JP2021129346A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2021129346A
JP2021129346A JP2020021170A JP2020021170A JP2021129346A JP 2021129346 A JP2021129346 A JP 2021129346A JP 2020021170 A JP2020021170 A JP 2020021170A JP 2020021170 A JP2020021170 A JP 2020021170A JP 2021129346 A JP2021129346 A JP 2021129346A
Authority
JP
Japan
Prior art keywords
vehicle
road
integrated value
vehicle speed
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020021170A
Other languages
English (en)
Other versions
JP7449109B2 (ja
Inventor
翔斗 荒井
Shoto Arai
翔斗 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2020021170A priority Critical patent/JP7449109B2/ja
Priority to US17/081,792 priority patent/US11897465B2/en
Publication of JP2021129346A publication Critical patent/JP2021129346A/ja
Application granted granted Critical
Publication of JP7449109B2 publication Critical patent/JP7449109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/0011Proportional Integral Differential [PID] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0012Feedforward or open loop systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/61Arrangements of controllers for electric machines, e.g. inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

【課題】クルーズコントロールモードの実行中に走行路の勾配の変化に起因して車両挙動が不安定になることを抑制する。【解決手段】車両1の制御装置100は、車両1の駆動力を出力する駆動用モータ15の動作を制御する制御部を備え、制御部は、ドライバによる加減速操作に応じて車両1の加減速度を制御する通常モードと、ドライバによる加減速操作によらずに駆動用モータ15のトルクを制御することによって車両1の車速を目標車速に維持するクルーズコントロールモードとを切り替えて実行可能であり、クルーズコントロールモードの実行中に、車両1が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両1が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積分制御における車速と目標車速との偏差の積算値の絶対値が小さくなるように偏差の積算値を調整する積算値調整処理を実行する。【選択図】図1

Description

本発明は、車両の制御装置に関する。
ドライバの運転操作を支援する目的で、ドライバによる加減速操作(つまり、アクセル操作およびブレーキ操作)に応じて車両の加減速度を制御する通常モードの他に、ドライバによる加減速操作によらずに車速を目標車速に維持するクルーズコントロールモードを実行可能な車両がある(例えば、特許文献1を参照)。
特開2008−221935号公報
駆動用モータを駆動源として備える車両では、クルーズコントロールモードにおいて、駆動用モータのトルクが制御されることによって、車速が目標車速に維持される。ここで、クルーズコントロールモードでは、車両を目標車速で走行させるために必要なトルクの方向が、走行路の勾配に応じて異なる。具体的には、平坦路または登坂路の走行時には、上記のトルクの方向は、車両に駆動力を付与するために、車両を前進させる方向となる。一方、降坂路の走行時には、上記のトルクの方向は、車両に制動力を付与するために、車両を後退させる方向となる。ゆえに、走行路の勾配の変化に伴って、車両を目標車速で走行させるために必要なトルクの方向が反転することがある。
ところで、クルーズコントロールモードの実行中には、駆動用モータのトルクがPID制御等のフィードバック制御によって制御される場合がある。この場合、駆動用モータのトルク指令値は、具体的には、車速と目標車速との偏差の積算値に基づく積分制御の成分のトルクを含む。積分制御の成分のトルクは、他の成分のトルクと比較して緩慢に変化するので、走行路の勾配の変化に対する駆動用モータのトルクの応答性を低下させる要因となる。ゆえに、車両が降坂路から平坦路または登坂路に進入する場合等において、駆動用モータのトルクの変化が走行路の勾配の変化に対して遅れることに起因して、車両に生じるトルクの方向が車両を目標車速で走行させるために必要なトルクの方向に対して逆方向になり、車両挙動が不安定になるおそれがある。特に、クルーズコントロールモードの目標車速が低いほど、車両が急勾配の坂路を走行することが多く、勾配が大きく変化しやすいと想定されるので、走行路の勾配の変化に起因して車両挙動が不安定になりやすくなってしまう。
そこで、本発明は、このような課題に鑑み、クルーズコントロールモードの実行中に走行路の勾配の変化に起因して車両挙動が不安定になることを抑制することが可能な車両の制御装置を提供することを目的としている。
上記課題を解決するために、本発明の車両の制御装置は、車両の駆動力を出力する駆動用モータの動作を制御する制御部を備え、制御部は、ドライバによる加減速操作に応じて車両の加減速度を制御する通常モードと、ドライバによる加減速操作によらずに駆動用モータのトルクを制御することによって車両の車速を目標車速に維持するクルーズコントロールモードとを切り替えて実行可能であり、クルーズコントロールモードの実行中に、車速と目標車速との偏差の積算値に基づく積分制御を用いて駆動用モータのトルク指令値を算出し、車両が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積分制御における偏差の積算値の絶対値が小さくなるように偏差の積算値を調整する積算値調整処理を実行する。
制御部は、クルーズコントロールモードの実行中に、車速が目標車速よりも低い第1基準車速を下回った場合、車両が降坂路から平坦路または登坂路に進入したと判定してもよい。
制御部は、クルーズコントロールモードの実行中に、車両が降坂路から平坦路または登坂路に進入したと判定した場合において、トルク指令値のうちの積分制御の成分のトルクの方向が車両を後退させる方向である場合に、積算値調整処理を実行してもよい。
制御部は、クルーズコントロールモードの実行中に、車速が目標車速よりも高い第2基準車速を上回った場合、車両が平坦路または登坂路から降坂路に進入したと判定してもよい。
制御部は、クルーズコントロールモードの実行中に、車両が平坦路または登坂路から降坂路に進入したと判定した場合において、トルク指令値のうちの積分制御の成分のトルクの方向が車両を前進させる方向である場合に、積算値調整処理を実行してもよい。
制御部は、積算値調整処理において、偏差の積算値をリセットしてもよい。
制御部は、積算値調整処理において、偏差の積算値の調整量を上限値以下に制限してもよい。
制御部は、クルーズコントロールモードとして、高速クルーズコントロールモードと、高速クルーズコントロールモードの目標車速よりも低い目標車速が用いられる低速クルーズコントロールモードとを切り替えて実行可能であり、低速クルーズコントロールモードの実行中に、車両が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積算値調整処理を実行してもよい。
本発明によれば、クルーズコントロールモードの実行中に走行路の勾配の変化に起因して車両挙動が不安定になることを抑制することが可能となる。
本発明の実施形態に係る制御装置が搭載される車両の概略構成を示す模式図である。 本発明の実施形態に係る制御装置の機能構成の一例を示すブロック図である。 本発明の実施形態に係る低速クルーズコントロールモードの実行中に制御部により行われる積算値調整処理に関する処理の流れの一例を示すフローチャートである。 本発明の実施形態に係る車両が低速クルーズコントロールモードの実行中に降坂路から平坦路に進入する場合における各種状態量の推移の一例を示す図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易にするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
<車両の構成>
図1および図2を参照して、本発明の実施形態に係る制御装置100が搭載される車両1の構成について説明する。
図1は、車両1の概略構成を示す模式図である。図1では、車両1の前進方向を前方向とし、前進方向に対して逆側の後退方向を後方向とし、前方向を向いた状態における左側および右側をそれぞれ左方向および右方向として、車両1が示されている。
車両1は、駆動源として、駆動用モータ(具体的には、図1中の前輪駆動用モータ15fおよび後輪駆動用モータ15r)を備え、駆動用モータから出力される動力を用いて走行する電気車両である。
なお、以下で説明する車両1は、あくまでも本発明に係る制御装置が搭載される車両の一例であり、後述するように、本発明に係る制御装置が搭載される車両の構成は車両1の構成に特に限定されない。
図1に示されるように、車両1は、前輪11a,11bと、後輪11c,11dと、フロントディファレンシャル装置13fと、リヤディファレンシャル装置13rと、前輪駆動用モータ15fと、後輪駆動用モータ15rと、インバータ17fと、インバータ17rと、バッテリ19と、制御装置100と、アクセル開度センサ201と、ブレーキセンサ203と、前輪モータ回転数センサ205fと、後輪モータ回転数センサ205rとを備える。
以下、前輪11a、前輪11b、後輪11cおよび後輪11dを区別しない場合には、これらを単に車輪11とも呼ぶ。また、前輪駆動用モータ15fおよび後輪駆動用モータ15rを区別しない場合には、これらを単に駆動用モータ15とも呼ぶ。また、インバータ17fおよびインバータ17rを区別しない場合には、これらを単にインバータ17とも呼ぶ。また、前輪モータ回転数センサ205fおよび後輪モータ回転数センサ205rを区別しない場合には、これらを単にモータ回転数センサ205とも呼ぶ。
前輪駆動用モータ15fは、前輪11a,11bを駆動する動力を出力する駆動用モータである。なお、前輪11aは左前輪に相当し、前輪11bは右前輪に相当する。
具体的には、前輪駆動用モータ15fは、バッテリ19から供給される電力を用いて駆動される。前輪駆動用モータ15fは、フロントディファレンシャル装置13fと接続されている。フロントディファレンシャル装置13fは、前輪11a,11bと、駆動軸を介してそれぞれ連結されている。前輪駆動用モータ15fから出力された動力は、フロントディファレンシャル装置13fに伝達された後、フロントディファレンシャル装置13fによって、前輪11a,11bへ分配して伝達される。
前輪駆動用モータ15fは、例えば、多相交流式のモータであり、インバータ17fを介してバッテリ19と接続されている。バッテリ19から供給される直流電力は、インバータ17fによって交流電力に変換され、前輪駆動用モータ15fへ供給される。
前輪駆動用モータ15fは、前輪11a,11bを駆動する動力を出力する機能の他に、前輪11a,11bの運動エネルギを用いて発電する発電機としての機能も有する。前輪駆動用モータ15fが発電機として機能する場合、前輪駆動用モータ15fにより発電が行われるとともに、回生制動による制動力が車両1に付与される。前輪駆動用モータ15fにより発電された交流電力は、インバータ17fによって直流電力に変換され、バッテリ19へ供給される。それにより、バッテリ19が充電される。
後輪駆動用モータ15rは、後輪11c,11dを駆動する動力を出力する駆動用モータである。なお、後輪11cは左後輪に相当し、後輪11dは右後輪に相当する。
具体的には、後輪駆動用モータ15rは、バッテリ19から供給される電力を用いて駆動される。後輪駆動用モータ15rは、リヤディファレンシャル装置13rと接続されている。リヤディファレンシャル装置13rは、後輪11c,11dと、駆動軸を介してそれぞれ連結されている。後輪駆動用モータ15rから出力された動力は、リヤディファレンシャル装置13rに伝達された後、リヤディファレンシャル装置13rによって、後輪11c,11dへ分配して伝達される。
後輪駆動用モータ15rは、例えば、多相交流式のモータであり、インバータ17rを介してバッテリ19と接続されている。バッテリ19から供給される直流電力は、インバータ17rによって交流電力に変換され、後輪駆動用モータ15rへ供給される。
後輪駆動用モータ15rは、後輪11c,11dを駆動する動力を出力する機能の他に、後輪11c,11dの運動エネルギを用いて発電する発電機としての機能も有する。後輪駆動用モータ15rが発電機として機能する場合、後輪駆動用モータ15rにより発電が行われるとともに、回生制動による制動力が車両1に付与される。後輪駆動用モータ15rにより発電された交流電力は、インバータ17rによって直流電力に変換され、バッテリ19へ供給される。それにより、バッテリ19が充電される。
アクセル開度センサ201は、ドライバによるアクセルペダルの操作量であるアクセル開度を検出し、検出結果を出力する。
ブレーキセンサ203は、ドライバによるブレーキペダルの操作量であるブレーキ操作量を検出し、検出結果を出力する。
前輪モータ回転数センサ205fは、前輪駆動用モータ15fの回転数を検出し、検出結果を出力する。後輪モータ回転数センサ205rは、後輪駆動用モータ15rの回転数を検出し、検出結果を出力する。モータ回転数センサ205の検出結果は、制御装置100が行う処理において、車両1の動力伝達軸(具体的には、駆動用モータ15と車輪11との間の動力伝達系に含まれる軸)の回転数を示す情報として用いられる。
制御装置100は、演算処理装置であるCPU(Central Processing Unit)、CPUが使用するプログラムや演算パラメータ等を記憶する記憶素子であるROM(Read Only Memory)、および、CPUの実行において適宜変化するパラメータ等を一時記憶する記憶素子であるRAM(Random Access Memory)等を含む。
制御装置100は、車両1に搭載される各装置(例えば、インバータ17、アクセル開度センサ201、ブレーキセンサ203およびモータ回転数センサ205等)と通信を行う。制御装置100と各装置との通信は、例えば、CAN(Controller Area Network)通信を用いて実現される。
図2は、制御装置100の機能構成の一例を示すブロック図である。
例えば、図2に示されるように、制御装置100は、特定部110と、制御部120とを有する。
特定部110は、車両1の動力伝達軸の回転数に基づいて車両1の車速(以下、単に車速とも呼ぶ)を特定する。特定部110により特定された車速を示す情報は、制御部120へ出力され、制御部120が行う処理に利用される。
特定部110は、具体的には、モータ回転数センサ205の検出結果に基づいて車速を特定する。なお、車速の特定では、前輪モータ回転数センサ205fおよび後輪モータ回転数センサ205rの双方の検出結果が用いられてもよく、前輪モータ回転数センサ205fおよび後輪モータ回転数センサ205rの一方のみの検出結果が用いられてもよい。また、車速の特定では、車両1の動力伝達軸の回転数を示す情報として、モータ回転数センサ205の検出結果以外の情報(例えば、車輪11とディファレンシャル装置とを連結する駆動軸の回転数を示す情報)が用いられてもよい。
制御部120は、車両1内の各装置の動作を制御することによって、車両1の走行を制御する。例えば、制御部120は、判定部121と、モータ制御部122とを含む。
判定部121は、車両1内の各装置から制御装置100に送信される情報を利用して各種判定を行う。判定部121による判定結果は、制御部120が行う各種処理に利用される。
モータ制御部122は、各インバータ17の動作を制御することによって、各駆動用モータ15の動作を制御する。具体的には、モータ制御部122は、インバータ17fのスイッチング素子の動作を制御することによって、バッテリ19と前輪駆動用モータ15fとの間の電力の供給を制御する。それにより、モータ制御部122は、前輪駆動用モータ15fによる動力の生成および発電を制御することができる。また、モータ制御部122は、インバータ17rのスイッチング素子の動作を制御することによって、バッテリ19と後輪駆動用モータ15rとの間の電力の供給を制御する。それにより、モータ制御部122は、後輪駆動用モータ15rによる動力の生成および発電を制御することができる。
なお、モータ制御部122は、駆動用モータ15を駆動して車両1に駆動力を付与する場合に、前輪駆動用モータ15fおよび後輪駆動用モータ15rの双方を駆動してもよく、前輪駆動用モータ15fおよび後輪駆動用モータ15rの一方のみを駆動してもよい。前輪駆動用モータ15fおよび後輪駆動用モータ15rの双方が駆動される場合における各駆動用モータ15の駆動力の配分は、適宜設定され得る。以下では、駆動用モータ15のトルクは、前輪駆動用モータ15fおよび後輪駆動用モータ15rのトルクの合計値を意味する。
ここで、制御部120は、車両1の走行モードとして、通常モードと、クルーズコントロールモードとを切り替えて実行可能である。通常モードは、ドライバによる加減速操作(つまり、アクセル操作およびブレーキ操作)に応じて車両1の加減速度を制御する走行モードである。クルーズコントロールモードは、ドライバによる加減速操作によらずに駆動用モータ15のトルクを制御することによって車速を目標車速に維持する走行モードである。
さらに、制御部120は、クルーズコントロールモードとして、高速クルーズコントロールモードと、低速クルーズコントロールモードとを切り替えて実行可能である。低速クルーズコントロールモードでは、高速クルーズコントロールモードの目標車速よりも低い目標車速が用いられる。例えば、高速クルーズコントロールモードの目標車速は、20km/h以上115km/h以下の範囲内の速度に設定され、低速クルーズコントロールモードの目標車速は、2km/h以上15km/h以下の範囲内の速度に設定される。クルーズコントロールモードの目標車速は、例えば、ドライバによる入力操作により調整可能である。
例えば、車両1には、通常モードと、高速クルーズコントロールモードと、低速クルーズコントロールモードとのいずれの走行モードを実行させるかを選択するための入力装置(例えば、スイッチまたはボタン等)が設けられており、ドライバは、当該入力装置を操作することにより、走行モードを選択することができる。制御部120は、ドライバにより選択されている走行モードを実行する。なお、制御部120は、クルーズコントロールモードの実行中に、ドライバによりブレーキ操作等の特定の操作が行われた場合には、クルーズコントロールモードを停止し、通常モードへの切り替えを行う。
通常モードでは、制御部120は、車両1に付与される駆動力がアクセル開度に応じた駆動力となるように、駆動用モータ15の動作を制御する。それにより、車両1の加速度をドライバによるアクセル操作に応じて制御することができる。また、制御部120は、車両1に付与される制動力がブレーキ操作量に応じた制動力となるように、車両1に搭載されている液圧式のブレーキ装置等のブレーキ装置の動作を制御する。それにより、車両1の減速度をドライバによるブレーキ操作に応じて制御することができる。
クルーズコントロールモードでは、制御部120は、車速が目標車速に近づくように、駆動用モータ15のトルク指令値を算出し、駆動用モータ15のトルクをトルク指令値に制御する。例えば、制御部120は、車速に基づくフィードフォワード制御と、車速と目標車速との偏差に基づくフィードバック制御(例えば、PID制御)とを用いて駆動用モータ15のトルクを制御し、当該トルクを駆動用モータ15に指令するためのトルク指令値を算出する。この場合、算出されるトルク指令値Tcは、例えば、以下の式(1)によって表される。
Tc=Tf+Tp+Ti+Td ・・・(1)
式(1)において、Tfは、車速に基づくフィードフォワード制御の成分(つまり、F成分)のトルクを示し、Tpは、車速と目標車速との偏差に基づく比例制御の成分(つまり、P成分)のトルクを示し、Tiは、上記偏差に基づく積分制御の成分(つまり、I成分)のトルクを示し、Tdは、上記偏差の積算値に基づく微分制御の成分(つまり、D成分)のトルクを示す。P成分のトルクTpは、具体的には、上記偏差にゲインを乗じて得られる。I成分のトルクTiは、具体的には、上記偏差の積算値(つまり、積分値)にゲインを乗じて得られる。D成分のトルクTdは、具体的には、上記偏差の微分値にゲインを乗じて得られる。フィードフォワード制御の成分のトルクTfは、車両1が平坦路を走行している場合に、車速を目標車速に維持するために必要と見積もられるトルクに相当する。なお、平坦路は、勾配(つまり、車両1の進行方向での水平方向に対する傾斜)の絶対値が所定値以下の走行路を意味し、後述する降坂路は、平坦路以外の走行路のうち、負の勾配を有する走行路を意味し、後述する登坂路は、平坦路以外の走行路のうち、正の勾配を有する走行路を意味する。
なお、以下では、駆動用モータ15のトルク指令値Tcが、式(1)を用いて算出される例を説明するが、駆動用モータ15のトルク指令値Tcの算出方法は、この例に限定されない。駆動用モータ15のトルク指令値Tcは、少なくとも積分制御を用いて算出されればよく、例えば、上記の例からフィードフォワード制御が省略されてもよく(つまり、式(1)からトルクTfが省略されてもよく)、PID制御がPI制御に置き換えられてもよい(つまり、式(1)からトルクTdが省略されてもよい)。
なお、本実施形態に係る制御装置100が有する機能は複数の制御装置により部分的に分割されてもよく、複数の機能が1つの制御装置によって実現されてもよい。制御装置100が有する機能が複数の制御装置により部分的に分割される場合、当該複数の制御装置は、CAN等の通信バスを介して、互いに接続されてもよい。
上記のように、制御装置100の制御部120は、ドライバによる加減速操作によらずに駆動用モータ15のトルクを制御することによって車両1の車速を目標車速に維持するクルーズコントロールモードを実行可能である。ここで、制御部120は、クルーズコントロールモードの実行中に、車両1が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両1が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積分制御における車速と目標車速との偏差の積算値の絶対値が小さくなるように当該偏差の積算値を調整する積算値調整処理を実行する。それにより、駆動用モータ15のトルクの変化が走行路の勾配の変化に対して遅れることを抑制することができる。ゆえに、走行路の勾配が変化した場合に、車両1に生じるトルクの方向が、車両1を目標車速で走行させるために必要なトルクの方向に対して逆方向になることを抑制することができる。よって、クルーズコントロールモードの実行中に走行路の勾配の変化に起因して車両挙動が不安定になることを抑制することが可能となる。なお、クルーズコントロールモードの実行中に制御部120により行われる積算値調整処理に関する処理の詳細については、後述する。
<制御装置の動作>
続いて、図3および図4を参照して、本発明の実施形態に係る制御装置100の動作について説明する。
上記のように、クルーズコントロールモードの実行中に、車両1が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両1が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積算値調整処理(具体的には、積分制御における車速と目標車速との偏差の積算値の絶対値が小さくなるように当該偏差の積算値を調整する処理)を実行することによって、走行路の勾配の変化に起因して車両挙動が不安定になることが抑制される。
ここで、クルーズコントロールモードの目標車速が低いほど、車両1が急勾配の坂路を走行することが多く、勾配が大きく変化しやすいと想定される。ゆえに、低速クルーズコントロールモードでは、高速クルーズコントロールモードと比べて、走行路の勾配の変化に起因して車両挙動が不安定になることを抑制する必要性が特に高い。よって、制御部120は、低速クルーズコントロールモードの実行中に、車両1が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両1が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積算値調整処理を実行することが好ましい。
以下では、低速クルーズコントロールモードの実行中に積算値調整処理が実行される例を説明するが、制御部120は、高速クルーズコントロールモードの実行中に、積算値調整処理に関する後述する処理を行ってもよい。なお、制御部120は、高速クルーズコントロールモードの実行中に、積算値調整処理を実行しなくてもよい。
図3は、低速クルーズコントロールモードの実行中に制御部120により行われる積算値調整処理に関する処理の流れの一例を示すフローチャートである。図3に示される制御フローは、具体的には、低速クルーズコントロールモードの実行中において繰り返し実行される。
なお、図3に示される制御フローは、車両1が降坂路から平坦路または登坂路に進入したと判定した場合に積算値調整処理を実行するための制御フローであり、例えば、車両1の降坂中に実行される。制御部120が行う処理は図3に示される例に限定されず、例えば、制御部120は、後述するように、車両1が平坦路または登坂路から降坂路に進入したと判定した場合に積算値調整処理を実行してもよい。
図4は、車両1が低速クルーズコントロールモードの実行中に降坂路から平坦路に進入する場合における各種状態量の推移の一例を示す図である。図4では、具体的には、各種状態量として、走行路の勾配、車速、トルク指令値Tc、および、トルク指令値Tcのうちの各成分のトルク(具体的には、F成分のトルクTf、P成分のトルクTp、および、I成分のトルクTi)が示されている。車速が正の値をとる場合には車両1が前進方向に進んでおり、車速が負の値をとる場合には車両1が後退方向に進んでいる。トルクの正方向は、車両1を前進させる方向であり、トルクの負方向は、車両1を後退させる方向である。なお、図4では、PID制御のD成分のトルクTdの図示は省略されている。
以下、図4を適宜参照しつつ、図3に示される制御フローの各処理を説明する。
図3に示される制御フローが開始されると、まず、ステップS101において、判定部121は、車両1が降坂路から平坦路または登坂路に進入したか否かを判定する。車両1が降坂路から平坦路または登坂路に進入したと判定された場合(ステップS101/YES)、ステップS102の判定処理に進む。一方、車両1が降坂路から平坦路または登坂路に進入していないと判定された場合(ステップS101/NO)、ステップS101の判定処理が繰り返される。
例えば、判定部121は、車両1の車速が目標車速よりも低い第1基準車速を下回った場合、車両1が降坂路から平坦路または登坂路に進入したと判定する。ここで、車両1が降坂中である場合、車両1を加速させる方向に車両1の自重が作用する。ゆえに、降坂中には、駆動用モータ15に回生制動を行わせることにより車両1に制動力が付与された状態で、車速が目標車速に維持される。しかしながら、車両1が降坂路から平坦路または登坂路に進入した場合には、車両1の自重は車両1を加速させる方向には作用しなくなるので、車速が低下する。上記の第1基準車速は、車両1が降坂路から平坦路または登坂路に進入したことに起因して生じる程度の低下量で車速が低下したか否かを判断し得る速度に設定される。
図4に示される例では、時刻T1以前において、車両1が、負の勾配を有する降坂路を走行している。降坂路の走行中には、車両1を進行方向に加速させる方向に当該車両1の自重が作用する。ゆえに、車速を目標車速に維持するために、車両1に負方向のトルクを付与する必要がある。図4に示される例では、時刻T1以前において、I成分のトルクTiが負の値をとり、トルク指令値Tcが負の値をとる。よって、車両1に回生制動による制動力を付与することができるので、車速を目標車速に維持することができる。時刻T1において、勾配が0に向かって変化し始め、車両1が平坦路へ進入し始める。ゆえに、時刻T1において、車速が低下し始め、車速が目標車速に対して低くなる。よって、時刻T1以降において、F成分のトルクTf、P成分のトルクTpおよびI成分のトルクTiが上昇する。そして、車両1が平坦路への進入を完了する時刻T2において、車速が第1基準車速を下回り、判定部121は、車両1が降坂路から平坦路または登坂路に進入したと判定する。
なお、上記では、ステップS101の判定処理が車速に基づいて行われる例を説明したが、ステップS101の判定処理は、他の方法によって行われてもよい。例えば、判定部121は、走行路の勾配に基づいてステップS101の判定処理を行ってもよい。なお、走行路の勾配は、例えば、車両1の加速度を検出するセンサの検出結果または地図データ等を用いて取得され得る。
図3中のステップS101でYESと判定された場合、ステップS102において、判定部121は、トルク指令値TcのうちのI成分のトルクTiの方向が負方向(つまり、車両1を後退させる方向)であるか否かを判定する。I成分のトルクTiの方向が負方向であると判定された場合(ステップS102/YES)、ステップS103に進み、制御部120は積算値調整処理を実行し、図3に示される制御フローは終了する。一方、I成分のトルクTiの方向が負方向でないと判定された場合(ステップS102/NO)、図3に示される制御フローは終了する。
積算値調整処理は、上述したように、積分制御における車速と目標車速との偏差の積算値の絶対値が小さくなるように当該偏差の積算値を調整する処理である。制御部120は、積算値調整処理において、例えば、車速と目標車速との偏差の積算値をリセットする(つまり、当該積算値を0にする)。ステップS103で行われる積算値調整処理は、車両1が平坦路または登坂路に進入した後において、車両1に生じるトルクの方向が負方向になることを抑制するための処理である。
ここで、車両1が平坦路または登坂路に進入した際にI成分のトルクTiが負方向になっていることに起因して、車両1に生じるトルクの方向が負方向になる。ゆえに、ステップS102でI成分のトルクTiの方向が負方向でないと判定された場合(ステップS102/NO)、積算値調整処理を実行しないことによって、積算値調整処理が不必要に行われることを抑制することができる。それにより、積算値調整処理に伴って駆動用モータ15のトルクが変化して車両1にショックが生じることを抑制することができるので、ドライバの快適性を向上させることができる。
図4では、時刻T2に積算値調整処理が仮に実行されなかった場合の車速、トルク指令値TcおよびI成分のトルクTiの推移が二点鎖線で示されている。時刻T2以降では、車両1が平坦路に進入したことに伴って、車両1を目標車速で走行させるために必要なトルクの方向は正方向(つまり、車両1を前進させる方向)となる。しかしながら、図4中で二点鎖線によって示されるように、I成分のトルクTiは、時刻T2以降において、上昇するものの緩慢に変化する。ゆえに、I成分のトルクTiの方向は迅速に正方向になるわけではなく、時刻T2以降において、I成分のトルクTiの方向が負方向となっている状態が継続する。それにより、トルク指令値Tcも迅速に正方向になるわけではなく、時刻T2以降において、トルク指令値Tcの方向が負方向となっている状態が継続する。ゆえに、時刻T2以降において、車速が低下し続ける結果として、図4中で二点鎖線によって示されるように、車速が正の値から負の値となり、車両1が後退してしまい、車両挙動が不安定になるおそれがある。
一方、本実施形態では、図4に示されるように、時刻T2において、判定部121は、I成分のトルクTiの方向が負方向であると判定し、積算値調整処理が実行される。図4に示される例では、積算値調整処理において、車速と目標車速との偏差の積算値がリセットされる。それにより、時刻T2において、I成分のトルクTiが0となり、時刻T2以降において、車速と目標車速との偏差の積算値が正の値となるので、I成分のトルクTiの方向は正方向となる。ゆえに、時刻T2以降において、トルク指令値Tcの方向も正方向となる。よって、車両1に生じるトルクの方向が、車両1を目標車速で走行させるために必要なトルクの方向である正方向に対して逆方向(つまり、負方向)になることを抑制することができる。それにより、時刻T2以降において、車速は目標車速に向けて早期に上昇する。ゆえに、車両1が後退してしまうこと、または、車両1が過度に減速してしまうことを抑制することができる。このように、本実施形態によれば、走行路の勾配の変化に起因して車両挙動が不安定になることを抑制することができる。
ここで、偏差の積算値の調整量が過度に大きい場合、積算値調整処理に伴って駆動用モータ15のトルクが急激に変化して車両1にショックが生じることによって、ドライバの快適性が低下してしまう場合がある。ゆえに、このようなトルクの急変を抑制する観点で、制御部120は、積算値調整処理において、偏差の積算値の調整量を上限値以下に制限することが好ましい。例えば、制御部120は、調整前の偏差の積算値が上限値を超える場合には、積算値調整処理において、偏差の積算値の絶対値が当該上限値だけ小さくなるように、偏差の積算値を調整する。なお、上限値は、積算値調整処理に伴う駆動用モータ15のトルクの急変を抑制する観点と、走行路の勾配の変化に起因して車両挙動が不安定になることを抑制する観点とのバランスを加味して設定される。
なお、上記では、積算値調整処理において、車速と目標車速との偏差の積算値がリセットされる例を説明したが、積算値調整処理における偏差の積算値の調整の方法は、この例に限定されない。例えば、制御部120は、積算値調整処理において、偏差の積算値を0の近傍の所定範囲内の値になるように調整してもよい。
上記では、図3のフローチャートを参照して、車両1が降坂路から平坦路または登坂路に進入したと判定された場合に積算値調整処理が実行される例を説明したが、上述したように、制御部120は、車両1が平坦路または登坂路から降坂路に進入したと判定した場合に積算値調整処理を実行してもよい。
具体的には、制御部120は、クルーズコントロールモードの実行中において、車両1の平坦路の走行中または登坂中に、車両1が平坦路または登坂路から降坂路に進入したか否かを判定する。そして、制御部120は、車両1が平坦路または登坂路から降坂路に進入したと判定した場合に、積算値調整処理を実行する。
ところで、車両1が平坦路または登坂路を走行している間、I成分のトルクTiが正の値をとり、トルク指令値Tcが正の値をとる。よって、車両1に駆動力を付与することができるので、車速を目標車速に維持することができる。そして、車両1が降坂路に進入した後において、車両1を目標車速で走行させるために必要なトルクの方向は負方向(つまり、車両1を後退させる方向)となる。ここで、積算値調整処理が仮に実行されなかった場合、車両1が降坂路に進入した後において、I成分のトルクTiの方向は迅速に負方向になるわけではなく、I成分のトルクTiの方向が正方向となっている状態が継続する。それにより、トルク指令値Tcも迅速に負方向になるわけではなく、トルク指令値Tcの方向が正方向となっている状態が継続する。ゆえに、車速が上昇し続ける結果として、車両1が過度に加速してしまい、車両挙動が不安定になるおそれがある。
一方、車両1が平坦路または登坂路から降坂路に進入したと判定した場合に、積算値調整処理を実行し、例えば、車速と目標車速との偏差の積算値をリセットすることによって、車両1が降坂路に進入した後において、I成分のトルクTiの方向を迅速に正方向から負方向に変化させることができる。ゆえに、トルク指令値Tcの方向も迅速に正方向から負方向に変化させることができる。よって、車両1に生じるトルクの方向が、車両1を目標車速で走行させるために必要なトルクの方向である負方向に対して逆方向(つまり、正方向)になることを抑制することができる。それにより、車両1が過度に加速してしまうことを抑制することができる。
例えば、制御部120は、車両1の車速が目標車速よりも高い第2基準車速を上回った場合、車両1が平坦路または登坂路から降坂路に進入したと判定する。ここで、車両1が平坦路または登坂路を走行中である場合、車両1の自重は車両1を加速させる方向には作用しない。ゆえに、平坦路または登坂路の走行中には、駆動用モータ15を駆動させ車両1に駆動力が付与された状態で、車速が目標車速に維持される。しかしながら、車両1が平坦路または登坂路から降坂路に進入した場合には、車両1を加速させる方向に車両1の自重が作用するようになるので、車速が上昇する。上記の第2基準車速は、車両1が平坦路または登坂路から降坂路に進入したことに起因して生じる程度の上昇量で車速が上昇したか否かを判断し得る速度に設定される。
また、制御部120は、車両1が平坦路または登坂路から降坂路に進入したと判定した場合において、I成分のトルクTiの方向が正方向(つまり、車両1を前進させる方向)である場合に、積算値調整処理を実行することが好ましい。この場合の積算値調整処理は、車両1が降坂路に進入した後において、車両1に生じるトルクの方向が正方向になることを抑制するための処理である。ここで、車両1が降坂路に進入した際にI成分のトルクTiが正方向になっていることに起因して、車両1に生じるトルクの方向が正方向になる。ゆえに、I成分のトルクTiの方向が正方向でないと判定された場合に積算値調整処理を実行しないことによって、積算値調整処理が不必要に行われることを抑制することができる。それにより、積算値調整処理に伴って駆動用モータ15のトルクが変化して車両1にショックが生じることを抑制することができるので、ドライバの快適性を向上させることができる。
<制御装置の効果>
続いて、本発明の実施形態に係る制御装置100の効果について説明する。
本実施形態に係る制御装置100では、制御部120は、クルーズコントロールモードの実行中に、車両1が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両1が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積分制御における車速と目標車速との偏差の積算値の絶対値が小さくなるように当該偏差の積算値を調整する積算値調整処理を実行する。それにより、駆動用モータ15のトルクの変化が走行路の勾配の変化に対して遅れることを抑制することができる。ゆえに、走行路の勾配が変化した場合に、車両1に生じるトルクの方向が、車両1を目標車速で走行させるために必要なトルクの方向に対して逆方向になることを抑制することができる。よって、クルーズコントロールモードの実行中に走行路の勾配の変化に起因して車両挙動が不安定になることを抑制することができる。
また、本実施形態に係る制御装置100では、制御部120は、クルーズコントロールモードの実行中に、車両1の車速が目標車速よりも低い第1基準車速を下回った場合、車両1が降坂路から平坦路または登坂路に進入したと判定することが好ましい。それにより、車両1が降坂路から平坦路または登坂路に進入したか否かを適切に判定することができる。ゆえに、車両1が降坂路から平坦路または登坂路に進入した場合に、積算値調整処理を適切に実行することができる。よって、この場合に、車両1に生じるトルクの方向が負方向(つまり、車両1を後退させる方向)になることを適切に抑制することができるので、車両1が後退してしまうこと、または、車両1が過度に減速してしまうことを適切に抑制することができる。
また、本実施形態に係る制御装置100では、制御部120は、クルーズコントロールモードの実行中に、車両1が降坂路から平坦路または登坂路に進入したと判定した場合において、トルク指令値TcのうちのI成分のトルクTiの方向が負方向(つまり、車両1を後退させる方向)である場合に、積算値調整処理を実行することが好ましい。それにより、積算値調整処理が不必要に行われることを抑制することができる。ゆえに、積算値調整処理に伴って駆動用モータ15のトルクが変化して車両1にショックが生じることを抑制することができるので、ドライバの快適性を向上させることができる。
また、本実施形態に係る制御装置100では、制御部120は、クルーズコントロールモードの実行中に、車両1の車速が目標車速よりも高い第2基準車速を上回った場合、車両1が平坦路または登坂路から降坂路に進入したと判定することが好ましい。それにより、車両1が平坦路または登坂路から降坂路に進入したか否かを適切に判定することができる。ゆえに、車両1が平坦路または登坂路から降坂路に進入した場合に、積算値調整処理を適切に実行することができる。よって、この場合に、車両1に生じるトルクの方向が正方向(つまり、車両1を前進させる方向)になることを適切に抑制することができるので、車両1が過度に加速してしまうことを適切に抑制することができる。
また、本実施形態に係る制御装置100では、制御部120は、クルーズコントロールモードの実行中に、車両1が平坦路または登坂路から降坂路に進入したと判定した場合において、トルク指令値TcのうちのI成分のトルクTiの方向が正方向(つまり、車両1を前進させる方向)である場合に、積算値調整処理を実行することが好ましい。それにより、積算値調整処理が不必要に行われることを抑制することができる。ゆえに、積算値調整処理に伴って駆動用モータ15のトルクが変化して車両1にショックが生じることを抑制することができるので、ドライバの快適性を向上させることができる。
また、本実施形態に係る制御装置100では、制御部120は、積算値調整処理において、車速と目標車速との偏差の積算値をリセットすることが好ましい。それにより、駆動用モータ15のトルクの変化が走行路の勾配の変化に対して遅れることを効果的に抑制することができる。ゆえに、走行路の勾配が変化した場合に、車両1に生じるトルクの方向が、車両1を目標車速で走行させるために必要なトルクの方向に対して逆方向になることを効果的に抑制することができる。よって、クルーズコントロールモードの実行中に走行路の勾配の変化に起因して車両挙動が不安定になることを効果的に抑制することができる。
また、本実施形態に係る制御装置100では、制御部120は、積算値調整処理において、車速と目標車速との偏差の積算値の調整量を上限値以下に制限することが好ましい。それにより、偏差の積算値の調整量が過度に大きくなることに起因して、積算値調整処理に伴って駆動用モータ15のトルクが急激に変化することを抑制することができる。ゆえに、積算値調整処理に起因して車両1にショックが生じることによって、ドライバの快適性が低下してしまうことを抑制することができる。
また、本実施形態に係る制御装置100では、制御部120は、低速クルーズコントロールモードの実行中に、車両1が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両1が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積算値調整処理を実行することが好ましい。上述したように、低速クルーズコントロールモードでは、高速クルーズコントロールモードと比べて、目標車速が低いので、走行路の勾配の変化に起因して車両挙動が不安定になることを抑制する必要性が特に高い。ゆえに、低速クルーズコントロールモードの実行中に、車両1が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、車両1が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、積算値調整処理を実行することによって、クルーズコントロールモードの実行中に走行路の勾配の変化に起因して車両挙動が不安定になることを抑制する効果を有効に活用することができる。
以上、添付図面を参照しつつ本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されないことは勿論であり、特許請求の範囲に記載された範疇における各種の変更例または修正例についても、本発明の技術的範囲に属することは言うまでもない。
例えば、上記では、駆動源として前輪駆動用モータ15fおよび後輪駆動用モータ15rを備える電気車両である車両1を説明したが、本発明に係る制御装置が搭載される車両の構成は車両1に特に限定されない。例えば、本発明に係る制御装置が搭載される車両は、互いに異なる駆動用モータが各車輪に設けられている(つまり、4つの駆動用モータを備えている)電気車両であってもよく、駆動源として駆動用モータおよびエンジンを備えるハイブリッド車両であってもよい。また、例えば、本発明に係る制御装置が搭載される車両は、図1を参照して説明した車両1に対して構成要素の追加、変更または削除を施した車両であってもよい。
また、例えば、本明細書においてフローチャートを用いて説明した処理は、必ずしもフローチャートに示された順序で実行されなくてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
本発明は、車両の制御装置に利用できる。
1 車両
11a,11b 前輪
11c,11d 後輪
13f フロントディファレンシャル装置
13r リヤディファレンシャル装置
15f 前輪駆動用モータ(駆動用モータ)
15r 後輪駆動用モータ(駆動用モータ)
17f インバータ
17r インバータ
19 バッテリ
100 制御装置
110 特定部
120 制御部
121 判定部
122 モータ制御部
201 アクセル開度センサ
203 ブレーキセンサ
205 モータ回転数センサ
205f 前輪モータ回転数センサ
205r 後輪モータ回転数センサ

Claims (8)

  1. 車両の駆動力を出力する駆動用モータの動作を制御する制御部を備え、
    前記制御部は、
    ドライバによる加減速操作に応じて前記車両の加減速度を制御する通常モードと、前記ドライバによる加減速操作によらずに前記駆動用モータのトルクを制御することによって前記車両の車速を目標車速に維持するクルーズコントロールモードとを切り替えて実行可能であり、
    前記クルーズコントロールモードの実行中に、
    前記車速と前記目標車速との偏差の積算値に基づく積分制御を用いて前記駆動用モータのトルク指令値を算出し、
    前記車両が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、前記車両が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、前記積分制御における前記偏差の積算値の絶対値が小さくなるように前記偏差の積算値を調整する積算値調整処理を実行する、
    車両の制御装置。
  2. 前記制御部は、前記クルーズコントロールモードの実行中に、前記車速が前記目標車速よりも低い第1基準車速を下回った場合、前記車両が降坂路から平坦路または登坂路に進入したと判定する、
    請求項1に記載の車両の制御装置。
  3. 前記制御部は、前記クルーズコントロールモードの実行中に、前記車両が降坂路から平坦路または登坂路に進入したと判定した場合において、前記トルク指令値のうちの前記積分制御の成分のトルクの方向が前記車両を後退させる方向である場合に、前記積算値調整処理を実行する、
    請求項1または2に記載の車両の制御装置。
  4. 前記制御部は、前記クルーズコントロールモードの実行中に、前記車速が前記目標車速よりも高い第2基準車速を上回った場合、前記車両が平坦路または登坂路から降坂路に進入したと判定する、
    請求項1〜3のいずれか一項に記載の車両の制御装置。
  5. 前記制御部は、前記クルーズコントロールモードの実行中に、前記車両が平坦路または登坂路から降坂路に進入したと判定した場合において、前記トルク指令値のうちの前記積分制御の成分のトルクの方向が前記車両を前進させる方向である場合に、前記積算値調整処理を実行する、
    請求項1〜4のいずれか一項に記載の車両の制御装置。
  6. 前記制御部は、前記積算値調整処理において、前記偏差の積算値をリセットする、
    請求項1〜5のいずれか一項に記載の車両の制御装置。
  7. 前記制御部は、前記積算値調整処理において、前記偏差の積算値の調整量を上限値以下に制限する、
    請求項1〜6のいずれか一項に記載の車両の制御装置。
  8. 前記制御部は、
    前記クルーズコントロールモードとして、高速クルーズコントロールモードと、前記高速クルーズコントロールモードの目標車速よりも低い目標車速が用いられる低速クルーズコントロールモードとを切り替えて実行可能であり、
    前記低速クルーズコントロールモードの実行中に、前記車両が降坂路から平坦路もしくは登坂路に進入したと判定した場合、または、前記車両が平坦路もしくは登坂路から降坂路に進入したと判定した場合に、前記積算値調整処理を実行する、
    請求項1〜7のいずれか一項に記載の車両の制御装置。
JP2020021170A 2020-02-12 2020-02-12 車両の制御装置 Active JP7449109B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020021170A JP7449109B2 (ja) 2020-02-12 2020-02-12 車両の制御装置
US17/081,792 US11897465B2 (en) 2020-02-12 2020-10-27 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021170A JP7449109B2 (ja) 2020-02-12 2020-02-12 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2021129346A true JP2021129346A (ja) 2021-09-02
JP7449109B2 JP7449109B2 (ja) 2024-03-13

Family

ID=77178918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021170A Active JP7449109B2 (ja) 2020-02-12 2020-02-12 車両の制御装置

Country Status (2)

Country Link
US (1) US11897465B2 (ja)
JP (1) JP7449109B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377090B2 (ja) * 2019-12-12 2023-11-09 株式会社Subaru 車両の制御装置
CN114162120B (zh) * 2021-12-15 2023-11-21 一汽奔腾轿车有限公司 一种车载智能巡航系统坡路车速精准控制方法
CN115923791A (zh) * 2023-02-23 2023-04-07 北京易控智驾科技有限公司 无人驾驶矿用车辆控制方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089314A (ja) * 2000-07-11 2002-03-27 Toyota Motor Corp 走行制御装置
JP2008074254A (ja) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd ハイブリッド車両の降坂路走行制御装置
US20170291605A1 (en) * 2016-04-12 2017-10-12 GM Global Technology Operations LLC Optimized fuel economy during cruise control using topography data
US20180134291A1 (en) * 2015-04-29 2018-05-17 Jaguar Land Rover Limited Improvements in vehicle speed control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221935A (ja) 2007-03-09 2008-09-25 Toyota Motor Corp 車両およびその制御方法
US8082089B2 (en) * 2008-07-23 2011-12-20 GM Global Technology Operations LLC Vehicle speed control in a cruise mode using vehicle brakes
SE541795C2 (en) * 2017-09-22 2019-12-17 Sentient Ip Ab Method and system for controlling vehicle lane holding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089314A (ja) * 2000-07-11 2002-03-27 Toyota Motor Corp 走行制御装置
JP2008074254A (ja) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd ハイブリッド車両の降坂路走行制御装置
US20180134291A1 (en) * 2015-04-29 2018-05-17 Jaguar Land Rover Limited Improvements in vehicle speed control
US20170291605A1 (en) * 2016-04-12 2017-10-12 GM Global Technology Operations LLC Optimized fuel economy during cruise control using topography data

Also Published As

Publication number Publication date
US20210245746A1 (en) 2021-08-12
JP7449109B2 (ja) 2024-03-13
US11897465B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
US11021153B2 (en) Control apparatus of electric vehicle
KR102150923B1 (ko) 전동 차량의 제어 장치 및 전동 차량의 제어 방법
JP5514661B2 (ja) 電動車両の駆動制御装置
KR101875641B1 (ko) 전기 자동차의 토크 제어 시스템 및 그 방법
JP7449109B2 (ja) 車両の制御装置
JP2016028913A (ja) 車両の前後振動制御装置
JP5592026B1 (ja) 作業車両
JP7303736B2 (ja) 車両の制御装置
JP6740813B2 (ja) 電気自動車
JP3776434B2 (ja) 駆動力切換制御装置
JP7056219B2 (ja) 電動車両の制御方法および電動車両の制御装置
JP7389673B2 (ja) 電気車両の制御装置
WO2014103522A1 (ja) 電動車両の制御装置および電動車両の制御方法
JP7316205B2 (ja) 車両の制御装置
JP7172837B2 (ja) 制動力制御装置
JP7377090B2 (ja) 車両の制御装置
JP2020195254A (ja) 車両用モータ制御装置
JP2021130361A (ja) 制御装置
JP7449098B2 (ja) 車両の制御装置
JP2022129231A (ja) 車両の制御装置
WO2023136209A1 (ja) 車両の制御装置および車両
RU2799275C1 (ru) Способ управления ускорением и замедлением транспортного средства с тяговым электрическим приводом с помощью одной педали хода
JP2023183560A (ja) 駆動ユニット
JP3894049B2 (ja) ハイブリッド車両とその制御装置
JP4115972B2 (ja) ハイブリッド車両の駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240301

R150 Certificate of patent or registration of utility model

Ref document number: 7449109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150