WO2023029877A1 - 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件 - Google Patents

非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件 Download PDF

Info

Publication number
WO2023029877A1
WO2023029877A1 PCT/CN2022/110452 CN2022110452W WO2023029877A1 WO 2023029877 A1 WO2023029877 A1 WO 2023029877A1 CN 2022110452 W CN2022110452 W CN 2022110452W WO 2023029877 A1 WO2023029877 A1 WO 2023029877A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
particles
powder core
amorphous
amorphous magnetic
Prior art date
Application number
PCT/CN2022/110452
Other languages
English (en)
French (fr)
Inventor
聂军武
申建伟
张宴
厉超群
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP22863018.2A priority Critical patent/EP4398273A1/en
Publication of WO2023029877A1 publication Critical patent/WO2023029877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers

Definitions

  • the embodiments of the present application relate to the technical field of alloy soft magnetic materials and powder metallurgy, such as precursor particles of amorphous magnetic powder cores, amorphous magnetic powder cores, their preparation methods, and inductive devices.
  • Magnetic powder core is a new type of composite soft magnetic material, which has good soft magnetic properties and frequency characteristics, and is the key component for making inductive devices, especially in high-frequency and high-power circuits.
  • third-generation new semiconductors with wide bandgap, high-current materials, and high-frequency electronic devices have brought many new challenges to magnetic components.
  • Traditional magnetic powder cores such as sendust, iron-nickel-molybdenum and iron-silicon alloy systems have problems such as poor magnetic stability, large magnetic loss, heavy mass and low power, which cannot meet the development needs of magnetic components, and are not suitable for high-frequency applications. use below.
  • amorphous magnetic powder cores Compared with traditional magnetic powder cores, amorphous magnetic powder cores have the characteristics of constant magnetic permeability, high resistivity, and low loss at high frequencies, and have been widely used in various transformers, sensors, switching power supplies, etc. 1.
  • the laminated soft magnetic core loses a lot when it works at high frequency, which limits its application at high frequency.
  • the preparation method of crushing amorphous soft magnetic tape into powder, insulating coating and pressing into magnetic powder core products provides a direction for further improving the performance of amorphous magnetic powder cores.
  • CN107818854A discloses a preparation method and application of an iron-based amorphous soft magnetic powder core, including the following steps: first prepare and sieve the amorphous alloy powder to obtain the target particle size, and use a passivator and a binder to treat the amorphous alloy powder respectively.
  • the alloy powder is subjected to passivation and insulation coating treatment in turn, and then the processed amorphous alloy powder is pressed by cold pressing method to form a magnetic powder core, and finally the magnetic powder core is subjected to longitudinal magnetic field heat treatment to obtain a magnetic powder core with high superposition and low loss, but The magnetic permeability does not introduce specific values.
  • CN107967976A discloses an amorphous magnetic powder core precursor particle, which includes an amorphous alloy particle composed of Fe a Si b B c P d Nb e X f and a cladding layer covering the surface of the amorphous alloy particle.
  • the material and process measures of an amorphous magnetic powder core product using soft magnetic ferrite as an insulating coating agent are disclosed.
  • the magnetic permeability of the obtained amorphous magnetic ring sample reaches 97u, which is higher than the performance of many current magnetic powder core products.
  • CN108010654A discloses a preparation method of a novel spherical iron-based amorphous alloy powder and an amorphous magnetic powder core, comprising the following steps: preparing a novel spherical iron-based amorphous alloy powder by gas atomization, using passivating agent, insulating agent and The binder performs passivation and insulation coating treatment on the sieved amorphous alloy powder in sequence, and finally adopts the cold pressing method to press the processed amorphous alloy powder into shape, and then performs stress relief annealing treatment.
  • CN104575913A discloses a method for preparing a low-loss amorphous magnetic powder core.
  • the magnetic permeability is prepared by pressing and high-temperature annealing. Amorphous magnetic powder core between 90. However, under high-frequency conditions, the magnetic permeability of the amorphous magnetic powder core prepared above is low and the magnetic loss is high.
  • the subcooling technology of gas atomization powder making has been greatly improved, making spherical amorphous powder easier to obtain.
  • powder metallurgy molding technology can be used to produce magnetic powder cores of various shapes and sizes, and the application fields of amorphous magnetic powder cores have been greatly expanded.
  • the reduction of powder particle size can reduce the loss, especially in the high-frequency MHz range.
  • the smaller the particle size of the powder the lower the magnetic permeability of the inductive material of the magnetic powder core.
  • How to improve the magnetic permeability of the metal magnetic powder core is an important method to improve efficiency and reduce the volume of the magnetic core, which is difficult to achieve in many current technologies.
  • Embodiments of the present application provide an amorphous magnetic powder core precursor particle, an amorphous magnetic powder core, a preparation method thereof, and an inductor device.
  • the amorphous magnetic powder core provided by this application not only has high magnetic permeability and inductance, but also maintains low loss characteristics at high frequencies.
  • the embodiment of the present application provides an amorphous magnetic powder core precursor particle, the amorphous magnetic powder core precursor particle includes an amorphous alloy particle and a coating layer coated on the surface of the amorphous alloy particle;
  • the elements of the amorphous alloy particles are Fe, Si, Cr and B.
  • the precursor particles of the amorphous magnetic powder core provided by this application include Cr element. Since the potential of the Cr element is lower than that of the Fe element, it is more likely to be oxidized than the Fe element, thereby delaying or preventing the rust of the Fe element, and effectively improving the quality of the amorphous magnetic powder core precursor. The anti-oxidation ability of the body ensures that the amorphous magnetic powder core has a high magnetic permeability.
  • the cladding layer is located on the surface of the amorphous alloy particles, which can play an insulating role and reduce the loss of the amorphous magnetic powder core.
  • the mass fraction of the Si element in the amorphous alloy particles is 2-4wt%, preferably 2.2-3.8wt%; the mass fraction of the Cr element is 2-3%wt, preferably It is 2.2-2.8wt%; the mass fraction of B element is 10-14%wt, preferably 11-13wt%; the rest is Fe.
  • the potential of Cr element is lower than that of Fe element, so it is easier to oxidize than Fe element, so as to delay or prevent Fe element from rusting, and effectively improve the oxidation resistance of the precursor of amorphous magnetic powder core, thereby ensuring that the amorphous magnetic powder core has higher magnetic properties.
  • Conductivity, but too high Cr element content will lead to a decrease in the saturation characteristics of the material, so combining the two aspects of anti-rust and electromagnetic properties, the content of Cr element should be controlled at 2-3%wt, preferably 2.2-2.8wt%.
  • the radius of B element is smaller than that of Fe element, and the negative enthalpy of mixing is smaller than that of Fe element.
  • the addition of an appropriate amount of B element is beneficial to improve the ability of amorphous formation, but too high B element content will lead to a decrease in the saturation characteristics of the material and a partial hardness. High is not conducive to subsequent compression molding.
  • the mass fraction of the Si element in the amorphous alloy particles can be 2wt%, 2.5wt%, 3wt%, 3.5wt% or 4wt%; the mass fraction of the Cr element in the amorphous alloy particles can be 2wt% %, 2.2wt%, 2.4wt%, 2.6wt%, 2.8wt% or 3wt%; the mass fraction of the B element in the amorphous alloy particles can be 10wt%, 10.5wt%, 11wt%, 11.5wt%, 12wt%, 12.5wt%, 13wt%, 13.5wt% or 14wt%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the particle size of the amorphous alloy particles is 200-300 mesh; the shape of the amorphous alloy particles is spherical.
  • the coating layer includes inorganic powder and a binder.
  • the particle size of the inorganic powder is 250-550nm, such as 250nm, 280nm, 300nm, 320nm, 350nm, 380nm, 400nm, 420nm, 450nm, 480nm, 500nm, 530nm or 550nm, but not limited to the listed
  • the numerical value of , other unlisted numerical values in this numerical range are also applicable.
  • the inorganic powder is an oxide powder.
  • the inorganic powder includes nanometer oxide powder or submicron oxide powder.
  • the inorganic powder includes any one or a combination of at least two of silica, mica powder, zirconia or alumina powder, more preferably silica.
  • Inorganic powder itself has a certain adsorption capacity and can evenly adhere to the amorphous alloy particles, which is beneficial to the strengthening of the insulating layer and reduces the loss of the magnetic powder core.
  • the adhesive is a high molecular polymer.
  • the adhesive includes any one or a combination of at least two of epoxy resin, silicone resin, silicone resin, polyamide resin or phenolic resin, more preferably silicone resin.
  • the embodiment of the present application provides a method for preparing the precursor particles of the amorphous magnetic powder core described in the first aspect, the preparation method comprising:
  • This application adopts high- pressure gas atomization method to prepare amorphous alloy particles.
  • the atomization pressure is 80-100kg/m 2 m 2 , but not limited to the listed values, other unlisted values within this range are also applicable.
  • Nebulizing gas is protective gas, including nitrogen or argon.
  • the preparation of amorphous alloy particles by high-pressure gas atomization can avoid the defects of impurities, uneven composition and sharp edges and corners in the traditional strip crushing method, and the gas atomization method can obtain spherical amorphous alloy particles with small particle size and smooth surface , no obvious holes, holes and other defects, reducing magnetic loss, and the spherical shape can also increase the superposition current.
  • Acidizing treatment before the passivation step can solve the problem of the slow process between the amorphous alloy particles and the passivating agent, thereby forming a dense passivation film on the surface of the amorphous alloy particles, improving the insulating effect of the amorphous alloy particles, At the same time, the coating treatment further improves the insulation and stability of the amorphous alloy particles. Therefore, the amorphous magnetic powder core provided by the present application has high magnetic permeability and low magnetic loss at high frequency.
  • the acidification process is carried out under stirring conditions.
  • the acidification time is 5 to 60 minutes, more preferably 10 to 50 minutes, such as 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes or 60 minutes, but not only Limited to the listed numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the acid solution includes perchromic acid solution and/or potassium permanganate solution.
  • the mass fraction of the acid solution is 5-25 wt%, more preferably 10-20 wt%, such as 5 wt%, 10 wt%, 15 wt%, 20 wt% or 25 wt%, but not limited to the listed values , other unlisted values within this value range are also applicable.
  • the application specifically limits the mass fraction of the acid solution to 5 to 25 wt%.
  • the mass fraction of the acid solution exceeds 25 wt%, it will cause the surface of the amorphous alloy particles to burn, because the acidity is too high and the reaction is too fast; when the acid solution
  • the mass fraction of the solution is lower than 5wt%, there will be no reaction on the surface of the amorphous alloy particles, because the acidity is too low and the activity is poor, so there is no effect on the surface of the amorphous alloy particles.
  • the acid solution is added in an amount of 0.005-0.04wt%, more preferably 0.01-0.03wt%, such as 0.005wt%, 0.01wt% , 0.015wt%, 0.02wt%, 0.025wt%, 0.03wt%, 0.035wt% or 0.04wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • This application specifically limits the addition of acid solution to 0.005-0.04wt%.
  • the addition of acid solution exceeds 0.04wt%, it will cause the surface of the amorphous alloy particles to be burned, which is due to too high acidity and too fast reaction;
  • the acid solution is added in an amount lower than 0.005wt%, there will be no reaction on the surface of the amorphous alloy particles, which is because the acidity is too low and the activity is poor, so it has no effect on the surface of the amorphous alloy particles.
  • the passivating agent used in the passivation process includes any of phosphoric acid solution, nitric acid solution, boric acid solution, sodium dihydrogen phosphate solution, aluminum dihydrogen phosphate solution or sodium dihydrogen phosphate solution.
  • phosphoric acid solution nitric acid solution
  • boric acid solution sodium dihydrogen phosphate solution
  • aluminum dihydrogen phosphate solution aluminum dihydrogen phosphate solution
  • sodium dihydrogen phosphate solution preferably phosphoric acid solution.
  • the mass fraction of the passivating agent is 10-20wt%, more preferably 12-18wt%, such as 10wt%, 12wt%, 14wt%, 16wt%, 18wt% or 20wt%, but not limited to For the listed values, other unlisted values within the range of values are also applicable.
  • the added amount of the passivating agent is 0.01 to 0.06 wt%, more preferably 0.02 to 0.05 wt%, such as 0.01 wt%, 0.02 wt%, 0.03 wt%, 0.04wt%, 0.05wt% or 0.06wt%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the application specifically limits the addition of the passivating agent to 0.01 to 0.06wt%.
  • the addition of the passivating agent exceeds 0.06wt%, the magnetic permeability of the obtained amorphous magnetic powder core will decrease. This is due to the passivation. If the addition of the passivating agent is too high, excessive non-magnetic substances will be generated; when the adding amount of the passivating agent is lower than 0.01wt%, the magnetic powder loss of the obtained amorphous magnetic powder core will be high, which is due to the addition of the passivating agent If the amount is too low, the passivation layer is not dense, and the passivation particles are easily oxidized.
  • the coating process specifically includes: uniformly mixing passivation particles and an insulating agent to obtain insulating particles, and then adding a binder and mixing to obtain the amorphous magnetic powder core precursor particles.
  • said mixing is performed under ultrasonic conditions.
  • the insulating agent is an inorganic powder.
  • the particle size of the inorganic powder is 250-550nm, such as 250nm, 280nm, 300nm, 320nm, 350nm, 380nm, 400nm, 420nm, 450nm, 480nm, 500nm, 530nm or 550nm, but not limited to the listed
  • the numerical value of , other unlisted numerical values in this numerical range are also applicable.
  • the inorganic powder is an oxide powder.
  • the inorganic powder includes nanometer oxide powder or submicron oxide powder.
  • the inorganic powder includes any one or a combination of at least two of silica, mica powder, zirconia or alumina powder, more preferably silica.
  • the mass fraction of the insulating agent is 0.04% to 0.06wt%, more preferably 0.045% to 0.055wt%, such as 0.04wt%, 0.045wt% %, 0.05wt%, 0.055wt% or 0.06wt%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the adhesive is a high molecular polymer.
  • the adhesive includes any one or a combination of at least two of epoxy resin, silicone resin, silicone resin, polyamide resin or phenolic resin, more preferably silicone resin;
  • the silicone resin has high thermal stability and is not easy to decompose.
  • As a binder it can improve the stability of the precursor particles of the amorphous magnetic powder core, and can also improve the molding performance of the precursor particles of the amorphous magnetic powder core.
  • the adhesive is diluted with a solvent.
  • the solvent is acetone.
  • the mass fraction of the binder is 0.1%-0.5wt%, more preferably 0.2-0.4wt%, for example, it can be 0.1wt%, 0.15wt% , 0.2wt%, 0.25wt%, 0.3wt%, 0.35wt%, 0.4wt%, 0.45wt% or 0.5wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the application specifically limits the addition of the binder to 0.1-0.5wt%.
  • the addition of the binder exceeds 0.5wt%, it will result in low density and low magnetic permeability of the obtained amorphous magnetic powder core, which is Due to the high amount of binder added, the proportion of non-magnetic substances is high and the molding density is low; when the amount of binder added is less than 0.1wt%, the magnet of the amorphous magnetic powder core will have no strength and cannot be manufactured. This is because the bonding of the amorphous magnetic powder core mainly comes from the force of the adhesive.
  • the embodiment of the present application provides an amorphous magnetic powder core, and the amorphous magnetic powder core is prepared from the precursor particles of the amorphous magnetic powder core in the first aspect.
  • the amorphous magnetic powder core provided by this application has high magnetic permeability and high inductance, and still maintains high magnetic permeability and low loss characteristics at high frequencies.
  • the embodiment of the present application provides the preparation method of the amorphous magnetic powder core described in the third aspect, the preparation method comprising:
  • the precursor particles of the amorphous magnetic powder core and the release agent are uniformly mixed by ultrasonic stirring, they are put into a mold for compression molding, followed by annealing treatment to obtain the amorphous magnetic powder core.
  • the internal stress is eliminated to form an amorphous magnetic powder core with a suitable density, thereby increasing the magnetic permeability of the amorphous magnetic powder core while reducing magnetic loss.
  • the compression molding pressure is 10-14T/cm 2 , such as 10T/cm 2 , 11T/cm 2 , 12T/cm 2 , 13T/cm 2 or 14T/cm 2 2 , but not limited to the listed values, other unlisted values within this range are also applicable.
  • the release agent is stearic acid amide.
  • the mass fraction of the amorphous magnetic powder core precursor particles is 100wt%, and the mass fraction of the release agent is 0.01% to 0.03wt%, such as 0.01wt%, 0.015wt%, 0.02wt% , 0.025wt% or 0.3wt%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the annealing temperature is 530-630°C, such as 530°C, 540°C, 550°C, 560°C, 570°C, 580°C, 590°C, 600°C, 610°C, 620°C or 630°C, However, it is not limited to the listed values, and other unlisted values within the range of values are also applicable.
  • the annealing time is 15-25 minutes, such as 15 minutes, 17 minutes, 20 minutes, 23 minutes or 25 minutes, but it is not limited to the listed values, and other unlisted values within this range are also applicable.
  • the annealing atmosphere includes a nitrogen atmosphere or an argon atmosphere.
  • an embodiment of the present application provides an inductance device, the inductance device comprising the amorphous magnetic powder core described in the third aspect.
  • the amorphous magnetic powder core provided by the embodiment of this application has high magnetic permeability and inductance, and still maintains low loss characteristics at high frequencies.
  • the magnetic permeability can reach about 140, and the magnetic loss (500kHz@100mT) is as low as 5500mW/cm 3 or so, it is beneficial to realize its application at high frequency.
  • FIG. 1 is a scanning electron microscope image of amorphous alloy particles in Example 1.
  • FIG. 1 is a scanning electron microscope image of amorphous alloy particles in Example 1.
  • FIG. 2 is a differential thermal analysis curve of amorphous alloy particles in Example 1.
  • This embodiment provides a method for preparing an amorphous magnetic powder core.
  • the preparation method specifically includes the following steps:
  • step (2) Add a perchromic acid solution with a mass fraction of 15 wt% to the amorphous alloy particles obtained in step (1), and perform acid treatment for 30 minutes under stirring to obtain acidified particles.
  • the added amount of the perchromic acid solution is 0.02wt% of the mass of the amorphous alloy particles.
  • step (3) Add a phosphoric acid solution with a mass fraction of 15 wt% into the acidified granules obtained in step (2) for passivation treatment, and stir thoroughly until dry to obtain passivated granules.
  • the addition amount of phosphoric acid solution is 0.03wt% of the mass of the acidified granules.
  • step (3) Coating the passivation particles obtained in step (3), at first the passivation particles and the silicon dioxide insulating agent with a particle size of 500nm are mixed uniformly under ultrasound to obtain insulating particles, wherein the silicon dioxide The addition amount of the passivation particles is 0.05wt% of the mass of the passivation particles; then the polymethyl silicone resin acetone solution is added to mix with the insulating particles evenly, fully stirred until dry, and the precursor particles of the amorphous magnetic powder core are obtained, wherein the polymethyl silicone resin acetone The solution was added in an amount of 0.3 wt% of the insulating particles.
  • step (4) zinc stearate is added in the amorphous magnetic powder core precursor particle that step (4) obtains, the add-on of stearic acid amide is 0.02wt% of the amorphous magnetic powder core precursor particle quality, after mixing, in Under the pressure of 12T/cm 2 , it is pressed into a magnetic ring ( ⁇ 8x3.9x3.2mm) with an outer diameter of 8mm, an inner diameter of 3.9mm, and a height of 3.2mm; then it is placed in a nitrogen-protected tube furnace and annealed at 580°C After 20 minutes, an amorphous magnetic powder core was obtained.
  • This embodiment provides a method for preparing an amorphous magnetic powder core.
  • the preparation method specifically includes the following steps:
  • step (2) Add a perchromic acid solution with a mass fraction of 10 wt% to the amorphous alloy particles obtained in step (1), and perform acid treatment for 50 minutes under stirring to obtain acidified particles.
  • the added amount of the perchromic acid solution is 0.03wt% of the mass of the amorphous alloy particles.
  • step (3) Add the phosphoric acid solution with a mass fraction of 12wt% into the acidified granules obtained in step (2) for passivation treatment, and fully stir until dry to obtain passivated granules.
  • the addition amount of phosphoric acid solution is 0.05wt% of the mass of the acidified particles.
  • step (3) Coating the passivation particles obtained in step (3), at first the passivation particles and the silicon dioxide insulating agent with a particle size of 250nm are mixed uniformly under ultrasound to obtain insulating particles, wherein the silicon dioxide The addition amount of the passivation particles is 0.055wt% of the mass of the passivation particles; then the polymethyl silicone resin acetone solution is added to mix with the insulating particles uniformly, fully stirred until dry, and the precursor particles of the amorphous magnetic powder core are obtained, wherein the polymethyl silicone resin acetone The solution was added in an amount of 0.2 wt% of the insulating particles.
  • step (4) zinc stearate is added in the amorphous magnetic powder core precursor particle that step (4) obtains, the add-on of stearic acid amide is 0.01wt% of the amorphous magnetic powder core precursor particle quality, after mixing, in Press molding under a pressure of 10T/cm 2 ( ⁇ 8x3.9x3.2mm); then place it in a nitrogen-protected tube furnace and anneal at 530°C for 25 minutes to obtain an amorphous magnetic powder core.
  • This embodiment provides a method for preparing an amorphous magnetic powder core.
  • the preparation method specifically includes the following steps:
  • step (2) Add potassium permanganate solution with a mass fraction of 20 wt% to the amorphous alloy particles obtained in step (1), and perform acid treatment for 10 min under stirring to obtain acidified particles.
  • the added amount of the perchromic acid solution is 0.01wt% of the mass of the amorphous alloy particles.
  • step (3) Add the phosphoric acid solution with a mass fraction of 18wt% into the acidified granules obtained in step (2) for passivation treatment, stir well until dry, and obtain passivated granules.
  • the adding amount of phosphoric acid solution is 0.02wt% of the mass of the acidified granules.
  • step (3) Coating the passivation particles obtained in step (3), at first the passivation particles and the silicon dioxide insulating agent with a particle size of 550nm are mixed uniformly under ultrasound to obtain insulating particles, wherein the silicon dioxide The addition amount of the passivation particles is 0.045wt% of the mass of the passivation particles; then the polymethyl silicone resin acetone solution is added and mixed with the insulating particles, and fully stirred until dry to obtain the precursor particles of the amorphous magnetic powder core, wherein the polymethyl silicone resin acetone The solution was added in an amount of 0.4 wt% of the insulating particles.
  • Zinc stearate is added in the amorphous magnetic powder core precursor particle that step (4) obtains, the add-on of stearic acid amide is 0.03wt% of the amorphous magnetic powder core precursor particle quality, after mixing, in Press molding under a pressure of 14T/cm 2 ( ⁇ 8x3.9x3.2mm); then place it in a nitrogen-protected tube furnace and anneal at 630°C for 15 minutes to obtain an amorphous magnetic powder core.
  • This embodiment provides a method for preparing an amorphous magnetic powder core.
  • the preparation method specifically includes the following steps:
  • step (2) Add potassium permanganate solution with a mass fraction of 5 wt% to the amorphous alloy particles obtained in step (1), and perform acid treatment for 60 minutes under stirring to obtain acidified particles.
  • the added amount of the perchromic acid solution is 0.04wt% of the mass of the amorphous alloy particles.
  • step (3) Adding the phosphoric acid solution with a mass fraction of 10 wt% to the acidified granules obtained in step (2) for passivation treatment, and fully stirring until dry to obtain passivated granules.
  • the addition amount of phosphoric acid solution is 0.06wt% of the mass of the acidified granules.
  • step (3) Coating the passivation particles obtained in step (3), at first the passivation particles and the silicon dioxide insulating agent with a particle size of 500nm are mixed uniformly under ultrasound to obtain insulating particles, wherein the silicon dioxide The addition amount of the passivation particles is 0.04wt% of the mass of the passivation particles; then the polymethyl silicone resin acetone solution is added and mixed with the insulating particles, fully stirred until dry, and the precursor particles of the amorphous magnetic powder core are obtained, wherein the polymethyl silicone resin acetone The added amount of the solution is 0.5wt% of the insulating particles.
  • stearic acid amide is added in the amorphous magnetic powder core precursor particle that step (4) obtains, and the add-on of stearic acid amide is 0.02wt% of the amorphous magnetic powder core precursor particle quality, after mixing, in Press molding under a pressure of 12T/cm 2 ( ⁇ 8x3.9x3.2mm); then place it in a nitrogen-protected tube furnace and anneal at 580°C for 20 minutes to obtain an amorphous magnetic powder core.
  • This embodiment provides a method for preparing an amorphous magnetic powder core.
  • the preparation method specifically includes the following steps:
  • (1) adopt high-pressure gas atomization method and sieve to obtain particle diameter and be the Fe-Si-Cr-B amorphous alloy particle of 200 meshes, wherein the massfraction of Fe is 80%, the massfraction of Si is 4%, the massfraction of Cr The fraction is 2%, and the mass fraction of B is 14%.
  • step (2) Add a perchromic acid solution with a mass fraction of 25 wt% to the amorphous alloy particles obtained in step (1), and perform acid treatment for 5 minutes under stirring to obtain acidified particles.
  • the added amount of the perchromic acid solution is 0.005wt% of the mass of the amorphous alloy particles.
  • step (3) Adding the phosphoric acid solution with a mass fraction of 20 wt% to the acidified granules obtained in step (2) for passivation treatment, and fully stirring until dry to obtain passivated granules.
  • the added amount of phosphoric acid solution is 0.01wt% of the mass of the acidified particles.
  • step (3) Coating the passivation particles obtained in step (3), at first the passivation particles and the silicon dioxide insulating agent with a particle size of 500nm are mixed uniformly under ultrasound to obtain insulating particles, wherein the silicon dioxide The addition amount of the passivation particles is 0.06wt% of the mass of the passivation particles; then the polymethyl silicone resin acetone solution is added and mixed with the insulating particles, fully stirred until dry, and the precursor particles of the amorphous magnetic powder core are obtained, wherein the polymethyl silicone resin acetone The added amount of the solution is 0.1wt% of the insulating particles.
  • stearic acid amide is added in the amorphous magnetic powder core precursor particle that step (4) obtains, and the add-on of stearic acid amide is 0.02wt% of the amorphous magnetic powder core precursor particle quality, after mixing, in Press molding under a pressure of 12T/cm 2 ( ⁇ 8x3.9x3.2mm); then place it in a nitrogen-protected tube furnace and anneal at 580°C for 20 minutes to obtain an amorphous magnetic powder core.
  • This embodiment provides a method for preparing an amorphous magnetic powder core.
  • the preparation method specifically includes the following steps:
  • (1) adopt high-pressure gas atomization method and sieve to obtain particle diameter and be the Fe-Si-Cr-B amorphous alloy particle of 200 meshes, wherein the massfraction of Fe is 82%, the massfraction of Si is 3.5%, the massfraction of Cr The fraction is 2.5%, and the mass fraction of B is 12%.
  • step (2) Add a perchromic acid solution with a mass fraction of 15 wt% to the amorphous alloy particles obtained in step (1), and perform acid treatment for 30 minutes under stirring to obtain acidified particles.
  • the added amount of the perchromic acid solution is 0.01wt% of the mass of the amorphous alloy particles.
  • step (3) Add a phosphoric acid solution with a mass fraction of 15 wt% into the acidified granules obtained in step (2) for passivation treatment, and stir thoroughly until dry to obtain passivated granules.
  • the addition amount of phosphoric acid solution is 0.05wt% of the mass of the acidified particles.
  • step (3) Coating the passivation particles obtained in step (3), at first the passivation particles and the silicon dioxide insulating agent with a particle size of 500nm are mixed uniformly under ultrasound to obtain insulating particles, wherein the silicon dioxide The addition amount of the passivation particles is 0.05wt% of the mass of the passivation particles; then the polymethyl silicone resin acetone solution is added to mix with the insulating particles evenly, fully stirred until dry, and the precursor particles of the amorphous magnetic powder core are obtained, wherein the polymethyl silicone resin acetone The solution was added in an amount of 0.2 wt% of the insulating particles.
  • stearic acid amide is added in the amorphous magnetic powder core precursor particle that step (4) obtains, and the add-on of stearic acid amide is 0.02wt% of the amorphous magnetic powder core precursor particle quality, after mixing, in Under the pressure of 14T/ cm2 , it is pressed into a magnetic ring ( ⁇ 8x3.9x3.2mm) with an outer diameter of 8mm, an inner diameter of 3.9mm, and a height of 3.2mm; then it is placed in a nitrogen-protected tube furnace and annealed at 530°C After 20 minutes, an amorphous magnetic powder core was obtained.
  • This embodiment provides a method for preparing an amorphous magnetic powder core.
  • the preparation method specifically includes the following steps:
  • step (2) Add potassium permanganate solution with a mass fraction of 15 wt% to the amorphous alloy particles obtained in step (1), and perform acid treatment for 30 minutes under stirring to obtain acidified particles.
  • the added amount of the perchromic acid solution is 0.01wt% of the mass of the amorphous alloy particles.
  • step (3) Add a phosphoric acid solution with a mass fraction of 15 wt% into the acidified granules obtained in step (2) for passivation treatment, and stir thoroughly until dry to obtain passivated granules.
  • the addition amount of phosphoric acid solution is 0.05wt% of the mass of the acidified particles.
  • step (3) Coating the passivation particles obtained in step (3), at first the passivation particles and the silicon dioxide insulating agent with a particle size of 500nm are mixed uniformly under ultrasound to obtain insulating particles, wherein the silicon dioxide The addition amount of the passivation particles is 0.05wt% of the mass of the passivation particles; then the polymethyl silicone resin acetone solution is added to mix with the insulating particles evenly, fully stirred until dry, and the precursor particles of the amorphous magnetic powder core are obtained, wherein the polymethyl silicone resin acetone The solution was added in an amount of 0.2 wt% of the insulating particles.
  • stearic acid amide is added in the amorphous magnetic powder core precursor particle that step (4) obtains, and the add-on of stearic acid amide is 0.02wt% of the amorphous magnetic powder core precursor particle quality, after mixing, in Under the pressure of 14T/ cm2 , it is pressed into a magnetic ring ( ⁇ 8x3.9x3.2mm) with an outer diameter of 8mm, an inner diameter of 3.9mm, and a height of 3.2mm; then it is placed in a nitrogen-protected tube furnace and annealed at 550°C After 20 minutes, an amorphous magnetic powder core was obtained.
  • step (1) the massfraction of Fe in the Fe-Si-Cr-B amorphous alloy particle is 79.5%, the massfraction of Si is 3.5%, and the massfraction of Cr is 5%, the mass fraction of B is 12%. All the other process parameters and operating steps are the same as in Example 1.
  • step (1) the massfraction of Fe in the Fe-Si-Cr-B amorphous alloy particle is 83.5%, the massfraction of Si is 3.5%, and the massfraction of Cr is 1%, the mass fraction of B is 12%. All the other process parameters and operating steps are the same as in Example 1.
  • step (2) a perchromic acid solution with a mass fraction of 30 wt% is added to the amorphous alloy particles obtained in step (1), and acid treatment is carried out for 30 minutes under stirring to obtain acidification particles. All the other process parameters and operating steps are the same as in Example 1.
  • step (2) a perchromic acid solution with a mass fraction of 3wt% is added to the amorphous alloy particles obtained in step (1), and acid treatment is carried out for 30 minutes under stirring to obtain acidification particles. All the other process parameters and operating steps are the same as in Example 1.
  • step (2) the amount of the perchromic acid solution added is 0.05wt% of the mass of the amorphous alloy particles. All the other process parameters and operating steps are the same as in Example 1.
  • step (2) the amount of the perchromic acid solution added is 0.002wt% of the mass of the amorphous alloy particles. All the other process parameters and operating steps are the same as in Example 1.
  • step (3) the amount of phosphoric acid solution added is 0.08wt% of the mass of the acidified granules. All the other process parameters and operating steps are the same as in Example 1.
  • step (3) the amount of phosphoric acid solution added is 0.005wt% of the mass of the acidified granules. All the other process parameters and operating steps are the same as in Example 1.
  • step (4) the amount of polymethyl silicone resin acetone solution added is 0.7wt% of the mass of insulating particles. All the other process parameters and operating steps are the same as in Example 1.
  • step (4) the amount of polymethyl silicone resin acetone solution added is 0.05wt% of the mass of insulating particles. All the other process parameters and operating steps are the same as in Example 1.
  • step (1) the Fe-Si-B amorphous alloy particles with a particle size of 200 meshes were obtained by adopting the high-pressure gas atomization method and sieved, wherein the mass fraction of Fe was 84.5% , the mass fraction of Si is 3.5%, and the mass fraction of B is 12%. All the other process parameters and operating steps are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the amorphous alloy particles obtained in the step (1) are directly subjected to the passivation treatment in the step (3). All the other process parameters and operating steps are the same as in Example 1.
  • step (4) polymethylsilicone resin acetone solution is added to coat the passivation particles obtained in step (3), and fully stirred until dry to obtain an amorphous magnetic powder core Precursor particles, wherein the polymethylsilicone acetone solution is added in an amount of 0.3wt% of the insulating particles. All the other process parameters and operating steps are the same as in Example 1.
  • Table 1 shows the performance test results of the amorphous magnetic powder cores prepared in Examples 1-17 and Comparative Examples 1-3.
  • the amorphous magnetic powder cores of Examples 1-7 all have high magnetic permeability and high inductance, and can still maintain low loss characteristics at high frequencies, indicating that the amorphous magnetic powder cores obtained by the preparation method provided by the application Amorphous magnetic powder core has excellent performance.
  • Example 2 The magnetic permeability and inductance of the amorphous magnetic powder core in Examples 8 and 9 are all lower than that of Example 1, and the magnetic loss at low frequency and high frequency is all higher than that of Example 1. This is due to the fact that Example 1 The Cr element content of the amorphous magnetic powder core precursor particles in 8 is too high, and the Cr content of the amorphous magnetic powder core precursor particles in Example 9 is too low.
  • the Cr element Since the potential of the Cr element is lower than that of the Fe element, it is more likely to be oxidized than the Fe element, thereby delaying or preventing the rust of the Fe element, and effectively improving the oxidation resistance of the precursor of the amorphous magnetic powder core, thereby ensuring that the amorphous magnetic powder core has a higher Magnetic permeability, but too high Cr element content will lead to a decrease in the saturation characteristics of the material.
  • the magnetic loss of the amorphous magnetic powder core magnetic permeability of embodiment 10 and 11 is all higher than embodiment 1 at low frequency and high frequency, and this is because, the mass fraction of acid solution is too high in embodiment 10, embodiment The mass fraction of the acid solution in 11 is too low.
  • the mass fraction of the acid solution is too high, the acidity is too high and the reaction is too fast, which will cause the surface of the amorphous alloy particles to burn; when the mass fraction of the acid solution is too low, the acidity is too low and the activity is poor, so that the amorphous alloy particles The surface has no effect.
  • the magnetic loss of the amorphous magnetic powder core magnetic permeability of embodiment 12 and 13 is all higher than embodiment 1 under low frequency and high frequency, and this is because, the add-on of acid solution is too high in embodiment 12, embodiment 13 The amount of acid solution added is too low. When the amount of acid solution added is too high, the acidity is too high and the reaction is too fast, which will cause the surface of the amorphous alloy particles to be burned; when the amount of acid solution added is too low, the acidity is too low and the activity is poor, thus affecting the The surface has no effect.
  • the magnetic loss of the magnetic permeability of the amorphous magnetic powder core of embodiment 14 and 15 is all higher than that of embodiment 1 at low frequency and high frequency, and wherein the magnetic permeability of the magnetic permeability of the amorphous magnetic powder core of embodiment 14 is lower than Embodiment 1, this is because, the add-on of passivating agent is too high among the embodiment 14, and the add-on of passivating agent is too low among the embodiment 15.
  • the magnetic loss of the magnetic permeability of the amorphous magnetic powder core of embodiment 16 and 17 is all higher than that of embodiment 1 at low frequency and high frequency, and wherein the magnetic permeability of the magnetic permeability of the amorphous magnetic powder core of embodiment 16 is lower than Embodiment 1, this is because, in embodiment 16, the add-on of adhesive is too high, and in embodiment 17, the add-on of adhesive is too low.
  • the amount of binder added is too high, the non-magnetic substance leads to a high proportion and low molding density, resulting in low density and low magnetic permeability of the obtained amorphous magnetic powder core; when the amount of binder added is too low, It will cause the magnet with amorphous magnetic powder core to have no strength and cannot be manufactured. This is because the bonding of amorphous magnetic powder core mainly comes from the force of the adhesive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本文公布一种非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件,所述非晶磁粉芯前驱体颗粒包括非晶合金颗粒以及包覆于所述非晶合金颗粒表面的包覆层;所述非晶合金颗粒的元素为Fe、Si、Cr和B。所述制备方法包括:在所述非晶合金颗粒中加入酸溶液进行酸化得到酸化颗粒,再对酸化颗粒进行钝化得到钝化颗粒,最后对钝化颗粒进行包覆得到所述非晶磁粉芯前驱体颗粒。本申请提供的非晶磁粉芯具有高磁导率和电感强度,并且在高频使用下仍保持低损耗特性。

