WO2023032947A1 - 生体適合性材料およびその製造方法 - Google Patents

生体適合性材料およびその製造方法 Download PDF

Info

Publication number
WO2023032947A1
WO2023032947A1 PCT/JP2022/032506 JP2022032506W WO2023032947A1 WO 2023032947 A1 WO2023032947 A1 WO 2023032947A1 JP 2022032506 W JP2022032506 W JP 2022032506W WO 2023032947 A1 WO2023032947 A1 WO 2023032947A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal film
biocompatible
film
calcium
Prior art date
Application number
PCT/JP2022/032506
Other languages
English (en)
French (fr)
Inventor
健吾 成田
茂 山中
Original Assignee
株式会社丸ヱム製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社丸ヱム製作所 filed Critical 株式会社丸ヱム製作所
Priority to JP2023545581A priority Critical patent/JPWO2023032947A1/ja
Publication of WO2023032947A1 publication Critical patent/WO2023032947A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials

Definitions

  • the present invention relates to a biocompatible material provided with a protective film, specifically a metal film, on a substrate, and the protective film, specifically the metal film, maintains the hydrophilicity of the substrate until it is used in a biological environment.
  • the present invention relates to a biocompatible material comprising a biocompatible substrate that is hydrophilic; and a metal film provided on the substrate, the metal film having a dissolution property of dissolving in a predetermined liquid.
  • the present invention also relates to a method for producing the biocompatible material.
  • Patent Document 1 discloses a technique for imparting an activated surface with superhydrophilicity by removing organic contaminants adhering to a titanium-based biological implant with ultraviolet light immediately before surgery.
  • a special device is required to irradiate the bioimplant with ultraviolet light at the surgical site, and the operation during surgery is complicated.
  • Patent Document 2 discloses a technique of coating a solution containing a drug on an implant hydrophilized by ultraviolet irradiation.
  • drug-containing coatings tend to deteriorate when stored in the atmosphere.
  • Patent Document 3 a dental implant with a hydroxyapatite coating is sealed in a container, sterilized with radiation, and stored. Disclosed is a technique for removing impurities adhering to a surface at a surgical site.
  • an increase in the number of procedures at the time of surgery is complicated, and there is a possibility that an unforeseen situation may arise because the impurity removal step is entrusted to the clinical site.
  • Patent Document 4 discloses a technology that maintains antibacterial properties and hydrophilicity for a long period of time by forming an oxide composed of titanium and iodine on the base material surface. However, since this technology maintains hydrophilicity using the photocatalytic reaction of titanium oxide, it cannot maintain hydrophilicity in a dark place such as inside a container.
  • Patent Document 5 discloses a technique for imparting antibacterial properties and hydrophilicity by directly fixing a hydrophilic organic compound on a metal surface.
  • this technology directly electrodeposits polymers onto metals, it is difficult to uniformly apply the polymer to complex shapes.
  • it since it is a soft polymer, local detachment and breakage cannot be avoided during screw insertion.
  • Patent Document 6 discloses a technology of a solution and a preservation kit that can maintain a hydrophilic state by anodization, hydrothermal treatment, ultraviolet irradiation, plasma irradiation, and the like.
  • the above-described group of techniques shows that the hydrophilic state can be maintained only in a solution, and in order to maintain it, it must be stored in a container containing the solution.
  • Patent Document 7 discloses a technique in which a Mg-rich layer integrated with a substrate is provided on ceramics, and the film ensures hydrophilicity. Immediately after production, it exhibits superhydrophilicity and has a contact angle of 0°, but when exposed to the atmosphere, it gradually loses its hydrophilicity and reaches a contact angle of 40° or more in 5 days or more.
  • Patent Document 8 discloses a technique in which a Ca-rich layer is provided on ceramics and hydrophilicity is ensured by the film. In this case as well, the film exhibits superhydrophilicity immediately after production and has a contact angle of 0°, but when exposed to the air, it gradually loses its hydrophilicity, and after several weeks, the contact angle reaches 40° or more. Note that the films of Patent Documents 7 and 8 are stable and insoluble because they are compounds. Therefore, a storage method or a relatively short expiration date must be provided to maintain the hydrophilicity of this membrane.
  • Patent Literature 9 discloses techniques relating to implants and coating layers such as calcium-containing magnesium and trace amounts of iron and nickel.
  • an object of the present invention is to provide a technique that does not require a storage container or solution for maintaining hydrophilicity and does not require a step of imparting hydrophilicity at the surgical site.
  • an object of the present invention is to protect a hydrophilic substrate with a protective film, specifically a metal film, and to protect the biocompatible material with the protective film, specifically a metal film, when using the biocompatible material in a biological environment.
  • Another object of the present invention is to provide a biocompatible material which dissolves the metal film and can be used while maintaining the hydrophilicity of the protected hydrophilic substrate.
  • Another object of the present invention is to provide a method for producing the above biocompatible material in addition to or in addition to the above objects.
  • ⁇ 1> a biocompatible substrate having a hydrophilic surface; and a metal film provided on the surface of the substrate, the metal film having a dissolution property of dissolving in body fluid or simulated body fluid;
  • a biocompatible material having ⁇ 2> In the above item ⁇ 1>, when the biocompatible material is brought into contact with a body fluid or simulated body fluid, the metal film is dissolved, and the biocompatible substrate having a hydrophilic surface is preferably exposed.
  • the bodily fluid is at least one selected from the group consisting of blood, lymph, bone marrow fluid, and interstitial fluid
  • the pseudo-bodily fluid is physiological saline or phosphate-buffered saline.
  • PBS physiological saline or phosphate-buffered saline.
  • HBSS Hank's Balanced Salt Solution
  • SBF plasma solution
  • cell culture solution cell culture solution
  • Eagle (MEM) solution DMEM solution
  • serum medium serum medium.
  • the simulated body fluid is preferably Hank's balanced salt solution.
  • hydrophilicity means that the water droplet contact angle is 90° or less, preferably 50° or less, more preferably 30° or less, and most preferably 20° or less. is good.
  • the metal film preferably contains at least one metal selected from the group consisting of Mg, Ca, Zn and Fe.
  • the metal film contains magnesium and optionally calcium, and when the total weight of magnesium and calcium is 100% by weight, calcium is 0 to 40%. %, preferably 0.8-35% by weight, more preferably 5-35% by weight, even more preferably 15-35% by weight, most preferably 25-35% by weight.
  • the protective film is preferably free of Mg 2 Ca.
  • the protective film preferably has an amorphous portion.
  • the substrate is at least one selected from the group consisting of pure titanium, cobalt-chromium alloys, stainless steel and titanium alloys, zirconia, alumina, calcium phosphate and magnesia. is good.
  • the surface roughness Ra of the substrate is preferably 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the shape of the biocompatible material is columnar, cylindrical, truncated conical, and conical, and a screw-like threaded portion is provided in part of the shape. It is preferably one selected from the group consisting of rectangular parallelepiped and cubic shapes, block shapes with partially inclined surfaces, and wedge shapes.
  • the biocompatible material is an artificial bone material, an intraosseous fixation device material, a dental implant material, an orthodontic anchor screw material, an intramedullary nail material, and a vertebrae. It is preferably one selected from the group consisting of interbody fixation materials.
  • a method for producing a biocompatible material (A) providing a biocompatible substrate; (B) hydrophilizing the surface of the biocompatible substrate; and (C) forming a metal film on the surface of the biocompatible substrate; a biocompatible substrate having a hydrophilic surface; and a metal film provided on the surface of said substrate.
  • the step (C) is (C1) preparing a sputtering target comprising a metal film precursor; and (C2) using the sputtering target to form a metal film by sputtering on the biocompatible substrate obtained in step (B). forming a; should have
  • the step (C1) is (C1a) a step of preparing a sputtering target comprising magnesium and optionally calcium
  • the step (C2) includes (C2a) using the sputtering target to set the temperature of the biocompatible substrate obtained in the step (B) to 130°C or lower, preferably 90°C or lower, more preferably 60°C or lower. forming a metal film comprising magnesium and optionally calcium on the biocompatible substrate by sputtering, wherein the total weight of magnesium and calcium is 100% by weight, and calcium is in the range of 0 to 40% by weight; There is good.
  • the step (B) includes acid treatment, blasting, anodizing, hydrothermal treatment, ultraviolet irradiation, plasma irradiation, laser irradiation, radiation irradiation, and ion irradiation. It is preferably at least one selected from the group consisting of: ⁇ 18>
  • the step (B) is ion irradiation, and the ion irradiation power product is 0.4 W min/cm 2 or more, preferably 0.8 W min/cm 2 .
  • a hydrophilic substrate is protected with a protective film, specifically a metal film, and when a biocompatible material is used in a biological environment, the protective film, specifically a metal film, is used.
  • a biocompatible material is used in a biological environment
  • the protective film specifically a metal film
  • the present invention can provide a method for producing the above biocompatible material in addition to or in addition to the above effects.
  • FIG. 4 shows X-ray diffraction profiles of an Mg film, an Mg10% Ca film, an Mg20% Ca film, and an Mg30% Ca film obtained using targets. At a power product of 0, 0.495, 0.99, 2.85 or 5.36 W min/cm 2 for smooth plate zirconia AF, rough plate zirconia AR, and glass substrate B.
  • FIG. 4 is a diagram showing a water droplet contact angle on a surface irradiated with ions.
  • Smooth plate-shaped zirconia AF or AF2 was irradiated with ions at a power product of 0.99 W min/cm 2 and then coated with a Mg 30% Ca film by sputtering within one week after coating, and within one week after coating.
  • the water droplet contact angle immediately after removal of the film after storage for months, 2 months, 4 months, 7 months and 15 months is shown.
  • FIG. 10 is a diagram showing pH measurement results as a dissolution rate evaluation in HBSS( ⁇ ) immersion for smooth zirconia A-F2 with Mg film, Mg20% Ca film and Mg30% Ca film.
  • FIG. 10 is a diagram showing pH measurement results as a dissolution rate evaluation in HBSS( ⁇ ) immersion for smooth zirconia A-F2 with Mg film, Mg20% Ca film and Mg30% Ca film.
  • Photographs of smooth plate-shaped zirconia AF photographs of samples coated with Mg30% Ca film by sputtering after applying ion irradiation to smooth plate-shaped zirconia AF at a power product of 5.36 Wmin / cm 2
  • Smooth plate-shaped zirconia AF was subjected to ion irradiation at a power product of 5.36 Wmin/cm 2 and then coated with a Mg 30% Ca film by sputtering.
  • I took it out.
  • the present application provides a biocompatible material comprising a biocompatible substrate having a hydrophilic surface; and a metal film provided on the surface of the substrate and having a dissolution property of dissolving in a predetermined liquid. .
  • the present application also provides a method of making the biocompatible material.
  • Biocompatible material comprising a biocompatible substrate having a hydrophilic surface; and a metal film provided on the surface of the substrate, the metal film having a dissolution property of dissolving in a body fluid or simulated body fluid.
  • biocompatible material refers to a property that is held in the body and poses no problem in terms of biosafety.
  • a biocompatible material of the present invention has a biocompatible substrate.
  • the biocompatible substrate has a hydrophilic surface with a water droplet contact angle of 90° or less, preferably 50° or less, more preferably 30° or less, and most preferably 20° or less. is good.
  • the water droplet contact angle can be measured by a conventionally known method. For example, a droplet is dropped on the sample surface, and the angle formed by the sample surface and the droplet is measured by the ⁇ /2 method. can. More specifically, it can be measured 30 seconds after the droplet contacts the sample surface.
  • the biocompatible substrate is not particularly limited as long as it has the above-mentioned "biocompatibility".
  • examples include metals such as pure titanium, cobalt-chromium alloys, stainless steel and titanium alloys, and ceramics such as zirconia, alumina, calcium phosphate, and magnesia. can include, but are not limited to.
  • the biocompatible substrate is preferably pure titanium, titanium alloys and zirconia, more preferably ceramics, and even more preferably zirconia. In the present invention, even if the biocompatible substrate is non-conductive ceramics, when the metal film and body fluid or simulated body fluid come into contact with each other, the metal film dissolves and the surface of the biocompatible substrate is exposed, resulting in hydrophilicity. It is possible to demonstrate sexuality.
  • the biocompatible substrate preferably has a surface roughness (arithmetic mean roughness) Ra of 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • Surface roughness Ra can be measured by a conventionally known method, for example, according to JIS B0601:2013.
  • a reference length and an evaluation length are defined according to Ra value categories.
  • the reference length and evaluation length for 0.1 ⁇ Ra( ⁇ m) ⁇ 2 are 0.8 mm and 2.0 mm, respectively. If the reference length cannot be measured continuously due to interference between the stylus and the object, use the reference length in the category lower than the Ra value of the object, and measure the total number of times the evaluation length is exceeded. and its average value can be Ra.
  • the biocompatible material of the present invention has a metal film on the surface of the biocompatible substrate.
  • Metal films have dissolution properties that dissolve in body fluids or simulated body fluids.
  • the metal film of the present invention is biocompatible in that when the biocompatible material is brought into contact with a body fluid or a simulated body fluid, the biocompatible substrate and the metal film are not integrated, the metal film dissolves, and the surface is hydrophilic.
  • the substrate should be exposed.
  • bodily fluids include, but are not limited to, blood, lymph, bone marrow fluid, interstitial fluid, and the like.
  • physiological saline phosphate buffered saline (PBS), Hank's balanced salt solution (HBSS), SBF solution, plasma liquid, cell culture medium, Eagle (MEM) solution, DMEM solution, and serum medium etc., but not limited to these.
  • PBS phosphate buffered saline
  • HBSS Hank's balanced salt solution
  • SBF plasma liquid
  • cell culture medium cell culture medium
  • Eagle (MEM) solution DMEM solution
  • serum medium etc.
  • the metal film of the present invention has the property of dissolving in body fluids or simulated body fluids. Therefore, when a biocompatible material having the metal film on its surface is implanted in the body, the metal film dissolves and becomes hydrophilic. The surface of the substrate having it is exposed, and high adhesiveness to living tissue can be exhibited.
  • the metal film of the present invention is brought into contact with a body fluid or a simulated body fluid to dissolve the metal film, thereby forming a biocompatible substrate having a hydrophilic surface. By exposing, it is also possible to exhibit high adhesiveness to living tissue.
  • the metal film can be dissolved when the biocompatible material is used, preferably during use, so that the hydrophilic surface of the biocompatible substrate exerts the desired effect.
  • the metal film should have the dissolution properties of a) dissolving in 5% hydrochloric acid, and b) more preferably dissolving in Hank's Balanced Salt Solution.
  • Hank's Balanced Salt Solution There are four types of Hank's balanced salt solutions, depending on whether they contain "Ca and Mg" and whether they contain "phenol red”. Red-free and "Ca and Mg"-free are preferred.
  • the dissolution property in 5% hydrochloric acid is preferably one or both of the following i) and ii) when 2 mg of the protective film is immersed in 50 ml of 5% hydrochloric acid.
  • the time for the concentration of the substance dissolved from the protective film to become almost constant due to the immersion time is 0.3 seconds or more, preferably 0.5 to 20 seconds, more preferably 0.5 to 10 seconds after immersion.
  • the time for 2 mg of the protective film to be almost dissolved is 0.5 seconds or longer, preferably 1 to 60 seconds, more preferably 1 to 30 seconds after immersion.
  • the "substance dissolved from the protective film" depends on the components of the protective film.
  • substantially dissolved means that the substrate is exposed on 90% or more of the surface.
  • the exposure ratio can be evaluated from the photograph of the appearance, and when it is difficult to distinguish between the film and the substrate, the evaluation can be made by analysis using EDX or the like.
  • the dissolution property of dissolving in a Hank's balanced salt solution is such that, for example, when 2 mg of the protective film is immersed in the Hank's balanced salt solution, either one or both of iii) and iv) below are preferably satisfied.
  • iii) When immersed in 40 ml of Hank's balanced salt solution, the time for the concentration of the substance dissolved from the protective film to become almost constant with the immersion time is 0.5 hours or more, preferably 1 to 72 hours, more preferably 1 to 72 hours after immersion.
  • the time for 2 mg of the protective film to be almost dissolved after immersion is 1 hour or more, preferably 2 to 672 hours, more preferably 3 to 336 hours, most preferably 4 to 168 hours. It's time.
  • the terms "substance that dissolves from the metal film” and “substantially dissolve” have the same definitions as above.
  • the metal film preferably contains at least one metal selected from the group consisting of Mg, Ca, Zn and Fe.
  • the protective film may be an alloy composed of two or more selected from these metals.
  • the metal film may further have a species selected from the group consisting of B, C, N and P.
  • the alloy may further contain a species selected from the group consisting of B, C, N and P.
  • the metal film comprises magnesium and optionally calcium, wherein calcium is 0-40% by weight, preferably 0.8-35% by weight, more preferably 0.8-35% by weight, where the total weight of magnesium and calcium is 100% by weight. should be 5-35% by weight, more preferably 15-35% by weight, most preferably 25-35% by weight.
  • the higher the calcium content the larger the region of the amorphous structure. When the calcium content is 10% by weight, a sharp peak derived from crystals is observed, but when the calcium content is 20% by weight, a broad halo pattern derived from the amorphous structure is observed.
  • a low-intensity peak that seems to be derived from microcrystals is observed in it, and at 25% by weight or more, almost no crystal-derived peaks are observed, and at 30% by weight, only a broad halo pattern derived from an amorphous structure is observed.
  • the biocompatible membrane of the present application contains calcium, a large portion thereof has a substantially amorphous structure.
  • the compatible membrane dissolves uniformly in body fluids or simulated body fluids, facilitating uniform exposure of the hydrophilic surface of the substrate.
  • the target is manufactured by sputtering, it is preferable that the content of calcium is within 35% by weight for ease of target manufacturing.
  • the metal membranes of the present application consist essentially of magnesium and optionally calcium, preferably magnesium and optionally calcium.
  • “consisting only of” means that it is composed only of the components described in “-”.
  • “consisting essentially only of” may include components other than those described in “ ⁇ ”, but the components may be composed only of those described in “ ⁇ ”. It means that it may be included as long as it does not cause
  • the metal film is preferably Mg 2 Ca free.
  • Mg 2 Ca-free means that no peak due to Mg 2 Ca is observed in X-ray diffraction analysis, preferably diffraction peaks generated from the substrate and Mg 2 Ca crystals respectively.
  • each diffraction peak is separated by 1° or more in X-ray analysis using a cobalt (Co) tube), and no peaks based on Mg 2 Ca are observed at diffraction angles. No peaks should be observed in the range of 36-37° by X-ray analysis.
  • the metal film should have an amorphous portion.
  • amorphous means that sharp peaks are not observed in X-ray diffraction analysis.
  • the biocompatible material of the present application has the above-described biocompatible substrate; and the above-described metal film; but may have other layers.
  • the layer include, but are not limited to, an anodizing layer for titanium or a titanium alloy, a hydrothermal treatment layer, and the like. It may also have one or more layers on top of said membrane, i.e. on the side opposite the substrate.
  • the shape of the biocompatible material of the present invention is not particularly limited. and a cube, a block shape such as a rectangular parallelepiped and a cube having a partially inclined surface, and a wedge shape.
  • the field of application of the biocompatible material of the present invention is not particularly limited, but examples include artificial bone materials, intraosseous fixation device materials, dental implant materials, orthodontic anchor screw materials, intramedullary nail materials, and vertebrae. It is preferably one selected from the group consisting of interbody fixation materials. Examples include, but are not limited to, artificial bones, pins, wires, bolts, screws, washers, intramedullary nails, vertebral body spacers, and the like.
  • the present application provides methods of making the biocompatible materials described above.
  • the method comprises (A) providing a biocompatible substrate; (B) hydrophilizing the surface of the biocompatible substrate; and (C) forming a metal film on the surface of the biocompatible substrate; By these steps, a biocompatible material having a biocompatible substrate with a hydrophilic surface and a metal film provided on the surface of the substrate can be produced.
  • substrate here.
  • the "metal film” is not limited as long as it is a film that protects a hydrophilic substrate, but it is preferably the one described above.
  • the (A) step is a step of preparing a biocompatible substrate.
  • the "biocompatible substrate" described above may be purchased commercially, or the commercially purchased product may be formed into a desired shape.
  • conventionally known methods can be used for the grinding method and the polishing method.
  • the (B) step is a step of hydrophilizing the surface of the biocompatible substrate.
  • the step (B) is preferably at least one selected from the group consisting of acid treatment, blasting, anodizing, hydrothermal treatment, ultraviolet irradiation, plasma irradiation, laser irradiation, radiation irradiation, and ion irradiation.
  • the step (B) is preferably ion irradiation.
  • the ion irradiation power product is 0.4 W ⁇ min/cm 2 or more, preferably 0.8 W ⁇ min/cm 2 or more, more preferably 2.5 W ⁇ min/cm 2 or more, and still more preferably 5 W ⁇ min/cm 2 or more. cm 2 or more, most preferably 5 to 32 W ⁇ min/cm 2 .
  • the step (C) is a step of forming a metal film on the surface of the biocompatible substrate, that is, on the hydrophilized surface.
  • the step (C) is not particularly limited as long as the metal film is formed while maintaining the hydrophilicity of the hydrophilized surface.
  • step (C) step (C1) preparing a sputtering target comprising a metal film precursor; and (C2) using the sputtering target to form a metal film by sputtering on the biocompatible substrate obtained in step (B). forming a; should have
  • step (C1) is (C1a) providing a sputter target comprising magnesium and optionally calcium
  • step (C2) sputtering is performed using the sputtering target (C2a) at a temperature of 130° C. or lower, preferably 90° C. or lower, more preferably 60° C. or lower to the biocompatible substrate obtained in step (B).
  • step (C2) is a step of forming a metal film having magnesium and optionally calcium on the surface of a biocompatible substrate and having 0 to 40% by weight of calcium when the total weight of magnesium and calcium is 100% by weight. , is good.
  • a magnetron sputtering device is preferably used as the sputtering device.
  • a magnetron sputtering system uses a magnetic field to efficiently deposit sputtered particles (metallic particles) generated by colliding argon ions against the target with a strong magnet (magnetron) behind the target. be able to.
  • the desired film can be formed at a constant deposition rate.
  • Magnesium-based metal films have a coefficient of linear expansion that is at least three times greater than that of zirconium, titanium, and titanium alloys, which serve as substrates.
  • Tensile stress occurs at the interface on the film side, making the film easy to peel off. Therefore, in order to prevent the film from peeling off after the film formation and to prevent harmful stress from remaining when the implant is embedded, the temperature of the substrate during sputtering is set to a certain temperature or less, that is, 130° C. or less, preferably 90° C. or less. By controlling the temperature to preferably 60° C. or lower, a film with high adhesion can be formed.
  • the above temperature can be estimated by calculating the thermal stress as follows. That is, the interfacial stress (thermal stress) that occurs when the temperature is lowered from the sputtering temperature to room temperature can be expressed approximately as shown in Equation 1 below.
  • ⁇ T temperature difference between substrate temperature Td during sputtering and room temperature Tr
  • ⁇ 1 average linear expansion coefficient of the substrate between temperatures Tr and Td
  • ⁇ 2 between temperatures Tr and Td
  • E 1 average elastic modulus of the substrate between temperatures Tr and Td
  • E 2 average elastic modulus of the film between temperatures Tr and Td.
  • the substrate is zirconia
  • the coating film is pure magnesium
  • the linear expansion coefficients are 8 ⁇ 10 ⁇ 6 and 25 ⁇ 10 ⁇ 6
  • the elastic moduli are 210 GPa and 40 GPa, respectively.
  • the proof stress of pure magnesium is generally said to be about 90 to 100 MPa
  • the shear yield strength is about 50 MPa.
  • the temperature difference should be 100 degrees or less.
  • the film formation temperature is preferably 130° C. or less, and the film is formed at 60° C. or less considering the double safety factor of 90° C. or less, and the approximately three times safety factor. is preferred.
  • the ion cleaning process is a process in which impurities on the surface are removed at the atomic level by bombarding the surface of the substrate with argon ions or the like while appropriately adjusting the bias in a vacuum, specifically in a vacuum chamber. is. By performing this appropriately, the adhesion of the metal film can be stabilized and the surface of the substrate can be activated.
  • the production method of the present invention may have steps other than the above (A) to (D).
  • steps other than the above (A) to (D) For example, as described above, after the (A) step and before the (B) step, a step of shaping the "biocompatible substrate" into a desired shape, and a step of grinding and/or polishing the surface of the shape may be included.
  • the step of providing the layer is preferably provided after the step (B) and before the step (C).
  • Substrate materials for implants are zirconia AF and AF2 in the form of smooth plates with a thickness of 3 mm ⁇ 10 mm ⁇ 10 mm, which are generally ground on one plane, and micro-grid grooves on the surface.
  • a rough-surfaced plate-like zirconia AR was used, the surface of which was roughened by forming a .
  • a glass substrate B having a thickness of 1.2 mm ⁇ 26 mm ⁇ 76 mm was also used in order to examine the details of the characteristics of the formed metal film.
  • the surface roughness of each sample was measured with reference to JIS B0601:2013, with a reference length of 0.8 mm, an evaluation length of 4.0 mm, and cutoff values of ⁇ c0.8 mm and ⁇ s0.25 ⁇ m.
  • the surface roughness was measured in two directions parallel and perpendicular to the grinding direction and averaged. Table 1 summarizes the surface roughness values for each sample.
  • Ion irradiation in a vacuum chamber was used to form a hydrophilic surface.
  • the pressure was reduced to a predetermined value, harmful gases were removed from the chamber, and then argon gas was sealed.
  • the power product of ion irradiation was 0 (untreated), 0.495, 0 99, 2.8 or 5.36 W ⁇ min/cm 2 under five conditions.
  • the sputtering target four kinds of ingots manufactured by melting pure magnesium and pure magnesium and pure calcium in a predetermined ratio were machined into disk shapes having a diameter of about 120 mm.
  • the three types of ingots have a calcium content of 0% by weight (Mg), 10% by weight (Mg10%Ca), 20% by weight (Mg20%Ca) or 30% by weight (Mg30%Ca).
  • the amount was magnesium.
  • % of calcium amount is the ratio of calcium weight when the sum of calcium weight and magnesium weight is 100% by weight, and is represented by the following weight %.
  • Calcium weight % calcium weight/(magnesium weight+calcium weight) ⁇ 100. Similar to Mg10% Ca, etc., using pure magnesium and pure calcium, we prototyped targets with a calcium content of 40% by weight (Mg40% Ca) or 50% by weight (Mg50% Ca). Alternatively, it could not be used because cracks occurred during machining and it was partially damaged.
  • the substrate was placed on the stage of the sputtering apparatus so as to face the sputtering target. It was placed so that the ground or roughened surface faced upward.
  • the temperature of the substrate was kept at room temperature, the pressure of argon was 1 to 10 mTorr, the sputtering voltage and the substrate bias were adjusted to adjust the film formation process (deposition) time, and the smooth plates A to F and the rough surface were used. Plates AR and glass substrate B were set in the same chamber. Smooth plates A-F2 were also performed with the glass substrate B placed in the same chamber.
  • magnesium alone (Mg) is sputtered to 20% by weight (Mg20% Ca) and 30% by weight (Mg30% Ca).
  • Ca magnesium-only film
  • Mg film a film with a calcium content of 20% by weight
  • Mg30% Ca film a film with a calcium content of 30% by weight
  • the thickness of the film was measured by actually measuring the step between the film-formed portion on the substrate and the masked portion where the film was not formed by the stylus method. Also, the weight of the film was calculated by subtracting the weight of the substrate AF, AR or AF2 before sputtering from the weight of the sample after sputtering each film.
  • FIG. 1 shows that after ion irradiation was applied to the glass substrate B at a power product of 0.99 W min/cm 2 , magnesium alone (Mg) and calcium content of 10% by weight (Mg 10% Ca) and 20% by weight were applied by sputtering.
  • % (Mg20% Ca) and 30% by weight (Mg30% Ca) targets respectively, a magnesium-only film (Mg film) and a calcium content of 10% by weight (Mg10% Ca film).
  • 8 shows X-ray diffraction profiles of a film with a calcium content of 20% by weight (Mg 20% Ca film) and a film with a calcium content of 30% by weight (Mg 30% Ca film).
  • the Mg film is crystalline, the Mg10% Ca film is crystalline with low crystallinity, the Mg20% Ca film has a mixed structure of microcrystals and amorphous, and the Mg30% Ca film is non-crystalline. found to be crystalline.
  • the amount of calcium added to magnesium exceeds 0.8% by weight, calcium does not form a solid solution in magnesium and Mg 2 Ca precipitates.
  • the presence of intermetallic compounds such as Mg 2 Ca was not observed in any of the films.
  • no difference was observed in the film structure detected due to the difference in ion irradiation intensity.
  • FIG. 2 shows the power product of 0, 0.495, 0.99, 2.8 or 5.36 W min for smooth plate-shaped zirconia AF, rough plate-shaped zirconia AR, and glass substrate B.
  • /cm 2 indicates the water droplet contact angle on the ion-irradiated surface.
  • sputtering was performed to protect the ion-irradiated surface with a metal film.
  • the sample coated with the metal film was wrapped in medicine wrapping paper and stored in the atmosphere for two months, the water droplet contact angle of the substrate immediately after removing the metal film was measured.
  • the substrate was immersed and shaken in 50 ml of a 5% hydrochloric acid aqueous solution for about 10 seconds to dissolve the film until the entire surface of the substrate was exposed. After additional cleaning by immersing and shaking in another ultrapure water for about 10 seconds, it was dried by blowing with argon gas.
  • Table 3 shows that smooth plate-like zirconia AF and rough plate-like zirconia AR were subjected to hydrophilization treatment by ion irradiation at power products of 0.495, 0.99, and 5.36 W min/cm 2 . Water drop contact angle after 2 months after application. Further, the smooth plate-shaped zirconia AF and the rough plate-shaped zirconia AR were subjected to hydrophilization treatment by ion irradiation at power products of 0.495, 0.99, and 5.36 Wmin/cm 2 , and then sputtered. shows the water droplet contact angle immediately after removing the metal film in the above-described process after two months of protection by covering with a Mg30% Ca film.
  • Table 4 shows smooth plate-shaped zirconia A to F, which were subjected to hydrophilization treatment by ion irradiation at a power product of 0.99 W min/cm 2 and then sputtered to obtain Mg film, Mg20% Ca film, or Mg30% Ca film.
  • the water droplet contact angles are shown immediately after removing the metal films in the process described above after two months of protection by coating each of the films.
  • smooth plate-shaped zirconia A-F2 was irradiated with ions at a power product of 0.99 W min/cm 2 and then sputtered to coat with a Mg30% Ca film for 7 months and 15 months immediately after coating.
  • the water droplet contact angle is shown immediately after the film has had its metal film removed by the process described above.
  • a zirconia AR in the form of a rough surface plate was subjected to ion irradiation with a power product of 0.99 W min/cm 2 and then sputtered to form a Mg30% Ca film within one week from immediately after coating. Water droplet contact angles are shown immediately after removing their metal films in the above-described process after storage in air for 1 month, 2 months and 4 months.
  • the water droplet contact angle of rough zirconia that has not been subjected to ion irradiation is 70° or more at maximum, whereas the water droplet contact angle of rough zirconia that has been subjected to ion irradiation is 5° or less at the lowest. It exhibits superhydrophilicity. Also, in smooth zirconia with a lower substrate surface roughness, the difference in water droplet contact angle before and after ion irradiation is smaller. Therefore, by appropriately combining the substrate surface roughness and the presence or absence of ion irradiation or the conditions thereof, it is possible to provide the water droplet contact angle required for each implant site.
  • each of the smooth zirconia coated with three kinds of metal films with different chemical components and structures and the metal films removed has a water droplet contact angle of 20 ° or less, which is highly hydrophilic. show gender. Therefore, it can be seen that the hydrophilic surface can be protected regardless of the type of metal film.
  • the protective performance of the Mg20% Ca film and the Mg30% Ca film having an amorphous structure is slightly lower than that of the crystalline Mg film (magnesium only film). Are better. Therefore, by using a metal film having an amorphous structure, better protection performance can be exhibited.
  • HBSS(-) solution without phenol red
  • Fuji Film Wako Pure Chemical containing no calcium or magnesium
  • the simulated body fluid volume was 40 ml or 400 ml. Therefore, assuming that the apparent surface area ignoring the influence of surface roughness is 220 mm 2 , the pseudo body fluid volume per unit area of the film in contact with the solution is 0.182 ml/mm 2 or 0.0182 ml/mm 2 , respectively. be.
  • Dissolution rates were evaluated from pH measurements using the glass electrode method.
  • a desktop pH tester HORIBA, F-74) and a GRT composite electrode (9615S-10D, HORIBA) were used for pH measurement.
  • the sample was immersed in 40 ml of HBSS (-) solution kept at 37° in an air bath type constant temperature device, and the pH was measured after 1 hour, 3 hours, 6 hours, 12 hours and 24 hours. bottom.
  • the pH was measured after immersion in 400 ml of HBSS (-) solution kept at 37 ° in an air bath type constant temperature device, after 6 hours, 24 hours and 168 hours, it was taken out, and the exposed surface was identified and an XRD device ((D8ADVANCE, BRUKER), and SEM EDX (JSM5900LVM, JEOL) was used to identify the exposed surface.
  • FIG. 4 shows the results of pH measurement as a dissolution rate evaluation in HBSS ( ⁇ ) immersion for smooth zirconia A-F2 with Mg film, Mg20% Ca film and Mg30% Ca film.
  • the calculated value of the amount of magnesium and calcium components per unit volume mol/cm 3 in the Mg film, Mg20% Ca film and Mg30% Ca film when the film thickness is 5.28 ⁇ m and the total cross-sectional area is 220 mm 2 is shown.
  • FIG. 5 shows the XRD measurement results of smooth zirconia A-F2 with a Mg film before immersion in HBSS(-) and after immersion for 6 hours, 24 hours and 168 hours, respectively.
  • the ratio of the diffraction intensity Im from the (0 0 -2) plane of the magnesium film and the diffraction intensity Iz from the (1 0 -1) plane of the zirconia substrate was calculated.
  • Table 6 shows the value obtained by subtracting the Im/Iz after 168 hours from the peak intensity ratio Im/Iz obtained from the peak intensity ratio Im/Iz, and the estimated value of the film thickness based on the relationship between the intensity ratio and the value of the film thickness T after 0 hour. shown in If the relationship between immersion time and film thickness is approximated by an exponential function, the change in film thickness with immersion time can be roughly predicted by the following equation.
  • Fig. 6 shows appearance photographs of samples taken out from smooth zirconia A-F2 with Mg30% Ca film before immersion in HBSS (-), 6 hours and 168 hours after immersion, and EDX of the sample surface taken out after 6 hours of immersion. Analytical results are shown.
  • Table 7 shows the identification results obtained from FIG.
  • the sample taken out after 6 hours of immersion was covered with a metallic color layer, black or white layer, and there were almost no areas where polishing scratches on the substrate could be observed, and the surface of the biocompatible substrate was not exposed. .
  • In the sample taken out after 24 hours of immersion almost no metal-colored layer was observed, more polishing scratches on the substrate were observed, and more of the biocompatible substrate surface was exposed.
  • polishing scratches on the substrate were observed over the entire surface, and the surface of the biocompatible substrate was exposed over the entire surface.
  • FIG. 5 Table 6, FIG. 6, and Table 7 reveal the following.
  • occlusion with dentures cannot be performed until sufficient osseointegration occurs. Therefore, there is a demand for early osteosynthesis of dental implants. From FIG. 4 and Table 5, it can be seen that after immersion in the simulated body fluid, the metal film is ionized immediately after immersion, resulting in a sudden change in pH, reaching a maximum pH of 9.5 or higher after 24 hours. Therefore, it can be seen that dissolution of the membrane occurs early after implantation in the bone.
  • the film thickness rapidly decreases immediately after immersion, and the film thickness hardly changes after 24 hours of immersion, but all of the metal film dissolves within 168 hours.
  • the substrate was hardly exposed after 6 hours of immersion, but the substrate was gradually exposed thereafter, and the substrate was exposed on all sides at least within 168 hours of immersion. I understand. Therefore, after a dental implant whose hydrophilic surface is protected by a metal film is implanted, the film dissolves early, exposing the activated surface, thereby promoting early osseointegration.
  • the amount of the HBSS(+) solution was adjusted so that the equilibrium pH after elution of the sputtering film was 8.0 or less.
  • substrates not subjected to ion irradiation and sputtering were tested by immersing them in two kinds of solutions, HBSS(+) and HBSS(+) after Mg30% Ca film elution.
  • HBSS(+) and HBSS(+) As a simulated body fluid immersion test, each sample was immersed in 500 ml of simulated body fluid, held in a constant temperature bath at 37° C. for one week, and then removed from the solution.
  • FIG. 7 is a photograph of smooth plate-shaped zirconia AF, which was coated with a Mg30% Ca film by sputtering after being subjected to ion irradiation with a power product of 5.36 W min/cm 2 to the smooth plate-shaped zirconia AF.
  • a photograph of a sample, and a sample coated with a Mg30% Ca film by sputtering after ion irradiation with a power product of 5.36 W min/cm 2 on smooth plate-shaped zirconia AF was immersed in a simulated body fluid. Photograph after removal from HBSS(+) after a week.
  • Table 8 shows the samples coated with a Mg 30% Ca film by sputtering after applying ion irradiation to smooth plate-shaped zirconia AF at power products of 0.495, 0.99 and 5.36 W min/cm 2 respectively.
  • the sample was immersed in HBSS(+), removed from the HBSS(+) one week later, and photographed with a microscope (VHX7000, KEYENCE) from a direction tilted 15 degrees from the axis perpendicular to the sample. It is a value calculated by image analysis of the metal film remaining portion, the area fraction of the portion not covered with HAp while the base material is exposed, and the HAp coverage based on the image obtained by synthesizing the matching portions.
  • FIG. 8 is an image used when calculating the area fractions of the power products of 0.495 and 5.36 W ⁇ min/cm 2 for the smooth materials (AF) in Table 8.
  • FIG. 8 When another sample with a power product of 0.495 and 0.99 was immersed in HBSS(+) for 3 weeks and taken out, no residual metal film was observed. On the other hand, the area fraction of the portion where the base material was exposed and was not covered with HAp was found to be approximately the same as that when immersed in HBSS(+) for one week.
  • a dental implant that has undergone a hydrophilization treatment that exhibits high hydrophilicity and whose hydrophilic surface is protected by a metal film, the activated surface is spontaneously exposed in vivo, and the entire apatite formation occurs. It is possible to encourage early bone formation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、親水性を有する基体を金属膜で保護し、生体適合性材料を生体環境下で使用する際には該金属膜を溶解させ、保護された親水性を有する基体を親水性を保持したままで使用することができる生体適合性材料を提供する。本発明は、表面が親水性である生体適合性基体;及び前記基体の表面に備えられる金属膜であって、体液または擬似体液で溶解する溶解特性を有する金属膜;を有する、生体適合性材料を提供する。

Description

生体適合性材料およびその製造方法
 本発明は、保護膜、具体的には金属膜を基体上に備え、該保護膜、具体的には該金属膜によって生体環境下で使用するまで基体の親水性を保持する生体適合性材料に関する。
 具体的には、本発明は、親水性である生体適合性基体;及び前記基体上に備えられる金属膜であって所定の液で溶解する溶解特性を有する金属膜;を有する生体適合性材料に関する。
 また、本発明は、該生体適合性材料の製造方法に関する。
 インプラントによる歯の治療は、若年者から高齢者に至るまで、歯の喪失の治療方法の一種として注目されている。
 歯根用インプラントのスクリュー部と骨との接合性が不十分なことに起因して、埋入後にゆるみが発生しやすいことから、スクリュー部と骨細胞との接着性の改善が求められている。
 また、歯根用インプラントと歯肉との接触部(アバットメント部)において、細菌の付着に起因する炎症が発生しやすいことから、アバットメント部への細菌の付着を抑制する技術が求められている。
 一般的に、インプラント部材と生体組織の接着性はインプラント部材表面の親水性と相関関係があることから、インプラント部材表面の親水性をコントロールする先行技術がこれまでに開発されている。
 また、基材の表面粗さと親水性とは密接な関係がある。表面粗さが粗いほど接触面積が大きくなるため、表面状態の変化に敏感となる。
 したがって、表面粗さが粗いほど、その親水性を長期間保持することは難しい。
 例えば、特許文献1は、チタン基材の生体インプラントに付着した有機汚染物を手術直前に紫外線で除去することで、超親水性を備えた活性化面を付与する技術を開示する。しかしながら、手術現場で生体インプラントに紫外線照射を施すための特殊装置が必要であり、手術時における操作も煩雑となる。
 また、特許文献2は、紫外線照射して親水化したインプラントに薬剤を含む溶液をコーティングする技術を開示する。しかしながら、薬剤を含むコーティングは、大気中で保管すると変質しやすい。
 特許文献3は、ハイドロキシアパタイトコーティングを施した歯科インプラントを容器内に密閉して放射線滅菌を施して保管し、手術直前に水または水系溶媒を容器に入れて振とうすることで、ハイドロキシアパタイトコーティングの表面に付着した不純物を手術現場で除去する技術を開示する。しかしながら、手術時の手順が増えることで煩雑となり、不純物除去工程を臨床現場に任せることになるため不測の事態を招く可能性がある。
 特許文献4は、基材表面にチタンとヨウ素からなる酸化物を形成することで、抗菌性と親水性が長期間維持される技術を開示する。しかしながら、同技術は酸化チタンの光触媒反応を使って親水性を維持しているため、容器内のような暗所では親水性を維持することができない。
 特許文献5は、金属表面に親水性有機化合物を直接固定することで、抗菌性と親水性を付与する技術を開示する。しかしながら、同技術は高分子を金属に直接電着させるため、複雑形状に均一に付与することが難しい。また、柔らかい高分子であるためにスクリュー刺入時の局所的な剥離や破壊が避けられない。
 特許文献6は、陽極酸化、水熱処理、紫外線照射、プラズマ照射などで親水化した状態を保持することができる溶液および保存用キットの技術を開示する。上述した技術群では、溶液中においてのみ親水化状態を保持することができることを示しており、それを維持するためには溶液を含んだ容器内に保管しなければならない。
 特許文献7は、基体と一体化したMgリッチ層をセラミクス上に有し、その膜によって親水性を確保する技術を開示する。製造直後は超親水性を示し接触角が0°であるが、大気中に曝されると徐々に親水性が失われ5日以上で接触角40°以上になるとされている。
 また、特許文献8は、Caリッチ層をセラミクス上に有し、その膜によって親水性を確保する技術を開示する。この場合も、製造直後は超親水性を示し接触角が0°であるが、大気中に曝されると徐々に親水性が失われ数週間後には接触角40°以上になるとされている。なお、特許文献7及び8の膜は化合物であるため安定で、不溶性である。したがって、この膜の親水性を保つための保管方法あるいは比較的短い使用期限を設けなければならない。
 特許文献9は、カルシウムを含有させたマグネシウム及び微量の鉄とニッケル等であるインプラント及びコーティング層に関する技術を開示する。しかしながら、同技術では不溶性のMgCaが含まれていることから、生体内に取り込まれて危害を及ぼす可能性がある。また、同技術におけるコーティング層は完全に溶解せずに、コーティング層を介して基材と骨とが接着する。したがって、基体の親水性が骨との接着性に関係することはない。
特開2014-193249。 特開2016-154935。 特開2017-169821。 特開2016-053195。 特開2007-181515。 特開2014-014487。 特許第6095653号。 特許第6154806号。 特許第5705163号。
 上記先行技術として生体適合性材料を親水化するための種々技術が提案されているが、高い親水化状態を手術使用時に発揮させるためには、親水性を保護するための溶液を入れた特殊容器に保管するか、又は手術現場で親水性を付与する工程を経る必要がある、という問題があった。
 そこで、本発明の目的は、親水性を維持するための保管容器・溶液を必要とせず、かつ、手術現場で親水性を付与する工程を必要としない技術を提供することにある。
 具体的には、本発明の目的は、親水性を有する基体を保護膜、具体的には金属膜で保護し、生体適合性材料を生体環境下で使用する際には該保護膜、具体的には該金属膜を溶解させ、保護された親水性を有する基体を親水性を保持したままで使用することができる生体適合性材料を提供することにある。
 また、本発明の目的は、上記目的の他に、又は上記目的に加えて、上記生体適合性材料の製造方法を提供することにある。
 本発明者らは、以下の発明を見出した。
 <1> 表面が親水性である生体適合性基体;及び
 前記基体の表面に備えられる金属膜であって、体液または擬似体液で溶解する溶解特性を有する金属膜;
を有する、生体適合性材料。
 <2> 上記<1>において、生体適合性材料を体液または擬似体液に接触させると金属膜が溶解し、表面が親水性である生体適合性基体が露出するのがよい。
 <3> 上記<1>又は<2>において、体液が、血液、リンパ液、骨髄液、及び組織液からなる群から選ばれる少なくとも1種であり、疑似体液が生理食塩水、リン酸緩衝生理食塩水(PBS)、ハンクス平衡塩溶液(HBSS)、SBF溶液、血漿液、細胞培養液、Eagle(MEM)溶液、DMEM溶液、及び血清培地から選ばれた少なくとも1種であるのがよい。
 <4> 上記<1>~<3>のいずれかにおいて、擬似体液が、ハンクス平衡塩溶液であるのがよい。
 <5> 上記<1>~<4>のいずれかにおいて、親水性は、水滴接触角が90°以下、好ましくは50°以下、より好ましくは30°以下、最も好ましくは20°以下であるのがよい。
 <6> 上記<1>~<5>のいずれかにおいて、金属膜が、Mg、Ca、Zn及びFeからなる群から選ばれる少なくとも1種の金属を有してなるのがよい。
 <7> 上記<1>~<6>のいずれかにおいて、金属膜がマグネシウム及び任意にカルシウムを有してなり、マグネシウムとカルシウムとの合計の重量を100重量%とすると、カルシウムが0~40重量%、0.8~35重量%、より好ましくは5~35重量%、更に好ましくは15~35重量%、最も好ましくは25~35重量%有するのがよい。
 <8> 上記<7>において、保護膜がMgCaフリーであるのがよい。
 <9> 上記<1>~<8>のいずれにおいて、保護膜が非晶質部分を有するのがよい。
 <10> 上記<1>~<9>のいずれにおいて、基体が、純チタニウム、コバルトクロム合金、ステンレス鋼及びチタン合金、ジルコニア、アルミナ、リン酸カルシウム及びマグネシアからなる群から選ばれる少なくとも1種であるのがよい。
 <11> 上記<1>~<10>のいずれにおいて、基体の表面粗さRaが、50μm以下、好ましくは40μm以下、より好ましくは30μm以下であるのがよい。
 <12> 上記<1>~<11>のいずれにおいて、生体適合性材料の形状が、円柱状、円筒状、円錐台状及び円錐状、並びに該形状の一部にスクリュー状のねじ部を備えた形状、直方体及び立方体、並びに一部傾斜面を有するブロック形状、及びくさび形状からなる群から選ばれる1種であるのがよい。
 <13> 上記<1>~<12>のいずれにおいて、生体適合性材料が、人工骨材料、骨内固定器具材料、歯科用インプラント材料、歯科矯正用アンカースクリュー材料、髄内釘材料、及び椎体間固定材料からなる群から選ばれる1種であるのがよい。
 <14> 生体適合性材料の製造方法であって、
 (A)生体適合性基体を準備する工程;
 (B)生体適合性基体の表面を親水化する工程;及び
 (C)前記生体適合性基体の表面上に金属膜を形成する工程;
を有することにより、表面が親水性である生体適合性基体;及び前記基体の表面に備えられる金属膜;を有する生体適合性材料を製造する、上記方法。
 <15> 上記<14>において、(C)工程が、
 (C1)金属膜前駆体を有してなるスパッタターゲットを準備する工程;及び
 (C2)前記スパッタターゲットを用いて、前記(B)工程で得られた生体適合性基体上に、スパッタリングにより金属膜を形成する工程;
を有するのがよい。
 <16> 上記<15>において、(C1)工程が、(C1a)マグネシウム及び任意にカルシウムを有してなるスパッタターゲットを準備する工程であり、
 前記(C2)工程が、(C2a)前記スパッタターゲットを用いて、前記(B)工程で得られた生体適合性基体の温度を130℃以下、好ましくは90℃以下、より好ましくは60℃以下として、スパッタリングにより前記生体適合性基体にマグネシウム及び任意にカルシウムを有してなり、マグネシウムとカルシウムとの合計の重量を100重量%とすると、カルシウムが0~40重量%有する金属膜を形成する工程である、のがよい。
 <17> 上記<14>~<16>のいずれかにおいて、(B)工程が、酸処理、ブラスト処理、陽極酸化、水熱処理、紫外線照射、プラズマ照射、レーザー照射、放射線照射、及びイオン照射からなる群から選ばれる少なくとも1種であるのがよい。
 <18> 上記<14>~<17>のいずれかにおいて、(B)工程が、イオン照射であり、イオン照射電力積で0.4W・min/cm以上、好ましくは0.8W・min/cm以上、より好ましくは2.5W・min/cm以上、さらに好ましくは5W・min/cm以上、最も好ましくは5~32W・min/cmであるのがよい。
 <19> 上記<14>~<18>のいずれかにおいて、(B)工程後であって(C)工程前に、(D)生体適合性基体の表面をイオンクリーニングする工程;をさらに有するのがよい。
 本発明により、親水性を維持するための保管容器・溶液を必要とせず、かつ、手術現場で親水性を付与する工程を必要としない技術を提供することができる。
 具体的には、本発明により、親水性を有する基体を保護膜、具体的には金属膜で保護し、生体適合性材料を生体環境下で使用する際には該保護膜、具体的には該金属膜を溶解させ、保護された親水性を有する基体を親水性を保持したままで使用することができる生体適合性材料を提供することができる。
 また、本発明により、上記効果の他に、又は上記効果に加えて、上記生体適合性材料の製造方法を提供することができる。
ガラス基体Bにイオン照射を施し、スパッタリングにより、マグネシウムのみ(Mg)、カルシウム量を各々10重量%(Mg10%Ca)、20重量%(Mg20%Ca)及び30重量%(Mg30%Ca)としたターゲットを用いてそれぞれ得られた、Mg膜、Mg10%Ca膜、Mg20%Ca膜、及びMg30%Ca膜のX線回折プロファイルを示す図である。 平滑プレート状のジルコニアA-F、粗面プレート状のジルコニアA-R、及びガラス基体Bについて、電力積0、0.495、0.99、2.85又は5.36W・min/cmでイオン照射を施した面の水滴接触角を示す図である。 平滑プレート状のジルコニアA-FあるいはA-F2について、電力積0.99W・min/cmでイオン照射を施した後に、スパッタリングによりMg30%Ca膜を被覆直後から1週間以内、被覆後1か月間、2か月間、4か月間、7か月間及び15か月間で保管した後、その膜を除去した直後の水滴接触角を示す。 Mg膜、Mg20%Ca膜及びMg30%Ca膜をつけた平滑ジルコニアA-F2に対するHBSS(-)浸漬における溶解速度評価としてのpH測定結果を示す図である。 Mg膜をつけた平滑ジルコニアA-F2に対するHBSS(-)浸漬前、浸漬6時間、24時間及び168時間後にそれぞれ取り出した後のXRD測定結果を示す図である。 Mg30%Ca膜をつけた平滑ジルコニアA-F2に対するHBSS(-)浸漬前、浸漬6時間、及び168時間後に取出したサンプルの外観写真及び浸漬6時間後に取り出したサンプル表面に対するEDXによる分析結果を示す図である。 平滑プレート状のジルコニアA-Fの写真、平滑プレート状のジルコニアA-Fに電力積5.36Wmin/cmでイオン照射を施した後にスパッタリングによりMg30%Ca膜を被覆したサンプルの写真、及び、平滑プレート状のジルコニアA-Fに電力積5.36Wmin/cmでイオン照射を施した後にスパッタリングによりMg30%Ca膜を被覆したサンプルを疑似体液(HBSS(+))に浸漬し、1週間後に取り出した後の写真である。 平滑プレート状のジルコニアA-Fに電力積0.495Wmin/cm、及び、5.36Wmin/cmでイオン照射を施した後にスパッタリングによりMg30%Ca膜を被覆したサンプルを疑似体液(HBSS(+))に浸漬し、1週間後に取り出した後のマイクロスコープによる斜光観察写真である。
 以下、本願に記載する発明(以降、「本発明」と略記する場合がある)について説明する。
 本願は、表面が親水性である生体適合性基体;及び
 該基体の表面に備えられる金属膜であって所定の液に溶解する溶解特性を有する金属膜;を有する、生体適合性材料を提供する。
 また、本願は、該生体適合性材料の製造方法を提供する。
<生体適合性材料>
 本願は、表面が親水性である生体適合性基体;及び
 該基体の表面に備えられる金属膜であって、体液または擬似体液で溶解する溶解特性を有する金属膜;を有する、生体適合性材料を提供する。
 なお、本願において「生体適合性」とは、生体内に保持して生体安全上問題ないとされている特性をいう。
<<生体適合性基体>>
 本発明の生体適合性材料は、生体適合性基体を有する。
 該生体適合性基体は、その表面が親水性であり、該親水性は、水滴接触角が90°以下、好ましくは50°以下、より好ましくは30°以下、最も好ましくは20°以下であるのがよい。
 なお、水滴接触角は、従来公知の方法で測定することができ、例えば、液滴を試料表面に滴下し、試料面と液滴とがなす角を測定するθ/2法により測定することができる。より具体的には、液滴が試料面に接触した後、30秒後に測定することができる。
 生体適合性基体は、上記「生体適合性」を有すれば、特に限定されないが、例えば、純チタニウム、コバルトクロム合金、ステンレス鋼及びチタン合金などの金属、ジルコニア、アルミナ、リン酸カルシウム、マグネシアなどのセラミックスを挙げることができるが、これらに限定されない。生体適合性基体は、好ましくは、純チタニウム、チタン合金及びジルコニアであるのがよく、より好ましくはセラミックス、さらに好ましくはジルコニアであるのがよい。本発明では、生体適合性基体が導電性を有さないセラミックスであっても、金属膜と体液または擬似体液とが接触すると、金属膜は溶解して生体適合性基体の表面が露出し、親水性を発揮することが可能となる。
 生体適合性基体は、その表面粗さ(算術平均粗さ)Raが、50μm以下、好ましくは40μm以下、より好ましくは30μm以下であるのがよい。
 表面粗さRaは、従来公知の方法により測定することができ、例えばJIS B0601:2013に準拠して測定することができる。同規格ではRa値の区分に応じて基準長さ及び評価長さが定められている。例えば、0.1<Ra(μm)≦2の基準長さ及び評価長さはそれぞれ0.8mm及び2.0mmである。スタイラスと測定物との干渉によって基準長さを連続的に測定できない場合には、対象物のRa値よりも低い区分の基準長さを使用し、トータルして評価長さ以上となる回数を測定し、その平均値をRaとすることができる。
<<金属膜>>
 本発明の生体適合性材料は、生体適合性基体の表面に金属膜を有する。
 金属膜は、体液または擬似体液で溶解する溶解特性を有する。
 本発明の金属膜は、生体適合性材料を体液または擬似体液に接触させると、生体適合性基体と該金属膜が一体化しておらず該金属膜が溶解し、表面が親水性である生体適合性基体が露出するのがよい。
 ここで、体液として、血液、リンパ液、骨髄液、及び組織液などを挙げることができるがこれらに限定されない。また、疑似体液として、生理食塩水、リン酸緩衝生理食塩水(PBS)、ハンクス平衡塩溶液(HBSS)、SBF溶液、血漿液、細胞培養液、Eagle(MEM)溶液、DMEM溶液、及び血清培地などを挙げることができるがこれらに限定されない。
 本発明の金属膜は、上述のとおり、体液又は疑似体液に溶解する特性を有するため、該金属膜を表面に備えた生体適合性材料を体内へ埋め込むと該金属膜が溶解して親水性を有した基体の表面が露出し、生体組織への高い接着性を発揮することができる。
 なお、本発明の金属膜は、生体適合性材料を使用する前、好ましくは使用直前に、体液または擬似体液に接触させて該金属膜が溶解し、表面が親水性である生体適合性基体が露出させることによっても、生体組織への高い接着性を発揮することができる。
 または、金属膜は、生体適合性材料を使用するときに、好ましくは使用中に、溶解させることにより、生体適合性基体の親水性の表面により所望の効果を発揮させることができる。 好ましくは、金属膜は、a)5%塩酸に溶解する溶解特性を有するのがよく、b)ハンクス平衡塩溶液で溶解する溶解特性を有するのがさらによい。
 ハンクス平衡塩溶液は、「Ca及びMg」の含有・不含、「フェノールレッド」の含有・不含により、4種存在するが、このうち、フェノールレッド不含であるのがよく、好ましくはフェノールレッド不含・「Ca及びMg」不含であるのがよい。
 a)5%塩酸に溶解する溶解特性は、例えば、保護膜2mgを5%塩酸50mlに浸漬したとき、下記i)及びii)のうち、いずれか一方又は双方を満たすのがよい。
 i)保護膜から溶解する物質の濃度が浸漬時間によりほぼ一定になる時間が、浸漬後、0.3秒以上、好ましくは0.5~20秒、より好ましくは0.5~10秒である;
 ii)前記保護膜2mgがほぼ溶解する時間が、浸漬後0.5秒以上、好ましくは1~60秒、より好ましくは1~30秒である。
 なお、「保護膜から溶解する物質」は、保護膜の成分に依存する。また、「ほぼ溶解する」とは、表面の90%以上で基体が露出していることを意味する。ここで、膜と基体の判別が容易な場合は外観写真から露出率を評価でき、膜と基体の判別が困難な場合はEDXなどを用いた分析で評価できる。
 b)ハンクス平衡塩溶液で溶解する溶解特性は、例えば、保護膜2mgをハンクス平衡塩溶液に浸漬したとき、下記iii)及びiv)のうち、いずれか一方又は双方を満たすのがよい。
 iii)ハンクス平衡塩溶液40mlに浸漬したとき、保護膜から溶解する物質の濃度が浸漬時間によりほぼ一定になる時間が、浸漬後、0.5時間以上、好ましくは1~72時間、より好ましくは2~48時間である;
 iv)ハンクス平衡塩溶液400mlに浸漬したとき、前記保護膜2mgがほぼ溶解する時間が、浸漬後1時間以上、好ましくは2~672時間、より好ましくは3~336時間、最も好ましくは4~168時間である。
 なお、「金属膜から溶解する物質」及び「ほぼ溶解する」という語句については、上記した定義と同じである。
 金属膜は、Mg、Ca、Zn及びFeからなる群から選ばれる少なくとも1種の金属を有してなるのがよい。保護膜は、該金属から選ばれる2種以上からなる合金であってもよい。
 また、金属膜は、B、C、N及びPからなる群から選ばれる種をさらに有してもよい。なお、金属膜が合金からなる場合、該合金がB、C、N及びPからなる群から選ばれる種をさらに有してもよい。
 金属膜は、マグネシウム及び任意にカルシウムを有してなり、マグネシウムとカルシウムとの合計の重量を100重量%とすると、カルシウムが0~40重量%、好ましくは0.8~35重量%、より好ましくは5~35重量%、更に好ましくは15~35重量%、最も好ましくは25~35重量%有するのがよい。カルシウムの含有量が多いほど非晶質構造の領域が多くなり、カルシウムが10重量%では結晶由来のシャープなピークが観察されるが、20重量%では非晶質構造由来のブロードなハローパターンの中に微結晶由来と思われる強度の低いピークが観察され、25重量%以上では結晶由来のピークがほぼ観察されなくなり、30重量%では非晶質構造由来のブロードなハローパターンのみが観察される。本願の生体適合性膜は、カルシウムを含有した場合、多くの部分が実質的に非晶質構造であり、非晶質構造の領域が多くなるとMgCaなどの結晶が生成しにくくなり、生体適合性膜が体液または擬似体液に対して、均一に溶解し、基体の親水性表面が均一に露出しやすくなる。
 スパッタリングにより製造する場合は、ターゲット製造の容易さより、カルシウムが35重量%以内であることが好ましい。
 本願の金属膜は、マグネシウムおよび任意のカルシウムのみから本質的になるか、好ましくはマグネシウムおよび任意のカルシウムのみからなるのがよい。なお、「~のみからなる」とは、成分として「~」に記載のものだけから構成されることを意味する。また、「~のみから本質的になる」とは、成分として「~」に記載のもの以外に含んでもよいが、該成分は、「~」に記載のものだけから構成されるものの特性を変化させない程度であれば含んでもよいことを意味する。
 また、この場合、金属膜は、MgCaフリーであるのがよい。ここで、「MgCaフリー」とは、X線回折分析において、MgCaに基づくピークが観察されない程度であることを意味し、好ましくは基体とMgCaとの結晶それぞれから生じる回折ピークが重ならない(コバルト(Co)管球を用いたX線分析でそれぞれの回折ピークが1°以上離れている)回折角でMgCaに基づくピークが観察されない、例えば、Co管球を用いたX線分析で36~37°の範囲にピークが観察されないのが良い。
 金属膜は、非晶質部分を有するのがよい。ここで、「非晶質」とは、X線回折分析において、シャープなピークが観察されないことをいう。
<<生体適合性基体及び金属膜以外の層>>
 本願の生体適合性材料は、上述の生体適合性基体;及び上述の金属膜;を有するが、それ以外の層を有してもよい。
 例えば、生体適合性基体と金属膜との間に1つ又は複数の親水化を目的とした層を有してもよい。該層として、例えばチタンあるいはチタン合金に対する陽極酸化処理層、水熱処理層等を挙げることができるがこれらに限定されない。また、上述の膜の上部、すなわち基体とは反対側に1つ又は複数の層を有してもよい。
 本発明の生体適合性材料は、その形状は特に限定されないが、例えば、円柱状、円筒状、円錐台状及び円錐状、並びに該形状の一部にスクリュー状のねじ部を備えた形状、直方体及び立方体、並びに一部傾斜面を有する直方体及び立方体等のブロック形状、及びくさび形状からなる群から選ばれる1種であるのがよい。
 本発明の生体適合性材料は、その応用分野は特に限定されないが、例えば、人工骨材料、骨内固定器具材料、歯科用インプラント材料、歯列矯正用アンカースクリュー材料、髄内釘材料、及び椎体間固定材料からなる群から選ばれる1種であるのがよい。例えば、人工骨、ピン、ワイヤー、ボルト、スクリュー、ワッシャー、髄内釘、椎体スペーサー等を挙げることができるがこれらに限定されない。
<生体適合性材料の製造方法>
 本願は、上述した生体適合性材料の製造方法を提供する。
 該方法は、
 (A)生体適合性基体を準備する工程;
 (B)生体適合性基体の表面を親水化する工程;及び
 (C)前記生体適合性基体の表面上に金属膜を形成する工程;
を有し、これらの工程により、表面が親水性である生体適合性基体;及び前記基体の表面に備えられる金属膜;を有する生体適合性材料を製造することができる。
 なお、ここで、「生体適合性基体」は上述したものを用いることができる。
 また、「金属膜」は、親水性の基体を保護する膜であれば限定されないが、上述したものであるのが好ましい。
 (A)工程は、生体適合性基体を準備する工程である。上述した「生体適合性基体」を市販購入しても、市販購入したものを所望の形状にしてもよい。なお、購入品又は得られた形状の表面を研削及び/又は研磨する工程を有してもよい。ここで、研削法、研磨法は、従来公知のものを用いることができる。
 (B)工程は、生体適合性基体の表面を親水化する工程である。
 (B)工程は、酸処理、ブラスト処理、陽極酸化、水熱処理、紫外線照射、プラズマ照射、レーザー照射、放射線照射、及びイオン照射からなる群から選ばれる少なくとも1種であるのがよい。
 特に、(B)工程は、イオン照射であるのが好ましい。この場合、イオン照射電力積で0.4W・min/cm以上、好ましくは0.8W・min/cm以上、より好ましくは2.5W・min/cm以上、さらに好ましくは5W・min/cm以上、最も好ましくは5~32W・min/cmであるのがよい。
 (C)工程は、生体適合性基体の表面、すなわち親水化した表面上に金属膜を形成する工程である。
 親水化した表面の親水性を保持させつつ金属膜が形成されるのであれば、(C)工程は特に限定されない。
 (C)工程は、
 (C1)金属膜前駆体を有してなるスパッタターゲットを準備する工程;及び
 (C2)前記スパッタターゲットを用いて、前記(B)工程で得られた生体適合性基体上に、スパッタリングにより金属膜を形成する工程;
を有するのがよい。
 特に、(C1)工程が、(C1a)マグネシウム及び任意にカルシウムを有してなるスパッタターゲットを準備する工程であり、
 (C2)工程が、(C2a)該スパッタターゲットを用いて、(B)工程で得られた生体適合性基体の温度を130℃以下、好ましくは90℃以下、より好ましくは60℃以下として、スパッタリングにより生体適合性基体の表面にマグネシウム及び任意にカルシウムを有してなり、マグネシウムとカルシウムとの合計の重量を100重量%とすると、カルシウムが0~40重量%有する金属膜を形成する工程である、のがよい。
 スパッタリング装置は、マグネトロンスパッタ装置を用いるのがよい。
 マグネトロンスパッタ装置は、ターゲットの後方に強力な磁石(マグネトロン)を配置し、アルゴンイオンをターゲットに衝突さえることで発生させたスパッタ粒子(金属粒子)を、磁場を利用して基体に効率よく堆積させることができる。このとき、スパッタ電圧、基体のバイアス、装置内の圧力、さらに基体材の温度を調整することで、目的とする膜を一定の成膜速度で形成することができる。
 マグネシウムをベースとした金属膜は、基体となるジルコニウム、チタンおよびチタン合金よりも線膨張係数が3倍以上大きいため、スパッタリング温度が高いと、インプラントを使用する室温付近との温度差が大きくなり、膜側の界面に引張りの応力(熱応力)が生じて膜がはがれやすくなる。そこで、成膜後に膜が剥離することなく、また、インプラントの埋入時に有害な応力を残留させないために、スパッタリングにおける基体の温度を一定温度以下、すなわち130℃以下、好ましくは90℃以下、より好ましくは60℃以下に制御することで、密着性の高い膜を形成することができる。
 上記の温度は、以下のように熱応力を計算することで見積もることができる。すなわち、スパッタリング温度から室温まで温度を低下させた際に生じる界面の応力(熱応力)は、およそ下記式1のように表すことができる。なお、下記式1においてそれぞれ、ΔT:スパッタリング時の基体温度Tdと室温Trの温度差、α:温度Tr~Tdの間の基体の平均線膨張係数、α:温度Tr~Tdの間のコーティング膜の平均線膨張係数、E:温度Tr~Tdの間の基体の平均弾性率、及びE:温度Tr~Tdの間の膜の平均弾性率、を表す。
Figure JPOXMLDOC01-appb-M000001
 例えば、基体をジルコニア、コーティング膜を純マグネシウムとして、線膨張係数を8×10-6および25×10-6、弾性率を210GPaおよび40GPaをそれぞれ与えて計算する。
 純マグネシウムの耐力は、一般に約90~100MPaといわれているので、せん断降伏強さはおよそ50MPaとなる。少なくともこの値以下に上記の熱応力を抑えるためには、温度差を100度以下にするのがよい。例えば使用温度を体温として36℃とすると、成膜温度は130℃以下で行うのがよく、2倍の安全率90℃以下、また約3倍の安全率を考慮すると60℃以下で成膜することが好ましい。
 (B)工程後であって(C)工程前に、(D)生体適合性基体の表面をイオンクリーニングする工程;をさらに有するのがよい。イオンクリーニング工程は、真空中、具体的には真空チャンバ中で、バイアスを適当に調整して、基体の表面にアルゴンイオンなどを衝突させて、表面の不純物を原子レベルで除去して洗浄する工程である。これを適切に行うことにより、金属膜の密着性を安定化させ、且つ、基体の表面を活性化することができる。
 本発明の製造方法は、上記(A)~(D)以外の工程を有してもよい。例えば、上述したように、(A)工程後(B)工程前に、「生体適合性基体」を所望の形状にする工程、形状の表面を研削及び/又は研磨する工程を有してもよい。
 また、例えば、基体と金属膜との間に層を設ける場合、該層を設ける工程を(B)工程後(C)工程前に設けるのがよい。
 以下、本発明について、実施例を用いて具体的に説明するが、本発明は該実施例によってのみ限定されるものではない。
<基体材料>
 インプラントを想定した基体材料として、片平面において一般的な研削加工を施した、厚さ3mm×10mm×10mmの平滑プレート状のジルコニアA-F、A-F2、並びに表面にミクロな格子状の溝を形成することで表面を粗面化した、粗面プレート状のジルコニアA-Rを用いた。なお、形成された金属膜の特性の詳細を調べるために厚さ1.2mm×26mm×76mmのガラス基体Bも用いた。
 各サンプルの表面粗さは、JIS B0601:2013を参考にし、基準長さ0.8mm、評価長さ4.0mm、カットオフ値λc0.8mm、λs0.25μmで測定した。また、研削方向による影響を均一化するため、研削方向に平行な方向と垂直な方向の2方向で表面粗さを測定し、平均化した。表1は、各試料における表面粗さの値をまとめたものである。
Figure JPOXMLDOC01-appb-T000002
<イオン照射方法>
 親水性面を形成するため、真空チャンバ内におけるイオン照射を用いた。イオン照射のプロセスは、まず、所定の値まで減圧し、チャンバ内の有害ガスを取り除いた後、アルゴンガスを封入した。放電に必要な電圧および基体バイアスを適度に調整することによって、イオン照射の電力積(電力W×時間(min)/断面積(cm))として、0(未処理)、0.495、0.99、2.8又は5.36W・min/cmの5種類の条件で実施した。
<スパッタリング方法>
 イオン照射に引き続き、同真空チャンバ内でスパッタリングを実施した。スパッタターゲットには、純マグネシウム、および純マグネシウムと純カルシウムを所定の割合で溶解して製造した4種類のインゴットを、機械加工して直径が約120mmのディスク形状に加工したものを用いた。インゴットの3種類は、カルシウム量を0重量%(Mg)、10重量%(Mg10%Ca)、20重量%(Mg20%Ca)又は30重量%(Mg30%Ca)としたものであり、残りの量はマグネシウムであった。ここで、カルシウム量の%は、カルシウム重量とマグネシウム重量との合計を100重量%としたときのカルシウム重量の割合であり、以下の重量%で表される。
カルシウム重量%=カルシウム重量/(マグネシウム重量+カルシウム重量)×100。
 なお、Mg10%Caなどと同様に、純マグネシウムと純カルシウムを用いて、カルシウム量を40重量%(Mg40%Ca)又は50重量%(Mg50%Ca)とするターゲットを試作したが、溶製時あるいは機械加工時にクラックが生じて部分的に破損したため、使用できなかった。
 基体を、スパッタリング装置のステージ上に、スパッタターゲットと対向するように配置した。研削加工した面又は粗面化した面が上面になるように配置した。
 基体の温度を室温のままとし、アルゴンの圧力は1~10 mTorrで行い、スパッタ電圧及び基体のバイアスを調整して成膜プロセス(デポジション)時間を調整し、平滑プレートA-F、粗面プレートA-R及びガラス基体Bを同一チャンバ内に設定して実施した。また、平滑プレートA-F2もガラス基体Bを同一チャンバ内に設置して実施された。
 表2に、電力積0.99W・min/cmでイオン照射を施した後、スパッタリングにより、マグネシウムのみ(Mg)、カルシウム量をそれぞれ20重量%(Mg20%Ca)及び30重量%(Mg30%Ca)としたターゲットを用いてそれぞれ得られた、マグネシウムのみの膜(Mg膜)、カルシウム量を20重量%とした膜(Mg20%Ca膜)及びカルシウム量を30重量%とした膜(Mg30%Ca膜)の厚さと重量を示す。得られた膜の厚さは、各基体と同一チャンバ内で処理をしたガラス基体Bにスパッタリングしたサンプルを用いて次のように測定した。すなわち、基体上の成膜した部分と上述のマスキングを施して成膜させない部分との段差を、触針法により実測することにより膜の厚さを測定した。また、膜の重量は、各膜をスパッタリングした後のサンプル重量からスパッタリングする前の基体A-F、A-RあるいはA-F2の重量を差し引いて計算した。
 各コーティング膜は、X線回折装置(D8ADVANCE、BRUKER)を用いて、検出器:2次元検出器、管球:Co、管球電圧:30kV、管球電流:40mA、スリット:Φ1.0mm、コリメーター:Φ1.0mmという条件でX線回折分析された。
 図1は、ガラス基体Bに電力積0.99W・min/cmでイオン照射を施した後、スパッタリングにより、マグネシウムのみ(Mg)、カルシウム量をそれぞれ10重量%(Mg10%Ca)、20重量%(Mg20%Ca)及び30重量%(Mg30%Ca)としたターゲットを用いてそれぞれ得られた、マグネシウムのみの膜(Mg膜)、カルシウム量を10重量%とした膜(Mg10%Ca膜)、カルシウム量を20重量%とした膜(Mg20%Ca膜)及びカルシウム量を30重量%とした膜(Mg30%Ca膜)のX線回折プロファイルである。
 図1より、以下のことがわかる。マグネシウムの(0 0 -2)面に由来する2θ=40度付近につき、Mg膜およびMg10%Ca膜ではシャープで強度の高い結晶由来のピークが観察される。Mg膜とMg10%Ca膜とのピーク強度を比較すると、Mg10%Ca膜のピーク強度が大幅に低いことから、結晶性が低下していることがわかる。また、Mg20%Ca膜では非晶質構造由来のブロードなハローパターンの中に微結晶由来と思われる強度の低いピークが観察され、Mg30%Ca膜では非晶質構造由来のブロードなハローパターンのみが観察される。
これらの結果より、Mg膜は結晶質であり、Mg10%Ca膜は結晶性の低い結晶質であり、Mg20%Ca膜は微結晶と非晶質の混合組織であり、Mg30%Ca膜は非晶質であることがわかった。一般的にマグネシウムに対するカルシウムの添加量が0.8重量%を越えるとカルシウムはマグネシウムに固溶せずにMgCaが析出する。しかし、いずれの膜においてもMgCaなどの金属間化合物の存在は認められなかった。また、図示しないが、イオン照射強度の違いによって検出された膜構造に違いは認められなかった。
Figure JPOXMLDOC01-appb-T000003
<親水性>
 基材又は膜の上に約5μlの純水を滴下し、表面張力によって水滴が丸く盛り上がった程度を滴下面に対して垂直な方向からCCDカメラで撮影した。液面と固体面とのなす水滴接触角として、一般的なθ/2法を用いて、液滴の左右端点と液滴頂点とを結ぶ直線と、固体表面のなす角度を求め、それを2倍することで算出した。また、基材の研磨方向に沿って水滴が拡がる傾向があったため、基材の研磨方向と平行な方向から接触角を測定した場合と、基材の研磨方向と垂直な方向からそれを測定した場合の2方向から測定し、それらを平均した値を水滴接触角とした。
 平滑プレート状のジルコニアA-F、A-F2、粗面プレート状のジルコニアA-R、及びガラス基体Bについて、イオン照射後の親水性評価として、水滴接触角を測定した。図2は、平滑プレート状のジルコニアA-F、粗面プレート状のジルコニアA-R、及びガラス基体Bについて、電力積0、0.495、0.99、2.8又は5.36W・min/cmでイオン照射を施した面の水滴接触角を示す。
 また、イオン照射に引き続いて、スパッタリングを施して、金属膜でイオン照射された面を保護した。金属膜で被覆されたサンプルを薬包紙に包んで2か月間大気中で保管した後、金属膜を除去した直後の基体の水滴接触角を測定した。金属膜の除去として、5%塩酸水溶液50mlに10秒程度浸漬・振とうすることにより全面で基板が露出するまで膜を溶解し、超純水中で10秒程度浸漬・振とうして洗浄し、さらに別の超純水中で10秒程度浸漬・振とうして追加洗浄後、アルゴンガスでブローして乾燥させた。
 表3は、平滑プレート状のジルコニアA-F、粗面プレート状のジルコニアA-Rについて、電力積0.495、0.99、5.36W・min/cmでイオン照射による親水化処理を施した後2か月間経過した後の水滴接触角を示す。
 さらに、平滑プレート状のジルコニアA-F、粗面プレート状のジルコニアA-Rについて、電力積0.495、0.99、5.36Wmin/cmでイオン照射による親水化処理を施した後スパッタリングにより、Mg30%Ca膜を被覆して保護し2か月間経過した後、上述した工程でそれらの金属膜を除去した直後の水滴接触角を示す。
 表4は、平滑プレート状のジルコニアA-F、について、電力積0.99W・min/cmでイオン照射による親水化処理を施した後スパッタリングにより、Mg膜、Mg20%Ca膜又はMg30%Ca膜をそれぞれ被覆して保護し2か月間経過した後、上述した工程でそれらの金属膜を除去した直後の水滴接触角を示す。
 さらに、スパッタリングによる被覆直後から1週間以内、被覆後1か月間、2か月間、4か月間、7か月間および15か月間、薬包紙に包んで大気中で保管した後、上述した工程でそれらの金属膜を除去した直後の水滴接触角を測定した。
 図3に、平滑プレート状のジルコニアA-F、電力積0.99Wmin/cmでイオン照射を施した後にスパッタリングにより、Mg30%Ca膜を被覆直後から1週間以内、被覆後1か月間、2か月間及び4か月間で保管した後、上述した工程でそれらの金属膜を除去した直後の水滴接触角を示す。
 さらに、図3に、平滑プレート状のジルコニアA-F2、電力積0.99W・min/cmでイオン照射を施した後にスパッタリングにより、Mg30%Ca膜を被覆直後から7か月間および15か月間大気中で保管した後、その膜を上述した工程でそれの金属膜を除去した直後の水滴接触角を示す。
 また、図3に、粗面プレート状のジルコニアA-R、電力積0.99W・min/cmでイオン照射を施した後にスパッタリングにより、Mg30%Ca膜を被覆直後から1週間以内、被覆後1か月間、2か月間及び4か月間大気中で保管した後、上述した工程でそれらの金属膜を除去した直後の水滴接触角を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 図2、表3、表4、図3から、次のことがわかる。
 例えば歯科インプラント材料などにおいて、スクリュー部のゆるみを防ぐためには骨と歯科インプラント材料とを直接接合することが重要であるが、それにはスクリュー部材料表面の親水性を向上させることが効果的である。また、アバットメント部における周囲炎を防ぐためには細菌を付着させないことが重要であるが、それにはアバットメント部材料表面の親水性を低下させる必要がある。
 図2から、イオン照射未処理の粗面ジルコニアの水滴接触角は、最大で70°以上であるのに対して、イオン照射を施した粗面ジルコニアの水滴接触角は、最低で5°以下の超親水性を示す。また、基材表面粗さがより低い平滑ジルコニアでは、イオン照射前後の水滴接触角の差はより小さい。したがって、基材表面粗さ及びイオン照射有無あるいはその条件を適切に組み合わせることで、インプラントの部位ごとに要求される水滴接触角を提供することが可能である。
 表3から、イオン照射による親水化処理を施した後に2か月間経過すると平滑及び粗面ジルコニアの水滴接触角が最大110°以上になるのに対して、イオン照射による親水化処理後に金属膜で被覆し2か月間経過後、その金属膜を除去した平滑及び粗面ジルコニアの水滴接触角は最低で6°以下の超親水性を示す。したがって、イオン照射によって付与された基体の親水性面が、金属膜の被膜工程でより親水化され、金属膜によって親水性面が保護されることがわかる。なお、金属膜は、後述する<疑似体液を用いた溶解速度試験>から、生体内で溶解することがわかる。このため、金属膜は、生体内で溶解し、親水性面を露出できることがわかる。
 表4から、イオン照射による親水化処理後に、化学成分と構造の異なる3種類の金属膜でそれぞれ被覆し、その金属膜を除去した平滑ジルコニアの水滴接触角は、いずれも20°以下の高い親水性を示す。
 したがって、親水性面の保護は、金属膜の種類によらずなされることがわかる。
 また、結晶質であるMg膜(マグネシウムのみの被膜)で保護した場合と比べて、非晶質構造を有すMg20%Ca膜及びMg30%Ca膜による保護の場合の方が、保護性能が若干優れている。
 したがって、非晶質構造を有す金属膜を用いることでより優れた保護性能を発揮できる。
 図3から、イオン照射を施した後にスパッタリングによる被覆し、15か月大気中で保管した後、その金属膜を除去した平滑ジルコニアの水滴接触角は、30°以下が保たれていることがわかる。大気中に長期間曝されることで、金属膜上の水滴接触角は上昇するが、膜下の親水性面の親水性は維持されている。
 したがって、金属膜を被覆することによって、特殊な保管容器を使用せずに大気中で長期間そのまま保管することが可能である。
<疑似体液を用いた溶解速度試験>
 平滑プレート状のジルコニアA-F2に電力積0.99W・min/cmでイオン照射を施した後にスパッタリングにより、Mg膜、Mg20%Ca膜及びMg30%Ca膜をつけたサンプルに対して、擬似体液中における溶解速度試験を行った。ここで、サンプルの上面と側面にスパッタリング膜がついており、下面にはついていない。
 擬似体液には、カルシウムおよびマグネシウムの含有されていないハンクス平衡塩溶液(HBSS(-)溶液(フェノールレッド不含)、富士フィルム和光純薬)を用いた。
 疑似体液の容量は40mlあるいは400mlを用いた。
 したがって、表面粗さの影響を無視した見かけ上の表面積を220mmとすると、被膜が溶液と接触する単位面積当たりの疑似体液容量は、それぞれ0.182ml/mmあるいは0.0182ml/mmである。
 溶解速度は、ガラス電極法を用いたpH測定から評価した。pH測定には、卓上型pH試験機(HORIBA、F-74)、GRT複合電極(9615S-10D、HORIBA)を用いた。
 溶解速度試験は、空気槽式の恒温装置で37°に保ったHBSS(-)溶液40ml中にサンプルを浸漬し、1時間、3時間、6時間、12時間及び24時間経過時にpHをそれぞれ測定した。また、空気槽式の恒温装置で37°に保ったHBSS(-)溶液400ml中に、6時間、24時間及び168時間後にそれぞれ浸漬後に取り出して、露出した面の同定及びXRD装置((D8ADVANCE、BRUKER)を用いた膜厚の推定を実施した。露出した面の同定には、SEM・EDX(JSM5900LVM、JEOL)を用いた。
 図4に、Mg膜、Mg20%Ca膜及びMg30%Ca膜をつけた平滑ジルコニアA-F2に対するHBSS(-)浸漬における溶解速度評価としてのpH測定結果を示す。
 また、膜厚5.28μm、総断面積220mmとした場合のMg膜、Mg20%Ca膜及びMg30%Ca膜におけるマグネシウムおよびカルシウム成分の単位体積当たりの物質量mol/cmの計算値を表5に示す。
 図5に、Mg膜をつけた平滑ジルコニアA-F2に対するHBSS(-)浸漬前、浸漬6時間、24時間及び168時間後にそれぞれ取り出した後のXRD測定結果を示す。
 また、図5の結果を基に、膜であるマグネシウムの(0 0 -2)面からの回折強度Imと基体であるジルコニアの(1 0 -1)面からの回折強度Izとの比を取ったピーク強度比Im/Izを取り、168時間後のIm/Izをそれぞれ差し引いた値および強度比と0時間後の膜厚Tの値との関係を基準として膜厚を推定した値を表6に示す。
 浸漬時間と膜厚との関係を指数関数で近似すると、浸漬時間に伴う膜厚変化が次の式でおおよそ予測できる。
 dT/dt=-1.39exp(-0.15t)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 図6に、Mg30%Ca膜をつけた平滑ジルコニアA-F2に対するHBSS(-)浸漬前、浸漬6時間、及び168時間後に取出したサンプルの外観写真及び浸漬6時間後に取り出したサンプル表面に対するEDXによる分析結果を示す。
 また、表7に、図6から得られた同定結果を示す。浸漬6時間後に取り出したサンプルでは、金属色の層、黒色あるいは白色の層で覆われており、基板の研磨キズが観察できる部分はほとんどなく、生体適合性の基体の表面は露出していなかった。浸漬24時間後に取り出したサンプルでは、金属色の層はほとんどなく、基板の研磨キズが観察できる部分が増え、生体適合性の基体表面の露出部分が増加した。さらに、浸漬168時間後のサンプルでは、全面が基板の研磨キズが観察でき、全面において生体適合性の基体の表面が露出していた。
Figure JPOXMLDOC01-appb-T000008
 図4、表5、図5、表6、図6、表7から次のことがわかる。
 例えば、歯科インプラントを顎骨に埋植した後、十分な骨接合が生じるまでの期間は義歯をつけた咬合ができない。そのため、歯科インプラントを早期に骨接合させることが求められている。図4、表5から、疑似体液に浸漬した後、浸漬直後に金属膜がイオン化することによって急激にpH変化が生じ、24時間後には最大でpH9.5以上になることがわかる。
 したがって、骨内に埋植した後、早期に膜の溶解が生じることがわかる。
 図5及び表6から、浸漬直後に急激な膜厚の減少が生じ、浸漬24時間後以降では膜厚の変化がほとんどなくなるが168時間以内には、全ての金属膜が溶解することがわかる。
 図6及び表7から、浸漬6時間後の時点ではまだほとんど基板は露出していないが、それ以降で徐々に基板が露出し、少なくとも浸漬168時間以内には、全ての面で基板が露出したことがわかる。
 したがって、金属膜によって親水性面を保護された歯科インプラントを埋植した後、早期に膜が溶解し、活性化面を露出することで、早期骨接合を促すことが可能である。
<擬似体液を用いたin vitro生体反応試験>
 平滑プレート状のジルコニアA-F及び粗面プレート状のジルコニアA-Rに電力積0.495、0.99及び5.36W・min/cmでイオン照射を施した後にスパッタリングにより、Mg30%Ca膜をつけたそれぞれのサンプルに対して、擬似体液をもちいたin vitroの生体反応試験を行った。
 擬似体液には、カルシウムおよびマグネシウムの含有されたハンクス平衡塩溶液(HBSS(+)溶液)を用いた。また、溶液中の平衡pHを生体内環境に近づけるため、スパッタリング膜溶出後の平衡pHが8.0以下となるようにHBSS(+)の溶液量を調整した。比較のためにイオン照射及びスパッタリングを施していない基体について、HBSS(+)及びMg30%Ca膜溶出後のHBSS(+)の2種類の溶液に浸漬した試験をおこなった。
 擬似体液浸漬試験として、擬似体液500mlに各試料を浸漬させ、37℃の恒温槽中で1週間保持した後、サンプルを溶液から取り出した。
 図7は、平滑プレート状のジルコニアA-Fの写真、平滑プレート状のジルコニアA-Fに電力積5.36W・min/cmでイオン照射を施した後にスパッタリングによりMg30%Ca膜を被覆したサンプルの写真、及び、平滑プレート状のジルコニアA-Fに電力積5.36W・min/cmでイオン照射を施した後にスパッタリングによりMg30%Ca膜を被覆したサンプルを疑似体液に浸漬し、1週間後にHBSS(+)から取り出した後の写真である。また、図示しないが、成膜された表面の状態を時間の変化とともに観察した結果、約4日間程度で成膜された膜の全てが液中に溶出した後、表面に新たな層が形成されることがわかった。新たに形成された層の構造や成分を、X線回折(XRD)および蛍光X線分析(EDX)で解析したところ、骨類似アパタイト(HAp)が形成されている可能性が高いことがわかった。これは、膜の成分であるマグネシウム及びカルシウムが溶出することで、基板上にHAp析出が促されたと考えられる。
 表8は、平滑プレート状のジルコニアA-Fに電力積0.495、0.99及び5.36W・min/cmでそれぞれイオン照射を施した後にスパッタリングによりMg30%Ca膜を被覆したサンプルをHBSS(+)に浸漬し、1週間後にHBSS(+)から取り出し、マイクロスコープ(VHX7000、KEYENCE)をサンプルに垂直な軸方向から15度傾斜させた方向から光を当てて写真撮影し、焦点の合う箇所を合成した画像を基にして、金属膜残存部、基材が露出したままHApで覆われなかった部分の面積分率及びHAp被覆率を画像解析して算出した値である。図8は、表8のうち、平滑材(A-F)で電力積0.495及び5.36W・min/cmの各面積分率を算出した際に使用した画像である。
 電力積0.495及び0.99の別のサンプルを3週間HBSS(+)に浸漬して取り出したところ、金属膜残存は認められなかった。一方、基材が露出したままHApで覆われなかった部分の面積分率は1週間HBSS(+)に浸漬した際のそれと同程度認められた。
 また、イオン照射後スパッタリングを施していない基体については、HBSS(+)及び金属膜溶出後のHBSS(+)の2種類の溶液浸漬のいずれもHApの形成は認められなかった。
Figure JPOXMLDOC01-appb-T000009
 図7、表8、図8から、次のことがわかる。
 例えば、歯科インプラント材料表面に生体内で骨アパタイトが形成されると、骨アパタイトを介して骨接合がなされ、歯科インプラントを強固に骨接合させることができる。
 図7から、イオン照射後に金属膜によって親水性面が保たれているジルコニアではアパタイトが全面に旺盛に形成されたが、イオン照射後に金属膜によって親水性が保たれなかったジルコニアではアパタイトが全く形成されなかった。
 表8から、イオン照射電力積による親水化強度が異なる場合、金属膜によって親水性が保たれているサンプルの中でもHAp被覆率が異なることがわかった。さらに、より高い親水性を示すサンプルほど高いHAp被覆率を示す。親水化によって活性化された表面は、エネルギーが高い状態にある。親水性面が溶液内で露出されたジルコニアではアパタイトが形成され、親水化されていないジルコニアではアパタイトが形成されなかったことから、エネルギー状態の高い活性化表面が溶液内で露出することで、アパタイトの核が多量に形成され、全面に旺盛なアパタイトが形成されたと考えられる。
 したがって、高い親水性を示す親水化処理を施し、金属膜によってその親水性面を保護された歯科インプラントを使用することで、生体内で自発的に活性化面が露出し、アパタイト形成を全面に促し、早期に骨形成させることが可能である。

Claims (19)

  1.  表面が親水性である生体適合性基体;及び
     前記基体の表面に備えられる金属膜であって、体液または擬似体液で溶解する溶解特性を有する金属膜;
    を有する、生体適合性材料。
  2.  前記生体適合性材料を体液または擬似体液に接触させると前記金属膜が溶解し、表面が親水性である生体適合性基体が露出する請求項1に記載の生体適合性材料。
  3.  前記体液が、血液、リンパ液、骨髄液、及び組織液からなる群から選ばれる少なくとも1種であり、前記疑似体液が生理食塩水、リン酸緩衝生理食塩水(PBS)、ハンクス平衡塩溶液(HBSS)、SBF溶液、血漿液、細胞培養液、Eagle(MEM)溶液、DMEM溶液、及び血清培地から選ばれた少なくとも1種である請求項1に記載の生体適合性材料。
  4.  前記擬似体液が、ハンクス平衡塩溶液である請求項1に記載の生体適合性材料。
  5.  前記親水性は、水滴接触角が90°以下である請求項1に記載の材料。
  6.  前記金属膜が、Mg、Ca、Zn及びFeからなる群から選ばれる少なくとも1種の金属を有してなる請求項1に記載の材料。
  7.  前記金属膜がマグネシウム及び任意にカルシウムを有してなり、マグネシウムとカルシウムとの合計の重量を100重量%とすると、カルシウムが0~40重量%有する請求項1に記載の材料。
  8.  前記金属膜がMgCaフリーである請求項7に記載の材料。
  9.  前記金属膜が非晶質部分を有する請求項1に記載の材料。
  10.  前記基体が、純チタニウム、コバルトクロム合金、ステンレス鋼及びチタン合金、ジルコニア、アルミナ、リン酸カルシウム及びマグネシアからなる群から選ばれる少なくとも1種である請求項1に記載の材料。
  11.  前記基体の表面粗さRaが、50μm以下である請求項1に記載の材料。
  12.  前記生体適合性材料の形状が、円柱状、円筒状、円錐台状及び円錐状、並びに該形状の一部にスクリュー状のねじ部を備えた形状、直方体及び立方体、並びに一部傾斜面を有するブロック形状、及びくさび形状からなる群から選ばれる1種である請求項1に記載の材料。
  13.  前記生体適合性材料が、人工骨材料、骨内固定器具材料、歯科用インプラント材料、歯科矯正用アンカースクリュー材料、髄内釘材料、及び椎体間固定材料からなる群から選ばれる1種である請求項1に記載の材料。
  14.  生体適合性材料の製造方法であって、
     (A)生体適合性基体を準備する工程;
     (B)生体適合性基体の表面を親水化する工程;及び
     (C)前記生体適合性基体の表面上に金属膜を形成する工程;
    を有することにより、表面が親水性である生体適合性基体;及び前記基体の表面に備えられる金属膜;を有する生体適合性材料を製造する、上記方法。
  15.  前記(C)工程が、
     (C1)金属膜前駆体を有してなるスパッタターゲットを準備する工程;及び
     (C2)前記スパッタターゲットを用いて、前記(B)工程で得られた生体適合性基体上に、スパッタリングにより金属膜を形成する工程;
    を有する請求項14に記載の方法。
  16.  前記(C1)工程が、(C1a)マグネシウム及び任意にカルシウムを有してなるスパッタターゲットを準備する工程であり、
     前記(C2)工程が、(C2a)前記スパッタターゲットを用いて、前記(B)工程で得られた生体適合性基体の温度を130℃以下として、スパッタリングにより前記生体適合性基体にマグネシウム及び任意にカルシウムを有してなり、マグネシウムとカルシウムとの合計の重量を100重量%とすると、カルシウムが0~40重量%有する金属膜を形成する工程である、請求項15に記載の方法。
  17.  前記(B)工程が、酸処理、ブラスト処理、陽極酸化、水熱処理、紫外線照射、プラズマ照射、レーザー照射、放射線照射、及びイオン照射からなる群から選ばれる少なくとも1種である請求項14に記載の方法。
  18.  前記(B)工程が、イオン照射であり、イオン照射電力積で0.4W・min/cm以上である請求項14に記載の方法。
  19.  前記(B)工程後であって前記(C)工程前に、(D)生体適合性基体の表面をイオンクリーニングする工程;をさらに有する請求項14に記載の方法。
PCT/JP2022/032506 2021-08-31 2022-08-30 生体適合性材料およびその製造方法 WO2023032947A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023545581A JPWO2023032947A1 (ja) 2021-08-31 2022-08-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-140956 2021-08-31
JP2021140956 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032947A1 true WO2023032947A1 (ja) 2023-03-09

Family

ID=85411285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032506 WO2023032947A1 (ja) 2021-08-31 2022-08-30 生体適合性材料およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2023032947A1 (ja)
WO (1) WO2023032947A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181515A (ja) 2006-01-04 2007-07-19 Tokyo Medical & Dental Univ 歯科補綴物及び骨接合術用具、並びにそれらの製造方法
JP2012196461A (ja) * 2006-09-22 2012-10-18 U & I Corp 生体分解性金属を含むインプラントおよびその製造方法
JP2014014487A (ja) 2012-07-09 2014-01-30 Nagoya Univ 医科歯科用材料の製造方法および保存キット
JP2014193249A (ja) 2013-03-29 2014-10-09 Shinshu Univ 生体インプラント
JP2016053195A (ja) 2014-09-03 2016-04-14 オオタ株式会社 成形品及びその製造方法
JP2016154935A (ja) 2011-12-27 2016-09-01 オステムインプラント カンパニー リミテッド 初期安定性が増進された歯科用インプラント及びその製造方法
JP6095653B2 (ja) 2011-06-24 2017-03-15 ストラウマン ホールディング アーゲー セラミック材料から作られる本体
JP6154806B2 (ja) 2011-06-24 2017-06-28 ストラウマン ホールディング アーゲー セラミック材料から作られた本体
JP2017169821A (ja) 2016-03-23 2017-09-28 京セラ株式会社 歯科インプラントの製造方法および歯科インプラントの調整方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181515A (ja) 2006-01-04 2007-07-19 Tokyo Medical & Dental Univ 歯科補綴物及び骨接合術用具、並びにそれらの製造方法
JP2012196461A (ja) * 2006-09-22 2012-10-18 U & I Corp 生体分解性金属を含むインプラントおよびその製造方法
JP5705163B2 (ja) 2006-09-22 2015-04-22 ユー アンド アイ コーポレーション 生体分解性金属を含むインプラントおよびその製造方法
JP6095653B2 (ja) 2011-06-24 2017-03-15 ストラウマン ホールディング アーゲー セラミック材料から作られる本体
JP6154806B2 (ja) 2011-06-24 2017-06-28 ストラウマン ホールディング アーゲー セラミック材料から作られた本体
JP2016154935A (ja) 2011-12-27 2016-09-01 オステムインプラント カンパニー リミテッド 初期安定性が増進された歯科用インプラント及びその製造方法
JP2014014487A (ja) 2012-07-09 2014-01-30 Nagoya Univ 医科歯科用材料の製造方法および保存キット
JP2014193249A (ja) 2013-03-29 2014-10-09 Shinshu Univ 生体インプラント
JP2016053195A (ja) 2014-09-03 2016-04-14 オオタ株式会社 成形品及びその製造方法
JP2017169821A (ja) 2016-03-23 2017-09-28 京セラ株式会社 歯科インプラントの製造方法および歯科インプラントの調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK KI-DEOG, LEE BO-AH, PIAO XING-HUI, LEE KYUNG-KU, PARK SANG-WON, OH HEE-KYUN, KIM YOUNG-JOON, PARK HONG-JU: "Effect of magnesium and calcium phosphate coatings on osteoblastic responses to the titanium surface", THE JOURNAL OF ADVANCED PROSTHODONTICS, vol. 5, no. 4, 1 January 2013 (2013-01-01), pages 402, XP093041588, ISSN: 2005-7806, DOI: 10.4047/jap.2013.5.4.402 *

Also Published As

Publication number Publication date
JPWO2023032947A1 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
US11344387B2 (en) Deposition of discrete nanoparticles on a nanostructured surface of an implant
JP6293725B2 (ja) 抗微生物性金属を含む表面を有する医療用デバイス
EP2187982B1 (en) A bone tissue implant comprising strontium ions
AU2005272221B2 (en) Biomimetic process for coating substrates
Azzawi et al. Osseointegration evaluation of laser-deposited titanium dioxide nanoparticles on commercially pure titanium dental implants
JPWO2008059968A1 (ja) マグネシウム系医療用デバイスとその製造方法
WO2023032947A1 (ja) 生体適合性材料およびその製造方法
KR101822255B1 (ko) 생체적합성 불소계 세라믹 코팅층을 포함하는 금속 임플란트의 제조방법
EP4241796A1 (en) Biocompatible material and method of producing same
JP2023010770A (ja) 生体適合性材料及びその製造方法
Nasir et al. Mechanical evaluation of pure titanium dental implants coated with a mixture of nano titanium oxide and nano hydroxyapatite
WO2023032948A1 (ja) 生体適合性膜、及び該膜を有する生体適合性材料
JP2022074692A (ja) 生体適合性材料及びその製造方法
Topuz et al. Synthesis of implantable ceramic coatings and their properties
Abdulbaqi Biomechanical Evaluation of Magnesium Alloys Implant Reinforced with Strontium Microparticles Coated By Niobium Nitride
Salah et al. Biomimetic Activity of Orthopaedic Regenerative MgAZ31 and Mg 1Zn 0.6 Ca Alloys (In-vitro Study) part 1
Nuswantoro et al. Effect of hydroxyapatite coating thickness on inflammation and osseointegration of Ti–29Nb–13Ta-4.6 Zr (TNTZ) implants
Ameen THE EFFECT OF NANOCOMPOSITE MIXTURE OF 70% TIO2 AND 30% ZRO2 COATING MATERIAL ON SURFACE FORMATION OF HYDROXYAPATITE LAYER
Kim et al. Biomimetic deposition of apatite on Zr-1Nb and Ti-6Al-4V
Zhao et al. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young's modulus
Dostálová et al. OSSEOINTEGRATION OF HYDROXYLAPATITE COATED IMPLANTS FORMED BY PLD-EVALUATION IN FLUORESCENT MICROSCOPE.
Singh et al. Corrosion Testing of Hydroxyapatite and Hydroxyapatite-Silicon Oxide Coated Titanium
Himmlova et al. Loaded titanium implant with hydroxyapatite coat: histological observations
BR112014023878B1 (pt) implante dental tendo uma camada de superfície compreendendo um metal antimicrobiano e método para sua produção

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545581

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022864529

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864529

Country of ref document: EP

Effective date: 20240402