CN113178299B - 一种高强度高磁导率铁硅磁粉芯及其制备方法 - Google Patents

一种高强度高磁导率铁硅磁粉芯及其制备方法 Download PDF

Info

Publication number
CN113178299B
CN113178299B CN202110337229.4A CN202110337229A CN113178299B CN 113178299 B CN113178299 B CN 113178299B CN 202110337229 A CN202110337229 A CN 202110337229A CN 113178299 B CN113178299 B CN 113178299B
Authority
CN
China
Prior art keywords
magnetic powder
iron
powder
magnetic
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110337229.4A
Other languages
English (en)
Other versions
CN113178299A (zh
Inventor
卢克超
王健
徐佳
刘辛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
Institute of New Materials of Guangdong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of New Materials of Guangdong Academy of Sciences filed Critical Institute of New Materials of Guangdong Academy of Sciences
Priority to CN202110337229.4A priority Critical patent/CN113178299B/zh
Publication of CN113178299A publication Critical patent/CN113178299A/zh
Application granted granted Critical
Publication of CN113178299B publication Critical patent/CN113178299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种高强度高磁导率铁硅磁粉芯及其制备方法,涉及磁粉芯技术领域。本发明所述铁硅磁粉芯的制备方法包括如下步骤:(1)将铁硅磁粉、低熔点玻璃粉、纳米磁性颗粒混合均匀,得到混合粉末;所述铁硅磁粉、低熔点玻璃粉和纳米磁性颗粒的质量比为:96~99:0.5~2.0:0.5~2.0;(2)将粘结剂、润滑剂溶解于有机溶剂中,再加入上述混合粉末,机械搅拌至干燥,得到绝缘包覆磁粉;(3)对上述绝缘包覆磁粉进行模压成型,脱除粘结剂、润滑剂,热等静压烧结处理,得到所述高强度高磁导率铁硅磁粉芯。由本发明所述方法制备出的铁硅磁粉芯的磁导率均达到85(20mT/50kHz)以上,压缩强度均高于90MPa,具有良好的综合性能。

