WO2023030244A1 - Bms安装结构、电池包及车辆 - Google Patents

Bms安装结构、电池包及车辆 Download PDF

Info

Publication number
WO2023030244A1
WO2023030244A1 PCT/CN2022/115477 CN2022115477W WO2023030244A1 WO 2023030244 A1 WO2023030244 A1 WO 2023030244A1 CN 2022115477 W CN2022115477 W CN 2022115477W WO 2023030244 A1 WO2023030244 A1 WO 2023030244A1
Authority
WO
WIPO (PCT)
Prior art keywords
bms
bracket
board
slave
main board
Prior art date
Application number
PCT/CN2022/115477
Other languages
English (en)
French (fr)
Inventor
刘鹏
Original Assignee
北京车和家信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家信息技术有限公司 filed Critical 北京车和家信息技术有限公司
Publication of WO2023030244A1 publication Critical patent/WO2023030244A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of vehicles, in particular to a BMS installation structure, a battery pack and a vehicle.
  • BMS Battery Management System
  • the design envelope space of the power battery system is becoming more and more compact, but the installation and fixing scheme of the BMS is basically the same.
  • each main board or slave board of the BMS corresponds to a mounting bracket, and the main board of the BMS
  • the slave board and the slave board are placed inside the battery pack in a tiled manner, which greatly wastes the limited space in the battery pack, resulting in a low utilization rate of the internal space of the battery pack; at the same time, in most design schemes at this stage, the BMS and the BMS bracket are both
  • the battery packs are assembled one by one on the battery pack production line, resulting in slow production and increased costs.
  • Embodiments of the present disclosure provide a BMS installation structure, a battery pack, and a vehicle.
  • Embodiments of the present disclosure provide a BMS installation structure, including a BMS main board, a BMS slave board, a BMS main board bracket, and a BMS assembly bracket; the BMS slave board is arranged on the BMS assembly bracket, and the BMS main board bracket It is arranged above the BMS slave board, and the BMS main board bracket is fixedly connected to the BMS assembly bracket through the connectors passing through the BMS main board bracket, the BMS slave board and the BMS assembly bracket, The BMS main board is fixedly installed above the BMS main board bracket.
  • the number of the BMS sub-boards is at least two, the BMS sub-boards are sequentially stacked on the BMS assembly bracket, and the BMS sub-board faces away from one of the BMS assembly brackets.
  • the side surface is provided with a mounting groove; among the two adjacent BMS slave plates, a support boss is installed in the installation groove of the lower BMS slave plate, and the lower BMS slave plate passes through the The supporting boss supports the BMS slave board located above.
  • a mounting hole is provided on the bottom wall of the mounting groove, and a limiting portion is provided at the lower end of the supporting boss, and the limiting portion is limitedly matched with the mounting hole.
  • the lower end of the support boss is fixed to the bottom wall of the installation groove by adhesive bonding.
  • a mounting groove is provided on the side surface of the BMS slave board facing away from the BMS assembly bracket, and a mounting groove is provided on the side surface of the BMS main board bracket facing the BMS slave board.
  • the groove corresponds to the supporting post, and the BMS main board bracket is supported above the BMS slave board through the supporting post.
  • the connector includes a fastening screw, and the fastening screw is sequentially passed through the BMS main board bracket, the BMS slave board, and the BMS assembly bracket.
  • the side surface of the BMS main board bracket facing the BMS main board is provided with a connecting post, and the BMS main board is provided with an installation through hole for the connecting post to pass through, and the BMS main board It is fixedly connected with the bracket of the BMS main board through the fastening nut installed on the connecting boss.
  • the embodiment of the present disclosure also provides a BMS installation structure, including a BMS assembly bracket and at least two BMS slave boards, the BMS slave boards are stacked on the BMS assembly bracket in turn, and the BMS slave boards pass through The connecting piece passing through the BMS slave board and the BMS assembly bracket is fixedly connected with the BMS assembly bracket.
  • Embodiments of the present disclosure also provide a battery pack, including the BMS installation structure described in any one of the above embodiments.
  • Embodiments of the present disclosure also provide a vehicle, including the battery pack as described in the above embodiments.
  • Embodiments of the present disclosure have the following advantages: the BMS installation structure, battery pack and vehicle provided by the present disclosure, by combining multiple BMS boards of the BMS (multiple BMS boards may include a BMS main board and at least one BMS slave board, or may include At least two BMS (slave boards) are vertically stacked, which effectively saves the space in the X/Y direction inside the battery pack, and at the same time can effectively use the space of the special-shaped protrusions in the Z direction inside the battery pack, thereby effectively improving the utilization of the internal space of the battery pack ;
  • multiple BMS boards and BMS brackets of the BMS (which can be BMS main board brackets, BMS assembly brackets) can be sub-assembled offline, and after forming a whole, they are directly assembled to the battery pack beam online, saving the online cost of each component.
  • the process of direct assembly on the body speeds up the production tempo of the line body, improves the production efficiency of the line body, and helps to reduce production costs.
  • FIG. 1 is a schematic diagram of a decomposition structure of a BMS installation structure described in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of the BMS assembly bracket of the BMS installation structure described in the embodiment of the present disclosure
  • Fig. 3 is a structural schematic diagram of the supporting boss of the BMS installation structure described in the embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of the BMS main board bracket of the BMS installation structure described in the embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of the assembly structure of the BMS installation structure in the battery pack according to the embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a BMS installation structure 1 , including a BMS main board 11 , BMS slave boards 12 and 13 , a BMS main board bracket 14 and a BMS assembly bracket 15 .
  • the BMS slave boards 12, 13 are arranged on the BMS assembly bracket 15
  • the BMS main board bracket 14 is arranged on the top of the BMS slave boards 12, 13, and the BMS main board bracket 14 passes through the BMS main board bracket 14, the BMS slave board 12, 13 and the connector 17 of the BMS assembly bracket 15 are fixedly connected to the BMS assembly bracket 15, and the BMS main board 11 is fixedly installed above the BMS main board bracket 14.
  • a BMS usually includes a BMS main board and several BMS slave boards, and the number of BMS slave boards may be 1, 2, 3 or more according to actual conditions.
  • the BMS slave boards are set on the BMS assembly bracket; for the case where the number of BMS slave boards is two or more, multiple BMS slave boards can be set on the BMS assembly bracket.
  • the rest of the BMS slave boards can be stacked separately (that is, another stack), or they can be laid in a conventional way (that is, not stacked).
  • the method is not specifically limited in this embodiment.
  • the BMS installation structure provided by the above-mentioned embodiments of the present disclosure can realize the BMS main board 11 and several BMS slave boards 12, 13 of the BMS to be vertically stacked, compared with the existing BMS main board and BMS slave boards that are tiled.
  • the method is set inside the battery pack, which effectively saves the space in the X/Y direction inside the battery pack (X and Y directions as shown in Figure 5), and can effectively use the space of the special-shaped protrusions in the Z direction inside the battery pack (as shown in Figure 5 shown in the Z direction), thereby effectively improving the utilization rate of the internal space of the battery pack; in addition, the BMS main board 11, BMS slave boards 12, 13, BMS main board bracket 14, and BMS assembly bracket 15 can be assembled offline, and the BMS main board bracket 14
  • the BMS main board 11 is assembled on the top of the BMS main board support 14 by assembling the connector 17 through the BMS main board support 14, the BMS slave boards 12, 13 and the BMS assembly support 15.
  • the parts are assembled into one body, and after forming the whole, they are directly assembled on the battery pack beam online, which saves the process of direct assembly of various parts on the line body, speeds up the production cycle of the line body, improves the production efficiency of the line body, and helps to reduce production costs. cost.
  • the cover of the battery pack itself has a convex structure, so that an installation space is formed inside the battery pack corresponding to the position of the convex structure.
  • the BMS installation structure provided by the embodiment of the present disclosure just utilizes this The installation space is used to install the BMS, so as to achieve the purpose of using the internal installation space of the battery pack to the extreme, and effectively improve the utilization rate of the internal space of the battery pack.
  • the number of BMS slave boards 12, 13 is at least two, and the BMS slave boards 12, 13 are stacked on the BMS assembly bracket 15 in sequence, and the BMS slave board 12 is back
  • a mounting groove 121 is provided on the side surface facing the BMS assembly bracket 15, and a mounting groove 131 is provided on the side surface of the BMS slave plate 13 facing away from the BMS assembly bracket 15;
  • two adjacent BMS slave plates 12, 13 A support boss 16 is installed in the installation groove 131 of the lower BMS slave board 13
  • the lower BMS slave board 13 supports the upper BMS slave board 12 through the support boss 16 .
  • the existing BMS slave board is usually provided with a mounting groove structure. Therefore, the BMS installation structure provided by the above-mentioned embodiments of the present disclosure does not require major structural improvements to the existing BMS slave board, or even To improve the structure of the BMS slave board, by installing the support boss 16 in the installation groove 131 of the lower BMS slave board 13, the support effect of the support boss 16 on the upper BMS slave board 12 can be realized, thereby To achieve the purpose of stacking multiple BMS slave boards in sequence along the longitudinal direction.
  • the upper end surface of the support boss 16 can be slightly higher than the upper surface of the BMS slave plate 13 located below, so that The supporting function of the supporting boss 16 on the upper BMS slave plate 12 is utilized.
  • the BMS slave plate 12 located above is supported by the support boss 16, which can save the BMS bracket and reduce the number of BMS brackets.
  • the overall lightweight design is beneficial to the weight reduction and cost reduction of the battery pack.
  • four installation grooves 131 can be set on the side surface of the BMS back from the board 13 to the BMS assembly bracket 15, and a support boss 16 is respectively installed in each installation groove 131.
  • the platform 16 supports the BMS slave plate 12 located above, so as to ensure the stability of the support; the supporting boss 16 can specifically be an aluminum boss, which is beneficial to the weight reduction of the battery pack.
  • mounting holes are provided on the groove bottom wall of the mounting groove 131 , and the mounting holes can be used for connecting parts 17 (such as fastening screws) to pass through, so as to realize the installation of the BMS from the board 13 Fixation with the BMS assembly bracket 15; the lower end of the support boss 16 is provided with a limiter 161, and the limiter 161 is limitedly matched with the installation hole, so as to realize the placement and limit of the support boss 16 on the BMS slave plate 13 in the mounting groove. Further, as shown in FIG.
  • the lower end of the support boss 16 and the bottom wall of the installation groove are bonded and fixed by adhesive 162 , that is, the contact position between the support boss 16 and the BMS slave board 13 is fixed by adhesive 162 . Bonding is temporarily fixed to ensure that when the BMS slave board 12 is placed on the support boss 16, the support boss 16 will not topple or shift.
  • the number of BMS slave boards 12, 13 is at least two, and the BMS slave boards 12, 13 are sequentially stacked on the BMS assembly bracket 15, located at the most
  • a mounting groove 121 is provided on the side surface of the upper BMS sub-board 12 facing away from the BMS assembly bracket 15, and a supporting post 141 corresponding to the installation groove 121 is provided on the side surface of the BMS main board bracket 14 facing the BMS sub-board 12 , the BMS main board bracket 14 is supported above the uppermost BMS slave board 12 through the supporting boss 141 .
  • the support post 141 provided on the BMS mainboard bracket 14 can adopt the same or similar structure as the support boss 16.
  • the support post 141 can be fixed on the BMS by adhesive 142 or other methods.
  • the bracket main body of the main board bracket 14 may also be integrally formed with the bracket main body of the BMS main board bracket 14 .
  • the support structure between the BMS mainboard bracket 14 and the uppermost BMS slave board 12 is not limited to the above-mentioned structure, for example, the support boss 16 is installed in the installation groove of the uppermost BMS slave board 12, and the support The boss 16 supports the BMS motherboard bracket 14, which can also achieve the purpose of the present disclosure.
  • the number of BMS slave boards is one
  • the BMS slave board 12 is arranged on the BMS assembly bracket 15, and the side surface of the BMS slave board 12 facing away from the BMS assembly bracket 15 is provided with a mounting Groove 121
  • BMS motherboard bracket 14 is provided with a support post 141 corresponding to the installation groove 121 facing the side surface of BMS slave board 12, and BMS main board bracket 14 is supported above BMS slave board 12 through support post 141.
  • the support post 141 provided on the BMS mainboard bracket 14 can adopt the same or similar structure as the support boss 16.
  • the support post 141 can be fixed on the BMS by adhesive 142 or other methods.
  • the bracket main body of the main board bracket 14 may also be integrally formed with the bracket main body of the BMS main board bracket 14 .
  • the support structure between the BMS main board bracket 14 and the BMS slave board 12 is not limited to the above-mentioned structure, for example, a support boss 16 is installed in the installation groove of the BMS slave board 12, and the BMS main board bracket 14 is supported by the support boss 16 , can also achieve the purpose of the present disclosure.
  • the connector 17 includes a fastening screw, and the fastening screw is sequentially passed through the BMS main board bracket 14, the BMS slave boards 12, 13, and the BMS assembly bracket 15, so as to realize Assemble the BMS main board bracket 14, the BMS slave boards 12, 13 and the BMS assembly bracket 15 into one.
  • the BMS assembly bracket 15 is the basic support structure for all the BMS main board 11 and BMS slave boards 12, 13, which is stamped from sheet metal, and the bottom of the BMS assembly bracket 15 is set
  • the fastening screws inside are used to assemble the various parts into one; the four corner openings of the BMS assembly bracket 15 are used as the installation holes of the bracket, which are used to realize the assembly through the fastening bolts 19 pierced in the installation holes.
  • the integrated BMS installation structure is installed inside the battery pack.
  • the support boss 141 of the BMS main board bracket 14 and the position of the bracket body corresponding to the support boss 141 are provided with via holes for fastening screws to pass through, and the BMS is connected from the bottom of the installation groove 121 of the board 12.
  • the wall is provided with via holes for fastening screws to pass through, and the bottom wall of the groove 131 of the installation groove 131 of the BMS from the board 13 is provided with via holes for fastening screws to pass through, and the supporting boss 16 is provided with holes for fastening screws.
  • the position of the nut 151 is provided with a via hole for the fastening screw to pass through; the fastening screw passes through the via hole of the BMS main board bracket 14, the via hole of the BMS slave board 12, the via hole of the supporting boss 16 and the BMS slave board 13.
  • the through holes are installed in the installation holes of the projection welding nuts 151 of the BMS assembly bracket 15 to realize the assembly of the above-mentioned components; the fastening screws can specifically be hexagonal socket head screws.
  • the side surface of the BMS main board support 14 facing the BMS main board 11 is provided with a connecting boss 143 , and the BMS main board 11 is provided with an installation channel through which the connecting boss 143 passes. hole, the BMS main board 11 is fixedly connected to the BMS main board bracket 14 through the fastening nut 18 installed on the connecting boss 143, and the fastening nut 18 may specifically be a hexagonal flange nut.
  • the BMS assembly bracket 15 is provided with mounting holes for fastening bolts 19, the BMS main board 11, the BMS main board bracket 14, the BMS slave board 12, the support boss 16 and BMS assembly bracket 15 are subassembled, and the above structure can be installed as a whole on the installation point corresponding to the battery pack beam by fastening bolts 19, and the assembly process can be completed, as shown in Fig. 5 .
  • the BMS includes a BMS main board 11 and two BMS slave boards 12, 13, and the BMS installation structure includes a BMS main board 11, two BMS slave boards 12, 13, and a BMS main board bracket 14.
  • the BMS assembly bracket 15 is the basic support structure of all BMS main boards 11 and BMS slave boards 12, 13, which is stamped from sheet metal, with four corner openings as mounting holes for the bracket, and four projection welding nuts 151 at the bottom as mounting holes.
  • the common mounting threaded holes of the BMS main board 11 and the BMS slave boards 12 and 13 are shown in FIG. 2 .
  • the BMS slave board 13 is placed on the corresponding position of the BMS assembly bracket 15, the support boss 16 is placed on the installation hole of the BMS slave board 13 through the limiting structure, and the contact position of the support boss 16 and the BMS slave board 13 is bonded by adhesive 162 Temporarily fixed, as shown in Figure 3.
  • the BMS slave board 12 is placed on the corresponding position of the support boss 16, and the BMS main board bracket 14 is placed on the corresponding position of the BMS slave board 12, as shown in FIG. 4 .
  • the hexagon socket pan head screw passes through the through holes of the BMS slave plate 12, the support boss 16, and the BMS slave plate 13, and installs it into the installation hole of the projection welding nut 151 of the BMS assembly bracket 15, so that it is fixed as a whole;
  • the BMS mainboard 11 is placed on the BMS mainboard support 14 and fixed by hexagonal flange nuts.
  • the BMS main board bracket 14, BMS slave board 12, support boss 16, and BMS slave board 13 are sequentially assembled to the BMS assembly bracket 15, and fixed with hexagon socket pan head screws, and then the BMS main board 11 is fixed with The hexagonal flange nut is fixed on the BMS mainboard bracket 14. So far, the hexagonal flange nut, BMS mainboard 11, BMS mainboard bracket 14, hexagon socket head screw, BMS slave board 12, BMS slave board 13, support convex The separate assembly of the platform 16 and the BMS assembly bracket 15 is completed; finally, the above-mentioned structure is integrally installed on the installation point corresponding to the battery pack beam through the hexagonal flange bolts, as shown in Figure 5, and the assembly process can be completed.
  • the BMS main board and the BMS slave board are assembled vertically, which saves space in the X/Y direction and at the same time maximizes the use of the special-shaped convex space in the Z direction inside the battery pack, effectively improving the battery pack capacity.
  • the overall lightweight design is conducive to reducing the weight and cost of the battery pack; BMS main board, BMS slave board and BMS All kinds of brackets are sub-assembled offline, and then assembled directly to the beam of the battery pack online after forming a whole, which speeds up the production cycle of the line body, helps to reduce production costs, improves the work efficiency of operators, and reduces labor costs.
  • BMS installation structure of the present disclosure is not limited to one BMS main board and several BMS slave boards stacked vertically, and several BMS slave boards of the BMS can also be installed in the above-mentioned vertical stacking manner.
  • the embodiment of the present disclosure also provides a BMS installation structure, as shown in Figure 1, including a BMS assembly bracket 15 and at least two BMS slave boards 12, 13, and the BMS slave boards 12, 13 are stacked on the BMS in turn On the assembly bracket 15 , the BMS slave boards 12 , 13 are fixedly connected to the BMS assembly bracket 15 through the connecting piece 17 passing through the BMS slave boards 12 , 13 and the BMS assembly bracket 15 .
  • the BMS installation structure provided by the above-mentioned embodiments of the present disclosure can realize at least two BMS sub-boards of the BMS to be vertically stacked, effectively saving the space in the X/Y direction inside the battery pack (X and Y directions as shown in Figure 5).
  • the Z-direction special-shaped convex space inside the battery pack can be effectively used (Z direction as shown in Figure 5), thereby effectively improving the utilization rate of the internal space of the battery pack;
  • the BMS slave board and BMS assembly bracket can be Off-line sub-assembly, BMS sub-boards 12, 13 are assembled with BMS assembly bracket 15 through the connector 17 pierced through BMS sub-boards 12, 13 and BMS assembly bracket 15, and directly assembled to the battery on-line after forming a whole Wrapped on the beam, it saves the process of direct assembly of various parts on the wire body, speeds up the production tempo of the wire body, improves the production efficiency of the wire body, and helps to reduce production costs.
  • installation grooves 121 and 131 are provided on the side surface of the BMS sub-boards 12 and 13 facing away from the BMS assembly bracket 15, and two adjacent BMS sub-boards 12, 13 13, a support boss 16 is installed in the mounting groove 131 of the lower BMS slave board 13, and the lower BMS slave board 13 supports the upper BMS slave board 12 through the support boss 16, so that the use of the support boss
  • the platform 16 supports the upper BMS slave board 12, so as to achieve the purpose of stacking multiple BMS slave boards in sequence in the longitudinal direction; use the support boss 16 to support the upper BMS slave board 12, so that the BMS bracket can be saved , reduce the number of BMS brackets, and adopt a lightweight design as a whole, which is conducive to reducing the weight and cost of the battery pack.
  • an embodiment of the present disclosure also provides a battery pack, including the BMS installation structure 1 of any of the above embodiments.
  • the battery pack provided by the embodiments of the present disclosure has the beneficial effects of the BMS installation structure of any of the above embodiments because it includes the BMS installation structure of any of the above embodiments, and will not be repeated here.
  • An embodiment of the present disclosure also provides a vehicle, including the battery pack of the above embodiment.
  • the vehicle provided by the embodiment of the present disclosure has all the beneficial effects of the battery pack of the above-mentioned embodiment because it includes the battery pack of the above-mentioned embodiment, and will not be repeated here.

Abstract

提供了一种BMS安装结构、电池包及车辆。BMS安装结构,包括BMS主板、BMS从板、BMS主板支架和BMS总成支架;BMS从板设置在BMS总成支架上,BMS主板支架设置在BMS从板的上方,BMS主板支架和BMS总成支架通过连接件固定连接,BMS主板固定安装于BMS主板支架的上方。

Description

BMS安装结构、电池包及车辆
相关申请的交叉引用
本申请要求在2021年08月31日在中国提交的中国专利申请号202122086934.X的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及车辆技术领域,具体涉及一种BMS安装结构、电池包及车辆。
背景技术
随着国家大力倡导绿色出行,电动汽车产业日益蓬勃,用户对电动汽车的续航里程需求也日渐增大,所以越来越多的电动汽车厂家开始聚焦高电量动力电池系统。在电池包络空间和电芯选型相同的情况下,若想要提高电池包的总电量,就需要布置更多的电芯单元,这也意味着留给电池包内部其它零部件的可利用空间越来越小。所以,通过零部件结构优化来减少零部件的安装空间,尽可能利用看似无用的异形小包络,成为当前很多设计者要思考的问题。
众所周知,BMS(即电池管理系统)是动力电池系统不可或缺的一部分。随着产品的不断更新迭代,动力电池系统的设计包络空间也越来越紧凑,但BMS的安装固定方案却基本一致,通常是BMS的每个主板或从板对应一个安装支架,BMS的主板和从板采用平铺的方式设置于电池包内部,这极大地浪费了电池包内有限的空间,导致电池包内部空间利用率较低;同时现阶段大多数设计方案中,BMS和BMS支架都是在电池包生产线逐一装配,导致产线生产节凑偏慢,成本上升。
公开内容
本公开的实施方案提供了一种BMS安装结构、电池包及车辆。
本公开的实施方案提供了一种BMS安装结构,包括BMS主板、BMS从板、BMS主板支架和BMS总成支架;所述BMS从板设置在所述BMS总成支架上,所述BMS主板支架设置在所述BMS从板的上方,所述BMS主板支架通过穿设于所述BMS主板支架、所述BMS从板及所述BMS总成支架的连接件与所述BMS总成支架固定连接,所述BMS主板固定安装于所述BMS主板支架的上方。
在一些实施方案中,所述BMS从板的数量至少为两个,所述BMS从板依次叠放于所述BMS总成支架上,所述BMS从板背向所述BMS总成支架的一侧表面设置有安装凹槽;相邻两个所述BMS从板中,位于下方的所述BMS从板的所述安装凹槽内安装有支撑凸台,位于下方的所述BMS从板通过所述支撑凸台支撑位于上方的所述BMS从板。
在一些实施方案中,所述安装凹槽的槽底壁上设置有安装孔,所述支撑凸台的下端部设置有限位部,所述限位部与所述安装孔限位配合。
在一些实施方案中,所述支撑凸台的下端部与所述安装凹槽的槽底壁通过背胶粘接固定。
在一些实施方案中,所述BMS从板背向所述BMS总成支架的一侧表面设置有安装凹槽,所述BMS主板支架朝向所述BMS从板的一侧表面设置有与所述安装凹槽对应的支撑凸柱,所述BMS主板支架通过所述支撑凸柱支撑在所述BMS从板的上方。
在一些实施方案中,所述连接件包括紧固螺钉,所述紧固螺钉依次穿设于所述BMS主板支架、所述BMS从板以及所述BMS总成支架。
在一些实施方案中,所述BMS主板支架朝向所述BMS主板的一侧表面设置有连接凸柱,所述BMS主板上设置有供所述连接凸柱穿过的安装通孔,所述BMS主板通过安装在所述连接凸柱上的紧固螺母与所述BMS主板支架固定连接。
本公开的实施方案还提供了一种BMS安装结构,包括BMS总成支架和至少两个BMS从板,所述BMS从板依次叠放于所述BMS总成支架上,所述BMS从板通过穿设于所述BMS从板及所述BMS总成支架的连接件与所述BMS总成支架固定连接。
本公开的实施方案还提供了一种电池包,包括如上述任一实施例所述的BMS安装结构。
本公开的实施方案还提供了一种车辆,包括如上述实施例所述的电池包。
本公开的实施方案具有如下优点:本公开提供的BMS安装结构、电池包及车辆,通过将BMS的多个BMS板子(多个BMS板子可以包括一个BMS主板和至少一个BMS从板,也可以包括至少两个BMS从板)采用纵向叠式装配,有效节省了电池包内部X/Y向空间,同时可以有效利用电池包内部的Z向异形凸起空间,从而有效提高了电池包内部空间利用率;此外,BMS的多个BMS板子与BMS的支架(可以为BMS主板支架、BMS总成支架)可线下分装,组成整体后直接在线上装配至电池包横梁上,节省了各零部件在线体上直接装配的工序,加快了线体生产节拍,提高了线体生产效率,有助于降低生产成本。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施方案,下面将对实施方案中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例所述BMS安装结构的分解结构示意图;
图2为本公开实施例所述BMS安装结构的BMS总成支架的结构示意图;
图3为本公开实施例所述BMS安装结构的支撑凸台的结构示意图;
图4为本公开实施例所述BMS安装结构的BMS主板支架的结构示意图;
图5为本公开实施例所述BMS安装结构在电池包中的装配结构示意图。
其中,1-BMS安装结构;
11-BMS主板;12、13-BMS从板;121、131-安装凹槽;14-BMS主板支架;141-支撑凸柱;142-背胶;143-连接凸柱;15-BMS总成支架;151-凸焊螺母;16-支撑凸台;161-限位部;162-背胶;17-连接件;18-紧固螺母;19-紧固螺栓。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的实施方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
如图1所示,本公开实施例提供了一种BMS安装结构1,包括BMS主板11、BMS从板12、13、BMS主板支架14和BMS总成支架15。其中,BMS从板12、13设置在BMS总成支架15上,BMS主板支架14设置在BMS从板12、13的上方,BMS主板支架14通过穿设于BMS主板支架14、BMS从板12、13及BMS总成支架15的连接件17与BMS总成支架15固定连接,BMS主板11固定安装于BMS主板支架14的上方。
应当理解的是,上述实施例中的“上方”以及下文中的“下方”,是以BMS安装结构在正常装配过程中各个部件的相对位置关系进行描述的(如图1中的双向箭头所示),此处仅是为了便于表述,不会对本公开的保护范围起到限定作用。
需要说明的是,BMS通常包括一个BMS主板和若干个BMS从板,根据实际情况,BMS从板的数量可以为1个、2个、3个或者更多个。对于BMS从板的数量为一个的情况,BMS从板设置在BMS总成支架上;对于BMS从板的数量为两个或两个以上的情况,可以将多个BMS从板均设置在BMS总成支架上,且多个BMS从板依次叠放于BMS总成支架上;当然,对于BMS从板的数量比较多的情况,也可以将BMS的一部分BMS从板依次叠放于BMS总成支架上,其余的BMS从板可采用单独依次叠放的方式(也即另外叠放一叠),也可以采用常规的平铺的方式(也即不叠放),对于其余的BMS从板的放置方式,本实施例不做具体限定。
本公开上述实施例提供的BMS安装结构,可以实现将BMS的BMS主板11和若干个BMS从板12、13采用纵向叠式装配,相较于现有的BMS主板和BMS从板采用平铺的方式设置于电池包内部,有效节省了电池包内部X/Y向空间(如图5所示的X向、Y向),同时可以有效利用电池包内部的Z向异形凸起空间(如图5所示的Z向),从而有效提高了电池包内部空间利用率;此外,BMS主板11、BMS从板12、13、BMS主板支架14、BMS总成支架15可线下分装,BMS主板支架14通过穿设于BMS主板支架14、BMS从板12、13及BMS总成支架15的连接件17与BMS总成支架装配在一起,BMS主板11装配在BMS主板支架14的上方,实现将各部件组装为一体,组成整体后直接在线上装配至电池包横梁上,节省了各零部件在线体上直接装配的工序,加快了线体生产节拍,提高了 线体生产效率,有助于降低生产成本。
需要说明的是,电池包的盖体上本身就有一个凸包结构,从而在电池包的内部对应于该凸包结构的位置形成安装空间,本公开实施例提供的BMS安装结构,正好利用该安装空间来安装BMS,从而达到极致利用电池包内部安装空间的目的,有效提高了电池包内部空间利用率。
在本公开的一些实施例中,如图1所示,BMS从板12、13的数量至少为两个,BMS从板12、13依次叠放于BMS总成支架15上,BMS从板12背向BMS总成支架15的一侧表面设置有安装凹槽121,BMS从板13背向BMS总成支架15的一侧表面设置有安装凹槽131;相邻两个BMS从板12、13中,位于下方的BMS从板13的安装凹槽131内安装有支撑凸台16,位于下方的BMS从板13通过支撑凸台16支撑位于上方的BMS从板12。
需要说明的是,现有的BMS从板上通常就设置有安装凹槽结构,因此,本公开上述实施例提供的BMS安装结构,无需对现有的BMS从板进行大的结构改进,甚至无需对BMS从板进行结构改进,通过在位于下方的BMS从板13的安装凹槽131内安装支撑凸台16,即可实现利用支撑凸台16对位于上方的BMS从板12的支撑作用,从而实现多个BMS从板沿纵向依次叠放的目的。具体实现时,支撑凸台16安装在位于下方的BMS从板13的安装凹槽131内后,可以使得支撑凸台16的上端面略高于位于下方的BMS从板13的上表面,如此实现利用支撑凸台16对位于上方的BMS从板12的支撑作用。
上述实施例中,利用支撑凸台16对位于上方的BMS从板12进行支撑,如此可以节省BMS支架,减少BMS支架的数量,整体采用轻量化设计,有利于电池包减重和成本降低。具体实现时,可在BMS从板13背向BMS总成支架15的一侧表面设置四个安装凹槽131,在每个安装凹槽131内分别安装一支撑凸台16,利用四个支撑凸台16对位于上方的BMS从板12进行支撑,如此以确保支撑的稳固性;支撑凸台16具体可以为铝凸台,有利于电池包减重。
进一步地,如图1和图3所示,安装凹槽131的槽底壁上设置有安装孔,该安装孔可用于供连接件17(如紧固螺钉)穿过,以实现BMS从板13与BMS总成支架15的固定;支撑凸台16的下端部设置有限位部161,限位部161与安装孔限位配合,如此以实现将支撑凸台16放置并限位在BMS从板13的安装凹槽内。进一步地,如图3所示,支撑凸台16的下端部与安装凹槽的槽底壁通过背胶162粘接固定,也即支撑凸台16与BMS从板13的接触位置通过背胶162粘接临时固定,以确保在支撑凸台16的上方放置BMS从板12时,支撑凸台16不会发生倾倒或偏移。
在本公开的一些实施例中,如图1和图4所示,BMS从板12、13的数量至少为两个,BMS从板12、13依次叠放于BMS总成支架15上,位于最上方的BMS从板12背向BMS总成支架15的一侧表面设置有安装凹槽121,BMS主板支架14朝向BMS从板12的一侧表面设置有与安装凹槽121对应的支撑凸柱141,BMS主板支架14通过支撑凸柱141支撑在位于最上方的BMS从板12的上方。
需要说明的是,设置在BMS主板支架14上的支撑凸柱141可采用与支撑凸台16相同 或者相似的结构,具体实现时,支撑凸柱141可采用背胶142粘接等方式固定在BMS主板支架14的支架主体上,也可与BMS主板支架14的支架主体一体成型。当然,BMS主板支架14与位于最上方的BMS从板12之间的支撑结构,不限于采用上述结构,例如在位于最上方的BMS从板12的安装凹槽内安装支撑凸台16,利用支撑凸台16支撑BMS主板支架14,同样能够实现本公开的目的。
在本公开的另一些实施例中,BMS从板的数量为1个,BMS从板12设置在BMS总成支架15上,BMS从板12背向BMS总成支架15的一侧表面设置有安装凹槽121,BMS主板支架14朝向BMS从板12的一侧表面设置有与安装凹槽121对应的支撑凸柱141,BMS主板支架14通过支撑凸柱141支撑在BMS从板12的上方。
需要说明的是,设置在BMS主板支架14上的支撑凸柱141可采用与支撑凸台16相同或者相似的结构,具体实现时,支撑凸柱141可采用背胶142粘接等方式固定在BMS主板支架14的支架主体上,也可与BMS主板支架14的支架主体一体成型。当然,BMS主板支架14与BMS从板12之间的支撑结构,不限于采用上述结构,例如在BMS从板12的安装凹槽内安装支撑凸台16,利用支撑凸台16支撑BMS主板支架14,同样能够实现本公开的目的。
在本公开的一些实施例中,如图1所示,连接件17包括紧固螺钉,紧固螺钉依次穿设于BMS主板支架14、BMS从板12、13以及BMS总成支架15,以实现将BMS主板支架14、BMS从板12、13以及BMS总成支架15装配为一体。
具体地,如图1和图2所示,BMS总成支架15是所有BMS主板11和BMS从板12、13的基层支撑结构,其由钣金冲压而成,BMS总成支架15的底部设置有四个凸焊螺母151,作为BMS主板11和BMS从板12的共用安装螺纹孔,以通过穿过BMS主板支架14、BMS从板12、13,并安装到凸焊螺母151的安装螺纹孔内的紧固螺钉,实现将各零部件组装为一体;BMS总成支架15的四角开孔作为支架的安装过孔,用于通过穿设于该安装过孔内的紧固螺栓19,实现组装为一体的BMS安装结构在电池包内部的安装。
具体实现时,BMS主板支架14的支撑凸柱141上及其支架主体对应于支撑凸柱141的部位设置有供紧固螺钉穿过的过孔,BMS从板12的安装凹槽121的槽底壁上设置有供紧固螺钉穿过的过孔,BMS从板13的安装凹槽131的槽底壁上设置有供紧固螺钉穿过的过孔,支撑凸台16上设置有供紧固螺钉穿过的过孔,BMS总成支架15背向BMS从板12、13的一侧表面设置有凸焊螺母151(如图2所示),BMS总成支架15的支架主体对应于凸焊螺母151的部位设置有供紧固螺钉穿过的过孔;紧固螺钉穿过BMS主板支架14的过孔、BMS从板12的过孔、支撑凸台16的过孔及BMS从板13的过孔,安装到BMS总成支架15的凸焊螺母151的安装孔内,实现将上述各部件装配为一体;紧固螺钉具体可以为内六角花型盘头螺钉。
在本公开的一些实施例中,如图1所示,BMS主板支架14朝向BMS主板11的一侧表面设置有连接凸柱143,BMS主板11上设置有供连接凸柱143穿过的安装通孔,BMS主板11通过安装在连接凸柱143上的紧固螺母18与BMS主板支架14固定连接,紧固螺 母18具体可以为六角法兰面螺母。
在本公开的一些实施例中,如图1所示,BMS总成支架15上设置有用于打紧固螺栓19的安装孔,BMS主板11、BMS主板支架14、BMS从板12、支撑凸台16和BMS总成支架15分装完成后,可通过紧固螺栓19将上述结构整体安装至电池包横梁对应的安装点上,装配过程即可完成,如图5所示。
在一个具体实施例中,如图1所示,BMS包括一个BMS主板11和两个BMS从板12、13,BMS安装结构包括一个BMS主板11、两个BMS从板12、13、BMS主板支架14、BMS总成支架15和四个支撑凸台16。其中,BMS总成支架15是所有BMS主板11和BMS从板12、13的基层支撑结构,其由钣金冲压而成,四角开孔作为支架的安装过孔,底部四个凸焊螺母151作为BMS主板11和BMS从板12、13的共用安装螺纹孔,如图2所示。BMS从板13放置于BMS总成支架15对应位置,支撑凸台16通过限位结构放置于BMS从板13的安装孔上,支撑凸台16与BMS从板13接触位置通过背胶162粘接临时固定,如图3所示。BMS从板12放置于支撑凸台16对应位置,BMS主板支架14放置于BMS从板12对应位置,如图4所示。内六角花型盘头螺钉穿过BMS从板12、支撑凸台16、BMS从板13的过孔,安装到BMS总成支架15的凸焊螺母151的安装孔内,使之固定为一体;BMS主板11放置在BMS主板支架14上,并通过六角法兰面螺母固定。
简而言之,BMS主板支架14、BMS从板12、支撑凸台16、BMS从板13依次装配至BMS总成支架15上,并以内六角花型盘头螺钉固定,然后将BMS主板11用六角法兰面螺母固定在BMS主板支架14上,至此,六角法兰面螺母、BMS主板11、BMS主板支架14、内六角花型盘头螺钉、BMS从板12、BMS从板13、支撑凸台16和BMS总成支架15分装完成;最后,通过六角法兰面螺栓将上述结构整体安装至电池包横梁对应的安装点上,如图5所示,装配过程即可完成。
本公开上述实施例提供的BMS安装结构,BMS主板和BMS从板采用纵向叠式装配,节省X/Y向空间的同时,极致利用电池包内部的Z向异形凸起空间,有效提高了电池包内部空间利用率;3个BMS板子通过2个支架安装,中间BMS从板通过支撑凸台进行支撑,整体采用轻量化设计,有利于电池包减重和成本降低;BMS主板、BMS从板和BMS各种支架线下分装,组成整体后直接在线上装配至电池包横梁上,加快了线体生产节拍,有助于降低生产成本,操作人员工作效率得以提升,人工成本降低。
需要说明的是,对于BMS从板数量比较多的BMS,BMS的多个BMS板子可分为若干叠进行叠放,例如BMS包括一个BMS主板和5个BMS从板,则可以分成两叠进行叠放,具体可以为一个BMS主板和其中的2个BMS从板纵向叠放,另外的3个BMS从板纵向叠放,以避免一个BMS主板和5个BMS从板纵向叠放在一起导致高度过高;换言之,本公开的BMS安装结构不限于一个BMS主板和若干个BMS从板纵向叠放,BMS的若干个BMS从板也可以采用上述纵向叠放的方式进行安装。
基于此,本公开实施例还提供了一种BMS安装结构,如图1所示,包括BMS总成支架15和至少两个BMS从板12、13,BMS从板12、13依次叠放于BMS总成支架15上, BMS从板12、13通过穿设于BMS从板12、13及BMS总成支架15的连接件17与BMS总成支架15固定连接。
本公开上述实施例提供的BMS安装结构,可以实现将BMS的至少两个BMS从板采用纵向叠式装配,有效节省了电池包内部X/Y向空间(如图5所示的X向、Y向),同时可以有效利用电池包内部的Z向异形凸起空间(如图5所示的Z向),从而有效提高了电池包内部空间利用率;此外,BMS从板、BMS总成支架可线下分装,BMS从板12、13通过穿设于BMS从板12、13及BMS总成支架15的连接件17与BMS总成支架15装配在一体,组成整体后直接在线上装配至电池包横梁上,节省了各零部件在线体上直接装配的工序,加快了线体生产节拍,提高了线体生产效率,有助于降低生产成本。
在本公开的一些实施例中,如图1所示,BMS从板12、13背向BMS总成支架15的一侧表面设置有安装凹槽121、131,相邻两个BMS从板12、13中,位于下方的BMS从板13的安装凹槽131内安装有支撑凸台16,位于下方的BMS从板13通过支撑凸台16支撑位于上方的BMS从板12,如此可实现利用支撑凸台16对位于上方的BMS从板12的支撑作用,从而实现多个BMS从板沿纵向依次叠放的目的;利用支撑凸台16对位于上方的BMS从板12进行支撑,如此可以节省BMS支架,减少BMS支架的数量,整体采用轻量化设计,有利于电池包减重和成本降低。
如图5所示,本公开实施例还提供了一种电池包,包括如上述任一实施例的BMS安装结构1。
本公开实施例提供的电池包,因其包括上述任一实施例的BMS安装结构,因而具有上述任一实施例的BMS安装结构的有益效果,在此不再赘述。
本公开实施例还提供了一种车辆,包括如上述实施例的电池包。
本公开实施例提供的车辆,因其包括上述实施例的电池包,因而具有上述实施例的电池包的全部有益效果,在此不再赘述。
需要说明的是,在本文中,“上方”、“下方”仅是为了便于表述,不会对保护范围起到限定;诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本公开要求的保护范围。

Claims (10)

  1. 一种BMS安装结构,包括BMS主板(11)、BMS从板(12、13)、BMS主板支架(14)和BMS总成支架(15);
    所述BMS从板(12、13)设置在所述BMS总成支架(15)上,所述BMS主板支架(14)设置在所述BMS从板(12、13)的上方,所述BMS主板支架(14)通过穿设于所述BMS主板支架(14)、所述BMS从板(12、13)及所述BMS总成支架(15)的连接件(17)与所述BMS总成支架(15)固定连接,所述BMS主板(11)固定安装于所述BMS主板支架(14)的上方。
  2. 根据权利要求1所述的BMS安装结构,其中所述BMS从板(12、13)的数量至少为两个,所述BMS从板(12、13)依次叠放于所述BMS总成支架(15)上,所述BMS从板(12、13)背向所述BMS总成支架(15)的一侧表面设置有安装凹槽(121、131);
    相邻两个所述BMS从板(12、13)中,位于下方的所述BMS从板(13)的所述安装凹槽(131)内安装有支撑凸台(16),位于下方的所述BMS从板(13)通过所述支撑凸台(16)支撑位于上方的所述BMS从板(12)。
  3. 根据权利要求2所述的BMS安装结构,其中所述安装凹槽(131)的槽底壁上设置有安装孔,所述支撑凸台(16)的下端部设置有限位部(161),所述限位部(161)与所述安装孔限位配合。
  4. 根据权利要求2或3所述的BMS安装结构,其中所述支撑凸台(16)的下端部与所述安装凹槽(131)的槽底壁通过背胶(162)粘接固定。
  5. 根据权利要求1至4中任一项所述的BMS安装结构,其中所述BMS从板(12)背向所述BMS总成支架(15)的一侧表面设置有安装凹槽(121),所述BMS主板支架(14)朝向所述BMS从板(12)的一侧表面设置有与所述安装凹槽(121)对应的支撑凸柱(141),所述BMS主板支架(14)通过所述支撑凸柱(141)支撑在所述BMS从板(12)的上方。
  6. 根据权利要求1至5中任一项所述的BMS安装结构,其中所述连接件(17)包括紧固螺钉,所述紧固螺钉依次穿设于所述BMS主板支架(14)、所述BMS从板(12、13)以及所述BMS总成支架(15)。
  7. 根据权利要求1至6中任一项所述的BMS安装结构,其中所述BMS主板支架(14)朝向所述BMS主板(11)的一侧表面设置有连接凸柱(143),所述BMS主板(11)上设置有供所述连接凸柱(143)穿过的安装通孔,所述BMS主板(11)通过安装在所述连接凸柱(143)上的紧固螺母(18)与所述BMS主板支架(14)固定连接。
  8. 一种BMS安装结构,包括BMS总成支架(15)和至少两个BMS从板(12、13),所述BMS从板(12、13)依次叠放于所述BMS总成支架(15)上,所述BMS从板(12、13)通过穿设于所述BMS从板(12、13)及所述BMS总成支架(15)的连接件(17)与所述BMS总成支架(15)固定连接。
  9. 一种电池包,包括如权利要求1至7中任一项或权利要求8所述的BMS安装结构。
  10. 一种车辆,包括如权利要求9所述的电池包。
PCT/CN2022/115477 2021-08-31 2022-08-29 Bms安装结构、电池包及车辆 WO2023030244A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122086934.XU CN215680867U (zh) 2021-08-31 2021-08-31 Bms安装结构、电池包及车辆
CN202122086934.X 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023030244A1 true WO2023030244A1 (zh) 2023-03-09

Family

ID=79958112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115477 WO2023030244A1 (zh) 2021-08-31 2022-08-29 Bms安装结构、电池包及车辆

Country Status (2)

Country Link
CN (1) CN215680867U (zh)
WO (1) WO2023030244A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215680867U (zh) * 2021-08-31 2022-01-28 北京车和家信息技术有限公司 Bms安装结构、电池包及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206210893U (zh) * 2016-12-02 2017-05-31 微宏动力系统(湖州)有限公司 电池组
CN110149777A (zh) * 2019-05-06 2019-08-20 蜂巢能源科技有限公司 集成式bms外壳及具有其的电池包
CN210082990U (zh) * 2019-05-27 2020-02-18 蜂巢能源科技有限公司 Bms控制板支架结构、bms控制板组件、电池包以及汽车
CN210970936U (zh) * 2019-12-12 2020-07-10 北京普莱德新能源电池科技有限公司 一种固定支架及其组成的电池包与运输工具
US20210167347A1 (en) * 2019-11-29 2021-06-03 Samsung Sdi Co., Ltd. Battery pack
CN213565456U (zh) * 2020-09-09 2021-06-29 湖北亿纬动力有限公司 一种bms管理系统安装结构及电池包
CN215680867U (zh) * 2021-08-31 2022-01-28 北京车和家信息技术有限公司 Bms安装结构、电池包及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206210893U (zh) * 2016-12-02 2017-05-31 微宏动力系统(湖州)有限公司 电池组
CN110149777A (zh) * 2019-05-06 2019-08-20 蜂巢能源科技有限公司 集成式bms外壳及具有其的电池包
CN210082990U (zh) * 2019-05-27 2020-02-18 蜂巢能源科技有限公司 Bms控制板支架结构、bms控制板组件、电池包以及汽车
US20210167347A1 (en) * 2019-11-29 2021-06-03 Samsung Sdi Co., Ltd. Battery pack
CN210970936U (zh) * 2019-12-12 2020-07-10 北京普莱德新能源电池科技有限公司 一种固定支架及其组成的电池包与运输工具
CN213565456U (zh) * 2020-09-09 2021-06-29 湖北亿纬动力有限公司 一种bms管理系统安装结构及电池包
CN215680867U (zh) * 2021-08-31 2022-01-28 北京车和家信息技术有限公司 Bms安装结构、电池包及车辆

Also Published As

Publication number Publication date
CN215680867U (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023030244A1 (zh) Bms安装结构、电池包及车辆
CN109904378B (zh) 锂电池储能模块及锂电池储能模组
WO2023051100A1 (zh) 车辆的车身地板总成以及车辆
CN209930179U (zh) 一种太阳能储能逆变一体机
WO2021142743A1 (zh) 一种电池包和电动车辆
CN218632292U (zh) 一种电池包及车辆
CN217214913U (zh) 一种电池结构
WO2023050506A1 (zh) 一种高频三电平dcdc变流器模块及装配方法
CN212313475U (zh) 一种蓄电池支架结构
CN114865191A (zh) 双层模组电池系统及车辆
CN213304246U (zh) 一种电池动力系统叠放托盘
CN212982385U (zh) 一种新能源叉车bms安装结构
WO2023087228A1 (zh) 多功能安装支架、电池安装模块及电池包
CN210668451U (zh) 电池支架、电池模组和电池包
CN217009422U (zh) Bms的安装支架和电池包
CN211892874U (zh) 一种燃料电池电堆模块安装支架及燃料电池电堆模块
CN219134075U (zh) 一种bms安装支架
CN216055039U (zh) 线束支架及电池包和动力装置
CN218160029U (zh) 一种储能系列化超级电容模组
CN212874616U (zh) 一种电池模组及电池包
CN217134567U (zh) 一种电动车承载式电芯安装结构及电池包
CN217562660U (zh) 动力电池模组、车辆
CN215896610U (zh) Bms安装支架
CN219350488U (zh) 一种电池组件
CN211530033U (zh) 固定支架和电池箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863380

Country of ref document: EP

Kind code of ref document: A1