WO2023025224A1 - 一种直拉单晶制程中的自动控制吸料的方法 - Google Patents

一种直拉单晶制程中的自动控制吸料的方法 Download PDF

Info

Publication number
WO2023025224A1
WO2023025224A1 PCT/CN2022/114685 CN2022114685W WO2023025224A1 WO 2023025224 A1 WO2023025224 A1 WO 2023025224A1 CN 2022114685 W CN2022114685 W CN 2022114685W WO 2023025224 A1 WO2023025224 A1 WO 2023025224A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
tooling
value
single crystal
crucible
Prior art date
Application number
PCT/CN2022/114685
Other languages
English (en)
French (fr)
Inventor
赵子龙
王建平
项龙
刘振宇
许建
王林
Original Assignee
Tcl中环新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl中环新能源科技股份有限公司 filed Critical Tcl中环新能源科技股份有限公司
Priority to US18/161,898 priority Critical patent/US20230167578A1/en
Publication of WO2023025224A1 publication Critical patent/WO2023025224A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the disclosure belongs to the technical field of solar photovoltaic single crystal pulling, and in particular relates to an automatic control material suction method in the Czochralski single crystal manufacturing process.
  • Some embodiments of the present disclosure provide an automatic control material suction method in the Czochralski single crystal manufacturing process, which can accurately determine the material suction conditions, and solve the technical problem of low efficiency of the existing manual material suction tooling.
  • One aspect of the present disclosure provides an automatic control suction method in a Czochralski single crystal manufacturing process, the method comprising:
  • both the lifetime value and the resistivity are test values at the same position of the drawn single crystal silicon rod head.
  • the set value of the lifetime value is 120-125us.
  • the set value of the ratio of the lifetime value to the resistivity is 150-250.
  • section suction procedure specifically includes:
  • a cooling process is automatically performed on the single crystal silicon rod being drawn.
  • said increasing the power of the main heater and the power of the bottom heater includes:
  • the power of the main heater is 10-15kw higher than that of the main heater during seeding
  • the power of the bottom heater is 15-20kw higher than that of the bottom heater during seeding
  • the power of the main heater and the bottom heater are fixed values during material suction until the end of material suction.
  • the suction process the steps include:
  • step of stepwise preheating the suction tooling includes:
  • the purification of the auxiliary chamber it also includes judging whether the suspension of the suction tooling is stable, and the steps include:
  • the purification of the auxiliary chamber includes:
  • the step of absorbing the remaining material at the bottom of the pot includes:
  • the quartz crucible stops rotating, and the suction tool is left still
  • the suction of the remaining material at the bottom of the crucible also includes cooling the suction tooling after suction, and the steps include:
  • Another aspect of the present disclosure provides a method for automatically controlling material suction in the Czochralski single crystal process, the method comprising: obtaining the life value and resistivity of the drawn single crystal silicon rod; The life value of the single crystal silicon rod and the ratio of the life value to the resistivity determine whether the drawn single crystal silicon rod is qualified or not. When the drawn single crystal silicon rod is unqualified, the section suction procedure is executed.
  • the material suction conditions can be accurately judged and work efficiency can be improved.
  • FIG. 1 is a flow chart of an automatic control suction method in a Czochralski single crystal manufacturing process according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating an apparatus for performing a process of pulling a single crystal silicon rod according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating an apparatus for performing a suction process according to an embodiment of the present disclosure.
  • taking segment refers to the procedure of taking out the single crystal silicon rod being pulled or completed from the pulling equipment of the single crystal silicon rod
  • re-casting means During the operation of the pulling equipment for single crystal silicon rods, the raw materials used to form single crystal silicon rods are put into the pulling equipment again.
  • suction refers to the procedure of taking out the remaining materials in the crucible.
  • This embodiment proposes an automatic control material suction method in the Czochralski single crystal manufacturing process, as shown in Figure 1, the steps include:
  • the minority carrier lifetime value and resistivity value of the silicon rod head are the maximum value in the whole single crystal, so in the selection judgment When , select the life value and resistivity of the single crystal silicon rod to be the life value and resistivity of the end face near the head, and the life value and resistivity are the test values at the same position.
  • the existing judgment method is to consider the life value or/and resistivity value, that is, only use the life value as the sole judgment standard, or only use the resistivity as the sole judgment standard, or use the life value and resistivity together as the judgment standard. If only the life value is considered, if the low life value is caused by low resistivity rather than metal impurities, then it will be mistaken for a problem with this parameter, which will degrade the product and cause losses. If only the resistivity is the only judgment condition, although the lifetime value is roughly proportional to the resistivity, but for the reduction of the lifetime value caused by metal impurities, the resistivity does not change due to the stability of the dopant, that is, The resistivity is qualified.
  • the resistivity is only judged to be qualified, the quality of the wafer bar is considered to be qualified; this will cause a misjudgment of the quality of the wafer bar, resulting in waste products entering the good product, affecting the yield.
  • the wafer bar under the two conditions will be unqualified, which will cause greater losses.
  • the life value and the ratio of the life value to the resistivity for evaluation will not only prevent the probability of misjudgment of product degradation, but also avoid the possibility of judging rejected products as good products. Moreover, it can more accurately judge the consistency between the product parameters of the wafer bar and the actual product quality.
  • the selection of the life value near the end surface of the head and the ratio of the life value to the resistivity it is because the life value and resistivity of the head are the optimal technical parameters of the whole single crystal, once the technical parameters of the head position do not meet requirements, the life value and resistivity of the entire single crystal silicon rod must be unqualified, that is to say, the technical parameters of the head are the criteria for judging the entire single crystal.
  • the life value is the test value of the center position of the end face of the silicon rod head; the resistivity is the average value of the multi-point test values.
  • the system calculates the life value of the monocrystalline silicon rod and the ratio of the life value to the resistivity, and judges the life value and the ratio of the life value to the resistivity of the drawn single crystal silicon rod.
  • life value and the ratio of the life value to the resistivity are greater than the corresponding set value, then continue to perform the re-casting and drawing procedure;
  • the set value of the life value is 120-125us; the set value of the ratio of the life value to the resistivity is 150-250.
  • the above set values can be changed and adjusted according to the specific process conditions and requirements of the Czochralski single crystal manufacturing process, and are not limited to this range.
  • any of the results is greater than the set value, it means that the quality of the single crystal silicon rod is qualified, then continue to execute the re-casting and drawing procedure, that is, continue to complete the single crystal silicon rod being drawn, and after the drawing is completed, then Make a reinvestment.
  • the crucible position of the quartz crucible is controlled to drop to the set suction position.
  • the crucible position of the quartz crucible is reduced to a distance of The height of the zero position of the quartz crucible is 280mm, wherein the zero position of the quartz crucible is the position where the upper edge of the quartz crucible is flush with the upper edge of the main heater.
  • the power of the main heater and the power of the bottom heater are fixed values until the end of suction.
  • the cooling and cooling process is automatically performed on the single crystal silicon rod being drawn, that is, during the lifting process of lifting the single crystal silicon rod, it is slowly lifted to leave the main chamber to In the sub-chamber, let it stand in the main room and the sub-chamber for several minutes to cool down the single crystal silicon rod.
  • the isolation valve of the auxiliary chamber is closed, and then the auxiliary chamber is controlled to unscrew, and the single crystal silicon rod is placed in the crystal extraction barrel to cool.
  • the safe range may represent a situation where the weight of the remaining material in the quartz crucible is greater than a predetermined weight (eg, 25 kg).
  • a predetermined weight eg, 25 kg
  • the embodiments of the present disclosure are not limited thereto, and the term "safety range" is only for the purpose of description, and is not intended to limit the present disclosure.
  • the safe range may also indicate that the weight of the remaining material in the quartz crucible is less than or equal to a predetermined weight (for example, 25kg). At this time, if the remaining material in the quartz crucible is within the safe range, then perform suction If the material process is not within the safe range, continue the drawing process until the remaining material is within the safe range.
  • the minimum recognition position is 2000-2400mm higher than the zero position of the seed crystal.
  • the zero position of the seed crystal is the position where the lower surface of the graphite chuck (refer to 340 in FIG. 2 ) of the seed crystal is flush with the lower surface of the guide tube (refer to 160 in FIGS. 2 and 3 ).
  • the suction tooling is automatically controlled to drop to a position 1600-1800mm from the zero height of the seed crystal.
  • the system will automatically alarm, indicating that the material suction tool is not stable, and will prompt the operator to switch to manual control of the material suction tool stability control.
  • Purify and isolate the auxiliary room that is, the suction tooling is still suspended and isolated at the minimum identification position in the auxiliary room, and the air in the auxiliary room is purified at the same time.
