WO2023029498A1 - 图像传感器、点对点电性连接装置及其制作方法 - Google Patents

图像传感器、点对点电性连接装置及其制作方法 Download PDF

Info

Publication number
WO2023029498A1
WO2023029498A1 PCT/CN2022/087054 CN2022087054W WO2023029498A1 WO 2023029498 A1 WO2023029498 A1 WO 2023029498A1 CN 2022087054 W CN2022087054 W CN 2022087054W WO 2023029498 A1 WO2023029498 A1 WO 2023029498A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
electrode array
point
pixel array
electrode
Prior art date
Application number
PCT/CN2022/087054
Other languages
English (en)
French (fr)
Inventor
金利波
朱翀煜
Original Assignee
上海奕瑞光电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奕瑞光电子科技股份有限公司 filed Critical 上海奕瑞光电子科技股份有限公司
Publication of WO2023029498A1 publication Critical patent/WO2023029498A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof

Definitions

  • the invention belongs to the field of image sensing, and in particular relates to an image sensor, a point-to-point electrical connection device and a manufacturing method thereof.
  • an image sensor In modern society, image sensors are used in all aspects of life and industrial production, such as mobile phone photography, TOF facial recognition, medical imaging, industrial flaw detection, food safety and many other fields.
  • an image sensor mainly includes a photodiode pixel array and an integrating circuit, which are used to convert an analog light signal into an electrical signal and perform digital-to-analog conversion, and finally present an image.
  • some low-speed applications such as traditional linear array detectors and digital radiography (DR) usually use photodiode pixel arrays to lead drive and data lines to peripheral circuits and perform line-by-line signal reading.
  • some high-speed applications such as traditional CT and the photon counting technology (Photon Counting) that has emerged in recent years, the photodiode pixel array is usually installed in a flip-chip (chip flip-chip) manner to match its size.
  • the pixel array of the integrating circuit On the pixel array of the integrating circuit, or lead the pixel signal of the photodiode pixel array to the pixel array of the integrating circuit in the form of wire bonding, to realize the point-to-point electrical connection between the pixel array of the photodiode and the pixel array of the integrating circuit, which can realize Higher readout rate, and easy to achieve large-scale arrays through array splicing, with broad application prospects.
  • the object of the present invention is to provide an image sensor, a point-to-point electrical connection device and a manufacturing method thereof, which are used to solve the problems caused by the large area of the readout circuit (ROIC) in the prior art. High and difficult wiring process and other issues.
  • ROIC readout circuit
  • the present invention provides a point-to-point electrical connection device for an image sensor
  • the point-to-point electrical connection device includes: a substrate, and a pixel array chip for a photoelectric conversion element is distributed on the substrate
  • a pair of pixel electrode points corresponding to the first electrode array and the second electrode array are used to realize point-to-point electrical connection between pixels of the photoelectric conversion element pixel array chip and the integration circuit pixel array chip.
  • the first electrode array and the second electrode array include the same number of pixel electrode points.
  • the substrate includes a glass substrate, on which a plurality of alternately laminated metal wire layers and insulating layers are provided, and conductive via holes are provided in the insulating layers to lead corresponding metal wire layers to the
  • the top surface of the insulating layer, the first electrode array and the second electrode array are arranged on the top surface of the insulating layer and connected to the conductive vias, and realize point-to-point electrical connection through corresponding metal wire layers.
  • the distance between two adjacent pixel electrode points in the second electrode array is smaller than the distance between two adjacent pixel electrode points in the first electrode array, and the distance is 5 mm to 200 mm.
  • the number of pixel electrode points included in the second electrode array is greater than the number of pixel electrode points included in the first electrode array
  • the second electrode array also includes a driver for the integration circuit pixel array chip
  • An electrode array, a third electrode array is also provided on the base, the third electrode array is connected to the driving electrode array through wires, and the third electrode array is used to connect with the peripheral driving circuit board.
  • the present invention also provides a method for manufacturing a point-to-point electrical connection device for an image sensor.
  • the manufacturing method includes the steps of: 1) providing a substrate; 2) forming an insulating layer on the substrate; 3) forming an insulating layer on the insulating layer; A metal layer is formed on the layer, and the metal layer is patterned to form a metal wire layer; 4) Step 2) and step 3) are repeated; 5) Conductive vias are made in the insulating layer to connect corresponding 6)
  • the second electrode array is flip-chip connected to the integrated circuit pixel array chip, the first electrode array and the second electrode array are connected through the metal wire layer to form a pair of pixel electrode points, so as to realize the photoelectric conversion element
  • the point-to-point electrical connection between the pixel array chip and the pixels of the integration circuit pixel array chip includes the steps of: 1) providing a substrate; 2) forming an insulating layer on the substrate
  • step 6) includes: 6-1) forming a metal layer on the top surface of the insulating layer; 6-2) etching the metal layer to simultaneously form the first electrode array, the The second electrode array and the metal wire layer at the top; 6-3) forming a protective layer on the insulating layer at the top, the protective layer covering the metal wire layer at the top, and Openings are formed in the protection layer, and the openings expose the first electrode array and the second electrode array.
  • the substrate includes a glass substrate
  • the insulating layer includes one of organic insulators, insulating oxides, and insulating nitrides
  • the metal wiring layer includes one of transparent conductors, molybdenum, aluminum, and copper.
  • the present invention also provides an image sensor, which includes: the point-to-point electrical connection device for the image sensor described in any one of the solutions above; a photoelectric conversion element pixel array chip flip-chip connected to the first electrode On the array: the integrated circuit pixel array chip is flip-chip connected to the second electrode array.
  • the top surface of the integration circuit pixel array chip is also provided with a driving electrode array for the extraction of the integration circuit pixel array chip
  • the image sensor also includes a peripheral driving circuit board, and the driving electrode array is connected through a metal line Or the flexible circuit board is connected to the peripheral driving circuit board.
  • the second electrode array also includes a driving electrode array for leading out of the integrating circuit pixel array chip, and a third electrode array is further provided on the substrate, and the third electrode array is connected to the driving electrode array.
  • the arrays are connected through wires
  • the image sensor also includes a peripheral driving circuit board, and the third electrode array is connected with the peripheral driving circuit board through a flexible circuit board or metal wires.
  • the integrated circuit pixel array chip is formed on a chip-on-chip film substrate, the chip-on-chip film substrate has a first chip electrode array and a second chip electrode array, and the first chip electrode array is flip-chip connected to On the second electrode array, to realize the point-to-point electrical connection between the pixels of the integration circuit pixel array chip and the photoelectric conversion element pixel array chip, the second chip electrode array is connected to the peripheral driving circuit board to Realize the connection between the integrated circuit pixel array chip and the peripheral driving circuit board.
  • each pair of pixel electrodes is point-connected to one photoelectric conversion element on the pixel array chip of the photoelectric conversion element, and the photoelectric conversion element is connected to the integration circuit pixel array chip.
  • the photoelectric conversion element pixel array chip includes a photodiode pixel array chip
  • the integration circuit pixel array chip includes a silicon-based ASIC chip.
  • the photodiode pixel array chip is a silicon-based visible light photodiode pixel array chip, and a scintillator is formed on the silicon-based visible light photodiode pixel array chip, and the scintillator is used to convert high-energy rays into visible light , the visible light photodiode pixel array chip is used to convert the visible light into electrical signals.
  • the photodiode pixel array chip is a direct photodetector pixel array chip, which is used to directly convert high-energy rays into electrical signals.
  • the direct photodetector pixel array chip includes a CdZnTe crystal detector pixel array chip.
  • the high-energy rays include one of X-rays, ⁇ -rays, ⁇ -rays and ⁇ -rays.
  • the distance is 5 mm to 200 mm.
  • the image sensor, the point-to-point electrical connection device and the manufacturing method thereof of the present invention have the following beneficial effects:
  • the invention innovatively utilizes the process capability of the panel production line to produce a low-cost point-to-point electrical connection device, which simplifies the pixel electrode point connection between the photoelectric conversion element pixel array chip and the integrating circuit pixel array chip in the high-speed image sensor.
  • the process cost is reduced, and the process yield rate can be improved, and it is more conducive to the protection and temperature isolation of the integrated circuit pixel array chip from high-energy rays.
  • the present invention can reduce the cost problem caused by the large required area of the integration circuit pixel array chip (ROIC), reduces the difficulty of the connection process between the photoelectric conversion element pixel array chip and the integration circuit pixel array chip, and effectively solves the problem of integration circuit pixel array chip. Radiation protection and temperature isolation of array chips.
  • Figures 1 to 7 show the structural schematic diagrams presented in each step of the manufacturing method of a point-to-point electrical connection device for an image sensor according to an embodiment of the present invention, wherein Figure 7 shows a point-to-point connection device for an image sensor according to an embodiment of the present invention Schematic diagram of the structure of the electrical connection device.
  • FIG 8 to 9 are schematic structural diagrams of an image sensor according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an image sensor according to another embodiment of the present invention.
  • Fig. 11 is a schematic structural diagram of an image sensor according to another embodiment of the present invention.
  • spatial relation terms such as “below”, “below”, “below”, “below”, “above”, “on” etc. may be used herein to describe an element or element shown in the drawings.
  • a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • structures described as having a first feature "on top of" a second feature may include embodiments where the first and second features are formed in direct contact, as well as additional features formed between the first and second features. Embodiments between the second feature such that the first and second features may not be in direct contact.
  • the area of the integrating circuit pixel array and the photodiode pixel array chip need to be exactly the same, and the area of the photodiode pixel array chip needs to meet certain requirements. Practical applications require that in many cases it cannot be made too small, such as a CT detector, so the area of the integrated circuit pixel array chip must be made relatively large. It should be noted that the cost of the integrated circuit pixel array chip is the main part of the cost of the detector, and a large-area integrated circuit pixel array chip will directly increase the cost of the detector.
  • the number of bonding wires will be very large when the photodiode pixel array chip has high precision and many pixels (for example, A small array of 32*32 requires 1024 wires), the process is difficult, and the distance between the photodiode pixel array chip and the integrating circuit pixel array chip must be very close to meet the wiring requirements, such a distribution is not conducive to the radiation of the circuit protection, it will reduce the life of the detector.
  • the purpose of the present invention is to solve the cost problem of the large-area integrating circuit pixel array chip, the photodiode pixel array chip and the integrating circuit pixel array chip through a new electrical connection method between the photodiode pixel array chip and the integrating circuit pixel array chip.
  • the present embodiment provides a point-to-point electrical connection device 10 for an image sensor.
  • the point-to-point electrical connection device includes: a substrate on which a pixel array chip 14 for a photoelectric conversion element is distributed.
  • a first electrode array 112 for flip-chip connection and a second electrode array 113 for flip-chip connection of the integrating circuit pixel array chip 15, a number of wires are arranged between the first electrode array 112 and the second electrode array 113 11.
  • the wire 11 connects a pair of pixel electrode points corresponding to the first electrode array 112 and the second electrode array 113, so as to realize the photoelectric conversion element pixel array chip 14 and the integration circuit pixel array chip 15 point-to-point electrical connections between pixels.
  • the first electrode array 112 and the second electrode array 113 include the same number of pixel electrode points, and each pixel electrode point in the first electrode array 112 is connected to the One pixel electrode in the second electrode array 113 is point-connected.
  • the substrate includes a glass substrate 101, on which a plurality of alternately laminated metal wire layers and insulating layers are provided, and conductive vias 111 are provided in the insulating layers to connect the corresponding metal wires.
  • the wire layer is led out to the top surface of the insulating layer, the first electrode array 112 and the second electrode array 113 are arranged on the top surface of the insulating layer and connected to the conductive via 111, and pass through corresponding metal wires The layer realizes the point-to-point electrical connection.
  • the insulating layer can be an organic insulating material, insulating oxide or insulating nitride, such as silicon dioxide or silicon nitride, and the metal wiring layer can be one of transparent conductors, molybdenum, aluminum and copper. , or a laminated structure of multiple compositions, the transparent conductive material may be, for example, ITO or the like.
  • the first electrode array 112 and the second electrode array 113 can also be one of transparent conductive materials (such as ITO, etc.), molybdenum, aluminum and copper, or a stacked structure composed of multiple components.
  • one layer of the metal wire layer and the corresponding conductive vias can realize the connection of the multi-column pixel electrode points of the first electrode array 112 and the multi-column pixel electrode points of the second electrode array 113 , so that the number of required metal wire layers is much smaller than the number of columns of the first electrode array 112 and the second electrode array 113, thereby greatly saving manufacturing costs.
  • the distance between two adjacent pixel electrode points in the second electrode array 113 is smaller than the distance between two adjacent pixel electrode points in the second electrode array 113.
  • the second The area of the electrode array 113 is smaller than the area of the first electrode array 112 , for example, the area of the second electrode array 113 may be less than one-fifth of the area of the first electrode array 112 .
  • the number of pixel electrode points included in the second electrode array 113 may also be greater than the number of pixel electrode points included in the first electrode array 112, and the second electrode array 113 also includes
  • the drive electrode array 131 drawn from the circuit pixel array chip 15 is also provided with a third electrode array 132 on the substrate, and the third electrode array 132 is connected to the drive electrode array 131 by wires, and the third electrode array 132 It is used to connect with the peripheral driver circuit board 16 .
  • this embodiment also provides a method for manufacturing a point-to-point electrical connection device 10 for an image sensor, and the method includes steps:
  • step 1) is performed to provide a substrate, which may be, for example, a glass substrate, a silicon substrate, a silicon carbide substrate, or the like.
  • step 2) forming a first insulating layer 102 on the substrate, and step 3) forming a metal layer on the first insulating layer 102, and patterning the metal layer , to form the first metal wire layer 103 .
  • the first insulating layer 102 includes one of organic insulating material, insulating oxide and insulating nitride, for example, the first insulating layer 102 may be silicon dioxide or silicon nitride, which It can be formed by a chemical vapor deposition process, and the metal wire layer includes a laminate composed of one or more of transparent conductors (such as ITO, etc.), molybdenum, aluminum and copper.
  • transparent conductors such as ITO, etc.
  • step 4) is performed, and step 2) and step 3) are repeated.
  • step 4) includes:
  • a second insulating layer 104 is formed on the first metal wire layer 103, a metal layer is formed on the second insulating layer 104, and the metal layer is patterned to form a second insulating layer 104.
  • Two metal wire layers 105 are two metal wire layers 105 .
  • a third insulating layer 106 is formed on the second metal wire layer 105, a metal layer is formed on the third insulating layer 106, and the metal layer is patterned to form a second insulating layer 106.
  • Three metal wire layers 107 are shown in FIG. 3, a third insulating layer 106 is formed on the second metal wire layer 105, a metal layer is formed on the third insulating layer 106, and the metal layer is patterned to form a second insulating layer 106.
  • Three metal wire layers 107 Three metal wire layers 107 .
  • a fourth insulating layer 108 is formed on the third metal wire layer 107, a metal layer is formed on the fourth insulating layer 108, and the metal layer is patterned to form the first Four metal wire layers 109 , and finally a fifth insulating layer 110 is formed on the fourth metal wire layer 109 .
  • step 5 is then performed to form conductive vias 111 in the insulating layer to lead the corresponding metal wire layer to the top surface of the topmost insulating layer.
  • step 6 to make a first electrode array 112 for flip-chip connection of the photoelectric conversion element pixel array chip 14 and a pixel array for the integration circuit on the top surface of the insulating layer on the topmost layer.
  • the chip 15 is flip-chip connected to the second electrode array 113, the first electrode array 112 and the second electrode array 113 are connected through the metal wire layer to form a pair of pixel electrode points, so as to realize the photoelectric conversion element pixel
  • step 6) further includes the step of forming a protective layer 114 on the top insulating layer, and forming an opening in the protective layer 114, the opening revealing the first electrode array 112 and the second electrode array 113.
  • step 6) may also include:
  • Step 6-1 forming a metal layer on the top surface of the topmost insulating layer.
  • Step 6-2 etching the metal layer to simultaneously form the first electrode array 112 , the second electrode array 113 and the topmost metal wire layer.
  • Step 6-3 forming a protective layer 114 on the topmost insulating layer, the protective layer 114 covers the metal wire layer located at the topmost layer, and forms openings in the protective layer 114, the The opening exposes the first electrode array 112 and the second electrode array 113 .
  • the present invention innovatively utilizes the process capability of the panel production line to produce a low-cost point-to-point electrical connection device 10, which simplifies the pixel electrodes between the photoelectric conversion element pixel array chip 14 and the integrating circuit pixel array chip 15 in the high-speed image sensor
  • the point connection reduces the process cost and improves the process yield at the same time.
  • this embodiment also provides an image sensor, the image sensor includes: a point-to-point electrical connection device 10 for the image sensor; a photoelectric conversion element pixel array chip 14, flip-chip connected to the on the first electrode array 112; the integrating circuit pixel array chip 15 is flip-chip connected to the second electrode array 113.
  • the point-to-point electrical connection device 10 for an image sensor includes a substrate on which a first electrode array 112 for flip-chip connection of a photoelectric conversion element pixel array chip 14 and a pixel array chip for an integrating circuit are distributed. 15
  • the second electrode array 113 flip-chip connected, a number of wires are arranged between the first electrode array 112 and the second electrode array 113, and the wires connect the first electrode array 112 and the second electrode array
  • a pair of pixel electrode points corresponding to the array 113 is used to realize the point-to-point electrical connection between the pixels of the photoelectric conversion element pixel array chip 14 and the integration circuit pixel array chip 15 .
  • the first electrode array 112 and the second electrode array 113 include the same number of pixel electrode points, and each pixel electrode point in the first electrode array 112 is connected to the electrode points by wires. One pixel electrode in the second electrode array 113 is point-connected.
  • the substrate includes a glass substrate 101, on which a plurality of alternately laminated metal wire layers and insulating layers are provided, and conductive vias 111 are provided in the insulating layers to connect the corresponding metal wires.
  • the wire layer is led out to the top surface of the insulating layer, the first electrode array 112 and the second electrode array 113 are arranged on the top surface of the insulating layer and connected to the conductive via 111, and pass through corresponding metal wires The layer realizes the point-to-point electrical connection.
  • the insulating layer can be organic insulating material, insulating oxide or insulating nitride, such as silicon dioxide or silicon nitride
  • the metal wire layer can be transparent conductive material (such as ITO, etc.), molybdenum, aluminum and One of copper, or a laminated structure composed of multiple components.
  • the first electrode array 112 and the second electrode array 113 can also be one of transparent conductive materials (such as ITO, etc.), molybdenum, aluminum and copper, or a stacked structure composed of multiple components.
  • one layer of the metal wire layer and the corresponding conductive vias can realize the connection of the multi-column pixel electrode points of the first electrode array 112 and the multi-column pixel electrode points of the second electrode array 113 , so that the number of required metal wire layers is much smaller than the number of columns of the first electrode array 112 and the second electrode array 113, thereby greatly saving manufacturing costs.
  • the distance between two adjacent pixel electrode points in the second electrode array 113 is smaller than the distance between two adjacent pixel electrode points in the second electrode array 113.
  • the second The area of the electrode array 113 is smaller than the area of the first electrode array 112 , for example, the area of the second electrode array 113 may be less than one-fifth of the area of the first electrode array 112 .
  • the top surface of the integrating circuit pixel array chip 15 is also provided with a driving electrode array 131 for leading out from the integrating circuit pixel array chip 15, and the image sensor also includes a peripheral driver
  • the circuit board 16, the driving electrode array 131 is connected to the peripheral driving circuit board 16 through metal wires 17 or a flexible circuit board.
  • the connection method in this embodiment can effectively reduce the number of bonding wires required by the image sensor.
  • Fig. 9 shows the plane layout of the image sensor, as can be seen from Fig. 9, the area of the integrated circuit pixel array chip 15 can be designed to be much smaller than the area of the photoelectric conversion element pixel array chip 14, thereby greatly reducing the The cost of the integration circuit pixel array chip 15 is described above.
  • the second electrode array 113 also includes a drive electrode array 131 for the integration circuit pixel array chip 15 to lead out, and a third electrode array 132 is also provided on the substrate.
  • the third electrode array 132 is connected to the driving electrode array 131 through wires
  • the image sensor also includes a peripheral driving circuit board 16, and the third electrode array 132 is connected to the peripheral electrode array 132 through a flexible circuit board 18 or metal wires.
  • the driver circuit board 16 is connected.
  • the integrating circuit pixel array chip 15 is formed on a chip-on-film 19 substrate, and the chip-on-film 19 substrate has a first chip electrode array and a second chip electrode array,
  • the first chip electrode array is flip-chip connected to the second electrode array 113, so as to realize the point-to-point electrical connection between the pixels of the integration circuit pixel array chip 15 and the photoelectric conversion element pixel array chip 14, so
  • the second chip electrode array is connected to the peripheral driver circuit board 16 to realize the connection between the integration circuit pixel array chip 15 and the peripheral driver circuit board 16, for example, the second chip electrode array is connected to the peripheral driver circuit board 16.
  • the connection mode of the board 16 can be soldering connection or connector connection, and the connector connection can facilitate the disassembly and replacement of the peripheral drive circuit board 16 of the image sensor.
  • each pair of pixel electrodes is point-connected to one photoelectric conversion element on the pixel array chip 14 and the photoelectric conversion element is connected to the integrating circuit pixel array chip 15 .
  • the photoelectric conversion element pixel array chip 14 includes a photodiode pixel array chip
  • the integration circuit pixel array chip 15 includes a silicon-based ASIC chip.
  • the photodiode pixel array chip may be a silicon-based visible light photodiode pixel array chip, and a scintillator is formed on the silicon-based visible light photodiode pixel array chip, and the scintillator is used to convert high-energy rays into visible light.
  • the visible light photodiode pixel array chip is used to convert the visible light into electrical signals.
  • the photodiode pixel array chip may be a direct photodetector pixel array chip, which is used to directly convert high-energy rays into electrical signals.
  • the direct photodetector pixel array chip includes a CdZnTe crystal detector pixel array chip.
  • the high-energy rays include one of X-rays, ⁇ -rays, ⁇ -rays and ⁇ -rays.
  • the high-energy rays are X-rays.
  • the distance can be 20 millimeters, 50 millimeters, mm, 100 mm, etc.
  • This embodiment can effectively solve the radiation protection problem of the integrating circuit pixel array chip 15 on the one hand, and can effectively solve the temperature isolation problem of the integrating circuit pixel array chip 15 on the other hand.
  • the image sensor, the point-to-point electrical connection device and the manufacturing method thereof of the present invention have the following beneficial effects:
  • the invention innovatively utilizes the process capability of the panel production line to produce a low-cost point-to-point electrical connection device, which simplifies the pixel electrode point connection between the photoelectric conversion element pixel array chip and the integrating circuit pixel array chip in the high-speed image sensor.
  • the process cost is reduced, and the process yield rate can be improved, and it is more conducive to the protection and temperature isolation of the integrated circuit pixel array chip from high-energy rays.
  • the present invention can reduce the cost problem caused by the large required area of the integration circuit pixel array chip (ROIC), reduces the difficulty of the connection process between the photoelectric conversion element pixel array chip and the integration circuit pixel array chip, and effectively solves the problem of integration circuit pixel array chip. Radiation protection and temperature isolation of array chips.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种图像传感器、点对点电性连接装置及其制作方法,连接装置(10)包括:基底,基底上分布有一用于光电转换元件像素阵列芯片(14)倒装连接的第一电极阵列(112)与一用于积分电路像素阵列芯片(15)倒装连接的第二电极阵列(113),第一电极阵列(112)与第二电极阵列(113)间排布有若干导线(11),导线(11)连接第一电极阵列(112)与第二电极阵列(113)相对应的一对像素电极点,以实现光电转换元件像素阵列芯片(14)与积分电路像素阵列芯片(15)的像素间的点对点电性连接。本发明利用了面板生产线的工艺能力,生产出低成本的点对点电性连接装置(10),同时可以有效解决积分电路像素阵列芯片(15)的辐射防护问题和温度隔绝问题。

Description

图像传感器、点对点电性连接装置及其制作方法 技术领域
本发明属于图像传感领域,特别是涉及一种图像传感器、点对点电性连接装置及其制作方法。
背景技术
现代社会,图像传感器遍布生活与工业生产的各个方面,如手机拍摄、全面解析深度(TOF)面部识别、医疗影像、工业探伤、食品安全等多个领域。通常图像传感器主要包括光电二极管像素阵列和积分电路,用于将模拟光信号转换成电信号并进行数模转换,最终呈现为图像。
目前在图像传感器领域,部分速率较低的应用,如传统线阵探测器、数字X线摄影(DR)等通常采用光电二极管像素阵列引出驱动与数据线到外围电路并进行逐行信号读取的模式,在某些高速应用中,例如传统CT与近年来兴起的光子计数技术(Photon Counting),多采用将光电二极管像素阵列以倒装芯片(芯片倒装)的方式安装到与之尺寸匹配的积分电路像素阵列上,或者以打线(wire bond)的形式将光电二极管像素阵列的像素信号引出到积分电路像素阵列上,实现光电二极管像素阵列与积分电路像素阵列的点对点电性连接,可以实现较高的读出速率,且容易通过阵列拼接实现大规模阵列,使用前景广泛。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种图像传感器、点对点电性连接装置及其制作方法,用于解决现有技术中读出电路(ROIC)面积较大导致成本较高及打线工艺难度较高等问题。
为实现上述目的及其他相关目的,本发明提供一种用于图像传感器的点对点电性连接装置,所述点对点电性连接装置包括:基底,所述基底上分布有一用于光电转换元件像素阵列芯片倒装连接的第一电极阵列与一用于积分电路像素阵列芯片倒装连接的第二电极阵列,所述第一电极阵列与所述第二电极阵列间排布有若干导线,所述导线连接所述第一电极阵列与所述第二电极阵列相对应的一对像素电极点,以实现所述光电转换元件像素阵列芯片与所述积分电路像素阵列芯片的像素间的点对点电性连接。
可选地,所述第一电极阵列和所述第二电极阵列包含相同数量的像素电极点。
可选地,所述基底包括玻璃基板,所述玻璃基板上设置有多个交替层叠的金属导线层和 绝缘层,所述绝缘层中设有导电通孔以将相应的金属导线层引出至所述绝缘层顶面,所述第一电极阵列和所述第二电极阵列设置于所述绝缘层顶面并与所述导电通孔连接,并通过相应的金属导线层实现点对点电性连接。
可选地,所述第二电极阵列中相邻两像素电极点的间距小于所述第一电极阵列中相邻两像素电极点的间距,所述间距为5毫米~200毫米。
可选地,所述第二电极阵列包含的像素电极点数量大于所述第一电极阵列包含的像素电极点数量,所述第二电极阵列还包括用于所述积分电路像素阵列芯片引出的驱动电极阵列,所述基底上还设有第三电极阵列,所述第三电极阵列与所述驱动电极阵列通过导线连接,所述第三电极阵列用于与外围驱动电路板连接。
本发明还提供一种用于图像传感器的点对点电性连接装置的制作方法,所述制作方法包括步骤:1)提供一基底;2)于所述基底上形成绝缘层;3)于所述绝缘层上形成金属层,并对所述金属层进行图形化处理,以形成金属导线层;4)重复进行步骤2)和步骤3);5)于所述绝缘层中制作导电通孔以将相应的金属导线层引出至最顶层的所述绝缘层的顶面;6)于最顶层的所述绝缘层的顶面制作用于光电转换元件像素阵列芯片倒装连接的第一电极阵列与一用于积分电路像素阵列芯片倒装连接的第二电极阵列,所述第一电极阵列与所述第二电极阵列通过所述金属导线层连接以形成一对像素电极点,以实现所述光电转换元件像素阵列芯片与所述积分电路像素阵列芯片的像素间的点对点电性连接。
可选地,还包括步骤:于最顶层的所述绝缘层上形成保护层,并于所述保护层中形成开孔,所述开孔显露所述第一电极阵列和所述第二电极阵列。
可选地,步骤6)包括:6-1)于最顶层的所述绝缘层的顶面形成金属层;6-2)刻蚀所述金属层,以同时形成所述第一电极阵列、所述第二电极阵列以及位于最顶层的金属导线层;6-3)于最顶层的所述绝缘层上形成保护层,所述保护层覆盖位于最顶层的所述金属导线层,并于所述保护层中形成开孔,所述开孔显露所述第一电极阵列和所述第二电极阵列。
可选地,所述基底包括玻璃基底,所述绝缘层包括有机物绝缘物、绝缘氧化物及绝缘氮化物中的一种,所述金属导线层包括透明导电物、钼、铝和铜中的一种或多种组成的叠层。
本发明还提供一种图像传感器,所述图像传感器包括:如上任意一项方案所述的用于图像传感器的点对点电性连接装置;光电转换元件像素阵列芯片,倒装连接在所述第一电极阵列上;积分电路像素阵列芯片,倒装连接在所述第二电极阵列。
可选地,所述积分电路像素阵列芯片的顶面还设有用于所述积分电路像素阵列芯片引出的驱动电极阵列,所述图像传感器还包括外围驱动电路板,所述驱动电极阵列通过金属线或 柔性线路板与所述外围驱动电路板连接。
可选地,所述第二电极阵列还包括用于所述积分电路像素阵列芯片引出的驱动电极阵列,所述基底上还设有第三电极阵列,所述第三电极阵列与所述驱动电极阵列通过导线连接,所述图像传感器还包括外围驱动电路板,所述第三电极阵列通过柔性线路板或金属导线与所述外围驱动电路板连接。
可选地,所述积分电路像素阵列芯片形成于一覆晶薄膜基板上,所述覆晶薄膜基板具有第一芯片电极阵列和第二芯片电极阵列,所述第一芯片电极阵列倒装连接于所述第二电极阵列上,以实现所述积分电路像素阵列芯片与所述光电转换元件像素阵列芯片的像素间的点对点电性连接,所述第二芯片电极阵列与外围驱动电路板连接,以实现所述积分电路像素阵列芯片与所述外围驱动电路板的连接。
可选地,每对所述像素电极点连接光电转换元件像素阵列芯片上的一个光电转换元件并将所述光电转换元件连接至所述积分电路像素阵列芯片。
可选地,所述光电转换元件像素阵列芯片包括光电二极管像素阵列芯片,所述积分电路像素阵列芯片包括硅基专用集成电路芯片。
可选地,所述光电二极管像素阵列芯片为硅基可见光光电二极管像素阵列芯片,所述硅基可见光光电二极管像素阵列芯片上还形成有闪烁体,所述闪烁体用于将高能射线转换成可见光,所述可见光光电二极管像素阵列芯片用于将所述可见光转换为电信号。
可选地,所述光电二极管像素阵列芯片为直接型光电探测器像素阵列芯片,用于将高能射线直接转换成电信号。
可选地,所述直接型光电探测器像素阵列芯片包括碲锌镉晶体探测器像素阵列芯片。
可选地,所述高能射线包括X射线、α射线、β射线及γ射线中的一种。
可选地,所述光电转换元件像素阵列芯片与所述积分电路像素阵列芯片之间具有间距,所述间距为5毫米~200毫米。
如上所述,本发明的图像传感器、点对点电性连接装置及其制作方法,具有以下有益效果:
本发明开创性地利用了面板生产线的工艺能力,生产出低成本的点对点电性连接装置,简化了高速图像传感器中的光电转换元件像素阵列芯片与积分电路像素阵列芯片间的像素电极点连接,降低了工艺成本,同时可以提高工艺良率,并且更有利于积分电路像素阵列芯片对高能射线防护与温度隔绝。本发明可以降低积分电路像素阵列芯片(ROIC)的需要面积较大而造成的成本问题,降低了光电转换元件像素阵列芯片与积分电路像素阵列芯片之间连接 工艺难度,并有效解决了积分电路像素阵列芯片的辐射防护问题和温度隔绝问题。
附图说明
图1~图7显示为本发明实施例的用于图像传感器的点对点电性连接装置的制作方法各步骤所呈现的结构示意图,其中,图7显示为本发明实施例的用于图像传感器的点对点电性连接装置的结构示意图。
图8~图9显示为本发明一个实施例的图像传感器的结构示意图。
图10显示为本发明另一个实施例的图像传感器的结构示意图。
图11显示为本发明又一个实施例的图像传感器的结构示意图
元件标号说明
10                     点对点电性连接装置
101                    玻璃基板
102                    第一绝缘层
103                    第一金属导线层
104                    第二绝缘层
105                    第二金属导线层
106                    第三绝缘层
107                    第三金属导线层
108                    第四绝缘层
109                    第四金属导线层
110                    第五绝缘层
111                    导电通孔
112                    第一电极阵列
113                    第二电极阵列
114                    保护层
11                     导线
131                    驱动电极阵列
132                    第三电极阵列
14                     光电转换元件像素阵列芯片
15                     积分电路像素阵列芯片
16                     外围驱动电路板
17                     金属线
18                     柔性线路板
19                     覆晶薄膜
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
若光电二极管像素阵列芯片是以芯片倒装的方式安装到积分电路像素阵列芯片上,那么积分电路像素阵列的面积与光电二极管像素阵列芯片需要完全相同,而光电二极管像素阵列芯片的面积需要满足一定实际应用要求,在很多情况下不能做得太小,如CT探测器,那么积分电路像素阵列芯片的面积也要做得相对较大。而需要注意的是,积分电路像素阵列芯片的成本是探测器成本的主要部分,大面积的积分电路像素阵列芯片会直接提高探测器成本。
若光电二极管像素阵列芯片是以打线的方式(wire bond)连接到积分电路像素阵列芯片上,在光电二极管像素阵列芯片精度较高、像素较多的情况下,打线数量会非常多(例如32*32的小阵列就需要打1024根导线),工艺难度大,而且光电二极管像素阵列芯片与积分电路像素阵列芯片的距离必须非常近才可以满足打线要求,这样的分布不利于电路的辐射防护,会造成探测器寿命下降。
