WO2023032326A1 - 圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュール - Google Patents

圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュール Download PDF

Info

Publication number
WO2023032326A1
WO2023032326A1 PCT/JP2022/013862 JP2022013862W WO2023032326A1 WO 2023032326 A1 WO2023032326 A1 WO 2023032326A1 JP 2022013862 W JP2022013862 W JP 2022013862W WO 2023032326 A1 WO2023032326 A1 WO 2023032326A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
mol
less
powder
piezoelectric ceramic
Prior art date
Application number
PCT/JP2022/013862
Other languages
English (en)
French (fr)
Inventor
和宗 橘
隆幸 後藤
亮 伊藤
寛之 清水
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023032326A1 publication Critical patent/WO2023032326A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to piezoelectric ceramic compositions, piezoelectric ceramics, piezoelectric elements, and tactile modules.
  • Piezoelectric elements are used in sensor elements, power generating elements, etc., using the positive piezoelectric effect that converts mechanical energy into electrical energy. Piezoelectric elements are also used in vibrators, sound generators, actuators, ultrasonic motors, pumps, etc., by utilizing the inverse piezoelectric effect of converting electrical energy into mechanical energy. Furthermore, piezoelectric elements are also used in circuit elements, vibration control elements, etc., due to the combination of the positive piezoelectric effect and the inverse piezoelectric effect.
  • Piezoelectric ceramics which are sintered bodies having piezoelectric properties, are often used as piezoelectric bodies constituting piezoelectric elements.
  • Lead zirconate titanate (Pb(Zr, Ti)O 3 , PZT) and its solid solution are widely used as the composition of the piezoelectric ceramics.
  • PZT-based piezoelectric ceramics have a high Curie temperature, and therefore have the advantage of being usable even in high-temperature environments.
  • electromechanical coupling coefficient it also has the advantage of being able to efficiently convert electrical energy and mechanical energy.
  • firing can be performed at a temperature below 1000° C., which has the advantage of reducing the manufacturing cost of the piezoelectric element.
  • lead-free piezoelectric ceramics have been composed of alkali niobate ((Li, Na, K)NbO 3 ), bismuth sodium titanate ((Bi 0.5 Na 0.5 )TiO 3 , BNT), and bismuth layered compounds.
  • alkali niobate-based piezoelectric ceramics have a high Curie point and a relatively large electromechanical coupling coefficient, and are therefore attracting attention as piezoelectric ceramics to replace PZT-based piezoelectric ceramics.
  • various investigations have been made on piezoelectric ceramic compositions for forming such ceramics.
  • Patent Document 1 describes a piezoelectric ceramic composition having the general formula ⁇ Li 0.04 (K 0.5 Na 0.5 ) 0.96 ⁇ (Nb 0.86 Ta 0.1 Sb 0.04 ) O 3 , any one selected from Mg, Ca, Sr and Ba Those containing one or more additional elements are described.
  • Patent Document 2 describes a piezoelectric ceramic composition of the general formula ⁇ Li 0.1 (K 0.5 Na 0.5 ) 0.9 as a piezoelectric ceramic composition from which a piezoelectric ceramic having a high mechanical quality factor Qm and a small dielectric loss can be obtained.
  • Patent Document 3 describes a calcined powder represented by a composition formula of Li 0.06 Na 0.52 K 0.42 NbO 3 as a piezoelectric ceramic composition for obtaining a long-life laminated piezoelectric element. and to which a compound containing Li, Ba, Mn and Si is added. Patent Document 1 also describes that the piezoelectric ceramic composition described above was fired at 1010° C. to obtain laminated piezoelectric ceramics.
  • Patent Documents 1 and 2 describe that the firing temperature for obtaining piezoelectric ceramics from each piezoelectric ceramic composition described above is 1000 to 1300.degree.
  • Cited Documents 1 and 2 do not disclose that each of the above piezoelectric ceramic compositions is sintered by firing at a low temperature of less than 1100° C. to form piezoelectric ceramics that are dense and excellent in various characteristics.
  • the piezoelectric ceramic composition described in Patent Document 3 is fired at 1010° C. as described above, but since niobium is not replaced with tantalum, the piezoelectric constant, particularly d 31 , is sufficiently large. It was difficult to obtain the device.
  • an object of the present invention is to provide a piezoelectric ceramic composition capable of obtaining a piezoelectric element having excellent properties by firing at a low temperature.
  • the present inventors conducted various studies to solve the above problems, and found that the problems can be solved by adding lithium, silicon, manganese and silver in specific proportions to an alkali niobate containing tantalum. and completed the present invention.
  • one aspect of the present invention for solving the above problems is a , 0.02 ⁇ x + y ⁇ 1, 0 ⁇ z ⁇ 0.4) as a main component, and 0.1 mol or more of Li with respect to 100 mol of the main component and 3.0 mol or less, Si of 0.1 mol or more and 3.0 mol or less, Mn of 0.1 mol or more and 2.0 mol or less, and Ag of 0.1 mol or more and 3.0 mol or less. be.
  • Another aspect of the present invention is a piezoelectric ceramic made of the piezoelectric ceramic composition described above.
  • laminated piezoelectric ceramics having a structure in which piezoelectric ceramics layers made of the piezoelectric ceramics and internal electrode layers made of a metal having a melting point of less than 1100° C. are alternately laminated. is.
  • another aspect of the present invention is a piezoelectric element formed of the aforementioned piezoelectric ceramics or laminated piezoelectric ceramics.
  • Another aspect of the present invention is a haptic module including the piezoelectric element described above.
  • a piezoelectric ceramic composition capable of obtaining a piezoelectric element having excellent properties by firing at a low temperature.
  • Explanatory drawing showing a method for manufacturing a laminated piezoelectric ceramic according to one aspect of the present invention.
  • the piezoelectric ceramic composition according to one aspect of the present invention (hereinafter sometimes simply referred to as the “piezoelectric ceramic composition according to the first aspect”) has a composition formula (Li x Na y K 1-xy )(Nb 1 ⁇ z Ta z )O 3 (0.02 ⁇ x ⁇ 0.1, 0.02 ⁇ x+y ⁇ 1, 0 ⁇ z ⁇ 0.4) as a main component, and With respect to 100 mol of the main component, 0.1 mol or more and 3.0 mol or less of Li, 0.1 mol or more and 3.0 mol or less of Si, 0.1 mol or more and 2.0 mol or less of Mn, and Ag 0.1 mol or more and 3.0 mol or less.
  • the piezoelectric ceramic composition according to the first aspect has a composition formula ( LixNayK1 -xy )( Nb1-zTaz ) O3 (where 0.02 ⁇ x ⁇ 0.1, 0.02 ⁇
  • the main component is a perovskite compound represented by x+y ⁇ 1, 0 ⁇ z ⁇ 0.4).
  • the value of x that is, the ratio of Li to the alkali metal elements, should be 0.02 or more and 0.1 or less.
  • a dense piezoelectric ceramic can be obtained by firing.
  • a piezoelectric element having excellent insulation and durability can be obtained.
  • the value of x + y in the above composition formula that is, the ratio of the total amount of Li and Na to the alkali metal elements, shall be more than 0.02 and less than 1.
  • the value of z ie, the ratio of Ta to the total amount of Nb and Ta, should be more than 0 and 0.4 or less.
  • the value of z is preferably 0.1 or more, more preferably 0.15 or more.
  • the value of z is preferably 0.35 or less, more preferably 0.3 or less.
  • the value of z is preferably 0.1 or more and 0.35 or less, more preferably 0.15 or more and 0.3 or less.
  • the piezoelectric ceramic composition according to the first aspect contains the aforementioned perovskite compound as a main component.
  • powder of the piezoelectric ceramic composition is prepared.
  • the piezoelectric ceramic composition forms a piezoelectric ceramic
  • it is pulverized to prepare a powder.
  • piezoelectric ceramics form a piezoelectric element
  • the entire element may be pulverized to prepare a powder.
  • the diffraction line profile is measured with an X-ray diffractometer (XRD) using Cu-K ⁇ rays, and the strongest diffraction line intensity in the profile derived from the perovskite structure is compared with that derived from other structures.
  • XRD X-ray diffractometer
  • the diffraction line profile may be derived from portions other than the piezoelectric ceramic, such as electrodes. If a peak is observed, the peak is excluded and the strongest line intensity is compared as described above.
  • the piezoelectric ceramic composition confirmed to contain a perovskite-type compound as a main component is subjected to composition analysis using a high-frequency inductively coupled plasma (ICP) emission spectrometer, an ion chromatography device, or an X-ray fluorescence (XRF) spectrometer. I do.
  • ICP inductively coupled plasma
  • XRF X-ray fluorescence
  • the contents of Nb and Ta are determined, and the value of z in the above compositional formula is determined from each content.
  • the ratio of the amount of Na (mol % to atomic %) to the total amount (mol % to atomic %) of Nb and Ta is the value of y in the composition formula, and the total amount of Nb and Ta (mol % to atomic %) & the ratio of the amount of K (mol % to atomic %) to the value of (1-xy) in the composition formula, the values of x and y in the composition formula are determined.
  • a piezoelectric ceramic composition in which the determined values of x, y, and z all fall within the range of the composition formula is judged to contain the perovskite compound represented by the composition formula as a main component.
  • the piezoelectric ceramic composition according to the first aspect contains 0.1 mol or more and 3.0 mol or less of Li with respect to 100 mol of the main component.
  • the Li content is preferably 0.3 mol or more, more preferably 0.5 mol or more.
  • the formation of conductive compounds in the piezoelectric ceramic is suppressed, and a highly reliable piezoelectric element can be obtained.
  • the Li content is preferably 2.5 mol or less, more preferably 2.0 mol or less.
  • the content of Li relative to 100 mol of the main component is preferably 0.3 mol or more and 2.5 mol or less, more preferably 0.5 mol or more and 2.0 mol or less.
  • the piezoelectric ceramic composition according to the first aspect contains 0.1 mol or more and 3.0 mol or less of Si with respect to 100 mol of the main component.
  • the Si content is preferably 0.3 mol or more, more preferably 0.5 mol or more.
  • the Si content is set to 3.0 mol or less with respect to 100 mol of the main component, the formation of conductive compounds in the piezoelectric ceramic is suppressed, and a highly reliable piezoelectric element can be obtained.
  • the Si content is preferably 2.5 mol or less, more preferably 2.0 mol or less.
  • the content of Si relative to 100 mol of the main component is preferably 0.3 mol or more and 2.5 mol or less, more preferably 0.5 mol or more and 2.0 mol or less.
  • the piezoelectric ceramic composition according to the first aspect contains 0.1 mol or more and 2.0 mol or less of Mn with respect to 100 mol of the main component.
  • the Mn content is preferably 0.3 mol or more, more preferably 0.5 mol or more.
  • the Mn content is preferably 1.5 mol or less, more preferably 1.0 mol or less.
  • the Mn content relative to 100 mol of the main component is preferably 0.3 mol or more and 1.5 mol or less, more preferably 0.5 mol or more and 1.0 mol or less.
  • the piezoelectric ceramic composition according to the first aspect contains 0.1 mol or more and 3.0 mol or less of Ag with respect to 100 mol of the main component.
  • the content of Ag is preferably 0.3 mol or more, more preferably 0.5 mol or more.
  • the Ag content is set to 3.0 mol or less with respect to 100 mol of the main component, deposition of metallic Ag or formation of a conductive compound containing Ag in the piezoelectric ceramic is suppressed, and a highly reliable piezoelectric element is obtained. is obtained.
  • the content of Ag is preferably 2.5 mol or less, more preferably 2.0 mol or less.
  • the Ag content relative to 100 mol of the main component is preferably 0.3 mol or more and 2.5 mol or less, more preferably 0.5 mol or more and 2.0 mol or less.
  • the piezoelectric ceramic composition according to the first aspect may contain other elements or compounds as long as it contains the aforementioned perovskite compound as a main component and a predetermined amount of each of the aforementioned elements.
  • elements or compounds include at least one element or elements selected from Ca, Sr, Ba, La, Ce and Bi that form a solid solution at the A site in the perovskite compound represented by ABO3 .
  • it may contain a compound that forms a liquid phase during firing.
  • a piezoelectric ceramic according to another aspect of the present invention (hereinafter sometimes simply referred to as "a piezoelectric ceramic according to the second aspect") is formed of the piezoelectric ceramic composition according to the first aspect described above. be. According to the piezoelectric ceramics according to the second aspect, it is possible to form a piezoelectric element having excellent piezoelectric characteristics and high reliability.
  • the piezoelectric ceramic composition according to the first aspect and the piezoelectric ceramics according to the second aspect are, for example, compound powders containing one or more elements selected from Li, Na, K, Nb and Ta. to obtain a mixed powder containing the respective elements, calcining the mixed powder to obtain a calcined powder, and for the calcined powder, 1 selected from Li, Si, Mn and Ag It is produced by mixing powders of a compound containing a seed or a plurality of elements, molding into a predetermined shape to obtain a molded body, and firing the molded body. This manufacturing method will be described below.
  • a powder of a compound containing one or more elements selected from Li, Na, K, Nb and Ta is a main component by calcination.
  • the composition and particle size are not limited as long as it produces a perovskite-type compound.
  • the compound constituting the powder may contain additional elements other than the elements described above.
  • usable compounds include Li-containing compounds such as lithium carbonate (Li 2 CO 3 ), Na-containing compounds such as sodium carbonate (Na 2 CO 3 ) and sodium hydrogen carbonate (NaHCO 3 ), and K-containing compounds.
  • K 2 CO 3 Potassium carbonate
  • KHCO 3 potassium hydrogen carbonate
  • Nb 2 O 5 niobium pentoxide
  • Ta 2 O 5 tantalum pentoxide
  • the method of mixing the powders for the main component is not particularly limited as long as the powders are uniformly mixed while preventing the contamination of impurities, and either dry mixing or wet mixing may be employed. When wet mixing using a ball mill is employed, mixing may be performed for, for example, about 8 to 24 hours.
  • the conditions for calcining the main component powder after mixing are not limited as long as each compound reacts to obtain a calcined powder containing the perovskite compound represented by the above-described compositional formula as a main component. It may be 2 hours to 8 hours at 700° C. to 1000° C. in the air. If the firing temperature is too low or the firing time is too short, unreacted raw materials and intermediate products may remain. On the other hand, if the firing temperature is too high or the firing time is too long, there is a risk that a compound with the desired composition will not be obtained due to volatilization of the alkali metal element, or that the product will solidify and become difficult to crush. There is a risk that the productivity will decrease.
  • a powder of a compound containing one or more elements selected from Li, Si, Mn and Ag mixed with the calcined powder (hereinafter sometimes simply referred to as "additional powder") is mixed with the calcined powder.
  • additional powder a powder of a compound containing one or more elements selected from Li, Si, Mn and Ag mixed with the calcined powder.
  • the composition and particle size are not limited as long as the piezoelectric ceramics relating to the second side surface can be obtained by firing.
  • Examples of usable compounds include Li-containing compounds such as lithium carbonate (Li 2 CO 3 ), lithium metasilicate (Li 2 SiO 3 ) and lithium orthosilicate (Li 4 SiO 4 ), and Si-containing compounds such as silicon dioxide ( SiO 2 ), lithium metasilicate (Li 2 SiO 3 ) and lithium orthosilicate (Li 4 SiO 4 ), and manganese carbonate (MnCO 3 ), manganese monoxide (MnO), manganese dioxide (MnO 2 ) as Mn compounds, Examples include trimanganese tetraoxide (Mn 3 O 4 ) and manganese acetate (Mn(OCOCH 3 ) 2 ), and Ag-containing compounds include silver oxide (Ag 2 O).
  • Li-containing compounds such as lithium carbonate (Li 2 CO 3 ), lithium metasilicate (Li 2 SiO 3 ) and lithium orthosilicate (Li 4 SiO 4 ), and Si-containing compounds such as silicon dioxide ( SiO 2 ),
  • uniaxial pressure molding of the powder As a method for molding the calcined powder mixed with the additive powder, uniaxial pressure molding of the powder, extrusion molding of the clay containing the powder, cast molding of the slurry in which the powder is dispersed, etc. are commonly used for molding ceramic powder. method can be adopted.
  • a laminated piezoelectric ceramic according to another aspect of the present invention (hereinafter sometimes simply referred to as a "laminated piezoelectric ceramic according to the third aspect") is formed of the piezoelectric ceramic according to the second aspect described above. It has a structure in which piezoelectric ceramic layers and internal electrode layers made of a metal having a melting point of less than 1100° C. are alternately laminated. According to the laminated piezoelectric ceramics according to the third aspect, it is possible to form a highly reliable piezoelectric element with excellent piezoelectric characteristics while suppressing manufacturing costs by using inexpensive materials for the internal electrode layers.
  • the metal forming the internal electrode layers has a melting point of less than 1100° C. and is highly conductive.
  • the material is not particularly limited as long as it is a chemically stable material.
  • usable electrode materials include silver (Ag), copper (Cu), gold (Au), and alloys containing these.
  • silver-palladium (Ag-Pd alloy) containing 70% by mass or more of silver is preferable because it exhibits high conductivity.
  • the content of silver in the Ag—Pd alloy is more preferably 80% by mass or more, more preferably 90% by mass or more.
  • Laminated piezoelectric ceramics according to the third aspect is produced by, for example, adding binders and the like to calcined powder obtained by the same method as the manufacturing method of the piezoelectric ceramics according to the second aspect described above, together with the additive powder, to obtain slurry or clay. forming the slurry or clay into a sheet to form a raw sheet, forming an internal electrode pattern on the raw sheet, and forming the raw sheet on which the internal electrode pattern is formed in a predetermined order to obtain a green body by laminating and adhering a predetermined number of sheets, and baking the green body after removing the binder from the green body. This manufacturing method will be described below.
  • the type is not limited.
  • usable binders include those based on polyvinyl alcohol, polyvinyl butyral, cellulose, urethane and vinyl acetate.
  • the amount of the binder used is also not particularly limited, but since it is removed in a post-process, it is preferable to reduce the amount as much as possible within the range in which the desired moldability and shape retention can be obtained in order to reduce raw material costs. .
  • the calcined powder and the additive powder may be mixed with various additives such as a plasticizer for improving the moldability during raw sheet molding, which will be described later, and a dispersant for uniformly dispersing the powder. .
  • the method of mixing the calcined powder, additive powder, binder, etc. is not particularly limited as long as each component is uniformly mixed while preventing impurities from being mixed. Examples include mixing using a ball mill and mixing using a kneader.
  • a commonly used method can be adopted as a method for forming an internal electrode pattern on the raw sheet.
  • Examples of the method include a method of printing or applying a paste containing metal powder for forming the internal electrodes in the shape of the internal electrodes.
  • glass frit or powder having the same composition as the calcined powder is used in order to improve the adhesive strength between the piezoelectric ceramic layer and the internal electrode layer in the laminated piezoelectric ceramic. , may be included in the paste.
  • the internal electrode patterns formed on the raw sheet are shaped so that every other layer can be connected in the stacking direction. Examples of the shape include those in which the positions of the protruding portions 2a are different for every other layer, as shown in FIG.
  • the protruding portion 2a is exposed at the edge of the green body obtained by laminating and adhering the green sheets and the piezoelectric ceramics obtained by sintering the green body, and is electrically connected by a connection conductor which will be described later.
  • 1 indicates a raw sheet
  • 2 indicates an internal electrode pattern.
  • the internal electrode pattern may have a shape in which every other layer can be connected through through holes (vias) penetrating through the raw sheet and the piezoelectric ceramic layer obtained by firing the raw sheet in the thickness direction.
  • through holes are formed in the green sheet by punching, laser light irradiation, or the like.
  • the paste is filled by printing or the like.
  • a commonly used method can be adopted.
  • the method include a method in which raw sheets are thermocompression bonded together by the action of a binder.
  • the conditions for removing the binder from the green body obtained by stacking and pressing the raw sheets and firing conditions include the type and amount of binder contained in the green body, the sinterability of the main component powder, and the metal used as the internal electrode material. It may be set as appropriate in consideration of the durability and the like. Binder removal conditions include 5 to 20 hours at a temperature of 300 to 500° C. in air. The firing conditions are exemplified by 800° C. to 1100° C. in air for 1 hour to 5 hours. When obtaining a plurality of laminated piezoelectric ceramics from one green body, the green body may be divided into several blocks prior to firing.
  • a piezoelectric element according to another aspect of the present invention (hereinafter sometimes simply referred to as a "piezoelectric element according to the fourth aspect") is the above-described piezoelectric ceramic according to the second aspect or the laminated type according to the third aspect.
  • a piezoelectric ceramic and an external electrode electrically connected to the piezoelectric ceramic are provided.
  • the piezoelectric element according to the fourth aspect has a large piezoelectric d 31 constant because the piezoelectric ceramic is made of the piezoelectric ceramic composition according to the first aspect.
  • the material, shape, and arrangement of the external electrodes in the piezoelectric element according to the fourth aspect are not particularly limited as long as a desired voltage can be applied to the piezoelectric ceramics.
  • Examples of electrode materials include silver (Ag), copper (Cu), gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), and alloys thereof.
  • examples of the shape and arrangement of the electrodes include those that cover substantially the entire specific surface of the piezoelectric ceramics.
  • the piezoelectric element is a multilayer piezoelectric element 100 having a layered structure of piezoelectric ceramic layers 10 and internal electrode layers 20 as shown in FIGS.
  • connecting conductors 31 covering the exposed portions of the internal electrode layers 20 and connecting them every other layer; 32 may be provided.
  • the piezoelectric element according to the fourth side is manufactured by forming electrodes on the surface of the piezoelectric ceramics according to the second side or the laminated piezoelectric ceramics according to the third side, and subjecting it to polarization treatment. This manufacturing method will be described below.
  • Electrodes For the formation of the electrodes, commonly used methods such as applying or printing a paste containing an electrode material to the surface of the piezoelectric ceramics and baking it, or vapor-depositing the electrode material on the surface of the piezoelectric ceramics can be adopted.
  • the conditions for the polarization treatment are not particularly limited as long as the direction of spontaneous polarization can be aligned without causing damage such as cracks in the piezoelectric ceramics.
  • an electric field of 1 kV/mm or more and 5 kV/mm or less may be applied at a temperature of 100° C. or more and 180° C. or less.
  • a tactile module according to still another aspect of the present invention mounts the piezoelectric element according to the fourth aspect. Since the tactile module according to the fifth aspect is equipped with a piezoelectric element having a large piezoelectric constant, particularly d31 , the amount of displacement increases when driven with the same voltage. Therefore, the feedback given to the operator can be made larger and more diverse. In addition, the fifth side requires less voltage to obtain the same amount of displacement. Therefore, the drive voltage can be suppressed, the power source can be made smaller, and the frequency of battery replacement or charging can be reduced when the device is driven by a battery.
  • circuit for driving the piezoelectric element and the mechanism for transmitting the displacement of the piezoelectric element known ones can be appropriately used.
  • Example 1 ⁇ Manufacturing raw sheet> High-purity Li 2 CO 3 powder, Na 2 CO 3 powder, K 2 CO 3 powder, Nb 2 O 5 powder, and Ta 2 O 5 powder were prepared as powders for the main component, and each powder was prepared according to the composition formula is (Li 0.03 Na 0.485 K 0.485 ) (Nb 0.8 Ta 0.2 ) O 3 and weighed so as to obtain a calcined powder of a perovskite compound, and zirconia balls were Wet mixing was carried out in the ball mill used. After mixing, the mixed powder from which the dispersion medium was removed was calcined in air at 900° C. for 3 hours to obtain calcined powder.
  • the composition formula is (Li 0.03 Na 0.485 K 0.485 ) (Nb 0.8 Ta 0.2 ) O 3 and weighed so as to obtain a calcined powder of a perovskite compound, and zirconia balls were Wet mixing was carried out in the ball mill used. After mixing
  • the resulting molded body was subjected to a binder removal treatment in the air, and then fired in the air at 1060° C. for 2 hours to obtain a laminated piezoelectric ceramic.
  • the laminated piezoelectric ceramic has a structure in which internal electrode layers are alternately exposed on a pair of opposing end faces parallel to the lamination direction.
  • a piezoelectric ceramic for density measurement was obtained in the same manner as the laminated piezoelectric ceramic, except that the Ag—Pd alloy paste was not printed on the raw sheet.
  • Example 2 to 9 High-purity Li 2 CO 3 powder, SiO 2 powder, and MnCO 3 powder were used so that the amounts of Li, Si, Mn, and Ag with respect to 100 mol of the calcined powder when producing the raw sheet were as shown in Table 1.
  • the stacked piezoelectric elements and the piezoelectric ceramics for density measurement of Examples 2 to 9 were manufactured in the same manner as in Example 1, except that the amount of Ag 2 O powder added was changed.
  • Example 1 The procedure of Example 1 was repeated except that neither Li2CO3 powder, SiO2 powder, MnCO3 powder nor Ag2O powder was added to the calcined powder when producing the green sheet. , and the laminated piezoelectric element and piezoelectric ceramics for density measurement of Comparative Example 1 were manufactured.
  • ⁇ Reliability> Reliability of the obtained multilayer piezoelectric element was evaluated in terms of average life.
  • the laminated piezoelectric element was placed in a constant temperature bath at 100° C., a DC electric field of 8 kV/mm was applied between the external electrodes, and the time until the current value flowing between the external electrodes reached 1 mA or more was measured. Then, the average value for 10 devices at this time was taken as the average life.
  • the ratio of the obtained average life to the average life of the laminated piezoelectric element of Example 1 was calculated, and the value of the ratio of 2 or more was marked as " ⁇ ", and 0.5 or more and less than 2. Those with a rating of less than 0.5 were rated as "B", and those with a rating of less than 0.5 were rated as "X".
  • ⁇ Piezoelectric characteristics> The value of the piezoelectric constant d31 was measured and calculated for the laminated piezoelectric element thus obtained. The measurement was performed by measuring the displacement in the longitudinal direction of the laminated piezoelectric element driven at 5 kV/mm and 10 Hz with a laser displacement meter (aixACCT Systems TF Analyzer 2000). The constant d31 was calculated. Then, “ ⁇ ” indicates that d 31 is 100 pm/V or more, “ ⁇ ” indicates that d 31 is 90 pm/V or more and less than 100 pm/V, and “X” indicates that d 31 is less than 90 pm/V. , respectively.
  • Table 1 summarizes the amount of each element added to 100 mol of the calcined powder, and the evaluation results of compactness, reliability, and piezoelectric properties in Examples 1 to 9 and Comparative Examples 1 to 7 described above.
  • the composition formula (Li x Na y K 1-xy )(Nb 1-z Ta z )O 3 (where 0.02 ⁇ x ⁇ 0.1 , 0.02 ⁇ x + y ⁇ 1, 0 ⁇ z ⁇ 0.4) as a main component, and 0.1 mol or more of Li with respect to 100 mol of the main component and 3.0 mol or less, Si of 0.1 mol or more and 3.0 mol or less, Mn of 0.1 mol or more and 2.0 mol or less, and Ag of 0.1 mol or more and 3.0 mol or less.
  • dense piezoelectric ceramics can be obtained even by firing at a low temperature, and a piezoelectric element having high reliability and excellent piezoelectric characteristics can be obtained.
  • the relative density of each obtained piezoelectric ceramic was measured and calculated in the same manner as in Example 1.
  • the obtained relative density was 82% (evaluation: ⁇ ) for the piezoelectric ceramics of Comparative Example 8, whereas it was 96% (evaluation: ⁇ ) for the piezoelectric ceramics of Comparative Example 9.
  • the present invention it is possible to provide a piezoelectric ceramic composition from which a piezoelectric element having excellent properties can be obtained by firing at a low temperature.
  • the piezoelectric element provided by the present invention is suitable for actuators because it has a reduced manufacturing cost and a large piezoelectric constant, especially d 31 .
  • a tactile module that uses the displacement of a piezoelectric element to give feedback to the operator, it is possible to make the feedback larger and more diverse, and to suppress the driving voltage.
  • INDUSTRIAL APPLICABILITY The present invention is useful in that it makes it possible to reduce the size of the power supply, and to reduce the frequency of battery replacement or charging in the case of battery drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明の一側面に係る圧電磁器組成物は、組成式(LixNayK1-x-y)(Nb1-zTaz)O3(ただし、0.02≦x≦0.1、0.02<x+y<1、0<z≦0.4)で表されるペロブスカイト型化合物を主成分とするとともに、前記主成分100モルに対して、Liを0.1モル以上3.0モル以下、Siを0.1モル以上3.0モル以下、Mnを0.1モル以上2.0モル以下、及びAgを0.1モル以上3.0モル以下含有する。

Description

圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュール
 本発明は、圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュールに関する。
 圧電素子は、機械的エネルギーを電気的エネルギーに変換する正圧電効果を利用して、センサ素子や発電素子等に用いられている。また、圧電素子は、電気的エネルギーを機械的エネルギーに変換する逆圧電効果を利用して、振動子、発音体、アクチュエータ、超音波モータ及びポンプ等にも用いられている。さらに、圧電素子は、正圧電効果と逆圧電効果との併用により、回路素子及び振動制御素子等にも用いられている。
 圧電素子を構成する圧電体には、圧電性を有する焼結体である圧電セラミックスが用いられることが多い。この圧電セラミックスの組成としては、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3、PZT)及びその固溶体が広く用いられている。PZT系の圧電セラミックスは、高いキュリー温度を有することから、高温環境下でも使用可能であるという利点を有する。加えて、高い電気機械結合係数を有することから、電気的エネルギーと機械的エネルギーとを効率良く変換可能であるという利点も有する。さらに、適切な組成を選択することにより、1000℃を下回る温度で焼成できるため、圧電素子の製造コストを低減できる利点も有する。この点については、特に、積層型圧電セラミックスにおいて、圧電セラミックスと同時焼成される内部電極に、白金やパラジウム等の高価な材料の含有量を減らした低融点の材料が使用できるようになることが、大きなコスト低減効果を生む。しかし、PZT系の圧電セラミックスは、有害物質である鉛を含むことが問題視されており、これに代わる、鉛を含まない圧電セラミックスが求められている。
 現在まで、鉛を含まない圧電セラミックスの組成として、ニオブ酸アルカリ((Li,Na,K)NbO3)系、チタン酸ビスマスナトリウム((Bi0.5Na0.5)TiO3、BNT)系、ビスマス層状化合物系及びタングステンブロンズ系等の種々のものが報告されている。これらのうち、ニオブ酸アルカリ系の圧電セラミックスは、キュリー点が高く、電気機械結合係数も比較的大きいため、PZT系に代わる圧電セラミックスとして注目されている。そして、ニオブ酸アルカリ系の圧電セラミックスの特性を向上させるために、これを形成する圧電磁器組成物について種々の検討が行われている。
 例えば、特許文献1には、圧電d31定数、電気機械結合係数Kp及び比誘電率のいずれか一つ以上に優れた圧電セラミックスが得られる圧電磁器組成物として、一般式{Li0.04(K0.5Na0.50.96}(Nb0.86Ta0.1Sb0.04)O3で表される主成分に、Mg、Ca、Sr及びBaから選ばれるいずれか1種以上の添加元素を含有するものが記載されている。
 また、特許文献2には、機械的品質係数Qmが高く誘電損失が小さい圧電セラミックスが得られる圧電磁器組成物として、一般式{Li0.1(K0.5Na0.50.9}(Nb0.9Ta0.1)O3で表される主成分に、ニッケル又はニッケルを含む化合物を含有するものが記載されている。
 こうした圧電特性向上のための検討に加えて、ニオブ酸アルカリ系の圧電セラミックスにおいては、これにより形成される積層型圧電素子の長寿命化に関する検討も行われている。
 例えば、特許文献3には、長寿命の積層型圧電素子が得られる圧電磁器組成物として、組成式がLi0.06Na0.520.42NbO3で表される仮焼粉に対して、Li、Ba、Mn及びSiを含有する化合物を添加したものが記載されている。また、特許文献1には、前述の圧電磁器組成物を、1010℃で焼成して積層型圧電セラミックスを得たことも記載されている。
特開2004-244301号公報 特開2003-342070号公報 特開2020-150197号公報
 特許文献1、2に記載された圧電磁器組成物のように、ニオブ酸アルカリにおけるニオブの一部をタンタルに置換した場合、置換量の増加と共に焼結温度が上昇することが問題となる。圧電磁器組成物の焼結温度の上昇は、圧電セラミックスを製造する際に要するエネルギーの増加を招く。また、圧電セラミックスと内部電極とを交互に積層して積層型圧電素子を製造する際には、圧電磁器組成物の焼結温度が高まることで、内部電極用材料として高融点のものを用いる必要が生じるため、材料のコストアップにつながる。これは、積層型圧電素子の製造では、圧電セラミックスと内部電極とを一体焼成することが多く、圧電磁器組成物の焼結温度で内部電極が溶融しないことが必要となるためである。
 特許文献1、2には、上述した各圧電磁器組成物から圧電セラミックスを得るための焼成温度を1000~1300℃としたことが記載されている。しかし、前記各圧電磁器組成物が、1100℃未満の低温での焼成により焼結し、緻密で各種特性に優れる圧電セラミックスとなることは、引用文献1、2には示されていない。また、特許文献3に記載された圧電磁器組成物は、上述のとおり1010℃で焼成されているが、ニオブのタンタルによる置換が行われていないため、圧電定数、特にd31が十分に大きな圧電素子を得ることが困難であった。
 そこで本発明は、優れた特性を有する圧電素子を、低温での焼成によって得ることが可能な圧電磁器組成物を提供することを目的とする。
 本発明者は、前記課題を解決するために種々の検討を行ったところ、タンタルを含むニオブ酸アルカリに、リチウム、ケイ素、マンガン及び銀を特定の割合で添加することで、該課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、前記課題を解決するための本発明の一側面は、組成式(LixNay1-x-y)(Nb1-zTaz)O3(ただし、0.02≦x≦0.1、0.02<x+y<1、0<z≦0.4)で表されるペロブスカイト型化合物を主成分とするとともに、前記主成分100モルに対して、Liを0.1モル以上3.0モル以下、Siを0.1モル以上3.0モル以下、Mnを0.1モル以上2.0モル以下、及びAgを0.1モル以上3.0モル以下含有する、圧電磁器組成物である。
 また、本発明の他の一側面は、前述の圧電磁器組成物で形成された圧電セラミックスである。また、本発明の他の一側面は、前記圧電セラミックスで形成された圧電セラミックス層、及び融点が1100℃未満の金属で形成された内部電極層が交互に積層された構造を有する積層型圧電セラミックスである。
 さらに、本発明の他の一側面は、前述の圧電セラミックス又は積層型圧電セラミックスで形成された圧電素子である。また、本発明の他の一側面は、前述の圧電素子を含む触覚用モジュールである。
 本発明によれば、優れた特性を有する圧電素子を、低温での焼成によって得ることが可能な圧電磁器組成物を提供することができる。
本発明の一側面に係る積層型圧電セラミックスの製造方法を示す説明図 本発明の一側面に係る積層型圧電素子の構造を示す説明図 図2におけるA-A’断面図
 以下、図面を参照しながら、本発明の構成及び作用効果について、技術的思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。
[圧電磁器組成物]
 本発明の一側面に係る圧電磁器組成物(以下、単に「第1側面に係る圧電磁器組成物」と記載することがある)は、組成式(LixNay1-x-y)(Nb1-zTaz)O3(ただし、0.02≦x≦0.1、0.02<x+y<1、0<z≦0.4)で表されるペロブスカイト型化合物を主成分とするとともに、前記主成分100モルに対して、Liを0.1モル以上3.0モル以下、Siを0.1モル以上3.0モル以下、Mnを0.1モル以上2.0モル以下、及びAgを0.1モル以上3.0モル以下含有するものである。
 第1側面に係る圧電磁器組成物は、組成式(LixNay1-x-y)(Nb1-zTaz)O3(ただし、0.02≦x≦0.1、0.02<x+y<1、0<z≦0.4)で表されるペロブスカイト型化合物を主成分とする。
 前記組成式において、xの値、すなわちアルカリ金属元素に占めるLiの割合は、0.02以上0.1以下とする。xの値を0.02以上とすることで、焼成により緻密な圧電セラミックスが得られる。他方、xの値を0.1以下とすることで、絶縁性及び耐久性に優れた圧電素子が得られる。
 前記組成式における、x+yの値、すなわちアルカリ金属元素に占めるLi及びNaの合量の割合は、0.02を超え1未満とする。x及びyの値をこの条件を満たすものとすることで、優れた圧電特性を有する圧電素子が得られる。
 前記組成式における、zの値、すなわちNb及びTaの合量に占めるTaの割合は、0を超え0.4以下とする。zの値を0超とすることで、優れた圧電特性を有する、特に圧電d31定数の大きな、圧電素子が得られる。この作用を顕著なものとする点からは、zの値は0.1以上とすることが好ましく、0.15以上とすることがより好ましい。他方、zの値を0.4以下とすることで、低温での焼成により緻密な圧電セラミックスが得られる。この作用を顕著なものとする点からは、zの値は0.35以下とすることが好ましく、0.3以下とすることがより好ましい。これらの理由から、zの値は0.1以上0.35以下とすることが好ましく、0.15以上0.3以下とすることがより好ましい。
 ここで、第1側面に係る圧電磁器組成物が、前述のペロブスカイト型化合物を主成分とすることは、以下の手順で確認する。まず、圧電磁器組成物の粉末を準備する。圧電磁器組成物が圧電セラミックスを形成している場合には、これを粉砕して粉末を調製する。また、圧電セラミックスが圧電素子を形成している場合には、電極や被覆等の圧電セラミックス以外の部分を除去した後、粉砕することが好ましいが、後述する積層型圧電素子等の、圧電セラミックス部分と他の部分との分離が困難であり、かつ圧電セラミックス部分の割合が他の部分に比べて高い圧電素子については、素子ごと粉砕して粉末を調製してもよい。次いで、得られた粉末状試料について、Cu-Kα線を用いたX線回折装置(XRD)で回折線プロファイルを測定し、ペロブスカイト型構造由来のプロファイルにおける最強回折線強度に対する、他の構造由来の回折プロファイルにおける最強回折線強度の割合が10%以下となったことをもって、圧電磁器組成物がペロブスカイト型化合物を主成分とするものと判断する。なお、圧電セラミックス部分を他の部分と分離することなく、圧電素子ごと粉砕して圧電磁器組成物の粉末を調製した場合で、回折線プロファイル中に電極等の圧電セラミックス以外の部分に由来することが明らかなピークが観測された場合には、該ピークを除外して、前述した最強線強度の比較を行う。次いで、ペロブスカイト型化合物を主成分とすることが確認された圧電磁器組成物について、高周波誘導結合プラズマ(ICP)発光分光分析装置、イオンクロマトグラフィー装置ないしは、蛍光X線(XRF)分析装置によって組成分析を行う。次いで、組成分析の結果から、Nb及びTaの含有量(モル%ないし原子%)を決定し、該各含有量から前記組成式中のzの値を決定する。次いで、Nb及びTaの合量(モル%ないし原子%)に対するNaの量(モル%ないし原子%)の割合を前記組成式中のyの値とし、Nb及びTaの合量(モル%ないし原子%)に対するKの量(モル%ないし原子%)の割合を前記組成式中の(1-x-y)の値とすることで、前記組成式中のx及びyの値を決定する。そして、決定されたx、y及びzの値がいずれも前記組成式の範囲内となった圧電磁器組成物を、前記組成式で表されるペロブスカイト型化合物を主成分とするものと判定する。
 第1側面に係る圧電磁器組成物は、前記主成分100モルに対して、Liを0.1モル以上3.0モル以下含有する。主成分100モルに対するLiの含有量を0.1モル以上とすることで、低温で焼成した場合でも緻密な圧電セラミックスが得られる。この作用を顕著なものとする点からは、前記Liの含有量は、0.3モル以上とすることが好ましく、0.5モル以上とすることがより好ましい。他方、主成分100モルに対するLiの含有量を3.0モル以下とすることで、圧電セラミックス中での導電性化合物の生成が抑制され、信頼性の高い圧電素子が得られる。この作用を顕著なものとする点からは、前記Liの含有量は、2.5モル以下とすることが好ましく、2.0モル以下とすることがより好ましい。これらの理由から、主成分100モルに対するLiの含有量は、0.3モル以上2.5モル以下とすることが好ましく、0.5モル以上2.0モル以下とすることがより好ましい。
 第1側面に係る圧電磁器組成物は、前記主成分100モルに対して、Siを0.1モル以上3.0モル以下含有する。主成分100モルに対するSiの含有量を0.1モル以上とすることで、低温で焼成した場合でも緻密な圧電セラミックスが得られる。この作用を顕著なものとする点からは、前記Siの含有量は、0.3モル以上とすることが好ましく、0.5モル以上とすることがより好ましい。他方、主成分100モルに対するSiの含有量を3.0モル以下とすることで、圧電セラミックス中での導電性化合物の生成が抑制され、信頼性の高い圧電素子が得られる。この作用を顕著なものとする点からは、前記Siの含有量は、2.5モル以下とすることが好ましく、2.0モル以下とすることがより好ましい。これらの理由から、主成分100モルに対するSiの含有量は、0.3モル以上2.5モル以下とすることが好ましく、0.5モル以上2.0モル以下とすることがより好ましい。
 第1側面に係る圧電磁器組成物は、前記主成分100モルに対して、Mnを0.1モル以上2.0モル以下含有する。主成分100モルに対するMnの含有量を0.1モル以上とすることで、信頼性の高い圧電素子が得られる。この作用を顕著なものとする点からは、前記Mnの含有量は、0.3モル以上とすることが好ましく、0.5モル以上とすることがより好ましい。他方、主成分100モルに対するMnの含有量を2.0モル以下とすることで、圧電特性に優れる圧電素子が得られる。この作用を顕著なものとする点からは、前記Mnの含有量は、1.5モル以下とすることが好ましく、1.0モル以下とすることがより好ましい。これらの理由から、主成分100モルに対するMnの含有量は、0.3モル以上1.5モル以下とすることが好ましく、0.5モル以上1.0モル以下とすることがより好ましい。
 第1側面に係る圧電磁器組成物は、前記主成分100モルに対して、Agを0.1モル以上3.0モル以下含有する。主成分100モルに対するAgの含有量を0.1モル以上とすることで、低温で焼成した場合でも緻密な圧電セラミックスが得られる。この作用を顕著なものとする点からは、前記Agの含有量は、0.3モル以上とすることが好ましく、0.5モル以上とすることがより好ましい。他方、主成分100モルに対するAgの含有量を3.0モル以下とすることで、圧電セラミックス中での金属Agの析出又はAgを含む導電性化合物の生成が抑制され、信頼性の高い圧電素子が得られる。この作用を顕著なものとする点からは、前記Agの含有量は、2.5モル以下とすることが好ましく、2.0モル以下とすることがより好ましい。これらの理由から、主成分100モルに対するAgの含有量は、0.3モル以上2.5モル以下とすることが好ましく、0.5モル以上2.0モル以下とすることがより好ましい。
 第1側面に係る圧電磁器組成物は、前述のペロブスカイト型化合物を主成分とし、かつ前述の各元素を所定量含有するものであれば、他の元素ないし化合物を含有するものであってもよい。こうした元素ないし化合物の例としては、ABO3で表されるペロブスカイト型化合物において、Aサイトに固溶するCa、Sr、Ba、La、Ce及びBiから選択される少なくとも1種の元素ないしこれを含む化合物、並びにBサイトに固溶するMg、Fe、Co、Ni、Sb及びWから選択される少なくとも1種の元素ないしこれを含む化合物等が挙げられる。また、焼結温度をさらに低下させるために、焼成中に液相を生じる化合物を含有してもよい。
[圧電セラミックス]
 本発明の他の一側面に係る圧電セラミックス(以下、単に「第2側面に係る圧電セラミックス」と記載することがある)は、前述した第1側面に係る圧電磁器組成物で形成されたものである。第2側面に係る圧電セラミックスによれば、圧電特性に優れると共に、信頼性の高い圧電素子を形成することができる。
[圧電磁器組成物及び圧電セラミックスの製造方法]
 前述した第1第側面に係る圧電磁器組成物、及び第2側面に係る圧電セラミックスは、例えば、Li、Na、K、Nb及びTaから選択される1種又は複数種の元素を含む化合物の粉末を混合し、該各元素を含む混合粉末を得ること、前記混合粉末を仮焼して仮焼粉を得ること、前記仮焼粉に対して、Li、Si、Mn及びAgから選択される1種又は複数種の元素を含む化合物の粉末を混合した後、所定形状に成形して成形体を得ること、及び前記成形体を焼成することを経て製造される。この製造方法について、以下に説明する。
 Li、Na、K、Nb及びTaから選択される1種又は複数種の元素を含む化合物の粉末(以下、「主成分用粉末」と記載することがある)は、仮焼により主成分であるペロブスカイト型化合物を生成するものであれば、組成及び粒度は限定されない。粉末を構成する化合物は、前述した元素以外の添加元素を含むものであってもよい。使用できる化合物の例としては、Li含有化合物として炭酸リチウム(Li2CO3)等が、Na含有化合物として炭酸ナトリウム(Na2CO3)及び炭酸水素ナトリウム(NaHCO3)等が、K含有化合物として炭酸カリウム(K2CO3)及び炭酸水素カリウム(KHCO3)等が、Nb含有化合物として五酸化ニオブ(Nb)等が、Ta含有化合物として五酸化タンタル(Ta25)等が、それぞれ挙げられる。
 主成分用粉末の混合方法は、不純物の混入を防ぎつつ各粉末が均一に混合されるものであれば特に限定されず、乾式混合、湿式混合のいずれを採用してもよい。ボールミルを用いた湿式混合を採用する場合には、例えば8~24時間程度混合すればよい。
 混合後の主成分用粉末の仮焼条件は、各化合物が反応して上述した組成式で表されるペロブスカイト型化合物を主成分とする仮焼粉が得られるものであれば限定されず、例えば空気中、700℃~1000℃で2時間~8時間とすればよい。焼成温度が低すぎたり、焼成時間が短すぎたりすると、未反応の原料や中間生成物が残存する虞がある。反対に、焼成温度が高すぎたり、焼成時間が長すぎたりすると、アルカリ金属元素の揮発により所期の組成の化合物が得られない虞や、生成物が固結して解砕しにくくなることで生産性が低下する虞がある。
 仮焼粉に混合するLi、Si、Mn及びAgから選択される1種又は複数種の元素を含む化合物の粉末(以下、単に「添加粉末」と記載することがある)は、仮焼粉と共に焼成することで第2側面に係る圧電セラミックスが得られるものであれば、組成及び粒度は限定されない。使用できる化合物の例としては、Li含有化合物として炭酸リチウム(Li2CO3)、メタケイ酸リチウム(Li2SiO3)及びオルトケイ酸リチウム(Li4SiO4)等が、Si含有化合物として二酸化ケイ素(SiO2)、メタケイ酸リチウム(Li2SiO3)及びオルトケイ酸リチウム(Li4SiO4)等が、Mn化合物として炭酸マンガン(MnCO3)、一酸化マンガン(MnO)、二酸化マンガン(MnO2)、四三酸化マンガン(Mn34)及び酢酸マンガン(Mn(OCOCH32)等が、Ag含有化合物として酸化銀(Ag2O)等が挙げられる。また、仮焼粉と添加粉末との混合方法としては、前述した原料粉末の混合方法と同様のものが採用できる。
 添加粉末と混合した仮焼粉を成形する方法としては、粉末の一軸加圧成形、粉末を含む坏土の押出成形及び粉末を分散したスラリーの鋳込成形等の、セラミックス粉末の成形に通常用いられる方法を採用することができる。
[積層型圧電セラミックス]
 本発明の他の一側面に係る積層型圧電セラミックス(以下、単に「第3側面に係る積層型圧電セラミックス」と記載することがある)は、前述した第2側面に係る圧電セラミックスで形成された圧電セラミック層、及び融点が1100℃未満の金属で形成された内部電極層が交互に積層された構造を有する。第3側面に係る積層型圧電セラミックスによれば、内部電極層に安価な材料を用いることで製造コストを抑制しつつ、圧電特性に優れると共に、信頼性の高い圧電素子を形成することができる。
 第3側面に係る積層型圧電セラミックスにおいて、内部電極層を形成する金属は、融点が1100℃未満であり、導電性が高く、積層型圧電素子とした際に、その使用環境下で物理的及び化学的に安定な材料であれば特に限定されない。使用可能な電極材料の例としては、銀(Ag)、銅(Cu)、及び金(Au)、並びにこれらを含む合金等が挙げられる。中でも、銀を70質量%以上含む銀-パラジウム(Ag-Pd合金)が、高い導電性を示す点で好ましい。この場合、Ag-Pd合金中の銀の含有量は、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
[積層型圧電セラミックスの製造方法]
 第3側面に係る積層型圧電セラミックスは、例えば、上述した第2側面に係る圧電セラミックスの製造方法と同様の方法で得た仮焼粉に、添加粉末と共にバインダー等を添加してスラリー又は坏土を調製すること、該スラリー又は坏土をシート状に成形して生シートとすること、該生シート上に内部電極パターンを形成すること、該内部電極パターンが形成された生シートを所定の順序で所定の枚数だけ積層・接着して生成形体を得ること、及び該生成形体からバインダーを除去後に焼成することを経て製造される。この製造方法について、以下に説明する。
 仮焼粉に対して添加粉末と共に添加するバインダーは、前記各粉末の混合物を所期の形状に成形・保持できると共に、脱脂処理により炭素等を残存させることなく揮発するものであれば、その種類は限定されない。使用できるバインダーの例としては、ポリビニルアルコール系、ポリビニルブチラール系、セルロース系、ウレタン系及び酢酸ビニル系のものが挙げられる。
 バインダーの使用量も特に限定されないが、後工程で除去されるものであるため、所期の成形性・保形性が得られる範囲内で極力少なくすることが、原料コストを低減する点で好ましい。
 仮焼粉及び添加粉末には、バインダーの他に、後述する生シート成形時の成形性を向上させる可塑剤や、粉末を均一分散させるための分散剤等の各種添加剤を混合してもよい。
 仮焼粉、添加粉末及びバインダー等の混合方法としては、不純物の混入を防ぎつつ各成分が均一に混合されるものであれば特に限定されない。一例として、ボールミルを用いた混合や、ニーダーを用いた混合等が挙げられる。
 仮焼粉、添加粉末及びバインダー等を混合して得られたスラリー又は坏土から、生シートを成形する方法としては、ドクターブレード法、押出成形法等の慣用されている方法を採用できる。
 生シート上に内部電極パターンを形成する方法としては、慣用されている方法を採用することができる。前記方法としては、内部電極を形成する金属の粉末を含むペーストを、内部電極の形状に印刷又は塗布する方法が例示される。印刷又は塗布により内部電極パターンを形成する場合には、積層型圧電セラミックスにおける圧電セラミックス層と内部電極層との付着強度を向上させるため、ガラスフリットや、仮焼粉と同様の組成を有する粉末を、ペースト中に含有させてもよい。
 生シート上に形成される内部電極パターンは、積層方向に1層おきに接続可能な形状とする。前記形状としては、図1に示すような、突出部2aの位置が1層おきに異なるものが例示される。前記突出部2aは、生シートを積層・接着した生成形体、及びこれを焼成した圧電セラミックスの端部に露出し、後述する接続導体により電気的に接続される。なお、図1において、1は生シートを、2は内部電極パターンをそれぞれ示す。
 内部電極パターンは、生シート及びこれを焼成した圧電セラミックス層を厚さ方向に貫通するスルーホール(ビア)を介して、1層おきに接続可能な形状としてもよい。この場合には、内部電極パターンの形成に先立ち、生シートに、パンチングやレーザー光の照射等により貫通孔を形成すると共に、内部電極パターンの形成に前後して、該貫通孔に金属粉末を含むペーストを、印刷等により充填する。
 内部電極パターンを形成した生シートを積層・接着する方法としては、慣用されている方法を採用することができる。前記方法としては、生シート同士をバインダーの作用で熱圧着する方法が例示される。
 生シートの積層・圧着により得られた生成形体からのバインダーの除去及び焼成の条件は、生成形体中に含まれるバインダーの種類及び量、主成分粉末の焼結性、及び内部電極材料である金属の耐久性等を考慮して、適宜設定すればよい。バインダー除去の条件としては、空気中、300~500℃の温度で5~20時間が例示される。また、焼成条件としては、空気中、800℃~1100℃で1時間~5時間が例示される。なお、1つの生成形体から複数の積層型圧電セラミックスを得る場合には、焼成に先立って生成形体を幾つかのブロックに分割してもよい。
[圧電素子]
 本発明の他の一側面に係る圧電素子(以下、単に「第4側面に係る圧電素子」と記載することがある)は、上述した第2側面に係る圧電セラミックス又は第3側面に係る積層型圧電セラミックスと、該圧電セラミックスに電気的に接続された外部電極とを備える。第4側面に係る圧電素子は、圧電セラミックスが第1側面に係る圧電磁器組成物で形成されているため、圧電d31定数が大きなものとなる。
 第4側面に係る圧電素子における外部電極の材質、形状及び配置は、圧電セラミックスに対して所期の電圧を印加することができるものであれば特に限定されない。電極の材質の例としては、銀(Ag)、銅(Cu)、金(Au)、白金(Pt)、パラジウム(Pd)及びニッケル(Ni)並びにこれらの合金等が挙げられる。また、電極の形状及び配置の例としては、圧電セラミックスの特定の面のほぼ全体を覆うものが挙げられる。加えて、圧電素子が、図2及び図3に示すような、圧電セラミックス層10と内部電極層20との層状構造を有する積層型圧電素子100である場合には、素子表面に露出する圧電セラミックス部分に電圧を印加したり、圧電セラミックス部分に発生した電圧を取り出したりするための外部電極30に加えて、内部電極層20の露出部分を覆ってこれを1層おきに接続する接続導体31、32を備えてもよい。
[圧電素子の製造方法]
 第4側面に係る圧電素子は、第2側面に係る圧電セラミックス又は第3側面に係る積層型圧電セラミックスの表面に電極を形成し、分極処理することで製造される。この製造方法について、以下に説明する。
 電極の形成には、電極材料を含むペーストを圧電セラミックス表面に塗布ないし印刷して焼き付ける方法や、圧電セラミックス表面に電極材料を蒸着する方法等の、慣用されている方法を採用できる。
 分極処理の条件は、圧電セラミックスに亀裂等の損傷を生じることなく自発分極の向きを揃えられるものであれば特に限定されない。一例として、100℃以上180℃以下の温度にて、1kV/mm以上5kV/mm以下の電界を印加することが挙げられる。
[触覚用モジュール]
 本発明のさらに他の一側面に係る触覚モジュール(以下、単に「第5側面に係る触覚モジュール」と記載することがある)は、第4側面に係る圧電素子を搭載したものである。第5側面に係る触覚モジュールは、圧電定数、特にd31の大きな圧電素子を搭載しているため、同じ電圧で駆動した際の変位量が大きくなる。このため、操作者に対して行うフィードバックを、より大きく、より多彩なものとすることができる。また、第5側面は、同じ変位量を得るために必要な電圧が小さくて済む。このため、駆動電圧を抑えることができ、電源を小型化することができると共に、バッテリーで駆動する場合には、その交換ないし充電の頻度を減らすことができる。
 第5側面において、圧電素子を駆動するための回路及び圧電素子の変位を伝達するための機構としては、公知のものを適宜用いることができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は該実施例に限定されるものではない。
(実施例1)
<生シートの製造>
 主成分用粉末として、高純度のLi2CO3粉末、Na2CO3粉末、K2CO3粉末、Nb25粉末及びTa25粉末をそれぞれ準備し、該各粉末を、組成式が(Li0.03Na0.4850.485)(Nb0.8Ta0.2)O3で表される、ペロブスカイト型化合物の仮焼粉が得られるように秤量し、ジルコニアボールを用いたボールミルにて湿式混合した。混合後、分散媒を除去した混合粉末を、空気中、900℃にて3時間仮焼して、仮焼粉を得た。得られた仮焼粉を解砕した後、該仮焼粉100モルに対して、Li、Si、Mn及びAgがそれぞれ0.1モルとなるように、高純度のLi2CO3粉末、SiO2粉末、MnCO3粉末及びAg2O粉末を添加すると共に、ポリビニルブチラール系バインダー及び分散媒を添加して混合し、成形用スラリーを得た。得られた成形用スラリーを、ドクターブレードにて成形し、厚さ40μmの生シートを得た。
<積層型圧電セラミックスの製造>
 得られた生シート上に、Ag-Pd合金ペースト(Ag/Pd比=8/2)をスクリーン印刷し、所定形状の導体層を形成した後、該生シートを積層し、加熱しながら圧着して生成形体を得た。得られた生成形体に対して、大気中で脱バインダー処理を行った後、空気中、1060℃で2時間の焼成を行い、積層型圧電セラミックスを得た。なお、該積層型圧電セラミックスは、積層方向に平行な、対向する一対の端面に、内部電極層が交互に露出する構造を有する。
<密度測定用圧電セラミックスの製造>
 前記生シート上にAg-Pd合金ペーストを印刷しなかった点以外は、前記積層型圧電セラミックスの製造と同様の手順にて、密度測定用圧電セラミックスを得た。
<積層型圧電素子の製造>
 得られた積層型圧電セラミックスに対して、内部電極層が露出する端面及び積層方向最表面にAgペーストを塗布した後、ベルト炉内を通過させて焼き付けることで、接続導体及び外部電極をそれぞれ形成した。
 電極形成後の積層型圧電セラミックスを、100℃の恒温槽に入れ、3kV/mmの電界強度で15分間分極処理して積層型圧電素子を得た。
(実施例2から9)
 生シートを製造する際の、仮焼粉100モルに対するLi、Si、Mn及びAgの量が表1に示すものとなるように、高純度のLi2CO3粉末、SiO2粉末、MnCO3粉末及びAg2O粉末の添加量を変更したこと以外は実施例1と同様の方法で、実施例2から9の積層型圧電素子及び密度測定用圧電セラミックスをそれぞれ製造した。
(比較例1)
 生シートを製造する際に、仮焼粉に対してLi2CO3粉末、SiO2粉末、MnCO3粉末及びAg2O粉末をいずれも添加しなかったこと以外は実施例1と同様の方法で、比較例1の積層型圧電素子及び密度測定用圧電セラミックスをそれぞれ製造した。
(比較例2から4)
 生シートを製造する際に、仮焼粉に対して、Li2CO3粉末及びSiO2粉末を添加しなかったこと(比較例2)、MnCO3粉末を添加しなかったこと(比較例3)並びにAg2O粉末を添加しなかったこと(比較例4)以外は実施例1と同様の方法で、比較例2から4の積層型圧電素子及び密度測定用圧電セラミックスをそれぞれ製造した。
(比較例5から7)
 生シートを製造する際の、仮焼粉100モルに対するLi、Si、Mn及びAgの量が表1に示すものとなるように、高純度のLi2CO3粉末、SiO2粉末、MnCO3粉末及びAg2O粉末の添加量を変更したこと以外は実施例1と同様の方法で、比較例5から7の積層型圧電素子及び密度測定用圧電セラミックスをそれぞれ製造した。
(評価)
<緻密性>
 得られた密度測定用圧電セラミックスについて、アルキメデス法により見かけ密度を測定・算出した。他方、密度測定用圧電セラミックスを粉砕した粉末について、ピクノメータ法により真密度を測定・算出した。得られた見かけ密度の真密度に対する百分率を、相対密度(%)として算出し、95%以上となったものを「○」と、90%以上95%未満となったものを「△」と、90%未満となったものを「×」と、それぞれ判定した。
<信頼性>
 得られた積層型圧電素子について、信頼性を、平均寿命により評価した。積層型圧電素子を100℃の恒温槽内に配置し、外部電極間に8kV/mmの直流電界を印加して、外部電極間に流れる電流値が1mA以上となるまでの時間を測定した。そして、この時間の10個の素子についての平均値を、平均寿命とした。得られた平均寿命の、実施例1の積層型圧電素子の平均寿命に対する比を算出し、該比の値が2以上となったものを「○」と、0.5以上2未満となったものを「△」と、0.5未満となったものを「×」と、それぞれ判定した。
<圧電特性>
 得られた積層型圧電素子について、圧電定数d31の値を測定・算出した。測定は、5kV/mm、10Hzで駆動させた積層型圧電素子の長手方向の変位を、レーザー変位計(aixACCT Systems TF Analyzer 2000)で測定することで行い、得られた変位と駆動電圧とから圧電定数d31を算出した。そして、d31が100pm/V以上となったものを「○」と、90pm/V以上100pm/V未満となったものを「△」と、90pm/V未満となったものを「×」と、それぞれ判定した。
 上述した実施例1から9及び比較例1から7における、仮焼粉100モルに対する各元素の添加量、並びに緻密性、信頼性及び圧電特性の評価結果を、まとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 各実施例の評価結果を各比較例のものと対比すると、組成式(LixNay1-x-y)(Nb1-zTaz)O3(ただし、0.02≦x≦0.1、0.02<x+y<1、0<z≦0.4)で表されるペロブスカイト型化合物を主成分とするとともに、前記主成分100モルに対して、Liを0.1モル以上3.0モル以下、Siを0.1モル以上3.0モル以下、Mnを0.1モル以上2.0モル以下、及びAgを0.1モル以上3.0モル以下含有する圧電磁器組成物によれば、低温での焼成によっても緻密な圧電セラミックスが得られると共に、信頼性が高く、圧電特性にも優れる圧電素子が得られるといえる。
(比較例8から9)
 ニオブ酸アルカリにおけるニオブのタンタル置換の有無が、圧電セラミックスの緻密性に及ぼす影響を、以下の手順で確認した。
 生成形体の焼成温度を1020℃としたこと以外は、比較例1と同様の方法で、比較例8の密度測定用圧電セラミックスを製造した。
 また、仮焼粉の組成式が(Li0.03Na0.4850.485)NbO3で表されるものとなるように、主成分用粉末の配合量を変更したこと以外は比較例8と同様の方法で、比較例9の密度測定用圧電セラミックスを製造した。
 得られた各圧電セラミックスの相対密度を、実施例1と同様の方法で測定・算出した。得られた相対密度は、比較例8の圧電セラミックスでは82%(評価:×)であったのに対し、比較例9の圧電セラミックスでは96%(評価:○)であった。
 比較例8と比較例9との対比からは、ニオブ酸アルカリにおけるニオブの一部をタンタルに置換することで緻密化が困難になること、及びタンタルを含まないニオブ酸アルカリは、仮焼粉に他の成分を添加しなくとも、1100℃未満の焼成温度で緻密な焼結体が得られるものであることが判る。したがって、上述した各実施例で確認された緻密性の向上効果は、タンタルを含むニオブ酸アルカリに特有のものといえる。なお、追加の実験により、比較例8の仮焼粉から、比較例9と同程度の相対密度を有する圧電セラミックスが得られる焼成温度を確認したところ、1140℃であった。
 本発明によれば、優れた特性を有する圧電素子を低温での焼成によって得ることが可能な、圧電磁器組成物を提供することができる。本発明により提供される圧電素子は、製造コストが低減されたものであり、かつ圧電定数、特にd31が大きなものであるため、アクチュエータに好適である。中でも、圧電素子の変位を利用して操作者にフィードバックを行う触覚用モジュールに搭載した場合には、フィードバックを、より大きく、より多彩なものとすることが可能となったり、駆動電圧を抑えて電源を小型化することが可能となったり、バッテリーで駆動する場合のバッテリー交換ないし充電の頻度を減らすことが可能となったりする点で、本発明は有用なものである。
1     生シート
2     内部電極パターン
2a    突出部
10    圧電セラミックス層
20    内部電極層
30    外部電極
31、32 接続導体
100   積層型圧電素子

Claims (6)

  1.  組成式(LixNay1-x-y)(Nb1-zTaz)O3(ただし、0.02≦x≦0.1、0.02<x+y<1、0<z≦0.4)
    で表されるペロブスカイト型化合物を主成分とするとともに、
    前記主成分100モルに対して、
     Liを0.1モル以上3.0モル以下、
     Siを0.1モル以上3.0モル以下、
     Mnを0.1モル以上2.0モル以下、及び
     Agを0.1モル以上3.0モル以下
    含有する、圧電磁器組成物。
  2.  請求項1に記載の圧電磁器組成物で形成された圧電セラミックス。
  3.  請求項2に記載の圧電セラミックスで形成された圧電セラミック層、及び
     融点が1100℃未満の金属で形成された内部電極層
    が交互に積層された構造を有する積層型圧電セラミックス。
  4.  前記金属が銀-パラジウム合金である、請求項3に記載の積層型圧電セラミックス。
  5.  請求項2に記載の圧電セラミックス、又は請求項3若しくは4に記載の積層型圧電セラミックスで形成された圧電素子。
  6.  請求項5に記載の圧電素子を搭載した触覚用モジュール。
PCT/JP2022/013862 2021-08-30 2022-03-24 圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュール WO2023032326A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-140351 2021-08-30
JP2021140351A JP2023034220A (ja) 2021-08-30 2021-08-30 圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュール

Publications (1)

Publication Number Publication Date
WO2023032326A1 true WO2023032326A1 (ja) 2023-03-09

Family

ID=85412039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013862 WO2023032326A1 (ja) 2021-08-30 2022-03-24 圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュール

Country Status (2)

Country Link
JP (1) JP2023034220A (ja)
WO (1) WO2023032326A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013395A (ja) * 2006-07-05 2008-01-24 Denso Corp 結晶配向セラミックスの製造方法
JP2010180121A (ja) * 2009-01-12 2010-08-19 Denso Corp 圧電セラミックス、その製造方法、積層型圧電素子、及びその製造方法
JP2013502656A (ja) * 2009-08-18 2013-01-24 イマージョン コーポレーション 複合物圧電アクチュエータを用いた触覚フィードバック
JP2014043358A (ja) * 2012-08-24 2014-03-13 Taiyo Yuden Co Ltd 圧電セラミックス及び圧電素子
JP2018005903A (ja) * 2016-06-20 2018-01-11 アップル インコーポレイテッド 局在化された及び/又はカプセル化された触覚アクチュエータ及び要素

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013395A (ja) * 2006-07-05 2008-01-24 Denso Corp 結晶配向セラミックスの製造方法
JP2010180121A (ja) * 2009-01-12 2010-08-19 Denso Corp 圧電セラミックス、その製造方法、積層型圧電素子、及びその製造方法
JP2013502656A (ja) * 2009-08-18 2013-01-24 イマージョン コーポレーション 複合物圧電アクチュエータを用いた触覚フィードバック
JP2014043358A (ja) * 2012-08-24 2014-03-13 Taiyo Yuden Co Ltd 圧電セラミックス及び圧電素子
JP2018005903A (ja) * 2016-06-20 2018-01-11 アップル インコーポレイテッド 局在化された及び/又はカプセル化された触覚アクチュエータ及び要素

Also Published As

Publication number Publication date
JP2023034220A (ja) 2023-03-13

Similar Documents

Publication Publication Date Title
JP4400754B2 (ja) 圧電体磁器組成物、及び圧電セラミック電子部品
WO2010128647A1 (ja) 圧電セラミックスおよびその製造方法ならびに圧電デバイス
TW554556B (en) Piezoelectric ceramic, method of manufacturing thereof and piezoelectric device
JP6259577B2 (ja) 圧電セラミックス及び圧電素子
JPWO2006067924A1 (ja) 圧電磁器組成物および圧電アクチュエータ
CN113451496B (zh) 压电元件及其制造方法
JP7374597B2 (ja) 積層型圧電セラミックス及びその製造方法、積層型圧電素子並びに圧電振動装置
JP7239350B2 (ja) 圧電セラミックス及びその製造方法、並びに圧電素子
JP7290921B2 (ja) 圧電磁器組成物及びその製造方法、並びに圧電磁器、圧電素子及び圧電振動装置
CN111689775B (zh) 层叠型压电陶瓷及其制造方法、压电元件和压电振动装置
WO2023063007A1 (ja) 積層型圧電素子
JP7261047B2 (ja) 積層型圧電セラミックス及びその製造方法、積層型圧電素子並びに圧電振動装置
WO2023032326A1 (ja) 圧電磁器組成物、圧電セラミックス、圧電素子及び触覚用モジュール
JP7548716B2 (ja) 積層型圧電セラミックス及びその製造方法、積層型圧電素子並びに圧電振動装置
CN111747744B (zh) 层叠型压电陶瓷及其制造方法、层叠型压电元件和压电振动装置
JP5190894B2 (ja) 圧電体又は誘電体磁器組成物並びに圧電体デバイス及び誘電体デバイス
WO2024029278A1 (ja) 積層型圧電素子
CN112687790B (zh) 压电陶瓷及其制造方法以及压电元件
WO2023112661A1 (ja) 圧電/誘電体セラミックス、圧電素子及び発音体
JP7491713B2 (ja) 圧電素子、圧電アクチュエータ、および圧電トランス
JP7548717B2 (ja) 圧電素子及びその製造方法
JP2015012089A (ja) 圧電セラミック部品及びその製造方法
WO2022153680A1 (ja) 圧電セラミックス、圧電素子及び超音波振動子
WO2022153681A1 (ja) 圧電セラミックス、圧電素子及び超音波振動子
WO2024122087A1 (ja) 圧電素子、圧電磁器組成物、圧電素子の製造方法及び圧電磁器組成物の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22863916

Country of ref document: EP

Kind code of ref document: A1