  • the purification time and air pressure are preset procedures and executed automatically.
  • the isolation valve on the auxiliary chamber is opened to control the suction tooling to enter the main chamber.
  • Stepwise preheating is performed on the suction tooling.
  • the preheating time of each time will be extended by 4-10 minutes compared with the last time.
  • the system automatically controls the suction tooling to descend to a position at a height of 500-600 mm from the zero height of the seed crystal.
  • the first preheating position is at the water cooling jacket (see 150 in Fig. 2 and Fig. 3 )
  • the interior is set near the lower end surface, and the lower end surface of the suction tooling is also inside the water cooling jacket; and the first preheating time is 1-2min. Because the suction tooling enters the high-temperature main room directly from the auxiliary room at room temperature, step heating prevents the material suction tool from bursting due to heating.
  • the material suction tooling continues to descend and falls to a position at a height of 300-350 mm from the zero height of the seed crystal.
  • the second preheating position is below the draft tube, and the heating time at this position is 5-9min.
  • the system controls the suction tooling to descend until it contacts the liquid surface of molten silicon.
  • the standard for the system to judge whether the material suction tool is in contact with the liquid surface is whether it receives an alarm from the contact voltage of the material suction tool. Since the materials of heavy hammer molybdenum and suction tooling are all conductive materials, and molten silicon is also conductive material, when the three are connected, a conductive body will be formed.
  • the standard for setting the contact voltage is 0-10V. Once it exceeds this range, it will send out Beep beeping alarm sound, when the suction tool is in contact with the molten silicon liquid surface, the contact voltage value is negative, and the alarm will appear.
  • the system When the system receives the alarm of the contact voltage of the suction tooling, it will automatically adjust the height of the suction tooling up to 1-5mm from the liquid level, and carry out the third static preheating of the suction tooling, and the preheating time is 5- 9min.
  • the lifting height of the suction tooling from the liquid surface and the preheating time can be changed and adjusted based on specific process conditions and requirements, and are not limited to this range.
  • the system again controls the suction tooling to drop to the liquid surface, and judges whether the suction tooling is in contact with the liquid surface.
  • the contact voltage will give an alarm.
  • the system will automatically adjust the crucible speed of the quartz crucible to 1r/min, indicating that the preheating is complete.
  • the system automatically adjusts the rotation of the quartz crucible, which can be changed and adjusted based on specific process conditions and requirements, and is not limited to this value.
  • the system automatically controls the quartz crucible to stop rotating from the original 1r/min, and the material suction tool remains still.
  • the system is set to automatically exit the pressure control program, and quickly pressurize the auxiliary chamber to the standard suction pressure value. That is to say, when exiting the pressure control program, the system controls the opening of the throttle valve charging the main chamber to jump to 0%, and automatically opens the fast filling valve and closes the ball valve. Quickly pressurize the furnace body of the main chamber to 190-200torr, make the pressure on the outer wall of the suction tooling greater than the pressure in its inner cavity, and cause a pressure difference in the suction tooling, thereby forcing the solution to be sucked into the inner cavity of the suction tooling .
  • the ball valve After the suction is completed, the ball valve will be opened automatically, and the opening of the throttle valve will be opened to 15%.
  • the suction tooling carrying the remaining material rises into the water-cooling jacket, that is, when the height from the zero position of the seed crystal is 300-350 mm, it is left to cool for 15-20 minutes, so that the molten material can be cooled in the main chamber. Gradually solidify in the suction tooling.
  • the fast filling valve is automatically closed and the pressure control program is started to ensure that the pressure in the main chamber is within the controllable range.
  • the auxiliary chamber is reset to prepare for the next step of re-injection.
  • FIG. 2 is a schematic diagram illustrating an apparatus for performing a process of pulling a single crystal silicon rod according to an embodiment of the present disclosure
  • FIG. The schematic diagram of the equipment for performing the suction process according to the embodiment will be described in detail below with reference to FIGS. 1 to 3 , wherein FIG. 2 is a schematic diagram illustrating an apparatus for performing a process of pulling a single crystal silicon rod according to an embodiment of the present disclosure, and FIG. The schematic diagram of the equipment for performing the suction process according to the embodiment.
  • the measured lifetime value and resistivity of the head end face of the first monocrystalline silicon rod are 138us and resistivity 0.3 ⁇ m, respectively.
  • life value of 138us is greater than the set value of 120-125us (for example, in this embodiment, the set value of 120us is used as an example for description); and the ratio of life value to resistivity is 460, which is greater than the set value of 150 -250 (for example, in this embodiment, the set value of 250 is used as an example for description).
  • the lifetime value of the first single crystal and the ratio of lifetime value to resistivity are all qualified, meeting the parameter requirements of the crystal, continue to operate the single crystal silicon rod being pulled, and continue to perform the re-casting and pulling procedure.
  • life value of the second single crystal and the ratio of life value to resistivity are all qualified, meeting the parameter requirements of the crystal, continue to operate the single crystal silicon rod being pulled, and continue to perform the re-casting and pulling process.
  • the lifetime value 120us is equal to the lower limit value 120us among the set values 120-125us; and the ratio of the lifetime value to the resistivity is 240, which is within the range of the set value 150-250.
  • any one of the life value, life value and resistivity is not greater than the set value, it means that the quality of the single crystal silicon rod is unqualified and does not meet the parameter requirements of the crystal.
  • the segment extraction procedure that is, after the drawing of the fourth single crystal silicon rod 310 is completed, the segment extraction process starts.
  • the crucible position of the quartz crucible 120 is lowered to a height of 280 mm from the zero position of the quartz crucible.
  • the isolation valve 220 of the auxiliary chamber is closed, and then the auxiliary chamber 210 is controlled to unscrew, and the single crystal silicon rod 310 is placed in a crystal extraction bucket to cool.
  • the measured remaining material in the quartz crucible 120 is 15kg, which is less than the standard 25kg, and the next step of material suction process is started.
  • the auxiliary chamber 210 is tightened.
  • the material suction tooling 320 is automatically raised to a position 2400 mm above the zero position of the seed crystal.
  • the material suction tooling 320 is automatically controlled to descend to a position 1800 mm above the zero height of the seed crystal.
  • the position and height of the fixed suction tooling 320 remain unchanged, and the secondary chamber 210 is purified and isolated.
  • the isolation valve 220 on the auxiliary chamber 210 is opened to control the suction tool 320 to enter the main chamber 110 .
  • the system controls the suction tooling 320 to descend until it contacts the liquid surface of molten silicon.
  • the system When the system receives the alarm of the contact voltage of the suction tooling 320, it automatically adjusts the suction tooling 320 to lift up to a position 5 mm above the liquid level, and preheats the suction tooling 320 for the third time for 5 minutes.
  • the system again controls the suction tooling 320 to drop to the liquid level.
  • the system When receiving the contact voltage alarm of the suction tooling 320, the system automatically adjusts the crucible rotation of the quartz crucible 120 to 1r/min, and the preheating is completed.
  • control the material suction tooling 320 When receiving the contact voltage alarm of the material suction tooling, control the material suction tooling 320 to drop to a position within 20 mm of the contact liquid surface.
  • the system automatically controls the quartz crucible 120 to directly stop rotating from the original 1r/min, and controls the suction tooling 320 to stand still.
  • the material suction tooling 320 After the material suction tooling 320 arrives at the designated position, it enters into the pressurization and material suction process. At this time, the system automatically closes the pressure control program, the throttle valve returns to 0, the crucible returns to 0, the ball valve is closed, and the fast filling valve is opened to start material suction; when the main chamber 110 After the furnace pressure in the furnace reaches 200torr, the fast charging valve is closed, the ball valve is automatically opened, the throttle valve jumps 15%, and the pressure control module is automatically opened.
  • the quick-fill valve is automatically closed, and the pressure control program is started to ensure that the pressure in the main chamber 110 is within a controllable range.
  • the material suction conditions can be accurately judged, no human intervention is required, human errors are minimized, work efficiency is improved, and the operation time is shortened from the present Some 3-4 hours for two people are shortened to 1-2 hours for a single person; and it can also ensure the integrity of the suction material, so that the suction tooling can be reused many times, and the production progress is improved.
  • the system will automatically close the pressure control program, the throttle valve will return to 0, and the crucible will return to 0. Close the ball valve, open the fast charging valve, and start suction; when the furnace pressure in the main chamber reaches 200torr, close the fast charging valve, the ball valve will automatically open, the throttle valve will jump 15%, and the pressure control module will be automatically opened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种直拉单晶制程中的自动控制吸料方法,步骤包括:获取已拉制完成的单晶硅棒的寿命值和电阻率;判断所述已拉制完成的单晶硅棒的所述寿命值以及所述寿命值与所述电阻率之比,若所述寿命值以及所述寿命值与所述电阻率之比均大于对应的设定值,则继续执行复投拉制程序;若所述寿命值或/和所述寿命值与所述电阻率之比不大于对应的设定值,则执行取段吸料程序。

Description

一种直拉单晶制程中的自动控制吸料的方法
相关申请的交叉引用
本申请要求于2021年8月25日在中国国家知识产权局提交的第202110983854.6号中国专利申请的优先权和权益,所述中国专利申请的公开内容通过引用全部包含于此。
技术领域
本公开属于太阳能光伏单晶拉制的技术领域,尤其是涉及一种直拉单晶制程中的自动控制吸料方法。
背景技术
现有单晶拉制中,为降本增效,均采用取段复投的方式进行拉制。而多次取段复投会导致埚内剩料中的金属等杂质聚集,使下颗次单晶少子寿命大幅降低,影响单晶品质及有效产量。而且一旦出现少子寿命寿命异常后必然会直接停炉,从而使开炉成本增加,造成减利。吸出埚底料可及时终止单晶硅棒不良率的产生,但目前行业中主要是通过人工操作进行吸料操作,不仅效率低、吸料时间长,因人员操作熟练程度不同,导致吸料效果差。现有人工吸料一次耗费的时间为双人3-4h,严重影响生产进度和生产效率。
发明内容
技术问题
本公开的一些实施例提供了一种直拉单晶制程中的自动控制吸料方法,可精准判断吸料条件,解决了现有人工操作吸料工装效率低的技术问题。
技术解决方案
本公开的一方面提供了一种直拉单晶制程中的自动控制吸料方法,所述方法包括:
获取已拉制完成的单晶硅棒的寿命值和电阻率;
判断所述已拉制完成的单晶硅棒的所述寿命值以及所述寿命值与所述电阻率之比,
若所述寿命值以及所述寿命值与所述电阻率之比均大于对应的设定值,则继续执行复投拉制程序;
若所述寿命值或/和所述寿命值与所述电阻率之比不大于对应的设定值,则执行取段吸料程序。
进一步的,所述寿命值和所述电阻率均为所述已拉制完成的单晶硅棒头部的同一位置的测试值。
进一步的,所述寿命值的设定值为120-125us。
进一步的,所述寿命值与所述电阻率之比的设定值为150-250。
进一步的,所述取段吸料程序具体包括:
判断石英坩埚内的剩料是否在安全范围内;
若是,继续执行拉制单晶硅棒,直至石英坩埚内的剩料重量不大于25kg;
若不是,停止单晶硅棒拉制,开始执行吸料工艺。
进一步的,在执行吸料工艺之前,包括:
取出正在拉制的最后一颗单晶硅棒离开熔硅液面后,
控制石英坩埚的埚位降至设定吸料位置处;并
提高主加热器功率和底加热器功率;
当所述石英坩埚的转速降至1-2r/min时,
对所述正在拉制中的单晶硅棒自动执行冷却降温工艺。
进一步的,所述提高主加热器功率和底加热器功率包括:
所述主加热器功率为较引晶时主加热器功率高10-15kw,且
所述底加热器功率为较引晶时底加热器功率高15-20kw;
吸料时所述主加热器功率和所述底加热器功率为固定值,直至吸料结束。
进一步的,所述吸料工艺,步骤包括:
副室净化;
对用于吸料的吸料工装进行阶梯性预热;
吸取埚底剩料。
进一步的,对所述吸料工装进行阶梯性预热的步骤包括:
预设至少两次对所述吸料工装进行静置预热,并随所述吸料工装下降深度 的增加,每次静置预热的时间都较上一次延长4-10min;
控制所述吸料工装下降并判断所述吸料工装是否与液面接触;
当收到所述吸料工装的接触电压报警时,调整所述吸料工装向上提升1-5mm,再次静置预热一定时间;
再次控制所述吸料工装降至液面上,并判断所述吸料工装是否与液面接触;
当收到所述吸料工装的接触电压报警时,调整所述石英坩埚的埚转为1r/min,预热完成。
进一步的,在所述副室净化之前,还包括判断吸料工装悬吊是否稳定,步骤包括:
先识别并确定是否有所述吸料工装;
再判断所述吸料工装是否晃动;
若是,报警提示转为手动稳定控制;
若不是,执行所述副室净化程序。
进一步的,所述副室净化包括:
控制所述吸料工装提升至最小识别位置(或预定位置);
对所述副室净化隔离;
再打开所述副室上的隔离阀,控制所述吸料工装进入主室中。
进一步的,所述吸取埚底剩料,步骤包括:
当收到所述吸料工装的接触电压报警时,控制所述吸料工装下降至接触液面内20-45mm;
所述石英坩埚停止转动,且所述吸料工装静置;
退出压力控制程序,并快速向所述副室进行充压至标准吸料压力值,开始吸料;
当吸料后的所述吸料工装的重量大于其吸料前的重量并稳固不动时,吸料完成。
进一步的,所述吸取埚底剩料还包括对吸料后的所述吸料工装进行冷却,步骤包括:
启动所述石英坩埚转速低速转动;
载有剩料的所述吸料工装上升至水冷套内时,均静置冷却一段时间;
上升至所述副室内并至识别位置最低点(或预定位置),再静置冷却一段时间,且较在所述水冷套内冷却时间长;
启动压力控制程序;
旋开所述副室并取出所述吸料工装。
本公开的另一方面提供了一种直拉单晶制程中自动控制吸料的方法,所述方法包括:获取已拉制完成的单晶硅棒的寿命值和电阻率;根据已拉制完成的单晶硅棒的寿命值以及寿命值与电阻率之比确定已拉制完成的单晶硅棒是否合格,当已拉制完成的单晶硅棒不合格时,执行取段吸料程序。
有益效果
采用本公开设计的一种直拉单晶制程中的自动控制吸料方法,可精准判断吸料条件,提高工作效率。
附图说明
图1是本公开一实施例的一种直拉单晶制程中的自动控制吸料方法的流程图。
图2是示出根据本公开的实施例的执行拉制单晶硅棒工艺的设备的示意图。
图3是示出根据本公开的实施例的执行吸料工艺的设备的示意图。
本发明的实施方式
下面结合附图和具体实施例对本公开进行详细说明。
需要说明的是,在本公开的实施例中,术语“取段”表示从单晶硅棒的拉制设备中取出正在拉制或已完成的单晶硅棒的程序,术语“复投”表示在单晶硅棒的拉制设备运行过程中将用于形成单晶硅棒的原料再次投放到拉制设备中的程序,术语“吸料”表示将坩埚中的剩料取出的程序。
本实施例提出一种直拉单晶制程中的自动控制吸料方法,如图1所示,步骤包括:
S1、判断是否符合取段吸料。
S11、获取已拉制完成的单晶硅棒的寿命值和电阻率,并继续操作正在拉制中的单晶硅棒。
每拉完一颗单晶硅棒,都需要对其少子寿命值和电阻率进行检测,一般硅棒头部的少子寿命值和电阻率值是整颗单晶中的最大值,故在选择判断时,选择该颗单晶硅棒的寿命值和电阻率均为其靠近头部端面的寿命值和电阻率,且寿命值和电阻率均是同一位置处的测试值。
现有判定方式是考虑寿命值或/和电阻率的数值,即仅用寿命值作为唯一判定标准、或仅用电阻率作为唯一判断标准、或采用寿命值和电阻率一起作为判断标准。若仅考虑寿命值,如果是电阻率低而导致的寿命值低,而不是金属杂质导致的寿命值低,则这样就会误认为该参数有问题,使产品降级,造成损失。若仅以电阻率为唯一判断条件,虽然寿命值与电阻率大体上是成正比,但对于因金属杂质而导致的寿命值降低,电阻率由于掺杂剂的稳定而未发生变化,也即是电阻率是合格的,对于该类情况,若仅仅是通过判断电阻率合格,则认为该颗晶圆棒质量合格;这样会造成误判晶圆棒质量,导致废品进入良品中,影响成品率。而,如上述两种情况,若既按照寿命值又按照电阻率进行评判,则两种条件下的晶圆棒都不合格,则会造成更大的损失。
故,选择采用寿命值和寿命值与电阻率比值来进行评判,不仅会防止出现误判产品降级的概率,也避免使废品判为良品的可能。而且更能精准判断该颗晶圆棒的产品参数与实际产品质量的一致性。而对于选择靠近头部端面的寿命值及寿命值与电阻率之比,是由于头部的寿命值和电阻率是整颗单晶的最优技术参数,一旦头部位置的技术参数都不符合要求,则整颗单晶硅棒的寿命值和电阻率都肯定不合格,也即是头部技术参数是整颗单晶的判定基准。在测试时,寿命值为硅棒头部端面的中心位置的测试值;电阻率为多点测试值的平均值。
S12、判断该颗已拉制完成的单晶硅棒的寿命值以及其寿命值与电阻率之比是否合格。
在获得该颗单晶硅棒测得的寿命值和电阻率后,手动将数据输入程序中,系统会自动存储并识别筛选出所有该类尺寸硅棒的优选且较集中出现的寿命值。
系统算出该颗单晶硅棒的寿命值以及寿命值与电阻率之比,判断已拉制完成的单晶硅棒的寿命值及寿命值与电阻率之比,
若寿命值以及寿命值与所述电阻率之比均大于对应的设定值,则继续执行复投拉制程序;
若寿命值或/和寿命值与电阻率之比不大于对应的设定值,即对于寿命值和寿命值与电阻率之比,只要有一项不大于对应的设定值,则执行取段吸料程序。
其中,寿命值的设定值为120-125us;寿命值与电阻率之比的设定值为150-250。本领域技术人员应当理解,上述设定值可以根据具体的直拉单晶制程的工艺条件和要求进行变化和调整,并不限于必须在此范围之内。
若任一个结果出现大于设定值时,表示该颗单晶硅棒的质量合格,则继续执行复投拉制程序,即继续完成正在拉制的单晶硅棒,并拉制完成后,再进行复投。
每拉出一颗单晶硅棒,都要对其寿命值或者寿命值与电阻率之比进行判断,直至其结果小于设定值,再执行“取段吸料程序”。
S2、取段吸料程序。
S21、取出正在拉制中的单晶硅棒。
取出正在拉制的最后一颗单晶硅棒离开熔硅液面后,则开始控制石英坩埚的埚位降至设定吸料位置处,在本实施例中,石英坩埚的埚位降至距离石英坩埚零位位置的高度为280mm,其中石英坩埚的零位位置是石英坩埚的上沿面与主加热器上沿面平齐的位置。
同时,提高主加热器功率和底加热器功率,使主加热器功率为较引晶时主加热功率高10-15kw,且底加热器功率为较引晶时主加热功率高15-20kw,此时主加热器功率和底加热器功率为固定值,直至吸料结束。
当石英坩埚的转速降至1-2r/min时,对正在拉制中的单晶硅棒自动执行冷却降温工艺,即在吊取单晶硅棒上升过程中,缓慢提升使其离开主室至副室内,并使其在主室和副室中,多次静置冷却若干分钟,以完成该颗单晶硅棒的冷却降温。
待单晶硅棒进入副室内时,即关闭副室的隔离阀,再控制副室旋开,将该单晶硅棒放置在取晶桶中冷却。
S22、判断石英坩埚内的剩料重量是否在安全范围内。
在执行取段吸料时,需要提前判断石英坩埚内的剩料是否大于25kg,若是,即测得的石英坩埚内的剩料大于25kg,则继续执行单晶硅棒的拉制,直至其剩料小于或等于25kg。
若不是,则停止拉制单晶硅棒,开始执行下一步的吸料工艺。
在公开的实施例中,安全范围可以表示石英坩埚内的剩料的重量大于预定重量(例如,25kg)的情况。然而,本公开的实施例不限于此,术语“安全范围”仅是为了描述的目的,而不意图限定本公开。在其他实施例中,安全范围也可以表示石英坩埚内的剩料的重量小于或等于预定重量(例如,25kg)的情况,此时,若石英坩埚内的剩料在安全范围内,则执行吸料工艺,若不在安全范围内,则继续进行拉制工艺,直至剩料在安全范围内。
S23、吸料工艺。
S231、安装并稳定吸料工装。
手动拆卸安装在重锤上的籽晶夹头工装,再手动安装吸料工装。
待安装完吸料工装后,旋紧副室。
判断识别吸料工装成功安装,具体地,快速地将吸料工装自动上升至安装于副室与主室连接隔离阀上的远程红外线的传感器所能识别的最小高度位置处(或副室内不影响隔离阀的最低位置处),优选地,该最小识别位置相对于籽晶零位高2000-2400mm。其中,籽晶零位为籽晶的石墨夹头(参见图2中的340)下沿面与导流筒(参见图2和图3中的160)下沿面齐平的位置。
当识别成功后,再自动控制吸料工装下降至距离籽晶零位高的1600-1800mm处。
再通过设置在主室外侧壁上的CCD观察窗判断吸料工装是否晃动,具体如下:
在设定时间内,若监控到吸料工装仍然晃动,则系统自动报警,表示吸料工装未稳定,将提示操作人员转为手动控制吸料工装稳定控制。
若不是,则表示吸料工装已稳定被吊装,系统自动执行下一步的副室净化程序。
S232、副室净化。
控制吸料工装再提升至最小识别位置2000-2400mm处,此时副室的隔离阀仍关闭。
对副室净化隔离,即吸料工装仍被悬吊隔离在副室内的最小识别位置处,同时对副室内的空气进行净化,净化时间及气压均为预设程序,自动执行。
待副室净化完成后,再打开副室上的隔离阀,控制吸料工装进入主室中。
S233、对吸料工装进行阶梯性预热。
预设至少两次对吸料工装进行静置预热,并随吸料工装下降深度的增加,每次静置预热的时间都较上一次延长4-10min。
具体地,系统自动控制吸料工装先下降至距离籽晶零位高度为500-600mm高度的位置处,优选地,第一次预热位置在水冷套(参见图2和图3中的150)内部靠近下端面一侧设置,且吸料工装的下端面亦在水冷套内部;且第一次预热的时间为1-2min。因吸料工装从室温的副室直接进入高温的主室内,阶梯加热避免加热导致吸料工装出现爆裂现象。
而后,吸料工装再继续下行,降至距离籽晶零位高度为300-350mm高度的位置处,优选地,第二次预热的位置是导流筒的下方,在此位置加热的时间为5-9min。
待二次预热完成后,系统控制吸料工装下降直至与熔硅液面接触。系统判断吸料工装与液面接触的标准是是否收到吸料工装的接触电压的报警。由于重锤钼、吸料工装的材料都是导体材料,且熔硅也是导体材料,当三者连通后即会形成导电体,设置接触电压的标准是0-10V,一旦超出这个范围就会发出嘀嘀嘀的报警声,当吸料工装与熔硅液面接触时,接触电压值为负值,即会出现报警。当系统收到吸料工装的接触电压的报警时,即自动调整吸料工装向上距离液面提升1-5mm的高度,对吸料工装进行第三次静置预热,预热时间为5-9min。使吸料工装通过阶梯性的加热后整体的温度达到与熔硅液面的温度相适配,保证熔硅进入吸料工装后不会因吸料工装的温度过低而出现速冷凝固, 不利于所有溶液的流动收集;同时还避免因吸料工装热胀冷缩受热加热不均出现裂纹而导致漏硅现象。本领域技术人员应当理解,静置预热时,吸料工装距离液面的提升高度以及预热时间均可基于具体的制程条件和要求进行变化和调整,并不限于必须在此范围之内。
待第三次阶梯温度完成后,系统再次控制吸料工装降至液面上,并判断吸料工装是否与液面接触。
一旦吸料工装与液面接触,则接触电压即会出现报警,当收到吸料工装的接触电压报警时,系统自动调整石英坩埚的埚转为1r/min,表示预热完成。
本领域技术人员应当理解,当收到吸料工装的接触电压报警时,系统自动调整石英坩埚的埚转可基于具体的制程条件和要求进行变化和调整,并不限于必须为此数值。
S234、充压、吸取埚底剩料。
当收到吸料工装的接触电压报警时,控制吸料工装下降至接触液面内20-45mm,也即是吸料工装下降至距离液面20-45mm内,以使吸料工装的吸头完全没入溶液内,从而保证吸料工装内腔的密封性及安全性。
吸料工装下降没入完成后,则系统自动控制石英坩埚从原来的1r/min直接停止转动,并吸料工装静止不动。
系统设置自动退出压力控制程序,并快速地向副室进行充压至标准吸料压力值。也即是当退出压力控制程序的同时,系统控制向主室内充压的节流阀的开度跳转为0%,并自动开启快充阀,关闭球头阀。迅速向主室的炉体内加压至190-200torr时,使吸料工装外壁的压力大于其内腔的压力,使吸料工装出现压力差,从而可迫使溶液被吸料工装中的内腔吸入。
完成吸料后,再自动开启球头阀,并使节流阀的开度开到15%。
当监控吸料工装的重力传感器监控到吸料后的吸料工装的重量大于其吸料前的重量,且吸料工装稳固不动时,表示吸料完成。
S235、对吸料后的吸料工装进行冷却。
启动石英坩埚转速低速转动,并保持在1r/min;同时控制吸料工装自动缓慢地向上阶梯地升高并静置冷却一段时间。
具体地,载有剩料的吸料工装上升至水冷套内时,也即是距离籽晶零位的高度为300-350mm时,静置冷却15-20min,以使在主室内使熔料在吸料工装内逐步凝固。
旋开副室的隔离阀,使载有剩料的吸料工装上升至副室内并至识别位置的最低点,也即是距离籽晶零位高度2000-2400mm处时,再静置冷却20-25min,副室内的温度较主室内的温度较低,同时有利于吸料工装的散热,由于进入吸料工装内腔中的熔料仍然有一定的余温,故需要再进一步延长其冷却时间,且较在水冷套内冷却时间长,使熔硅料完全凝固在吸料工装内腔中。
待吸料工装二次冷却完成后,再自动关闭快充阀,并启动压力控制程序,以保证主室内的压力在适控范围内。
旋开副室并取出载有剩料的吸料工装。
至此完成自动吸料的工作。
再手动取出吸料工装;副室复位,准备下一步的复投工作。
下面以拉制直径为300mm的单晶硅棒作为一个优选的实施例来进一步说明本申请的自动控制吸料方法:
下面将结合图1至图3来详细描述上述方法,其中,图2是示出根据本公开的实施例的执行拉制单晶硅棒工艺的设备的示意图,图3是示出根据本公开的实施例的执行吸料工艺的设备的示意图。
实施例一:
S1、判断是否符合取段吸料。
S11、获取已拉制完成的第一颗单晶硅棒的寿命值和电阻率,并继续操作正在拉制中的单晶硅棒。
测得第一颗单晶硅棒的头部端面的寿命值和电阻率分别为138us、电阻率为0.3Ω·m。
S12、判断第一颗单晶硅棒的寿命值以及其寿命值与电阻率之比是否合格。
由S11可知,寿命值138us大于设定值120-125us(例如,本实施例中以120us的设定值为例进行描述);且寿命值与电阻率之比为460,大于设定值为150-250(例如,本实施例中以250的设定值为例进行描述)。
则表示第一颗单晶的寿命值以及寿命值与电阻率之比都合格,满足晶体的参数要求,继续操作正在拉制中的单晶硅棒,并继续执行复投拉制程序。
S13、获取已拉制完成的第二颗单晶硅棒的寿命值和电阻率,并继续操作正在拉制中的单晶硅棒。
待第二颗单晶硅棒拉制完成后,对其寿命值及电阻率进行测试,测得其寿命值为130us、电阻率为0.4Ω·m。
S14、判断第二颗单晶硅棒的寿命值以及其寿命值与电阻率之比是否合格。
由S13可知,寿命值130us大于设定值120-125us;且寿命值与电阻率之比为325,大于设定值为150-250。
则表示第二颗单晶的寿命值以及寿命值与电阻率之比都合格,满足晶体的参数要求,继续操作正在拉制中的单晶硅棒,并继续执行复投拉制程序。
S15、获取已拉制完成的第三颗单晶硅棒的寿命值和电阻率,并继续操作正在拉制中的单晶硅棒310。
待第三颗单晶硅棒拉制完成后,对其寿命值及电阻率进行测试,测得其寿命值为120us、电阻率为0.5Ω·m。
S16、判断第三颗单晶硅棒的寿命值以及其寿命值与电阻率之比是否合格。
由S15可知,寿命值120us等于设定值120-125us中的下限值120us;且寿命值与电阻率之比为240,在设定值150-250的范围内。
则表示第三颗单晶的寿命值以及寿命值与电阻率之比都不合格。
若寿命值以及寿命值与电阻率任一个结果出现不大于设定值时,则表示该颗单晶硅棒的质量不合格,不满足晶体的参数要求,继续操作正在拉制中的第四颗单晶硅棒310,统跳转至“取段吸料程序”,也即是待第四颗单晶硅棒310拉制完成后,即开始执行取段吸料。
S2、取段吸料程序。
S21、取出正在拉制中的单晶硅棒310。
取出正在拉制的最后一颗单晶硅棒310离开熔硅液面后,并使石英坩埚120的埚位降至距离石英坩埚零位位置的高度为280mm。
同时,提高主加热器130的功率和底加热器140的功率,使主加热器130 的功率为较引晶时主加热器功率高10-15kw,且底加热器140的功率为较引晶时底加热器功率高15-20kw。
当石英坩埚120的转速降至1r/min时,对正在拉制中的单晶硅棒310自动执行冷却降温工艺。
待单晶硅棒310进入副室210内时,即关闭副室的隔离阀220,再控制副室210旋开,将该单晶硅棒310放置在取晶桶中冷却。
S22、判断石英坩埚120内的剩料重量是否在安全范围内。
取出正在拉制的单晶硅棒310后,测得的石英坩埚120内的剩料为15kg,小于标准25kg,开始执行下一步的吸料工艺。
S23、吸料工艺。
S231、安装并稳定吸料工装320。
手动拆卸安装在重锤330上的籽晶夹头工装,再手动安装吸料工装320。
待安装完吸料工装320后,旋紧副室210。
判断识别吸料工装320成功安装,将吸料工装320自动上升至距离籽晶零位高2400mm的位置处。
吸料工装被成功识别后,再自动控制吸料工装320下降至距离籽晶零位高的1800mm处。
吸料工装320不晃动后,继续执行下一步的副室净化程序。
S232、副室净化。
控制吸料工装320再提升至最小识别位置2400mm处,此时副室210的隔离阀220仍关闭。
固定吸料工装320位置高度不变,对副室210净化隔离。
待副室210净化完成后,再打开副室210上的隔离阀220,控制吸料工装320进入主室110中。
S233、对吸料工装320进行阶梯性预热。
先控制吸料工装320下降至距离籽晶零位高度为600mm的高度位置处进行第一次预热1min。
再控制吸料工装320继续下行,降至距离籽晶零位高度为350mm的高度 位置处进行第二次预热5min。
待二次预热完成后,系统控制吸料工装320下降直至与熔硅液面接触。
当系统收到吸料工装320的接触电压的报警时,自动调整吸料工装320向上提升距离液面高5mm的位置,并对吸料工装320进行第三次静置预热5min。
待第三次阶梯温度完成后,系统再次控制吸料工装320降至液面上。
收到吸料工装320的接触电压报警时,系统自动调整石英坩埚120的埚转为1r/min,预热完成。
S234、充压、吸取埚底剩料。
当收到吸料工装的接触电压报警时,控制吸料工装320下降至接触液面内的20mm位置处。
系统自动控制石英坩埚120从原来的1r/min直接停止转动,并控制吸料工装320静止不动。
吸料工装320到达指定位置后,进入充压吸料,此时系统自动关闭压力控制程序,节流阀归0,埚转归0,关闭球阀,打开快充阀,进行吸料;当主室110内的炉压达到200torr后,关闭快充阀,球阀自动打开,节流阀跳转15%,自动开启压力控制模块。
当重力传感器监控到吸料后的吸料工装320的重量为42kg,大于吸料前的重量20kg,且吸料工装320稳固不动时,吸料完成。
S235、对吸料后的吸料工装进行冷却。
启动石英坩埚转速为1r/min。
控制载有剩料的吸料工装320上升至距离籽晶零位的高度为350mm时,静置冷却15min。
旋开副室210的隔离阀220,使载有剩料的吸料工装320上升至副室210内并至识别位置的最低点2400mm位置处时,再静置冷却20min。
待二次冷却完成后,再自动关闭快充阀,并启动压力控制程序,以保证主室110内的压力在适控范围内。
旋开副室210并取出载有剩料的吸料工装320。
1、采用本公开设计的一种直拉单晶制程中的自动控制吸料方法,可精准判断吸料条件,无需人员干预操作,最大限度地降低人为误差,提高工作效率,使操作时间从现有的双人3-4h缩短至单人1-2h;而且还可保证吸料的完整度,使吸料工装多次重复使用,并提高了生产进度。
2、通过本公开涉及的吸料方法,可实现全过程的自动化控制,每一步都是机器系统自动判断控制,无需人员干涉操作,实现少人无人化、最大程度节约人员成本,提高生产效率。
3、实现自动定位液面位置及吸料位置,从吸料开始位置由之前不确定的位置变为吸料嘴接触液面时系统自动报出接触电压的报警方式,来控制吸料工装的第三次预热和吸料工装没入到液面位置下20-45mm进行吸料。
4、同时还可自动调节埚位及节流阀,使吸料工装到达指定位置后,直接进入充压吸料,此时系统自动关闭压力控制程序,节流阀归0,埚转归0,关闭球阀,打开快充阀,进行吸料;当主室内的炉压达到200torr后,关闭快充阀,球阀自动打开,节流阀跳转15%,自动开启压力控制模块。
需要说明的是,本公开所列举各种取值范围及具体数值均可由本领域技术人员根据具体的直拉单晶制程的工艺条件和要求进行变化和调整,因此不应视为对本公开所述发明构思的限制。
以上对本公开的实施例进行了详细说明,所述内容仅为本公开的较佳实施例,不能被认为用于限定本公开的实施范围。凡依本公开的范围所作的均等变化与改进等,均应仍归属于本公开的专利涵盖范围之内。

Claims (20)

  1. 一种直拉单晶制程中的自动控制吸料的方法,其中,所述方法包括:
    获取已拉制完成的单晶硅棒的寿命值和电阻率;
    根据所述已拉制完成的单晶硅棒的所述寿命值以及所述寿命值与所述电阻率之比确定所述已拉制完成的单晶硅棒是否合格,当所述已拉制完成的单晶硅棒不合格时,执行取段吸料程序。
  2. 根据权利要求1所述的方法,当所述寿命值小于或等于对应的设定寿命值和/或所述寿命值与所述电阻率之比小于或等于对应的设定值时,所述已拉制完成的单晶硅棒不合格。
  3. 根据权利要求1或2所述的方法,当所述寿命值大于对应的设定寿命值且所述寿命值与所述电阻率之比大于对应的设定值时,所述已拉制完成的单晶硅棒合格,并继续执行复投拉制程序。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述取段吸料程序包括:
    取出正在拉制的单晶硅棒;
    对坩埚内的剩料的重量与预定重量值进行比较,若坩埚内的剩料的重量大于预定重量值,则继续执行单晶硅棒的拉制,直至剩料的重量小于或等于预定重量值,若坩埚内的剩料的重量小于或等于预定重量值,则执行吸料工艺。
  5. 根据权利要求4所述的方法,其中,所述吸料工艺包括:
    安装并稳定吸料工装;
    对副室进行净化;
    对所述吸料工装进行阶梯性预热;以及
    利用所述吸料工装吸取坩埚内的剩料。
  6. 根据权利要求5所述的方法,其中,所述对吸料工装进行阶梯性预热的步骤包括:
    随所述吸料工装下降对所述吸料工装进行至少两次静置预热;
    在完成所述至少两次静置预热后控制所述吸料工装下降并判断所述吸料工装是否与坩埚内的剩料的液面接触;
    当所述吸料工装与液面接触并出现接触电压报警时,调整所述吸料工装向上提升到预定位置,再次静置预热预定时间;
    再次控制所述吸料工装降至液面上,并判断所述吸料工装是否与液面接触;
    当所述吸料工装与液面接触并出现接触电压报警时,调整所述坩埚的埚转为预定值。
  7. 根据权利要求5或6所述的方法,其中,所述利用所述吸料工装吸取坩埚内的剩料的步骤包括:
    当所述吸料工装与坩埚内的剩料的液面接触并出现接触电压报警时,控制所述吸料工装下降至液面内的预定深度处;
    使所述坩埚停止转动,且使所述吸料工装静置;
    向所述副室进行充压至标准吸料压力值,开始吸料;
    当吸料后的所述吸料工装的重量大于其吸料前的重量并稳固不动时,吸料完成。
  8. 根据权利要求1至7中任一项所述的方法,其中,在执行完所述取段吸料程序之后,继续执行复投程序。
  9. 一种直拉单晶制程中的自动控制吸料的方法,所述方法包括:
    获取已拉制完成的单晶硅棒的寿命值和电阻率,并继续操作正在拉制中的单晶硅棒;
    将所述寿命值与设定寿命值进行比较并将所述寿命值与所述电阻率之比与设定值进行比较,
    若所述寿命值大于所述设定寿命值并且所述寿命值与所述电阻率之比大于所述设定值,则继续执行复投拉制程序;
    若所述寿命值小于或等于所述设定寿命值或/和所述寿命值与所述电阻率之比小于或等于所述设定值,则执行取段吸料程序。
  10. 根据权利要求9所述的方法,其中,所述寿命值和所述电阻率均为在所述已拉制完成的单晶硅棒头部的同一位置处的测试值。
  11. 根据权利要求9或10所述的方法,其中,所述寿命值的设定寿命值 的范围为120-125us,并且
    其中,所述寿命值与所述电阻率之比的设定值的范围为150-250。
  12. 根据权利要求9至11中任一项所述的方法,其中,所述取段吸料程序包括:
    判断石英坩埚内的剩料是否在安全范围内;
    若是,继续执行拉制单晶硅棒,直至石英坩埚内的剩料重量不大于25kg;
    若不是,停止单晶硅棒拉制,开始执行吸料工艺。
  13. 根据权利要求12所述的方法,其中,在执行吸料工艺之前,包括:
    取出正在拉制的最后一颗单晶硅棒并使所述最后一颗单晶硅棒离开熔硅液面;
    控制石英坩埚的埚位降至设定吸料位置处;并
    提高主加热器功率和底加热器功率;
    其中,当所述石英坩埚的转速降至1-2r/min时,
    对所述正在拉制中的单晶硅棒自动执行冷却降温工艺。
  14. 根据权利要求13所述的方法,其中,所述提高主加热器功率和底加热器功率的步骤包括:
    所述主加热器功率被提高为较引晶时的主加热器功率高10-15kw,且
    所述底加热器功率被提高为较引晶时的底加热器功率高15-20kw;
    其中,吸料时所述主加热器功率和所述底加热器功率为固定值,直至吸料结束。
  15. 根据权利要求13或14所述的方法,其中,所述吸料工艺包括:
    对副室进行净化;
    对用于吸料的吸料工装进行阶梯性预热;
    利用所述吸料工装吸取埚底剩料。
  16. 根据权利要求15所述的方法,其中,对所述吸料工装进行阶梯性预热的步骤包括:
    预设至少两次对所述吸料工装进行静置预热,并随所述吸料工装下降深度的增加,每次静置预热的时间都较上一次延长4-10min;
    控制所述吸料工装下降并判断所述吸料工装是否与液面接触;
    当收到所述吸料工装的接触电压报警时,调整所述吸料工装向上提升1-5mm,再次静置预热一定时间;
    再次控制所述吸料工装降至液面上,并判断所述吸料工装是否与液面接触;
    当收到所述吸料工装的接触电压报警时,调整所述石英坩埚的埚转为1r/min,预热完成。
  17. 根据权利要求16所述的方法,其中,在所述副室净化之前,还包括判断所述吸料工装悬吊是否稳定,步骤包括:
    先识别并确定是否有所述吸料工装;
    再判断所述吸料工装是否晃动;
    若是,报警提示转为手动稳定控制;
    若不是,执行所述对副室进行净化的程序。
  18. 根据权利要求16或17所述的方法,其中,所述对副室进行净化的步骤包括:
    控制所述吸料工装提升至最小识别位置;
    对所述副室净化隔离;
    再打开所述副室上的隔离阀,控制所述吸料工装进入主室中。
  19. 根据权利要求18所述的方法,其中,所述利用所述吸料工装吸取埚底剩料的步骤包括:
    当收到所述吸料工装的接触电压报警时,控制所述吸料工装下降至接触液面内20-45mm;
    所述石英坩埚停止转动,且所述吸料工装静置;
    退出压力控制程序,并快速向所述副室进行充压至标准吸料压力值,开始吸料;
    当吸料后的所述吸料工装的重量大于其吸料前的重量并稳固不动时,吸料完成。
  20. 根据权利要求19所述的方法,其中,所述利用所述吸料工装吸取埚 底剩料的步骤还包括对吸料后的所述吸料工装进行冷却的步骤,所述对吸料后的所述吸料工装进行冷却的步骤包括:
    启动所述石英坩埚转速低速转动;
    载有剩料的所述吸料工装上升至水冷套内时,静置冷却一段时间;
    使载有剩料的所述吸料工装上升至所述副室内并至识别位置最低点,再静置冷却一段时间,且较在所述水冷套内冷却时间长;
    启动压力控制程序;
    旋开所述副室并取出所述吸料工装。
PCT/CN2022/114685 2021-08-25 2022-08-25 一种直拉单晶制程中的自动控制吸料的方法 WO2023025224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/161,898 US20230167578A1 (en) 2021-08-25 2023-01-31 Methods for automatically controlling material suction in a process of pulling-up of a monocrystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110983854.6 2021-08-25
CN202110983854.6A CN115896930A (zh) 2021-08-25 2021-08-25 一种直拉单晶制程中的自动控制吸料方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/161,898 Continuation-In-Part US20230167578A1 (en) 2021-08-25 2023-01-31 Methods for automatically controlling material suction in a process of pulling-up of a monocrystal

Publications (1)

Publication Number Publication Date
WO2023025224A1 true WO2023025224A1 (zh) 2023-03-02

Family

ID=85322512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114685 WO2023025224A1 (zh) 2021-08-25 2022-08-25 一种直拉单晶制程中的自动控制吸料的方法

Country Status (3)

Country Link
US (1) US20230167578A1 (zh)
CN (1) CN115896930A (zh)
WO (1) WO2023025224A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249234A (ja) * 2008-04-07 2009-10-29 Sumco Corp 低抵抗シリコン単結晶の金属汚染判定方法
JP2009280471A (ja) * 2008-05-26 2009-12-03 Sumco Corp 単結晶製造装置の内部汚染度評価方法
CN109844966A (zh) * 2016-09-08 2019-06-04 法国原子能及替代能源委员会 用于根据硅晶片的体寿命分选硅晶片的方法
CN111020700A (zh) * 2019-12-20 2020-04-17 银川隆基硅材料有限公司 一种单晶硅加料数据的确定方法、装置及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249234A (ja) * 2008-04-07 2009-10-29 Sumco Corp 低抵抗シリコン単結晶の金属汚染判定方法
JP2009280471A (ja) * 2008-05-26 2009-12-03 Sumco Corp 単結晶製造装置の内部汚染度評価方法
CN109844966A (zh) * 2016-09-08 2019-06-04 法国原子能及替代能源委员会 用于根据硅晶片的体寿命分选硅晶片的方法
CN111020700A (zh) * 2019-12-20 2020-04-17 银川隆基硅材料有限公司 一种单晶硅加料数据的确定方法、装置及设备

Also Published As

Publication number Publication date
CN115896930A (zh) 2023-04-04
US20230167578A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
CN102877117B (zh) 基于多加热器的铸锭炉热场结构及运行方法
TWI624569B (zh) 單結晶之拉引方法
US8936679B2 (en) Single crystal pulling-up apparatus of pulling-up silicon single crystal and single crystal pulling-up method of pulling-up silicon single crystal
CN102877120B (zh) 泡生法生长蓝宝石晶体的自动引晶方法
US10584426B2 (en) Method for producing single crystal
CN102220634A (zh) 一种提高直拉硅单晶生产效率的方法
CN104357899A (zh) 大尺寸Yb-YAG激光晶体泡生法制备方法
CN102220633A (zh) 一种半导体级单晶硅生产工艺
CN202989351U (zh) 基于多加热器的铸锭炉热场结构
CN113061980A (zh) 一种生长氟化锂单晶的装置及生长方法
CN106435714A (zh) 一种多晶硅溶液液面距定位方法
JP2018070426A (ja) 残湯吸引器のノズル位置の設定方法及び残湯吸引装置
WO2023025224A1 (zh) 一种直拉单晶制程中的自动控制吸料的方法
CN103147119B (zh) 一种氟化镁晶体的制备方法及生长设备
CN210945850U (zh) 新型液封冷却提拉晶体生长装置
JP7221484B1 (ja) 単結晶引き上げ方法および単結晶引き上げ装置
CN102719883B (zh) 一种半导体级单晶硅生产工艺
TW201447058A (zh) 藍寶石單晶之製造方法
WO2023246035A1 (zh) 一种生长6英寸钽酸锂晶体的方法
CN114232075A (zh) 一种rcz直拉法大热场拉多晶工艺
CN210856408U (zh) 一种设置有炉体升降机构的晶体生长炉
CN114232080A (zh) 一种rcz直拉法大热场的闷炉工艺
WO2023098580A1 (zh) 一种用于单晶硅合金补掺的装置及补掺方法
JP2019014637A (ja) シリコン単結晶引上げ装置及び単結晶シリコンインゴットの製造方法
CN213496371U (zh) 一种测温装备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 523450444

Country of ref document: SA

NENP Non-entry into the national phase

Ref country code: DE