WO2023024868A1 - 一种光检测装置 - Google Patents

一种光检测装置 Download PDF

Info

Publication number
WO2023024868A1
WO2023024868A1 PCT/CN2022/110405 CN2022110405W WO2023024868A1 WO 2023024868 A1 WO2023024868 A1 WO 2023024868A1 CN 2022110405 W CN2022110405 W CN 2022110405W WO 2023024868 A1 WO2023024868 A1 WO 2023024868A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
measurement
unit
measuring
fluid injection
Prior art date
Application number
PCT/CN2022/110405
Other languages
English (en)
French (fr)
Inventor
左渡海
Original Assignee
左渡海
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 左渡海 filed Critical 左渡海
Publication of WO2023024868A1 publication Critical patent/WO2023024868A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/04Cleaning by suction, with or without auxiliary action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • G01N2021/035Supports for sample drops
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes
    • G01N2021/115Washing; Purging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0846Fibre interface with sample, e.g. for spatial resolution

Definitions

  • the invention relates to the field of optical detection, in particular to a light detection device.
  • Spectrophotometry is one of the commonly used biochemical testing methods, widely used in the rapid quantitative detection of sugar, nucleic acid, enzyme or protein and other samples;
  • the sample to be inspected is used for spectrophotometric detection, on the one hand, it needs to consume a large amount of samples to be inspected, resulting in waste of precious nucleic acid, protein and other samples.
  • it is necessary to clean the cuvette repeatedly, which brings a lot of extra workload to the experimental work.
  • the optical detection device When the optical detection device is used to detect the sample, it mainly uses the tension traction of a small amount of liquid to form an optical path, so only a very small amount of the sample to be inspected is required to obtain accurate results. Detection data, so that it can completely replace the cuvette, which is very innovative and practical.
  • a sampling measurement device for a light detection device and its use method which includes an upper measurement unit and a lower measurement unit with adjustable distances; the upper measurement unit is provided with a projection optical fiber
  • the lower measurement unit is equipped with a receiving fiber holder or a projection fiber holder, the projection fiber holder and the receiving fiber holder are aligned up and down and the fiber is inserted inside;
  • the upper measurement unit is provided with a first top wire, and the lower measurement unit
  • the position corresponding to the first top wire is provided with a lifting base that can move up and down, and an electromagnet magnetic cylinder that is sleeved outside the lifting base and fixed with the lower measurement unit;
  • the sampling and measuring device also includes a detection device connected to the receiving fiber base.
  • the detection unit includes a photoelectric conversion module, a data receiving module, a detection calculation module, a numerical correction module, an optical path length selection module and a detection data output module.
  • This patent document corrects the optical path length by adding a numerical correction module, so that ordinary users can realize accurate measurement without precisely adjusting the optical path length.
  • the invention provides a light detection device to solve the problem of low cleaning efficiency of the light detection device in the prior art.
  • a light detection device comprising: a measuring mechanism and a cleaning mechanism, the measuring mechanism includes a first measuring unit and a second measuring unit, one of the first measuring unit and the second measuring unit is an optical fiber transmitting end, and the other One is the optical fiber receiving end, both the first measuring unit and the second measuring unit are provided with measuring end faces, and a set gap for accommodating the sample to be inspected is provided between the two measuring end faces; the sample to be inspected is attached to the The first measuring unit and the measuring end faces on the second measuring unit to form a suspended fluid column;
  • the cleaning mechanism has a suction end, which is arranged close to the set gap and is suitable for sucking the sample to be inspected in the set gap.
  • the first measurement unit and the second measurement unit are arranged horizontally.
  • both the first measurement unit and the second measurement unit have a measurement end surface suitable for forming the set gap, the measurement end surface includes a flow guide surface and an adsorption surface, and the flow guide surface surrounds The adsorption surface is such that the sample to be tested flows to the adsorption surface through the guide surface and adheres to the adsorption surface.
  • the flow guide surface is a chamfered structure, and the adsorption surface is a planar structure.
  • the cleaning mechanism further includes: a first control unit and a suction assembly, the control unit is connected to the suction assembly, the suction assembly is connected to the suction end, and the control unit is adapted to Controlling the suction component to suck the sample to be tested through the suction tip.
  • the light detection device further includes an installation assembly, the installation assembly includes an installation platform, and both the first measurement unit and the second measurement unit are arranged on the installation platform.
  • a receiving tank is provided on the mounting platform, and the two measuring end faces are placed in the receiving tank, and after cleaning liquid is injected into the receiving tank, the two measuring end faces are completely submerged in the receiving tank. in the cleaning solution.
  • the cleaning liquid adheres to all side walls of the holding tank and is located at the edge of the notch of the holding tank.
  • the cleaning mechanism further includes a fluid injection unit, including a fluid injection head, the fluid injection head is disposed close to the set gap, and is suitable for injecting cleaning liquid into the accommodation tank.
  • a fluid injection unit including a fluid injection head, the fluid injection head is disposed close to the set gap, and is suitable for injecting cleaning liquid into the accommodation tank.
  • the light detection device further includes a drive assembly, which includes a cover plate, on which the fluid injection head is arranged, and the drive assembly is adapted to drive the fluid injection head close to or through the cover plate. away from the set gap.
  • a drive assembly which includes a cover plate, on which the fluid injection head is arranged, and the drive assembly is adapted to drive the fluid injection head close to or through the cover plate. away from the set gap.
  • the cleaning mechanism further includes: a fluid injection unit, including a fluid injection port, the fluid injection port is opened on the inner surface of the side wall of the storage tank, and is suitable for injecting cleaning liquid into the storage tank.
  • a fluid injection unit including a fluid injection port, the fluid injection port is opened on the inner surface of the side wall of the storage tank, and is suitable for injecting cleaning liquid into the storage tank.
  • the optical detection device of the present invention comprises: a measuring mechanism and a cleaning mechanism, the measuring mechanism comprises a first measuring unit and a second measuring unit, one of the first measuring unit and the second measuring unit is an optical fiber transmitting end, and both The other is the receiving end of the optical fiber.
  • Both the first measuring unit and the second measuring unit are provided with measuring end faces, and a set gap for accommodating the sample to be inspected is arranged between the two measuring end faces; the sample to be inspected is attached to the first measuring unit, A suspended fluid column is formed on the measurement end surface of the second measurement unit; the cleaning mechanism has a suction end, which is arranged close to the set gap, and is suitable for sucking the sample to be tested in the set gap.
  • the sample to be tested When in use, the sample to be tested is injected into the set gap, so that the sample to be tested is attached to the measurement end faces of the first measuring unit and the second measuring unit to form a stable fluid column, and the sample to be tested is measured by the measuring mechanism absorbance value.
  • the cleaning mechanism After the measurement is completed, the cleaning mechanism is started, and the sample to be tested in the set gap is sucked by the negative pressure of the suction end of the cleaning mechanism, and is quickly removed by suction.
  • the cleaning process of the light detection device of the present invention is completed in an automated manner, which greatly improves the cleaning efficiency, and the cleaning effect is better, making the detection more accurate.
  • the photodetection device of the present invention further includes a mounting assembly, the mounting assembly includes a mounting table, and both the first measuring unit and the second measuring unit are arranged on the mounting table.
  • the installation platform is provided with a holding tank, and the two measuring end faces are placed in the holding tank, and after the cleaning liquid is injected into the holding tank, the two measuring end faces are completely immersed in the cleaning liquid.
  • the mounting table is a single component, and the first measuring unit, the second measuring unit and the suction end can be installed on the mounting table, and the structure is compact and the installation is convenient.
  • One is to provide a measurement space.
  • a set gap for accommodating the sample to be inspected is formed;
  • the second is to accommodate the cleaning liquid.
  • the cleaning liquid Through the cleaning liquid, the sample to be tested in the set gap can be digested, and then sucked out through the suction end to improve the cleaning effect.
  • the cleaning liquid can be removed by using the suction force of the cleaning mechanism. Clean to prevent the new sample to be tested from being diluted by the residual cleaning solution when it comes into contact with the detection platform, resulting in errors in the detection data.
  • the first measuring unit and the second measuring unit can optionally be arranged horizontally, that is, the measuring end faces of the first measuring unit and the second measuring unit are vertically oriented and one Left-right arrangement, by adopting such a structural arrangement, the fluid sample can be injected from above the light detection device without removing any one of the first measurement unit and the second measurement unit before injecting the fluid sample, which greatly simplifies the
  • the operation process of injecting fluid samples in contrast, similar devices in the prior art are almost all arranged vertically up and down with two measuring end faces, because it is impossible to inject fluid samples from the side, so it must be moved first when injecting fluid samples each time) Open the upper measurement end face, thereby causing the operation process to be complicated); moreover, this structural setting can better ensure that the injected fluid sample can stably form a suspended fluid between the measurement end faces of the first measurement unit and the second measurement unit column without coming into contact with any other walls of the photodetection device.
  • the measuring end surface includes a diversion surface and an adsorption surface, and the diversion surface surrounds the adsorption surface so that the sample to be tested flows to the adsorption surface through the diversion surface.
  • the sample to be tested When the sample to be tested is injected into the set gap, the sample to be tested flows along the guide surface to the adsorption surface, and there is an adhesive force between the adsorption surface and the sample to be tested, and the sample to be tested overcomes its own downward gravity and adheres to the On the adsorption surface, the sample to be tested forms a suspended fluid column between the adsorption surfaces of the first measurement unit and the second measurement unit, and then passes through the first measurement unit and the second measurement unit for detection.
  • the fluid injection port suitable for injecting the cleaning liquid is opened on the inner surface of the side wall of the holding tank, which is compared with the conventional way of supplying the cleaning liquid from above the light detection device , it is possible to omit the moving mechanism provided above the light detection device for supplying cleaning liquid, thereby simplifying the structure of the light detection device.
  • FIG. 1 is a perspective view of a light detection device according to some embodiments of the present application.
  • FIG. 2 is a partial enlarged view of a top view of a light detection device according to some embodiments of the present application
  • Fig. 3a is a schematic diagram of a light detection device in an initial state according to some embodiments of the present application.
  • Fig. 3b is a schematic diagram of the photodetection device according to some embodiments of the present application after the sample to be inspected is filled in the set gap;
  • Fig. 3c is a schematic diagram of the optical detection device according to some embodiments of the present application after the cleaning solution is filled in the holding tank 7;
  • FIG. 4 is a schematic diagram of a top view of a light detection device according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the structure shown in Fig. 4 after the cover plate is removed;
  • Fig. 6 is a schematic diagram of a partially enlarged view of the structure shown in Fig. 5;
  • Fig. 7 is a structural schematic diagram of the mounting table shown in Fig. 6;
  • FIG. 8 is a perspective view of a light detection device according to another embodiment of the present application.
  • Figure 8a is a longitudinal sectional view of the photodetection device according to the embodiment of Figure 8;
  • Fig. 8b is a partially enlarged view of a longitudinal cross-sectional view of the light detection device according to the embodiment of Fig. 8 .
  • L light source
  • F optical fiber
  • G setting gap
  • P fluid channel
  • I fluid injection port
  • C fluid supply channel.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the light detection device of some embodiments of the present invention includes: a measuring mechanism and a cleaning mechanism, the measuring mechanism includes a first measuring unit 1 and a second measuring unit 2, the first measuring unit 1, the second measuring unit One of the measuring units 2 is an optical fiber transmitting end, and the other is an optical fiber receiving end. Both the first measuring unit 1 and the second measuring unit 2 are provided with a measuring end face 10, and a housing is arranged between the two measuring end faces 10.
  • the setting gap G of the sample 14 to be inspected; the sample 14 to be inspected is attached to the measuring end surface 10 on the first measuring unit 1 and the second measuring unit 2 to form a suspended fluid column; the cleaning mechanism has a suction end 3, and the suction end
  • the head 3 is arranged close to the set gap G, and is suitable for sucking the sample 14 to be inspected in the set gap G. It should be noted that in these embodiments, existing instruments are used to inject the sample 14 to be inspected into the set gap G, and details will not be repeated here.
  • the setting gap here can be set according to the actual detection situation, and the specific size is not limited.
  • the fluid of the fluid column may be liquid, emulsion, etc., but not limited thereto.
  • the light detection device of the present invention may be a light detection device for measuring the light absorption characteristics of a fluid sample, for example, a microvolume spectrophotometer.
  • the cleaning mechanism also includes a first control unit and a suction assembly, the control unit is connected to the suction assembly, the suction assembly is connected to the outlet end of the suction tip 3, and the inlet end of the suction tip 3 is connected to the fluid channel P , the fluid channel P extends to the holding tank 7 , and the control unit is adapted to control the suction assembly to suck the sample 14 to be tested through the suction tip 3 .
  • the suction assembly includes a negative pressure pump 15 connected to the suction head 3 .
  • the measurement mechanism also includes a second control unit, through which the actions of the first measurement unit 1 and the second measurement unit 2 are controlled. Function performed by the second control unit.
  • the first measuring unit 1 and the second measuring unit 2 are arranged horizontally, that is, the measuring end surfaces 10 of the first measuring unit 1 and the second measuring unit 2 are vertically oriented and a left One right setting, by adopting such a structural setting, the fluid sample can be injected from above the light detection device without removing any one of the first measurement unit 1 and the second measurement unit 2 before injecting the fluid sample, which greatly simplifies
  • the operation process of injecting fluid samples is clearly understood (in contrast, similar devices in the prior art almost all adopt two measuring end faces vertically arranged up and down, because it is impossible to inject fluid samples from the side, so it is necessary to first inject fluid samples each time) remove the upper measurement end face, thereby causing the operation process to be complicated); moreover, this structural arrangement can better ensure that the injected fluid sample is stably between the measurement end faces 10 of the first measurement unit 1 and the second measurement unit 2 A suspended fluid column is formed without contacting any other wall of the photodetection device.
  • both the first measuring unit 1 and the second measuring unit 2 have a measuring end face 10 suitable for forming a set gap
  • the measuring end face 10 includes a diversion surface 11 and an adsorption surface 12, the diversion surface 11 surrounds the adsorption surface 12, The sample 14 to be tested flows to the adsorption surface 12 through the guide surface 11 .
  • the guide surface 11 has a chamfered structure, and the adsorption surface 12 has a planar structure.
  • the structure of the diversion surface 11 can be changed according to actual needs, as long as the sample 14 to be tested is diverted to the adsorption surface 12, for example, the diversion surface 11 is set as a circular arc surface, or as a quincunx shape, etc. .
  • the sample 14 to be tested can be stably attached to the adsorption surface 12, which helps to form a stable fluid column.
  • the sample 14 to be inspected flows to the adsorption surface 12 along the guide surface 11, and there is an adhesive force between the adsorption surface 12 and the sample to be inspected 14, and the sample to be inspected 14 overcomes itself
  • the downward gravity is attached to the adsorption surface 12, so that the sample 14 to be tested forms a suspended fluid column between the adsorption surfaces 12 of the first measurement unit 1 and the second measurement unit 2, and then passes through the first measurement unit 1,
  • the second measurement unit 2 performs detection.
  • an optical path propagating in the horizontal direction may be formed in the fluid column, such as at the set gap G in FIG. 2 .
  • the first measurement unit 1 and the second measurement unit 2 can be arranged at any angle, as long as the first measurement unit 1 and the measurement end surface 10 of the second measurement unit 2 are attached to the sample 14 to be inspected, and the It is sufficient for the test sample 14 to form a stable fluid column between the two measuring end faces.
  • the first measuring unit 1 and the second measuring unit 2 are arranged at an inclination angle of 45 degrees, vertically arranged, etc., when vertically arranged, the measuring end faces 10 of the first measuring unit 1 and the second measuring unit 2 are arranged one above the other .
  • the light detection device also includes a mounting assembly
  • the mounting assembly includes a mounting table 5 on which the first measuring unit 1 , the second measuring unit 2 and the suction tip 3 are all set.
  • the mounting table 5 is a single component, and the first measuring unit 1, the second measuring unit 2 and the suction tip 3 can be installed on the mounting table 5, so that the whole device is compact in structure and easy to assemble and disassemble.
  • the mounting table 5 is provided with a receiving groove 7, and the mounting table 5 is provided with two mounting holes connected with the receiving groove 7, and the two mounting holes are arranged opposite to each other, and are respectively sealed and connected with the first measuring unit 1 and the second measuring unit 2 . Both measuring end surfaces 10 are placed in the receiving groove 7 .
  • accommodating slot 7 is to:
  • One is to provide a measurement space.
  • a set gap G for accommodating the sample 14 to be tested is formed;
  • the second is to accommodate the cleaning solution 18.
  • the cleaning solution 18 Through the cleaning solution 18, the sample to be tested in the set gap G can be digested, and then sucked away by the suction terminal 3 to improve the cleaning effect.
  • the suction of the cleaning mechanism can be used to The cleaning solution 18 is cleaned up to prevent the new sample 14 to be tested from being diluted by the residual cleaning solution 18 when it contacts the detection platform, thus causing errors in the detection data.
  • the cleaning solution 18 When the cleaning solution 18 is injected, the two measuring end surfaces 10 are completely submerged in the cleaning solution 18 . And the cleaning liquid 18 adheres to all the side walls of the holding tank 7, and stops the fluid injection after being at the edge of its notch 71, but the cleaning liquid 18 should not exceed the notch 71 of the holding tank 7, the best state is as shown in the figure Shown, the liquid level of the cleaning solution 18 is a concave arc. This setting is based on the following considerations:
  • the suction tip 3 is arranged at the bottom of the receiving tank 7 , and the edges of the installation tank are all smoothly transitioned, so that the fluid in the receiving tank 7 can be easily removed.
  • the groove bottom of the accommodation groove 7 can be set as an inverted tapered structure, and as an alternative embodiment, the suction tip 3 can also be arranged on the side wall of the accommodation groove 7 .
  • the cleaning mechanism may also include a fluid injection unit, the fluid injection unit includes a fluid injection head 8 and a fluid injection pump, the fluid injection pump communicates with the fluid injection head, and the fluid injection The injection head 8 is arranged close to the set gap G, and the fluid injection pump injects the cleaning liquid 18 into the accommodation tank 7 through the fluid injection head 8 .
  • the fluid injection unit may not be provided, and the cleaning fluid 18 may be injected manually using a fluid injection needle.
  • the light detection device also includes a drive assembly, which includes a cover plate 9, on which a fluid injection head 8 is arranged, and the drive assembly is suitable for driving the fluid injection head 8 to approach or move away from the set gap G through the cover plate 9, specifically,
  • the cover plate 9 drives the fluid injection head 8 close to the set gap G, and when the sample 14 to be tested needs to be injected, the cover plate 9 drives the fluid injection head 8 away from the set gap G.
  • the cover plate 9 plays the role of installing and positioning the position of the fluid injection head 8, and the fluid injection is more precise.
  • the fluid injection head 8 is moved closer to or away from the set gap G by turning over the cover plate 9.
  • the purpose of the cover plate driving the fluid injection head away from the set gap G is to provide a space for injecting the sample to be tested, preventing Interfering with the injection of the sample to be tested.
  • the specific implementation may be: the drive assembly includes a geared motor 13, the output shaft of which is connected to one end of the cover plate 9, and drives the cover plate 9 to turn over, so that the fluid injection head 8 approaches or moves away from the set gap G.
  • the fluid injection head 8 is moved closer to or farther away from the set gap through the translation of the cover plate 9.
  • the specific implementation method can be:
  • the drive assembly includes a geared motor 13 and a rack, the cover plate 9 is connected to the rack, and the output shaft of the geared motor 13 is engaged with the rack, so that when the output shaft rotates, the rack drives the cover plate 9 to move, thereby realizing the fluid injection head. 8 Move closer to or farther from the set gap G.
  • end 16 emits a light beam
  • the optical fiber receiving end 17 of the second measurement unit 2 receives the light beam
  • the detector 4 connected to the second measurement unit 2 detects the received light beam, thereby calculating the light absorption value of the sample 14 to be tested, and the Sample 14 was subjected to qualitative or quantitative analysis.
  • the drive assembly drives the cover plate 9 to move, so that the fluid injection head is close to the set gap, and the cleaning fluid 18 is injected into the holding tank 7 through the fluid injection head 8 of the fluid injection unit.
  • the fluid injection head is away from the drive.
  • Set the gap, the cleaning solution 18 digests the sample 14 to be inspected, and then starts the negative pressure pump 15, and the negative pressure pump 15 quickly sucks and removes the sample 14 to be inspected in the holding tank 7 through the suction terminal 3.
  • the cleaning process of the light detection device is completed in an automated manner, which greatly improves the cleaning efficiency, and the cleaning effect is better, making the detection more accurate.
  • the cleaning mechanism may further include a fluid injection unit, and the fluid injection unit may include a fluid injection port I.
  • the fluid injection port I is opened on the inner surface of the side wall of the accommodation groove 7, and the fluid supply channel C communicating with the fluid injection port I is connected from the light detection device extended from the side.
  • the fluid supply channel C may be connected to a fluid injection pump, and the cleaning fluid 18 is injected into the storage tank 7 by means of the fluid injection pump.
  • this method can omit the moving mechanism for supplying the cleaning liquid above the light detection device, thereby simplifying the structure of the light detection device.
  • the fluid supply channel C may extend from below the light detection device, but is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Optical Measuring Cells (AREA)

Abstract

涉及光学检测领域,具体涉及一种光检测装置,包括测量机构和清洁机构,测量机构包括第一测量单元(1)和第二测量单元(2),第一测量单元(1)、第二测量单元(2)二者之一为光纤发射端,二者另一为光纤接收端,第一测量单元(1)、第二测量单元(2)二者均设有测量端面(10),两测量端面(10)之间设有容纳待检样品(14)的设定间隙(G);待检样品(14)附着在第一测量单元(1)、第二测量单元(2)上的测量端面(10)上以形成悬空的流体柱;清洁机构具有吸引端头(3),吸引端头(3)靠近设定间隙(G)设置,适于抽吸设定间隙(G)内的待检样品(14)。该光检测装置,在设定间隙(G)内的待检样品(14)受到清洁机构的吸引端头(3)的负压吸引作用,被迅速吸引清除。通过自动化的方式完成清洁,清洁效率高,清洁效果更好,使得检测更加精准。

Description

一种光检测装置
本申请要求在2021年8月24日提交中国专利局、申请号为202110978064.9、发明名称为“一种微量分光光度计”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学检测领域,具体涉及一种光检测装置。
背景技术
分光光度法是常用的生化测试方法之一,广泛应用于糖、核酸、酶或者蛋白等样品的快速定量检测;分光光度法的测试仪器为分光光度计,传统设备中放置检测样品的容器为比色皿,但是由于比色皿的内容量较大,所以对待检样品进行分光光度检测时,一方面需要耗费较大量的待检样品,造成珍贵的核酸、蛋白等样品的浪费,另一方面在进行不同待检样品的检测时,还需要反复清洗比色皿,给实验工作带来很多额外工作量。
光检测装置的出现有效地解决了上述技术问题,在使用光检测装置对样品进行检测时,其主要利用微量液体的张力牵引形成光通路,所以只需要很微量的待检样品即可以获得准确的检测数据,从而可以完全替代比色皿,极具创新性和实用性。
现有技术中,如中国专利文献CN102207456B公开了一种用于光检测装置的取样测量装置及其使用方法,其包括距离可调的上测量单元与下测量单元;上测量单元上设置有投射光纤座或接收光纤座,下测量单元上设置有接收光纤座或投射光纤座,投射光纤座以及接收光纤座上下对正且内部插有光纤;上测 量单元上设置有第一顶丝,下测量单元上与第一顶丝相对应的位置设置有可以上下移动的升降座,和套设在升降座外与下测量单元固定的电磁铁磁缸;取样测量装置还包括与接收光纤座相连接的检测单元,检测单元包括光电转换模块、数据接收模块、检测计算模块、数值校正模块、光程长度选择模块和检测数据输出模块。此专利文献通过加入数值校正模块对光程长度进行校正,可以使普通使用者在不用精确调整光程长度的情况下实现精确测量。
但是,在上述专利文献中,在每次检测前需要人为对投射光纤座和接收光纤座上的检测试剂进行清洁,传统的清洁方法采用清洁纸进行擦拭,清洁效率低。
发明内容
本发明提供一种光检测装置,以解决现有技术中的光检测装置清洁效率低的问题。
本发明的技术方案是:
一种光检测装置,包括:测量机构和清洁机构,测量机构包括第一测量单元和第二测量单元,所述第一测量单元、第二测量单元二者之一为光纤发射端,二者另一为光纤接收端,所述第一测量单元、第二测量单元二者均设有测量端面,两个所述测量端面之间设有容纳待检样品的设定间隙;待检样品附着在所述第一测量单元、第二测量单元上的测量端面上以形成悬空的流体柱;
清洁机构具有吸引端头,所述吸引端头靠近所述设定间隙设置,适于抽吸所述设定间隙内的待检样品。
可选地,所述第一测量单元与所述第二测量单元呈水平设置。
可选地,所述第一测量单元、所述第二测量单元上均具有适于形成所述设 定间隙的测量端面,所述测量端面包括导流面和吸附面,所述导流面包绕所述吸附面,以使待检样品通过所述导流面流至所述吸附面,并附着在吸附面上。
可选地,所述导流面为倒角结构,所述吸附面为平面结构。
可选地,所述清洁机构还包括:第一控制单元和抽吸组件,所述控制单元与所述抽吸组件连接,所述抽吸组件与所述吸引端头连接,所述控制单元适于控制所述抽吸组件通过所述吸引端头抽吸待检样品。
可选地,该光检测装置,还包括安装组件,所述安装组件包括安装台,所述第一测量单元、第二测量单元二者均设在所述安装台上。
可选地,所述安装台上设置有容纳槽,两个所述测量端面均置于所述容纳槽内,在向所述容纳槽注入清洗液后,两个所述测量端面完全浸没在所述清洗液中。
可选地,在向所述容纳槽注入清洗液后,清洗液附着于所述容纳槽的全部侧壁,并处于所述容纳槽槽口的边沿处。
可选地,所述清洁机构还包括流体注入单元,包括流体注入头,所述流体注入头靠近所述设定间隙设置,适于向所述容纳槽内注入清洗液。
可选地,该光检测装置还包括驱动组件,其包括盖板,所述盖板上设有所述流体注入头,所述驱动组件适于通过所述盖板带动所述流体注入头靠近或远离所述设定间隙。
优选地,所述清洁机构还包括:流体注入单元,包括流体注入口,所述流体注入口开口于所述容纳槽的侧壁内表面,适于向所述容纳槽内注入清洗液。
本发明的技术方案具有如下优点:
1.本发明的光检测装置,包括:测量机构和清洁机构,测量机构包括第一测 量单元和第二测量单元,第一测量单元、第二测量单元二者之一为光纤发射端,二者另一为光纤接收端,第一测量单元、第二测量单元二者均设有测量端面,两测量端面之间设有容纳待检样品的设定间隙;待检样品附着在第一测量单元、第二测量单元上的测量端面上以形成悬空的流体柱;清洁机构具有吸引端头,吸引端头靠近设定间隙设置,适于抽吸设定间隙内的待检样品。
在使用时,将待检样品注入到设定间隙中,使待检样品附着在第一测量单元、第二测量单元的测量端面上,形成稳定的流体柱,并通过测量机构进行测量待检样品的吸光值。完成测量以后启动清洁机构,在设定间隙内的待检样品受到清洁机构的吸引端头的负压吸引作用,被迅速通过吸引清除。与现有的通过人为用清洁纸擦拭的方式相比较,本发明的光检测装置清洁过程通过自动化的方式完成,极大地提高了清洁效率,而且清洁效果更好,使得检测更加精准。
2.本发明的光检测装置,还包括安装组件,安装组件包括安装台,第一测量单元、第二测量单元二者均设在安装台上。安装台上设置有容纳槽,两测量端面均置于容纳槽内,在向容纳槽注入清洗液后,两测量端面完全浸没在清洗液中。
安装台为单个部件,可以将第一测量单元、第二测量单元和吸引端头安装在安装台上,结构紧凑,安装方便。在安装台上还设置有容纳槽,这里设置容纳槽的目的在于:
其一是提供测量空间,当第一测量单元和第二测量单元的测量端面伸入容纳槽后,形成用于容纳待检样品的设定间隙;
其二是容纳清洗液,通过清洗液,可以将设定间隙内的待检样品消解,然后再通过吸引端头吸除,提升清洁效果,同时,利用清洗机构的吸引力,可以将清洗液清除干净,防止新的待检样品在接触检测平台时被残留的清洗液稀释,从而导致检测数据出现误差。
3.本发明的光检测装置,所述第一测量单元与所述第二测量单元可选地可以呈水平设置,即,第一测量单元与第二测量单元的测量端面呈竖直取向且一左一右设置,通过采用这样的结构设置,可以从光检测装置的上方注入流体样品,而无需在注入流体样品前移开第一测量单元与第二测量单元中的任何一个,这大大简化了注入流体样品的操作过程(相比之下,现有技术中的同类装置几乎都是采用两个测量端面上下垂直排列,由于无法从侧面注入流体样品,因而在每次注入流体样品时必须先移开上方的测量端面,从而导致操作过程复杂);而且,该结构设置还能更好地保证被注入的流体样品在第一测量单元、第二测量单元的测量端面之间稳定地形成悬空的流体柱,而不会与光检测装置的任何其它壁面相接触。
4.本发明的光检测装置,测量端面包括导流面和吸附面,导流面包绕吸附面,以使待检样品通过导流面流至吸附面。
当待检样品被注入设定间隙内后,待检样品沿着导流面流动到吸附面,在吸附面和待检样品之间存在附着力,待检样品克服自身向下的重力,附着在吸附面上,使待检样品在第一测量单元和第二测量单元的吸附面之间形成悬空的流体柱,然后再通过第一测量单元、第二测量单元进行检测。
5.根据本发明的光检测装置的某一方面,适于注入清洗液的流体注入口开口于容纳槽的侧壁内表面,这种方式与从光检测装置上方供应清洗液的惯用方式相比,能够省略设在光检测装置上方的、用以供应清洗液的移动机构,从而简化光检测装置的结构。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来 讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本申请一些实施例的光检测装置的立体图;
图2为根据本申请一些实施例的光检测装置的俯视图的局部放大图;
图3a为根据本申请一些实施例的光检测装置在初始状态时原理图;
图3b为根据本申请一些实施例的光检测装置在设定间隙内加注待检样品后的原理图;
图3c为根据本申请一些实施例的光检测装置在容纳槽7内加注清洗液后的原理图;
图4为根据本申请某一实施例的光检测装置的俯视图的示意图;
图5为图4所示的结构在取掉盖板后的示意图;
图6为图5所示的结构的局部放大图的示意图;
图7为图6所示的安装台的结构示意图;
图8为根据本申请的另一实施例的光检测装置的立体图;
图8a为根据图8的实施例的光检测装置的纵向剖视图;
图8b为根据图8的实施例的光检测装置的纵向剖视图的局部放大图。
附图标记说明:
L:光源;F:光纤;G:设定间隙;P:流体通道;1-第一测量单元;2-第二测量单元;3-吸引端头;4-检测器;5-安装台;6-吸引孔;7-容纳槽;槽口-71;8-流体注入头;9-盖板;10-测量端面;11-导流面;12-吸附面;13-减速电机;14-待检样品;15-负压泵;16-光纤发射端;17-光纤接收端;18-清洗液;I:流 体注入口,C:流体供应通道。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明一些实施例的光检测装置,如图1至图8b所示,包括:测量机构和清洁机构,测量机构包括第一测量单元1和第二测量单元2,第一测量单元1、第二测量单元2二者之一为光纤发射端,二者另一为光纤接收端,第一测量单 元1、第二测量单元2二者均设有测量端面10,两测量端面10之间设有容纳待检样品14的设定间隙G;待检样品14附着在第一测量单元1、第二测量单元2上的测量端面10上以形成悬空的流体柱;清洁机构具有吸引端头3,吸引端头3靠近设定间隙G设置,适于抽吸设定间隙G内的待检样品14。需要说明,这些实施例中,采用现有器具将待检样品14注入到设定间隙G内,不再赘述。这里的设定间隙可以根据实际检测情况进行设置,不限定具体的尺寸。所述流体柱的流体可以是液体(liquid)、乳剂(emulsion)等,但不限于此。具体地,本发明的光检测装置可以是用于测量流体样品的光吸收特征的光检测装置,例如,微量分光光度计。
进一步地,清洁机构还包括第一控制单元和抽吸组件,控制单元与抽吸组件连接,抽吸组件与吸引端头3的出口端连接,吸引端头3的入口端则与流体通道P连接,流体通道P延伸至容纳槽7,控制单元适于控制抽吸组件通过吸引端头3抽吸待检样品14。这些实施例中,抽吸组件包括负压泵15,负压泵15与吸引端头3连接。
其中,测量机构还包括第二控制单元,通过第二控制单元来控制第一测量单元1和第二测量单元2动作,作为可变换的实施方式,可仅通过一个控制单元实现第一控制单元和第二控制单元所执行的功能。
这些实施例中,参见图1至图3c,第一测量单元1与第二测量单元2呈水平设置,即第一测量单元1与第二测量单元2的测量端面10呈竖直取向且一左一右设置,通过采用这样的结构设置,可以从光检测装置的上方注入流体样品,而无需在注入流体样品前移开第一测量单元1与第二测量单元2中的任何一个,这大大简化了注入流体样品的操作过程(相比之下,现有技术中的同类装置几乎都是采用两个测量端面上下垂直排列,由于无法从侧面注入流体样品,因而在每次注入流体样品时必须先移开上方的测量端面,从而导致操作过程复杂);而且,该结构设置还能更好地保证被注入的流体样品在第一测量单元1、 第二测量单元2的测量端面10之间稳定地形成悬空的流体柱,而不会与光检测装置的任何其它壁面相接触。
其中,第一测量单元1、第二测量单元2上均具有适于形成设定间隙的测量端面10,测量端面10包括导流面11和吸附面12,导流面11包绕吸附面12,以使待检样品14通过导流面11流至吸附面12。
如图2、图3a、图6所示,具体地,导流面11为倒角结构,吸附面12为平面结构。其中导流面11的结构可根据实际需要进行变换,只要起到将待检样品14导流到吸附面12上即可,如将导流面11设置为圆弧面,或者设置为梅花形等。通过设置导流面,使得待检样品14能够稳定附着在吸附面12上,有助于形成稳定的流体柱。
当待检样品14被注入设定间隙内后,待检样品14沿着导流面11流动到吸附面12,在吸附面12和待检样品14之间存在附着力,待检样品14克服自身向下的重力,附着在吸附面12上,使待检样品14在第一测量单元1和第二测量单元2的吸附面12之间形成悬空的流体柱,然后再通过第一测量单元1、第二测量单元2进行检测,此时,流体柱中可以形成以水平方向传播的光径,如在图2中的设定间隙G处。
作为可变换的实施方式,第一测量单元1与第二测量单元2可以呈任意角度设置,只要满足第一测量单元1、与第二测量单元2的测量端面10附着待检样品14,并且待检样品14在两个测量端面之间形成稳定的流体柱即可。如第一测量单元1与第二测量单元2呈45度倾角设置,呈竖直设置等,当竖直设置时,第一测量单元1与第二测量单元2的测量端面10呈一上一下设置。
进一步地,该光检测装置,还包括安装组件,安装组件包括安装台5,第一测量单元1、第二测量单元2和吸引端头3都设在安装台5上。安装台5为单个部件,可以将第一测量单元1、第二测量单元2和吸引端头3安装在安装台 5上,使得整个装置结构紧凑,且拆装方便。
安装台5上设置有容纳槽7,安装台5上开设有两个与容纳槽7贯通的安装孔,两个安装孔相对设置,且分别与第一测量单元1、第二测量单元2密封连接。两测量端面10均置于容纳槽7内。
这里设置容纳槽7的目的在于:
其一是提供测量空间,当第一测量单元1和第二测量单元2的测量端面10伸入容纳槽7后,形成用于容纳待检样品14的设定间隙G;
其二是容纳清洗液18,通过清洗液18,可以将设定间隙G内的待检样品消解,然后再通过吸引端头3吸除,提升清洁效果,同时,利用清洗机构的吸引力,可以将清洗液18清除干净,防止新的待检样品14在接触检测平台时被残留的清洗液18稀释,从而导致检测数据出现误差。
注入清洗液18时,直至两测量端面10完全浸没在清洗液18中。并且清洗液18附着于容纳槽7的全部侧壁,并处于其槽口71的边沿处后停止流体注入,但清洗液18不应超出容纳槽7的槽口71,最佳状态为如图所示,清洗液18的液面呈下凹的弧形。这样设置是基于以下考虑:
一是保证待检样品14全部能够浸没在清洗液18中,以提高清洁效果;二是对容纳槽7侧壁进行清洗。由于在注入待检样品14时对不准设定间隙,待检样品14沾染到容纳槽7的侧壁,将清洗液18附着于容纳槽7的全部侧壁后,将残留在容纳槽7侧壁上的待检样品14清除干净,防止对后续检验造成影响。
具体地,吸引端头3设置在容纳槽7的槽底,并且安装槽的边沿均为圆滑过渡,这样便于将容纳槽7内的流体清除干净。作为优选的实施方式,可以将容纳槽7的槽底设置为倒锥形结构,作为可变换的实施方式,吸引端头3也可设置在容纳槽7的侧壁。
进一步地,本申请的某一实施例的光检测装置中,所述清洁机构还可以包括流体注入单元,流体注入单元包括流体注入头8和流体注入泵,流体注入泵与流体注入头连通,流体注入头8靠近设定间隙G设置,流体注入泵通过流体注入头8向容纳槽7内注入清洗液18。
作为可变换的实施方式,可以不设置流体注入单元,通过人工使用流体注入针注入清洗液18。
该光检测装置还包括驱动组件,其包括盖板9,盖板9上设有流体注入头8,驱动组件适于通过盖板9带动流体注入头8靠近或远离设定间隙G,具体地,当需要注入清洗液18时,盖板9带动流体注入头8靠近设定间隙G,当需要注入待检样品14时,盖板9带动流体注入头8远离设定间隙G。这里盖板9起到了安装和定位流体注入头8位置的作用,流体注入更加精准。
作为驱动组件的实施方式之一,通过盖板9翻转实现流体注入头8靠近或远离设定间隙G,盖板带动流体注入头远离设定间隙G的目的在于提供注入待检样品的空间,防止干扰注入待检样品。具体实现方式可以是:驱动组件包括减速电机13,减速电机13的输出轴与盖板9的一端连接,并驱动盖板9进行翻转,从而实现流体注入头8靠近或远离设定间隙G。
作为驱动组件的实施方式之二,通过盖板9平移实现流体注入头8靠近或远离设定间隙,具体实现方式可以是:
驱动组件包括减速电机13和齿条,盖板9与齿条连接,减速电机13的输出轴与齿条啮合,这样当输出轴转动时,通过齿条带动盖板9移动,从而实现流体注入头8靠近或远离设定间隙G。
本实施例的光检测装置在工作时,如图3a至图3c所示,在使用时,将待检样品14置入到设定间隙中,第一测量单元1的与光源L连接的光纤发射端16发出光束,第二测量单元2的光纤接收端17接收光束,然后与第二测量单 元2连接的检测器4对接收到的光束进行检测,从而算出待检样品14的吸光值,对待检样品14进行定性或定量分析。
完成测量以后,驱动组件带动盖板9动作,使流体注入头靠近设定间隙,通过流体注入单元的流体注入头8,将清洗液18注入容纳槽7内,流体注入完成后流体注入头远离驱动设定间隙,清洗液18对待检样品14进行消解,然后启动负压泵15,负压泵15通过吸引端头3将容纳槽7内的待检样品14迅速吸引清除,清洁完成后,可进行下一次检测。该光检测装置清洁过程通过自动化的方式完成,极大地提高了清洁效率,而且清洁效果更好,使得检测更加精准。
本申请的另一实施例的光检测装置中,所述清洁机构还可以包括流体注入单元,所述流体注入单元可以包括流体注入口I。如图8、图8a、图8b所示,所述流体注入口I开口于所述容纳槽7的侧壁内表面,与所述流体注入口I连通的流体供应通道C从所述光检测装置的侧方延伸而出。所述流体供应通道C可以与流体注入泵连接,并借助所述流体注入泵向容纳槽7内注入清洗液18。这种方式与从光检测装置上方供应清洗液的实施方式相比,能够省略设在光检测装置上方的、用以供应清洗液的移动机构,从而简化光检测装置的结构。作为可变换的实施方式,所述流体供应通道C可以从所述光检测装置的下方延伸而出,但不限于此。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无须也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 一种光检测装置,其特征在于,包括:
    测量机构,包括第一测量单元(1)和第二测量单元(2),所述第一测量单元(1)、第二测量单元(2)二者之一为光纤发射端,二者另一为光纤接收端;
    所述第一测量单元(1)、第二测量单元(2)二者均设有测量端面(10),两个所述测量端面(10)之间设有容纳待检样品的设定间隙;待检样品(14)附着在所述第一测量单元(1)、第二测量单元上的测量端面(10)上以形成悬空的流体柱;
    清洁机构,其具有吸引端头(3),所述吸引端头(3)靠近所述设定间隙设置,适于抽吸所述设定间隙内的待检样品(14)。
  2. 根据权利要求1所述的光检测装置,其特征在于,所述第一测量单元(1)与所述第二测量单元(2)呈水平设置。
  3. 根据权利要求2所述的光检测装置,其特征在于,所述测量端面(10)包括导流面(11)和吸附面(12),所述导流面(11)包绕所述吸附面(12),以使待检样品(14)通过所述导流面(11)流至所述吸附面(12),并附着在所述吸附面(12)上。
  4. 根据权利要求3所述的光检测装置,其特征在于,所述导流面(11)为倒角结构,所述吸附面(12)为平面结构。
  5. 根据权利要求1所述的光检测装置,其特征在于,所述清洁机构还包括:
    第一控制单元和抽吸组件,所述控制单元与所述抽吸组件连接,所述抽吸组件与所述吸引端头(3)连接,所述控制单元适于控制所述抽吸组件通过所述 吸引端头(3)抽吸待检样品(14)。
  6. 根据权利要求1所述的光检测装置,其特征在于,还包括安装组件,所述安装组件包括:
    安装台(5),所述第一测量单元(1)、第二测量单元(2)二者均设在所述安装台(5)上。
  7. 根据权利要求6所述的光检测装置,其特征在于,所述安装台(5)上设置有容纳槽(7),两个所述测量端面(10)均置于所述容纳槽(7)内,在向所述容纳槽(7)内注入清洗液(18)后,两个所述测量端面(10)完全浸没在所述清洗液(18)中。
  8. 根据权利要求7所述的光检测装置,其特征在于,在向所述容纳槽(7)注入清洗液(18)后,清洗液(18)附着于所述容纳槽(7)的全部侧壁,并处于所述容纳槽(7)槽口(71)的边沿处。
  9. 根据权利要求7所述的光检测装置,其特征在于,所述清洁机构还包括:
    流体注入单元,包括流体注入头(8),所述流体注入头(8)靠近所述设定间隙设置,适于向所述容纳槽(7)注入清洗液(18)。
  10. 根据权利要求9所述的光检测装置,其特征在于,还包括驱动组件,其包括盖板(9),所述盖板(9)上设有所述流体注入头(8),所述驱动组件适于通过所述盖板(9)带动所述流体注入头(8)靠近或远离所述设定间隙。
  11. 根据权利要求8所述的光检测装置,其特征在于,所述清洁机构还包括:
    流体注入单元,包括流体注入口(I),所述流体注入口(I)开口于所述容纳槽(7)的侧壁内表面,适于向所述容纳槽(7)注入清洗液(18)。
PCT/CN2022/110405 2021-08-24 2022-08-05 一种光检测装置 WO2023024868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110978064.9 2021-08-24
CN202110978064.9A CN113777062A (zh) 2021-08-24 2021-08-24 一种微量分光光度计

Publications (1)

Publication Number Publication Date
WO2023024868A1 true WO2023024868A1 (zh) 2023-03-02

Family

ID=78839002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110405 WO2023024868A1 (zh) 2021-08-24 2022-08-05 一种光检测装置

Country Status (3)

Country Link
US (1) US20230069194A1 (zh)
CN (1) CN113777062A (zh)
WO (1) WO2023024868A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777062A (zh) * 2021-08-24 2021-12-10 左渡海 一种微量分光光度计
CN118032684A (zh) * 2022-11-08 2024-05-14 赛默飞世尔(上海)仪器有限公司 分光光度计、清洁单元及用于清洁分光光度计的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003335A (ja) * 2005-06-23 2007-01-11 Hitachi High-Tech Manufacturing & Service Corp 分光光度計
CN102207456A (zh) * 2011-03-18 2011-10-05 赵景琪 一种用于微量分光光度计的取样测量装置及其使用方法
CN202453078U (zh) * 2011-06-22 2012-09-26 北京凯奥科技发展有限公司 微量分光光度计
US20140356234A1 (en) * 2011-12-02 2014-12-04 Biochrom Limited Device for receiving small volume liquid samples
CN204514799U (zh) * 2015-02-10 2015-07-29 新乡学院 分光光度计微量样品检测装置
CN105547473A (zh) * 2016-01-19 2016-05-04 济南大学 分光光度计
CN113777062A (zh) * 2021-08-24 2021-12-10 左渡海 一种微量分光光度计

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344387A1 (de) * 1983-12-08 1985-06-20 Hoechst Ag, 6230 Frankfurt Photometerkopf fuer kleine messvolumina
JP2706616B2 (ja) * 1994-02-04 1998-01-28 株式会社バイオセンサー研究所 液体の光学的測定装置
US5827744A (en) * 1995-11-06 1998-10-27 Dade International Inc. Method and apparatus for cleaning a liquid dispensing probe
US6809826B2 (en) * 2001-02-20 2004-10-26 Charles William Robertson Liquid photometer using surface tension to contain sample
WO2014175018A1 (ja) * 2013-04-22 2014-10-30 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003335A (ja) * 2005-06-23 2007-01-11 Hitachi High-Tech Manufacturing & Service Corp 分光光度計
CN102207456A (zh) * 2011-03-18 2011-10-05 赵景琪 一种用于微量分光光度计的取样测量装置及其使用方法
CN202453078U (zh) * 2011-06-22 2012-09-26 北京凯奥科技发展有限公司 微量分光光度计
US20140356234A1 (en) * 2011-12-02 2014-12-04 Biochrom Limited Device for receiving small volume liquid samples
CN204514799U (zh) * 2015-02-10 2015-07-29 新乡学院 分光光度计微量样品检测装置
CN105547473A (zh) * 2016-01-19 2016-05-04 济南大学 分光光度计
CN113777062A (zh) * 2021-08-24 2021-12-10 左渡海 一种微量分光光度计

Also Published As

Publication number Publication date
CN113777062A (zh) 2021-12-10
US20230069194A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2023024868A1 (zh) 一种光检测装置
JP4476906B2 (ja) 分注装置
EP1921439B1 (en) Measuring device, measuring instrument and method of measuring
US20160216284A1 (en) Cartridges, analyzers, and systems for analyzing samples
JP4683633B2 (ja) 液体の分析システムおよびカートリッジ
CN105784691B (zh) 二氧化氮快速检测装置及检测方法
JP6185381B2 (ja) 自動分析装置
WO2021196742A1 (zh) Poct血细胞分析仪及其检测方法
JP4882097B2 (ja) 余剰液吸引機構および化学分析装置
JP2007003351A (ja) 分注装置
CN216284910U (zh) 一种微量分光光度计
JP2007271361A (ja) 測定装置及びセンサユニットの保持方法
CN212255369U (zh) 生物样品检测用的载物台、检测板和检测单元
JP7366851B2 (ja) 検査装置
CN115165521A (zh) 稀释装置
CN213302233U (zh) 一种分析仪
CN220626398U (zh) 一种全自动特定蛋白分析仪
JP4417215B2 (ja) 生体分子相互作用測定装置
CN115248332A (zh) 移液器及poct血细胞分析仪
CN113125690A (zh) 生物样品分析仪用的载物台、检测单元和生物样品分析仪
JP2008241500A (ja) マイクロチップの位置決め部材
CN115248323A (zh) 检测座及poct血细胞分析仪
CN115248324A (zh) 检测座及poct血细胞分析仪及其运动机构
JPS60140156A (ja) 自動分析装置
JP3638573B2 (ja) 光学特性測定用被検試料の輸液方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE