WO2023026489A1 - コンピュータシステムおよび解析方法 - Google Patents
コンピュータシステムおよび解析方法 Download PDFInfo
- Publication number
- WO2023026489A1 WO2023026489A1 PCT/JP2021/031595 JP2021031595W WO2023026489A1 WO 2023026489 A1 WO2023026489 A1 WO 2023026489A1 JP 2021031595 W JP2021031595 W JP 2021031595W WO 2023026489 A1 WO2023026489 A1 WO 2023026489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- regions
- computer system
- interest
- reference image
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims description 20
- 230000005856 abnormality Effects 0.000 claims abstract description 76
- 238000000605 extraction Methods 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims description 44
- 239000002245 particle Substances 0.000 claims description 27
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000010894 electron beam technology Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 235
- 235000019557 luminance Nutrition 0.000 description 50
- 230000014509 gene expression Effects 0.000 description 44
- 230000006870 function Effects 0.000 description 19
- 230000002159 abnormal effect Effects 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 14
- 238000003860 storage Methods 0.000 description 12
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 239000000284 extract Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000003771 C cell Anatomy 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/302—Accessories, mechanical or electrical features comparative arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/304—Accessories, mechanical or electrical features electric circuits, signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/401—Imaging image processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/418—Imaging electron microscope
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/611—Specific applications or type of materials patterned objects; electronic devices
- G01N2223/6116—Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/646—Specific applications or type of materials flaws, defects
Definitions
- the present invention relates to technologies such as charged particle beam devices, and particularly to analysis processing of observed images.
- a charged particle beam device such as a scanning electron microscope (SEM) can obtain an image such as a VC (Voltage Contrast) image as an observation image based on beam/light scanning of a sample.
- SEM scanning electron microscope
- a computer system connected to the charged particle beam apparatus performs analysis processing for detecting, for example, anomalies/defects (hereinafter collectively referred to as an anomaly) based on the observed image.
- the VC observation method is used for defect analysis of semiconductor devices such as logic devices as samples.
- the difference in VC appears as luminance.
- VC is caused by a change in the efficiency of secondary electron emission due to the potential difference generated on the charged surface of the sample.
- abnormality is determined by analyzing the brightness in the observed image.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-25836
- Patent Document 2 Japanese Patent Laid-Open No. 2002-200001 describes that a visual inspection apparatus is provided that can intuitively and quantitatively evaluate variations in complex structures of semiconductor devices.
- Patent Literature 1 describes that brightness and shape are compared in comparison with a template image.
- the presence or absence of anomalies can be determined by visually observing a VC observation image obtained by a charged particle beam device such as an SEM and comparing the brightness between cell structures. Judging.
- the cell structure includes plug regions and the like, which are elements constituting devices such as transistors.
- plug regions and the like which are elements constituting devices such as transistors.
- a plurality of plug regions in a certain cell structure may be distributed as an image in a reversed relationship such as vertical inversion or horizontal inversion. In that case, it is necessary to discriminate these images as well, but visual observation is very difficult and takes time and effort.
- the purpose of the present disclosure is to determine and detect abnormalities by comparing the same or similar cell structures in an observed image with respect to technology such as a computer system that analyzes an observed image obtained by a charged particle beam device.
- technology such as a computer system that analyzes an observed image obtained by a charged particle beam device.
- An embodiment is a computer system that analyzes an observation image of a sample observed by a charged particle beam device, wherein the observation image includes a plurality of cell regions, and each cell region is an element that constitutes the cell region.
- a plurality of regions may be included, and the computer system selects a first cell region specified by the user or automatically set from the observation image as a reference image, and selects other cell regions similar to the reference image.
- an extraction process for extracting one or more second cell regions as a similar image, the reference image, and the extracted similar image a relationship between a plurality of regions of interest included in the reference image is defined.
- a judgment process for judging whether or not there is an abnormality in the cell region of the similar image by comparing the plurality of regions of interest based on the rule, and providing the position of each cell region and the presence or absence of the abnormality as a judgment result to the user. and an output process for outputting.
- FIG. 1 shows a configuration example of a charged particle beam apparatus including the computer system of Embodiment 1.
- FIG. 4 shows a flow of main processing by the computer system of Embodiment 1.
- FIG. An example of an observation image of a sample (sample A) is shown.
- An example of an observation image of a sample (sample B) is shown.
- An example of a reference image of an observation image of a sample (sample A) is shown.
- An example of a reference image of an observation image of a sample (sample B) is shown.
- An example of an extraction processing result in the case of sample A
- FIG. An example of the result of extraction processing (in the case of sample B) is shown in the first embodiment.
- Embodiment 1 shows an example of an image input screen.
- Embodiment 1 shows an example of a reference image setting screen.
- Embodiment 1 shows an example of a screen for similar image extraction.
- An example of a ROI setting screen is shown in the first embodiment.
- Embodiment 1 shows an example of a screen for saving data.
- Embodiment 1 shows an example of a screen for determination rule setting (first type).
- Embodiment 1 shows an example of a screen for determination rule setting (second type).
- Embodiment 1 shows an example of a screen for determination rule setting (third type).
- An example of the screen of the judgment result in the case of sample A
- An example of the screen of the judgment result in the case of the sample B
- the first embodiment An example of the screen of the judgment result (in the case of the sample B) is shown in the first embodiment.
- Embodiment 1 shows an example of a screen for multiple determination.
- Embodiment 1 shows an example of a map display screen.
- An explanatory diagram of a method for automatically setting a reference cell region is shown in Embodiment 1.
- FIG. 4 shows a processing flow in a modification of the first embodiment; 4 shows a setting example of determination rules in a modification of Embodiment 1.
- FIG. 4 shows a processing flow in a modification of the first embodiment.
- the main body as hardware for them is the processor or the controller composed of the processor etc. , devices, computers, systems, etc.
- a computer executes processing according to a program read out on a memory by a processor while appropriately using resources such as a memory and a communication interface.
- the processor is composed of, for example, a semiconductor device such as a CPU or GPU.
- a processor is composed of devices and circuits capable of performing predetermined operations.
- the processing can be implemented not only by software program processing but also by dedicated circuits. FPGA, ASIC, CPLD, etc. can be applied to the dedicated circuit.
- the program may be pre-installed as data on the target computer, or may be distributed to the target computer as data from the program source and installed.
- the program source may be a program distribution server on a communication network, or a non-transitory computer-readable storage medium (eg, memory card).
- a program may consist of a plurality of modules.
- a computer system may be configured by a plurality of devices.
- the computer system may be configured as a client-server system, a cloud computing system, or the like.
- various data and information are expressed and implemented in structures such as tables and lists, for example, but are not limited to this. Expressions such as identification information, identifiers, IDs, names, and numbers can be replaced with each other.
- FIG. 1 A computer system according to the first embodiment will be described with reference to FIGS. 1 to 21.
- FIG. The computer system of Embodiment 1 acquires and inputs an observation image, which is a VC image of a semiconductor device, which is a sample (object to be observed), captured by a charged particle beam apparatus, and has a function of analyzing the observation image (described as an analysis function). have).
- an analysis function corresponding software
- a reference image in other words, a reference region
- the software extracts regions (such as cell structures) that are the same or similar to the reference image in the observation image as similar images (in other words, similar regions).
- the software compares the reference area and the extracted similar area, and determines abnormality based on the set determination rule.
- the determination rule defines the relationships between ROIs (eg, positional relationships, size relationships, brightness relationships, etc.), with multiple plug regions included in a cell region defined as multiple regions of interest (ROI: Region On Interest).
- ROI regions of interest
- a user can set a reference cell region including a plurality of ROIs and determination rules on the screen.
- the software outputs to the user a determination result (in other words, an abnormality detection result) including each cell area, the presence or absence of an abnormality, etc., as the determination result.
- FIG. 1 shows the configuration of a charged particle beam apparatus 2, which is a system including the computer system 1 of the first embodiment.
- the charged particle beam device 2 is an SEM, but is not limited to this.
- a main body 3 of the charged particle beam device 2 functions as an imaging device that captures an observation image.
- a computer system 1 is connected to a main body 3 of the charged particle beam device 2 via a communication means such as a signal line.
- the computer system 1 corresponds to a controller that controls the charged particle beam device 2 .
- the computer system 1 may be a computer system externally connected to the main body 3 of the charged particle beam device 2 or may be a computer system built into the main body 3 of the charged particle beam device 2 .
- the computer system 1 may be composed of, for example, a PC, a server, or the like.
- Input/output devices such as a display device 206 such as a liquid crystal display and an operation input device 207 such as a keyboard/mouse are externally connected to the computer system 1 via an input/output interface 205 .
- the input/output device may be one built into the computer system 1 .
- a user is a person such as an operator or a worker who operates/uses the computer system 1 .
- the user operates the operation input device 207 to input instructions and information while viewing the screen of the display device 206 .
- a user operates the charged particle beam device 2 through the computer system 1 .
- the main body 3 is a part that includes the lens barrel (in other words, housing) that constitutes the SEM.
- the main body 3 includes an electron gun 101, a condenser lens 102, a deflection coil 103, an objective lens 104, a detector 105, a stage 106, a vacuum pump 107, a sample chamber 110, and the like.
- the sample chamber 110 has a stage 106 as a sample table, and the sample 5 is placed and held on the stage 106 .
- the stage 106 is movable at least in the horizontal direction (X and Y directions) based on drive control from the controller, thereby changing the imaging field of view.
- the sample chamber 110 is evacuated by a vacuum pump 107 .
- the sample chamber 110 may be equipped with a sensor for measuring states such as degree of vacuum, temperature, vibration, and electromagnetic waves.
- the charged particle beam b1 generated in the vertical direction (Z direction) based on the electron gun 101 is controlled in the X and Y directions through the actions of the condenser lens 102, the deflection coil 103, the objective lens 104, and the like.
- a condenser lens 102 and an objective lens 104 converge the charged particle beam b1.
- the deflection coil 103 deflects the charged particle beam b1 in the X and Y directions.
- the charged particle beam b1 is applied to the surface of the sample 5 while being scanned in the X and Y directions.
- Secondary electrons b2 and the like are generated from the surface of the sample 5 by irradiation with the charged particle beam b1.
- a potential difference is generated on the charged surface of the sample 5, and the efficiency of secondary electron b2 emission changes depending on the potential difference. This potential difference appears as a difference in brightness in an SEM observation image (VC image).
- the detector 105 is, for example, a device in which imaging elements are arranged, and converts secondary electrons b2 and the like into electric signals and detects them.
- the detector 105 outputs the detected electrical signal as an image signal 150 through an amplifier circuit, an analog/digital conversion circuit, or the like.
- the image signal 150 corresponds to an observed image.
- the image signal 150 is input to the computer system 1 through communication means such as a signal line and the communication interface 204, and is stored in the storage device 203, for example, as data relating to the observed image.
- the processor 201 acquires and refers to the data of the observed image, performs processing on the memory 202 , and stores the processing result data in the storage device 203 .
- the processor 201 of the computer system 1 performs drive control and the like for each part of the main body 3, and acquires observation images. Also, the processor 201 reads a program stored in the storage device 203 into the memory 203 and executes program processing based on the program, thereby realizing a predetermined function (analysis function, etc.).
- the computer system 1 includes a processor 201, a memory 202, a storage device 203, a communication interface 204, an input/output interface 205, etc., which are interconnected via a bus.
- the storage device 203 stores various programs, data and information.
- the processor 201 generates a screen that serves as a graphical user interface (GUI) related to the analysis function, and displays it on the display screen of the display device 206 .
- GUI graphical user interface
- the processor 201 accepts input from the user through the operation input device 207 and the GUI on the screen.
- the processor 201 may output voice as a user interface through a speaker or the like (not shown).
- the processor 201 creates an observation image, which is a two-dimensional image, in the storage device 203 or memory 202 based on the image signal 150 transferred from the main body 3 .
- the observation image may be stored in association with management information and related information such as date and time, target sample information, positional coordinate information of the sample surface corresponding to the field of view, imaging conditions, and sensor values.
- the processor 201 displays the observed image within a screen having a GUI, as will be described later.
- the observation image is an image used for detecting an abnormal portion of the surface of the sample 5 by observing the surface of the sample 5 .
- the observation image may be called an inspection image or the like depending on the purpose.
- the configuration of the computer system 1 shown in FIG. 1 is not the only option.
- a storage, a server, or the like may be connected to an external device through communication, and necessary data and the like may be stored in the external device.
- the computer system 1 may be configured with a client server system or a cloud computing system.
- a user accesses the server of the computer system 1 from a client PC and obtains data such as a screen (for example, a web page).
- the sample 5 which is an object for obtaining an observation image
- the sample 5 is a semiconductor device corresponding to a logic device as a product, for example.
- An observation image is obtained with this semiconductor device as the sample 5 during or after the manufacture of the product.
- a user who is an operator, observes the observation image and uses the analysis function of the computer system 1 to confirm the presence or absence of an abnormality on the surface of the semiconductor device.
- the determination results such as the presence or absence of abnormality are generated and output almost automatically (in other words, semi-automatically) with minimal manual work by the user. Therefore, the user only has to perform the work of confirming the determination result, and the labor and time required for the work can be greatly reduced by minimizing visual observation.
- a plurality of identical or similar structures are arranged on the surface of the semiconductor device, which is the sample 5, as will be described later (FIG. 3, etc.).
- Each structure or pattern is now referred to as a cell or cell region.
- this cell corresponds to a device (circuit element) such as a transistor.
- one cell region may include a plurality of plugs (contact plugs).
- the analysis function can set each plug as a ROI (region of interest) for image processing.
- this plug is an element that constitutes a device such as a transistor, and is a region corresponding to, for example, a source, drain, gate, and the like.
- the plug region is formed of a laminated structure of semiconductors, and the difference in material and the like causes a difference in luminance when viewed as an image.
- FIG. 2 shows a flow of main processing by the computer system 1 (particularly the analysis function) of Embodiment 1, and has steps S1 to S7.
- the processor 201 of the computer system 1 inputs and acquires an observation image from the main body 3 .
- the processor 201 may obtain observation image data already stored in the storage device 203 .
- the processor 201 performs the following analysis processing on the observation image specified by the user.
- step S2 the processor 201 sets a reference image (in other words, a reference cell area) in the observed image (also referred to as the entire image).
- a reference image can be set on a setting screen (FIG. 10), which will be described later. In the setting of the reference cell area, if there is already set reference image setting information, it may be selected, read out and applied.
- the processor 201 extracts similar images (in other words, similar cell regions) from the observed image based on the reference image.
- This extraction process can be executed by specifying it as one of commands in software (FIG. 11 described later).
- step S4 the processor 201 uses the reference image and the extracted similar cell regions to set multiple ROIs (regions of interest) for multiple plugs in the reference image.
- ROIs regions of interest
- a plurality of ROIs can be set on a setting screen described later (FIG. 12 described later). In setting the ROI, if there is already set ROI setting information, it may be selected, read out and applied.
- the processor 201 uses a plurality of similar cell regions extracted in the extraction process to calculate, for example, the average brightness value of each plug (plugs at the same placement position in the cell) as statistical processing. etc. are calculated, and the average luminance value is set for each of the plurality of ROIs in the reference cell region.
- the processor 201 extracts, as a plug area, an area where the luminance of the darkest background area on the device surface is equal to or greater than a predetermined luminance threshold.
- the luminance value range is, for example, 0 (black) to 255 (white).
- step S5 the processor 201 sets a determination rule (sometimes simply referred to as a rule) based on the user's operation and confirmation on a setting screen (such as FIG. 14), which will be described later.
- a determination rule is a rule applied in the determination process. One or more determination rules are set and one or more can be applied. As for the determination rule to be applied, if there is determination rule setting information that has already been set, it may be selected and referred to.
- step S6 the processor 201 detects abnormalities in cell regions (especially plugs that are ROIs) in the comparison between the reference image (reference cell region) and the similar image (similar cell region) based on the applied determination rule. judge.
- Abnormality determination includes determination of presence/absence of abnormality and location/position of abnormality.
- a simple binary determination of the presence/absence of an abnormality is used.
- the present invention is not limited to this, and multi-value determination regarding the degree and possibility of an abnormality/defective condition may be used. For example, it is possible to classify the degree of abnormality into a plurality of categories using a plurality of thresholds.
- step S7 the processor 201 outputs information on the determination result to the user by displaying it on a screen having a GUI.
- Various data and information created by the processing of the analysis function as described above are stored in the storage device 203 .
- the step The flow is such that the extraction process of step S3 is performed before S4. A suitable reference cell area generated using the extracted similar cells is presented, and the user can confirm it and determine it as the reference cell area.
- FIG. 3 shows an example of an observation image 301 of a certain sample 5 (referred to as sample A) in the first embodiment.
- Sample A has identical or similar cell structures arranged on the surface (XY plane).
- a cell consists of an array of one or more plugs.
- the X direction (X axis) is the horizontal direction in the image
- the Y direction (Y axis) is the vertical direction in the image.
- An observation image 301 is a rectangular image having a predetermined size (the number of pixels in the X direction and the number of pixels in the Y direction). Each pixel has position coordinate information on the sample 5 surface.
- Cell 302 is an example of a cell region.
- This cell 302 includes, for example, three plugs 311 (plug regions) arranged in a predetermined positional relationship, and the three plugs 311 have a predetermined luminance relationship. Brightness is different.
- cells plurality of plugs corresponding thereto
- Cells 303 and 304 are examples of cells with different structures from cell 302 and include two plugs.
- the background area of the observed image 301 has the lowest luminance and is a color close to black, and each plug has a higher luminance than the background area.
- a user can set a desired cell, for example cell 302, as a reference image (reference cell area).
- a plurality of plugs in the cell 302 can be set as an ROI, which will be described later.
- FIG. 4 shows an example of an observation image 401 of another sample 5 (referred to as sample B) in the first embodiment.
- Sample B like Sample A, has the same or similar cell structures arranged on the surface (XY plane), and further includes various reversed arrangements (patterns) of certain cell structures.
- Cell 402 is an example of a cell region. This cell 402 includes, for example, four plugs 411 (plug regions) arranged in a predetermined positional relationship, and the four plugs 411 have a predetermined luminance relationship. Brightness is different.
- cells plurality of plugs corresponding thereto
- Cells 403 and 404 are examples of cells with different structures from cell 402, and differ in the number, position, shape, brightness, etc. of plugs.
- Cell 405 is an example of a cell with the same arrangement of multiple plugs as cell 402.
- Cell 406 is horizontally inverted with respect to cell 402
- cell 407 is vertically inverted with respect to cell 402
- cell 408 is , an example of a cell with a plurality of plugs arranged diagonally with respect to the cell 402.
- FIG. A user can set a desired cell, such as cell 402, as the reference image.
- a plurality of plugs within that cell 402 can then be set as an ROI.
- the plugs 421 and 422 show an example in which the brightness deviates from the brightness of the other plugs, and such plugs (cells containing them) are determined to be abnormal in the abnormality determination described later.
- observation image data is not only data of luminance values for each pixel, but also data having position coordinate information obtained by SEM.
- an observation image has position coordinate information for each pixel.
- it has the position coordinate information of the upper left point and the lower right point of the observed image.
- FIG. 5 shows a setting example of a reference cell region (reference image) and a plurality of ROIs (regions of interest) corresponding to the example of the observed image 301 of the sample A in FIG.
- a reference image 501 is set as a reference for searching and extracting similar cell regions and a reference for abnormality determination.
- This reference image (reference cell area) 501 set corresponding to the cell 302 in FIG.
- the plug area has, for example, an elliptical shape.
- each plug area is illustrated with a plug number (#), which will be described later.
- the three plug regions are arranged in a predetermined positional relationship as shown.
- the plug 511 is placed on the upper left, the plug 512 on the upper right, and the plug 513 below the centroid or center of the cell area.
- the reference cell area 501 is displayed with a predetermined expression (for example, a yellow dashed frame) on the screen to be described later.
- Each plug area has a luminance, and the luminance may differ between plug areas.
- the lower part of FIG. 5 shows the luminance relationship of the three plugs in the reference cell area 501.
- FIG. 5 shows the plug region and the brightness are schematically illustrated by dot patterns.
- the background area is the darkest and has a predetermined brightness value, it is illustrated in white here and considered to be excluded.
- the brightness increases in the direction from the third brightness value to the first brightness value. If there is a luminance distribution within one plug region, the luminance average value or the like within one plug region may be calculated and the luminance average value or the like may be used as the luminance value of the plug. In some cases, the edge and center of the plug have different luminances. In this case, only the luminance of the edge portion can be used as the average luminance value. When setting rules, the user can also select whether to use the average brightness value of the entire plug or the average brightness value of the edge portion of the plug.
- FIG. 6 shows a setting example of a reference cell area (reference image) and a plurality of ROIs corresponding to the example of the observed image 401 of the sample B in FIG.
- a reference image 601 is set as a reference for searching and extracting similar cell regions and a reference for abnormality determination.
- the lower part of FIG. 6 shows the luminance relationship of the four plugs in the reference cell area 601.
- the plug has a fourth luminance value and increases in luminance in the direction from the fourth luminance value to the first luminance value.
- the reference cell region 601 is assumed to be pattern A with the same arrangement (no inversion).
- pattern B be a cell region 602 that is horizontally reversed on the Y-axis with respect to the cells of pattern A (reference cell region 601).
- pattern C be a cell area 603 in which the cell of pattern A is vertically inverted on the X axis.
- a pattern D is a cell area 604 that is obliquely inverted with respect to the cells of the pattern A, in other words, horizontally inverted and vertically inverted.
- Cell areas of these types of arrangement patterns are included in the observed image 401 of FIG. Depending on the sample or region, only part of the arrangement pattern may be included.
- the cell areas of various layout patterns are distinguished and displayed in a predetermined representation according to the layout pattern on the screen (FIG. 18) described later.
- the pattern A reference cell area 601 is indicated by a yellow dashed frame
- the pattern B cell area 602 is indicated by an orange solid line frame
- the pattern C cell area 603 is indicated by a green solid line frame
- the pattern D is indicated by a solid line frame.
- a cell area 604 is displayed with a light blue solid frame.
- the expression may be distinguished depending on whether a certain cell area is a reference image (similar image) or not, or the expression may be distinguished according to whether a certain cell area has an abnormality or not.
- the area such as the reference cell area is usually set as a rectangular area for efficient image processing.
- FIG. 7 shows an example of similar cell regions extracted by the similar image extraction process (step S3 in FIG. 2) corresponding to the observation image 301 of the sample A in FIG.
- a similar cell area 702 similar to the reference image 701 is extracted from within the observed image 301 .
- Each similar cell region 702 is displayed surrounded by a rectangular solid line frame.
- the area displayed as the reference image 701 in FIG. 7 is also extracted as the similar image 702 .
- the background area is shown as white.
- FIG. 8 shows an example of similar cell regions extracted by the similar image extraction process (step S3 in FIG. 2) corresponding to the observation image 401 of the sample B in FIG.
- similar cell areas 811 , 812 , 813 , 814
- Each similar cell area is displayed surrounded by a rectangular solid line frame.
- the background area is shown as white.
- cell areas of various layout patterns as shown in FIG. 6 are extracted, and are distinguished and displayed by, for example, changing the color for each pattern or adding characters or marks for identifying the pattern.
- the similar cell region 811 is the cells of pattern A with the same arrangement and no inversion.
- a similar cell region 812 is a cell of a left-right reversed pattern B.
- FIG. A similar cell region 813 is a cell of the upside-down pattern C.
- FIG. A similar cell region 814 is a cell of a diagonally inverted pattern D.
- FIG. The plugs 421 and 422 are examples of abnormal plugs. Plug 421 is reduced in intensity relative to the central plug in reference cell area 801 . Plug 422 is high relative to the brightness of the upper right plug in reference cell area 801 .
- GUI screen Next, an example of a screen having a GUI related to the analysis function of the computer system 1 will be described.
- Each screen may be provided as a web page, for example.
- FIG. 9 shows a screen example of image input (step S1 in FIG. 3).
- buttons corresponding to each step of the flow related to work are provided in the upper column 901, and the progress of the steps of the flow is indicated by the display state of the buttons and the like.
- the flow buttons include an image input (“Open Image”) button 911, a reference cell setting (“Set Reference Cell”) button 912, a region of interest (“Set ROI”) button 913, and a data (“Data”) button 912. ) button 914, a determination rule setting (“Set rule”) button 915, a determination result (“Result”) button 916, and a multiple determination (“Multiply Result”) button 917 are provided.
- the buttons are connected by arrows.
- the image input button 911 is displayed conspicuously, and a GUI for selecting and opening an observation image file for image input is displayed in the lower column 902 . be done. With this GUI, the user selects an observation image file to be analyzed and presses an Open button. You will then be taken to the next step screen.
- FIG. 10 shows an example screen for setting the reference image (step S2 in FIG. 2).
- a GUI for setting the reference image (reference cell area) is displayed in the lower column.
- an observation image 1001 of the object is displayed.
- An observation image 1001 in this example corresponds to the observation image 301 of the sample A in FIG.
- the user sees and confirms the observation image 1001 and sets a desired cell structure as the reference image 1002 by an operation.
- the user sets a reference image 1002 by enclosing a desired area in the observation image 1001 with a rectangle by operating a mouse or by specifying the start point and end point of the rectangle.
- FIG. 11 shows a screen example of the similar cell area (similar image) extraction process (step S3 in FIG. 2).
- the extraction button 1003 is pressed, the extraction result of the similar image on the observed image 1001 (corresponding to FIG. 7) is displayed in the lower column.
- each similar cell region 1101 with respect to the reference cell region 1002 is displayed with a rectangular solid line frame.
- FIG. 12 shows an example screen for setting a region of interest (ROI) (step S4 in FIG. 2).
- ROI region of interest
- FIG. 12 shows an example screen for setting a region of interest (ROI) (step S4 in FIG. 2).
- a GUI for setting a plurality of ROIs (plugs) within the reference cell region is displayed in columns 1201 and 1202 at the bottom.
- a column 1201 on the left displays a reference cell area 1203 being set and an ROI 1204 therein.
- information about a plurality of ROIs extracted in the reference cell area is arranged and displayed, for example, in tabular form.
- This table 1205 has items such as ROI number and "apply", and may also have items such as brightness value.
- the processor 201 automatically selects a suitable reference cell region (including setting of luminance values of a plurality of ROIs) using a plurality of similar cell regions extracted by the extraction processing in step S3 of FIG.
- the generated reference cell area is displayed in column 1201 .
- the user confirms the generated reference cell region 1203 and ROI 1204 in column 1201, and if the content is acceptable, formally sets the reference cell region 1203 and ROI 1204.
- FIG. That is, by proceeding to the next step with the Next button in column 1202, the reference cell region 1203 and ROI 1204 in column 1201 are set as setting information.
- the user can also switch application/non-application as an ROI by selecting a desired plug area by clicking or enclosing it in the column 1201 on the left.
- application/non-application as the ROI can be switched.
- the user can add other plugs as ROIs to the reference cell image 1203 with the Add button and manual operation, and remove unwanted plug portions from the reference cell image 1203 with the Remove button. Images can be deleted (eg filled to the same brightness as the background area).
- an elliptical frame with a desired shape and size may be set as the ROI by specifying an elliptical frame with a desired shape and size in the field 1201 by mouse operation or the like.
- FIG. 13 shows an example of a data confirmation/save screen.
- various data including setting information
- steps S1 to S4 are displayed on the screen.
- the user confirms the data on the screen, and if the content is acceptable, it can be saved by pressing the Save button.
- Setting information and information about brightness can be stored in the processor 201 and displayed as needed.
- the processor 201 associates those data/information and saves them in the storage device 203 .
- the setting information is setting information of the reference cell area and a plurality of ROIs therein.
- the user can name and save each data.
- the screen may display the file name of each data as a list.
- FIG. 13 is an example of confirming and saving setting information about a reference image (reference cell region) and a plurality of ROIs in a given observation image as data examples.
- column 1301 the set reference cell area and the extracted similar cell area are displayed on the observed image. A region number may be displayed for each region.
- the table 1302 displays the luminance value of each of a plurality of ROIs that constitute each reference image (reference cell area) identified by an area number (#). By pressing a Save button, a setting information file (format is csv, for example) like Table 1302 can be saved. Not limited to this, other data such as relative position coordinate information of each ROI in the reference image and information such as the size diameter of each ROI can also be confirmed and stored.
- the table 1302 can be said to be data that defines the positional relationship between the regions of interest for the arrangement pattern of the plurality of regions of interest in the reference image (reference cell region).
- FIG. 14 shows an example of a screen for setting determination rules (step S5 in FIG. 2).
- a GUI for setting determination rules is displayed in the fields 1401 and 1402 at the bottom.
- Column 1401 displays a set reference cell area 1403 and a plurality of ROIs 1404 therein associated with the determination rule.
- Column 1402 initially displays a template (conditional expression template) 1405 for setting rules.
- the template 1405 is composed of five items (buttons) 1406, for example. Items (buttons) 1406 include an ROI number (#) item and a symbol item. Five items 1406 of the template 1405 are, for example, ROI number, symbol, ROI number, symbol, and ROI number in order from the left.
- the user can select and set the ROI number and symbol in a desired item 1406 .
- the ROI number (#) item can also be changed to a brightness value item (in other words, a threshold item) by user operation.
- the ROI number (#) item is an item for setting the ROI number
- the luminance value item is an item for setting the luminance value
- the symbol item is a symbol (inequality sign, minus sign, etc.). ⁇ , >, ⁇ , ⁇ , -).
- conditional expression 1407 By the user operating the item 1406 of the template 1405, the conditional expression can be constructed.
- #2 ⁇ #1 ⁇ #3 is set as the conditional expression 1407 .
- This conditional expression defines the magnitude relationship between the luminance values of the ROIs of each ROI number in the reference cell area 1403 .
- This conditional expression corresponds to a determination rule.
- a conditional expression can be set for each row, and by setting AND/OR logic between rows, a conditional expression formed by combining multiple conditional expressions with AND/OR logic can be used as a judgment rule. Can be configured.
- One judgment rule can be set on one page of this column 1402 .
- the page can be switched by operating the page button 1408 .
- Other pages can similarly set different determination rules. Further, it is possible to add a judgment rule by clicking the Add button.
- a Remove button allows deletion of a judgment rule.
- a Next button allows you to proceed to the next step.
- the determination rule of conditional expression 1407 in FIG. 14 is an example of the first type of determination rule.
- a first type of determination rule is a rule that defines the luminance relationship between ROIs. This determination rule determines that there is an abnormality when the conditional expression 1407 is not satisfied. Only one such determination rule may be set, and the determination rule setting step may be terminated. In the following, a case will be described in which the second and subsequent determination rules are also set.
- FIG. 15 shows an example of a screen when setting a second type of determination rule as another type.
- the second type of determination rule is set as the second determination rule.
- #3-#1 ⁇ 50 is set as the conditional expression 1501 in the upper row.
- This conditional expression is a threshold value (in other words, brightness threshold) regarding the difference (in other words, divergence) in the brightness value of the target ROI (second ROI) with respect to the brightness value of the reference ROI (first ROI) in the reference cell region 1403.
- This conditional expression 1501 corresponds to the second type of determination rule. This determination rule determines that there is an abnormality when the conditional expression 1501 is not satisfied.
- the determination rule of conditional expression 1501 in this example is a rule that the difference in luminance between ROIs is smaller than a threshold, but is not limited to this rule, and a rule that the difference in luminance between ROIs is greater than a threshold can also be set. be.
- FIG. 16 shows an example of a screen when setting a third type of determination rule as another type.
- the third page (the numerical value of the page button 1408 is 3) shows the case where the third type of determination rule is set as the third determination rule.
- 100 ⁇ #1 ⁇ 150 is set as the conditional expression 1601 in the upper row.
- This conditional expression defines the relationship between the brightness value of the target ROI and the threshold (brightness threshold) range in the reference cell region 1403 .
- this conditional expression 1601 states that, for the ROI with the ROI number (#) of 1, the brightness of this ROI is within a range that is greater than the lower threshold value of 100 and smaller than the upper threshold value of 150. stipulates.
- This conditional expression 1601 corresponds to the third type of determination rule. This determination rule determines that there is an abnormality when the conditional expression 1601 is not satisfied.
- each type of determination rule is a rule for determining that there is no abnormality when the conditional expression is satisfied, and that there is an abnormality when the conditional expression is not satisfied. It is also possible to set a rule for judging that there is no abnormality when there is an abnormality and the conditional expression is not satisfied.
- the process proceeds to the next step (abnormality determination). Note that when a plurality of determination rules are set on the screen, those multiple determination rules are automatically applied to the abnormality determination. The abnormality determination process is performed for each determination rule, and a determination result is generated for each determination rule.
- the user can check and set various judgment rules on the judgment rule setting screen.
- This example shows a case where various determination rules can be set based on the same GUI.
- the present invention is not limited to this, and a separate GUI may be used for user setting for each type of determination rule.
- three types of determination rules are used to perform three types of abnormality determination. It is possible to set it as a judgment rule, and it is also possible to make an abnormality judgment by combining two random rules as described later.
- conditional expression 1407 conditional expression 1501, conditional expression 1601
- FIG. 17 shows a screen example of abnormality determination (step S6 in FIG. 2) and determination result output (step S7 in FIG. 2).
- the example of FIG. 17 is an example of the determination result for the observed image of sample A.
- the determination result button 916 When the determination result button 916 is pressed, abnormality determination is executed based on the set determination rule, and the determination result is displayed in the lower column 1701 .
- abnormality determination is performed for each determination rule, and a determination result is generated for each determination rule.
- the determination result using the first determination rule (FIG. 14) is displayed on the first page of the column 1701 (the numerical value of the page button 1702 is 1).
- this screen it is also possible to display the judgment results obtained by combining these three judgment rules.
- a similar cell region 1704 is displayed, for example, in a yellow solid line frame on an observation image 1703 of a target.
- the reference cell area may be distinguished and displayed on the observed image 1703 .
- the contents of the reference cell area may be displayed in another column.
- the abnormal cell area 1705 is displayed on the observed image 1703, for example, by a red solid-line frame (illustrated by a white frame in the drawing). It is This allows the user to confirm which cell in the observed image has an abnormality. The presence/absence of an abnormality may be displayed not only for each cell area but also for each plug area.
- the page button 1702 is operated, another page is displayed, and other determination results can be confirmed in the same manner.
- the user can select a desired cell area with or without an abnormality and press the Image button to enlarge the cell area and check the details.
- the reference cell image and the selected cell image may be displayed side by side on the screen to enable comparison and confirmation.
- the user can display and confirm the content of the determination rule corresponding to the determination process of the page.
- the user can save all reference images, similar images, setting rules, determination results, etc. as data by pressing an All save button.
- the user can save only the selected determination result after confirming the determination result on the screen.
- the processor 201 associates each data saved on the data screen with the determination result data and saves them in the storage device 203 .
- the screen example of FIG. 18 is similarly an example of the determination result for the observation image of sample B. It should be noted that the sample A and the sample B are processed in different similar flows.
- the determination result is displayed on the observation image 1801 of the target. Abnormality determination is executed based on the set determination rule, and a determination result is generated for each determination rule.
- the luminance of the background area is made brighter for easy viewing. It should be noted that the brightness of the background area may be changed to a desired brightness by the user's operation.
- the determination result using the first determination rule is displayed on the first page of column 1701.
- This determination result also corresponds to the extraction result in FIG.
- the cell areas with no abnormality are displayed in a dashed frame with the text (OK) indicating no abnormality.
- an abnormal cell area is displayed in a solid-line frame with a character (NG) indicating that there is an abnormality.
- the layout patterns of the cell areas are displayed in different colors. As described above (FIGS. 6 and 8), for example, pattern A is displayed in yellow, pattern B in orange, pattern C in green, and pattern D in light blue.
- the reference cell area and other similar cell areas may be displayed separately.
- the abnormal cell area may be displayed with a red frame
- the non-abnormal cell area may be displayed with a predetermined color frame
- the arrangement pattern may be distinguished only by characters.
- a button (not shown) may be used to turn on/off the identification display of the arrangement pattern.
- a button (not shown) may be used to allow the user to select only a specific arrangement pattern and display only the cell area of a specific arrangement pattern (for example, pattern A).
- cells 1811 and 1812 are determined to be abnormal, and some plugs in those cells (plugs 421 and 422 in FIGS. 4 and 8) are determined to be abnormal. It is In this manner, this analysis function can automatically determine and extract the arrangement pattern of a plurality of plugs of a cell as being similar, including the relationship of inversion, and display it. The user can easily determine the reversal pattern and determine the abnormality by visual observation, which has been difficult in the past.
- a judgment rule that combines multiple types of judgment rules and apply it to abnormality judgment. For example, on a certain page of the judgment rule setting screen described above, a first conditional expression corresponding to the first type of judgment rule is set in the first line, and a second conditional expression is set in the second line via logic of AND and OR. A second conditional expression corresponding to the type determination rule is set. By doing so, it is possible to set a determination rule based on a conditional expression configured by combining the first type of determination rule and the second type of determination rule.
- FIG. 19 shows an example of a multiple determination screen when the multiple determination button 917 is pressed.
- the user can finish the work by confirming the determination results in FIG. 18, but furthermore, multiple determinations can be made on the screen in FIG. Abnormality determination can also be performed.
- a GUI area 1902 is displayed in a column 1901 for selecting a group of observation image files to be collectively processed.
- the user inputs an observed image file group to be collectively processed in an area 1902 of the GUI.
- information such as file names of observation image file groups is arranged and displayed.
- the Select button allows you to select an observation image file.
- the Folder button allows you to select a folder for observation image files.
- the processor 201 applies the determination rule set in the previous step to the group of observed image files in the area 1902, executes abnormality determination, and performs an abnormality determination for each observed image file. , and saves the judgment result data.
- the judgment result for each observation image file can be confirmed on the same screen by returning to the previous judgment result step in accordance with the operation of the judgment result button 916 .
- FIG. 20 shows an example of a map display screen that is displayed when the map button is pressed on the determination result screen or multiple determination result screen.
- the map of this example is generated by integrating a plurality of determination results of a plurality of observation images (in other words, device regions) for the semiconductor device that is the sample 5 .
- a map 2002 is displayed in a column 2001 together with information on an object (device) that is the sample 5 .
- the map 2002 is a plane having X-axis and Y-axis position coordinates corresponding to the surface of the sample, and the origin of coordinates is set in advance.
- the coordinate origin of this device is in other words the reference coordinates of the device.
- the coordinates here indicate relative coordinates on the device centered on the origin coordinates of the device or absolute coordinates on the SEM stage.
- the abnormal cell areas detected as the abnormality determination result are displayed in such a manner as to be identifiable by frame lines, colors, characters, marks, or the like.
- various arrangement patterns are distinguished and displayed.
- the abnormal cell area is displayed by adding a predetermined mark (in this example, a red x mark) to the location of the abnormal ROI (plug).
- the position coordinate information of (X, Y) in the coordinate system of the map 2002 (that is, the device surface) is also displayed for the abnormal cell area.
- This position coordinate information is a relative position from the device coordinate origin or an absolute position of the SEM stage.
- this positional coordinate information is, in detail, the positional coordinate information of the ROI (plug) with abnormality in the cell region, but is not limited to this, and is the center of the cell region having the ROI (plug) with abnormality. Positional coordinate information such as points can also be used.
- map display By looking at such a map display, the user can easily check the locations of abnormalities and their distribution in the entire device. It is also possible to specify a desired location on the map and display details.
- map display for each determination rule can be switched by operating the page button. Note that the map can be enlarged or reduced, scrolled, or paged.
- a plurality of ROIs (especially luminance, etc.) of a suitable reference cell region are extracted based on the similar cell region extraction (step S3) to the cell region specified by the user. ) can be generated, presented and set.
- An average luminance or the like can be calculated by statistical processing from a plurality of extracted similar cell regions, and set as the luminance of a plurality of ROIs in the reference cell region.
- the user can confirm the automatically generated and presented reference cell area, and if necessary, the user can change and set it. A detailed processing example for such a method is described below.
- FIG. 21 shows a part of a screen example when setting a reference cell area as an explanatory diagram of a detailed processing example of the first embodiment.
- column 2101 displays information for the user to confirm and set the reference cell area.
- a column 2102 displays the initial reference cell region, the similar cell extraction results, and the like on the observed image.
- the user designates an initial reference cell area within the observation image on the screen.
- the designation of this initial reference cell area is provisional, and the reference cell area will be determined later.
- This designation may be, for example, a designation surrounding an area from the observed image, or designation of the positional coordinates of the area (for example, the upper left point and lower right point of a rectangle).
- a column 2101 allows the user to set multiple ROIs within the initial reference cell area 2103 .
- the plug area may be surrounded by an ellipse or a rectangle. This example shows the case of enclosing with an elliptical dashed frame.
- the position coordinates of the upper left point and the lower right point of the figure surrounding the plug may be specified, or the position coordinates of the center of gravity and center point of the figure surrounding the plug may be specified.
- this ROI is not limited to manual operation by the user, and may be supported by automatic processing performed by the processor 201 .
- the processor 201 estimates and extracts a plug region by calculating a luminance distribution using an image processing technique such as binarization from within the initial reference cell region designated by the user, and then extracts the extracted plug region. The user may be presented with whether or not to use the ROI.
- the processor 201 identifies the positional relationship of the specified plurality of ROIs included in the initial reference cell area, and sets the initial reference cell area including the plurality of ROIs as the reference cell area. Alternatively, the user may set the positional relationship between ROIs at the time of specification.
- the processor 201 uses a luminance value threshold to distinguish the plurality of ROIs from the background region (the darkest region of the device), and the region having the luminance value equal to or greater than the threshold is defined as the ROI.
- a luminance value threshold for distinguish the plurality of ROIs from the background region (the darkest region of the device), and the region having the luminance value equal to or greater than the threshold is defined as the ROI.
- the ROI For example, in the initial reference cell area 2104 of column 2101, three plugs surrounded by a red dashed frame are specified. Three plugs are identified separately from the background area and set as three ROIs included in the initial reference cell area.
- An initial reference cell area 2104 in column 2101 shows an example of specifying the positional relationship of multiple ROIs.
- the position coordinates of the center of the ellipse of the plug area are designated as the position coordinates of each ROI.
- the table on the right shows position coordinates for each ROI number (#).
- the ROI position coordinates may be absolute position coordinates or relative position coordinates with a certain ROI as the reference ROI.
- the distance between ROI position coordinates (illustrated by line segments) may be set.
- Another example of processing is to set the size of each ROI, eg the diameter (illustrated by the arrow).
- the processor 201 uses the initial reference cell region set in this way and a plurality of ROIs (initial ROIs) included therein to observe the entire image based on preset conditions (referred to as extraction conditions). A region similar to the initial reference cell region containing a plurality of ROIs is extracted from the image as a similar image as described above.
- the following extraction conditions may be applied. For example, the relative positional coordinates of each ROI within the initial reference cell area and the size (for example, diameter) of each ROI are specified in advance.
- the processor 201 sequentially determines and identifies regions similar to this reference cell region (plurality of ROIs) in the entire image and extracts them as similar images. In this determination, an extraction condition is used for determining the relationship between a plurality of ROIs included in the reference cell area.
- This extraction condition may be, for example, whether the distance corresponding to the ROI relative position coordinates or the distance corresponding to the difference between the ROI absolute position coordinates is within the threshold range.
- this extraction condition is different from the judgment rule for abnormality judgment.
- determination using this extraction condition it is necessary to form a population of test objects (sample 5). Even if there is an abnormality in the semiconductor device itself to be inspected, it is necessary to include it in the population.
- the population should not include parts of the semiconductor devices to be inspected that are not to be inspected. In other words, in the strict determination, the inspection area including the abnormal portion should not be omitted, and in the loose determination, the portion not to be inspected should not be included.
- the reference cell area and the plurality of ROIs included in the reference cell area are set. is performed (step S3), confirmed on the screen, and a reference cell region including a plurality of ROIs is determined.
- the extraction conditions are designed and set in advance in the software of this computer system 1.
- the user setting function of this software may be used to display the extraction conditions on the screen so that the user can select and change the algorithm and parameter values for user setting.
- Multiple templates may be set and prepared in advance so that extraction conditions and setting information to be applied (reference cell regions including multiple ROIs, determination rules, etc.) can be easily selected for each customer or target device. .
- the reference cell area and a plurality of ROIs in the reference cell area are set after the determination rule for abnormality determination is set later. may be automatically performed.
- Embodiment 1 in the computer system 1 that analyzes a VC image (observation image) obtained by a charged particle beam device (SEM), the luminance between the same or similar structures in the observation image Abnormality determination/detection by comparison can be automatically performed to some extent or more without relying on visual observation, and can be realized easily and efficiently.
- the analysis function of the computer system 1 of Embodiment 1 extracts a similar cell region based on the relationship between a plurality of plugs (ROI) included in the cell region in the observation image, and determines abnormalities in the cell region. do. As the relationship, the positional relationship and brightness relationship between ROIs are determined.
- ROI plugs
- a VC image of a sample (semiconductor device) having a complicated structure can be easily and semi-automatically processed, in other words, except for some operations such as settings and instructions.
- As automatic it is possible to specify and detect the location of an abnormality.
- Embodiment 1 various determinations are possible according to the setting of determination rules that define the relationships between ROIs in a cell.
- determination rules that define the relationships between ROIs in a cell.
- they can be extracted as being similar without relying on arrangement patterns such as upside-down inversion.
- FIG. 22 shows a flow of main processing by the computer system 1 (especially the analysis function) of a modification (referred to as modification 1) of the first embodiment, and has steps S21 to S27.
- the flow of the modification of FIG. 22 is different from the flow of FIG. 2 in that the setting process is collectively performed first, and then the extraction process, determination process, and output process are performed. In other words, it is the same as moving step S3 in FIG. 2 after step S5 and executing the process.
- the processor 201 of the computer system 1 inputs and acquires an observation image from the main body 3.
- the processor 201 sets a reference image (reference cell area) in the observed image.
- the processor 201 sets a plurality of ROIs (regions of interest) within the reference image. In a variant, specifically, the user manually sets a plurality of ROIs in the reference image.
- the processor 201 sets the determination rule based on the user's operation and confirmation on the setting screen.
- the processor 201 extracts a similar image (similar cell region) from the observed image based on the reference image.
- the processor 201 detects abnormalities in the cell region (especially the plug that is the ROI) in the comparison between the reference image (reference cell region) and the similar image (similar cell region) based on the applied determination rule. judge.
- the processor 201 outputs the determination result to the user by, for example, displaying it on the GUI screen. The same or similar effects as those of the first embodiment can be obtained even in the modified example based on such a flow.
- the extraction process calculates the positional relationship between the regions of interest for the arrangement pattern of the plurality of regions of interest in the reference image. By doing so, it can be said that it is a process of extracting as similarity including the same layout pattern and each type of reversed layout pattern.
- the sizes are determined for multiple ROIs in the reference image.
- the determination rules it is possible to set the relationship regarding the size of the ROI.
- the processor 201 performs abnormality determination using the determination rule.
- FIG. 23 shows an example of setting a rule regarding the ROI size in an example of a determination rule setting screen in this modified example.
- the user can set, as a conditional expression, a rule for comparing the size of each ROI within the reference cell region (relationship between each ROI and size between ROIs). For example, it is possible to set a rule for determining an ROI whose ROI size is out of (or within) a certain range indicated by a threshold as abnormal.
- the size of the ROI can also be selected and set in the item of the template, as shown in the template 2303 on the third line, for example.
- the conditional expression 2301 on the first line sets the relationship by comparing the size diameter of each ROI (#1, #2, #3) in the reference cell region. .
- the ROI region is an ellipse, and the size is the long axis of the ellipse (similar to FIG. 21).
- the conditional expression 2301 and the conditional expression 2302 are ANDed.
- Each threshold is a diameter (major axis). If the threshold range is narrowed, it is possible to strictly determine the difference. If the threshold range is widened, loose determination is possible.
- conditional expression 2301 conditional expression 2302
- the specimen 5 to be observed was explained as observation of a semiconductor device, but it is not limited to this.
- a semiconductor device for example, by applying it to observing the composition of materials and observing the tissue of living organisms, multiple regions of interest from among similar structures in the observed image can be combined as reference cell regions, and the relationship between multiple regions of interest can be determined.
- the relevance of multiple regions of interest based on defined rules, even images of specimens with complex structures can be easily and semi-automatically controlled, in other words, part of settings and instructions can be performed.
- the main processing is automatic, and it is possible to identify and detect the location of anomalies.
Landscapes
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Image Processing (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
図1~図21を用いて、実施の形態1のコンピュータシステムについて説明する。実施の形態1のコンピュータシステムは、荷電粒子ビーム装置によって試料(観察対象物)である半導体デバイスを撮像したVC画像である観察画像を取得・入力し、観察画像を解析する機能(解析機能と記載する)を有する。この解析機能(それに対応するソフトウェア)では、観察画像における比較のための基準画像(言い換えると基準領域)を、ユーザの操作入力、または自動的な処理によって設定する。ソフトウェアは、観察画像内において、基準画像に対し、同一または類似する領域(セル構造など)を、類似画像(言い換えると類似領域)として抽出する。ソフトウェアは、基準領域と、抽出された類似領域とを比較して、設定された判定ルールに基づいて、異常を判定する。判定ルールは、セル領域内に含まれている複数のプラグ領域を複数の関心領域(ROI:Region On Interest)として、ROI間の関係性(例えば位置関係やサイズ関係、輝度関係など)を規定したルールがある。ユーザは画面で複数のROIを含む基準セル領域や判定ルールを設定可能である。ソフトウェアは、判定結果として、各セル領域や異常有無等を含む判定結果(言い換えると異常検出結果)を、ユーザに対し出力する。
図1は、実施の形態1のコンピュータシステム1を含んで構成されるシステムである荷電粒子ビーム装置2の構成を示す。実施の形態1では、荷電粒子ビーム装置2はSEMであるが、これに限定されない。荷電粒子ビーム装置2の本体3は、観察画像を撮像する撮像装置として機能する。荷電粒子ビーム装置2の本体3には、信号線などの通信手段を介して、コンピュータシステム1が接続されている。コンピュータシステム1は、荷電粒子ビーム装置2を制御するコントローラに相当する。コンピュータシステム1は、荷電粒子ビーム装置2の本体3に対して外部接続されたコンピュータシステムとしてもよいし、荷電粒子ビーム装置2の本体3に内蔵されたコンピュータシステムとしてもよい。コンピュータシステム1は、例えばPCやサーバ等で構成されてもよい。
実施の形態1では、観察画像を取得する対象物である試料5は、例えば製品としてロジックデバイスに相当する半導体デバイスである。製品の製造中または製造後において、この半導体デバイスを試料5として、観察画像が取得される。作業者であるユーザは、観察画像を観察し、コンピュータシステム1による解析機能を利用して、半導体デバイスの表面における異常の有無を確認する。解析機能によれば、ユーザによる手動作業を最低限として、ほぼ自動的(言い換えると半自動的)に、異常の有無などの判定結果を生成・出力する。よって、ユーザは、その判定結果を確認する作業を行えばよく、目視観察を最低限として、作業の手間や時間が大幅に低減できる。
図2は、実施の形態1のコンピュータシステム1(特に解析機能)による主な処理のフローを示し、ステップS1~S7を有する。ステップS1で、コンピュータシステム1のプロセッサ201は、本体3から観察画像を入力し取得する。プロセッサ201は、既に記憶装置203に格納されている観察画像データを取得してもよい。プロセッサ201は、ユーザが指定した観察画像を対象として、以下のような解析処理を行う。
図3は、実施の形態1で、ある試料5(試料Aとする)の観察画像301の例を示す。試料Aは、表面(X-Y平面)において、同一または類似のセル構造が並んでいる。セルは、1つ以上のプラグの配列から成る。X方向(X軸)は画像内の水平方向、Y方向(Y軸)は画像内の垂直方向とする。観察画像301は、所定のサイズ(X方向の画素数、Y方向の画素数)を有する矩形の画像である。各画素は、試料5面での位置座標情報を有する。セル302は、あるセル領域の例である。このセル302は、所定の位置関係で配置された例えば3つのプラグ311(プラグ領域)が含まれており、3つのプラグ311が所定の輝度関係を有しており、本例では各プラグ311の輝度が異なっている。観察画像301内には、セル302(それに対応する複数のプラグ)と同一または類似のセル(それに対応する複数のプラグ)が並んでいる。セル303やセル304は、セル302とは異なる構造のセルの例であり、2つのプラグが含まれている。観察画像301の背景領域は、最も輝度が低く黒に近い色となっており、各プラグは背景領域よりも輝度が高くなっている。ユーザは、所望のセル、例えばセル302を、基準画像(基準セル領域)として設定することができる。そして、そのセル302内の複数のプラグを、後述のROIとして設定することができる。
図5は、図3の試料Aの観察画像301の例に対応した、基準セル領域(基準画像)および複数のROI(関心領域)の設定例を示す。このような基準画像501が、類似するセル領域を探して抽出するための基準、および異常判定のための基準として設定される。図3のセル302に対応して設定されたこの基準画像(基準セル領域)501は、プラグ511、プラグ512、およびプラグ513の3つのプラグ領域を含んでいる。プラグ領域は例えば楕円形状を有する。なお、ここでは、わかりやすいように、各プラグ領域には後述のプラグ番号(#)を付与して図示している。3つのプラグ領域は、図示のような所定の位置関係で配置されている。例えば、セル領域の重心または中心に対して、左上にプラグ511が、右上にプラグ512が、下にプラグ513が配置されている。基準セル領域501は、後述の画面では、所定の表現(例えば黄色の破線枠)で表示される。
図7は、図3の試料Aの観察画像301の場合に対応して、類似画像の抽出処理(図2のステップS3)によって抽出された類似セル領域の例を示す。左上付近の1つのセル領域が基準画像701として設定された場合に、観察画像301内から基準画像701に類似する類似セル領域702が抽出されている。各類似セル領域702が、矩形の実線枠で囲って表示されている。また、あらかじめ基準画像が設定されている場合は、図7にて基準画像701として表示されている領域も、類似画像702として抽出される。なお、ここでは、背景領域を白にして図示している。
次に、コンピュータシステム1の解析機能に係わるGUIを有する画面例について説明する。各画面は、例えばWebページとして提供されてもよい。
図9は、画像入力(図3ではステップS1)の画面例を示す。図9の画面は、上部の欄901に、作業に係わるフローの各ステップに対応したボタンが設けられており、ボタン等の表示状態によって、フローのステップの進捗状態が表される。本例では、フローのボタンとして、画像入力(“Open Image”)ボタン911、基準セル設定(“Set Reference Cell”)ボタン912、関心領域設定(“Set ROI”)ボタン913、データ(“Data”)ボタン914、判定ルール設定(“Set rule”)ボタン915、判定結果(“Result”)ボタン916、複数判定(“Multiply Result”)ボタン917が設けられている。ボタン間は矢印で接続されている。
図10は、基準画像設定(図2でのステップS2)の画面例を示す。基準画像設定ボタン912が押されると、下部の欄に、基準画像(基準セル領域)の設定のためのGUIが表示される。この欄では、対象の観察画像1001が表示される。本例の観察画像1001は、図3の試料Aの観察画像301に相当する。ユーザは、観察画像1001を見て確認し、操作によって、所望のセル構造を基準画像1002として設定する。例えば、ユーザは、観察画像1001内からマウス等の操作によって所望の領域を矩形で囲むことや、矩形の始点と終点の指定によって、基準画像1002として設定する。ユーザは、次のステップに進む場合には次(Next)ボタンを押し、設定をやり直す場合にはクリア(Clear)ボタンを押してやり直す。また、ユーザは、抽出処理に進む場合には、抽出(Split)ボタン1003を押す。あらかじめ基準画像が用意されている場合は、その画像をメモリ202より呼び出すことによって、適用する基準画像として設定することができる。
図11は、類似セル領域(類似画像)の抽出処理(図2でのステップS3)の画面例を示す。抽出ボタン1003が押されると、下部の欄に、観察画像1001上での類似画像の抽出結果(図7に相当)が表示される。例えば基準セル領域1002に対しての各類似セル領域1101が矩形の実線枠で表示される。
図12は、関心領域(ROI)の設定(図2でのステップS4)の画面例を示す。関心領域設定ボタン913が押されると、下部の欄1201および欄1202に、基準セル領域内の複数のROI(プラグ)を設定するためのGUIが表示される。左側の欄1201には、設定作業中の基準セル領域1203およびその中のROI1204が表示される。右側の欄1202には、基準セル領域内の抽出された複数のROIについての情報が、例えば表形式で整理して表示される。この表1205には、例えば、ROI番号、「適用」等の項目を有し、他には、輝度値等の項目を有してもよい。
図13は、データ確認・保存の画面例を示す。データボタン914が押されると、これまで(ステップS1~S4)に作成された各種のデータ(設定情報を含む)が画面に表示される。ユーザが画面でそのデータを確認し、その内容でよければ、保存(Save)ボタンを押すことで保存できる。設定情報や輝度に関する情報はプロセッサ201内部に保持しておき、必要に応じて表示させることも可能である。プロセッサ201は、それらのデータ・情報を関連付けて、記憶装置203に保存する。設定情報は、基準セル領域およびその中の複数のROIの設定情報である。ユーザは、各データに名前を付けて保存できる。画面には、各データのファイル名などがリストとして表示されてもよい。図13の画面例は、データ例として、ある観察画像における基準画像(基準セル領域)および複数のROIについての設定情報を確認し保存する例である。欄1301では、観察画像上に、設定された基準セル領域および抽出された類似セル領域が表示される。領域ごとに領域番号が表示されてもよい。表1302は、領域番号(#)で識別される基準画像(基準セル領域)ごとに、それを構成する複数のROIの各ROIの輝度値が表示されている。保存(Save)ボタンを押すことで、表1302のような設定情報のファイル(形式は例えばcsv)を保存できる。これに限らず、他のデータとして、基準画像の各ROIの相対位置座標情報や、各ROIのサイズの直径などの情報も同様に確認・保存が可能である。また、表1302は、基準画像(基準セル領域)の複数の関心領域の配置パターンについて、関心領域間の位置関係を規定したデータと言える。
図14は、判定ルールの設定(図2でのステップS5)の画面例を示す。判定ルール設定ボタン915が押されると、下部の欄1401および欄1402に、判定ルールの設定のためのGUIが表示される。欄1401には、判定ルールと関連付けられる、設定された基準セル領域1403およびその中の複数のROI1404が表示される。欄1402には、最初、ルールの設定のためのテンプレート(条件式テンプレート)1405が表示される。テンプレート1405は、例えば5個の項目(ボタン)1406で構成されている。項目(ボタン)1406としては、ROI番号(#)項目や記号項目を有する。テンプレート1405の5個の項目1406は、例えば、左から順に、ROI番号、記号、ROI番号、記号、ROI番号と並んでいる。ユーザは、所望の項目1406で、ROI番号や記号を選択して設定できる。ROI番号(#)項目は、ユーザの操作によって、輝度値項目(言い換えると閾値項目)に変更することもできる。ROI番号(#)項目は、ROI番号を設定するための項目であり、輝度値項目は、輝度値を設定するための項目であり、記号項目は、記号(不等号記号やマイナス記号など。例:<,>,≦,≧,-)を設定するための項目である。
図17は、異常判定(図2でのステップS6)および判定結果の出力(図2でのステップS7)の画面例を示す。図17の例は、試料Aの観察画像に対する判定結果の例である。判定結果ボタン916が押されると、設定された判定ルールに基づいて異常判定が実行され、下部の欄1701に、判定結果が表示される。本例では、前のステップで設定された3個の判定ルールを用いて、判定ルールごとに異常判定が実行され、判定ルールごとの判定結果が生成される。図17の画面例では、欄1701の第1ページ(ページボタン1702の数値が1)において、1番目の判定ルール(図14)を用いた判定結果が表示されている。また、本画面では、これら3個の判定ルールを組み合わせた判定結果を表示することも可能である。
図19は、複数判定ボタン917が押された場合の複数判定の画面例を示す。ユーザは、図18の判定結果の確認までで作業を終えることもできるが、さらに、図19の画面で複数判定、即ち、複数の観察画像を対象として、同じ判定ルールを用いた、一括での異常判定を行わせることもできる。この画面では、欄1901内に、一括での処理対象とする観察画像ファイル群を選択するためのGUIの領域1902が表示される。ユーザは、このGUIの領域1902内に、一括での処理対象とする観察画像ファイル群を入力する。領域1902内には観察画像ファイル群のファイル名などの情報が整理して表示される。選択(Select)ボタンでは、観察画像ファイルを選択できる。フォルダー(Folder)ボタンでは、観察画像ファイル群のフォルダーを選択できる。実行(Execute)ボタンが押されると、プロセッサ201は、領域1902内の観察画像ファイル群を対象として、前のステップで設定済みの判定ルールを適用して、異常判定を実行し、観察画像ファイルごとに判定結果を生成し、判定結果データを保存する。観察画像ファイルごとの判定結果は、判定結果ボタン916の操作に応じて前の判定結果のステップに戻って同様の画面で確認することができる。
図20は、判定結果画面あるいは複数判定結果画面で、マップ(Map)ボタンが押された場合に表示される、マップ表示の画面例を示す。本例のマップは、試料5である半導体デバイスについて、複数の観察画像(言い換えるとデバイス領域)の複数の判定結果を1つに統合することで生成されている。欄2001内に、試料5である対象物(デバイス)の情報とともに、マップ2002が表示される。マップ2002は、試料の表面に対応した、X軸、Y軸の位置座標を有する平面であり、予め座標原点(Origin of coordinate)が設定されている。このデバイスの座標原点は、言い換えると、デバイスの基準座標である。ここでいう座標は、デバイスの原点座標を中心としたデバイス上の相対座標またはSEMのステージの絶対座標を示している。
実施の形態1では、前述(ステップS2~S4)のように、ユーザが指定したセル領域に対する類似セル領域の抽出(ステップS3)に基づいて、好適な基準セル領域の複数のROI(特に輝度など)を生成・提示し設定することができる。抽出された複数の類似セル領域から統計処理で平均輝度などを算出し、基準セル領域の複数のROIの輝度として設定することができる。自動的に生成・提示された基準セル領域をユーザが確認し、必要であればユーザが変更して設定することもできる。このような方法についての詳細な処理例を以下に説明する。
以上のように、実施の形態1によれば、荷電粒子ビーム装置(SEM)によって得たVC画像(観察画像)の解析を行うコンピュータシステム1において、観察画像内の同一または類似する構造間の輝度比較による異常の判定・検出を、目視観察に依らずに、ある程度以上自動的にして、容易・効率的に実現できる。実施の形態1のコンピュータシステム1の解析機能は、観察画像内のセル領域に含まれている複数のプラグ(ROI)の関係性に基づいて、類似セル領域を抽出し、セル領域の異常を判定する。関係性として、ROI間の位置関係や輝度関係が判定される。実施の形態1によれば、複雑な構造を有する試料(半導体デバイス)のVC画像においても、容易に、かつ半自動的に、言い換えると設定や指示などの一部の操作を除いて主な処理を自動として、異常の箇所などを特定・検出することができる。
図22は、実施の形態1の変形例(変形例1とする)のコンピュータシステム1(特に解析機能)による主な処理のフローを示し、ステップS21~S27を有する。図22の変形例のフローは、図2のフローとの違いとしては、最初にまとめて設定処理を行い、その後に抽出処理、判定処理、および出力処理を行うことである。つまり、図2のステップS3をステップS5の後ろに移動して処理を実施するものと同じである。
他の変形例(変形例2とする)では、基準画像内の複数のROIについて、サイズを判断する。判定ルールの1つとして、ROIのサイズに関する関係を設定可能とする。プロセッサ201は、その判定ルールを用いて異常判定を行う。
Claims (8)
- 荷電粒子ビーム装置による試料の観察画像を解析するコンピュータシステムであって、
前記観察画像は、複数のセル領域を含み、各々のセル領域は、当該セル領域を構成する要素である複数の領域を含む場合があり、
前記コンピュータシステムは、
前記観察画像の中から、ユーザが指定した、または自動的に設定した、第1セル領域を基準画像として、前記基準画像と類似する他の1つ以上の第2セル領域を類似画像として抽出する抽出処理と、
前記基準画像と、抽出された前記類似画像とにおいて、前記基準画像に含まれている複数の関心領域の関係性が規定されたルールに基づいて、前記複数の関心領域を比較することで、前記類似画像のセル領域の異常の有無を判定する判定処理と、
判定結果として各セル領域の位置および異常の有無をユーザに対し出力させる出力処理と、
を行う、コンピュータシステム。 - 請求項1記載のコンピュータシステムにおいて、
前記ルールには、前記基準画像のセル領域に含まれている前記複数の関心領域について、関心領域間の輝度の関係性が設定されている、コンピュータシステム。 - 請求項1記載のコンピュータシステムにおいて、
前記ルールには、前記基準画像のセル領域に含まれている前記複数の関心領域について、関心領域間の形状またはサイズの関係性が設定されている、コンピュータシステム。 - 請求項1記載のコンピュータシステムにおいて、
前記基準画像の前記複数の関心領域を、ユーザの操作入力または自動的な処理に基づいて設定する設定処理を行い、
前記抽出処理は、前記基準画像の前記複数の関心領域の配置パターンについて、関心領域間の位置関係を計算することで、同じ配置パターンと、各種類の反転された配置パターンとを含めて類似として抽出する処理であり、
前記判定処理は、各種類の配置パターンを有する前記類似画像について、セル領域内の関心領域間の輝度関係を計算することで、異常の有無を判定する処理であり、
前記出力処理は、抽出された各種類の配置パターンごとに識別できる態様で前記判定結果を出力させる処理である、
コンピュータシステム。 - 請求項1記載のコンピュータシステムにおいて、
前記基準画像の前記複数の関心領域を、ユーザの操作入力または自動的な処理に基づいて画面で設定する設定処理を行い、
前記設定処理は、前記ルールとして、前記基準画像の第1セル領域内の複数の関心領域について、関心領域間の輝度の大小関係を規定するルールを設定する処理を含む、
コンピュータシステム。 - 請求項1記載のコンピュータシステムにおいて、
前記基準画像の前記複数の関心領域を、ユーザの操作入力または自動的な処理に基づいて画面で設定する設定処理を行い、
前記設定処理は、前記ルールとして、前記基準画像の第1セル領域内の複数の関心領域について、指定した第1関心領域に対する第2関心領域の輝度の差が閾値以上または閾値以下である場合に異常有りと規定するルールを設定する処理を含む、
コンピュータシステム。 - 請求項1記載のコンピュータシステムにおいて、
前記基準画像の前記複数の関心領域を、ユーザの操作入力または自動的な処理に基づいて画面で設定する設定処理を行い、
前記設定処理は、前記ルールとして、前記基準画像の第1セル領域内の複数の関心領域について、指定した関心領域についての輝度値が、指定した輝度閾値範囲外、もしくは輝度閾値範囲内である場合に異常有りと規定するルールを設定する処理を含む、
コンピュータシステム。 - 荷電粒子ビーム装置による試料の観察画像を解析するコンピュータシステムにおける解析方法であって、
前記観察画像は、複数のセル領域を含み、各々のセル領域は、当該セル領域を構成する要素である複数の領域を含む場合があり、
前記コンピュータシステムにより実行されるステップとして、
前記観察画像の中から、ユーザが指定した、または自動的に設定した、第1セル領域を基準画像として、前記基準画像と類似する他の1つ以上の第2セル領域を類似画像として抽出する抽出処理ステップと、
前記基準画像と、抽出された前記類似画像とにおいて、前記基準画像に含まれている複数の関心領域の関係性が規定されたルールに基づいて、前記複数の関心領域を比較することで、前記類似画像のセル領域の異常の有無を判定する判定処理ステップと、
判定結果として各セル領域の位置および異常の有無をユーザに対し出力させる出力処理ステップと、
を有する、解析方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023543624A JPWO2023026489A1 (ja) | 2021-08-27 | 2021-08-27 | |
PCT/JP2021/031595 WO2023026489A1 (ja) | 2021-08-27 | 2021-08-27 | コンピュータシステムおよび解析方法 |
KR1020247006251A KR20240035886A (ko) | 2021-08-27 | 2021-08-27 | 컴퓨터 시스템 및 해석 방법 |
TW111129575A TWI823510B (zh) | 2021-08-27 | 2022-08-05 | 電腦系統及解析方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/031595 WO2023026489A1 (ja) | 2021-08-27 | 2021-08-27 | コンピュータシステムおよび解析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023026489A1 true WO2023026489A1 (ja) | 2023-03-02 |
Family
ID=85322607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/031595 WO2023026489A1 (ja) | 2021-08-27 | 2021-08-27 | コンピュータシステムおよび解析方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023026489A1 (ja) |
KR (1) | KR20240035886A (ja) |
TW (1) | TWI823510B (ja) |
WO (1) | WO2023026489A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016507058A (ja) * | 2013-01-29 | 2016-03-07 | ケーエルエー−テンカー コーポレイション | パターン化された欠陥の輪郭ベースのアレイ検査 |
JP2016508295A (ja) * | 2013-01-09 | 2016-03-17 | ケーエルエー−テンカー コーポレイション | テンプレート画像マッチングを用いたウェーハ上の欠陥検出 |
JP2016081907A (ja) * | 2014-10-17 | 2016-05-16 | 日本電子株式会社 | 電子顕微鏡及び元素マッピング画像生成方法 |
JP2018159577A (ja) * | 2017-03-22 | 2018-10-11 | 東レエンジニアリング株式会社 | 検査方法 |
WO2019207668A1 (ja) * | 2018-04-25 | 2019-10-31 | 株式会社 日立ハイテクノロジーズ | 荷電粒子線装置の照射条件決定方法、及び荷電粒線装置 |
WO2021024402A1 (ja) * | 2019-08-07 | 2021-02-11 | 株式会社日立ハイテク | 寸法計測装置、寸法計測方法及び半導体製造システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010025836A (ja) | 2008-07-23 | 2010-02-04 | Hitachi High-Technologies Corp | 外観検査方法および外観検査装置、半導体検査装置ならびに半導体ウェハの断面検査装置 |
KR102057204B1 (ko) * | 2017-12-18 | 2020-01-22 | (주)이녹스첨단소재 | 지문인식센서 칩용 보강필름, 이의 제조방법 및 이를 포함하는 지문인식센서 모듈 |
-
2021
- 2021-08-27 WO PCT/JP2021/031595 patent/WO2023026489A1/ja active Application Filing
- 2021-08-27 JP JP2023543624A patent/JPWO2023026489A1/ja active Pending
- 2021-08-27 KR KR1020247006251A patent/KR20240035886A/ko unknown
-
2022
- 2022-08-05 TW TW111129575A patent/TWI823510B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016508295A (ja) * | 2013-01-09 | 2016-03-17 | ケーエルエー−テンカー コーポレイション | テンプレート画像マッチングを用いたウェーハ上の欠陥検出 |
JP2016507058A (ja) * | 2013-01-29 | 2016-03-07 | ケーエルエー−テンカー コーポレイション | パターン化された欠陥の輪郭ベースのアレイ検査 |
JP2016081907A (ja) * | 2014-10-17 | 2016-05-16 | 日本電子株式会社 | 電子顕微鏡及び元素マッピング画像生成方法 |
JP2018159577A (ja) * | 2017-03-22 | 2018-10-11 | 東レエンジニアリング株式会社 | 検査方法 |
WO2019207668A1 (ja) * | 2018-04-25 | 2019-10-31 | 株式会社 日立ハイテクノロジーズ | 荷電粒子線装置の照射条件決定方法、及び荷電粒線装置 |
WO2021024402A1 (ja) * | 2019-08-07 | 2021-02-11 | 株式会社日立ハイテク | 寸法計測装置、寸法計測方法及び半導体製造システム |
Also Published As
Publication number | Publication date |
---|---|
TWI823510B (zh) | 2023-11-21 |
TW202309784A (zh) | 2023-03-01 |
JPWO2023026489A1 (ja) | 2023-03-02 |
KR20240035886A (ko) | 2024-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102062433B1 (ko) | 결함 정량화 방법, 결함 정량화 장치 및 결함 평가값 표시 장치 | |
JP4250898B2 (ja) | 回路パターンの検査方法及びその装置 | |
JP5081590B2 (ja) | 欠陥観察分類方法及びその装置 | |
JP4644613B2 (ja) | 欠陥観察方法及びその装置 | |
JP5452392B2 (ja) | 欠陥観察方法及び欠陥観察装置 | |
JP6078234B2 (ja) | 荷電粒子線装置 | |
US9390490B2 (en) | Method and device for testing defect using SEM | |
WO2012144183A1 (ja) | 欠陥分類方法及び欠陥分類システム | |
US20120257041A1 (en) | Method for defect inspection and apparatus for defect inspection | |
JP2001156135A (ja) | 欠陥画像の分類方法及びその装置並びにそれを用いた半導体デバイスの製造方法 | |
US20080298670A1 (en) | Method and its apparatus for reviewing defects | |
US20130108147A1 (en) | Inspection method and device therefor | |
KR20180113572A (ko) | 결함 분류 장치 및 결함 분류 방법 | |
JP2006269489A (ja) | 欠陥観察装置及び欠陥観察装置を用いた欠陥観察方法 | |
JP2005116768A (ja) | 回路パターンの検査方法および検査装置 | |
JP6049052B2 (ja) | ウエハ外観検査装置及びウエハ外観検査装置における感度しきい値設定方法 | |
KR20210086303A (ko) | 딥러닝 기반 패턴 검사 장치 및 그 장치를 이용한 검사 방법 | |
WO2023026489A1 (ja) | コンピュータシステムおよび解析方法 | |
JP2019067365A (ja) | 画像処理装置、画像処理システム、画像処理方法、及びプログラム | |
JP6403204B2 (ja) | 質量分析データ処理装置および質量分析データ処理方法 | |
JP2018091771A (ja) | 検査方法、事前画像選別装置及び検査システム | |
JP2021052047A (ja) | 欠陥検出装置及びパラメータ調整方法ならびにパラメータ調整システム | |
JP2008096143A (ja) | Tftアレイ基板検査装置 | |
JP2017003305A (ja) | 欠陥画像分類装置 | |
US20160086767A1 (en) | Information Processing Device and Information Processing Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21955098 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023543624 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20247006251 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247006251 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21955098 Country of ref document: EP Kind code of ref document: A1 |