本发明的目的是通过一种新的光电二极管像素阵列芯片与积分电路像素阵列芯片的电性连接方式,解决大面积积分电路像素阵列芯片的成本问题、光电二极管像素阵列芯片与积分电路像素阵列芯片之间打线工艺难度问题、积分电路像素阵列芯片的辐射防护问题及积分电路像素阵列芯片的温度隔绝问题。
实施例1
如图7所示,本实施例提供一种用于图像传感器的点对点电性连接装置10,所述点对点电性连接装置包括:基底,所述基底上分布有一用于光电转换元件像素阵列芯片14倒装连接的第一电极阵列112与一用于积分电路像素阵列芯片15倒装连接的第二电极阵列113,所述第一电极阵列112与所述第二电极阵列113间排布有若干导线11,所述导线11连接所述第一电极阵列112与所述第二电极阵列113相对应的一对像素电极点,以实现所述光电转换元件像素阵列芯片14与所述积分电路像素阵列芯片15的像素间的点对点电性连接。
在一个实施例中,所述第一电极阵列112和所述第二电极阵列113包含相同数量的像素电极点,在所述第一电极阵列112中的每个像素电极点,都通过导线11与所述第二电极阵列113中的一个像素电极点连接。
在一个实施例中,所述基底包括玻璃基板101,所述玻璃基板101上设置有多个交替层叠的金属导线层和绝缘层,所述绝缘层中设有导电通孔111以将相应的金属导线层引出至所述绝缘层顶面,所述第一电极阵列112和所述第二电极阵列113设置于所述绝缘层顶面并与所述导电通孔111连接,并通过相应的金属导线层实现点对点电性连接。例如,所述绝缘层可以为有机绝缘物、绝缘氧化物或绝缘氮化物,如二氧化硅或氮化硅等,所述金属导线层可以为透明导电物、钼、铝和铜中的一种,或多种组成的叠层结构,所述透明导电物例如可以为ITO等。所述第一电极阵列112和所述第二电极阵列113也可以为透明导电物(如ITO等)、钼、铝和铜中的一种,或多种组成的叠层结构。
在一个实施例中,一层所述金属导线层和相应的导电通孔可以实现所述第一电极阵列112的多列像素电极点与所述第二电极阵列113的多列像素电极点的连接,从而使得所需的金属导线层的数量远远小于所述第一电极阵列112和所述第二电极阵列113的列数,从而可以大 大节约制造成本。
在一个实施例中,所述第二电极阵列113中相邻两像素电极点的间距小于所述第二电极阵列113中相邻两像素电极点的间距,在本实施例中,所述第二电极阵列113的面积小于所述第一电极阵列112的面积,例如,所述第二电极阵列113的面积可以为所述第一电极阵列112面积的五分之一以下。
在一个实施例中,所述第二电极阵列113包含的像素电极点数量也可以大于所述第一电极阵列112包含的像素电极点数量,所述第二电极阵列113还包括用于所述积分电路像素阵列芯片15引出的驱动电极阵列131,所述基底上还设有第三电极阵列132,所述第三电极阵列132与所述驱动电极阵列131通过导线连接,所述第三电极阵列132用于与外围驱动电路板16连接。
如图1~图7所示,本实施例还提供一种用于图像传感器的点对点电性连接装置10的制作方法,所述制作方法包括步骤:
首先进行步骤1),提供一基底,所述基底例如可以为玻璃基底、硅基底、碳化硅基底等。
如图1所示,然后进行步骤2)于所述基底上形成第一绝缘层102,和步骤3)于所述第一绝缘层102上形成金属层,并对所述金属层进行图形化处理,以形成第一金属导线层103。
在一个实施例中,所述第一绝缘层102包括有机绝缘物、绝缘氧化物及绝缘氮化物中的一种,例如,所述第一绝缘层102可以为二氧化硅或氮化硅,其可以通过化学气相沉积工艺形成,所述金属导线层包括透明导电物(如ITO等)、钼、铝和铜中的一种或多种组成的叠层。
如图2~图4所示,然后进行步骤4),重复进行步骤2)和步骤3)。
具体地,步骤4)包括:
如图2所示,于所述第一金属导线层103上形成第二绝缘层104,于所述第二绝缘层104上形成金属层,并对所述金属层进行图形化处理,以形成第二金属导线层105。
如图3所示,于所述第二金属导线层105上形成第三绝缘层106,于所述第三绝缘层106上形成金属层,并对所述金属层进行图形化处理,以形成第三金属导线层107。
如图4所示,于所述第三金属导线层107上形成第四绝缘层108,于所述第四绝缘层108上形成金属层,并对所述金属层进行图形化处理,以形成第四金属导线层109,最后在所述第四金属导线层109上形成第五绝缘层110。
如图5所示,接着进行步骤5),于所述绝缘层中制作导电通孔111以将相应的金属导线层引出至最顶层的所述绝缘层的顶面。
如图6所示,接着进行步骤6),于最顶层的所述绝缘层的顶面制作用于光电转换元件像素阵列芯片14倒装连接的第一电极阵列112与一用于积分电路像素阵列芯片15倒装连接的第二电极阵列113,所述第一电极阵列112与所述第二电极阵列113通过所述金属导线层连接以形成一对像素电极点,以实现所述光电转换元件像素阵列芯片14与所述积分电路像素阵列芯片15的像素间的点对点电性连接。
如图7所示,步骤6)还包括步骤,于最顶层的所述绝缘层上形成保护层114,并于所述保护层114中形成开孔,所述开孔显露所述第一电极阵列112和所述第二电极阵列113。
在另一个实施例中,步骤6)也可以包括:
步骤6-1),于最顶层的所述绝缘层的顶面形成金属层。
步骤6-2),刻蚀所述金属层,以同时形成所述第一电极阵列112、所述第二电极阵列113以及位于最顶层的金属导线层。
步骤6-3),于最顶层的所述绝缘层上形成保护层114,所述保护层114覆盖位于最顶层的所述金属导线层,并于所述保护层114中形成开孔,所述开孔显露所述第一电极阵列112和所述第二电极阵列113。
本发明开创性地利用了面板生产线的工艺能力,生产出低成本的点对点电性连接装置10,简化了高速图像传感器中的光电转换元件像素阵列芯片14与积分电路像素阵列芯片15间的像素电极点连接,降低了工艺成本,同时可以提高工艺良率。
实施例2
如图8~图11所示,本实施例还提供一种图像传感器,所述图像传感器包括:用于图像传感器的点对点电性连接装置10;光电转换元件像素阵列芯片14,倒装连接在所述第一电极阵列112上;积分电路像素阵列芯片15,倒装连接在所述第二电极阵列113。
所述用于图像传感器的点对点电性连接装置10,包括基底,所述基底上分布有一用于光电转换元件像素阵列芯片14倒装连接的第一电极阵列112与一用于积分电路像素阵列芯片15倒装连接的第二电极阵列113,所述第一电极阵列112与所述第二电极阵列113间排布有若干导线,所述导线连接所述第一电极阵列112与所述第二电极阵列113相对应的一对像素电极点,以实现所述光电转换元件像素阵列芯片14与所述积分电路像素阵列芯片15的像素间的点对点电性连接。
在一个实施例中,所述第一电极阵列112和所述第二电极阵列113包含相同数量的像素电极点,在所述第一电极阵列112中的每个像素电极点,都通过导线与所述第二电极阵列113 中的一个像素电极点连接。
在一个实施例中,所述基底包括玻璃基板101,所述玻璃基板101上设置有多个交替层叠的金属导线层和绝缘层,所述绝缘层中设有导电通孔111以将相应的金属导线层引出至所述绝缘层顶面,所述第一电极阵列112和所述第二电极阵列113设置于所述绝缘层顶面并与所述导电通孔111连接,并通过相应的金属导线层实现点对点电性连接。例如,所述绝缘层可以为有机绝缘物、绝缘氧化物或绝缘氮化物,如二氧化硅或氮化硅等,所述金属导线层可以为透明导电物(如ITO等)、钼、铝和铜中的一种,或多种组成的叠层结构。所述第一电极阵列112和所述第二电极阵列113也可以为透明导电物(如ITO等)、钼、铝和铜中的一种,或多种组成的叠层结构。
在一个实施例中,一层所述金属导线层和相应的导电通孔可以实现所述第一电极阵列112的多列像素电极点与所述第二电极阵列113的多列像素电极点的连接,从而使得所需的金属导线层的数量远远小于所述第一电极阵列112和所述第二电极阵列113的列数,从而可以大大节约制造成本。
在一个实施例中,所述第二电极阵列113中相邻两像素电极点的间距小于所述第二电极阵列113中相邻两像素电极点的间距,在本实施例中,所述第二电极阵列113的面积小于所述第一电极阵列112的面积,例如,所述第二电极阵列113的面积可以为所述第一电极阵列112面积的五分之一以下。
如图8所示,在一个实施例中,所述积分电路像素阵列芯片15的顶面还设有用于所述积分电路像素阵列芯片15引出的驱动电极阵列131,所述图像传感器还包括外围驱动电路板16,所述驱动电极阵列131通过金属线17或柔性线路板与所述外围驱动电路板16连接,本实施例的连接方式,可以有效降低图像传感器所需的打线数量。图9显示为所述图像传感器的平面布局,由图9可以看出,所述积分电路像素阵列芯片15的面积可以设计为远小于所述光电转换元件像素阵列芯片14的面积,从而大大降低所述积分电路像素阵列芯片15的成本。
如图10所示,在一个实施例中,所述第二电极阵列113还包括用于所述积分电路像素阵列芯片15引出的驱动电极阵列131,所述基底上还设有第三电极阵列132,所述第三电极阵列132与所述驱动电极阵列131通过导线连接,所述图像传感器还包括外围驱动电路板16,所述第三电极阵列132通过柔性线路板18或金属导线与所述外围驱动电路板16连接。
如图11所示,在一个实施例中,所述积分电路像素阵列芯片15形成于一覆晶薄膜19基板上,所述覆晶薄膜19基板具有第一芯片电极阵列和第二芯片电极阵列,所述第一芯片电极阵列倒装连接于所述第二电极阵列113上,以实现所述积分电路像素阵列芯片15与所述光电 转换元件像素阵列芯片14的像素间的点对点电性连接,所述第二芯片电极阵列与外围驱动电路板16连接,以实现所述积分电路像素阵列芯片15与所述外围驱动电路板16的连接,例如,所述第二芯片电极阵列与所述外围驱动电路板16的连接方式可以为焊接形式连接或者接插件形式连接,采用接插件形式连接可以有利于图像传感器的外围驱动电路板16的拆装和更换。
在一个实施例中,每对所述像素电极点连接光电转换元件像素阵列芯片14上的一个光电转换元件并将所述光电转换元件连接至所述积分电路像素阵列芯片15。
在一个实施例中,所述光电转换元件像素阵列芯片14包括光电二极管像素阵列芯片,所述积分电路像素阵列芯片15包括硅基专用集成电路芯片。例如,所述光电二极管像素阵列芯片可以为硅基可见光光电二极管像素阵列芯片,所述硅基可见光光电二极管像素阵列芯片上还形成有闪烁体,所述闪烁体用于将高能射线转换成可见光,所述可见光光电二极管像素阵列芯片用于将所述可见光转换为电信号。又如,所述光电二极管像素阵列芯片可以为直接型光电探测器像素阵列芯片,用于将高能射线直接转换成电信号。作为示例,所述直接型光电探测器像素阵列芯片包括碲锌镉晶体探测器像素阵列芯片。
在一个实施例中,所述高能射线包括X射线、α射线、β射线及γ射线中的一种。例如,在本实施例中,所述高能射线为X射线。
在一个实施例中,所述光电转换元件像素阵列芯片14与所述积分电路像素阵列芯片15之间具有间距,所述间距为5毫米~200毫米,例如,所述间距可以为20毫米、50毫米、100毫米等。本实施例一方面可以有效解决积分电路像素阵列芯片15的辐射防护问题,另一方面可以有效解决积分电路像素阵列芯片15的温度隔绝问题。
如上所述,本发明的图像传感器、点对点电性连接装置及其制作方法,具有以下有益效果:
本发明开创性地利用了面板生产线的工艺能力,生产出低成本的点对点电性连接装置,简化了高速图像传感器中的光电转换元件像素阵列芯片与积分电路像素阵列芯片间的像素电极点连接,降低了工艺成本,同时可以提高工艺良率,并且更有利于积分电路像素阵列芯片对高能射线防护与温度隔绝。本发明可以降低积分电路像素阵列芯片(ROIC)的需要面积较大而造成的成本问题,降低了光电转换元件像素阵列芯片与积分电路像素阵列芯片之间连接工艺难度,并有效解决了积分电路像素阵列芯片的辐射防护问题和温度隔绝问题。
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (20)

  1. 一种用于图像传感器的点对点电性连接装置,其特征在于,所述点对点电性连接装置包括基底,所述基底上分布有一用于光电转换元件像素阵列芯片倒装连接的第一电极阵列与一用于积分电路像素阵列芯片倒装连接的第二电极阵列,所述第一电极阵列与所述第二电极阵列间排布有若干导线,所述导线连接所述第一电极阵列与所述第二电极阵列相对应的一对像素电极点,以实现所述光电转换元件像素阵列芯片与所述积分电路像素阵列芯片的像素间的点对点电性连接。
  2. 根据权利要求1所述的用于图像传感器的点对点电性连接装置,其特征在于:所述第一电极阵列和所述第二电极阵列包含相同数量的像素电极点。
  3. 根据权利要求1所述的用于图像传感器的点对点电性连接装置,其特征在于:所述基底包括玻璃基板,所述玻璃基板上设置有多个交替层叠的金属导线层和绝缘层,所述绝缘层中设有导电通孔以将相应的金属导线层引出至所述绝缘层顶面,所述第一电极阵列和所述第二电极阵列设置于所述绝缘层顶面并与所述导电通孔连接,并通过相应的金属导线层实现点对点电性连接。
  4. 根据权利要求1所述的用于图像传感器的点对点电性连接装置,其特征在于:所述第二电极阵列中相邻两像素电极点的间距小于所述第一电极阵列中相邻两像素电极点的间距。
  5. 根据权利要求1所述的用于图像传感器的点对点电性连接装置,其特征在于:所述第二电极阵列包含的像素电极点数量大于所述第一电极阵列包含的像素电极点数量,所述第二电极阵列还包括用于所述积分电路像素阵列芯片引出的驱动电极阵列,所述基底上还设有第三电极阵列,所述第三电极阵列与所述驱动电极阵列通过导线连接,所述第三电极阵列用于与外围驱动电路板连接。
  6. 一种用于图像传感器的点对点电性连接装置的制作方法,其特征在于,包括步骤:
    1)提供一基底;
    2)于所述基底上形成绝缘层;
    3)于所述绝缘层上形成金属层,并对所述金属层进行图形化处理,以形成金属导线层;
    4)重复进行步骤2)和步骤3);
    5)于所述绝缘层中制作导电通孔以将相应的金属导线层引出至最顶层的所述绝缘层 的顶面;
    6)于最顶层的所述绝缘层的顶面制作用于光电转换元件像素阵列芯片倒装连接的第一电极阵列与一用于积分电路像素阵列芯片倒装连接的第二电极阵列,所述第一电极阵列与所述第二电极阵列通过所述金属导线层连接以形成一对像素电极点,以实现所述光电转换元件像素阵列芯片与所述积分电路像素阵列芯片的像素间的点对点电性连接。
  7. 根据权利要求6所述的用于图像传感器的点对点电性连接装置的制作方法,其特征在于:还包括步骤:于最顶层的所述绝缘层上形成保护层,并于所述保护层中形成开孔,所述开孔显露所述第一电极阵列和所述第二电极阵列。
  8. 根据权利要求6所述的用于图像传感器的点对点电性连接装置的制作方法,其特征在于:步骤6)包括:
    6-1)于最顶层的所述绝缘层的顶面形成金属层;
    6-2)刻蚀所述金属层,以同时形成所述第一电极阵列、所述第二电极阵列以及位于最顶层的金属导线层;
    6-3)于最顶层的所述绝缘层上形成保护层,所述保护层覆盖位于最顶层的所述金属导线层,并于所述保护层中形成开孔,所述开孔显露所述第一电极阵列和所述第二电极阵列。
  9. 根据权利要求6所述的用于图像传感器的点对点电性连接装置的制作方法,其特征在于:所述基底包括玻璃基底,所述绝缘层包括有机物绝缘物、绝缘氧化物及绝缘氮化物中的一种,所述金属导线层包括透明导电物、钼、铝和铜中的一种或多种组成的叠层。
  10. 一种图像传感器,其特征在于,所述图像传感器包括:
    如权利要求1~4任意一项所述的用于图像传感器的点对点电性连接装置;
    光电转换元件像素阵列芯片,倒装连接在所述第一电极阵列上;
    积分电路像素阵列芯片,倒装连接在所述第二电极阵列。
  11. 根据权利要求10所述的图像传感器,其特征在于:所述积分电路像素阵列芯片的顶面还设有用于所述积分电路像素阵列芯片引出的驱动电极阵列,所述图像传感器还包括外围驱动电路板,所述驱动电极阵列通过金属线或柔性线路板与所述外围驱动电路板连接。
  12. 根据权利要求10所述的图像传感器,其特征在于:所述第二电极阵列还包括用于所述积分电路像素阵列芯片引出的驱动电极阵列,所述基底上还设有第三电极阵列,所述第三电极阵列与所述驱动电极阵列通过导线连接,所述图像传感器还包括外围驱动电路板,所述第三电极阵列通过柔性线路板或金属导线与所述外围驱动电路板连接。
  13. 根据权利要求10所述的图像传感器,其特征在于:所述积分电路像素阵列芯片形成于一覆晶薄膜基板上,所述覆晶薄膜基板具有第一芯片电极阵列和第二芯片电极阵列,所述第一芯片电极阵列倒装连接于所述第二电极阵列上,以实现所述积分电路像素阵列芯片与所述光电转换元件像素阵列芯片的像素间的点对点电性连接,所述第二芯片电极阵列与外围驱动电路板连接,以实现所述积分电路像素阵列芯片与所述外围驱动电路板的连接。
  14. 根据权利要求10所述的图像传感器,其特征在于:每对所述像素电极点连接光电转换元件像素阵列芯片上的一个光电转换元件并将所述光电转换元件连接至所述积分电路像素阵列芯片。
  15. 根据权利要求10所述的图像传感器,其特征在于:所述光电转换元件像素阵列芯片包括光电二极管像素阵列芯片,所述积分电路像素阵列芯片包括硅基专用集成电路芯片。
  16. 根据权利要求15所述的图像传感器,其特征在于:所述光电二极管像素阵列芯片为硅基可见光光电二极管像素阵列芯片,所述硅基可见光光电二极管像素阵列芯片上还形成有闪烁体,所述闪烁体用于将高能射线转换成可见光,所述可见光光电二极管像素阵列芯片用于将所述可见光转换为电信号。
  17. 根据权利要求15所述的图像传感器,其特征在于:所述光电二极管像素阵列芯片为直接型光电探测器像素阵列芯片,用于将高能射线直接转换成电信号。
  18. 根据权利要求17所述的图像传感器,其特征在于:所述直接型光电探测器像素阵列芯片包括碲锌镉晶体探测器像素阵列芯片。
  19. 根据权利要求16~18任意一项所述的图像传感器,其特征在于:所述高能射线包括X射线、α射线、β射线及γ射线中的一种。
  20. 根据权利要求10所述的图像传感器,其特征在于:所述光电转换元件像素阵列芯片与所述积分电路像素阵列芯片之间具有间距,所述间距为5毫米~200毫米。
PCT/CN2022/087054 2021-09-06 2022-04-15 图像传感器、点对点电性连接装置及其制作方法 WO2023029498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111039325.7 2021-09-06
CN202111039325.7A CN113903758A (zh) 2021-09-06 2021-09-06 图像传感器、点对点电性连接装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2023029498A1 true WO2023029498A1 (zh) 2023-03-09

Family

ID=79188745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087054 WO2023029498A1 (zh) 2021-09-06 2022-04-15 图像传感器、点对点电性连接装置及其制作方法

Country Status (2)

Country Link
CN (1) CN113903758A (zh)
WO (1) WO2023029498A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903758A (zh) * 2021-09-06 2022-01-07 上海奕瑞光电子科技股份有限公司 图像传感器、点对点电性连接装置及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881856B2 (ja) * 1989-11-07 1999-04-12 株式会社島津製作所 放射線像受像装置
JP2002257936A (ja) * 2001-03-02 2002-09-11 Hamamatsu Photonics Kk 放射線検出器モジュール
JP2008072435A (ja) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd イメージセンサ
CN103038884A (zh) * 2010-08-27 2013-04-10 株式会社尼康 拍摄装置
CN113903758A (zh) * 2021-09-06 2022-01-07 上海奕瑞光电子科技股份有限公司 图像传感器、点对点电性连接装置及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881856B2 (ja) * 1989-11-07 1999-04-12 株式会社島津製作所 放射線像受像装置
JP2002257936A (ja) * 2001-03-02 2002-09-11 Hamamatsu Photonics Kk 放射線検出器モジュール
JP2008072435A (ja) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd イメージセンサ
CN103038884A (zh) * 2010-08-27 2013-04-10 株式会社尼康 拍摄装置
CN113903758A (zh) * 2021-09-06 2022-01-07 上海奕瑞光电子科技股份有限公司 图像传感器、点对点电性连接装置及其制作方法

Also Published As

Publication number Publication date
CN113903758A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN100385673C (zh) 检测器
CN102655159B (zh) 大型x射线探测器
US20180012069A1 (en) Fingerprint sensor, fingerprint sensor package, and fingerprint sensing system using light sources of display panel
WO2021244251A1 (zh) 显示基板和显示装置
KR20180005588A (ko) 디스플레이 패널의 광원들을 이용한 지문 센서, 지문 센서 패키지 및 지문 센싱 시스템
US9651683B2 (en) Image pickup panel and image pickup processing system
CN1584669A (zh) 像素元件基板及其制造方法、显示装置、电子机器
KR102367826B1 (ko) 터치 스크린 일체형 표시 장치와 그의 제조방법
KR102426269B1 (ko) 터치 스크린 일체형 표시장치
KR102387631B1 (ko) 터치 스크린 일체형 표시장치와 그의 제조방법
WO2023029498A1 (zh) 图像传感器、点对点电性连接装置及其制作方法
JP2016058532A (ja) 固体撮像素子、並びに、電子機器
WO2017004981A1 (zh) 非可见光平板检测器及其制备方法、影像设备
CN114141823A (zh) 电子装置以及用于该电子装置的生物特征传感器
US20230178675A1 (en) Detection substrate and manufacturing method therefor, and ray detection apparatus
CN102446931A (zh) 检测装置和辐射检测系统
WO2019007412A1 (zh) 一种影像传感芯片的封装结构及其封装方法
US7388185B2 (en) Pixel detector and method of manufacture and assembly thereof
CN105280750A (zh) 光传感器及感光模块
JP5504065B2 (ja) 撮像装置
CN1297012C (zh) 平面检测型固体摄像装置
WO2023231256A1 (zh) 显示面板、显示装置及显示面板的制备方法
US20210223420A1 (en) Sensor unit, radiation detector and method of manufacturing a sensor unit
CN101038926A (zh) 半导体装置
JPH04103168A (ja) 固体撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE