WO2023033473A1 - 조직 유래 소포체의 대량 분리 및 농축 방법 - Google Patents

조직 유래 소포체의 대량 분리 및 농축 방법 Download PDF

Info

Publication number
WO2023033473A1
WO2023033473A1 PCT/KR2022/012858 KR2022012858W WO2023033473A1 WO 2023033473 A1 WO2023033473 A1 WO 2023033473A1 KR 2022012858 W KR2022012858 W KR 2022012858W WO 2023033473 A1 WO2023033473 A1 WO 2023033473A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
extracellular vesicles
membrane
collagenase
tissues
Prior art date
Application number
PCT/KR2022/012858
Other languages
English (en)
French (fr)
Inventor
이삼연
윤송희
Original Assignee
(주)씨지테라피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨지테라피 filed Critical (주)씨지테라피
Publication of WO2023033473A1 publication Critical patent/WO2023033473A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for mass separation and concentration of extracellular vesicles (EVs) from various tissues, and more particularly, to a method for separating and concentrating extracellular vesicles (EVs) from various tissues, using a number of washing processes, enzymatic reactions, and filters from animal and human tissues. It relates to a method for rapidly isolating and concentrating extracellular vesicles to be separated in large quantities.
  • Extracellular vesicles are sometimes referred to as cell membrane-derived vesicles, ectosomes, shedding vesicles, microparticles, exosomes, and the like, and in some cases are used as distinct from exosomes.
  • Exosomes are vesicles with a size of tens to hundreds of nanometers made of a double-phospholipid membrane identical to the structure of a cell membrane, and contain proteins, nucleic acids (mRNA, miRNA, etc.) called exosome cargo inside. It is known that the exosome cargo contains a wide range of signaling factors, and these signaling factors are cell type-specific and differently regulated depending on the environment of the secreting cell.
  • Extracellular vesicles are intercellular signaling mediators secreted by cells, and various cell signals transmitted through them regulate cell behavior including activation, growth, migration, differentiation, dedifferentiation, apoptosis, and necrosis of target cells. It is known to do
  • extracellular vesicles vary depending on the nature and state of the cell from which they are derived. It is known that the characteristics of stem cells related to tissue regeneration are reflected.
  • a centrifugal separator may be used as an example, and the centrifugal separator collects vesicles from pellets formed using centrifugal force.
  • the present inventors attempted to develop a method for mass separation and concentration of extracellular vesicles in a short period of time and with high efficiency.
  • An object of the present invention relates to a method for mass separation and concentration of extracellular vesicles from tissues, specifically, a number of washing processes, enzymatic reactions, and MWCO (Molecular weight cut-off) It is to provide a method for rapidly isolating and concentrating extracellular vesicles to be isolated from tissues using a membrane filter in large quantities.
  • Another object of the present invention is to provide a degrading enzyme compound for obtaining a large amount of extracellular vesicles.
  • One aspect of the present invention is (a) firstly washing the tissue to be separated using a washing solution, (b) after the first washing is completed, the membranes of the tissue observed visually are sterilized Removal using tweezers, (c) pulverization for 1 to 60 minutes at 10 to 100,000 rpm using tissue-specific grinding equipment, (d) ethanol, acetone, ether, chloroform ), iso-propanol or dichloroethane to remove residual blood, residual membranes, microvessels, lipids, and fibrous impurities, (e) after the second washing is completed. .
  • step f) centrifugation is performed at 100 to 100,000 rpm for 3 to 60 minutes to remove undigested tissue and collect only the supernatant, (h) the supernatant is filtered through a 0.22 ⁇ m filter system for 1 to 15 minutes.
  • Separation and concentration of extracellular vesicles from tissue comprising the steps of filtering by passing through twice, (i) separating and concentrating extracellular vesicles by tangential flow filtration (TFF) using molecular weight cut-off (MWCO) membranes.
  • extracellular vesicles usually includes cell membrane-derived membrane vesicles, ectosomes, shedding vesicles, microparticles, and nanoparticles. , or equivalents thereof.
  • extracellular vesicles may have the same meaning as exosomes, or may have the same meaning as nanovesicles that are the same or similar in size to exosomes but do not have the composition of exosomes.
  • exosome used in relation to production promotion or productivity may be used to encompass the extracellular vesicles.
  • exosomes refers to endoplasmic reticulum having a size of tens to hundreds of nanometers (preferably approximately 30 to 500 nm) composed of a double phospholipid membrane identical to the structure of a cell membrane (provided that the separation target is The particle size of exosomes can vary depending on the cell type, isolation method, and measurement method) (Vasiliy S. Chernyshev et al., "Size and shape characterization of hydrated and desiccated exosomes", Anal Bioanal Chem, (2015) DOI 10.1007/s00216-015-8535-3). Exosomes contain proteins and nucleic acids (mRNA, miRNA, etc.), which are called exosome cargoes.
  • exosome cargo contains a wide range of signaling factors, and these signaling factors are cell type-specific and differently regulated depending on the environment of the secreting cell.
  • Exosomes are intercellular signal transduction mediators secreted by cells, and various cell signals transmitted through them regulate cell behavior including activation, growth, migration, differentiation, dedifferentiation, apoptosis, and necrosis of target cells. It is known.
  • exosome refers to a vesicle having a nano-sized vesicle structure secreted from cells and released into the extracellular space and having a composition similar to that of exosome (e.g., exosome-like Vesicles) are included.
  • the extracellular vesicles of the present invention are isolated and concentrated from tissues, and the tissues are brain, fat, placenta, umbilical cord, blood, liver, lung, heart, umbilical cord blood, kidney, urine, skin derived from animals or humans ( epithelial cells), tissue to be removed, such as the cecum, and one or more selected tissues from the group consisting of lymph nodes.
  • the type of animal-derived cells from which the exosomes and/or extracellular vesicles are derived is not limited, but as an example that does not limit the present invention, they may be stem cells or immune cells.
  • the stem cells may be embryonic stem cells, induced pluripotent stem cells (iPSC), adult stem cells, embryonic stem cell-derived mesenchymal stem cells, or induced pluripotent stem cell-derived mesenchymal stem cells.
  • the immune cells may be T cells, B cells, NK cells, cytotoxic T cells, dendritic cells, or macrophages.
  • the most commonly used method for isolation and concentration of extracellular vesicles is centrifugation and using kits. This is a method of concentrating extracellular vesicles using a polymer called polyethylene glycol (PEG), and uses a precipitation phenomenon in which PEG lowers the solubility of extracellular vesicles to elute and settle. As the reaction time between PEG and extracellular vesicles increases, a large amount of extracellular vesicles are precipitated, and a reaction time of 4 to 24 hours is usually required. Exo-Quick is known as a representative product using the elution method by PEG.
  • PEG polyethylene glycol
  • the extracellular vesicle isolation method of the present invention is capable of separation at least 10 times and up to 1,000,000 times higher, and the time required for separation is only about 1/40 or less, so it is efficient in terms of productivity (Table One).
  • a method of separating extracellular vesicles that is frequently used in addition to the precipitation method is a method using a filter.
  • the filter method is a method of filtering out extracellular endoplasmic reticulum using a filter having a pore size smaller or similar to that of extracellular endoplasmic reticulum. Since the extracellular vesicles are filtered through the filter and other proteins are discharged, the separation speed can be adjusted according to the speed of the fluid, and the separation time is fast because no reaction time is required. However, there was a limitation that the final recovery rate was not high because the ratio of extracellular vesicles bound to or escaped from the filter was high.
  • the separation and concentration method of the present invention is characterized by overcoming the conventional limitations as described above by pre-treating with a decomposition enzyme compound and using a self-manufactured membrane.
  • the mass isolation and concentration method of extracellular vesicles of the present invention can economically and efficiently produce exosomes and/or extracellular vesicles that can be usefully utilized commercially and/or clinically in high yield, and in particular, conventional methods Compared to exosome isolation kits or ultra-high-speed centrifugation methods, exosomes separated from tissues can be rapidly separated and concentrated in large quantities.
  • FIG. 1 is a flowchart showing a method for isolating extracellular vesicles from tissues of the present invention.
  • Figure 2 shows the fluorescence image results after separating the extracellular vesicles under different conditions with respect to any three tissues.
  • Figure 3 shows the results of transmission electron microscopy (TEM) after isolating extracellular vesicles under different conditions for any three tissues.
  • TEM transmission electron microscopy
  • Figure 4 shows the results of Western blot after isolating extracellular vesicles under different conditions for any three tissues.
  • Figure 5 shows the results of confirming the particle size and concentration of the extracellular vesicles separated and concentrated by the method of the present invention by nanoparticle tracking analysis (NTA).
  • NTA nanoparticle tracking analysis
  • FIG. 6 shows a heat map of RNA-Seq profiling results (row: grouping target factors among RNA sequencing results, row: extracellular vesicles extracted from each sample).
  • Example 1 Isolation and enrichment of extracellular vesicles from tissues
  • tissues for the isolation and enrichment of extracellular vesicles are brain, fat, placenta, umbilical cord, blood, liver, lung, heart, umbilical cord blood, kidney, urine, skin (epithelial cells), and appendix derived from animals or humans. And at least one tissue selected from the group consisting of lymph nodes. In this example, three types of tissues were used: brain, placenta, and blood.
  • the tissue to be separated was first washed using a washing solution to remove blood and other impurities from the tissue.
  • the washing solution is composed of PBS (Phosphate-buffered saline), HBSS (Hanks' Balanced Saltsolution), EBSS (Earle's balanced salts solution), normal saline, 5% Dextrose water and Hartman solution It may mean one or more selected from the group.
  • the membranes of the tissues observed visually were removed using sterilized tweezers, and pulverized for 1 to 60 minutes at 10 to 100,000 rpm using tissue-specific grinding equipment.
  • tissue-specific grinding equipment was used that was designed to allow sterilization for each part and to have a press frame function using gravity so that different rpms could be applied depending on the part or type of each tissue.
  • the membrane of the tissue observed with the naked eye may mean any one or more selected from the inner membrane, outer membrane, tendon, or double membrane of the tissue.
  • the lyase compound is one or more enzymes selected from the group consisting of Collagenase I, Collagenase II, Collagenase III, Collagenase IV, Collagenase V, Dispase I, Dispase II, DNase, trypsin, Papain, Endopeptidase, elastase, Proteases and Pectinase.
  • the ratio of collagenase I is 1% to 100%
  • the ratio of collagenase II is 1% to 100%
  • the ratio of collagenase III is 1% to 100%
  • the ratio of collagenase IV is 1% to 100%
  • the ratio of collagenase V is 1% to 100%
  • the ratio of Dispase I is 1% to 100%
  • the ratio of Dispase II is 1% to 100%
  • the ratio of DNase is 1% to 100%
  • the ratio of trypsin is 1% to 1% 100%
  • It may be an enzyme composed of 100%, and the concentration of each enzyme may be prepared from 1 ⁇ g / ml to 100 mg / ml or 0.1 U / ml to 100 U / ml and mixed.
  • the degrading enzyme compound may have a collagenase I ratio of 1% to 100%, 5 to 95%, 10 to 80%, preferably 10 to 80%, and a collagenase II ratio of 1% to 80%. It may be 100%, 10 to 80%, 40 to 65%, preferably 33 to 65%, the ratio of collagenase III may be 1% to 100%, and the ratio of collagenase IV is 1% to 100% , 3 to 95%, 5 to 90%, 10 to 80%, preferably 10 to 80%, and the ratio of Dispase I is 1% to 100%, 10 to 80%, 30 to 75%, 35 It can be ⁇ 65%, preferably 35 ⁇ 65%, the ratio of Dispase II can be 1% ⁇ 100%, and the ratio of DNase can be 1% ⁇ 100%, 3 ⁇ 95%, 5 ⁇ 90% , 10 to 85%, preferably 10 to 80%, and the ratio of trypsin is 1% to 100%, 3 to 95%, 5 to 90%, 10 to 85%,
  • centrifugation was performed at 100 to 100,000 rpm for 3 to 60 minutes to remove undigested tissue, and only the supernatant was collected.
  • the supernatant was repeatedly passed through a 0.22 ⁇ m filter system 1 to 15 times, and then tangential flow filtration using a molecular weight cut-off (MWCO) membrane of 3 to 5,000 kda or less ; TFF) to separate and concentrate the extracellular vesicles.
  • MWCO molecular weight cut-off
  • Example 1 of the present invention protein quantification and nanoparticle tracking analysis (Nano particle Tracking Analysis) using BCA (Bicinchoninic acid) reagent for the existing conditions, ultracentrifugation and Exo-Quick, and the separation method of Example 1 of the present invention, as follows. ; NTA) and compared the number of particles, and the results are shown in Table 1 below.
  • condition separation time BCA results (protein) NTA result (number of particles) ultracentrifugation (ultracentrifugation) 5 hours 50-100 ⁇ g 1 X 10 9 to 1 X 10 10 Exo-Quick 13 hours 75-200 ⁇ g 1 X 10 10 to 6 X 10 10 Example 1 20 minutes 75-200 ⁇ g 1 X 10 10 to 1 X 10 11
  • the separation time was about 1/15 to 1/40 compared to the ultracentrifugation method and Exo-Quick, and the protein quantification by the BCA method was compared to the ultracentrifugation method. It was the lowest, and the results of Exo-Quick and the method of the present invention were similar. The number of particles was also the lowest in the ultracentrifugation method, but it was confirmed that Exo-Quick and the method of the present invention were similar.
  • immunofluorescence staining Immunocytochemistry; stained with exosome marker CD63 and observed under a fluorescence microscope at 200 and 400 times magnification
  • transmission type Immunofluorescence staining
  • Extracellular vesicles were observed for both the Exo-Quick and Example 1 methods using an electron microscope (Transmission Electron Microscope; photographs observed at 10,000 times and 20,000 times magnification after processing a specific reagent for transmission electron microscopy), By confirming that more extracellular vesicles were observed in the method of Example 1, it was confirmed that a large amount of extracellular vesicles could be separated and concentrated according to the separation and concentration method of the present invention under the above conditions.
  • the size and concentration of the particles were measured by nanoparticle tracking analysis for the extracellular vesicles obtained by the method of the present invention, and the results are shown in FIG. 5 .
  • the extracellular vesicles obtained by the method of the present invention are very uniformly distributed in the vicinity of 134.3 nm on average in size, the total concentration is 1.1 x 10 13 particles/ml, and the yield per sample is 6 x 10 11 particles/ml.
  • the present invention can significantly improve productivity by providing an effective method for separating and concentrating extracellular vesicles released from tissues, which can be usefully used commercially and clinically.
  • the manufacturing method of the present invention can economically and efficiently produce extracellular vesicles in high yield, and in particular, has the advantage of being able to mass-produce extracellular vesicles compared to conventional methods.
  • the present invention is generally characterized by obtaining extracellular vesicles in high concentration and high purity from tissues that can be secured in large quantities, and this remarkable improvement in productivity is as described above.
  • the present inventors attempted to confirm whether the extracellular vesicles obtained directly from the tissue by the above method had the same component composition as the extracellular vesicles obtained after culturing stem cells.
  • extracellular vesicles were obtained from human placental stem cells and mesencephalic neural stem cells by the Exo-Quick method, and components were compared with the extracellular vesicles obtained in Example 1 (Fig. 6, RNA-Seq profiling result). heat map) was used.
  • RNA sequencing RNA-Seq
  • Rows are groups of target factors among RNA sequencing results, and columns are extracellular vesicles extracted from each sample. Relatively high expression is shown in red, and relatively low expression is shown in blue.
  • Example 1 of the present invention Western blotting was performed on placental stem cells and mesencephalic neural stem cells and extracellular vesicles isolated from tissues using the conditions of Example 1 of the present invention, and Alix (or PDCD6IP), known as a protein marker of exosomes, was detected. , TSG 101, CD81, and the presence of vinculin were confirmed, and as a result, as shown in FIG. 4, it was confirmed that all of the above protein markers were present.
  • Alix or PDCD6IP

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 다양한 조직으로부터 세포 외 소포체(Extracellular Vesicles; EV)를 대량 분리 및 농축하는 방법에 관한 것으로서, 보다 상세하게는 동물 조직 및 인간 조직으로부터 다수의 세척 과정과 효소 반응 작용, 그리고 필터를 이용하 여 분리하고자 하는 세포 외 소포체를 대량으로 신속하게 분리 및 농축할 수 있는 방법에 관한 것이다. 본 발명의 조직 유래 세포 외 소포체(엑소좀 및 엑토좀)의 대량생산 및 농축 방법에 따르면, 기존 판매되는 엑소좀 분리 키트나, 초고속 원심 분리 방법과 비교 해서도 조직에서 분리되는 세포 외 소포체를 보다 대량으로 신속하게 분리 및 농축 할 수 있는 효과가 있다.

Description

조직 유래 소포체의 대량 분리 및 농축 방법
본 발명은 다양한 조직으로부터 세포 외 소포체(Extracellular Vesicles; EV)를 대량 분리 및 농축하는 방법에 관한 것으로서, 보다 상세하게는 동물 조직 및 인간 조직으로부터 다수의 세척 과정과 효소 반응 작용, 그리고 필터를 이용하여 분리하고자 하는 세포 외 소포체를 대량으로 신속하게 분리 및 농축할 수 있는 방법에 관한 것이다.
현재 불치/난치 질환을 치료하기 위한 새로운 패러다임으로 성체줄기세포 치료법이 다양하게 임상 적용되고 있다.
그러나, 환자 혹은 공여자로부터 추출 과정, 선별된 줄기세포를 증식시키기 위해 체외 배양하는 과정 중 발생할 수 있는 이종 혈청(Xenogenic serum)의 인수전염(Zoonosis)의 문제, 줄기세포가 체내 이식되었을 때 왕성한 증식력과 상대적으로 큰 세포 사이즈 등의 줄기세포 특성으로 인해 발생할 수 있는 종양 형성(Tumor formation) 문제, 혈관 폐쇄 유발 경색(Vascular occlusion causinginfarcts) 등의 위험 요소가 존재한다.
이러한 문제로 인해 줄기세포를 직접 이용한 치료에서 발생할 수 있는 다양한 위험 요소 혹은 문제들을 회피하는 방안이 활발히 연구되고 있으며, 그일환으로 줄기세포로부터 유래된 세포 외 소포체(extracellular vesicle; EVs)로 줄기세포치료 기능을 대신할 수 있다는 연구 결과들이 보고되고 있다.
한편, 최근 세포 분비물(secretome)에 세포의 행동(behavior)을 조절하는 다양한 생체활성인자가 포함되어 있다는 연구가 활발히 보고되고 있으며, 특히 세포 분비물 내에는 세포 간 신호전달 기능을 갖는 '엑소좀(exosome)' 또는 '세포 외 소포체(extracellular vesicle)'가 포함되어 있어 그 성분과 기능에 대한 연구가 활발히 진행 중에 있다.
세포는 세포 외 환경에 다양한 막(membrane) 유형의 소포체를 방출하는데, 통상 이러한 방출 소포체들을 세포 외 소포체(Extracellular vesicles;EVs)라고 부르고 있다. 세포 외 소포체는 세포막 유래 소포체, 엑토좀(ectosomes), 쉐딩 소포체(shedding vesicles), 마이크로파티클(microparticles), 엑소좀 등으로 칭해지기도 하며, 경우에 따라서는 엑소좀과는 구별되어 사용되기도 한다.
엑소좀은 세포막의 구조와 동일한 이중인지질막으로 이루어진 수십내지 수백 나노미터 크기의 소포체로서, 내부에는 엑소좀 카고(cargo)라고 불리는 단백질, 핵산(mRNA, miRNA 등) 등이 포함되어 있다. 엑소좀 카고에는 광범위한 신호전달 요소들(signaling factors)이 포함되며, 이들 신호전달 요소들은 세포 타입에 특이적이고 분비세포의 환경에 따라 상이하게 조절되는 것으로 알려져 있다.
세포외 소포체는 세포가 분비하는 세포 간 신호전달 매개체로서 이를 통해 전달된 다양한 세포 신호는 표적 세포의 활성화, 성장, 이동, 분화, 탈분화, 사멸(apoptosis), 괴사(necrosis)를 포함한 세포 행동을 조절하는 것으로 알려져 있다.
또한, 세포 외 소포체는 유래된 세포의 성질 및 상태에 따라 그 구성 성분 등이 달라지는데, 예를 들어 증식하는 줄기세포 유래 세포 외 소포체의 경우 세포의 이동, 증식 및 분화와 같은 세포 행동을 조절하고, 조직 재생과 관련된 줄기세포의 특성이 반영되는 것으로 알려져 있다.
이와 같은 엑소좀 및/또는 세포 외 소포체를 분리하는 종래 기술로는 초원심분리법(ultracentrifugation), 밀도구배 원심법(density gradient centrifugation), 초미세여과법(ultrafiltration), 크기 배제 크로마토그래피(size exclusion chromatography), 이온교환 크로마토그래피(ion exchange chromatography), 면역친화성 분리법(immunoaffinity capture), 미세유체기술 분리법(microfluidics-based isolation), 침전법(exosome precipitation), 총 엑소좀추출 키트(total exosome isolation kit), 또는 폴리머 기반 침전법(polymer based precipitation) 등이 있다.
종래 주로 사용되는 방법으로는 원심분리장치를 그 예로 들 수 있으며, 원심분리장치는 원심력을 이용하여 형성된 펠렛으로부터 소포체를 포집한다.
그러나, 미크론 크기 범위에서 입자의 침강 속도는 매우 낮으므로 결과적으로 이들입자의 원심 분리는 수 분에서 수 시간이 걸리게 되며, 펠렛 형성 후에도 펠렛을 풀어내는 과정에서 많은 인력과 시간이 필요하다는 점과 소포체가 응집되어 침전물이 발생할 수 있다는 점이 문제점으로 지적되었다.
또한, 원심분리방법을 이용할 경우 시료에 포함된 세포 외 소포체 중에서 약 5%~25%만을 분리할 수 있고, 이를 제외한 대부분(75%~95%)의 세포 외 소포체를 잃어버리게 된다는 문제점이 존재하였으며, 초고속 원심분리에 필요한 장비가 비싸고, 1회에 허용 가능한 양이 많지 않다는 한계점이 존재하였다.
상기와 같은 배경 하에, 본 발명자는 짧은 시간 내에 높은 효율로 세포 외 소포체를 대량 분리 및 농축하는 방법을 개발하고자 하였다.
본 발명의 목적은 조직으로부터 세포 외 소포체(Extracellular Vesicle)를 대량 분리 및 농축하는 방법에 관한 것으로서, 구체적으로는 다수의 세척 과정과 효소 반응 작용, 그리고 MWCO(Molecular weight cut-off, 분자량 컷 오프)멤브레인 필터를 이용하여 조직으로부터 분리하고자 하는 세포 외 소포체를 대량으로 신속하게 분리 및 농축할 수 있는 방법을 제공하는 것이다.
본 발명의 다른 목적은 세포 외 소포체의 대량 수득을 위한 분해효소 화합물을 제공하는 것이다.
본 발명의 일 측면은 (a) 분리하고자 하는 조직을 세척용액(washing solution) 을 이용하여 1차로 세척하는 단계, (b) 1차 세척이 완료된 이후, 육안상 관찰되는 조직의 막들을 멸균 처리된 핀셋을 활용하여 제거하는 단계, (c) 조직 전용 분쇄장비를 사용해 10~100,000rpm으로 1~60분간 분쇄 처리하는 단계, (d) 에탄올, 아세톤 (Acetone), 에테르 (ether), 클로로폼(chloroform), 이 소프로판올(iso-propanol) 또는 디클로로에테인(dichloroethane)을 이용하여 잔여 혈액, 잔여 막, 미세혈관, 지질, 섬유질의 불순물을 제거하는 2차 세척 단계, (e) 2차 세척이 완료된 후, 냉동환경에서 6~240시간 동안 동결 건조하는 단계, (f) 동결 건조 후, 분해효소 화합물을 처리하여 37℃에서, 1~60분간, 100 ~ 4,000 rpm으로 반응하는 단계, (g) 상기 (f) 단계가 완료된 후, 100~100,000 rpm에서 3~60분간 원심분리를 진행하여 분해되지 않은 조직을 제거하고, 상층액만 수거하는 단계, (h) 상층액을 0.22 μm 필터 시스템에 1~15회 반복 통과시켜 여과하는 단계, (i) 분자량 컷 오프(MWCO) 멤브레인을 이용하여 접선 유동 여과법(TFF)으로 세포 외 소포체를 분리 및 농축하는 단계를 포함하는, 조직으로부터 세포 외 소포체를 분리 및 농축하는 방법을 제공한다.
본 명세서에서 용어, "세포 외 소포체(Extracellular vesicles, EVs)"는 통상 세포막 유래 소포체(membrane vesicles), 엑토좀(ectosomes), 쉐딩소포체(shedding vesicles), 마이크로파티클(microparticles), 나노파티클(nanoparticles), 또는 이의 등가물을 포괄하는 의미로 사용된다. 분리 환경, 조건 및 방법 등에 따라 세포 외 소포체는 엑소좀과 동일한 의미를 가질 수도 있고 엑소좀과 크기는 동일 내지는 유사하지만 엑소좀의 조성을 갖지 않는 나노베지클(nanovesicles)까지 포함하는 의미를 가질 수도 있다. 한편, 본 명세서에서 생산촉진 또는 생산성과 관련하여 사용되는 엑소좀이라는 용어는 상기 세포 외 소포체를 포괄하는 의미로 사용될 수 있다.
본 명세서에서 용어, "엑소좀(exosomes)"은 세포막의 구조와 동일한 이중 인지질막으로 이루어진 수십 내지 수백 나노미터(바람직하게는 대략 30~500nm) 크기의 소포체를 의미한다(단, 분리 대상이 되는 세포 종류, 분리방법 및 측정방법에 따라 엑소좀의 입자 크기는 가변될 수 있음)(Vasiliy S. Chernyshev et al., "Size and shape characterization of hydrated and desiccated exosomes", Anal Bioanal Chem, (2015) DOI 10.1007/s00216-015-8535-3). 엑소좀에는 엑소좀카고(cargo)라고 불리는 단백질, 핵산(mRNA, miRNA 등) 등이 포함되어 있다.
엑소좀 카고에는 광범위한 신호전달 요소들(signaling factors)이 포함되며, 이들 신호전달 요소들은 세포 타입에 특이적이고 분비세포의 환경에 따라 상이하게 조절되는 것으로 알려져 있다. 엑소좀은 세포가 분비하는 세포간 신호 전달 매개체로서 이를 통해 전달된 다양한 세포 신호는 표적 세포의 활성화, 성장, 이동, 분화, 탈분화, 사멸(apoptosis), 괴사(necrosis)를 포함한 세포 행동을 조절한다고 알려져 있다.
한편, 본 명세서에서 사용된 "엑소좀"이란 용어는 세포에서 분비되어 세포 외 공간으로 방출된 나노크기의 베지클 구조를 갖고 있고 엑소좀과 유사한조성을 갖는 베지클(예를 들어, 엑소좀-유사 베지클)을 모두 포함하는 것을 의미한다.
또한, 본 발명의 세포 외 소포체는 조직으로부터 분리 및 농축되는것으로서, 상기 조직은 동물 또는 사람으로부터 유래된 뇌, 지방, 태반, 탯줄, 혈액, 간, 폐, 심장, 제대혈, 신장, 소변, 피부 (상피세포), 맹장 등 제거되는 조직 및 림프절로 구성된 군에서 하나 이상 선택된 조직을 의미하는 것일 수 있다. 본 발명에 있어서, 엑소좀 및/또는 세포 외 소포체가 유래하는 동물 유래 세포의 종류는 제한되지 않으나, 본 발명을 한정하지 않는 하나의 예시로서, 줄기세포 또는 면역세포일 수 있다. 상기 줄기세포는 배아줄기세포, 유도만능 줄기세포(induced pluripotent stem cell; iPSC), 성체줄기세포, 배아줄기세포 유래 중간엽 줄기세포, 또는 유도만능 줄기세포 유래 중간엽 줄기세포일 수 있다. 상기 면역세포는 T 세포, B 세포, NK 세포, 세포독성 T세포(cytotoxic T cell), 수지상 세포 또는 대식 세포일 수 있다.
세포 외 소포체의 분리 및 농축을 위하여 가장 흔하게 사용되는 방법은 원심 분리 및 키트를 사용하는 것이다. 이는 폴리에틸렌글리콜(Polyethyleneglycol, PEG)이라는 폴리머를 이용하여 세포 외 소포체를 농축하는 방법으로서, PEG가 세포 외 소포체의 용해도를 낮춰 용출시키고 가라앉히는 침전현상을 이용한다. PEG와 세포 외 소포체의 반응 시간을 높일수록 많은 양의 세포외 소포체를 침전시키며, 보통 4시간에서 24시간의 반응 시간을 필요로 한다. PEG에 의한 용출 방식을 사용하는 대표적 제품으로는 Exo-Quick이 알려져 있다.
본 발명의 세포 외 소포체 분리 방식은 Exo-Quick과 비교해 분리 가능량이 최소 10배에서 최대 1,000,000배까지 높으며, 분리에 소요되는 시간이 약 1/40 이하에 불과하여, 생산성의 측면에서 효율적이다(표 1).
침전 방식 외에 자주 활용되는 세포 외 소포체 분리 방식은 필터를 이용하는 방식이다. 필터 방식은 세포 외 소포체보다 기공 크기가 작거나 유사한 필터를 사용하여 세포 외 소포체를 걸러내는 방법이다. 세포 외 소포체는 필터에 걸러지고 그 외 단백질들은 배출되기에 유체의 속도에 따라 분리 속도를 조절할 수 있으며, 반응 시간을 요구하지 않아 분리 시간은 빠르다. 하지만, 필터에 결합하거나 빠져나가는 세포 외 소포체의 비율이 높아 최종 회수율은 높지 않은 한계점이 존재하였다.
본 발명의 분리 및 농축 방법은 분해효소 화합물로 전처리하고, 자체적으로 제작한 멤브레인을 이용함으로써, 상기와 같은 종래의 한계점을 극복한 것을 특징으로 한다.
본 발명의 세포 외 소포체 대량 분리 및 농축 방법은 상업적 및/또는 임상적으로 유용하게 활용될 수 있는 엑소좀 및/또는 세포 외 소포체를 높은 수율로 경제적이면서 효율적으로 생산할 수 있고, 특히 종래의 방법인 엑소좀 분리키트나 초고속 원심 분리 방법과 비교하여 조직에서 분리되는 엑소좀을 대량으로 신속하게 분리 및 농축할 수 있는 장점이 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 조직으로부터 세포 외 소포체를 분리하는 방법을 흐름도로 나타낸 것이다.
도 2는 임의의 세 조직에 대하여 조건을 달리하여 세포 외 소포체를 분리한 후의 형광 이미지 결과를 나타낸 것이다.
도 3은 임의의 세 조직에 대하여 조건을 달리하여 세포 외 소포체를 분리한 후의 투과 전자 현미경(Transmission Electron Microscope; TEM) 결과를 나타낸 것 이다.
도 4는 임의의 세 조직에 대하여 조건을 달리하여 세포 외 소포체를 분리한 후, 웨스턴 블롯(western blot) 결과를 나타낸 것이다.
도 5는 본 발명의 방법에 의해 분리 농축한 세포 외 소포체의 입자 크기와 농도를 나노입자 추적분석(Nanoparticle Tracking Analysis; NTA)에 의해 확인한 결과를 나타낸 것이다.
도 6은 RNA-Seq 프로파일링 결과 히트맵을 나타낸 것이다(행: RNA 염기서열분석 결과 중 타겟하는 인자들을 그룹화, 열: 각 시료에서 추출한 세포 외 소포체).
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1. 조직으로부터의 세포 외 소포체 분리 및 농축
본 발명에서 세포 외 소포체의 분리 및 농축을 위한 조직은 동물 또 는 사람으로부터 유래된 뇌, 지방, 태반, 탯줄, 혈액, 간, 폐, 심장, 제대혈, 신장, 소변, 피부 (상피세포), 맹장 및 림프절로 구성된 군에서 하나 이상 선택된 조직을 의미하는 것으로서, 본 실시예에서는 뇌, 태반, 혈액 세 종류의 조직을 이용하였다.
우선, 분리하고자 하는 조직을 세척용액 (washing solution)을 이용 하여 1차로 세척하여 조직에 묻어 있는 혈액 및 기타 불순물을 제거하였다. 이때, 상기 세척용액은 PBS (Phosphate-buffered saline), HBSS (Hanks' Balanced Saltsolution), EBSS (Earle's balanced salts solution), 생리식염수(normal saline), 5% Dextrose water 및 하트만용액(Hartman solution)으로 구성된 군에서 하나 이상 선택된 것을 의미하는 것일 수 있다.
1차 세척이 완료된 이후, 육안상 관찰되는 조직의 막들을 멸균 처리 된 핀셋을 활용하여 제거하고, 조직 전용 분쇄장비를 사용해 10~100,000rpm으로 1~60분간 분쇄 처리하였다. 이때, 상기 조직 전용 분쇄장비는 각 부분별로 멸균처 리가 가능하고, 중력을 이용한 누름틀 기능이 구비되어 각 조직의 부위나 종류에 따라 각기 다른 rpm을 적용하는 것이 가능하도록 고안된 것을 사용하였다.
한편, 상기 육안상 관찰되는 조직의 막이란 조직의 내막, 외막, 힘줄 또는 이중막 중 선택된 어느 하나 이상을 의미하는 것일 수 있다.
분쇄가 완료된 후, 에탄올, 아세톤 (Acetone), 에테르 (ether), 클로로폼(chloroform), 이소프로판올(iso-propanol) 또는 디클로로에테인 (dichloroethane)을 이용하여 잔여 혈액, 잔여 막, 미세혈관, 지질, 섬유질 등의 불순물을 제거하는 2차 세척을 실시하였다.
2차 세척이 완료된 후, 냉동환경에서 6~120시간 동안 동결 건조하였다.
동결 건조 후, 분해효소 화합물을 처리하여 37
Figure PCTKR2022012858-appb-img-000001
에서, 1~60분간, 100 ~ 4,000 rpm으로 반응시켜주었다. 이때, 상기 분해효소 화합물은 Collagenase I, Collagenase II, Collagenase III, Collagenase IV, Collagenase V, Dispase I, Dispase II, DNase, trypsin, Papain, Endopeptidase, elastase, Proteases 및 Pectinase로 구성된 군에서 하나 이상 선택된 효소로 구성된 것으로서, 구체적으로는 collagenase I의 비율이 1%~100%, Collagenase II의 비율이 1%~100%, Collagenase III의 비율이 1%~100%, Collagenase IV의 비율이 1%~100%, Collagenase V의 비율이 1%~100%, Dispase I의 비율이 1%~100%, Dispase II의 비율이 1%~100%, DNase의 비율이 1%~100%, trypsin의 비율이 1%~100%, Papain의 비율이 1%~100%, Endopeptidase의 비율이 1%~100%, elastase의 비율이 1%~100%, Proteases의 비율이 1%~100%, Pectinase의 비율이 1%~100%로 구성된 효소일 수 있으며, 각 효소들의 농도는 1 μg/ml~100 mg/ml 혹은 0.1 U/ml~100 U/ml로 제조되어 혼합한 것을 사용할 수 있다.
더욱 구체적으로, 상기 분해효소 화합물은 collagenase I의 비율이 1%~100%, 5~95%, 10~80%, 바람직하게는10~80%가 될 수 있고, Collagenase II의 비율이 1%~100%, 10~80%, 40~65%, 바람직하게는33~65%가 될 수 있으며, Collagenase III의 비율이 1%~100%가 될 수 있고, Collagenase IV의 비율이 1%~100%, 3~95%, 5~90%, 10~80%, 바람직하게는10~80%가 될 수 있으며, Dispase I의 비율이 1%~100%, 10~80%, 30~75%, 35~65%, 바람직하게는35~65%가 될 수 있고, Dispase II의 비율이 1%~100%가 될 수 있으며, DNase의 비율이 1%~100%, 3~95%, 5~90%, 10~85%, 바람직 하게는10~80%가 될 수 있고, trypsin의 비율이 1%~100%, 3~95%, 5~90%, 10~85%, 바 람직하게는10~80%가 될 수 있으며, Papain의 비율이 1%~100%가 될 수 있고, Endopeptidase의 비율이 1%~100%가 될 수 있으며, elastase의 비율이 1%~100%가 될 수 있고, Proteases의 비율이 1%~100%, 5~90%, 5~85%, 10~80%, 바람직하게는10~80% 가 될 수 있으며, Pectinase의 비율이 1%~100%로 구성된 효소일 수 있으나, 이에 제한되는 것은 아니다.
분해효소 화합물의 처리가 완료된 후, 100~100,000 rpm에서 3~60분간 원심분리를 진행하여 분해되지 않은 조직을 제거하고, 상층액만 수거하였다.
이후, 상층액을 0.22 μm 필터 시스템에 1~15회 반복하여 통과시켜 준 후, 3 내지 5,000 kda 이하의 분자량 컷 오프(Molecular weight cut-off; MWCO) 멤브레인을 이용하여 접선 유동 여과법(Tangential Flow Filtration; TFF)에 의해 세포 외 소포체를 분리 및 농축하였다.
이러한 전체 과정을 도 1에 나타내었다.
실험예 1. 세포 외 소포체의 분리 조건에 따른 효율의 비교
상기 실시예 1의 공정 조건을 적용하여 기존에 많이 이용되는 세포 외 소포체 분리법과 효율을 비교하였다.
구체적으로, 다음과 같이 기존 조건인 초원심분리법 (ultracentrifugation) 및 Exo-Quick 조건과 본 발명 실시예 1의 분리법에 대하여 BCA(Bicinchoninic acid) 시약을 이용한 단백질 정량 및 나노입자 추적 분석(Nano particle Tracking Analysis; NTA)에 의한 입자수를 비교하고, 그 결과를 하기 표 1에 나타내었다.
조건 분리 시간 BCA 결과(단백질) NTA 결과(입자수)

초원심분리법
(ultracentrifugation)

5 시간

50~100 μg

1 X 109 ~ 1 X 1010

엑소-퀵(Exo-Quick)

13 시간

75~200 μg

1 X 1010 ~ 6 X 1010

실시예 1

20 분

75~200 μg

1 X 1010 ~ 1 X 1011
같은 용량에서 본원 발명의 실시예 1 공정을 이용한 경우, 초원심분 리법과 Exo-Quick과 비교하여 분리 시간이 1/15 ~ 1/40 정도 소요되었으며, BCA 법 에 의한 단백질 정량은 초원심분리법이 제일 낮고, Exo-Quick과 본원 발명의 방법 의 결과 값은 유사하였다. 입자수 역시, 초원심분리법이 가장 낮았으나 Exo- Quick과 본원 발명의 방법은 유사한 것을 확인하였다.
실험예 2. 분리된 세포 외 소포체의 확인
실제로 조직으로부터 세포 외 소포체를 수득할 수 있는지 여부를 확 인하였다.
구체적으로, 뇌, 태반, 혈액으로부터 Exo-Quick 및 실시예 1의 방법 을 통해 분리 및 농축한 세포 외 소포체를 대상으로 형광 이미징(도 2), 투과전자 현미경(도 3)을 이용하여 실제로 세포 외 소포체를 수득하였는지 기존 방법(Exo- Quick)으로 분리한 세포 외 소포와 비교 확인하였다.
구체적으로, 면역형광염색법 (Immunocytochemistry; Exosome 마커인 CD63으로 염색하여 형광현미경으로 200배, 400배 확대하여 관찰한 사진) 및 투과형
전자현미경 (Transmission Electron Microscope; 투과전자현미경용 특정 시약을 처 리하여 10,000배, 20,000배확대하여 관찰한 사진)을 이용하여 Exo-Quick 및 실시예 1의 두가지 방법 모두에 대하여 세포 외 소포체가 관찰되었고, 실시예 1의 방법에 서 보다 많은 세포 외 소포체가 관찰되는 것을 확인함으로써, 상기한 조건 하에서 본 발명의 분리 및 농축 방법에 의하면 세포 외 소포체가 대량으로 분리 및 농축 가능한 것을 확인하였다.
실험예 3, 나노입자 추적 분석에 의한 분리된 세포 외 소포체의 분석 및 생산성 평가
본 발명의 방법에 의해 수득한 세포 외 소포체를 대상으로 나노입자 추적 분석에 의해 입자의 크기와 농도를 측정하고, 그 결과를 도 5에 나타내었다.
도 5에 나타난 바와 같이, 본 발명의 방법에 의해 수득한 세포 외 소포체는 그 크기가 매우 균일하게 평균 134.3nm 근방에 분포하고 있으며, 총 농도 는 1.1 x 1013 particles/ml, 샘플 당 yield는 6 x 1011 particles/ml로 측정되었다.
즉, 본 발명의 방법에 의하면 일정 범위에 존재하는 균일한 크기의 세포 외 소포체를 얻을 수 있고, 이는 세포 외 소포체의 손상 및 변형을 최소화하 며 동일한 양의 조직에서 대량의 세포 외 소포체를 분리할 수 있음을 의미하는 것 이다.
또한, 총 농도 및 샘플 당 산출 값은 기존의 방법에 의해 수득할 수 있었던 값인 Exo-Quick(엑소좀 분리 키트) 및 초원심분리법과 비교할 때 현저히 향 상된 결과를 보이는 것이다.
따라서, 본 발명은 조직으로부터 방출되는 세포 외 소포체의 효과적 인 분리 및 농축 방법을 제공함으로써, 생산성을 현저히 향상시킬 수 있어 상업적, 임상적으로 유용하게 활용될 수 있다. 또한, 본 발명의 제조 방법은 세포 외 소포 체를 높은 수율로 경제적이면서 효율적으로 생산할 수 있고, 특히 종래의 방법과 비교하여 세포 외 소포체를 대량으로 생산할 수 있는 장점이 있다.
실험예 4, 조직 및 세포배지에서 분리한 세포 외 소포체의 성분 비교 실험
본 발명은 일반적으로 대량으로 확보가 가능한 조직으로부터 고농도, 고순도로 세포 외 소포체를 수득하는 것을 그 특징으로 하는 바, 이러한 현저한 생산성의 향상은 전술한 바와 같다.
나아가, 본 발명자들은 상기한 방법으로 조직으로부터 직접 수득한 세포 외 소포체가 줄기세포를 배양한 후 수득한 세포 외 소포체와 동일한 성분구성 을 나타내는지 확인하고자 하였다.
구체적으로, 인간 태반 줄기세포 및 중뇌신경줄기세포로부터 Exo- Quick 방법으로 세포 외 소포체를 수득하고, 이를 상기 실시예 1에서 수득한 세포 외 소포체와의 성분 비교 분석 (도6, RNA-Seq 프로파일링 결과 히트맵)에 사용하였다.
본 실험예에서는 줄기세포가 지닌 특성인 염증 관련 인자 및 세포 성장 인자, 항산화 인자들의 발현을 염기서열분석 (RNA Sequencing, RNA-Seq) 방법 을 통해 분석하고 히트맵을 통해 나타내었다. 행은 RNA 염기서열분석 결과 중 타겟 하는 인자들을 그룹화한 것이고, 열은 각 시료에서 추출한 세포 외 소포체를 나타 낸 것이다. 상대적으로 높은 표현은 빨간색으로 표시되고 상대적으로 낮은 표현은 파란색으로 표시된다.
그 결과, 도 6에서 보는것과 같이 3가지 세포 외 소포체 모두에서 유사한 염증 관련 인자의 발현이 확인되어, 본 특허에서 개발한 방법으로 조직에서 추출한 세포 외 소포체가 별도로 줄기세포 배양 후 기존 상용되고 있는 Exo- Quick을 사용하여 수득한 세포 외 소포체의 성분 구성이 약 95% 이상 동일함을 확 인하였다.
또한, 본 발명 실시예 1의 조건을 이용하여 태반줄기세포 및 중뇌 신경 줄기세포와 조직에서 각각 분리한 세포 외 소포체를 대상으로, 웨스턴 블롯을 실시하여 엑소좀의 단백질 마커로 알려진 Alix(또는 PDCD6IP), TSG 101, CD81 및 vinculin의 존재 여부를 확인하였으며, 그 결과 도 4에 나타난 바와 같이 상기한 모든 단백질 마커가 존재함을 확인하였다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기 술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변 경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정 적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구 성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형 된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (6)

  1. (a) 분리하고자 하는 조직을 세척용액(washing solution)을 이용하여 1차로 세척하는 단계;
    (b) 1차 세척이 완료된 이후, 육안상 관찰되는 조직의 막들을 멸균 처리된 핀셋을 활용하여 제거하는 단계;
    (c) 조직 전용 분쇄장비를 사용해 10~100,000 rpm으로 1~60분간 분쇄 처리하는 단계;
    (d) 에탄올, 아세톤 (Acetone), 에테르 (ether), 클로로폼(chloroform), 이소프로판올(iso-propanol) 또는 디클로로에테인(dichloroethane)을 이용하여 잔여 혈액, 잔여 막, 미세혈관, 지질, 섬유질의 불순물을 제거하는 2차 세척 단계;
    (e) 2차 세척이 완료된 후, 냉동환경에서 6~240시간 동안 동결 건조하는 단계;
    (f) 동결 건조 후, 분해효소 화합물을 처리하여 37℃에서, 1~60분간, 100 ~4,000 rpm으로 반응하는 단계;
    (g) 상기 (f) 단계가 완료된 후, 100~100,000 rpm에서 3~60분간 원심분리를 진행하여 분해되지 않은 조직을 제거하고, 상층액만 수거하는 단계;
    (h) 상층액을 0.22 μm 필터 시스템에 1~15회 반복 통과시켜 여과하는 단계;
    (i) 분자량 컷 오프(MWCO) 멤브레인을 이용하여 접선 유동 여과법(TFF)으로 세포 외 소포체를 분리 및 농축하는 단계;를 포함하는, 조직으로부터 세포 외 소포체를 분리 및 농축하는 방법.
  2. 제1항에 있어서,
    세척용액은 PBS (Phosphate-buffered saline), HBSS (Hanks' Balanced Salt
    solution), EBSS (Earle's balanced salts solution), 생리식염수(normal saline), 5% Dextrose water 및 하트만용액(Hartman solution)으로 구성된 군에서 하나 이상 선택된 것인, 조직으로부터 세포 외 소포체를 분리 및 농축하는 방법.
  3. 제1항에 있어서,
    상기 육안상 관찰되는 조직의 막이란 조직의 내막, 외막, 힘줄 또는 이중막중 선택된 어느 하나 이상인, 조직으로부터 세포 외 소포체를 분리 및 농축하는 방법.
  4. 제1항에 있어서,
    상기 분해효소 화합물은 Collagenase I, Collagenase II, Collagenase III, Collagenase IV, Collagenase V, Dispase I, Dispase II, DNase, trypsin, Papain, Endopeptidase, elastase, Proteases 및 Pectinase로 구성된 군에서 하나 이상 선 택된 효소로 구성된 것인, 조직으로부터 세포 외 소포체를 분리 및 농축하는 방법.
  5. 제1항에 있어서,
    상기 분자량 컷 오프 멤브레인은 3kDa 내지 5000kda인 컷 오프 멤브레인인, 조직으로부터 세포 외 소포체를 분리 및 농축하는 방법.
  6. 제 1 항 내지 제5항 중 어느 한 항의 방법에 의해 수득한 세포 외 소포체.
PCT/KR2022/012858 2021-09-01 2022-08-29 조직 유래 소포체의 대량 분리 및 농축 방법 WO2023033473A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210116449A KR102573315B1 (ko) 2021-09-01 2021-09-01 조직 유래 소포체의 대량 분리 및 농축 방법
KR10-2021-0116449 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023033473A1 true WO2023033473A1 (ko) 2023-03-09

Family

ID=85412899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012858 WO2023033473A1 (ko) 2021-09-01 2022-08-29 조직 유래 소포체의 대량 분리 및 농축 방법

Country Status (2)

Country Link
KR (1) KR102573315B1 (ko)
WO (1) WO2023033473A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111674A (ko) * 2017-03-31 2018-10-11 (주)안트로젠 중간엽줄기세포 유래 고순도, 고농도 엑소좀을 포함하는 배양액 및 이의 제조방법
KR20190050286A (ko) * 2017-11-02 2019-05-10 주식회사 엑소코바이오 안정화된 엑소좀의 필러 조성물
KR20200012713A (ko) * 2018-07-27 2020-02-05 주식회사 엑소스템텍 엑소좀을 유효성분으로 포함하는 급성 간질환의 예방 또는 치료용 조성물
KR20210061328A (ko) * 2018-06-11 2021-05-27 헬스 앤드 바이오테크 프랑스 (에이치 앤드 비 프랑스) 중간엽 줄기 세포로부터 유래된 세포외 소포

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111674A (ko) * 2017-03-31 2018-10-11 (주)안트로젠 중간엽줄기세포 유래 고순도, 고농도 엑소좀을 포함하는 배양액 및 이의 제조방법
KR20190050286A (ko) * 2017-11-02 2019-05-10 주식회사 엑소코바이오 안정화된 엑소좀의 필러 조성물
KR20210061328A (ko) * 2018-06-11 2021-05-27 헬스 앤드 바이오테크 프랑스 (에이치 앤드 비 프랑스) 중간엽 줄기 세포로부터 유래된 세포외 소포
KR20200012713A (ko) * 2018-07-27 2020-02-05 주식회사 엑소스템텍 엑소좀을 유효성분으로 포함하는 급성 간질환의 예방 또는 치료용 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIN BO; HU XI-MIN; SU ZHEN-HONG; ZENG XIAO-BO; MA HONG-YING; XIONG KUN: "Tissue-derived extracellular vesicles: Research progress from isolation to application", PATHOLOGY - RESEARCH AND PRACTICE, vol. 226, 30 August 2021 (2021-08-30), AMSTERDAM, NL , pages 1 - 14, XP086801367, ISSN: 0344-0338, DOI: 10.1016/j.prp.2021.153604 *
VASILIY S. CHERNYSHEV ET AL.: "Size and shape characterization of hydrated and desiccated exosomes", ANAL BIOANAL CHEM, 2015

Also Published As

Publication number Publication date
KR102573315B1 (ko) 2023-09-01
KR20230033463A (ko) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2018182356A1 (ko) 중간엽줄기세포 유래 고순도, 고농도 엑소좀을 포함하는 배양액 및 이의 제조방법
WO2022051883A1 (zh) 一种人脐带间充质干细胞来源的外泌体的制备方法及应用
WO2021054576A1 (ko) 엑소좀 및/또는 세포외 소포체의 생성 촉진 방법
WO2018226051A2 (ko) 인간줄기세포 유래 엑소좀을 포함하는 세포 배양용 무혈청 배지 조성물
CN107937342B (zh) 一种通过内皮细胞来源的外泌体扩增神经干细胞的方法
WO2021020726A1 (ko) 새로운 엑소좀의 생산방법 및 이의 응용
WO2015105356A1 (ko) 순수 영양막층으로부터 유래된 줄기세포 및 이를 포함하는 세포치료제
CN114591905B (zh) 一种人红细胞制备凋亡囊泡的方法与应用
CN113717944B (zh) 一种miRNA13896过表达的工程化人脐带间质干细胞源外泌体及制备方法和应用
CN113136362B (zh) 一种囊泡及其应用
WO2012148130A1 (ko) 배아줄기세포유래 마이크로베시클을 이용한 유도만능줄기세포의 제조방법
CN113583952B (zh) 一种提高干细胞外泌体产量的培养液
WO2023033473A1 (ko) 조직 유래 소포체의 대량 분리 및 농축 방법
CN104818238B (zh) 一种鸡肠上皮细胞分离培养方法
KR20120006386A (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
CN114507642B (zh) 一种动物神经系统周细胞单细胞的分离方法
CN117230012A (zh) 一种人结肠癌类器官培养方法及其应用
CN114507635B (zh) 一种动物神经系统内皮细胞单细胞的分离方法
WO2018199603A1 (ko) 나노 입자가 제거된 세포 배양 배지의 제조 방법
WO2022097984A1 (ko) 3 차원 스페로이드형 세포 응집체 유래 세포외소포의 제조방법
KR20090130582A (ko) 배아줄기세포의 추출물을 이용한 맞춤형 만능줄기세포의유도 방법 및 상기 방법에 의해 제조된 만능줄기세포
CN114317402A (zh) 一种山羊乳外泌体的提取及鉴定方法
WO2014119893A1 (ko) 식물 줄기세포 또는 식물 역분화 줄기 세포의 추출물을 이용한 맞춤형 만능줄기세포의 유도 방법 및 상기 방법에 의해 제조된 만능줄기세포
CN113652394B (zh) 一种大鼠原代生精细胞体外分离的方法
KR101706824B1 (ko) 미세담체를 사용한 지방줄기세포의 분리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022864975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864975

Country of ref document: EP

Effective date: 20240402