Description

一种高强度高磁导率铁硅磁粉芯及其制备方法
技术领域
本发明涉及磁粉芯技术领域,尤其涉及一种高强度高磁导率铁硅磁粉芯及其制备方法。
背景技术
软磁复合材料(Soft magnetic composite,SMC)或磁粉芯,是由软磁合金颗粒及其表面绝缘包覆层组成的多相异质结构材料,兼具软磁合金和铁氧体的优点,在国民生产和国防建设中具有重要作用。按照磁性组元类型,可以分为Fe、Fe-Si、Fe-Ni、Fe-Si-Al、Fe-Ni-Mo以及非晶纳米晶等金属基磁粉芯。其中,Fe-6.5wt.%Si(Fe-6.5Si)磁粉芯具有饱和磁感应强度高、高频损耗低、直流叠加性能优异和材料成本低廉等特点,被广泛用于光伏太阳能发电、新能源汽车以及充电桩等新能源领域。
传统磁粉芯的制备采用粉末冶金工艺,其中绝缘包覆、压制成型、退火热处理是决定磁粉芯的电、磁、力学性能的关键环节。绝缘包覆介质主要包括有机、无机和无机-有机复合绝缘包覆介质。环氧树脂、酚醛树脂、硅树脂等有机绝缘介质与磁粉结合力好,但是在200℃以上温度会发生分解反应。目前,工业上广泛采用磷酸钝化法制备磷酸盐绝缘包覆层,同样地,经过长时间高温处理会发生分解或者晶化,造成电绝缘特性急剧恶化。利用二氧化硅、氧化镁、氧化铝、氧化钛等高熔点氧化物作为绝缘介质,可以进行高温退火处理以充分释放压制成型产生的内应力,但是高熔点氧化物与铁基磁粉的结合力差,磁粉芯机械强度很低;并且,两者热膨胀系数存在较大差异,服役环境温度变化产生较大的内应力,造成磁性能恶化。
此外,磁粉芯的电、磁、力学性能与压坯的致密度紧密相关。传统金属磁粉芯无法进行高温烧结处理,致密度低。为减少压坯的分布式孔隙、提高压实密度,通常需要很高的成型压力。但是,压制力过高会破坏绝缘包覆层的完整性,并且需要更高退火温度才能完全消除压制内应力。因此,金属磁粉芯存在致密度不足及其引起的饱和磁感、磁导率低和机械强度差的共性难题。
发明内容
本发明的目的在于克服上述现有技术的不足之处而提供一种具有良好的磁性能和机械性能的高强度高磁导率铁硅磁粉芯及其制备方法。
为实现上述目的,本发明所采取的技术方案为:一种高强度高磁导率铁硅磁粉芯的制备方法,包括如下步骤:
(1)将铁硅磁粉、低熔点玻璃粉、纳米磁性颗粒混合均匀,得到混合粉末;所述铁硅磁粉、低熔点玻璃粉和纳米磁性颗粒的质量比为:96~99:0.5~2.0:0.5~2.0;
(2)将粘结剂、润滑剂溶解于有机溶剂中,再加入上述混合粉末,搅拌至干燥,得到绝缘包覆磁粉;
(3)对上述绝缘包覆磁粉进行模压成型,脱除粘结剂、润滑剂,热等静压烧结处理,得到所述高强度高磁导率铁硅磁粉芯。
本发明在铁硅磁粉的基础上引入纳米磁性颗粒和低熔点玻璃粉作为绝缘介质,纳米磁性颗粒可以弱化非磁性绝缘介质的磁稀释效应,提高金属磁粉芯的饱和磁感应强度和磁导率,而所选低熔点玻璃粉的熔点一般低于600℃,流动性较好,经过压制后退火处理强化粉末颗粒之间的结合力,提高磁粉芯的强度,本发明对三者的配比进行研究,使三者复配可以平衡磁粉芯的力学性能和磁性能。此外,本发明采用热等静压法烧制磁粉芯,可以提高磁粉芯的致密化程度,进一步改善磁粉芯的综合力学性能。
优选地,所述铁硅磁粉、低熔点玻璃粉和纳米磁性颗粒的质量比为97.5~99:0.5~1:0.5~1.5。低熔点玻璃粉为非磁性相、存在磁稀释效应,且添加量过多会团聚、破坏绝缘包覆层。纳米磁性颗粒部分取代低熔点玻璃粉,可以弱化磁稀释作用,但是若添加量过多,发生团聚,对磁性能反而不利。
优选地,所述步骤(1)中,铁硅磁粉的D50粒径为20~50μm;低熔点玻璃粉的熔点为450~600℃,热膨胀系数为10~15×10-6/K,平均粒度为5~15μm;纳米磁性颗粒为Fe、Fe3O4、Mn-Zn铁氧体、Ni-Zn铁氧体中的至少一种,平均粒度为50~200nm。
优选地,所述步骤(2)中,粘结剂占混合粉末的质量分数为0.5~1.5%,润滑剂占混合粉末的质量分数为0.5~1.5%。
优选地,所述步骤(2)中,粘结剂包含有机硅树脂、聚乙烯醇、环氧树脂中的至少一种,润滑剂包含硬脂酸锌、硬脂酸锂、硬脂酸镁、聚乙烯醚中的至少一种。
优选地,所述步骤(3)中,模压成型的压制力为800~1800MPa。
优选地,所述步骤(3)中,脱除粘结剂、润滑剂的过程在真空烧结炉内进行,真空度高于1×10-2Pa,温度为350~450℃,保温时间为1~2h。
优选地,所述步骤(3)中,热等静压烧结利用高纯氩气作为传压介质,烧结温度为700~1000℃,等静压力为10~150MPa,时间为1~2h。
同时,本发明还公开了由上述方法制备而成的高强度高磁导率铁硅磁粉芯;所述磁粉芯的密度为6.8~7.0g/cm3
相比于现有技术,本发明的有益效果为:
(1)本发明采用热膨胀系数可调的低熔点玻璃粉作为绝缘介质,并引入纳米磁性颗粒进行改性,最大限度地降低非磁性介质的体积分数,削弱磁稀释效应,从而提升磁粉芯的饱和磁感应强度和磁导率。
(2)利用热等静压技术,在高于低熔点玻璃粉熔融温度条件下进行液相烧结,液化的低熔点玻璃粉与铁硅磁粉具有良好的润湿性,形成与铁硅磁粉颗粒结合力强且均匀、连续的绝缘包覆结构;同时施加等静压力,使得铁硅磁粉芯在较低烧结温度下实现致密度的提升。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本发明所述高强度高磁导率铁硅磁粉芯的一种实施例,本实施例所述铁硅磁粉芯的制备方法如下:
选用平均粒度为35μm的Fe-6.5wt%Si磁粉,熔点、热膨胀系数和平均粒度分别为550℃、12×10-6/K和15μm的低熔点玻璃粉,平均粒度为50nm的纳米Fe颗粒,并按照铁硅磁粉:低熔点玻璃粉:纳米磁性颗粒的质量比为98:1:1进行备料,得到混合粉末;将占混合粉末总质量1%的有机硅树脂作为粘结剂,将占混合粉末总质量0.5%的硬脂酸锌作为润滑剂溶于丙酮,随后加入上述混合粉末,并机械搅拌至干燥,获得绝缘包覆磁粉;设置压制力1000MPa、保压时间10s进行模压成型,得到磁粉芯坯体;将磁粉芯坯体置于真空烧结炉内,抽真空至10-3Pa,加热至400℃,保温2h,以脱除润滑剂、粘结剂,制备预烧结坯体;将预烧结坯体置于热等静压缸体内,经多次“抽真空-充气”洗炉处理后,同时升温升压至700℃、50MPa后,保温保压2h,冷却后得到所述铁硅磁粉芯。
实施例2
本发明所述高强度高磁导率铁硅磁粉芯的一种实施例,本实施例所述铁硅磁粉芯的制备方法与实施例1的区别仅在于,热等静压烧结温度为800℃,压力为120MPa。
实施例3
本发明所述高强度高磁导率铁硅磁粉芯的一种实施例,本实施例所述铁硅磁粉芯的制备方法与实施例1的区别仅在于,选用的纳米磁性颗粒为平均粒度为50nm的Mn-Zn铁氧体。
实施例4
本发明所述高强度高磁导率铁硅磁粉芯的一种实施例,本实施例所述铁硅磁粉芯的制备方法与实施例1的区别仅在于,铁硅磁粉、低熔点玻璃粉、纳米磁性颗粒的质量比为:98:0.5:1.5。
实施例5
本发明所述高强度高磁导率铁硅磁粉芯的一种实施例,本实施例所述铁硅磁粉芯的制备方法与实施例1的区别仅在于,铁硅磁粉、低熔点玻璃粉、纳米磁性颗粒的质量比为:99:0.5:0.5。
实施例6
本发明所述高强度高磁导率铁硅磁粉芯的一种实施例,本实施例所述铁硅磁粉芯的制备方法与实施例1的区别仅在于,铁硅磁粉、低熔点玻璃粉、纳米磁性颗粒的质量比为:96:2:2。
对比例1
一种铁硅磁粉芯,其制备方法与实施例1所述铁硅磁粉芯的制备方法的区别仅在于,不进行热等静压处理,将磁粉芯坯体直接置于真空烧结炉内,抽真空至10-3Pa,升温至700℃,保温2h后冷却至室温,得到所述铁硅磁粉芯。
对比例2
一种铁硅磁粉芯,其制备方法与实施例1所述铁硅磁粉芯的制备方法的区别仅在于,不添加纳米磁性颗粒,仅使用质量比为99:1的铁硅磁粉和低熔点玻璃粉。
对比例3
一种铁硅磁粉芯,其制备方法与实施例1所述铁硅磁粉芯的制备方法的区别仅在于,铁硅磁粉、低熔点玻璃粉和纳米磁性颗粒的质量比为:96.9:0.1:3。
性能测试参照标准《GB/T 3658-2008软磁材料交流磁性能环形试样的测量方法》、《GB/T 13012-2008软磁材料直流磁性能的测量方法》、《SJ 20966-2006软磁铁氧体材料测量方法》和《GB/T 6525-2019烧结金属材料室温压缩强度的测定》
使用日本川崎SY-8219型B-H分析仪和NIM-2000/3000s软磁材料磁性测量系统对实施例1~6和对比例1~3所述磁粉芯进行软磁性能测试。使用万能力学性能试验机对压缩强度进行测试,测试结果如表1所示。
表1
Figure BDA0002997492960000061
从表1中可知,由本发明所述方法制备出的铁硅磁粉芯均具有良好的软磁性能和力学性能,相比于对比例1~3,具有更广的应用范围。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,但并不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种高强度高磁导率铁硅磁粉芯的制备方法,其特征在于,包括如下步骤:
(1)将铁硅磁粉、低熔点玻璃粉、纳米磁性颗粒混合均匀,得到混合粉末;所述铁硅磁粉、低熔点玻璃粉和纳米磁性颗粒的质量比为97.5~99:0.5~1:0.5~1.5;
(2)将粘结剂、润滑剂溶解于有机溶剂中,再加入上述混合粉末,搅拌至干燥,得到绝缘包覆磁粉;
(3)对上述绝缘包覆磁粉进行模压成型,脱除粘结剂、润滑剂,热等静压烧结处理,得到所述高强度高磁导率铁硅磁粉芯;
所述步骤(1)中,铁硅磁粉的D50粒径为20~50μm;低熔点玻璃粉的熔点为450~600℃,热膨胀系数为10~15×10-6/K,平均粒度为5~15μm;纳米磁性颗粒为Fe、Fe3O4、Mn-Zn铁氧体、Ni-Zn铁氧体中的至少一种,平均粒度为50~200nm。
2.如权利要求1所述的高强度高磁导率铁硅磁粉芯的制备方法,其特征在于,所述步骤(2)中,粘结剂占混合粉末的质量分数为0.5~1.5%,润滑剂占混合粉末的质量分数为0.5~1.5%。
3.如权利要求1所述的高强度高磁导率铁硅磁粉芯的制备方法,其特征在于,所述步骤(2)中,粘结剂包含有机硅树脂、聚乙烯醇、环氧树脂中的至少一种,润滑剂包含硬脂酸锌、硬脂酸锂、硬脂酸镁、聚乙烯醚中的至少一种。
4.如权利要求1所述的高强度高磁导率铁硅磁粉芯的制备方法,其特征在于,所述步骤(3)中,模压成型的压制力为800~1800MPa。
5.如权利要求1所述的高强度高磁导率铁硅磁粉芯的制备方法,其特征在于,所述步骤(3)中,脱除粘结剂、润滑剂的过程在真空烧结炉内进行,真空度高于1×10-2Pa,温度为350~450℃,保温时间为1~2h。
6.如权利要求1所述的高强度高磁导率铁硅磁粉芯的制备方法,其特征在于,所述步骤(3)中,热等静压烧结利用高纯氩气作为传压介质,烧结温度为700~1000℃,等静压力为10~150MPa,时间为1~2h。
7.一种由如权利要求1~6任一项所述方法制备所得的高强度高磁导率铁硅磁粉芯。
8.如权利要求7所述的高强度高磁导率铁硅磁粉芯,其特征在于,所述铁硅磁粉芯的密度为6.8~7.0g/cm3
CN202110337229.4A 2021-03-29 2021-03-29 一种高强度高磁导率铁硅磁粉芯及其制备方法 Active CN113178299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110337229.4A CN113178299B (zh) 2021-03-29 2021-03-29 一种高强度高磁导率铁硅磁粉芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110337229.4A CN113178299B (zh) 2021-03-29 2021-03-29 一种高强度高磁导率铁硅磁粉芯及其制备方法

Publications (2)

Publication Number Publication Date
CN113178299A CN113178299A (zh) 2021-07-27
CN113178299B true CN113178299B (zh) 2022-11-15

Family

ID=76922621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110337229.4A Active CN113178299B (zh) 2021-03-29 2021-03-29 一种高强度高磁导率铁硅磁粉芯及其制备方法

Country Status (1)

Country Link
CN (1) CN113178299B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222827A (ja) * 2012-04-17 2013-10-28 Panasonic Corp 複合磁性体とそれを用いたコイル埋設型磁性素子およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720074B2 (en) * 2000-10-26 2004-04-13 Inframat Corporation Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
CN103247403B (zh) * 2013-05-31 2015-09-30 合肥工业大学 一种金属软磁粉芯的制备方法
CN103426584B (zh) * 2013-09-11 2016-04-13 中国计量学院 一种铁氧体复合磁粉芯及其制备方法
JP2019192868A (ja) * 2018-04-27 2019-10-31 セイコーエプソン株式会社 絶縁物被覆軟磁性粉末、圧粉磁心、磁性素子、電子機器および移動体
CN109273234A (zh) * 2018-09-26 2019-01-25 鲁东大学 一种高饱和磁通密度软磁复合材料的非均匀形核包覆方法
CN109326405A (zh) * 2018-09-26 2019-02-12 合肥博微田村电气有限公司 一种高导热绝缘软磁金属粉末的制备方法及软磁金属粉末

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222827A (ja) * 2012-04-17 2013-10-28 Panasonic Corp 複合磁性体とそれを用いたコイル埋設型磁性素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
惰性气体雾化法制备Fe-Si-Al-Ni-Ti软磁合金粉末;刘辛等;《2010中国材料研讨会论文集》;20121116;全文 *

Also Published As

Publication number Publication date
CN113178299A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
JP4134111B2 (ja) 絶縁軟磁性金属粉末成形体の製造方法
CN108269670B (zh) 一种铁硅铝软磁合金粉末的绝缘及包裹处理方法
CN102360671B (zh) 一种μ75铁硅铝磁粉芯的制造方法
JP5022999B2 (ja) 圧粉磁心及びその製造方法
CN108777229B (zh) 一种高频软磁铁硅铝磁粉芯的制备方法
CN103666364B (zh) 金属软磁复合材料用有机绝缘粘结剂及制备金属软磁复合材料方法
CN105185560A (zh) 一种铁基金属软磁粉芯的制备方法
CN108046789B (zh) 一种电磁屏蔽复合材料的制备方法
CN111739730B (zh) 一种使用有机包覆的高性能金属磁粉芯制备方法
CN109680210B (zh) 一种μ=150~250铁硅铝软磁磁粉芯的制备方法
JP5470683B2 (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
CN110246675B (zh) 一种高饱和磁通密度、低损耗软磁复合材料及其制备方法
CN112509777B (zh) 一种软磁合金材料及其制备方法和应用
JP2012134244A (ja) 圧粉磁心の製造方法、および該製造方法によって得られた圧粉磁心
JP5053195B2 (ja) 圧粉磁心及びその製造方法
JP2008172257A (ja) 絶縁軟磁性金属粉末成形体の製造方法
CN104028762A (zh) 一种软磁复合材料的制备方法
CN111696746A (zh) 一种破碎法铁硅铝软磁粉心及其制备方法
CN113744948B (zh) 非晶磁粉芯前驱体颗粒、非晶磁粉芯、其制备方法及电感器件
CN102610349B (zh) 一种μ90铁硅铝磁粉芯的制造方法
JP2014086672A (ja) 圧粉磁心及びその製造方法、磁心用粉末及びその製造方法
CN113077953B (zh) 一种基于磁交换长度提升铁基磁粉芯导磁性的方法及产品
CN103680915B (zh) 一种Fe-Co-Zr-Nb-B-Ga纳米晶磁芯的制备方法
JP2010027871A (ja) 圧粉磁心及びその製造方法
CN113178299B (zh) 一种高强度高磁导率铁硅磁粉芯及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20221020

Address after: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Applicant after: Institute of new materials, Guangdong Academy of Sciences

Address before: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Applicant before: Institute of materials and processing, Guangdong Academy of Sciences

GR01 Patent grant
GR01 Patent grant