Description

非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件 技术领域
本申请实施例涉及合金软磁材料及粉末冶金技术领域,例如非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件。
背景技术
磁粉芯是一种新型复合软磁材料,具有良好的软磁性能及频率特性,是制作电感器件,尤其是高频、大功率电路中电感器件的关键元件。第三代新型半导体宽禁带、大电流材料的使用,以及电子器件高频化对磁性元器件产生诸多新挑战。传统的铁硅铝、铁镍钼和铁硅合金体系等磁粉芯存在磁稳定性差、磁损耗大、质量重和功率低等问题,并不能满足磁性元器件的发展需求,更不适合在高频下使用。
相比于传统磁粉芯,非晶磁粉芯在高频下具有恒磁导率、高电阻率、低损耗等特点,在各类变压器、传感器、开关电源等领域得到了广泛的应用,但绕带、叠片的软磁铁芯在高频工作时损耗很大,限制了其在高频下的应用。而将非晶软磁带破碎成粉末,绝缘包覆并压制成型为磁粉芯产品的制备方法,为进一步提升非晶磁粉芯的性能提供了方向。
CN107818854A公开了一种铁基非晶态软磁粉芯的制备方法及应用,包括如下步骤:首先制备并筛分获得目标粒径的非晶合金粉末,分别采用钝化剂和粘结剂对非晶合金粉末依次进行钝化和绝缘包覆处理,之后采用冷压法将处理好的非晶合金粉末压制形成磁粉芯,最终对磁粉芯进行纵向磁场热处理得到具有高叠加和低损耗的磁粉芯,但是磁导率并没有介绍具体数值。
CN107967976A公开了一种非晶磁粉芯前驱体颗粒,其包括组成为Fe aSi bB cP dNb eX f的非晶合金颗粒和包覆于非晶合金颗粒表面的包覆层。同时,公开了一种采用软磁铁氧体作为绝缘包覆剂的非晶磁粉芯产品的材料和工艺措施,所得非晶磁环样品磁导率达到97u,高于目前很多磁粉芯产品的性能,但是距离高磁导率的铁镍、铁镍钼材料还有很大差距。
CN108010654A公开了一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法,包括如下步骤:采用气雾化法制备新型球形铁基非晶合金粉末,分别 采用钝化剂、绝缘剂和粘结剂对筛分后的非晶合金粉末依次进行钝化和绝缘包覆处理,最终采用冷压法将处理好的非晶合金粉末压制成型后,进行去应力退火处理。CN104575913A公开了一种低损耗非晶磁粉芯的制备方法,其通过添加合适的耐高温绝缘材料,以及选择合适的绝缘包覆方法,通过压制成型及高温退火工艺,制备得到磁导率在60~90之间的非晶磁粉芯。但是在高频条件下,上述制备的非晶磁粉芯的磁导率较低、磁损耗较高。
目前,气雾化制粉过冷技术大幅度提升,使得球状的非晶粉末更容易获得。与普通磁粉芯一样,采用粉末冶金成型技术可以生产各种形状和大小的磁粉芯,非晶磁粉芯的应用领域大为扩展。同时,粉末粒度减小可以降低损耗,尤其在高频MHz级范围内更为显著。然而,粉末粒度越小,磁粉芯的电感材料磁导率越低,如何提高金属磁粉芯的磁导率是提高效率和减小磁芯体积的重要方法,目前很多技术都难以做到。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件。本申请提供的非晶磁粉芯不仅具有高磁导率和电感强度,并且在高频下保持低损耗特性。
第一方面,本申请实施例提供了一种非晶磁粉芯前驱体颗粒,所述非晶磁粉芯前驱体颗粒包括非晶合金颗粒以及包覆于所述非晶合金颗粒表面的包覆层;所述非晶合金颗粒的元素为Fe、Si、Cr和B。
本申请提供的非晶磁粉芯前驱体颗粒包括Cr元素,由于Cr元素电势比Fe元素更低,所以比Fe元素更容易发生氧化,从而延缓或防止Fe元素生锈,有效提高非晶磁粉芯前驱体的抗氧化能力,从而保证非晶磁粉芯具有较高磁导率。此外,包覆层位于非晶合金颗粒表面,能够起到绝缘效果,降低非晶磁粉芯的损耗。
作为本申请一种优选的技术方案,所述非晶合金颗粒中的Si元素的质量分数为2~4wt%,优选为2.2~3.8wt%;Cr元素的质量分数为2~3%wt,优选为2.2~2.8wt%;B元素的质量分数为10~14%wt,优选为11~13wt%;其余为Fe。
Cr元素电势比Fe元素更低,所以比Fe元素更容易发生氧化,从而延缓或防止Fe元素生锈,有效提高非晶磁粉芯前驱体的抗氧化能力,从而保证非晶磁粉芯具有较高磁导率,但是过高的Cr元素含量会导致材料的饱和特性下降,因此结合防锈和电磁性两个方面,Cr元素的含量应该控制在2~3%wt,优选为2.2~2.8wt%。
B元素的半径小于Fe元素半径,并且混合负焓比Fe元素半径小,适量B元素的添加有利于提升非晶形成的能力,但过高的B元素含量会导致材料的饱和特性下降,硬度偏高不利于后续的压制成型。
例如,所述非晶合金颗粒中的Si元素的质量分数可以是2wt%、2.5wt%、3wt%、3.5wt%或4wt%;所述非晶合金颗粒中的Cr元素的质量分数可以是2wt%、2.2wt%、2.4wt%、2.6wt%、2.8wt%或3wt%;所述非晶合金颗粒中的B元素的质量分数可以是10wt%、10.5wt%、11wt%、11.5wt%、12wt%、12.5wt%、13wt%、13.5wt%或14wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述非晶合金颗粒的粒径为200~300目;所述非晶合金颗粒的形状为球形。
作为本申请一种优选的技术方案,所述包覆层包括无机粉末和粘接剂。
优选地,所述无机粉末的粒径为250~550nm,例如可以是250nm、280nm、300nm、320nm、350nm、380nm、400nm、420nm、450nm、480nm、500nm、530nm或550nm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述无机粉末为氧化物粉末。
优选地,所述无机粉末包括纳米氧化物粉末或亚微米氧化物粉末。
优选地,所述无机粉末包括二氧化硅、云母粉、氧化锆或氧化铝粉中的任意一种或者至少两种的组合,进一步优选为二氧化硅。
无机粉末本身就具备一定的吸附能力,可以均匀地附着在非晶合金颗粒上,有利于绝缘层的强化,降低磁粉芯的损耗。
优选地,所述粘接剂为高分子聚合物。
优选地,所述粘接剂包括环氧树脂、硅酮树脂、有机硅树脂、聚酰胺树脂或酚醛树脂中的任意一种或至少两种的组合,进一步优选为有机硅树脂。
第二方面,本申请实施例提供了一种第一方面所述非晶磁粉芯前驱体颗粒的制备方法,所述制备方法包括:
在所述非晶合金颗粒中加入酸溶液进行酸化得到酸化颗粒,再对酸化颗粒进行钝化得到钝化颗粒,最后对钝化颗粒进行包覆得到所述非晶磁粉芯前驱体颗粒。
本申请采用高压气雾化法制备非晶合金颗粒,雾化压力为80~100kg/m 2,例如可以是80kg/m 2、85kg/m 2、90kg/m 2、95kg/m 2或100kg/m 2,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。雾化气体为保护性气体,包括氮气或氩气。
采用高压气雾化法制备非晶合金颗粒能够避免传统带材破碎法混入杂质、成分不均匀以及尖锐棱角的缺陷,并且气雾化法可以得到粒径较小的球形非晶合金颗粒,表面光滑,无明显孔、洞等缺陷,降低磁损耗,同时球形形貌还可以提高叠加电流。
在钝化步骤前进行酸化处理,可以解决非晶合金颗粒与钝化剂发生过程缓慢的问题,从而在非晶合金颗粒表面生成一层致密的钝化膜,提高非晶合金颗粒的绝缘效果,同时包覆处理使得非晶合金颗粒的绝缘和稳定性进一步提高。因此,本申请提供的非晶磁粉芯在高频下具有高磁导率和低磁损耗。
作为本申请一种优选的技术方案,所述酸化的过程在搅拌条件下进行。
优选地,所述酸化的时间为5~60min,进一步优选为10~50min,例如可以是5min、10min、15min、20min、25min、30min、35min、40min、45min、50min、55min或60min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述酸溶液包括高铬酸溶液和/或高锰酸钾溶液。
优选地,所述酸溶液的质量分数为5~25wt%,进一步优选为10~20wt%,例如可以是5wt%、10wt%、15wt%、20wt%或25wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请特别限定了酸溶液的质量分数为5~25wt%,当酸溶液的质量分数超过25wt%时,会导致非晶合金颗粒表面烧损,这是由于酸度过高、反应过快;当酸溶液的质量分数低于5wt%时,会导致非晶合金颗粒表面无反应,这是由于酸度过低、活性差而对非晶合金颗粒表面无作用。
优选地,以所述非晶合金颗粒的质量分数为100%,所述酸溶液的加入量为0.005~0.04wt%,进一步优选为0.01~0.03wt%,例如可以是0.005wt%、0.01wt%、0.015wt%、0.02wt%、0.025wt%、0.03wt%、0.035wt%或0.04wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请特别限定了酸溶液的加入量为0.005~0.04wt%,当酸溶液的加入量超过0.04wt%时,会导致非晶合金颗粒表面烧损,这是由于酸度过高、反应过快;当酸溶液的加入量低于0.005wt%时,会导致非晶合金颗粒表面无反应,这是由于酸度过低、活性差而对非晶合金颗粒表面无作用。
作为本申请一种优选的技术方案,所述钝化过程采用的钝化剂包括磷酸溶液、硝酸溶液、硼酸溶液、磷酸二氢钠溶液、磷酸二氢铝溶液或磷酸二氢钠溶液中的任意一种或至少两种的组合,优选为磷酸溶液。
优选地,所述钝化剂的质量分数为10~20wt%,进一步优选为12~18wt%,例如可以是10wt%、12wt%、14wt%、16wt%、18wt%或20wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,以所述酸化颗粒的质量分数为100%,所述钝化剂的加入量为0.01~0.06wt%,进一步优选为0.02~0.05wt%例如可以是0.01wt%、0.02wt%、0.03wt%、0.04wt%、0.05wt%或0.06wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请特别限定了钝化剂的加入量为0.01~0.06wt%,当钝化剂的加入量超过0.06wt%时,会导致得到的非晶磁粉芯的磁导率降低,这是由于钝化剂的加入量过高,会生成过量的非磁性物质;当钝化剂的加入量低于0.01wt%时,会导致得到的非晶磁粉芯的磁粉损耗高,这是由于钝化剂的加入量过低,钝化层不致密、钝化颗粒容易受氧化。
优选地,所述包覆的过程具体包括:将钝化颗粒与绝缘剂混合均匀得到绝缘颗粒,随后加入粘接剂混合后得到所述非晶磁粉芯前驱体颗粒。
优选地,所述混合在超声条件下进行。
优选地,所述绝缘剂为无机粉末。
优选地,所述无机粉末的粒径为250~550nm,例如可以是250nm、280nm、300nm、320nm、350nm、380nm、400nm、420nm、450nm、480nm、500nm、530nm或550nm,但并不仅限于所列举的数值,该数值范围内其他未列举的数 值同样适用。
优选地,所述无机粉末为氧化物粉末。
优选地,所述无机粉末包括纳米氧化物粉末或亚微米氧化物粉末。
优选地,所述无机粉末包括二氧化硅、云母粉、氧化锆或氧化铝粉中的任意一种或者至少两种的组合,进一步优选为二氧化硅。
优选地,以所述钝化颗粒的质量分数为100%,所述绝缘剂的质量分数为0.04%~0.06wt%,进一步优选为0.045%~0.055wt%,例如可以是0.04wt%、0.045wt%、0.05wt%、0.055wt%或0.06wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述粘接剂为高分子聚合物。
优选地,所述粘接剂包括环氧树脂、硅酮树脂、有机硅树脂、聚酰胺树脂或酚醛树脂中的任意一种或至少两种的组合,进一步优选为有机硅树脂;
有机硅树脂的热稳定性高,不易分解,作为粘接剂可以提高非晶磁粉芯前驱体颗粒的稳定性,并且还可以改善非晶磁粉芯前驱体颗粒的成型性能。
优选地,所述的粘接剂经溶剂稀释。
优选地,所述溶剂为丙酮。
优选地,以所述的绝缘颗粒质量分数为100%,所述粘接剂的质量分数为0.1%~0.5wt%,进一步优选为0.2~0.4wt%,例如可以是0.1wt%、0.15wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、0.4wt%、0.45wt%或0.5wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请特别限定了粘接剂的加入量为0.1~0.5wt%,当粘接剂的加入量超过0.5wt%时,会导致得到的非晶磁粉芯的密度低、磁导率低,这是由于粘接剂的加入量过高,非磁性物质导致占比高、成型密度低;当粘接剂的加入量低于0.1wt%时,会导致非晶磁粉芯的磁体无强度、无法制造,这是由于非晶磁粉芯的粘接主要来自于粘接剂的作用力。
第三方面,本申请实施例提供了一种非晶磁粉芯,所述非晶磁粉芯是由第一方面所述非晶磁粉芯前驱体颗粒制备得到。
本申请提供的非晶磁粉芯具有高磁导率和高电感强度,并且在高频下仍保持高磁导率和低损耗特性。
第四方面,本申请实施例提供了第三方面所述非晶磁粉芯的制备方法,所 述制备方法包括:
非晶磁粉芯前驱体颗粒与脱模剂在超声搅拌混合均匀后,放入模具中压制成型,随后进行退火处理得到所述非晶磁粉芯。
将非晶磁粉芯前驱体颗粒进行压制和退火后消除内部应力,形成密度合适的非晶磁粉芯,从而提高非晶磁粉芯的磁导率的同时降低磁损耗。
作为本申请一种优选的技术方案,所述压制成型的压力为10~14T/cm 2,例如可以是10T/cm 2、11T/cm 2、12T/cm 2、13T/cm 2或14T/cm 2,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述脱模剂为硬脂酸酰胺。
优选地,以所述非晶磁粉芯前驱体颗粒的质量分数为100wt%,所述脱模剂的质量分数为0.01%~0.03wt%,例如可以是0.01wt%、0.015wt%、0.02wt%、0.025wt%或0.3wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述退火的温度为530~630℃,例如可以是530℃、540℃、550℃、560℃、570℃、580℃、590℃、600℃、610℃、620℃或630℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述退火的时间为15~25min,例如可以是15min、17min、20min、23min或25min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述退火的气氛包括氮气气氛或氩气气氛。
第五方面,本申请实施例提供了一种电感器件,所述电感器件包括第三方面所述的非晶磁粉芯。
相对于相关技术,本申请具有以下有益效果:
本申请实施例提供的非晶磁粉芯具有高磁导率和电感强度,并且在高频下仍保持低损耗特性,磁导率可达到140左右,磁损耗(500kHz@100mT)低至5500mW/cm 3左右,有利于实现其在高频下的应用。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分, 与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是实施例1中非晶合金颗粒的扫描电子显微镜图。
图2是实施例1中非晶合金颗粒的差热分析曲线。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种非晶磁粉芯的制备方法,所述制备方法具体包括如下步骤:
(1)采用高压气雾化法并筛分得到粒径为200目的Fe-Si-Cr-B非晶合金颗粒,其中Fe的质量分数为82%,Si的质量分数为3.5%,Cr的质量分数为2.5%,B的质量分数为12%。采用扫描电子显微镜对非晶合金颗粒的形貌进行分析,如图1所示,可以看出,非晶合金颗粒呈现球形,表面光滑,无明显孔、洞等缺陷;采用差热分析仪分析非晶合金颗粒的热变化转变过程,如图2所示,可以看到,非晶差热分析显示450~480℃晶化温度放热峰,说明制备得到的非晶合金颗粒是非晶态的。
(2)将质量分数为15wt%的高铬酸溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理30min得到酸化颗粒。其中,高铬酸溶液的加入量为非晶合金颗粒质量的0.02wt%。
(3)将质量分数为15wt%的磷酸溶液加入步骤(2)得到的酸化颗粒中进行钝化处理,充分搅拌直至干燥,得到钝化颗粒。其中,磷酸溶液的加入量为酸化颗粒质量的0.03wt%。
(4)对步骤(3)得到的钝化颗粒进行包覆处理,首先将钝化颗粒与粒径为500nm的二氧化硅绝缘剂在超声下进行混合均匀,得到绝缘颗粒,其中,二氧化硅的加入量为钝化颗粒质量的0.05wt%;随后加入聚甲基硅树脂丙酮溶液与绝缘颗粒混合均匀,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.3wt%。
(5)将硬脂酸锌加入步骤(4)得到的非晶磁粉芯前驱体颗粒中,硬脂酸 酰胺的加入量为非晶磁粉芯前驱体颗粒质量的0.02wt%,混合均匀后,在12T/cm 2的压强下压制成外径8mm、内径3.9mm、高度3.2mm的磁环(Φ8x3.9x3.2mm);随后将其放置于氮气保护的管式炉内,在580℃下退火处理20min,得到非晶磁粉芯。
实施例2
本实施例提供了一种非晶磁粉芯的制备方法,所述制备方法具体包括如下步骤:
(1)采用高压气雾化法并筛分得到粒径为300目的Fe-Si-Cr-B非晶合金颗粒,其中Fe的质量分数为84%,Si的质量分数为2.2%,Cr的质量分数为2.8%,B的质量分数为11%。
(2)将质量分数为10wt%的高铬酸溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理50min得到酸化颗粒。其中,高铬酸溶液的加入量为非晶合金颗粒质量的0.03wt%。
(3)将质量分数为12wt%的磷酸溶液加入步骤(2)得到的酸化颗粒中进行钝化处理,充分搅拌直至干燥,得到钝化颗粒。其中,磷酸溶液的加入量为酸化颗粒质量的0.05wt%。
(4)对步骤(3)得到的钝化颗粒进行包覆处理,首先将钝化颗粒与粒径为250nm的二氧化硅绝缘剂在超声下进行混合均匀,得到绝缘颗粒,其中,二氧化硅的加入量为钝化颗粒质量的0.055wt%;随后加入聚甲基硅树脂丙酮溶液与绝缘颗粒混合均匀,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.2wt%。
(5)将硬脂酸锌加入步骤(4)得到的非晶磁粉芯前驱体颗粒中,硬脂酸酰胺的加入量为非晶磁粉芯前驱体颗粒质量的0.01wt%,混合均匀后,在10T/cm 2的压强下压制成型(Φ8x3.9x3.2mm);随后将其放置于氮气保护的管式炉内,在530℃下退火处理25min,得到非晶磁粉芯。
实施例3
本实施例提供了一种非晶磁粉芯的制备方法,所述制备方法具体包括如下步骤:
(1)采用高压气雾化法并筛分得到粒径为200目的Fe-Si-Cr-B非晶合金颗 粒,其中Fe的质量分数为81%,Si的质量分数为3.8%,Cr的质量分数为2.2%,B的质量分数为13%。
(2)将质量分数为20wt%的高锰酸钾溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理10min得到酸化颗粒。其中,高铬酸溶液的加入量为非晶合金颗粒质量的0.01wt%。
(3)将质量分数为18wt%的磷酸溶液加入步骤(2)得到的酸化颗粒中进行钝化处理,充分搅拌直至干燥,得到钝化颗粒。其中,磷酸溶液的加入量为酸化颗粒质量的0.02wt%。
(4)对步骤(3)得到的钝化颗粒进行包覆处理,首先将钝化颗粒与粒径为550nm的二氧化硅绝缘剂在超声下进行混合均匀,得到绝缘颗粒,其中,二氧化硅的加入量为钝化颗粒质量的0.045wt%;随后加入聚甲基硅树脂丙酮溶液与绝缘颗粒混合均匀,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.4wt%。
(5)将硬脂酸锌加入步骤(4)得到的非晶磁粉芯前驱体颗粒中,硬脂酸酰胺的加入量为非晶磁粉芯前驱体颗粒质量的0.03wt%,混合均匀后,在14T/cm 2的压强下压制成型(Φ8x3.9x3.2mm);随后将其放置于氮气保护的管式炉内,在630℃下退火处理15min,得到非晶磁粉芯。
实施例4
本实施例提供了一种非晶磁粉芯的制备方法,所述制备方法具体包括如下步骤:
(1)采用高压气雾化法并筛分得到粒径为200目的Fe-Si-Cr-B非晶合金颗粒,其中Fe的质量分数为85%,Si的质量分数为2%,Cr的质量分数为3%,B的质量分数为10%。
(2)将质量分数为5wt%的高锰酸钾溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理60min得到酸化颗粒。其中,高铬酸溶液的加入量为非晶合金颗粒质量的0.04wt%。
(3)将质量分数为10wt%的磷酸溶液加入步骤(2)得到的酸化颗粒中进行钝化处理,充分搅拌直至干燥,得到钝化颗粒。其中,磷酸溶液的加入量为酸化颗粒质量的0.06wt%。
(4)对步骤(3)得到的钝化颗粒进行包覆处理,首先将钝化颗粒与粒径为500nm的二氧化硅绝缘剂在超声下进行混合均匀,得到绝缘颗粒,其中,二氧化硅的加入量为钝化颗粒质量的0.04wt%;随后加入聚甲基硅树脂丙酮溶液与绝缘颗粒混合均匀,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.5wt%。
(5)将硬脂酸酰胺加入步骤(4)得到的非晶磁粉芯前驱体颗粒中,硬脂酸酰胺的加入量为非晶磁粉芯前驱体颗粒质量的0.02wt%,混合均匀后,在12T/cm 2的压强下压制成型(Φ8x3.9x3.2mm);随后将其放置于氮气保护的管式炉内,在580℃下退火处理20min,得到非晶磁粉芯。
实施例5
本实施例提供了一种非晶磁粉芯的制备方法,所述制备方法具体包括如下步骤:
(1)采用高压气雾化法并筛分得到粒径为200目的Fe-Si-Cr-B非晶合金颗粒,其中Fe的质量分数为80%,Si的质量分数为4%,Cr的质量分数为2%,B的质量分数为14%。
(2)将质量分数为25wt%的高铬酸溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理5min得到酸化颗粒。其中,高铬酸溶液的加入量为非晶合金颗粒质量的0.005wt%。
(3)将质量分数为20wt%的磷酸溶液加入步骤(2)得到的酸化颗粒中进行钝化处理,充分搅拌直至干燥,得到钝化颗粒。其中,磷酸溶液的加入量为酸化颗粒质量的0.01wt%。
(4)对步骤(3)得到的钝化颗粒进行包覆处理,首先将钝化颗粒与粒径为500nm的二氧化硅绝缘剂在超声下进行混合均匀,得到绝缘颗粒,其中,二氧化硅的加入量为钝化颗粒质量的0.06wt%;随后加入聚甲基硅树脂丙酮溶液与绝缘颗粒混合均匀,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.1wt%。
(5)将硬脂酸酰胺加入步骤(4)得到的非晶磁粉芯前驱体颗粒中,硬脂酸酰胺的加入量为非晶磁粉芯前驱体颗粒质量的0.02wt%,混合均匀后,在12T/cm 2的压强下压制成型(Φ8x3.9x3.2mm);随后将其放置于氮气保护的管式 炉内,在580℃下退火处理20min,得到非晶磁粉芯。
实施例6
本实施例提供了一种非晶磁粉芯的制备方法,所述制备方法具体包括如下步骤:
(1)采用高压气雾化法并筛分得到粒径为200目的Fe-Si-Cr-B非晶合金颗粒,其中Fe的质量分数为82%,Si的质量分数为3.5%,Cr的质量分数为2.5%,B的质量分数为12%。
(2)将质量分数为15wt%的高铬酸溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理30min得到酸化颗粒。其中,高铬酸溶液的加入量为非晶合金颗粒质量的0.01wt%。
(3)将质量分数为15wt%的磷酸溶液加入步骤(2)得到的酸化颗粒中进行钝化处理,充分搅拌直至干燥,得到钝化颗粒。其中,磷酸溶液的加入量为酸化颗粒质量的0.05wt%。
(4)对步骤(3)得到的钝化颗粒进行包覆处理,首先将钝化颗粒与粒径为500nm的二氧化硅绝缘剂在超声下进行混合均匀,得到绝缘颗粒,其中,二氧化硅的加入量为钝化颗粒质量的0.05wt%;随后加入聚甲基硅树脂丙酮溶液与绝缘颗粒混合均匀,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.2wt%。
(5)将硬脂酸酰胺加入步骤(4)得到的非晶磁粉芯前驱体颗粒中,硬脂酸酰胺的加入量为非晶磁粉芯前驱体颗粒质量的0.02wt%,混合均匀后,在14T/cm 2的压强下压制成外径8mm、内径3.9mm、高度3.2mm的磁环(Φ8x3.9x3.2mm);随后将其放置于氮气保护的管式炉内,在530℃下退火处理20min,得到非晶磁粉芯。
实施例7
本实施例提供了一种非晶磁粉芯的制备方法,所述制备方法具体包括如下步骤:
(1)采用高压气雾化法并筛分得到粒径为200目的Fe-Si-Cr-B非晶合金颗粒,其中Fe的质量分数为84%,Si的质量分数为4%,Cr的质量分数为2%,B的质量分数为10%。
(2)将质量分数为15wt%的高锰酸钾溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理30min得到酸化颗粒。其中,高铬酸溶液的加入量为非晶合金颗粒质量的0.01wt%。
(3)将质量分数为15wt%的磷酸溶液加入步骤(2)得到的酸化颗粒中进行钝化处理,充分搅拌直至干燥,得到钝化颗粒。其中,磷酸溶液的加入量为酸化颗粒质量的0.05wt%。
(4)对步骤(3)得到的钝化颗粒进行包覆处理,首先将钝化颗粒与粒径为500nm的二氧化硅绝缘剂在超声下进行混合均匀,得到绝缘颗粒,其中,二氧化硅的加入量为钝化颗粒质量的0.05wt%;随后加入聚甲基硅树脂丙酮溶液与绝缘颗粒混合均匀,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.2wt%。
(5)将硬脂酸酰胺加入步骤(4)得到的非晶磁粉芯前驱体颗粒中,硬脂酸酰胺的加入量为非晶磁粉芯前驱体颗粒质量的0.02wt%,混合均匀后,在14T/cm 2的压强下压制成外径8mm、内径3.9mm、高度3.2mm的磁环(Φ8x3.9x3.2mm);随后将其放置于氮气保护的管式炉内,在550℃下退火处理20min,得到非晶磁粉芯。
实施例8
本实施例与实施例1的区别在于:步骤(1)中,Fe-Si-Cr-B非晶合金颗粒中Fe的质量分数为79.5%,Si的质量分数为3.5%,Cr的质量分数为5%,B的质量分数为12%。其余工艺参数及操作步骤与实施例1相同。
实施例9
本实施例与实施例1的区别在于:步骤(1)中,Fe-Si-Cr-B非晶合金颗粒中Fe的质量分数为83.5%,Si的质量分数为3.5%,Cr的质量分数为1%,B的质量分数为12%。其余工艺参数及操作步骤与实施例1相同。
实施例10
本实施例与实施例1的区别在于:步骤(2)中,将质量分数为30wt%的高铬酸溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理30min得到酸化颗粒。其余工艺参数及操作步骤与实施例1相同。
实施例11
本实施例与实施例1的区别在于:步骤(2)中,将质量分数为3wt%的高 铬酸溶液加入步骤(1)得到的非晶合金颗粒中,在搅拌下进行酸处理30min得到酸化颗粒。其余工艺参数及操作步骤与实施例1相同。
实施例12
本实施例与实施例1的区别在于:步骤(2)中,高铬酸溶液的加入量为非晶合金颗粒质量的0.05wt%。其余工艺参数及操作步骤与实施例1相同。
实施例13
本实施例与实施例1的区别在于:步骤(2)中,高铬酸溶液的加入量为非晶合金颗粒质量的0.002wt%。其余工艺参数及操作步骤与实施例1相同。
实施例14
本实施例与实施例1的区别在于:步骤(3)中,磷酸溶液的加入量为酸化颗粒质量的0.08wt%。其余工艺参数及操作步骤与实施例1相同。
实施例15
本实施例与实施例1的区别在于:步骤(3)中,磷酸溶液的加入量为酸化颗粒质量的0.005wt%。其余工艺参数及操作步骤与实施例1相同。
实施例16
本实施例与实施例1的区别在于:步骤(4)中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒质量的0.7wt%。其余工艺参数及操作步骤与实施例1相同。
实施例17
本实施例与实施例1的区别在于:步骤(4)中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒质量的0.05wt%。其余工艺参数及操作步骤与实施例1相同。
对比例1
本对比例与实施例1的区别在于:步骤(1)中,采用高压气雾化法并筛分得到粒径为200目的Fe-Si-B非晶合金颗粒,其中Fe的质量分数为84.5%,Si的质量分数为3.5%,B的质量分数为12%。其余工艺参数及操作步骤与实施例1相同。
对比例2
本对比例与实施例1的区别在于:将步骤(1)中得到的非晶合金颗粒直接进行步骤(3)的钝化处理。其余工艺参数及操作步骤与实施例1相同。
对比例3
本对比例与实施例1的区别在于:步骤(4)中,加入聚甲基硅树脂丙酮溶液对步骤(3)得到的钝化颗粒进行包覆处理,充分搅拌直至干燥,得到非晶磁粉芯前驱体颗粒,其中,聚甲基硅树脂丙酮溶液的加入量为绝缘颗粒的0.3wt%。其余工艺参数及操作步骤与实施例1相同。
实施例1-17与对比例1-3所制备的非晶磁粉芯的性能测试结果见表1。
表1
Figure PCTCN2022110452-appb-000001
Figure PCTCN2022110452-appb-000002
由表1数据可以看出:
(1)实施例1-7的非晶磁粉芯均具有高磁导率和高电感强度,并且在高频下仍可以保持低损耗特性,说明通过本申请提供的非晶磁粉芯制备方法得到的非晶磁粉芯性能优异。
(2)实施例8和9中非晶磁粉芯的磁导率和电感强度均低于实施例1,并且在低频和高频下的磁损耗均高于实施例1,这是由于,实施例8中非晶磁粉芯前驱体颗粒的Cr元素含量过高,实施例9中非晶磁粉芯前驱体颗粒的Cr含量过低。由于Cr元素电势比Fe元素更低,所以比Fe元素更容易发生氧化,从而延缓或防止Fe元素生锈,有效提高非晶磁粉芯前驱体的抗氧化能力,从而保证非晶磁粉芯具有较高磁导率,但是过高的Cr元素含量会导致材料的饱和特性下降。
(3)实施例10和11的非晶磁粉芯磁导率在低频和高频下的磁损耗均高于实施例1,这是由于,实施例10中酸溶液的质量分数过高,实施例11中酸溶液的质量分数过低。当酸溶液的质量分数过高时,酸度过高、反应过快会导致非晶合金颗粒表面烧损;当酸溶液的质量分数过低时,酸度过低、活性差,从而对非晶合金颗粒表面无作用。
(4)实施例12和13的非晶磁粉芯磁导率在低频和高频下的磁损耗均高于实施例1,这是由于,实施例12中酸溶液的加入量过高,实施例13中酸溶液的加入量过低。当酸溶液的加入量过高时,酸度过高、反应过快会导致非晶合金颗粒表面烧损;当酸溶液的加入量过低时,酸度过低、活性差,从而对非晶合金颗粒表面无作用。
(5)实施例14和15的非晶磁粉芯磁导率在低频和高频下的磁损耗均高于实施例1,其中实施例14的非晶磁粉芯磁导率的磁导率低于实施例1,这是由于,实施例14中钝化剂的加入量过高,实施例15中钝化剂的加入量过低。当钝化剂的加入量过高时,会生成过量的非磁性物质,导致非晶磁粉芯的磁导率降低;当钝化剂的加入量过低时,钝化层不致密、钝化颗粒容易受氧化,导致非晶磁粉芯的磁粉损耗高。
(6)实施例16和17的非晶磁粉芯磁导率在低频和高频下的磁损耗均高于 实施例1,其中实施例16的非晶磁粉芯磁导率的磁导率低于实施例1,这是由于,实施例16中粘接剂的加入量过高,实施例17中粘接剂的加入量过低。当粘接剂的加入量过高时,非磁性物质导致占比高、成型密度低,导致得到的非晶磁粉芯的密度低、磁导率低;当粘接剂的加入量过低时,会导致非晶磁粉芯的磁体无强度、无法制造,这是由于非晶磁粉芯的粘接主要来自于粘接剂的作用力。
(7)对比例1-3中非晶磁粉芯的磁导率和电感强度均低于实施例1,并且在低频和高频下的磁损耗均高于实施例1,这是由于对比例1非晶磁粉芯前驱体颗粒中并不含有Cr元素,对比例2中省去了酸处理过程,对比例3中省去了无机粉末绝缘处理过程。由对比例1-3的数据可以看出,适量Cr元素的添加,酸处理过程以及无机粉末绝缘处理过程对于提高非晶磁粉芯的磁导率和电感强度,降低其磁损耗具有重要作用。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种非晶磁粉芯前驱体颗粒,其中,所述非晶磁粉芯前驱体颗粒包括非晶合金颗粒以及包覆于所述非晶合金颗粒表面的包覆层;
    所述非晶合金颗粒的元素为Fe、Si、Cr和B。
  2. 根据权利要求1所述的非晶磁粉芯前驱体颗粒,其中,所述非晶合金颗粒中各元素的质量百分数如下:
    Si               2~4wt%;
    Cr               2~3wt%;
    B                10~14%wt;
    其余为Fe。
  3. 根据权利要求2所述的非晶磁粉芯前驱体颗粒,其中,所述非晶合金颗粒中各元素的质量百分数如下:
    Si               2.2~3.8wt%;
    Cr               2.2~2.8wt%;
    B                11~13wt%;
    其余为Fe。
  4. 根据权利要求1-3任一项所述的非晶磁粉芯前驱体颗粒,其中,所述非晶合金颗粒的粒径为200~300目。
  5. 根据权利要求1-4任一项所述的非晶磁粉芯前驱体颗粒,其中,所述非晶合金颗粒的形状为球形。
  6. 根据权利要求1-5任一项所述的非晶磁粉芯前驱体颗粒,其中,所述包覆层包括无机粉末和粘接剂;
    优选地,所述无机粉末的粒径为250~550nm;
    优选地,所述无机粉末为氧化物粉末;
    优选地,所述无机粉末包括纳米氧化物粉末或亚微米氧化物粉末;
    优选地,所述无机粉末包括二氧化硅、云母粉、氧化锆或氧化铝粉中的任意一种或者至少两种的组合,进一步优选为二氧化硅;
    优选地,所述粘接剂为高分子聚合物;
    优选地,所述粘接剂包括环氧树脂、硅酮树脂、有机硅树脂、聚酰胺树脂或酚醛树脂中的任意一种或至少两种的组合,进一步优选为有机硅树脂。
  7. 一种如权利要求1-6任一项所述的非晶磁粉芯前驱体颗粒的制备方法, 其包括:
    在所述非晶合金颗粒中加入酸溶液进行酸化得到酸化颗粒,再对酸化颗粒进行钝化得到钝化颗粒,最后对钝化颗粒进行包覆得到所述非晶磁粉芯前驱体颗粒。
  8. 根据权利要求7所述的制备方法,其中,所述酸化的过程在搅拌条件下进行。
  9. 根据权利要求7或8所述的制备方法,其中,所述酸化的时间为5~60min,进一步优选为10~50min。
  10. 根据权利要求7-9任一项所述的制备方法,其中,所述酸溶液包括高铬酸溶液和/或高锰酸钾溶液;
    优选地,所述酸溶液的质量分数为5~25wt%,进一步优选为10~20wt%;
    优选地,以所述非晶合金颗粒的质量分数为100%,所述酸溶液的加入量为0.005~0.04wt%,进一步优选为0.01~0.03wt%。
  11. 根据权利要求7-10任一项所述的制备方法,其中,所述钝化过程采用的钝化剂包括磷酸溶液、硝酸溶液、硼酸溶液、磷酸二氢钠溶液、磷酸二氢铝溶液或磷酸二氢钠溶液中的任意一种或至少两种的组合,优选为磷酸溶液;
    优选地,所述钝化剂的质量分数为10~20wt%,进一步优选为12~18wt%;
    优选地,以所述酸化颗粒的质量分数为100%,所述钝化剂的加入量为0.01~0.06wt%,进一步优选为0.02~0.05wt%;
    优选地,所述包覆的过程具体包括:
    将钝化颗粒与绝缘剂混合均匀得到绝缘颗粒,随后加入粘接剂混合后得到所述非晶磁粉芯前驱体颗粒;
    优选地,所述混合在超声条件下进行;
    优选地,所述绝缘剂为无机粉末;
    优选地,所述无机粉末的粒径为250~550nm;
    优选地,所述无机粉末为氧化物粉末;
    优选地,所述无机粉末包括纳米氧化物粉末或亚微米氧化物粉末;
    优选地,所述无机粉末包括二氧化硅、云母粉、氧化锆或氧化铝粉中的任意一种或者至少两种的组合,进一步优选为二氧化硅;
    优选地,以所述钝化颗粒的质量分数为100%,所述绝缘剂的质量分数为 0.04%~0.06wt%,进一步优选为0.045%~0.055wt%;
    优选地,所述粘接剂为高分子聚合物;
    优选地,所述粘接剂包括环氧树脂、硅酮树脂、有机硅树脂、聚酰胺树脂或酚醛树脂中的任意一种或至少两种的组合,进一步优选为有机硅树脂;
    优选地,所述的粘接剂经溶剂稀释;
    优选地,所述的溶剂为丙酮;
    优选地,以所述的绝缘颗粒质量分数为100%,所述粘接剂的质量分数为0.1%~0.5wt%,进一步优选为0.2%~0.4wt%。
  12. 一种非晶磁粉芯,其中,由权利要求1-6任一项所述非晶磁粉芯前驱体颗粒制备得到。
  13. 一种如权利要求12所述的非晶磁粉芯的制备方法,其包括:
    非晶磁粉芯前驱体颗粒与脱模剂混合均匀后,放入模具中压制成型,随后进行退火处理得到所述非晶磁粉芯。
  14. 根据权利要求13所述的制备方法,其中,所述混合在超声搅拌条件下进行;
    优选地,所述压制成型的压力为10~14T/cm 2
    优选地,所述脱模剂为硬脂酸酰胺;
    优选地,以所述非晶磁粉芯前驱体颗粒的质量分数为100wt%,所述脱模剂的质量分数为0.01%~0.03wt%;
    优选地,所述退火的温度为530~630℃;
    优选地,所述退火的时间为15~25min;
    优选地,所述退火的气氛包括氮气气氛或氩气气氛。
  15. 一种电感器件,其中,所述电感器件包括权利要求12所述的非晶磁粉芯。
PCT/CN2022/110452 2021-09-01 2022-08-05 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件 WO2023029877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22863018.2A EP4398273A1 (en) 2021-09-01 2022-08-05 Amorphous magnetic powder core precursor particle, amorphous magnetic powder core, preparation method therefor, and inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111020063.XA CN113744948B (zh) 2021-09-01 2021-09-01 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件
CN202111020063.X 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023029877A1 true WO2023029877A1 (zh) 2023-03-09

Family

ID=78734563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110452 WO2023029877A1 (zh) 2021-09-01 2022-08-05 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件

Country Status (3)

Country Link
EP (1) EP4398273A1 (zh)
CN (1) CN113744948B (zh)
WO (1) WO2023029877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497278A (zh) * 2023-12-29 2024-02-02 天通控股股份有限公司 一种高磁导率低损耗铁基非晶复合磁粉心及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744948B (zh) * 2021-09-01 2022-07-12 横店集团东磁股份有限公司 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件
CN114823034A (zh) * 2022-04-06 2022-07-29 华南理工大学 一种无机-有机复合包覆的FeSiCrB雾化非晶磁粉及其制备方法和应用
CN118136392A (zh) * 2024-03-25 2024-06-04 安徽大学 一种低损耗软磁磁粉芯及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295205A (ja) * 1990-04-13 1991-12-26 Tokin Corp 形状異方性軟磁性合金粉末
CN1080106A (zh) 1992-05-14 1993-12-29 阿尔卡塔尔有限公司 迅速连接和再切换数字交叉连接网络的方法和系统
US20070175545A1 (en) * 2006-02-02 2007-08-02 Nec Tokin Corporation Amorphous soft magnetic alloy and inductance component using the same
CN104575913A (zh) 2014-12-01 2015-04-29 横店集团东磁股份有限公司 一种低损耗非晶磁粉芯的制备方法
JP2016015357A (ja) * 2014-06-30 2016-01-28 セイコーエプソン株式会社 非晶質合金粉末、圧粉磁心、磁性素子および電子機器
CN107818854A (zh) 2017-10-30 2018-03-20 东莞理工学院 一种铁基非晶态软磁粉芯的制备方法及应用
CN107967976A (zh) 2016-10-20 2018-04-27 中国科学院宁波材料技术与工程研究所 非晶磁粉芯前驱体颗粒、非晶磁粉芯及其制备方法
CN110303150A (zh) * 2019-07-02 2019-10-08 深圳市麦捷微电子科技股份有限公司 一种改善金属软磁粉耐腐蚀性能方法
CN111383810A (zh) * 2019-10-25 2020-07-07 横店集团东磁股份有限公司 一种非晶合金磁粉芯的制备方法
CN113744948A (zh) * 2021-09-01 2021-12-03 横店集团东磁股份有限公司 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB543848A (en) * 1940-11-13 1942-03-16 Telephone Mfg Co Ltd Magnetic systems for electrical apparatus
WO2006003882A1 (ja) * 2004-06-30 2006-01-12 Shin-Etsu Chemical Co., Ltd. 耐食性希土類磁石及びその製造方法
CN111192757A (zh) * 2020-01-17 2020-05-22 浙江东睦科达磁电有限公司 一种提高金属磁粉芯抗氧化性能的绝缘方法及其材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295205A (ja) * 1990-04-13 1991-12-26 Tokin Corp 形状異方性軟磁性合金粉末
CN1080106A (zh) 1992-05-14 1993-12-29 阿尔卡塔尔有限公司 迅速连接和再切换数字交叉连接网络的方法和系统
US20070175545A1 (en) * 2006-02-02 2007-08-02 Nec Tokin Corporation Amorphous soft magnetic alloy and inductance component using the same
JP2016015357A (ja) * 2014-06-30 2016-01-28 セイコーエプソン株式会社 非晶質合金粉末、圧粉磁心、磁性素子および電子機器
CN104575913A (zh) 2014-12-01 2015-04-29 横店集团东磁股份有限公司 一种低损耗非晶磁粉芯的制备方法
CN107967976A (zh) 2016-10-20 2018-04-27 中国科学院宁波材料技术与工程研究所 非晶磁粉芯前驱体颗粒、非晶磁粉芯及其制备方法
CN107818854A (zh) 2017-10-30 2018-03-20 东莞理工学院 一种铁基非晶态软磁粉芯的制备方法及应用
CN110303150A (zh) * 2019-07-02 2019-10-08 深圳市麦捷微电子科技股份有限公司 一种改善金属软磁粉耐腐蚀性能方法
CN111383810A (zh) * 2019-10-25 2020-07-07 横店集团东磁股份有限公司 一种非晶合金磁粉芯的制备方法
CN113744948A (zh) * 2021-09-01 2021-12-03 横店集团东磁股份有限公司 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497278A (zh) * 2023-12-29 2024-02-02 天通控股股份有限公司 一种高磁导率低损耗铁基非晶复合磁粉心及制备方法
CN117497278B (zh) * 2023-12-29 2024-03-12 天通控股股份有限公司 一种高磁导率低损耗铁基非晶复合磁粉心及制备方法

Also Published As

Publication number Publication date
CN113744948A (zh) 2021-12-03
CN113744948B (zh) 2022-07-12
EP4398273A1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2023029877A1 (zh) 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件
JP5333794B2 (ja) Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
CN111370193B (zh) 一种低损耗软磁磁粉芯及其制备方法
JP6756000B2 (ja) 圧粉磁心の製造方法
CN100999021A (zh) Fe-Ni50系合金粉末及磁粉芯制造方法
JP2003142310A (ja) 高い電気抵抗を有する圧粉磁心とその製造方法
JP2010027854A (ja) 圧粉磁心及びその製造方法
CN111009370B (zh) 一种金属磁粉芯的制备方法
CN117936216B (zh) 一种高频低功耗磁粉芯及其制备方法
WO2022121208A1 (zh) 一种软磁性粉末及其制备方法和用途
CN107393672B (zh) 一种铁镍基纳米晶磁芯及其制备方法
JP2010219161A (ja) 圧粉磁心及びその製造方法
CN113838658A (zh) 一种铁硅磁粉芯的制备方法
CN110379578B (zh) 一种低成本无稀土磁性材料及其制备方法
WO2021143476A1 (zh) 一种冷变形组织调整纳米复合永磁导电触头及其制造方法
CN113192720A (zh) 一种纳米颗粒复合磁芯膜及其制备方法
CN114150235B (zh) 非晶纳米晶母合金及其制备方法
CN116206840B (zh) 一种低损耗铁镍钼磁粉芯及其制备方法
WO2022201964A1 (ja) 軟磁性粉末、それを含有する圧粉磁心、及び軟磁性粉末の製造方法
WO2023106221A1 (ja) 異方性Nd-Fe-B系磁性粉末の製造方法
CN113178299B (zh) 一种高强度高磁导率铁硅磁粉芯及其制备方法
JPS59177902A (ja) コア
KR102155563B1 (ko) 급냉 분말 코어 및 그 제조 방법
CN106205941A (zh) 一种耐热冲击磁芯材料
TW455570B (en) Soft ferrite material for use in making inductors, and method for manufacturing inductors using the material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863018

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863018

Country of ref document: EP

Effective date: 20240402