WO2023024751A1 - 搅拌筒转速控制方法、装置和搅拌车 - Google Patents

搅拌筒转速控制方法、装置和搅拌车 Download PDF

Info

Publication number
WO2023024751A1
WO2023024751A1 PCT/CN2022/105878 CN2022105878W WO2023024751A1 WO 2023024751 A1 WO2023024751 A1 WO 2023024751A1 CN 2022105878 W CN2022105878 W CN 2022105878W WO 2023024751 A1 WO2023024751 A1 WO 2023024751A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
control
mixing drum
deceleration
gear
Prior art date
Application number
PCT/CN2022/105878
Other languages
English (en)
French (fr)
Inventor
龙成冰
容航
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2023024751A1 publication Critical patent/WO2023024751A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4206Control apparatus; Drive systems, e.g. coupled to the vehicle drive-system
    • B28C5/422Controlling or measuring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories

Definitions

  • the present application relates to the technical field of mechanical engineering, in particular to a method and device for controlling the rotational speed of a mixing drum and a mixing truck.
  • the speed change of the upper-mounted mixing drum of the electric mixer truck is realized by controlling the speed of the upper-mounted motor through the vehicle controller (VCU).
  • VCU vehicle controller
  • the VCU When the mixing drum is running, if the driver directly turns off the bodywork power switch or disconnects the key switch, the VCU will control the bodywork motor to decelerate. When the speed of the bodywork motor drops to the set value, the VCU will zero the bodywork motor. Torque control.
  • the present application provides a mixing drum speed control method, device and mixer truck, which are used to solve the technical problems in the prior art that the speed control of the mixing drum is easily reversed, causing concrete to flow out, and at the same time making the driver's driving experience low.
  • the application provides a method for controlling the speed of a mixing drum, including:
  • the deceleration gear table includes a plurality of deceleration gears set in descending order according to the control speed, and a set maintenance time corresponding to each deceleration gear.
  • the step-by-step deceleration control of the driving motor of the mixing drum includes:
  • the speed control mode or torque control mode is used to decelerate the mixing drum drive motor
  • the next deceleration gear based on the current deceleration gear and the setting corresponding to the next deceleration gear Deceleration control is carried out to the driving motor of the mixing drum at a fixed maintenance time.
  • the deceleration gear is determined based on the following steps:
  • the first control speed is less than the maximum control speed and greater than the minimum control speed speed
  • the interval between the second speed steps is smaller than the first speed step interval
  • a reduction gear in the reduction gear table is determined based on the plurality of high speed reduction gears and the plurality of low speed reduction gears.
  • the maximum control rotation speed is the maximum rotation speed of the driving motor of the mixing drum
  • the minimum control rotation speed is zero rotation speed
  • the set maintenance time corresponding to the low-speed deceleration gear is longer than the set maintenance time corresponding to the high-speed deceleration gear.
  • the sum of the set maintenance times corresponding to each deceleration gear in the deceleration gear table is determined based on the power-off time of the entire mixer truck.
  • the application provides a mixing drum speed control device, including:
  • an acquisition unit configured to acquire the current rotational speed of the driving motor of the mixing drum
  • a control unit configured to determine the current deceleration gear and the set maintenance time corresponding to the current deceleration gear based on the current speed and the deceleration gear table, and perform gear-by-gear deceleration control on the mixing drum drive motor;
  • the deceleration gear table includes a plurality of deceleration gears set in descending order according to the control speed, and a set maintenance time corresponding to each deceleration gear.
  • the present application provides a mixer truck, including the above-mentioned mixing drum rotation speed control device.
  • the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, the method for controlling the rotational speed of the mixing drum is implemented. A step of.
  • the present application provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for controlling the rotational speed of the mixing drum are implemented.
  • the mixing drum speed control method, device and mixer truck provided by this application determine the current speed reduction gear and the set maintenance time corresponding to the current speed reduction gear according to the current speed and the speed reduction gear table, and decelerate the driving motor of the mixing drum gear by gear Control, the deceleration gear table includes a number of deceleration gears that are set in descending order according to the control speed, and the set maintenance time corresponding to each deceleration gear. Due to the gear-by-gear deceleration method, the rotation speed of the mixing drum is continuously improved. The control will not cause the unloading phenomenon due to the momentary reversal caused by inertia, and the reverse impact force will be avoided to the greatest extent, the driving discomfort will be alleviated, and the driving experience of the driver will be improved.
  • Fig. 1 is the schematic flow sheet of the method for controlling the rotating speed of the mixing drum provided by the present application
  • Fig. 2 is the schematic diagram of the speed control system on the mixer truck provided by the application;
  • Fig. 3 is the structural representation of the rotating speed control device of the mixing drum provided by the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by the present application.
  • the mixer truck is a special truck used to transport concrete for construction.
  • the truck is equipped with a cylindrical mixing drum to carry the mixed concrete. During transportation, the mixing drum will always be kept rotating to ensure that the carried concrete will not solidify.
  • Fig. 1 is the schematic flow sheet of the mixing drum rotational speed control method that the present application provides, as shown in Fig. 1, this method comprises:
  • Step 110 acquiring the current rotational speed of the driving motor of the mixing drum.
  • the mixing drum is connected with the driving motor of the mixing drum through a gearbox.
  • the mixing drum is driven by the driving motor of the mixing drum, and the rotating speed of the mixing drum can be obtained through the gear ratio of the gearbox and the rotating speed of the driving motor of the mixing drum.
  • Controlling the rotating speed of the mixing drum is to control the rotating speed of the driving motor of the mixing drum.
  • the mixer drum drive motor is also known as the bodywork motor.
  • the method for controlling the rotational speed of the mixing drum is applicable to fuel-driven mixer trucks, and is also applicable to power battery-driven electric mixer trucks.
  • the VCU will generally control the bodywork motor to slow down the mixing drum until the mixing drum stops rotating.
  • the current rotation speed refers to the rotation speed of the mixing drum drive motor at the current moment.
  • Step 120 based on the current rotational speed and the deceleration gear table, determine the current deceleration gear and the set maintenance time corresponding to the current deceleration gear, and perform gear-by-gear deceleration control on the mixing drum driving motor;
  • the deceleration gear table includes a plurality of deceleration gears set in descending order according to the control speed, and a set maintenance time corresponding to each deceleration gear.
  • the mixing drum may be loaded with concrete and other substances, if the loading of concrete is small, the rotating speed of the mixing drum will gradually stop after falling to the set value; if the loading of concrete is large, the rotating speed of the mixing drum will When the rotation speed drops to zero, there is more concrete in the mixing drum at this time. Due to the effect of inertia, the mixing drum will reverse instantaneously, making the mixing drum switch from the feeding state to the unloading state, so that the concrete will flow out. And produce a reverse impact force, causing the mixer truck to vibrate, causing an uncomfortable driving experience for the driver.
  • a deceleration gear table can be formulated.
  • the deceleration gear table includes multiple deceleration gears, and the control speed and setting maintenance time corresponding to each deceleration gear.
  • the control speed refers to the speed of the mixing drum driving motor when any deceleration gear is used to control the rotating speed of the mixing drum driving motor.
