WO2023032871A1 - リチウムイオン二次電池及び非水電解液 - Google Patents

リチウムイオン二次電池及び非水電解液 Download PDF

Info

Publication number
WO2023032871A1
WO2023032871A1 PCT/JP2022/032306 JP2022032306W WO2023032871A1 WO 2023032871 A1 WO2023032871 A1 WO 2023032871A1 JP 2022032306 W JP2022032306 W JP 2022032306W WO 2023032871 A1 WO2023032871 A1 WO 2023032871A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
pivalate
acid ester
pivalic acid
aqueous solvent
Prior art date
Application number
PCT/JP2022/032306
Other languages
English (en)
French (fr)
Inventor
浩司 安部
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023545540A priority Critical patent/JPWO2023032871A1/ja
Priority to EP22864454.8A priority patent/EP4398365A1/en
Priority to CN202280057099.1A priority patent/CN117836993A/zh
Publication of WO2023032871A1 publication Critical patent/WO2023032871A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a lithium ion secondary battery that is excellent in battery safety when used at high temperatures and also has battery characteristics such as initial capacity and rapid charging at low temperatures, and a non-aqueous electrolyte used for the lithium ion secondary battery. Regarding.
  • lithium-ion secondary batteries have been widely used not only as power sources for small electronic devices, but also as power sources for electric vehicles and power storage.
  • a lithium ion secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, a separator, and a negative electrode.
  • Lithium secondary batteries are preferably used.
  • Electrolytes for lithium ion secondary batteries include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and the like. is preferably used in combination with a linear carbonate.
  • Patent Document 1 a tertiary carboxylic acid ester having an alkyl group (R 4 ) bonded to an oxygen atom and having 4 to 20 carbon atoms is added to a non-aqueous solvent (eg, EC, PC) as a solvent for an electrolytic solution.
  • a non-aqueous solvent eg, EC, PC
  • lithium has a long charge-discharge cycle life, excellent battery characteristics such as electrical capacity and storage characteristics in a charged state, and suppresses battery swelling when used at high temperatures.
  • a secondary battery has been proposed.
  • Patent Document 2 at least three kinds of specific lithium salts are included as an electrolyte, and further, a tertiary carboxylic acid ester having an alkyl group (R 4 ) bonded to an oxygen atom having 1 to 6 carbon atoms is included.
  • a lithium secondary battery has been proposed in which the use of a non-aqueous electrolyte can improve the capacity retention rate after high-temperature storage and suppress the increase in impedance after high-temperature storage.
  • Patent Document 1 discloses that methyl pivalate, ethyl pivalate, butyl pivalate, hexyl pivalate, octyl pivalate, decyl pivalate, or dodecyl pivalate is used as a tertiary carboxylic acid ester in an electrolytic solution. It is shown that when added to a non-aqueous solvent, the 50-cycle discharge capacity retention rate of a lithium secondary battery could be improved (Example). However, when these pivalic acid esters are used, there is a problem that they lower the flash point of the entire electrolyte.
  • Patent Document 2 it is shown that the discharge capacity retention rate after charging and storing at a high temperature of 60 ° C. was improved and the increase in impedance could be suppressed (Example). There is no teaching of the problem of depressing the overall flash point or degrading the rapid charge characteristics at low temperatures. Conventionally, the performance of secondary batteries for vehicles such as electric vehicles when stored at high temperatures after charging has been emphasized, but the need for battery safety and rapid charging at low temperatures has not been recognized. , It can be said that the rise of non-combustible all-solid electrolytes and the effect of rapid charging characteristics at low temperatures could not be predicted.
  • the present invention solves the above problems, and has excellent battery safety when used at high temperatures, which is important for secondary batteries for vehicles such as recent electric vehicles.
  • An object of the present invention is to provide a lithium ion secondary battery having excellent characteristics.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent has a flash point of is 90° C. or higher and has a viscosity of 2 to 2.3 cp at 25° C. using a pivalic acid ester having 12 to 13 carbon atoms, and 0.1% by volume of the pivalic acid ester with respect to the non-aqueous solvent It has been found that the above problems can be solved by adding Ni in the range of less than 5% by volume.
  • the carbon number of R 4 in the tertiary carboxylic acid ester is 1 to 6, and the number of carbon atoms of R 4 in the tertiary carboxylic acid ester is 1 to 6, and the Since the problem is not taught at all, it is not easy for a person skilled in the art to conceive of the pivalic acid ester and the amount thereof to be added in the present invention from Patent Document 2.
  • Patent Document 2 describes n-heptyl pivalate (R 4 has 7 carbon atoms) in which R 4 does not have 1 to 6 carbon atoms, but n-butyl pivalate ( It is described between R 4 carbon number 4) and n-hexyl pivalate (R 4 carbon number 6), and it is an error of n-pentyl pivalate (R 4 carbon number 5). Recognize if.
  • the present invention is an invention that has found a problem that has not been recognized hitherto and found that the problem can be solved by using a specific pivalic acid ester in a specific amount.
  • /90 (volume ratio) is preferably used, and the inventors have found that the effects of the present invention can be further enhanced by combining these electrolyte salts and non-aqueous solvents.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent, wherein the non-aqueous electrolyte has a flash point of 90 ° C. or higher and a viscosity at 25 ° C.
  • a lithium ion secondary battery comprising 0.1% by volume or more and less than 5% by volume of a pivalic acid ester having 2 to 2.3 cp and having 12 to 13 carbon atoms with respect to the non-aqueous solvent.
  • non-aqueous solvent contains ethylene carbonate and propylene carbonate
  • the lithium ion secondary battery according to any one of (3).
  • a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in a non-aqueous solvent, and a pivalic acid ester having 12 to 13 carbon atoms having a flash point of 90 ° C. or higher and a viscosity of 2 to 2.3 cp at 25 ° C.
  • a non-aqueous electrolyte containing 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent comprising at least one selected from the following (i), (ii) and (iii).
  • the pivalic acid ester is at least one selected from n-heptyl pivalate, 2-ethylhexyl pivalate and 2-octyl pivalate.
  • the electrolyte salt is LiN(SO 2 F) 2 and LiPF 6 , and the LiN(SO 2 F) 2 and LiPF 6 are dissolved in a non-aqueous solvent in a total amount of 0.5 to 3 mol/L;
  • the lithium-ion secondary battery of the present invention is excellent in battery safety when used at high temperatures, and is also excellent in battery characteristics such as initial capacity and rapid charging at low temperatures.
  • the non-aqueous electrolyte of the present invention it is possible to obtain a lithium ion secondary battery which is excellent in safety when used at high temperatures and which is excellent in battery characteristics such as initial capacity and rapid charging at low temperatures.
  • the lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent, wherein the non-aqueous electrolyte has a flash point of 90 ° C. 0.1% by volume or more and less than 5% by volume of a pivalic acid ester having 12 to 13 carbon atoms and having a viscosity of 2 to 2.3 cp at 25° C. relative to the non-aqueous solvent.
  • the non-aqueous solvent in the present invention is not particularly limited as long as it can be used in the non-aqueous electrolyte of a lithium ion secondary battery. and a cyclic carbonate having a flash point of 120° C. or higher.
  • a cyclic carbonate having a flash point of 120° C. or higher As the cyclic carbonate having a flash point of 120° C. or higher, EC (flash point of 143° C.), PC (flash point of 133° C.) and mixtures thereof are preferable.
  • EC flash point of 143° C.
  • PC flash point of 133° C.
  • the ratio of EC in the non-aqueous solvent increases, EC has a melting point of 36°C and is a solid at room temperature. Therefore, when the temperature is lowered to a low temperature, precipitation of EC may occur and the low-temperature characteristics may deteriorate.
  • the volume ratio of EC/PC in the non-aqueous solvent is preferably from 49/51 to 10/90, more preferably from 40/60 to 20/80.
  • the non-aqueous solvent may consist of only EC and PC, or may contain a non-aqueous solvent other than EC and PC. Therefore, when the non-aqueous solvent contains a solvent other than EC and PC, the volume ratio of EC to PC is the volume ratio of EC to PC contained in the non-aqueous solvent.
  • the total amount of EC and PC contained in the non-aqueous solvent is preferably 90 to 100% by volume.
  • Another example of the cyclic carbonate having a flash point of 120° C. or higher is fluoroethylene carbonate (FEC, flash point 122° C.).
  • FEC fluoroethylene carbonate
  • Another non-aqueous solvent used in the present invention is vinylene carbonate (VC, flash point 80° C.), which is a cyclic carbonate.
  • VC vinylene carbonate
  • PC 0.5 to 10% by volume of PC can be replaced with these.
  • the pivalic acid ester added to the non-aqueous solvent in the present invention is particularly limited as long as it has 12 to 13 carbon atoms, a flash point of 90 ° C. or higher, and a viscosity of 2 to 2.3 cp at 25 ° C.
  • one or more selected from n-heptyl pivalate as the straight-chain pivalate and 2-ethylhexyl pivalate and 2-octyl pivalate as the branched pivalate are preferred, and particularly preferably, 2-Ethylhexyl pivalate is a branched ester that can have the highest flash point for the lowest viscosity.
  • n-heptyl pivalate and 2-octyl pivalate When two or more pivalic acid esters are used, n-heptyl pivalate and 2-octyl pivalate, n-heptyl pivalate and 2-ethylhexyl pivalate, 2-octyl pivalate and 2-ethylhexyl pivalate, and pivaline
  • a mixture of n-heptyl acid, 2-octyl pivalate and 2-ethylhexyl pivalate is particularly preferred because it has a high flash point and can be adjusted to have a low viscosity.
  • the pivalic acid ester is added in an amount of 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent.
  • 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent means that the pivalic acid ester is 0.1 or more and less than 5 (volume) with respect to 100 (volume) of the non-aqueous solvent. means. If the amount of pivalic acid ester added (content in the non-aqueous electrolyte) is less than 0.1% by volume relative to the non-aqueous solvent, the permeability of the separator becomes insufficient, resulting in poor battery performance.
  • the content is 5% by volume or more, the flash point of the electrolytic solution may be lowered, and if the permeability to the separator is excessive, the resistance of the separator may increase and the low-temperature characteristics may deteriorate.
  • Preferred ranges of the amount of the pivalic acid ester added in the present invention are 0.5% by volume to less than 5% by volume, 1% by volume to less than 5% by volume, 0.5% by volume to 4.5% by volume (0 .5 to 4.5% by volume) or 1% to 4.5% by volume (1 to 4.5% by volume).
  • the expression "A to B" represents A or more and B or less.
  • the total amount of the pivalic acid esters in the present invention is 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent, and the total A preferable range of the amount to be added is 0.5% by volume or more and less than 5% by volume, 1% by volume or more and less than 5% by volume, 0.5 to 4.5% by volume, or 1 to 4.5% by volume. .
  • the compound has a flash point higher than 90° C. of the pivalic acid ester of the present invention
  • the flash point of the non-aqueous electrolyte of the present invention can be made 120° C. or higher. is preferably added to the non-aqueous electrolyte within the range of 0.1 to 5% by mass with respect to the total non-aqueous electrolyte.
  • the non-aqueous solvent in the present invention does not exclude non-aqueous solvents having a low flash point, such as chain carbonates such as DMC, EMC and DEC.
  • a combination of a non-aqueous solvent and a pivalic acid ester in which the flash point of the non-aqueous solvent after addition of the pivalic acid ester is 100° C. or higher can be preferably used, and a combination in which the flash point is 120° C. or higher is more preferred.
  • the flash point of the non-aqueous electrolyte in the present invention is preferably 100° C. or higher, more preferably 120° C. or higher.
  • the present invention does not exclude the inclusion of pivalic acid esters other than the pivalic acid ester in the present invention in the non-aqueous solvent.
  • Such pivalic acid esters include n-octyl pivalate (having 13 carbon atoms, a flash point of 104° C.
  • the total amount of the pivalic acid ester of the present invention and other pivalic acid ester is preferably less than 5% by volume.
  • the electrolyte salt in the present invention is not particularly limited as long as it can be used in the electrolyte of a lithium ion secondary battery .
  • LiBF4 etc. can be mentioned.
  • LiN(SO 2 F) 2 is preferable because it has high chemical thermal stability and can improve battery performance at high temperatures.
  • LiPF 6 has the effect of supplementarily improving battery performance at low temperatures, it is preferable to add a certain amount of LiPF 6 . It is presumed that the reason for this is that the solubility of the Li salt in the pivalic acid ester in the battery is increased, so that the movement of Li ions in the vicinity of the separator becomes smoother.
  • the total concentration of the electrolyte salt contained in the nonaqueous solvent is preferably 0.5 to 3 mol/L (that is, 0.5 to 3 mol of the electrolyte salt per 1 L of the nonaqueous solvent), more preferably 1 to 2 mol/L.
  • LiN(SO 2 F) 2 is used alone or when LiN(SO 2 F) 2 and LiPF 6 are mixed and used, LiN ( SO 2 F) 2 /LiPF 6 preferably ranges from 100/0 to 1/99, 100/0 to 50/50, 100/0 to 70/30, 95/5 to 50/50, 90/10 to 70/30 can be mentioned.
  • the non-aqueous electrolyte in the present invention can be prepared by dissolving the pivalic acid ester and the electrolyte salt in a non-aqueous solvent.
  • the separator in the present invention is not particularly limited as long as it can be used in a lithium ion secondary battery, but it is most preferable to use a separator made of a microporous film formed from a polyolefin material such as polypropylene or polyethylene, but non-woven fabric is used.
  • a separator can also be used.
  • the porous sheet or nonwoven fabric may have a single layer structure or a multilayer structure, and the surface of the separator may be coated with an oxide such as alumina.
  • the thickness of the separator should be as thin as possible in order to increase the volumetric energy density of the battery. Therefore, the thickness of the separator is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the negative electrode in the present invention is not particularly limited as long as it can be used in a lithium ion secondary battery. Carbon materials are preferred. Further, in order to improve rapid charging and discharging, titanium oxides having a spinel structure such as Li 4 Ti 5 O 12 which does not expand and contract during charging and discharging, TiNb 2 O 7 and Ti 2 Nb 10 O 29 are used. is preferably used, and titanium oxides having a spinel structure such as Li 4 Ti 5 O 12 are particularly preferable.
  • the negative electrode active material includes ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene. It is used after being kneaded with a binder such as a copolymer (NBR) or carboxymethyl cellulose (CMC).
  • EPDM ethylene propylene diene terpolymer
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene
  • NBR copolymer
  • CMC carboxymethyl cellulose
  • Examples of the positive electrode active material for the positive electrode in the present invention include LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.15 Ni 0.8 Al 0.05 O 2 , LiNi 0.8Co0.2O2 , LiNi0.5Mn1.5O4 and the like .
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0 , and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are used as the positive electrode active material containing a lithium composite oxide having an atomic ratio of Ni of 50% or more.
  • LiMn 2 O 4 having a spinel structure and LiFePO 4 having an olivine structure are preferably used to improve rapid charging and discharging.
  • the positive electrode mixture known or commercially available conductive aids such as carbon black such as acetylene black and ketjen black, carbon nanotubes, carbon fiber, activated carbon, and graphite can be used for the positive electrode active material. Slurry by kneading with a binder such as ethylene (PTFE), polyvinylidene fluoride (PVFF), styrene-butadiene copolymer (SBR), acrylonitrile-butadiene copolymer (NBR), carboxymethyl cellulose (CMC), etc. After forming the positive electrode mixture, the positive electrode material is applied to an aluminum foil as a current collector, dried, pressure-molded, and then heat-treated at 80° C. under vacuum, for example.
  • a binder such as ethylene (PTFE), polyvinylidene fluoride (PVFF), styrene-butadiene copolymer (SBR), acrylonitrile-butadiene copolymer (NBR),
  • the above combination for increasing the volumetric energy density or the above combination for improving the rapid charge/discharge can be suitably exemplified. can be done.
  • the current collector used in the present invention is not particularly limited, but aluminum foil and copper foil are common, and a porous current collector may be used to further improve the permeability of the electrolytic solution. can.
  • the solvent used for the binder is also not particularly limited, and various solvents can be selected depending on the active material or binder used. Specifically, when PVDF is used as the binder, N-methyl-2-pyrrolidone is preferably used as the solvent, while styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinyl alcohol, carboxymethylcellulose ( CMC) and other rubber-based binders are preferably used as a solvent.
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • the structure of the lithium secondary battery of the present invention is not particularly limited, but the shape of the secondary battery having a positive electrode, a negative electrode, and a separator may be a coin-shaped battery, a cylindrical battery, a rectangular battery, or a pouch-shaped battery. etc.
  • the lithium secondary battery of the present invention can be manufactured by assembling the above positive electrode, negative electrode and separator into the above structure, and injecting the above nonaqueous electrolyte into the separator.
  • Example 1 to 3 and Comparative Examples 1 to 4 Method for measuring flash point
  • PMA500 manufactured by Anton Paar
  • the flash points of the pivalate esters alone of Examples 1 to 3 and Comparative Examples 1 to 5 shown in Table 1 were measured. It was measured. Table 1 shows the results.
  • the amount of the pivalic acid ester having a flash point lower than that of non-aqueous solvents such as EC and PC can be reduced to improve the permeability of the electrolytic solution. Since the flash points of 2-ethylhexyl pivalate in Example 1 and n-heptyl pivalate in Example 2 are higher than the flash point of n-hexyl pivalate in Comparative Example 1, a pivalic acid ester with a high flash point was used. can improve the permeability of the electrolytic solution.
  • pivalic acid ester can solve the problem of lowering the flash point of the entire electrolyte, and the viscosity of the electrolyte increases, slowing the movement of lithium ions, resulting in a decrease in rapid charging characteristics at low temperatures. can also solve the problem of Further, when comparing Example 3 with Comparative Examples 2 to 4, n-octyl pivalate in Comparative Example 2 has a high flash point of 104° C., but a high viscosity of 2.52. The parts were not mixed and separated into two layers.
  • Example 4 An electrolytic solution of Example 4 was obtained by preparing an electrolytic solution in the same manner as in Examples 1 to 3, except that 1% by volume of n-heptyl pivalate and 2% by volume of n-octyl pivalate were added as pivalic acid esters. rice field. The electrolyte of Example 4 was evaluated for permeability in the same manner as in Examples 1-3. When the microporous membrane separator was immersed in the electrolytic solution of Example 4 for 15 seconds, then taken out and observed, the light transmittance of the separator completely changed from opaque to transparent. As shown in Comparative Example 2, n-octyl pivalate has a high flash point, but separates into two layers when used alone.
  • the pivalic acid ester of the present invention has the effect of improving the permeability of the electrolytic solution even in a small amount. It may allow the use of pivalic acid esters, which cause permeability problems.
  • a pivalic acid ester having a flash point of 90 ° C. or higher and a carbon number of 12 to 13 in the present invention a battery having a flash point that is excellent in safety when used at high temperatures is obtained, and the electrolyte is used as a separator.
  • the amount of pivalic acid ester that can be completely permeated is less than in the comparative example, and even if the amount of pivalic acid ester added is very small, the permeability of the electrolyte can be improved. Do you get it.
  • the C 12-13 pivalic acid ester of the present invention having a flash point of 90 ° C. or higher and a viscosity at 25 ° C.
  • the electrolytic solution containing the pivalic acid ester of the present invention which has low viscosity and excellent separator permeability, is formed into a positive electrode sheet, a separator, and a negative electrode sheet in a battery container in the mass production process of lithium ion secondary batteries. It was also found that when the electrolytic solution is filled after mounting the laminated body or wound body, the electrolytic solution quickly permeates the microporous separator, making it possible to shorten the production time of the lithium ion secondary battery. .
  • sheet-like positive and negative electrodes instead of sheet-like positive and negative electrodes, it is composed of two layers of clay-like positive and negative electrode layers, and the two layers are separated by a separator. Also in the method, using an electrolyte with a high flash point is effective in terms of safety.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 positive electrode active material, abbreviated as NCM811
  • acetylene black conductive assistant
  • polyvinylidene fluoride (binder) 1-Methyl-2-pyrrolidone was added to the mixture to form a slurry, which was applied onto an aluminum foil. After that, it was dried and pressure-molded to prepare a positive electrode.
  • Li 4 Ti 5 O 12 negative electrode active material, abbreviated as LTO
  • polyvinylidene fluoride binder
  • 1-methyl-2-pyrrolidone was added thereto. was added to form a slurry, which was applied onto an aluminum foil.
  • pressure molding and heat treatment were performed to prepare a negative electrode.
  • This coin battery was charged/discharged at 0°C, 25°C, and 60°C at 25°C using a charging/discharging device ACD-MO1A (manufactured by Aska Electronics) with an operating voltage set from 3.0V to 1.4V. gone.
  • Table 2 shows the charging and discharging conditions.
  • Example 6 to 8 and Comparative Example 5 A coin battery was produced in the same manner as in Example 5 except that the pivalic acid ester used was changed as shown in Table 3, and the battery characteristics were measured.
  • n-octyl pivalate which is a pivalic acid ester other than the pivalic acid ester of the present invention
  • n-heptyl pivalic acid which is the pivalic acid ester of the present invention
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 is used as the positive electrode active material, and natural graphite and artificial graphite are mixed as the negative electrode active material in the lithium ion secondary battery of the present invention.
  • the difference in rapid charging characteristics was smaller than that in the case of using LTO as the negative electrode active material, the rapid charging characteristics tended to be the same.
  • the lithium ion secondary battery has excellent battery safety when used at high temperatures and also has excellent battery characteristics such as rapid charging at low temperatures. batteries became possible. The contribution of this invention to the industrial world is immeasurable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、最近の電気自動車など車載用二次電池では重要とされる高温使用時における電池の安全性に優れ、さらに初期容量や低温での急速充電などの電池特性にも優れたリチウムイオン二次電池を提供することを課題とする。 正極、負極、セパレータ、及び非水溶媒に電解質塩を含む非水電解液を備えたリチウムイオン二次電池において、前記非水電解液が、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とするリチウムイオン二次電池。

Description

リチウムイオン二次電池及び非水電解液
 本発明は、高温使用時における電池の安全性に優れ、さらに初期容量や低温での急速充電などの電池特性も兼ね備えたリチウムイオン二次電池、及び前記リチウムイオン二次電池に用いる非水電解液に関する。
 近年、リチウムイオン二次電池は、小型電子機器などの電源だけでなく、電気自動車や電力貯蔵用の電源としても広く使用されている。リチウムイオン二次電池は、主に正極、非水電解液、セパレータ、及び負極から構成されているが、特に、Niを含有したリチウム複合酸化物を正極とし、炭素材料やチタン酸化物を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウムイオン二次電池用の電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの環状カーボネートとジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などの鎖状カーボネートとの組み合わせが好適に使用されている。
 しかし、鎖状カーボネートを用いると引火点が非常に低いため、DMC、EMC、DECの引火点に引きずられて、電解液全体の引火点が25℃前後まで低下してしまう。そのため、電気自動車など車載用二次電池の電源としては、高温使用時における電池の安全性に不安がある。そのため、最近の電気自動車など車載用二次電池では、電池の安全性が重視されるようになり、燃えない全固体電解質が注目を浴びているが、性能面ではまだまだ劣っているのが実態である。
 特許文献1では、電解液の溶媒として非水溶媒(例、EC、PC)に、酸素原子に結合しているアルキル基(R)の炭素数が4~20の第3級カルボン酸エステルを加えた非水溶媒を使用することにより、充放電サイクル寿命の長く、電気容量や充電状態での保存特性などの電池特性にも優れた、高温使用時における電池の膨れを抑制することができるリチウム二次電池が提案されている。
 また、特許文献2では、特定のリチウム塩の少なくとも3種を電解質として含み、さらに酸素原子に結合しているアルキル基(R)の炭素数が1~6の第3級カルボン酸エステルを含む非水電解液を使用することにより、高温保存後の容量維持率を向上させることができ、かつ高温保存後のインピーダンスの増加を抑制できるリチウム二次電池が提案されている。
 このような従来技術において、特許文献1では、第3級カルボン酸エステルとしてピバリン酸メチル、ピバリン酸エチル、ピバリン酸ブチル、ピバリン酸ヘキシル、ピバリン酸オクチル、ピバリン酸デシル又はピバリン酸ドデシルを電解液の非水溶媒に添加すると、リチウム二次電池の50サイクル放電容量維持率が向上できたことが示されている(実施例)。しかしながら、これらのピバリン酸エステルを使用した場合、電解液全体の引火点を押し下げてしまうという問題があり、これらのピバリン酸エステルの中から電解液全体の引火点を押し下げないものを使用しようとすると粘度が高くなってしまうために、リチウムイオンの移動が遅くなり、特に低温時の急速充電特性の低下が起こってしまうという問題がある。このような問題点は従来認識されていなかったものであり、本発明者による電解液の研究、開発により明らかになった問題点、すなわち新たに見出した課題である。
 また、特許文献2においては、60℃高温充電保存後の放電容量維持率が向上し、インピーダンスの増加を抑制できたことが示されているが(実施例)、特許文献2においても、電解液全体の引火点を押し下げる、あるいは低温時の急速充電特性の低下が起こるという問題点は何ら教示されていない。従来、電気自動車など車載用二次電池の充電後、高温で保存されたときの性能については重視していたものの、電池の安全性及び低温での急速充電についての必要性は認識されておらず、燃えない全固体電解質の台頭や低温での急速充電特性の効果まで予測できていなかったことが伺える。
特許4691871号公報 特許6575521号公報
 本発明は、上記の問題点を解決し、最近の電気自動車など車載用二次電池では重要とされる高温使用時における電池の安全性に優れ、さらに初期容量や低温での急速充電などの電池特性にも優れたリチウムイオン二次電池を提供することを課題とする。
 本発明者は上記課題を解決するために鋭意検討した結果、正極、負極、セパレータ、及び非水溶媒に電解質塩が溶解されてなる非水電解液を備えたリチウムイオン二次電池において、引火点が90℃以上であり、かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを用い、かつ非水溶媒に対して、該ピバリン酸エステルを0.1体積%以上5体積%未満の範囲にて添加することにより上記課題が解決できることを見出した。
 特許文献1に開示された従来技術では、ピバリン酸ヘキシル〔R4=n-ヘキシル基〕は引火点が77℃と主溶媒のEC(引火点143℃)やPC(引火点133℃)よりも50℃以上低いので、ピバリン酸ヘキシルの添加量が増えれば増えるほど、ピバリン酸ヘキシルの引火点に引きずられて電解液全体の引火点を押し下げてしまう。一方、ピバリン酸オクチル〔R4=n-オクチル基〕の場合、引火点は103℃でありピバリン酸ヘキシルの引火点より高くできるものの、粘度が2.5cpとなってしまい、主溶媒として用いられるPCの粘度(2.3cp)より高くなってしまうために、リチウムイオンの移動が遅くなり、特に低温時の急速充電特性の低下が起こってしまう。また、特許文献1には、ピバリン酸エステルとして例示された中にピバリン酸sec-オクチルとの記載があり、ピバリン酸エステルのエステル部分が分枝していることを示しているものの、それが2-オクチル基なのか、3-オクチル基なのか、4-オクチル基なのか具体的に示唆されていない。電解液全体の引火点を押し下げる、あるいは低温時の急速充電特性の低下が起こるという問題点の教示がなく、引火点が90℃以上であり、かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルの具体的開示のない特許文献1から、引火点が90℃以上であり、かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを使用し、さらに前記ピバリン酸エステルを、非水溶媒に対して0.1体積%以上5体積%未満の範囲にて添加する本発明を想到することは、当業者といえども容易ではない。
 また、特許文献2に開示された従来技術は、本発明におけるピバリン酸エステルとは異なり第3級カルボン酸エステルにおけるRの炭素数が1~6であり、特許文献1と同様に本発明の課題は何ら教示されていないので、本発明におけるピバリン酸エステル及びその添加量を特許文献2から当業者が想到することは容易ではない。なお、特許文献2の段落[0034]には、Rの炭素数が1~6ではないピバリン酸n-ヘプチル(Rの炭素数7)が記載されているが、ピバリン酸n-ブチル(Rの炭素数4)とピバリン酸n-ヘキシル(Rの炭素数6)との間に記載されており、ピバリン酸n-ペンチル(Rの炭素数5)の誤記であると当業者であれば認識する。
 上記のとおり、本発明は従来認識されていなかった課題を見出し、その課題を特定のピバリン酸エステルを特定の量使用することにより解決できることを見出した発明である。また、本発明においては、非水電解液中の電解質塩として、LiN(SOF)を用いることが好ましく、非水溶媒には引火点の高いエチレンカーボネート/プロピレンカーボネート=49/51~10/90(体積比)を用いることが好ましく、これらの電解質塩や非水溶媒と組み合わせることにより、本発明の効果をより高めることができることを見出したものである。
 すなわち、本発明は以下に示す事項により特定されるものである。
(1)正極、負極、セパレータ、及び非水溶媒に電解質塩を含む非水電解液を備えたリチウムイオン二次電池において、前記非水電解液が、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とするリチウムイオン二次電池。
(2)ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1種であることを特徴とする上記(1)記載のリチウムイオン二次電池。
(3)電解質塩としてLiN(SOF)を非水溶媒に0.5~3mol/L含み、又はLiN(SOF)とLiPFを非水溶媒に0.5~3mol/L含み、前記LiN(SOF)と前記LiPFの重量比がLiN(SOF)/LiPF=100/0~1/99であることを特徴とする上記(1)又は(2)記載のリチウムイオン二次電池。
(4)非水溶媒がエチレンカーボネート及びプロピレンカーボネートを含み、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90であることを特徴とする上記(1)~(3)のいずれかに記載のリチウムイオン二次電池。
(5)非水溶媒に電解質塩が溶解されてなる非水電解液であって、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とする非水電解液。
(6)以下の(i)、(ii)及び(iii)から選ばれる少なくとも1つを備える上記(5)記載の非水電解液。
(i)ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1つ以上である。
(ii)電解質塩がLiN(SOF)及びLiPFであり、前記LiN(SOF)及び前記LiPFが合計で非水溶媒中に0.5~3mol/L溶解され、前記前記LiN(SOF)と前記LiPFの重量比がLiN(SOF)/LiPF=100/0~1/99である。
(iii)非水溶媒がエチレンカーボネート及びプロピレンカーボネートであり、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90である。
 本発明のリチウムイオン二次電池は、高温使用時における電池の安全性に優れ、さらに初期容量や低温での急速充電などの電池特性にも優れる。また、本発明の非水電解液を用いることにより、高温使用時における安全性に優れ、初期容量や低温での急速充電などの電池特性にも優れるリチウムイオン二次電池を得ることができる。
 本発明のリチウムイオン二次電池は、正極、負極、セパレータ、及び非水溶媒に電解質塩を含む非水電解液を備えたリチウムイオン二次電池において、前記非水電解液が、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有する。本発明における非水溶媒としては、リチウムイオン二次電池の非水電解液に使用できる非水溶媒であれば特に制限されず、例えば、引火点が120℃以上の非水溶媒を挙げることができ、引火点が120℃以上の環状カーボネートを好適に挙げることができる。引火点が120℃以上の環状カーボネートとしては、EC(引火点143℃)、PC(引火点133℃)及びこれらの混合物が好ましい。非水溶媒におけるECの比率が高くなると、ECの融点は36℃であり常温で固体のため、低温にするとECの析出が起こり、低温特性が低下してしまうおそれがあり、PCの比率が高くなると、非水電解液のイオン伝導度が低下するおそれがある。そのため、ECとPCを混合して使用する場合、非水溶媒におけるECとPCの体積比は、EC/PC=49/51~10/90が好ましく、40/60~20/80がより好ましい。ECとPCを混合して使用する場合、非水溶媒はECとPCのみからなってもよく、ECとPC以外の非水溶媒を含んでもよい。したがって、前記ECとPCの体積比は、非水溶媒にECとPC以外の溶媒が含まれる場合は、非水溶媒に含まれているECとPCの体積比である。ECとPCを混合して使用する場合、非水溶媒に含まれるECとPCの合計量は90~100体積%が好ましい。引火点が120℃以上の環状カーボネートとしては、他にフルオロエチレンカーボネート(FEC、引火点122℃)を挙げることができる。また、本発明における他の非水溶媒としては、環状カーボネートであるビニレンカーボネート(VC、引火点80℃)を挙げることができる。PCを使用する場合、PCの0.5~10体積%をこれらに置き換えて使用することができる。
 本発明における非水溶媒に添加されるピバリン酸エステルとしては、炭素数が12~13であり、引火点90℃以上、かつ25℃における粘度が2~2.3cpであれば特に限定されるものではないが、ピバリン酸直鎖エステルとしてピバリン酸n-ヘプチル、ピバリン酸分枝エステルとして、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる1種又は2種以上が好ましく、特に好ましくは、粘度が低い割に引火点が最も高くできる分枝エステルのピバリン酸2-エチルヘキシルである。また、ピバリン酸エステルを2種以上用いる場合、ピバリン酸n-ヘプチルとピバリン酸2-オクチル、ピバリン酸n-ヘプチルとピバリン酸2-エチルヘキシル、ピバリン酸2-オクチルとピバリン酸2-エチルヘキシル、及びピバリン酸n-ヘプチルとピバリン酸2-オクチルとピバリン酸2-エチルヘキシルの混合物は、引火点が高く、粘度が低くなるように調整できるので特に好ましい。
 本発明における非水電解液において、前記ピバリン酸エステルは、非水溶媒に対して0.1体積%以上5体積%未満添加される。ここで、非水溶媒に対して0.1体積%以上5体積%未満とは、非水溶媒100(体積)に対して、ピバリン酸エステルが0.1以上5未満(体積)であることを意味する。ピバリン酸エステルの添加量(非水電解液中の含有量)が非水溶媒に対して0.1体積%未満の場合、セパレータの浸透性が不十分となるために電池性能が低下してしまうおそれがあり、5体積%以上の場合、電解液の引火点を押し下げると共に、セパレータへの浸透性が過多となるとセパレータ抵抗が上がり低温特性を低下させてしまうおそれがある。本発明における前記ピバリン酸エステルの添加量の好ましい範囲としては、0.5体積%以上5体積%未満、1体積%以上5体積%未満、0.5体積%以上4.5体積%以下(0.5~4.5体積%)又は1体積%以上4.5体積%以下(1~4.5体積%)を挙げることができる。本願明細書において、「A~B」との表示はA以上B以下を表す。本発明における前記ピバリン酸エステルを2種以上使用する場合には、本発明における前記ピバリン酸エステルの合計添加量が、非水溶媒に対して0.1体積%以上5体積%未満であり、合計添加量の好ましい範囲としては、0.5体積%以上5体積%未満、1体積%以上5体積%未満、0.5~4.5体積%又は1~4.5体積%を挙げることができる。
 黒鉛負極を用いた電池の場合、黒鉛負極上でのPCの還元分解を抑制するために、引火点が110℃以上のS=O骨格2つ及びS-O骨格1つ含有する鎖状化合物のペンタフルオロフェニル メタンスルホネート(引火点155℃)、メタンスルホン酸2-プロピニル(引火点124℃)またはS=O骨格2つ及びS-O骨格1つ含有する環状化合物の1,3-プロパンスルトン(引火点>110℃)のうち少なくとも1種以上を非水溶媒に添加することが好ましい。また、本発明のピバリン酸エステルの引火点90℃よりも高い化合物であれば、本発明の非水電解液の引火点を120℃以上にすることができるメリットがあり、これらの化合物の含有量は、非水電解液中に非水電解液全体に対して0.1~5質量%の範囲内で添加することが好ましい。また、本発明における非水溶媒は、引火点が低い非水溶媒、例えばDMC、EMC、DEC等の鎖状カーボネートなどを含有することを排除するものではない。本発明においては、ピバリン酸エステル添加後の非水溶媒の引火点が100℃以上となる非水溶媒及びピバリン酸エステルの組合が好適に使用でき、120℃以上となる組合せがより好適である。また、本発明における非水電解液の引火点は、100℃以上が好ましく、120℃以上がより好ましい。本発明は、本発明におけるピバリン酸エステル以外のピバリン酸エステルが非水溶媒に含まれることを排除するものではない。本発明におけるピバリン酸エステル以外のピバリン酸エステル(以下、「他のピバリン酸エステル」ともいう。)を併用する場合は、本発明の効果への影響を少なくする観点から、引火点90℃以上又は25℃における粘度が2~2.3cpのいずれか1つの特性を有することが好ましい。このようなピバリン酸エステルとしては、ピバリン酸n-オクチル(炭素数が13、引火点が104℃、粘度が2.52cp)、ピバリン酸n-ノニル(炭素数が14、引火点が116℃、粘度が3.01cp)、ピバリン酸2-ノニル(炭素数が14、引火点が104℃、粘度が2.65cp)等を挙げることができる。本発明におけるピバリン酸エステルと他のピバリン酸エステルを組み合わせて使用する場合は、本発明におけるピバリン酸エステルと他のピバリン酸エステルの合計は5体積%未満であることが好ましい。
 本発明における電解質塩として、リチウムイオン二次電池の電解液に使用できる電解質塩であれば特に制限されないが、例えば、LiN(SOF)、LiPF、LiN(SOCF、LiBF等を挙げることができる。LiN(SOF)は、化学的な熱安定性が高く、高温での電池性能を向上させることができることから好ましい。また、LiPFには低温での電池性能を補助的に向上させる効果があるため、LiPFを一定量加えることが好ましい。この理由は、電池内のピバリン酸エステル中のLi塩の溶解性が高まることにより、セパレータ付近でのLiイオンの移動がよりスムーズになることに起因していると推定される。非水溶媒に含まれる電解質塩の合計の濃度は0.5~3mol/L(すなわち非水溶媒1Lに対し電解質塩0.5~3mol)が好ましく、1~2mol/Lがより好ましい。また、LiN(SOF)を単独で用いる場合、及びLiN(SOF)とLiPFを混合して用いる場合、LiN(SOF)とLiPFの重量比であるLiN(SOF)/LiPFは、好ましい範囲として、100/0~1/99、100/0~50/50、100/0~70/30、95/5~50/50、90/10~70/30を挙げることができる。本発明における非水電解液は、非水溶媒にピバリン酸エステル及び電解質塩を溶解させることにより調製することができる。
 本発明におけるセパレータとしては、リチウムイオン二次電池に使用できるセパレータであれば特に制限されないが、ポリプロピレン、ポリエチレン等のポリオレフィン材料から形成された微多孔膜からなるセパレータを用いることが最も好ましいが、不織布セパレータを用いることもできる。多孔シートや不織布は、単層であっても、多層構造であってもよく、セパレータ表面に、アルミナなどの酸化物をコーティングしていてもよい。セパレータの厚みは、電池の体積エネルギー密度を上げるためには極力薄くする必要がある。そのため、セパレータの厚みは、20μm以下が好ましく、10μm以下がより好ましい。
 本発明における負極としては、リチウムイオン二次電池に使用できる負極であれば特に制限されないが、体積エネルギー密度を上げるためには、天然黒鉛や人造黒鉛などの黒鉛材料、ハードカーボンやソフトカーボンなどの炭素材料が好適に挙げられる。また、急速充放電を良くするためには、充放電時の膨張収縮のないLiTi12のようなスピネル型構造を持つチタン酸化物や、TiNb27、TiNb1029のチタン酸化物が好適に用いられ、特に好ましくは、LiTi12のようなスピネル型構造を持つチタン酸化物が好適である。
 負極合材としては、前記負極活物質にエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して使用される。
 本発明における正極の正極活物質としては、例えば、LiCoO、LiNiO、LiCo1/3Ni1/3Mn1/3、LiCo0.15Ni0.8Al0.05、LiNi0.8Co0.2、LiNi0.5Mn1.5等が挙げられる。体積エネルギー密度を上げるためには、原子比率としてNiが50%以上のリチウム複合酸化物を含む正極活物質として、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1、及びLiCo0.15Ni0.80Al0.05が好適に使用される。また、急速充放電を良くするためには、スピネル型構造を持つLiMn24、オリビン型構造を持つLiFePO4が好適に使用される。
 正極合材としては、前記正極活物質にアセチレンブラック、ケッチェンブラック等のカーボンブラック、カーボンナノチューブ、炭素繊維、活性炭、黒鉛等の公知または市販の導電助剤を使用することができ、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVFF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練してスラリー状の正極合剤とした後、この正極材料を集電体としてのアルミニウム箔に塗布して、乾燥、加圧成型後、例えば真空下、80℃で加熱処理することにより作製される。
 本発明に使用される正極合材と負極合材の組み合わせとしては、体積エネルギー密度を上げるための上記組み合わせ、または急速充放電を良くするための上記組み合わせが好適に挙げられ、電池を作製することができる。
 本発明に使用される集電体としては、特に制限はないが、アルミニウム箔や銅箔が一般的であり、電解液の浸透性を更に良くするために多孔質の集電体を用いることもできる。
 本発明においては、結着剤に用いられる溶媒も特に制限はなく、使用する活物質あるいは結着剤によって種々の溶媒を選択することができる。具体的には、結着剤としてPVDFを用いる場合は、溶媒としてN-メチル-2-ピロリドンを用いることが好ましく、一方、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース(CMC)等のゴム系結着剤を用いる場合には、溶媒として水が好適に挙げられる。
 本発明のリチウム二次電池の構造は、特に限定されるものではないが、正極、負極及びセパレータを有する二次電池の形状については、コイン型電池、円筒型電池、角型電池、パウチ型電池などが挙げられる。本発明のリチウム二次電池は、上述した正極、負極及びセパレータを前記構造に組み立て、セパレータに上述した非水電解液を注入することにより製造することができる。
 以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
[実施例1~3及び比較例1~4]
(引火点の測定方法)
 Pensky-Martensタイプの引火点測定装置(Flash Point Tester)、PMA500(Anton Paar社製)を用いて、表1に示す実施例1~3及び比較例1~5のピバリン酸エステル単独の引火点を測定した。その結果を表1に示す。
(粘度の測定方法)
 使用した粘度計の原理は回転式粘度計を用いた。機種はVISCOMETER DV-I PrimeLV(BROOKFIELD社製)であり、25℃条件下、ピバリン酸エステル単独の粘度を5回測定し、その平均値を粘度とした。その結果を表1に示す。
(微多孔性セパレータの孔部への電解液の浸透性の測定方法)
 1M LiN(SOF) EC/PC=40/60(体積比)の非水溶媒100体積%に対して、3~4体積%となる量のピバリン酸エステルを添加して、電解液を調製した。この電解液に、ポリエチレン層をポリプロピレン層で両側から挟んだ3層の微多孔膜セパレータを15秒間浸漬し、その後取り出して、目視にてセパレータの光透過性が、不透明から透明に完全に変化したと観察された添加量を非水溶媒に対する浸透性(濡れ性)として、体積%で示した。その結果を表1に示す。なお、表中の「2層」との表記は、非水溶媒と添加したピバリン酸エステルが完全に混ざらず、全量又は一部が2層に分離して浸透しなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明におけるピバリン酸エステルを使用した電解液は優れた浸透性が得られることが分かった。実施例1及び2と比較例1の結果を比較すると、比較例1におけるピバリン酸n-ヘキシル単独の粘度は、実施例1におけるピバリン酸2-エチルヘキシル及び実施例2におけるピバリン酸n-ヘプチル単独の粘度より低いものの、電解液としての浸透性は、実施例1では3.5体積%、実施例2では3体積%であるのに対して、比較例1では4体積%であり、単独の粘度が低い比較例1の方が多くの添加量が必要であった。すなわち、本発明におけるピバリン酸エステルを使用すると、EC、PC等の非水溶媒より引火点の低いピバリン酸エステルの添加量を少なくして電解液の浸透性を向上させることができ、さらに、実施例1におけるピバリン酸2-エチルヘキシル及び実施例2におけるピバリン酸n-ヘプチルの引火点は、比較例1におけるピバリン酸n-ヘキシルの引火点よりも高いので、引火点の高いピバリン酸エステルを使用して電解液の浸透性を向上させることができる。そのため、ピバリン酸エステルの添加により電解液全体の引火点を押し下げてしまうという問題点を解決できると共に、電解液の粘度が高くなりリチウムイオンの移動が遅くなるため、低温時の急速充電特性の低下が起こるという問題点も解決できる。また、実施例3と比較例2~4を比較すると、比較例2におけるピバリン酸n-オクチルは、引火点は104℃と高いものの粘度も2.52と高く、3~4体積%添加すると一部が混ざらず2層に分離してしまった。比較例3におけるピバリン酸3-オクチル及び比較例4におけるピバリン酸4-オクチル単独の粘度は、実施例3におけるピバリン酸2-オクチル単独の粘度より低いものの、電解液としての浸透性は、実施例3では3.5体積%であるのに対して、比較例3及び4では4体積%であり、単独の粘度が低い比較例3及び4の方が多くの添加量が必要であり、さらに比較例3におけるピバリン酸3-オクチル及び比較例4におけるピバリン酸4-オクチルの引火点は、実施例3におけるピバリン酸2-オクチルの引火点よりも低い。これらのことから、実施例3と比較例2~4からも、本発明では実施例1及び2と比較例1の結果について述べた効果が得られることが分かる。
[実施例4]
 ピバリン酸エステルとして、ピバリン酸n-ヘプチル1体積%及びピバリン酸n-オクチル2体積%を添加する以外は、実施例1~3と同様に電解液を調製して実施例4の電解液を得た。実施例4の電解液について、実施例1~3と同様に浸透性を評価した。実施例4の電解液に微多孔膜セパレータを15秒間浸漬し、その後取り出して観察したところ、セパレータの光透過性が、不透明から透明に完全に変化していた。ピバリン酸n-オクチルは、比較例2で示したように引火点は高いが、単独で使用した場合は2層に分離してしまう。しかし、ピバリン酸n-ヘプチルを少量添加することにより、浸透性に優れた電解液を得ることができた。このように、本発明におけるピバリン酸エステルは、少量でも電解液の浸透性を向上させる効果を有するので、本発明におけるピバリン酸エステルを使用することにより、引火点は高いが粘度が高く電解液の浸透性に問題を生じさせるピバリン酸エステルの使用を可能とすることができる。
 上述のとおり、本発明における引火点90℃以上で炭素数12~13のピバリン酸エステルを用いることにより、高温使用時における安全性に優れた引火点を持つ電池となると共に、電解液をセパレータに完全に浸透できるピバリン酸エステルの添加量が比較例より少なく、ピバリン酸エステルの添加量が非常に少なくても電解液の浸透性を向上できることから、セパレータへの高い浸透能力向上効果があることも分かった。加えて、本発明の引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルは、添加量を少なくでき引火点を高くできる割に粘度が低くできる特定領域を見出した。この低粘度かつセパレータへの浸透性にも優れる本発明のピバリン酸エステルを加えた電解液は、リチウムイオン二次電池の量産製造工程において、電池容器内に正極シート、セパレータ、そして負極シートからなる積層体または巻回体を装着したのち電解液を充填する際に、速やかに微多孔のセパレータに電解液が浸透し、リチウムイオン二次電池の製造時間の短縮も実現可能になることも分かった。また、シート状の正極や負極ではなく、粘土状の正極と負極の2層の電極層で構成され、この2層をセパレータで分けるクレイ(clay)状(粘土状)のリチウム二次電池の製造法においても、引火点が高い電解液を用いることは安全面で有効である。
[実施例5]
(電解液の調製)
 1M LiN(SOF)+0.1M LiPF EC/PC=1/2(体積比)の電解液100体積%に対し、ピバリン酸2-エチルヘキシルを4体積%となるよう非水溶媒を調製した。
(リチウム二次電池の作製及び電池特性の測定)
 LiNi0.8Co0.1Mn0.1(正極活物質、NCM811と略す)を80重量%、アセチレンブラック(導電助剤)を10重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1-メチル-2-ピロリドンを加えてスラリー状にしてアルミ箔上に塗布した。その後、乾燥、加圧成型して正極を調製した。同様に、LiTi12(負極活物質、LTOと略す)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1-メチル-2-ピロリドンを加えてスラリー状にしてアルミ箔上に塗布した。その後、乾燥後、加圧成型、加熱処理して負極を調製した。そして、セパレータはポリエチレンをポリプロピレンで挟んだ3層で20ミクロンの微多孔性フィルムを用い、上記電解液を注入させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
 このコイン電池を充放電装置ACD-MO1A(アスカ電子製)を用いて、25℃下、作動電圧を3.0Vから1.4Vに設定し、0℃、25℃、60℃で充放電試験を行った。その充放電条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例6~8及び比較例5]
 使用したピバリン酸エステルを表3のように替えた以外は、実施例5と同様にしてコイン電池を作製し、電池特性を測定した。
Figure JPOXMLDOC01-appb-T000003
 実施例5~8及び比較例5の結果、初期容量及び低温(0℃)における20Cの急速充電において、実施例の電解液は比較例より優れた結果が得られた。結果を表4~6に示す。表4は0℃での試験結果、表5は25℃での試験結果、表6は60℃での試験結果を示す。表中の数字は容量比を表し、比較例5の各試験温度における各サイクル回数での電池容量の値を標準(1.00)とし、容量比=実施例5~8の各値/比較例5の値で容量比を求めた。充電レートが高い10C、20Cの場合に実施例と比較例の結果に差が生じ容量比が大きくなり、特に0℃における6サイクル目(20C)での容量比が大きいことから、低温での急速充電特性に優れることが示された。また、1サイクル目と8サイクル目の容量が同じことから電池容量劣化がないことが分かる。また、相対的に引火点が高いピバリン酸2-エチルヘキシルと相対的に粘度が低いピバリン酸n-ヘプチルの混合物は、本発明の効果が更に改善できることが分かった。さらに、本発明におけるピバリン酸エステル以外のピバリン酸エステルであるピバリン酸n-オクチルであっても、その一部を本発明におけるピバリン酸エステルであるピバリン酸n-ヘプチルに差し替えた混合物にしさえすれば、本発明の効果が得られることが分かった。このように、本発明の非水電解液を用いるリチウムイオン二次電池は、高温使用時における安全性と共に、低温時における急速充電にも優れていることを見出した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明のリチウムイオン二次電池は、正極活物質にLiNi0.5Co0.2Mn0.3、負極活物質に天然黒鉛と人造黒鉛を混合した体積エネルギー密度を重視した電池においても、急速充電特性は負極活物質にLTOを用いた場合より差は小さいものの、急速充電特性は同様の傾向がみられた。
 リチウムイオン二次電池の製造に際して、本発明の非水電解液を用いることにより、高温使用時における電池の安全性に優れ、さらに低温における急速充電のような電池特性にも優れたリチウムイオン二次電池が可能となった。この本発明による産業界への貢献の大きさは計り知れない。

Claims (6)

  1.  正極、負極、セパレータ、及び非水溶媒に電解質塩を含む非水電解液を備えたリチウムイオン二次電池において、前記非水電解液が、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とするリチウムイオン二次電池。
  2.  ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1種であることを特徴とする請求項1記載のリチウムイオン二次電池。
  3.  電解質塩としてLiN(SOF)を非水溶媒に0.5~3mol/L含み、又はLiN(SOF)とLiPFを非水溶媒に0.5~3mol/L含み、前記LiN(SOF)と前記LiPFの重量比がLiN(SOF)/LiPF=100/0~1/99であることを特徴とする請求項1又は2記載のリチウムイオン二次電池。
  4.  非水溶媒がエチレンカーボネート及びプロピレンカーボネートを含み、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90であることを特徴とする請求項1~3のいずれかに記載のリチウムイオン二次電池。
  5.  非水溶媒に電解質塩が溶解されてなる非水電解液であって、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とする非水電解液。
  6.  以下の(i)、(ii)及び(iii)から選ばれる少なくとも1つを備える請求項5記載
    の非水電解液。
    (i)ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1つ以上である。
    (ii)電解質塩がLiN(SOF)及びLiPFであり、前記LiN(SOF)及び前記LiPFが合計で非水溶媒中に0.5~3mol/L溶解され、前記LiN(SOF)と前記LiPFの重量比がLiN(SOF)/LiPF=100/0~1/99である。
    (iii)非水溶媒がエチレンカーボネート及びプロピレンカーボネートであり、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90である。
PCT/JP2022/032306 2021-08-31 2022-08-29 リチウムイオン二次電池及び非水電解液 WO2023032871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023545540A JPWO2023032871A1 (ja) 2021-08-31 2022-08-29
EP22864454.8A EP4398365A1 (en) 2021-08-31 2022-08-29 Lithium ion secondary battery and nonaqueous electrolyte solution
CN202280057099.1A CN117836993A (zh) 2021-08-31 2022-08-29 锂离子二次电池和非水电解液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141173 2021-08-31
JP2021-141173 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032871A1 true WO2023032871A1 (ja) 2023-03-09

Family

ID=85412749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032306 WO2023032871A1 (ja) 2021-08-31 2022-08-29 リチウムイオン二次電池及び非水電解液

Country Status (4)

Country Link
EP (1) EP4398365A1 (ja)
JP (1) JPWO2023032871A1 (ja)
CN (1) CN117836993A (ja)
WO (1) WO2023032871A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243642A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011009230A (ja) * 2000-08-11 2011-01-13 Ube Industries Ltd 非水電解液およびリチウム二次電池
WO2013153814A1 (ja) * 2012-04-11 2013-10-17 パナソニック株式会社 二次電池用非水電解質および非水電解質二次電池
WO2016017809A1 (ja) * 2014-08-01 2016-02-04 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009230A (ja) * 2000-08-11 2011-01-13 Ube Industries Ltd 非水電解液およびリチウム二次電池
JP4691871B2 (ja) 2000-08-11 2011-06-01 宇部興産株式会社 非水電解液およびリチウム二次電池
JP2008243642A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 非水電解質二次電池
WO2013153814A1 (ja) * 2012-04-11 2013-10-17 パナソニック株式会社 二次電池用非水電解質および非水電解質二次電池
WO2016017809A1 (ja) * 2014-08-01 2016-02-04 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
JP6575521B2 (ja) 2014-08-01 2019-09-18 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス

Also Published As

Publication number Publication date
EP4398365A1 (en) 2024-07-10
JPWO2023032871A1 (ja) 2023-03-09
CN117836993A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
JP6896725B2 (ja) 二次電池及びその製造方法
JP5997383B2 (ja) 多層の活物質層を含むリチウム二次電池
JP5640546B2 (ja) 非水系電解液二次電池用セパレータ及び非水系電解液二次電池
TWI587562B (zh) 鋰離子電池用正極活性物質層之製造方法及鋰離子電池用正極活性物質層
CN104604014B (zh) 非水电解质溶液和包含其的锂二次电池
JP6484995B2 (ja) リチウムイオン二次電池
CN112335089A (zh) 电化学装置及电池组
WO2023070989A1 (zh) 电化学装置和包含其的电子装置
KR20170113333A (ko) 이차전지의 제조방법
JP2016085836A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP5078330B2 (ja) 非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池
CN113346140A (zh) 一种电解液及其应用
CN113078293A (zh) 电化学装置和电子装置
JP5614431B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
CN113614946A (zh) 负极极片、电化学装置、电子装置及负极极片的制备方法
KR101800497B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
JP2014049297A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
WO2023173410A1 (zh) 电化学装置、电子装置和制备负极极片的方法
JP2019110087A (ja) リチウムイオン二次電池用正極
WO2023032871A1 (ja) リチウムイオン二次電池及び非水電解液
JP6031965B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
WO2024090573A1 (ja) 非水電解液及びそれを用いたリチウムイオン二次電池
KR20210010025A (ko) 바나듐산화물-황 복합체, 이를 포함하는 양극 및 리튬 이차전지
JP7214705B2 (ja) 負極およびその製造方法
JP7165305B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057099.1

Country of ref document: CN

Ref document number: 2023545540

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18687300

Country of ref document: US

Ref document number: 2401001323

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022864454

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864454

Country of ref document: EP

Effective date: 20240402