WO2023032871A1 - リチウムイオン二次電池及び非水電解液 - Google Patents
リチウムイオン二次電池及び非水電解液 Download PDFInfo
- Publication number
- WO2023032871A1 WO2023032871A1 PCT/JP2022/032306 JP2022032306W WO2023032871A1 WO 2023032871 A1 WO2023032871 A1 WO 2023032871A1 JP 2022032306 W JP2022032306 W JP 2022032306W WO 2023032871 A1 WO2023032871 A1 WO 2023032871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- volume
- pivalate
- acid ester
- pivalic acid
- aqueous solvent
- Prior art date
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 38
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 28
- -1 pivalic acid ester Chemical class 0.000 claims abstract description 67
- 239000003792 electrolyte Substances 0.000 claims abstract description 31
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 18
- 150000003839 salts Chemical class 0.000 claims abstract description 18
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 239000003125 aqueous solvent Substances 0.000 claims description 55
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 35
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 34
- 239000008151 electrolyte solution Substances 0.000 claims description 29
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 19
- DGGIWFWLKMKNQZ-UHFFFAOYSA-N 2-ethylhexyl 2,2-dimethylpropanoate Chemical compound CCCCC(CC)COC(=O)C(C)(C)C DGGIWFWLKMKNQZ-UHFFFAOYSA-N 0.000 claims description 13
- VJQPQMJCZDBCEQ-UHFFFAOYSA-N heptyl 2,2-dimethylpropanoate Chemical compound CCCCCCCOC(=O)C(C)(C)C VJQPQMJCZDBCEQ-UHFFFAOYSA-N 0.000 claims description 13
- NOMAJVMDMJMOMT-UHFFFAOYSA-N octan-2-yl 2,2-dimethylpropanoate Chemical compound CCCCCCC(C)OC(=O)C(C)(C)C NOMAJVMDMJMOMT-UHFFFAOYSA-N 0.000 claims description 11
- 230000000052 comparative effect Effects 0.000 description 24
- 230000035699 permeability Effects 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical class CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- RQSINLZXJXXKOH-UHFFFAOYSA-N hexyl 2,2-dimethylpropanoate Chemical compound CCCCCCOC(=O)C(C)(C)C RQSINLZXJXXKOH-UHFFFAOYSA-N 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- CHJKOAVUGHSNBP-UHFFFAOYSA-N octyl 2,2-dimethylpropanoate Chemical compound CCCCCCCCOC(=O)C(C)(C)C CHJKOAVUGHSNBP-UHFFFAOYSA-N 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 150000001733 carboxylic acid esters Chemical group 0.000 description 5
- 150000005676 cyclic carbonates Chemical class 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- FCDMDSDHBVPGGE-UHFFFAOYSA-N butyl 2,2-dimethylpropanoate Chemical compound CCCCOC(=O)C(C)(C)C FCDMDSDHBVPGGE-UHFFFAOYSA-N 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- JMFMMOJGRYVJMZ-UHFFFAOYSA-N octan-3-yl 2,2-dimethylpropanoate Chemical compound CCCCCC(CC)OC(=O)C(C)(C)C JMFMMOJGRYVJMZ-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229950010765 pivalate Drugs 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- ARSIBVWMPYUPQT-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=C(F)C(F)=C(F)C(F)=C1F ARSIBVWMPYUPQT-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-M 2,2-dimethylbutanoate Chemical compound CCC(C)(C)C([O-])=O VUAXHMVRKOTJKP-UHFFFAOYSA-M 0.000 description 1
- QTZDCGSNJUZNBJ-UHFFFAOYSA-N 2,2-dimethyldecanoic acid Chemical group CCCCCCCCC(C)(C)C(O)=O QTZDCGSNJUZNBJ-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical group FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910013776 LiCo0.15Ni0.8Al0.05O2 Inorganic materials 0.000 description 1
- 229910012735 LiCo1/3Ni1/3Mn1/3O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910015915 LiNi0.8Co0.2O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- OAKPWFOEHKUXBX-UHFFFAOYSA-N decyl 2,2-dimethylpropanoate Chemical compound CCCCCCCCCCOC(=O)C(C)(C)C OAKPWFOEHKUXBX-UHFFFAOYSA-N 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- WNLFPMNBHCWASX-UHFFFAOYSA-N dodecyl 2,2-dimethylpropanoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)(C)C WNLFPMNBHCWASX-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- OOZINXFLGFVWBC-UHFFFAOYSA-N nonan-2-yl 2,2-dimethylpropanoate Chemical compound C(C(C)(C)C)(=O)OC(C)CCCCCCC OOZINXFLGFVWBC-UHFFFAOYSA-N 0.000 description 1
- MURBAFYGPLVCCN-UHFFFAOYSA-N nonyl 2,2-dimethylpropanoate Chemical compound CCCCCCCCCOC(=O)C(C)(C)C MURBAFYGPLVCCN-UHFFFAOYSA-N 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- IOTAYCLTDJEUCF-UHFFFAOYSA-N pentyl 2,2-dimethylpropanoate Chemical compound CCCCCOC(=O)C(C)(C)C IOTAYCLTDJEUCF-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- OWAHJGWVERXJMI-UHFFFAOYSA-N prop-2-ynyl methanesulfonate Chemical compound CS(=O)(=O)OCC#C OWAHJGWVERXJMI-UHFFFAOYSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention provides a lithium ion secondary battery that is excellent in battery safety when used at high temperatures and also has battery characteristics such as initial capacity and rapid charging at low temperatures, and a non-aqueous electrolyte used for the lithium ion secondary battery. Regarding.
- lithium-ion secondary batteries have been widely used not only as power sources for small electronic devices, but also as power sources for electric vehicles and power storage.
- a lithium ion secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, a separator, and a negative electrode.
- Lithium secondary batteries are preferably used.
- Electrolytes for lithium ion secondary batteries include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and the like. is preferably used in combination with a linear carbonate.
- Patent Document 1 a tertiary carboxylic acid ester having an alkyl group (R 4 ) bonded to an oxygen atom and having 4 to 20 carbon atoms is added to a non-aqueous solvent (eg, EC, PC) as a solvent for an electrolytic solution.
- a non-aqueous solvent eg, EC, PC
- lithium has a long charge-discharge cycle life, excellent battery characteristics such as electrical capacity and storage characteristics in a charged state, and suppresses battery swelling when used at high temperatures.
- a secondary battery has been proposed.
- Patent Document 2 at least three kinds of specific lithium salts are included as an electrolyte, and further, a tertiary carboxylic acid ester having an alkyl group (R 4 ) bonded to an oxygen atom having 1 to 6 carbon atoms is included.
- a lithium secondary battery has been proposed in which the use of a non-aqueous electrolyte can improve the capacity retention rate after high-temperature storage and suppress the increase in impedance after high-temperature storage.
- Patent Document 1 discloses that methyl pivalate, ethyl pivalate, butyl pivalate, hexyl pivalate, octyl pivalate, decyl pivalate, or dodecyl pivalate is used as a tertiary carboxylic acid ester in an electrolytic solution. It is shown that when added to a non-aqueous solvent, the 50-cycle discharge capacity retention rate of a lithium secondary battery could be improved (Example). However, when these pivalic acid esters are used, there is a problem that they lower the flash point of the entire electrolyte.
- Patent Document 2 it is shown that the discharge capacity retention rate after charging and storing at a high temperature of 60 ° C. was improved and the increase in impedance could be suppressed (Example). There is no teaching of the problem of depressing the overall flash point or degrading the rapid charge characteristics at low temperatures. Conventionally, the performance of secondary batteries for vehicles such as electric vehicles when stored at high temperatures after charging has been emphasized, but the need for battery safety and rapid charging at low temperatures has not been recognized. , It can be said that the rise of non-combustible all-solid electrolytes and the effect of rapid charging characteristics at low temperatures could not be predicted.
- the present invention solves the above problems, and has excellent battery safety when used at high temperatures, which is important for secondary batteries for vehicles such as recent electric vehicles.
- An object of the present invention is to provide a lithium ion secondary battery having excellent characteristics.
- a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent has a flash point of is 90° C. or higher and has a viscosity of 2 to 2.3 cp at 25° C. using a pivalic acid ester having 12 to 13 carbon atoms, and 0.1% by volume of the pivalic acid ester with respect to the non-aqueous solvent It has been found that the above problems can be solved by adding Ni in the range of less than 5% by volume.
- the carbon number of R 4 in the tertiary carboxylic acid ester is 1 to 6, and the number of carbon atoms of R 4 in the tertiary carboxylic acid ester is 1 to 6, and the Since the problem is not taught at all, it is not easy for a person skilled in the art to conceive of the pivalic acid ester and the amount thereof to be added in the present invention from Patent Document 2.
- Patent Document 2 describes n-heptyl pivalate (R 4 has 7 carbon atoms) in which R 4 does not have 1 to 6 carbon atoms, but n-butyl pivalate ( It is described between R 4 carbon number 4) and n-hexyl pivalate (R 4 carbon number 6), and it is an error of n-pentyl pivalate (R 4 carbon number 5). Recognize if.
- the present invention is an invention that has found a problem that has not been recognized hitherto and found that the problem can be solved by using a specific pivalic acid ester in a specific amount.
- /90 (volume ratio) is preferably used, and the inventors have found that the effects of the present invention can be further enhanced by combining these electrolyte salts and non-aqueous solvents.
- a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent, wherein the non-aqueous electrolyte has a flash point of 90 ° C. or higher and a viscosity at 25 ° C.
- a lithium ion secondary battery comprising 0.1% by volume or more and less than 5% by volume of a pivalic acid ester having 2 to 2.3 cp and having 12 to 13 carbon atoms with respect to the non-aqueous solvent.
- non-aqueous solvent contains ethylene carbonate and propylene carbonate
- the lithium ion secondary battery according to any one of (3).
- a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in a non-aqueous solvent, and a pivalic acid ester having 12 to 13 carbon atoms having a flash point of 90 ° C. or higher and a viscosity of 2 to 2.3 cp at 25 ° C.
- a non-aqueous electrolyte containing 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent comprising at least one selected from the following (i), (ii) and (iii).
- the pivalic acid ester is at least one selected from n-heptyl pivalate, 2-ethylhexyl pivalate and 2-octyl pivalate.
- the electrolyte salt is LiN(SO 2 F) 2 and LiPF 6 , and the LiN(SO 2 F) 2 and LiPF 6 are dissolved in a non-aqueous solvent in a total amount of 0.5 to 3 mol/L;
- the lithium-ion secondary battery of the present invention is excellent in battery safety when used at high temperatures, and is also excellent in battery characteristics such as initial capacity and rapid charging at low temperatures.
- the non-aqueous electrolyte of the present invention it is possible to obtain a lithium ion secondary battery which is excellent in safety when used at high temperatures and which is excellent in battery characteristics such as initial capacity and rapid charging at low temperatures.
- the lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent, wherein the non-aqueous electrolyte has a flash point of 90 ° C. 0.1% by volume or more and less than 5% by volume of a pivalic acid ester having 12 to 13 carbon atoms and having a viscosity of 2 to 2.3 cp at 25° C. relative to the non-aqueous solvent.
- the non-aqueous solvent in the present invention is not particularly limited as long as it can be used in the non-aqueous electrolyte of a lithium ion secondary battery. and a cyclic carbonate having a flash point of 120° C. or higher.
- a cyclic carbonate having a flash point of 120° C. or higher As the cyclic carbonate having a flash point of 120° C. or higher, EC (flash point of 143° C.), PC (flash point of 133° C.) and mixtures thereof are preferable.
- EC flash point of 143° C.
- PC flash point of 133° C.
- the ratio of EC in the non-aqueous solvent increases, EC has a melting point of 36°C and is a solid at room temperature. Therefore, when the temperature is lowered to a low temperature, precipitation of EC may occur and the low-temperature characteristics may deteriorate.
- the volume ratio of EC/PC in the non-aqueous solvent is preferably from 49/51 to 10/90, more preferably from 40/60 to 20/80.
- the non-aqueous solvent may consist of only EC and PC, or may contain a non-aqueous solvent other than EC and PC. Therefore, when the non-aqueous solvent contains a solvent other than EC and PC, the volume ratio of EC to PC is the volume ratio of EC to PC contained in the non-aqueous solvent.
- the total amount of EC and PC contained in the non-aqueous solvent is preferably 90 to 100% by volume.
- Another example of the cyclic carbonate having a flash point of 120° C. or higher is fluoroethylene carbonate (FEC, flash point 122° C.).
- FEC fluoroethylene carbonate
- Another non-aqueous solvent used in the present invention is vinylene carbonate (VC, flash point 80° C.), which is a cyclic carbonate.
- VC vinylene carbonate
- PC 0.5 to 10% by volume of PC can be replaced with these.
- the pivalic acid ester added to the non-aqueous solvent in the present invention is particularly limited as long as it has 12 to 13 carbon atoms, a flash point of 90 ° C. or higher, and a viscosity of 2 to 2.3 cp at 25 ° C.
- one or more selected from n-heptyl pivalate as the straight-chain pivalate and 2-ethylhexyl pivalate and 2-octyl pivalate as the branched pivalate are preferred, and particularly preferably, 2-Ethylhexyl pivalate is a branched ester that can have the highest flash point for the lowest viscosity.
- n-heptyl pivalate and 2-octyl pivalate When two or more pivalic acid esters are used, n-heptyl pivalate and 2-octyl pivalate, n-heptyl pivalate and 2-ethylhexyl pivalate, 2-octyl pivalate and 2-ethylhexyl pivalate, and pivaline
- a mixture of n-heptyl acid, 2-octyl pivalate and 2-ethylhexyl pivalate is particularly preferred because it has a high flash point and can be adjusted to have a low viscosity.
- the pivalic acid ester is added in an amount of 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent.
- 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent means that the pivalic acid ester is 0.1 or more and less than 5 (volume) with respect to 100 (volume) of the non-aqueous solvent. means. If the amount of pivalic acid ester added (content in the non-aqueous electrolyte) is less than 0.1% by volume relative to the non-aqueous solvent, the permeability of the separator becomes insufficient, resulting in poor battery performance.
- the content is 5% by volume or more, the flash point of the electrolytic solution may be lowered, and if the permeability to the separator is excessive, the resistance of the separator may increase and the low-temperature characteristics may deteriorate.
- Preferred ranges of the amount of the pivalic acid ester added in the present invention are 0.5% by volume to less than 5% by volume, 1% by volume to less than 5% by volume, 0.5% by volume to 4.5% by volume (0 .5 to 4.5% by volume) or 1% to 4.5% by volume (1 to 4.5% by volume).
- the expression "A to B" represents A or more and B or less.
- the total amount of the pivalic acid esters in the present invention is 0.1% by volume or more and less than 5% by volume with respect to the non-aqueous solvent, and the total A preferable range of the amount to be added is 0.5% by volume or more and less than 5% by volume, 1% by volume or more and less than 5% by volume, 0.5 to 4.5% by volume, or 1 to 4.5% by volume. .
- the compound has a flash point higher than 90° C. of the pivalic acid ester of the present invention
- the flash point of the non-aqueous electrolyte of the present invention can be made 120° C. or higher. is preferably added to the non-aqueous electrolyte within the range of 0.1 to 5% by mass with respect to the total non-aqueous electrolyte.
- the non-aqueous solvent in the present invention does not exclude non-aqueous solvents having a low flash point, such as chain carbonates such as DMC, EMC and DEC.
- a combination of a non-aqueous solvent and a pivalic acid ester in which the flash point of the non-aqueous solvent after addition of the pivalic acid ester is 100° C. or higher can be preferably used, and a combination in which the flash point is 120° C. or higher is more preferred.
- the flash point of the non-aqueous electrolyte in the present invention is preferably 100° C. or higher, more preferably 120° C. or higher.
- the present invention does not exclude the inclusion of pivalic acid esters other than the pivalic acid ester in the present invention in the non-aqueous solvent.
- Such pivalic acid esters include n-octyl pivalate (having 13 carbon atoms, a flash point of 104° C.
- the total amount of the pivalic acid ester of the present invention and other pivalic acid ester is preferably less than 5% by volume.
- the electrolyte salt in the present invention is not particularly limited as long as it can be used in the electrolyte of a lithium ion secondary battery .
- LiBF4 etc. can be mentioned.
- LiN(SO 2 F) 2 is preferable because it has high chemical thermal stability and can improve battery performance at high temperatures.
- LiPF 6 has the effect of supplementarily improving battery performance at low temperatures, it is preferable to add a certain amount of LiPF 6 . It is presumed that the reason for this is that the solubility of the Li salt in the pivalic acid ester in the battery is increased, so that the movement of Li ions in the vicinity of the separator becomes smoother.
- the total concentration of the electrolyte salt contained in the nonaqueous solvent is preferably 0.5 to 3 mol/L (that is, 0.5 to 3 mol of the electrolyte salt per 1 L of the nonaqueous solvent), more preferably 1 to 2 mol/L.
- LiN(SO 2 F) 2 is used alone or when LiN(SO 2 F) 2 and LiPF 6 are mixed and used, LiN ( SO 2 F) 2 /LiPF 6 preferably ranges from 100/0 to 1/99, 100/0 to 50/50, 100/0 to 70/30, 95/5 to 50/50, 90/10 to 70/30 can be mentioned.
- the non-aqueous electrolyte in the present invention can be prepared by dissolving the pivalic acid ester and the electrolyte salt in a non-aqueous solvent.
- the separator in the present invention is not particularly limited as long as it can be used in a lithium ion secondary battery, but it is most preferable to use a separator made of a microporous film formed from a polyolefin material such as polypropylene or polyethylene, but non-woven fabric is used.
- a separator can also be used.
- the porous sheet or nonwoven fabric may have a single layer structure or a multilayer structure, and the surface of the separator may be coated with an oxide such as alumina.
- the thickness of the separator should be as thin as possible in order to increase the volumetric energy density of the battery. Therefore, the thickness of the separator is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
- the negative electrode in the present invention is not particularly limited as long as it can be used in a lithium ion secondary battery. Carbon materials are preferred. Further, in order to improve rapid charging and discharging, titanium oxides having a spinel structure such as Li 4 Ti 5 O 12 which does not expand and contract during charging and discharging, TiNb 2 O 7 and Ti 2 Nb 10 O 29 are used. is preferably used, and titanium oxides having a spinel structure such as Li 4 Ti 5 O 12 are particularly preferable.
- the negative electrode active material includes ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene. It is used after being kneaded with a binder such as a copolymer (NBR) or carboxymethyl cellulose (CMC).
- EPDM ethylene propylene diene terpolymer
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- SBR styrene and butadiene
- NBR copolymer
- CMC carboxymethyl cellulose
- Examples of the positive electrode active material for the positive electrode in the present invention include LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.15 Ni 0.8 Al 0.05 O 2 , LiNi 0.8Co0.2O2 , LiNi0.5Mn1.5O4 and the like .
- LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0 , and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are used as the positive electrode active material containing a lithium composite oxide having an atomic ratio of Ni of 50% or more.
- LiMn 2 O 4 having a spinel structure and LiFePO 4 having an olivine structure are preferably used to improve rapid charging and discharging.
- the positive electrode mixture known or commercially available conductive aids such as carbon black such as acetylene black and ketjen black, carbon nanotubes, carbon fiber, activated carbon, and graphite can be used for the positive electrode active material. Slurry by kneading with a binder such as ethylene (PTFE), polyvinylidene fluoride (PVFF), styrene-butadiene copolymer (SBR), acrylonitrile-butadiene copolymer (NBR), carboxymethyl cellulose (CMC), etc. After forming the positive electrode mixture, the positive electrode material is applied to an aluminum foil as a current collector, dried, pressure-molded, and then heat-treated at 80° C. under vacuum, for example.
- a binder such as ethylene (PTFE), polyvinylidene fluoride (PVFF), styrene-butadiene copolymer (SBR), acrylonitrile-butadiene copolymer (NBR),
- the above combination for increasing the volumetric energy density or the above combination for improving the rapid charge/discharge can be suitably exemplified. can be done.
- the current collector used in the present invention is not particularly limited, but aluminum foil and copper foil are common, and a porous current collector may be used to further improve the permeability of the electrolytic solution. can.
- the solvent used for the binder is also not particularly limited, and various solvents can be selected depending on the active material or binder used. Specifically, when PVDF is used as the binder, N-methyl-2-pyrrolidone is preferably used as the solvent, while styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinyl alcohol, carboxymethylcellulose ( CMC) and other rubber-based binders are preferably used as a solvent.
- SBR styrene-butadiene rubber
- CMC carboxymethylcellulose
- the structure of the lithium secondary battery of the present invention is not particularly limited, but the shape of the secondary battery having a positive electrode, a negative electrode, and a separator may be a coin-shaped battery, a cylindrical battery, a rectangular battery, or a pouch-shaped battery. etc.
- the lithium secondary battery of the present invention can be manufactured by assembling the above positive electrode, negative electrode and separator into the above structure, and injecting the above nonaqueous electrolyte into the separator.
- Example 1 to 3 and Comparative Examples 1 to 4 Method for measuring flash point
- PMA500 manufactured by Anton Paar
- the flash points of the pivalate esters alone of Examples 1 to 3 and Comparative Examples 1 to 5 shown in Table 1 were measured. It was measured. Table 1 shows the results.
- the amount of the pivalic acid ester having a flash point lower than that of non-aqueous solvents such as EC and PC can be reduced to improve the permeability of the electrolytic solution. Since the flash points of 2-ethylhexyl pivalate in Example 1 and n-heptyl pivalate in Example 2 are higher than the flash point of n-hexyl pivalate in Comparative Example 1, a pivalic acid ester with a high flash point was used. can improve the permeability of the electrolytic solution.
- pivalic acid ester can solve the problem of lowering the flash point of the entire electrolyte, and the viscosity of the electrolyte increases, slowing the movement of lithium ions, resulting in a decrease in rapid charging characteristics at low temperatures. can also solve the problem of Further, when comparing Example 3 with Comparative Examples 2 to 4, n-octyl pivalate in Comparative Example 2 has a high flash point of 104° C., but a high viscosity of 2.52. The parts were not mixed and separated into two layers.
- Example 4 An electrolytic solution of Example 4 was obtained by preparing an electrolytic solution in the same manner as in Examples 1 to 3, except that 1% by volume of n-heptyl pivalate and 2% by volume of n-octyl pivalate were added as pivalic acid esters. rice field. The electrolyte of Example 4 was evaluated for permeability in the same manner as in Examples 1-3. When the microporous membrane separator was immersed in the electrolytic solution of Example 4 for 15 seconds, then taken out and observed, the light transmittance of the separator completely changed from opaque to transparent. As shown in Comparative Example 2, n-octyl pivalate has a high flash point, but separates into two layers when used alone.
- the pivalic acid ester of the present invention has the effect of improving the permeability of the electrolytic solution even in a small amount. It may allow the use of pivalic acid esters, which cause permeability problems.
- a pivalic acid ester having a flash point of 90 ° C. or higher and a carbon number of 12 to 13 in the present invention a battery having a flash point that is excellent in safety when used at high temperatures is obtained, and the electrolyte is used as a separator.
- the amount of pivalic acid ester that can be completely permeated is less than in the comparative example, and even if the amount of pivalic acid ester added is very small, the permeability of the electrolyte can be improved. Do you get it.
- the C 12-13 pivalic acid ester of the present invention having a flash point of 90 ° C. or higher and a viscosity at 25 ° C.
- the electrolytic solution containing the pivalic acid ester of the present invention which has low viscosity and excellent separator permeability, is formed into a positive electrode sheet, a separator, and a negative electrode sheet in a battery container in the mass production process of lithium ion secondary batteries. It was also found that when the electrolytic solution is filled after mounting the laminated body or wound body, the electrolytic solution quickly permeates the microporous separator, making it possible to shorten the production time of the lithium ion secondary battery. .
- sheet-like positive and negative electrodes instead of sheet-like positive and negative electrodes, it is composed of two layers of clay-like positive and negative electrode layers, and the two layers are separated by a separator. Also in the method, using an electrolyte with a high flash point is effective in terms of safety.
- LiNi 0.8 Co 0.1 Mn 0.1 O 2 positive electrode active material, abbreviated as NCM811
- acetylene black conductive assistant
- polyvinylidene fluoride (binder) 1-Methyl-2-pyrrolidone was added to the mixture to form a slurry, which was applied onto an aluminum foil. After that, it was dried and pressure-molded to prepare a positive electrode.
- Li 4 Ti 5 O 12 negative electrode active material, abbreviated as LTO
- polyvinylidene fluoride binder
- 1-methyl-2-pyrrolidone was added thereto. was added to form a slurry, which was applied onto an aluminum foil.
- pressure molding and heat treatment were performed to prepare a negative electrode.
- This coin battery was charged/discharged at 0°C, 25°C, and 60°C at 25°C using a charging/discharging device ACD-MO1A (manufactured by Aska Electronics) with an operating voltage set from 3.0V to 1.4V. gone.
- Table 2 shows the charging and discharging conditions.
- Example 6 to 8 and Comparative Example 5 A coin battery was produced in the same manner as in Example 5 except that the pivalic acid ester used was changed as shown in Table 3, and the battery characteristics were measured.
- n-octyl pivalate which is a pivalic acid ester other than the pivalic acid ester of the present invention
- n-heptyl pivalic acid which is the pivalic acid ester of the present invention
- LiNi 0.5 Co 0.2 Mn 0.3 O 2 is used as the positive electrode active material, and natural graphite and artificial graphite are mixed as the negative electrode active material in the lithium ion secondary battery of the present invention.
- the difference in rapid charging characteristics was smaller than that in the case of using LTO as the negative electrode active material, the rapid charging characteristics tended to be the same.
- the lithium ion secondary battery has excellent battery safety when used at high temperatures and also has excellent battery characteristics such as rapid charging at low temperatures. batteries became possible. The contribution of this invention to the industrial world is immeasurable.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
(1)正極、負極、セパレータ、及び非水溶媒に電解質塩を含む非水電解液を備えたリチウムイオン二次電池において、前記非水電解液が、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とするリチウムイオン二次電池。
(2)ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1種であることを特徴とする上記(1)記載のリチウムイオン二次電池。
(3)電解質塩としてLiN(SO2F)2を非水溶媒に0.5~3mol/L含み、又はLiN(SO2F)2とLiPF6を非水溶媒に0.5~3mol/L含み、前記LiN(SO2F)2と前記LiPF6の重量比がLiN(SO2F)2/LiPF6=100/0~1/99であることを特徴とする上記(1)又は(2)記載のリチウムイオン二次電池。
(4)非水溶媒がエチレンカーボネート及びプロピレンカーボネートを含み、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90であることを特徴とする上記(1)~(3)のいずれかに記載のリチウムイオン二次電池。
(5)非水溶媒に電解質塩が溶解されてなる非水電解液であって、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とする非水電解液。
(6)以下の(i)、(ii)及び(iii)から選ばれる少なくとも1つを備える上記(5)記載の非水電解液。
(i)ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1つ以上である。
(ii)電解質塩がLiN(SO2F)2及びLiPF6であり、前記LiN(SO2F)2及び前記LiPF6が合計で非水溶媒中に0.5~3mol/L溶解され、前記前記LiN(SO2F)2と前記LiPF6の重量比がLiN(SO2F)2/LiPF6=100/0~1/99である。
(iii)非水溶媒がエチレンカーボネート及びプロピレンカーボネートであり、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90である。
(引火点の測定方法)
Pensky-Martensタイプの引火点測定装置(Flash Point Tester)、PMA500(Anton Paar社製)を用いて、表1に示す実施例1~3及び比較例1~5のピバリン酸エステル単独の引火点を測定した。その結果を表1に示す。
使用した粘度計の原理は回転式粘度計を用いた。機種はVISCOMETER DV-I PrimeLV(BROOKFIELD社製)であり、25℃条件下、ピバリン酸エステル単独の粘度を5回測定し、その平均値を粘度とした。その結果を表1に示す。
1M LiN(SO2F)2 EC/PC=40/60(体積比)の非水溶媒100体積%に対して、3~4体積%となる量のピバリン酸エステルを添加して、電解液を調製した。この電解液に、ポリエチレン層をポリプロピレン層で両側から挟んだ3層の微多孔膜セパレータを15秒間浸漬し、その後取り出して、目視にてセパレータの光透過性が、不透明から透明に完全に変化したと観察された添加量を非水溶媒に対する浸透性(濡れ性)として、体積%で示した。その結果を表1に示す。なお、表中の「2層」との表記は、非水溶媒と添加したピバリン酸エステルが完全に混ざらず、全量又は一部が2層に分離して浸透しなかったことを示す。
ピバリン酸エステルとして、ピバリン酸n-ヘプチル1体積%及びピバリン酸n-オクチル2体積%を添加する以外は、実施例1~3と同様に電解液を調製して実施例4の電解液を得た。実施例4の電解液について、実施例1~3と同様に浸透性を評価した。実施例4の電解液に微多孔膜セパレータを15秒間浸漬し、その後取り出して観察したところ、セパレータの光透過性が、不透明から透明に完全に変化していた。ピバリン酸n-オクチルは、比較例2で示したように引火点は高いが、単独で使用した場合は2層に分離してしまう。しかし、ピバリン酸n-ヘプチルを少量添加することにより、浸透性に優れた電解液を得ることができた。このように、本発明におけるピバリン酸エステルは、少量でも電解液の浸透性を向上させる効果を有するので、本発明におけるピバリン酸エステルを使用することにより、引火点は高いが粘度が高く電解液の浸透性に問題を生じさせるピバリン酸エステルの使用を可能とすることができる。
(電解液の調製)
1M LiN(SO2F)2+0.1M LiPF6 EC/PC=1/2(体積比)の電解液100体積%に対し、ピバリン酸2-エチルヘキシルを4体積%となるよう非水溶媒を調製した。
LiNi0.8Co0.1Mn0.1O2(正極活物質、NCM811と略す)を80重量%、アセチレンブラック(導電助剤)を10重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1-メチル-2-ピロリドンを加えてスラリー状にしてアルミ箔上に塗布した。その後、乾燥、加圧成型して正極を調製した。同様に、Li4Ti5O12(負極活物質、LTOと略す)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1-メチル-2-ピロリドンを加えてスラリー状にしてアルミ箔上に塗布した。その後、乾燥後、加圧成型、加熱処理して負極を調製した。そして、セパレータはポリエチレンをポリプロピレンで挟んだ3層で20ミクロンの微多孔性フィルムを用い、上記電解液を注入させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
使用したピバリン酸エステルを表3のように替えた以外は、実施例5と同様にしてコイン電池を作製し、電池特性を測定した。
Claims (6)
- 正極、負極、セパレータ、及び非水溶媒に電解質塩を含む非水電解液を備えたリチウムイオン二次電池において、前記非水電解液が、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とするリチウムイオン二次電池。
- ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1種であることを特徴とする請求項1記載のリチウムイオン二次電池。
- 電解質塩としてLiN(SO2F)2を非水溶媒に0.5~3mol/L含み、又はLiN(SO2F)2とLiPF6を非水溶媒に0.5~3mol/L含み、前記LiN(SO2F)2と前記LiPF6の重量比がLiN(SO2F)2/LiPF6=100/0~1/99であることを特徴とする請求項1又は2記載のリチウムイオン二次電池。
- 非水溶媒がエチレンカーボネート及びプロピレンカーボネートを含み、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90であることを特徴とする請求項1~3のいずれかに記載のリチウムイオン二次電池。
- 非水溶媒に電解質塩が溶解されてなる非水電解液であって、引火点90℃以上かつ25℃における粘度が2~2.3cpである炭素数12~13のピバリン酸エステルを前記非水溶媒に対して0.1体積%以上5体積%未満含有することを特徴とする非水電解液。
- 以下の(i)、(ii)及び(iii)から選ばれる少なくとも1つを備える請求項5記載
の非水電解液。
(i)ピバリン酸エステルが、ピバリン酸n-へプチル、ピバリン酸2-エチルヘキシル及びピバリン酸2-オクチルから選ばれる少なくとも1つ以上である。
(ii)電解質塩がLiN(SO2F)2及びLiPF6であり、前記LiN(SO2F)2及び前記LiPF6が合計で非水溶媒中に0.5~3mol/L溶解され、前記LiN(SO2F)2と前記LiPF6の重量比がLiN(SO2F)2/LiPF6=100/0~1/99である。
(iii)非水溶媒がエチレンカーボネート及びプロピレンカーボネートであり、前記エチレンカーボネートと前記プロピレンカーボネートの体積比がエチレンカーボネート/プロピレンカーボネート=49/51~10/90である。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023545540A JPWO2023032871A1 (ja) | 2021-08-31 | 2022-08-29 | |
EP22864454.8A EP4398365A1 (en) | 2021-08-31 | 2022-08-29 | Lithium ion secondary battery and nonaqueous electrolyte solution |
CN202280057099.1A CN117836993A (zh) | 2021-08-31 | 2022-08-29 | 锂离子二次电池和非水电解液 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021141173 | 2021-08-31 | ||
JP2021-141173 | 2021-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032871A1 true WO2023032871A1 (ja) | 2023-03-09 |
Family
ID=85412749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/032306 WO2023032871A1 (ja) | 2021-08-31 | 2022-08-29 | リチウムイオン二次電池及び非水電解液 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4398365A1 (ja) |
JP (1) | JPWO2023032871A1 (ja) |
CN (1) | CN117836993A (ja) |
WO (1) | WO2023032871A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008243642A (ja) * | 2007-03-28 | 2008-10-09 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2011009230A (ja) * | 2000-08-11 | 2011-01-13 | Ube Industries Ltd | 非水電解液およびリチウム二次電池 |
WO2013153814A1 (ja) * | 2012-04-11 | 2013-10-17 | パナソニック株式会社 | 二次電池用非水電解質および非水電解質二次電池 |
WO2016017809A1 (ja) * | 2014-08-01 | 2016-02-04 | 宇部興産株式会社 | 非水電解液およびそれを用いた蓄電デバイス |
-
2022
- 2022-08-29 EP EP22864454.8A patent/EP4398365A1/en active Pending
- 2022-08-29 CN CN202280057099.1A patent/CN117836993A/zh active Pending
- 2022-08-29 JP JP2023545540A patent/JPWO2023032871A1/ja active Pending
- 2022-08-29 WO PCT/JP2022/032306 patent/WO2023032871A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011009230A (ja) * | 2000-08-11 | 2011-01-13 | Ube Industries Ltd | 非水電解液およびリチウム二次電池 |
JP4691871B2 (ja) | 2000-08-11 | 2011-06-01 | 宇部興産株式会社 | 非水電解液およびリチウム二次電池 |
JP2008243642A (ja) * | 2007-03-28 | 2008-10-09 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
WO2013153814A1 (ja) * | 2012-04-11 | 2013-10-17 | パナソニック株式会社 | 二次電池用非水電解質および非水電解質二次電池 |
WO2016017809A1 (ja) * | 2014-08-01 | 2016-02-04 | 宇部興産株式会社 | 非水電解液およびそれを用いた蓄電デバイス |
JP6575521B2 (ja) | 2014-08-01 | 2019-09-18 | 宇部興産株式会社 | 非水電解液およびそれを用いた蓄電デバイス |
Also Published As
Publication number | Publication date |
---|---|
EP4398365A1 (en) | 2024-07-10 |
JPWO2023032871A1 (ja) | 2023-03-09 |
CN117836993A (zh) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6896725B2 (ja) | 二次電池及びその製造方法 | |
JP5997383B2 (ja) | 多層の活物質層を含むリチウム二次電池 | |
JP5640546B2 (ja) | 非水系電解液二次電池用セパレータ及び非水系電解液二次電池 | |
TWI587562B (zh) | 鋰離子電池用正極活性物質層之製造方法及鋰離子電池用正極活性物質層 | |
CN104604014B (zh) | 非水电解质溶液和包含其的锂二次电池 | |
JP6484995B2 (ja) | リチウムイオン二次電池 | |
CN112335089A (zh) | 电化学装置及电池组 | |
WO2023070989A1 (zh) | 电化学装置和包含其的电子装置 | |
KR20170113333A (ko) | 이차전지의 제조방법 | |
JP2016085836A (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
JP5078330B2 (ja) | 非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池 | |
CN113346140A (zh) | 一种电解液及其应用 | |
CN113078293A (zh) | 电化学装置和电子装置 | |
JP5614431B2 (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
CN113614946A (zh) | 负极极片、电化学装置、电子装置及负极极片的制备方法 | |
KR101800497B1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
JP2014049297A (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
WO2023173410A1 (zh) | 电化学装置、电子装置和制备负极极片的方法 | |
JP2019110087A (ja) | リチウムイオン二次電池用正極 | |
WO2023032871A1 (ja) | リチウムイオン二次電池及び非水電解液 | |
JP6031965B2 (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
WO2024090573A1 (ja) | 非水電解液及びそれを用いたリチウムイオン二次電池 | |
KR20210010025A (ko) | 바나듐산화물-황 복합체, 이를 포함하는 양극 및 리튬 이차전지 | |
JP7214705B2 (ja) | 負極およびその製造方法 | |
JP7165305B2 (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22864454 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280057099.1 Country of ref document: CN Ref document number: 2023545540 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18687300 Country of ref document: US Ref document number: 2401001323 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022864454 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022864454 Country of ref document: EP Effective date: 20240402 |