  • the control speed may be a certain speed value, such as 200 revolutions per minute (rmp), or a speed range, such as 150-200 revolutions per minute.
  • the set maintenance time is the continuous control time of the deceleration gear when using any deceleration gear to control the speed of the mixing drum drive motor. For example, when a certain deceleration gear is used for speed control, and the set maintenance time of the deceleration gear is 1 minute, it means that the continuous control time of the deceleration gear is 1 minute.
  • Each deceleration gear in the deceleration gear table can be set in descending order according to the size of the control speed.
  • N deceleration gears can be set, N is a positive integer, respectively Gear1, Gear2, ..., Gear(N-1), GearN, and the control speed relationship corresponding to each deceleration gear is Gear1>Gear2>... ...>Gear(N-1)>GearN.
  • the corresponding deceleration gear can be determined, and then according to the set maintenance time corresponding to the deceleration gear, the mixer drum drive motor is decelerated step by step, so that the speed of the mixer drum drive motor can be realized gradually. Slow down, so that the mixing process of concrete in the mixing drum is a continuous slow down process, and there will be no instantaneous reversal due to inertia.
  • step-by-step deceleration it can be carried out when the driver turns off the power take-off switch or key switch of the bodywork, or it can be performed after the speed of the mixing drum drive motor is lower than the set speed, and the set speed can be set according to the actual situation.
  • the speed control method of the mixing drum provided in the embodiment of the present application, according to the current speed and the deceleration gear table, the current deceleration gear and the set maintenance time corresponding to the current deceleration gear are determined, and the driving motor of the mixing drum is decelerated step by step.
  • the gear table includes multiple deceleration gears that are set in descending order according to the control speed, and the set maintenance time corresponding to each deceleration gear. Due to the adoption of gear-by-gear deceleration, the speed of the mixing drum is continuously controlled. The unloading phenomenon will not occur due to the momentary reversal caused by inertia, and the reverse impact force is avoided to the greatest extent, the driving discomfort is alleviated, and the driving experience of the driver is improved.
  • step 120 includes:
  • the speed control mode or torque control mode is used to decelerate the mixing drum drive motor
  • the mixing drum drive motor Perform deceleration control.
  • a rotational speed control mode or a torque control mode may be adopted.
  • the target physical quantity of the rotational speed control method is the rotational speed of the mixing drum drive motor.
  • the rotational speed control method uses the rotational speed of the mixing drum drive motor as the actual value for closed-loop control, which has the characteristics of high control precision.
  • the target physical quantity of the torque control method is to control the output torque of the drive motor of the mixing drum. Because only the speed control method is used when the concrete load is large, the rotational inertia may be large and the speed control may fail or the equipment may be damaged if the speed is forcibly controlled. At this time, the torque control method can be switched to control the torque change. Changing the speed can effectively avoid damage to the equipment and improve the service life of the equipment.
  • the rotation speed of the mixing drum drive motor has been reduced, and the current deceleration gear can be switched to the next deceleration gear.
  • the setting maintenance time corresponding to the gear position is used to decelerate the mixing drum drive motor to realize the continuous reduction of the speed of the mixing drum, and repeat the above steps until the mixing drum drive motor is reduced to zero speed.
  • the deceleration gear is determined based on the following steps:
  • the first control speed is less than the maximum control speed and greater than the minimum control speed
  • the second The rotation speed step interval is smaller than the first rotation speed step interval
  • the speed control interval between the highest control speed and the first control speed is divided to obtain a plurality of high-speed deceleration gears
  • the reduction gear in the reduction gear table is determined.
  • the number of deceleration gears can be set.
  • the principle of classification can be that when the speed of the mixing drum drive motor is high, less gears can be divided, and when the speed of the mixing drum drive motor is lower, more gears can be divided. In this way, when the rotating speed of the mixing drum driving motor is reduced, finer control can be obtained, so that the rotating speed of the mixing drum can be controlled more smoothly, and the reverse impact force can be reduced to the greatest extent.
  • the first control speed can be determined between the highest control speed and the lowest control speed.
  • the first control rotational speed is used to divide the entire rotational speed control interval into a high-speed control interval and a low-speed control interval.
  • the first speed step interval and the second speed step interval must be determined.
  • the speed stepping interval is a speed control interval unit.
  • the first rotational speed stepping interval is used for stepping the high-speed control interval
  • the second rotational speed stepping interval is used for stepping the low-speed control interval.
  • the second speed stepping interval can be set to be smaller than the first speed stepping interval.
  • the first rotational speed classification interval can be 50 revolutions per minute
  • the high-speed control interval can be divided into an interval according to every change of 50 revolutions per minute of the rotational speed, such as 550-500 revolutions per minute, 500-450 revolutions per minute, 450-450 revolutions per minute. 400 rpm and so on
  • the second speed sub-level interval can be 20 rpm
  • the low-speed control interval can be divided into an interval according to the speed change of 20 rpm, such as 200-180 rpm, 180-160 rpm Min, 160-140 rpm, etc.
  • the speed control interval between the highest control speed and the first control speed is divided to obtain multiple high-speed deceleration gears; according to the second speed stepping interval, the first control speed and the first control speed are divided.
  • the rotational speed control intervals between the lowest controlled rotational speeds are divided to obtain multiple low-speed deceleration gears. Since the second speed stepping interval is smaller than the first speed stepping interval, the distribution of low-speed deceleration gears corresponding to the low-speed control interval is relatively dense, and the distribution of low-speed deceleration gears corresponding to the low-speed control interval is relatively sparse.
  • the deceleration gear in the deceleration gear table is determined according to the obtained multiple high-speed deceleration gears and multiple low-speed deceleration gears.
  • the maximum control speed is the maximum speed of the driving motor of the mixing drum, and the minimum control speed is zero speed.
  • the control range of the deceleration gear can be reasonably set.
  • the maximum speed of the mixing drum drive motor can be set as the highest control speed corresponding to the deceleration gear table, and the zero speed can be set as the minimum control speed corresponding to the deceleration gear table.
  • the set maintenance time corresponding to the low-speed deceleration gear is longer than the set maintenance time corresponding to the high-speed deceleration gear.
  • the setting maintenance time of each deceleration gear can also be set.
  • the mixing drum when it is loaded with a large amount of concrete, its rotational inertia is relatively large. Therefore, in order to reduce the rotation speed smoothly, relative to the setting maintenance time corresponding to the high-speed deceleration gear, the setting maintenance time corresponding to the low-speed deceleration gear can be appropriately extended, so that the rotation speed of the mixing drum drive motor can be as low as possible at low speeds.
  • the ground changes smoothly, improving the deceleration effect in the low-speed control section.
  • the specific extension time can be determined according to the actual situation.
  • the sum of the set maintenance time corresponding to each deceleration gear in the deceleration gear table is determined based on the power-off time of the entire mixer truck.
  • the power-off time of the whole vehicle is the time during which the VCU continues to control after the driver turns off the key switch.
  • the power-off time of the whole vehicle should not be too long, otherwise it may cause the power battery or battery in the mixer truck to be exhausted, which will affect the restart of the mixer truck. Therefore, the set maintenance time corresponding to each deceleration gear in the deceleration gear table can be determined according to the power-off time of the entire mixer truck.
  • the sum of the setting maintenance time corresponding to each deceleration gear cannot be greater than the power-off time of the whole vehicle, and then set the setting maintenance time corresponding to each deceleration gear individually according to the actual situation.
  • Fig. 2 is a schematic diagram of the top-mounted speed control system of the mixer truck provided by the present application.
  • the system includes a vehicle controller (VCU), a top-mounted motor controller, a power supply device, Motor and mixing drum.
  • VCU vehicle controller
  • Motor Motor and mixing drum.
  • the vehicle controller is used to obtain signals from the accelerator and brake pedals in the cab, signals from the control panel in the cab, control signals from the electric control handle outside the cab, transmission gear signals, handbrake signals, and vehicle speed signals, etc.
  • the motor control logic determines the control commands such as motor speed, motor torque and rotation direction for controlling the bodywork motor, and sends them to the bodywork motor controller.
  • the bodywork motor controller is used to obtain the power supply of the bodywork motor from the power supply device, and control the bodywork motor according to the control instructions sent by the vehicle controller.
  • the bodywork motor is directly connected to the mixing drum through the direct drive of the gearbox or hydraulic connection, and drives the mixing drum to accelerate or decelerate.
  • the VCU regulates the speed of the motor through motor speed control (or motor torque control), thereby realizing the accelerated operation of the mixing drum.
  • the mixer drum When the mixer drum is running, if the driver turns off the power take-off switch of the bodywork or turns off the key, the mixer drum will gradually stop running; during the entire deceleration process, the VCU will control the bodywork motor to perform "gradual deceleration" operation (deceleration Motor speed control or torque control can be used), when the speed of the bodywork motor is lower than a certain set value, the VCU will control the motor to zero torque control, the specific "step speed reduction" operation is as follows:
  • N is a positive integer, respectively Gear1, Gear2, Gear3, ..., Gear(N-1), GearN, and The corresponding speed relationship of each gear is Gear1>Gear2>...>Gear(N-1)>GearN, that is, Gear1 corresponds to the maximum speed of the mixing drum (that is, the maximum speed of the motor), and GearN corresponds to the zero speed of the mixing drum (that is, the zero speed of the motor);
  • T is the calibration value
  • the maintenance time T of each gear can be determined according to actual needs; it is recommended to set the time for low gears Long, the setting time of the high gear is short, and the maintenance time of one or some gears can be 0, but the general principle is that the sum of the speed maintenance time of each gear should not be too long, if it is too long, it will cause the driver to turn off the key. , the whole vehicle takes a long time to power off;
  • the mixer truck bodywork speed control system provided in the embodiment of the present application, when the bodywork mixing drum is in operation, if the driver directly turns off the power take-off switch of the bodywork or disconnects the key switch, the control system can ensure that the mixing drum will not have a large Reversing results in unloading operations, while also minimizing the reverse impact and relieving driving discomfort.
  • Fig. 3 is a schematic structural diagram of the mixing drum speed control device provided by the present application. As shown in Fig. 3, the device includes:
  • An acquisition unit 310 configured to acquire the current rotational speed of the mixing drum drive motor
  • the control unit 320 is used to determine the current deceleration gear and the set maintenance time corresponding to the current deceleration gear based on the current rotational speed and the deceleration gear table, and to perform gear-by-gear deceleration control on the mixing drum drive motor;
  • the deceleration gear table includes a plurality of deceleration gears set in descending order according to the control speed, and a set maintenance time corresponding to each deceleration gear.
  • the mixing drum rotational speed control device determines the current deceleration gear and the setting maintenance time corresponding to the current deceleration gear according to the current rotational speed and the deceleration gear table, and performs gear-by-gear deceleration control on the mixing drum drive motor.
  • the gear table includes multiple deceleration gears that are set in descending order according to the control speed, and the set maintenance time corresponding to each deceleration gear. Due to the adoption of gear-by-gear deceleration, the speed of the mixing drum is continuously controlled. The unloading phenomenon will not occur due to the momentary reversal caused by inertia, and the reverse impact force is avoided to the greatest extent, the driving discomfort is alleviated, and the driving experience of the driver is improved.
  • control unit 320 is used for:
  • the speed control mode or torque control mode is used to decelerate the mixing drum drive motor
  • the mixing drum drive motor Perform deceleration control.
  • the gear position determination unit is used to determine the maximum control speed, the minimum control speed, the first control speed, the first speed stepping interval and the second speed stepping interval corresponding to the deceleration gear table; the first control speed is less than the maximum control speed and Greater than the minimum control speed; the second speed stepping interval is smaller than the first speed stepping interval;
  • the speed control interval between the highest control speed and the first control speed is divided to obtain a plurality of high-speed deceleration gears
  • the reduction gear in the reduction gear table is determined.
  • the maximum control speed is the maximum speed of the driving motor of the mixing drum, and the minimum control speed is zero speed.
  • the set maintenance time corresponding to the low-speed deceleration gear is longer than the set maintenance time corresponding to the high-speed deceleration gear.
  • the sum of the set maintenance time corresponding to each deceleration gear in the deceleration gear table is determined based on the power-off time of the entire mixer truck.
  • an embodiment of the present application provides a mixer truck, including the above-mentioned mixing drum rotation speed control device.
  • the mixer truck in the embodiment of the present application may be a fuel-driven mixer truck, or may be an electric mixer truck driven by a power battery.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by the present application.
  • the electronic device may include: a processor (Processor) 410, a communication interface (Communications Interface) 420, a memory ) 430 and a communication bus (Communications Bus) 440, wherein, the processor 410, the communication interface 420, and the memory 430 complete mutual communication through the communication bus 440.
  • the processor 410 can invoke logic commands in the memory 430 to perform the following methods:
  • the bit table includes a plurality of deceleration gears set in descending order according to the size of the controlled rotational speed, and a set maintenance time corresponding to each deceleration gear.
  • the above logic commands in the memory 430 may be implemented in the form of software function units and when sold or used as an independent product, they may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several commands are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the processor in the electronic device provided by the embodiment of the present application can call the logic instruction in the memory to implement the above method, and its specific implementation mode is consistent with the above method implementation mode, and can achieve the same beneficial effect, and will not be repeated here.
  • An embodiment of the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the methods provided by the above-mentioned embodiments, for example, including:
  • the bit table includes a plurality of deceleration gears set in descending order according to the size of the controlled rotational speed, and a set maintenance time corresponding to each deceleration gear.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic Disc, CD, etc., including several commands to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种搅拌筒转速控制方法、装置和搅拌车,其中方法包括:获取搅拌筒驱动电机的当前转速;基于所述当前转速和减速档位表,确定当前减速档位和所述当前减速档位对应的设定维持时间,对所述搅拌筒驱动电机进行逐档减速控制;其中,所述减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。使得搅拌筒的转速得到了连续的控制,不会因为惯性产生瞬间反转而导致出现卸料现象,最大限度地避免了产生反转冲击力,减缓了驾驶不舒适感,提高了驾驶员的驾驶体验。

Description

搅拌筒转速控制方法、装置和搅拌车
相关申请的交叉引用
本申请要求于2021年8月23日提交的申请号为2021109687955,发明名称为“搅拌筒转速控制方法、装置和搅拌车”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及机械工程技术领域,尤其涉及一种搅拌筒转速控制方法、装置和搅拌车。
背景技术
目前,电动搅拌车上装搅拌筒的转速变化是通过整车控制器(VCU)控制上装电机调速的方式实现的。当搅拌筒处于运行过程中,如果驾驶员直接关闭上装取力开关或者断开钥匙开关,那么VCU会控制上装电机进行减速,当上装电机转速降到设定值之后,VCU便对上装电机进行零扭矩控制。
现有技术中,当搅拌筒装载量较大时,如果驾驶员直接关闭上装取力开关或者断开钥匙开关,那么当搅拌筒转速降到零之后,会由于惯性力作用出现瞬间的反转运行情况,一方面会造成搅拌筒由进料状态反转到卸料状态,使混凝土流出,另一方面会由于搅拌筒瞬间的反转冲击力给驾驶员造成不舒适的驾驶体验。
发明内容
本申请提供一种搅拌筒转速控制方法、装置和搅拌车,用于解决现有技术中搅拌筒控制转速控制容易出现反转,使混凝土流出,同时使得驾驶员驾驶体验低的技术问题。
本申请提供一种搅拌筒转速控制方法,包括:
获取搅拌筒驱动电机的当前转速;
基于所述当前转速和减速档位表,确定当前减速档位和所述当前减速 档位对应的设定维持时间,对所述搅拌筒驱动电机进行逐档减速控制;
其中,所述减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
根据本申请提供的搅拌筒转速控制方法,所述对所述搅拌筒驱动电机进行逐档减速控制,包括:
基于所述当前减速档位,采用转速控制方式或者转矩控制方式对所述搅拌筒驱动电机进行减速控制;
当所述当前减速档位的维持时间达到所述当前减速档位对应的设定维持时间时,则基于所述当前减速档位的下一减速档位和所述下一减速档位对应的设定维持时间对所述搅拌筒驱动电机进行减速控制。
根据本申请提供的搅拌筒转速控制方法,所述减速档位是基于如下步骤确定的:
确定所述减速档位表对应的最高控制转速、最低控制转速、第一控制转速、第一转速分档间隔和第二转速分档间隔;所述第一控制转速小于最高控制转速且大于最低控制转速;所述第二转速分档间隔小于所述第一转速分档间隔;
基于所述第一转速分档间隔,对所述最高控制转速和所述第一控制转速之间的转速控制区间进行划分,得到多个高速减速档位;
基于第二转速分档间隔,对所述第一控制转速和所述最低控制转速之间的转速控制区间进行划分,得到多个低速减速档位;
基于所述多个高速减速档位和所述多个低速减速档位,确定所述减速档位表中的减速档位。
根据本申请提供的搅拌筒转速控制方法,所述最高控制转速为搅拌筒驱动电机的最大转速,所述最低控制转速为零转速。
根据本申请提供的搅拌筒转速控制方法,所述低速减速档位对应的设定维持时间大于所述高速减速档位对应的设定维持时间。
根据本申请提供的搅拌筒转速控制方法,所述减速档位表中各个减速档位对应的设定维持时间之和是基于搅拌车的整车下电时间确定的。
本申请提供一种搅拌筒转速控制装置,包括:
获取单元,用于获取搅拌筒驱动电机的当前转速;
控制单元,用于基于所述当前转速和减速档位表,确定当前减速档位和所述当前减速档位对应的设定维持时间,对所述搅拌筒驱动电机进行逐档减速控制;
其中,所述减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
本申请提供一种搅拌车,包括所述的搅拌筒转速控制装置。
本申请提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现所述搅拌筒转速控制方法的步骤。
本申请提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述搅拌筒转速控制方法的步骤。
本申请提供的搅拌筒转速控制方法、装置和搅拌车,根据当前转速和减速档位表,确定当前减速档位和当前减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制,减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间,由于采用了逐档减速的方式,使得搅拌筒的转速得到了连续的控制,不会因为惯性产生瞬间反转而导致出现卸料现象,最大限度地避免了产生反转冲击力,减缓了驾驶不舒适感,提高了驾驶员的驾驶体验。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的搅拌筒转速控制方法的流程示意图;
图2为本申请提供的搅拌车上装转速控制系统的原理图;
图3为本申请提供的搅拌筒转速控制装置的结构示意图;
图4为本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
搅拌车是用来运送建筑用混凝土的专用卡车,卡车上都装置有圆筒型的搅拌筒以运载混合后的混凝土。在运输过程中会始终保持搅拌筒转动,以保证所运载的混凝土不会凝固。
图1为本申请提供的搅拌筒转速控制方法的流程示意图,如图1所示,该方法包括:
步骤110,获取搅拌筒驱动电机的当前转速。
具体地,搅拌筒通过变速箱与搅拌筒驱动电机连接。搅拌筒是由搅拌筒驱动电机驱动的,可以通过变速箱的变速比,以及搅拌筒驱动电机的转速,得到搅拌筒的转速。对搅拌筒转速进行控制就是对搅拌筒驱动电机的转速进行控制。搅拌筒驱动电机也被称为上装电机。
本申请实施例提供的搅拌筒转速控制方法适用于燃油驱动的搅拌车,也适用于动力电池驱动的电动搅拌车。对于电动搅拌车,当搅拌筒处于运行过程中,如果驾驶员直接关闭上装取力开关或者断开钥匙开关时,一般由VCU控制上装电机对搅拌筒进行减速,直至搅拌筒停止转动。
在对搅拌筒的转速进行控制时,应获取搅拌筒驱动电机的当前转速。当前转速是指搅拌筒驱动电机在当前时刻的转速。
步骤120,基于当前转速和减速档位表,确定当前减速档位和当前减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制;
其中,减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
具体地,由于搅拌筒内可能装载有混凝土等物质,若混凝土的装载量较少,搅拌筒的转速降到设定值之后,会逐渐停止转动;若混凝土的装载量较多,搅拌筒的转速会下降到零转速时,此时搅拌筒内的混凝土较多,由于惯性的作用,会导致搅拌筒出现瞬间的反转现象,使得搅拌筒从进料状态切换至卸料状态,使得混凝土流出,并产生反转冲击力,造成搅拌车 震动,给驾驶员造成不舒服的驾驶体验。
可以制定减速档位表。减速档位表包括多个减速档位,以及每一减速档位对应的控制转速和设定维持时间。控制转速为采用任一减速档位对搅拌筒驱动电机进行转速控制时,搅拌筒驱动电机的转速。控制转速可以为某个转速值,例如200转每分(rmp),也可以为一个转速区间,例如150-200转每分。设定维持时间为采用任一减速档位对搅拌筒驱动电机进行转速控制时,该减速档位的持续控制时间。例如,采用某个减速档位进行转速控制时,该减速档位的设定维持时间为1分钟,则表示用该减速档位控制时持续控制时间为1分钟。
减速档位表中的各个减速档位可以按照控制转速大小递减设置。例如,可以设置为N个减速档位,N为正整数,分别为Gear1、Gear2、……、Gear(N-1)、GearN,并且各个减速档位对应的控制转速关系为Gear1>Gear2>……>Gear(N-1)>GearN。
根据搅拌筒驱动电机的当前转速,可以确定对应的减速档位,然后按照减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制,使得搅拌筒驱动电机的转速可以实现逐渐变缓,使得搅拌筒内混凝土的搅拌过程为一个连续变缓的过程,不会因为惯性产生瞬间的反转。
进行逐档减速时,可以在驾驶员关闭上装取力开关或者钥匙开关时就进行,也可以等待搅拌筒驱动电机的转速低于设定转速之后再进行,设定转速可以根据实际情况进行设置。
本申请实施例提供的搅拌筒转速控制方法,根据当前转速和减速档位表,确定当前减速档位和当前减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制,减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间,由于采用了逐档减速的方式,使得搅拌筒的转速得到了连续的控制,不会因为惯性产生瞬间反转而导致出现卸料现象,最大限度地避免了产生反转冲击力,减缓了驾驶不舒适感,提高了驾驶员的驾驶体验。
基于上述实施例,步骤120包括:
基于当前减速档位,采用转速控制方式或者转矩控制方式对搅拌筒驱动电机进行减速控制;
当当前减速档位的维持时间达到当前减速档位对应的设定维持时间时,则基于当前减速档位的下一减速档位和下一减速档位对应的设定维持时间对搅拌筒驱动电机进行减速控制。
具体地,当采用当前减速档位对搅拌筒驱动电机进行减速控制时,可以采用转速控制方式或者转矩控制方式。
转速控制方式的目标物理量为搅拌筒驱动电机的转速。转速控制方式是以搅拌筒驱动电机的转速为实际值进行闭环控制,具有控制精度高等特点。
转矩控制方式的目标物理量为控制搅拌筒驱动电机的输出转矩。由于仅采用转速控制方式在混凝土装载量较大时,可能出现转动惯性较大导致转速控制失效或者强行控制转速可能造成设备损伤,此时可以切换为转矩控制方式,通过控制转矩的变化来改变转速,能够有效地避免损伤设备,提高设备的使用寿命等特点。
当当前减速档位的维持时间达到当前减速档位对应的设定维持时间时,搅拌筒驱动电机的转速已经实现了降低,可以将当前减速档位切换为下一减速档位,根据下一减速档位对应的设定维持时间对搅拌筒驱动电机进行减速控制,实现继续降低搅拌筒的转速,重复上述步骤,直至将搅拌筒驱动电机降低至零转速。
基于上述任一实施例,减速档位是基于如下步骤确定的:
确定减速档位表对应的最高控制转速、最低控制转速、第一控制转速、第一转速分档间隔和第二转速分档间隔;第一控制转速小于最高控制转速且大于最低控制转速;第二转速分档间隔小于第一转速分档间隔;
基于第一转速分档间隔,对最高控制转速和第一控制转速之间的转速控制区间进行划分,得到多个高速减速档位;
基于第二转速分档间隔,对第一控制转速和最低控制转速之间的转速控制区间进行划分,得到多个低速减速档位;
基于多个高速减速档位和多个低速减速档位,确定减速档位表中的减速档位。
具体地,为了提高逐档减速的效果,可以对减速档位的数量进行设置。分档原则可以为搅拌筒驱动电机转速较高时,可以少划分一些档位,搅拌 筒驱动电机转速较低时,可以多划分一些档位。这样划分,可以使得搅拌筒驱动电机的转速降低时,可以得到更加精细的控制,从而使得搅拌筒的转速控制更为平滑,最大限度地降低反转冲击力。
首先,确定减速档位表对应的最高控制转速和最低控制转速。根据搅拌筒驱动电机的转速特性,可以在最高控制转速和最低控制转速之间,确定第一控制转速。第一控制转速用于将整个转速控制区间划分为高速控制区间和低速控制区间。此外,还要确定第一转速分档间隔和第二转速分档间隔。转速分档间隔为一个转速控制区间单元。第一转速分档间隔用于对高速控制区间进行分档,第二转速分档间隔用于对低速控制区间进行分档。可以设置第二转速分档间隔小于第一转速分档间隔。例如,第一转速分档间隔可以为50转每分,可以对高速控制区间按照转速每变化50转每分就划分一个区间,如550-500转每分,500-450转每分,450-400转每分等;第二转速分档间隔可以为20转每分,可以对低速控制区间按照转速每变化20转每分就划分一个区间,如200-180转每分,180-160转每分,160-140转每分等。
其次,根据第一转速分档间隔,对最高控制转速和第一控制转速之间的转速控制区间进行划分,得到多个高速减速档位;根据第二转速分档间隔,对第一控制转速和最低控制转速之间的转速控制区间进行划分,得到多个低速减速档位。由于第二转速分档间隔小于第一转速分档间隔,低速控制区间对应的低速减速档位的分布较为密集,低速控制区间对应的低速减速档位的分布较为稀疏。
最后,根据得到的多个高速减速档位和多个低速减速档位,确定减速档位表中的减速档位。
基于上述任一实施例,最高控制转速为搅拌筒驱动电机的最大转速,最低控制转速为零转速。
具体地,为了对搅拌筒的转速进行有效的控制,可以合理设置减速档位的控制范围。可以将搅拌筒驱动电机的最大转速设置为减速档位表对应的最高控制转速,可以将零转速设置为减速档位表对应的最低控制转速。
基于上述任一实施例,低速减速档位对应的设定维持时间大于高速减速档位对应的设定维持时间。
具体地,为了进一步地提高转速控制效果,还可以对每一减速档位的设定维持时间进行设置。
对于搅拌筒而言,当其装载有大量混凝土时,其转动惯性较大。因此,为了实现平缓地降低转速,相对于高速减速档位对应的设定维持时间,可以适当地延长低速减速档位对应的设定维持时间,使得搅拌筒驱动电机的转速在低速情况下尽可能地变化平缓,提高低速控制区间的减速效果。具体延长的时间可以根据实际情况进行确定。
基于上述任一实施例,减速档位表中各个减速档位对应的设定维持时间之和是基于搅拌车的整车下电时间确定的。
具体地,整车下电时间为驾驶员关闭钥匙开关后VCU继续控制的时间。整车下电时间不能过长,否则可能导致搅拌车中动力电池或者蓄电池中的电能耗尽,影响搅拌车的再次启动。因此,可以根据搅拌车的整车下电时间确定减速档位表中各个减速档位对应的设定维持时间。
例如,可以设置各个减速档位对应的设定维持时间之和不能大于整车下电时间,然后根据实际情况,对各个减速档位对应的设定维持时间进行单独设置。
基于上述任一实施例,图2为本申请提供的搅拌车上装转速控制系统的原理图,如图2所示,该系统包括整车控制器(VCU)、上装电机控制器、供电装置、上装电机和搅拌筒。
其中,整车控制器用于获取驾驶室油门和制动踏板信号、驾驶室控制面板发出的信号、驾驶室外电控手柄发出的控制信号、变速箱档位信号、手刹信号和车速信号等,根据上装电机控制逻辑,确定控制上装电机的电机转速、电机转矩和旋转方向等控制指令,并将其发送至上装电机控制器。
上装电机控制器用于从供电装置获取上装电机的动力电源,根据整车控制器发送的控制指令,对上装电机进行控制。
上装电机通过变速箱直驱或者液压连接的方式,与搅拌筒直接连接,驱动搅拌筒进行加速或者减速。
具体控制方式包括:
(1)搅拌筒加速控制
上装搅拌筒启动后,VCU通过电机转速控制(或者电机转矩控制)方 式对电机进行调速,进而实现搅拌筒加速操作。
(2)搅拌筒减速控制
当搅拌筒处于运行过程中,如果驾驶员关闭上装取力开关或者关闭钥匙,那么搅拌筒将会逐渐停止运转;在整个减速过程中,VCU会控制上装电机进行“分档降速”操作(减速可采用电机转速控或者转矩控方式),当上装电机转速小于某一设定值后,VCU会控制电机零扭矩控制,具体“分档降速”操作如下:
1)将搅拌筒从最大转速降到零转速的整个降速过程分为N个档位,N为正整数,分别为Gear1、Gear2、Gear3、……、Gear(N-1)、GearN,且各档位对应转速关系为Gear1>Gear2>……>Gear(N-1)>GearN,即Gear1对应搅拌筒最大转速(即电机最大转速),GearN对应搅拌筒零转速(即电机零转速);
分档原则:电机转速较低(如电机转速小于100rpm)时划分档位可以密集点,相反,电机转速较高时划分档位可以少一些;
2)当电机转速降至各档位对应转速的时候,需要维持该档位转速一定时间T(T为标定量);各个档位下维持转速时间T可以根据实际需求确定;建议低档位设置时间长,高档位时间设置时间短,某个或某些档位的维持时间可以为0,但总体原则是各档位下转速维持时间总和不能太长,如果太长的话会导致驾驶员关闭钥匙后,整车下电时间较长;
3)当电机转速降至Gear(N-1)档且电机在该档位下维持时间满足要求后,VCU会控制电机零扭矩,即进入GearN档,电机退出调速控制,依靠摩擦阻力进行缓慢降速。
本申请实施例提供的搅拌车上装转速控制系统,当上装搅拌筒处于运行过程中,如果驾驶员直接关闭上装取力开关或者断开钥匙开关,该控制系统可以保证搅拌筒不会有较大的反转导致卸料操作,同时也最大限度地降低反转冲击力,减缓驾驶不舒适感。
基于上述任一实施例,图3为本申请提供的搅拌筒转速控制装置的结构示意图,如图3所示,该装置包括:
获取单元310,用于获取搅拌筒驱动电机的当前转速;
控制单元320,用于基于当前转速和减速档位表,确定当前减速档位 和当前减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制;
其中,减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
本申请实施例提供的搅拌筒转速控制装置,根据当前转速和减速档位表,确定当前减速档位和当前减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制,减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间,由于采用了逐档减速的方式,使得搅拌筒的转速得到了连续的控制,不会因为惯性产生瞬间反转而导致出现卸料现象,最大限度地避免了产生反转冲击力,减缓了驾驶不舒适感,提高了驾驶员的驾驶体验。
基于上述任一实施例,控制单元320用于:
基于当前减速档位,采用转速控制方式或者转矩控制方式对搅拌筒驱动电机进行减速控制;
当当前减速档位的维持时间达到当前减速档位对应的设定维持时间时,则基于当前减速档位的下一减速档位和下一减速档位对应的设定维持时间对搅拌筒驱动电机进行减速控制。
基于上述任一实施例,还包括:
档位确定单元,用于确定减速档位表对应的最高控制转速、最低控制转速、第一控制转速、第一转速分档间隔和第二转速分档间隔;第一控制转速小于最高控制转速且大于最低控制转速;第二转速分档间隔小于第一转速分档间隔;
基于第一转速分档间隔,对最高控制转速和第一控制转速之间的转速控制区间进行划分,得到多个高速减速档位;
基于第二转速分档间隔,对第一控制转速和最低控制转速之间的转速控制区间进行划分,得到多个低速减速档位;
基于多个高速减速档位和多个低速减速档位,确定减速档位表中的减速档位。
基于上述任一实施例,最高控制转速为搅拌筒驱动电机的最大转速,最低控制转速为零转速。
基于上述任一实施例,低速减速档位对应的设定维持时间大于高速减速档位对应的设定维持时间。
基于上述任一实施例,减速档位表中各个减速档位对应的设定维持时间之和是基于搅拌车的整车下电时间确定的。
基于上述任一实施例,本申请实施例提供一种搅拌车,包括上述的搅拌筒转速控制装置。
具体地,本申请实施例中的搅拌车可以为燃油驱动的搅拌车,也可以为动力电池驱动的电动搅拌车。
基于上述任一实施例,图4为本申请提供的电子设备的结构示意图,如图4所示,该电子设备可以包括:处理器(Processor)410、通信接口(Communications Interface)420、存储器(Memory)430和通信总线(Communications Bus)440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑命令,以执行如下方法:
获取搅拌筒驱动电机的当前转速;基于当前转速和减速档位表,确定当前减速档位和当前减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制;其中,减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
此外,上述的存储器430中的逻辑命令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干命令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供的电子设备中的处理器可以调用存储器中的逻辑指令,实现上述方法,其具体的实施方式与前述方法实施方式一致,且可以达到相同的有益效果,此处不再赘述。
本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,例如包括:
获取搅拌筒驱动电机的当前转速;基于当前转速和减速档位表,确定当前减速档位和当前减速档位对应的设定维持时间,对搅拌筒驱动电机进行逐档减速控制;其中,减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
本申请实施例提供的非暂态计算机可读存储介质上存储的计算机程序被执行时,实现上述方法,其具体的实施方式与前述方法实施方式一致,且可以达到相同的有益效果,此处不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干命令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种搅拌筒转速控制方法,包括:
    获取搅拌筒驱动电机的当前转速;
    基于所述当前转速和减速档位表,确定当前减速档位和所述当前减速档位对应的设定维持时间,对所述搅拌筒驱动电机进行逐档减速控制;
    其中,所述减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
  2. 根据权利要求1所述的搅拌筒转速控制方法,其中,所述对所述搅拌筒驱动电机进行逐档减速控制,包括:
    基于所述当前减速档位,采用转速控制方式或者转矩控制方式对所述搅拌筒驱动电机进行减速控制;
    当所述当前减速档位的维持时间达到所述当前减速档位对应的设定维持时间时,则基于所述当前减速档位的下一减速档位和所述下一减速档位对应的设定维持时间对所述搅拌筒驱动电机进行减速控制。
  3. 根据权利要求1所述的搅拌筒转速控制方法,其中,所述减速档位是基于如下步骤确定的:
    确定所述减速档位表对应的最高控制转速、最低控制转速、第一控制转速、第一转速分档间隔和第二转速分档间隔;所述第一控制转速小于最高控制转速且大于最低控制转速;所述第二转速分档间隔小于所述第一转速分档间隔;
    基于所述第一转速分档间隔,对所述最高控制转速和所述第一控制转速之间的转速控制区间进行划分,得到多个高速减速档位;
    基于第二转速分档间隔,对所述第一控制转速和所述最低控制转速之间的转速控制区间进行划分,得到多个低速减速档位;
    基于所述多个高速减速档位和所述多个低速减速档位,确定所述减速档位表中的减速档位。
  4. 根据权利要求3所述的搅拌筒转速控制方法,其中,所述最高控制转速为搅拌筒驱动电机的最大转速,所述最低控制转速为零转速。
  5. 根据权利要求3所述的搅拌筒转速控制方法,其中,所述低速减速档位对应的设定维持时间大于所述高速减速档位对应的设定维持时间。
  6. 根据权利要求1至5任一项所述的搅拌筒转速控制方法,其中,所述减速档位表中各个减速档位对应的设定维持时间之和是基于搅拌车的整车下电时间确定的。
  7. 一种搅拌筒转速控制装置,包括:
    获取单元,用于获取搅拌筒驱动电机的当前转速;
    控制单元,用于基于所述当前转速和减速档位表,确定当前减速档位和所述当前减速档位对应的设定维持时间,对所述搅拌筒驱动电机进行逐档减速控制;
    其中,所述减速档位表包括多个按照控制转速大小递减设置的减速档位,以及每一减速档位对应的设定维持时间。
  8. 一种搅拌车,包括权利要求7所述的搅拌筒转速控制装置。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至6任一项所述搅拌筒转速控制方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述搅拌筒转速控制方法的步骤。
PCT/CN2022/105878 2021-08-23 2022-07-15 搅拌筒转速控制方法、装置和搅拌车 WO2023024751A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110968795.5 2021-08-23
CN202110968795.5A CN113696341B (zh) 2021-08-23 2021-08-23 搅拌筒转速控制方法、装置和搅拌车

Publications (1)

Publication Number Publication Date
WO2023024751A1 true WO2023024751A1 (zh) 2023-03-02

Family

ID=78654100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105878 WO2023024751A1 (zh) 2021-08-23 2022-07-15 搅拌筒转速控制方法、装置和搅拌车

Country Status (2)

Country Link
CN (1) CN113696341B (zh)
WO (1) WO2023024751A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696341B (zh) * 2021-08-23 2022-12-02 三一汽车制造有限公司 搅拌筒转速控制方法、装置和搅拌车
CN114953189B (zh) * 2022-05-31 2023-09-15 三一电动车科技有限公司 搅拌筒的转速控制方法、装置、搅拌筒及作业机械
CN115416160B (zh) * 2022-09-23 2024-01-23 湖南三一智能控制设备有限公司 搅拌筒转向识别方法、装置及搅拌车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872966A (zh) * 2014-03-13 2014-06-18 湖南恒新重工机械有限公司 采用计算机控制多速电机或绕线转子电机变速的方法
US20170080600A1 (en) * 2015-09-18 2017-03-23 Schwing America, Inc. Concrete mixer and controls therefor
CN206045907U (zh) * 2016-08-25 2017-03-29 安徽星马专用汽车有限公司 一种搅拌筒设备
WO2019220143A2 (en) * 2018-05-18 2019-11-21 Mcphee Bros (Blantyre) Ltd System and method to control speed of rotation of a truck-mounted concrete mixer drum
US20200225258A1 (en) * 2015-10-28 2020-07-16 Command Alkon Dutch Tech B.V. Method and system for generating a signal indicating the rotational speed of a drum
CN112936602A (zh) * 2021-04-13 2021-06-11 三一汽车制造有限公司 搅拌车搅拌筒控制系统和方法
CN113183742A (zh) * 2021-04-29 2021-07-30 吉林大学 一种节能混凝土搅拌车驱动系统及其控制方法
CN113696341A (zh) * 2021-08-23 2021-11-26 三一汽车制造有限公司 搅拌筒转速控制方法、装置和搅拌车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640250B2 (ja) * 2006-04-27 2011-03-02 日産自動車株式会社 ツインクラッチ式自動マニュアルトランスミッションの変速制御装置
CN105720864B (zh) * 2014-12-01 2019-02-15 中车大连电力牵引研发中心有限公司 电机减速频率给定方法、变频器及系统
CN108068808B (zh) * 2017-11-17 2020-02-11 重庆长安汽车股份有限公司 电动汽车定速巡航减速控制方法及控制系统
CN110329062A (zh) * 2019-07-12 2019-10-15 奇瑞新能源汽车股份有限公司 适于电动汽车的动力总成及电动汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872966A (zh) * 2014-03-13 2014-06-18 湖南恒新重工机械有限公司 采用计算机控制多速电机或绕线转子电机变速的方法
US20170080600A1 (en) * 2015-09-18 2017-03-23 Schwing America, Inc. Concrete mixer and controls therefor
US20200225258A1 (en) * 2015-10-28 2020-07-16 Command Alkon Dutch Tech B.V. Method and system for generating a signal indicating the rotational speed of a drum
CN206045907U (zh) * 2016-08-25 2017-03-29 安徽星马专用汽车有限公司 一种搅拌筒设备
WO2019220143A2 (en) * 2018-05-18 2019-11-21 Mcphee Bros (Blantyre) Ltd System and method to control speed of rotation of a truck-mounted concrete mixer drum
CN112936602A (zh) * 2021-04-13 2021-06-11 三一汽车制造有限公司 搅拌车搅拌筒控制系统和方法
CN113183742A (zh) * 2021-04-29 2021-07-30 吉林大学 一种节能混凝土搅拌车驱动系统及其控制方法
CN113696341A (zh) * 2021-08-23 2021-11-26 三一汽车制造有限公司 搅拌筒转速控制方法、装置和搅拌车

Also Published As

Publication number Publication date
CN113696341B (zh) 2022-12-02
CN113696341A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2023024751A1 (zh) 搅拌筒转速控制方法、装置和搅拌车
WO2023024750A1 (zh) 搅拌筒转速控制方法、装置和搅拌车
US9366012B2 (en) Electrically driven working vehicle
US20100049416A1 (en) Brake control device for electric vehicle
CN107539165A (zh) 一种电动汽车控制方法、电机控制器及驱动系统
CN113044720B (zh) 作业机械的控制方法、装置和作业机械
CN111438822B (zh) 一种混凝土砼车及其连续搅拌自动控制方法
CN111058226B (zh) 一种洗衣机控制方法及洗衣机
CN107599889B (zh) 一种倒车控制方法、装置及电动汽车
JP2010149638A (ja) 電動式特装車の充電制御方法
CN110173518A (zh) 自动离合器过载保护的控制系统及方法
JP2011093345A (ja) 車両系建設機械及びその制御方法
JP2021129346A (ja) 車両の制御装置
JP2004153938A (ja) 大型運搬車両
CN114953189B (zh) 搅拌筒的转速控制方法、装置、搅拌筒及作业机械
CN104066615A (zh) 车辆用驱动装置
JP2011125089A (ja) 車両駆動用電動機の制御装置
CN210363377U (zh) 双电机行星齿轮驱动装置及电动车辆
JP7230594B2 (ja) 変速制御装置
CN107546912A (zh) 一种差动行星齿轮复合四象限电机调速系统
CN114576020B (zh) 单发洗扫车发动机提速控制方法、装置、设备及存储介质
WO2024105763A1 (ja) エレベーターシステム及びエレベーター制御方法
CN114572014B (zh) 设备控制方法、装置、电子设备及存储介质
JP2012011936A (ja) 作業車両の走行装置
CN117644765A (zh) 车辆的举升控制方法、装置、设备、存储介质及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE