或14所述的BMS,其特征在于,所述预设SOH阈值的范围为80%至99%。
  16. 根据权利要求11至15中任一项所述的BMS,其特征在于,所述控制模块用于:
    根据所述动力电池的SOH和预设映射关系,确定所述动力电池放电或停止充电对应的SOC间隔值。
  17. 根据权利要求11至16中任一项所述的BMS,其特征在于,所述SOC间隔值的范围为3%至95%。
  18. 根据权利要求11至17中任一项所述的BMS,其特征在于,所述BMS还包括发送模块,用于发送充电需求信息,所述充电需求信息中携带的电流需求值为零,所述充电需求信息用于控制所述动力电池停止充电。
  19. 根据权利要求18所述的BMS,其特征在于,所述获取模块还用于:
    获取所述动力电池的电流;
    所述控制模块用于:当所述动力电池的电流小于等于预设电流阈值时,控制所述动力电池放电。
  20. 根据权利要求18或19所述的BMS,其特征在于,所述控制模块用于:
    当所述动力电池的放电时间大于等于第一预设时间阈值或所述充电需求信息的已发送时间大于等于第二预设时间阈值时,控制所述动力电池停止放电。
  21. 一种动力电池的电池管理系统BMS,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行如权利要求1至10中任一项所述的动力电池充电的方法。
PCT/CN2021/117310 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统 WO2023035160A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237018327A KR20230098832A (ko) 2021-09-08 2021-09-08 파워 배터리 충전 방법 및 배터리 관리 시스템
JP2023534712A JP2023553088A (ja) 2021-09-08 2021-09-08 動力電池充電の方法と電池管理システム
CN202180055585.5A CN116134694B (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
EP21956348.3A EP4231483A4 (en) 2021-09-08 2021-09-08 POWER BATTERY CHARGING METHOD AND BATTERY MANAGEMENT SYSTEM
PCT/CN2021/117310 WO2023035160A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
US18/458,164 US20230398902A1 (en) 2021-09-08 2023-08-30 Method for charging traction battery and battery management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117310 WO2023035160A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/458,164 Continuation US20230398902A1 (en) 2021-09-08 2023-08-30 Method for charging traction battery and battery management system

Publications (1)

Publication Number Publication Date
WO2023035160A1 true WO2023035160A1 (zh) 2023-03-16

Family

ID=85507118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117310 WO2023035160A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Country Status (6)

Country Link
US (1) US20230398902A1 (zh)
EP (1) EP4231483A4 (zh)
JP (1) JP2023553088A (zh)
KR (1) KR20230098832A (zh)
CN (1) CN116134694B (zh)
WO (1) WO2023035160A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116923189A (zh) * 2023-09-12 2023-10-24 浙江华宇钠电新能源科技有限公司 一种钠离子电池bms系统及基于其的电动车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106166956A (zh) * 2015-05-22 2016-11-30 本田技研工业株式会社 蓄电器管理装置、蓄电器管理方法和车辆
CN109586373A (zh) * 2018-12-27 2019-04-05 华为技术有限公司 一种电池充电方法和装置
CN110861535A (zh) * 2018-08-15 2020-03-06 上海汽车集团股份有限公司 一种充电控制方法及装置
CN111066195A (zh) * 2017-09-15 2020-04-24 松下知识产权经营株式会社 电池管理装置、电池系统及电池管理方法
US20210066945A1 (en) * 2019-09-04 2021-03-04 Samsung Electronics Co., Ltd. Method and apparatus for charging battery
CN113013938A (zh) * 2021-01-27 2021-06-22 浙江大有实业有限公司杭州科技发展分公司 一种多支路并联的并网型电池储能系统荷电状态均衡方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160276843A1 (en) * 2015-03-20 2016-09-22 Ford Global Technologies, Llc Battery Charge Strategy Using Discharge Cycle
CN107102263B (zh) * 2016-02-22 2019-10-18 华为技术有限公司 检测电池健康状态的方法、装置和电池管理系统
CN110988690B (zh) * 2019-04-25 2021-03-09 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理系统以及存储介质
CN110967631B (zh) * 2019-05-17 2021-03-30 宁德时代新能源科技股份有限公司 Soh修正方法和装置、电池管理系统和存储介质
DE102019123739A1 (de) * 2019-09-04 2021-03-04 Bayerische Motoren Werke Aktiengesellschaft Laden einer Batteriezelle
CN110828924B (zh) * 2019-11-18 2021-05-25 创普斯(深圳)新能源科技有限公司 电池的快速充电方法、装置、终端及存储介质
KR20210069916A (ko) * 2019-12-04 2021-06-14 에스케이이노베이션 주식회사 배터리 관리 장치 및 배터리 이중 관리 시스템
CN111965558B (zh) * 2020-07-22 2023-01-31 宝能(广州)汽车研究院有限公司 Soh值的获取方法及系统、电动汽车及计算机可读存储介质
CN112366375B (zh) * 2020-09-03 2022-03-18 万向一二三股份公司 一种锂离子动力电池快速充电方法
CN112455286B (zh) * 2021-02-01 2021-05-18 江苏时代新能源科技有限公司 一种充电控制方法及装置、电池管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106166956A (zh) * 2015-05-22 2016-11-30 本田技研工业株式会社 蓄电器管理装置、蓄电器管理方法和车辆
CN111066195A (zh) * 2017-09-15 2020-04-24 松下知识产权经营株式会社 电池管理装置、电池系统及电池管理方法
CN110861535A (zh) * 2018-08-15 2020-03-06 上海汽车集团股份有限公司 一种充电控制方法及装置
CN109586373A (zh) * 2018-12-27 2019-04-05 华为技术有限公司 一种电池充电方法和装置
US20210066945A1 (en) * 2019-09-04 2021-03-04 Samsung Electronics Co., Ltd. Method and apparatus for charging battery
CN113013938A (zh) * 2021-01-27 2021-06-22 浙江大有实业有限公司杭州科技发展分公司 一种多支路并联的并网型电池储能系统荷电状态均衡方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231483A4 *

Also Published As

Publication number Publication date
CN116134694A (zh) 2023-05-16
US20230398902A1 (en) 2023-12-14
JP2023553088A (ja) 2023-12-20
EP4231483A1 (en) 2023-08-23
EP4231483A4 (en) 2024-04-10
KR20230098832A (ko) 2023-07-04
CN116134694B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
WO2024060537A1 (zh) 电池异常自放电预警方法、系统、电子设备及存储介质
CN110450677B (zh) 一种基于电池老化状态估计的复合储能电动汽车的能量管理方法
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
US20230398902A1 (en) Method for charging traction battery and battery management system
US20230035744A1 (en) Charging and discharging device, methods of battery charging and discharging, and charging and discharging system
WO2023035161A1 (zh) 动力电池充电的方法和电池管理系统
WO2023123767A1 (zh) 电池充电剩余时间的确定方法和系统
WO2023035162A1 (zh) 动力电池充电的方法和电池管理系统
CN207772912U (zh) 电池管理系统
WO2023004673A1 (zh) 电池充电的方法、电池管理系统和充放电装置
WO2023035163A1 (zh) 动力电池充电的方法和电池管理系统
WO2023221055A1 (zh) 电池的放电方法和放电装置
WO2023004709A1 (zh) 电池充电的方法和充放电装置
WO2023035158A1 (zh) 动力电池充电的方法和电池管理系统
WO2023004712A1 (zh) 充放电装置、电池充电的方法和充放电系统
WO2023035164A1 (zh) 动力电池充电的方法和电池管理系统
WO2023221053A1 (zh) 电池的充电方法和充电装置
WO2023004711A1 (zh) 充放电装置、电池充电的方法和充放电系统
WO2023004659A1 (zh) 充放电装置和电池充电的方法
WO2023092413A1 (zh) 动力电池充电的方法和电池管理系统
CN115864596A (zh) 12v锂电池管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021956348

Country of ref document: EP

Effective date: 20230517

ENP Entry into the national phase

Ref document number: 20237018327

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023534712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE