JP2011093345A - 車両系建設機械及びその制御方法 - Google Patents

車両系建設機械及びその制御方法 Download PDF

Info

Publication number
JP2011093345A
JP2011093345A JP2009246637A JP2009246637A JP2011093345A JP 2011093345 A JP2011093345 A JP 2011093345A JP 2009246637 A JP2009246637 A JP 2009246637A JP 2009246637 A JP2009246637 A JP 2009246637A JP 2011093345 A JP2011093345 A JP 2011093345A
Authority
JP
Japan
Prior art keywords
engine
motor generator
vehicle
speed
sun gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246637A
Other languages
English (en)
Inventor
Makoto Utano
真 唄野
Soichiro Bando
聡一郎 阪東
Koji Maekawa
航司 前川
Toru Harada
亨 原田
Nobuo Hamada
展男 浜田
Shuichi Matsuba
秀一 松葉
Kunio Matsui
邦夫 松井
Yunosuke Kobayashi
祐之輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
KCM Corp
Original Assignee
Kawasaki Heavy Industries Ltd
KCM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, KCM Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2009246637A priority Critical patent/JP2011093345A/ja
Publication of JP2011093345A publication Critical patent/JP2011093345A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】走行時の蓄電器の蓄電量を適切に制御する。
【解決手段】前記エンジンの出力軸と前記サンギヤとを結合又は切り離すエンジン切離クラッチを備え、前記蓄電器の蓄電量及び車速に基づいて、前記直結クラッチにより前記サンギヤと前記キャリア軸とを切り離すとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを結合させて前記エンジン及び前記電動発電機によって発生したトルクによって走行させる第1の走行モード、又は前記直結クラッチにより前記サンギヤと前記キャリア軸とを結合させるとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを切り離して前記電動発電機のみで走行させる第2の走行モードを設定する。
【選択図】図1

Description

本発明は、車両系建設機械及びその制御方法に関する。
ホイールローダなどの車両系建設機械の場合、その運用上において一定速度で継続して走行することは少なく、自動車などの一般的な車両とは異なる走行性能が求められる。
図17は、ホイールローダによる総作業の大半を占めるV字作業を説明するための平面図である。図17(a)に示すように、ホイールローダ100は、土砂102をすくうために、土砂102に向かって前進する。次に、図17(b)に示すように、ホイールローダ100は、土砂102のすくいこみを行う。この場合、ゼロ速度から極低速での強大な牽引力が必要となる(ストール)。
土砂102のすくいこみが完了した後、ホイールローダ100は、図17(c)に示すように、一旦後進した後に方向転換し、トラック101に向かって前進を始める(スイッチバック)。そして、図17(d)に示すように、ホイールローダ100がトラック101に向かって前進を続けた後、図17(e)に示すように、ホイールローダ100は、トラック101への土砂102の積み込みを行う。
土砂102の積み込みが完了した後、ホイールローダ100は、図17(f)に示すように、一旦後進した後に方向転換し、再度土砂102に向かって前進する(スイッチバック)。
以上のようなV字作業においては、極低速域において高牽引力が必要になったり、低速域における加速及び減速の繰り返しが強いられたり、スイッチバックの繰り返しが強いられたりする。かかる要求は、車両系建設機械に特有のものである。
上述した車両系建設機械にとって(特に、中型以上のホイールローダにとって)特有な走行性能を得るために、トルクコンバータを備えるのが一般的である。しかし、トルクコンバータは、低速度比での効率が極端に悪いという特徴がある。このため、トルクコンバータは、ストールやスイッチバックの際の低速域での走行性能が必要となるホイールローダにとって不向きである。
また、トルクコンバータでは、伝達されるトルクが入力軸(エンジンの出力軸)の回転数に依存しており、エンジンの回転数が低い場合には伝達されるトルクも小さくなるという特徴がある。このため、トルクコンバータは、加速時においてエンジンの回転数が上昇するまで十分なトルクを伝達することができないので、比較的短距離で加速及び減速を繰り返す車両系建設機械にとって不向きである。
そこで、本出願人は、以下に示す特許文献1のとおり、車両系建設機械をトルクコンバータを用いないで構成することを考え、さらに、車両系建設機械を近年省エネルギー化の点で注目されている電動発電機及びエンジンを組み合わせたハイブリッド車両にすることを考えた。なお、車両系建設機械をハイブリッド車両とする場合には、低速域において高牽引力が必要であり、低回転で高トルクを発生し、かつ最高回転数の高い電動発電機を得ることが困難であるため、変速機が必要となる。また、蓄電器の蓄電量が少なくなった場合などにおいて、エンジンのみでの走行を可能とするためにエンジンと変速機とを直結させる直結クラッチを設ける必要がある。さらに、トルクコンバータと同等以上の走行性能を実現するためには、低速域において直結クラッチによりエンジンと変速機とを直結しない状態での走行が主となり、かかる状態でエンジン並びに電動発電機のトルク、及び変速機の変速段の制御を行う必要がある。
図18は、特許文献1に開示される車両系建設機械の主要部の構成を示すブロック図である。
図18に示す車両系建設機械1は、エンジン10と、電動発電機11とを備えている。エンジン10の出力軸は遊星歯車機構のサンギヤ16aと接続されており、電動発電機11の出力軸は遊星歯車機構のリングギヤ16bと接続されるギヤ17と接続されている。また、遊星歯車機構のキャリア軸18は、複数の変速段に自動的に切替可能な電子制御の変速機12と接続されている。なお、遊星歯車機構には、サンギヤ116a、リングギヤ16b及びキャリア軸18のうちのいずれか2つを直結させる直結クラッチ15が設けられている。
変速機12は、デファレンシャルギヤ19を介して車両系建設機械1の駆動輪20と接続されている。また、変速機12とエンジン10とは直結クラッチ15により結合される。電動発電機11は、インバータ13を介して蓄電器14と接続され、回生制動器として、又は力行による動力源として機能する。
また、車両系建設機械1は、エンジン10、電動発電機11及び変速機12の動作を制御する制御装置2を備えている。制御装置2は、直結クラッチの切離状態(エンジンと変速機とを直結しない状態)において、アクセル操作量及び蓄電器14の蓄電量に基づいて変速機12の変速段の切り替えを制御するとともに、アクセル操作量、車速、及び変速機12の変速段に基づいてエンジン10及び電動発電機11に発生させるトルクを決定するように制御する。
上記の構成により、エンジン10及び電動発電機11のトルクがバランスを保った状態で、蓄電器14の容量の範囲内において充放電を繰り返しながら走行可能となる。
特開2008−247269公報
ところで、上記のように構成された車両系建設機械1はつぎのような走行動作を行う。
まず、平坦路において操縦者がアクセルを踏み込むことで、車両系建設機械1をアイドル状態から加速させる場合には、遊星歯車機構は図19の速度線図に示される状態となる。つまり、遊星歯車機構の出力軸の回転数がゼロであるため車体(車両系建設機械1)自体は停止状態にある。なお、操縦者がアクセルを踏み込むと、電動発電機11及びエンジン10において必要なトルクがそれぞれ発生し、アクセル操作量に応じたトルクが遊星歯車機構の出力軸に発生する。この結果、車体牽引力が発生する。なお、遊星歯車機構の出力軸の回転数が低い場合には、電動発電機11は回生制動(発電)となる方向にトルクを発生している。
つぎに、車両系建設機械1の車速が上昇するに従って、図20の速度線図に示すように、遊星歯車機構の出力軸の回転数が上昇し、電動発電機11の回転数はゼロに近づいていく。さらに、加速によって車速が上昇すると、図21の速度線図に示すように、電動発電機11の回転数がゼロとなり、電動発電機11はトルクを発生しているが、回生制動にも力行にもならないゼロ出力の状態となる。そして、さらに加速によって車速が上昇すると、図22の速度線図に示すように、電動発電機11は回生制動から力行に切り替わる。このとき、電動発電機11は、蓄電器14に蓄電された電力(回生制動による加速によって蓄電された電力+それまでに蓄電される電力)を用いて力行を行うこととなる。
ところで、車両系建設機械1の運用上、土砂をすくいこむときに極低速の車速で高牽引力となるストール状態や坂道登坂時や重量物を牽引している状態が頻繁に発生する。これらの状態における車両系建設機械1の動作は、図19、図20の速度線図に示されるような動作となるので、電動発電機11の回生制動が頻繁に発生することとなる。
しかし、図19、図20の速度線図に示されるような動作が連続して行われると、蓄電器14が満充電となってしまい、車両系建設機械1の走行を継続することができなくなる。つまり、トルクコンバータ搭載車両の場合におけるトルクコンバータオイルのオーバーヒートに相当する現象が発生する。このような場合の対処方法としては、蓄電器14を何らかの手段で放電させる必要があり、例えば車両系建設機械1の運転を一旦停止して電動発電機11を空運転させるなど、継続した走行を阻害するような制御が必要であった。
さらに、エンジン10の出力軸にエンジンブレーキ(抵抗として機能)が接続されている場合には、減速時(回生ブレーキ時)の電動発電機11の回生制動によって生成される減速エネルギーの一部が当該エンジンブレーキによって消費されてしまうため、回生効率が悪くなり、蓄電器14において十分な蓄電量が充電されないという課題があった。
本発明は、このような課題を解決するためになされたもので、その目的は、蓄電器が接続された電動発電機とエンジンとを直結クラッチを有した遊星歯車機構介して接続されている車両系建設機械において、走行時の蓄電器の充放電を適切に制御することが可能な車両系建設機械及びその制御方法を提供することにある。
上記の課題を解決するための主たる本発明は、エンジンと、電動発電機と、前記電動発電機と接続された蓄電器と、前記エンジンの出力軸と接続されたサンギヤと、前記電動発電機の出力軸と接続されたリングギヤと、キャリア軸とを有する遊星歯車機構と、前記キャリア軸から駆動輪へのトルク伝達経路に設けられた変速機と、前記サンギヤと前記キャリア軸とを直結させ又は切り離す直結クラッチと、を備え、前記電動発電機及び/又は前記エンジンによって発生したトルクを前記駆動輪に伝達することにより走行するよう構成された車両系建設機械であって、前記エンジンの出力軸と前記サンギヤとの間に設けられ、前記エンジンの出力軸と前記サンギヤとを結合させ又は切り離すエンジン切離クラッチと、前記直結クラッチにより前記サンギヤと前記キャリア軸とを切り離すとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを結合させて前記エンジン及び前記電動発電機によって発生したトルクによって走行させる第1の走行モード、又は前記直結クラッチにより前記サンギヤと前記キャリア軸とを直結させるとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを切り離して前記電動発電機のみで走行させる第2の走行モードを少なくとも前記蓄電器の蓄電量に基づき選択して設定する走行モード設定器と、を備える、車両系建設機械である。
上記の構成により、極低速域において高牽引力が必要となり、低速域における加速及び減速の繰り返し並びにスイッチバックの繰り返しが強いられる車両系建設機械をトルクコンバータを用いることなく実現することができる。さらに、低速域において電動発電機の回生制動が繰り返し行われることにより、蓄電器が満充電になった場合、第1の走行モードを第2の走行モードに切り替える。つまり、エンジン切離クラッチによりエンジンの出力軸と遊星歯車機構のサンギヤとの結合を切り離すとともに、直結クラッチにより遊星歯車機構のサンギヤとキャリア軸とを結合させる。この結果として、電動発電機のトルクのみによって走行されるため、満充電の蓄電器に蓄電されている電力を消費することができ、車両系建設機械の走行を継続させることが可能となる。
上記の車両系建設機械であって、前記走行モード設定器は、前記第1の走行モード又は前記第2の走行モードを前記蓄電器の蓄電量と車速とに基づき選択して設定する、としてもよい。
上記の車両系建設機械であって、前記走行モード設定器は、前記蓄電器の蓄電量が所定の上限値よりも大きく、かつ車速が所定の下限値よりも低い場合には、前記第2の走行モードを設定し、前記蓄電器の蓄電量が前記所定の上限値よりも小さく、又は車速が前記所定の下限値よりも高い場合には、前記第1の走行モードを設定するように構成されている、としてもよい。
上記の構成により、前記蓄電器の蓄電量が所定の上限値よりも大きく、かつ車速が所定の下限値よりも低い場合には、蓄電器の満充電が起こりやすい所謂ストール状態と判定し、第2の走行モードにより蓄電器の蓄電量を消費することができる。
上記の車両系建設機械であって、前記エンジンの出力軸と接続され、減速時のエンジンブレーキを増強させるエンジンブレーキ増強機構をさらに備え、前記走行モード設定器は、減速要求を受けた場合には、前記第1の走行モードから前記第2の走行モードに切り替えるように構成されている、としてもよい。
上記の構成により、減速要求を受けた場合に、第1の走行モードから第2の走行モードに切り替えることによって、エンジン切離クラッチによりエンジンの出力軸と遊星歯車機構のサンギヤとの結合が切り離されるため、減速時の電動発電機の回生制動により生じた減速エネルギーの一部がエンジンブレーキ増強機構によって消費されなくなる。つまり、減速時の電動発電機の回生効率が向上することになり、ひいては蓄電器を効率よく充電することが可能となる。
上記の車両系建設機械であって、前記第1の走行モードにおいて、アクセル操作量及び前記蓄電器の蓄電量に基づいて、前記エンジンの回転数を制御するエンジン回転数制御器と、前記第1の走行モードにおいて、アクセル操作量、前記電動発電機の動作状態、及び前記蓄電器の蓄電量に基づいて、前記変速機の変速段を制御する変速段制御器と、前記第1の走行モードにおいて、アクセル操作量、車速、及び前記変速機の変速段に基づいて、前記エンジン及び前記電動発電機に発生させるトルクを制御するトルク制御器と、をさらに有してもよい。
上記の構成によれば、エンジン及び電動発電機のトルクがバランスを保った状態で、蓄電器の限られた蓄電容量の範囲内において充放電を繰り返しながら走行することが容易となる。したがって、極低速かつ高牽引力が必要なストール時において、第1の走行モードから第2の走行モードに切り替えることなく、蓄電器が満充電になることを回避しやすくなる。
上記の課題を解決するための主たるその他の本発明は、エンジンと、電動発電機と、前記電動発電機と接続された蓄電器と、前記エンジンの出力軸と接続されたサンギヤと、前記電動発電機の出力軸と接続されたリングギヤと、キャリア軸とを有する遊星歯車機構と、前記キャリア軸から駆動輪へのトルク伝達経路に設けられた変速機と、前記サンギヤと前記キャリア軸とを直結させ又は切り離す直結クラッチと、を備え、前記電動発電機及び/又は前記エンジンによって発生したトルクを前記駆動輪に伝達することにより走行するよう構成された車両系建設機械の制御方法であって、少なくとも前記蓄電器の蓄電量に基づいて、前記直結クラッチにより前記サンギヤと前記キャリア軸とを切り離すとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを結合させて前記エンジン及び前記電動発電機によって発生したトルクによって走行させる第1の走行モード、又は前記直結クラッチにより前記サンギヤと前記キャリア軸とを結合させるとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを切り離して前記電動発電機のみで走行させる第2の走行モードを選択して設定する、車両系建設機械の制御方法である。
上記の制御方法であって、前記第1の走行モード又は前記第2の走行モードを前記蓄電器の蓄電量と車速とに基づき選択して設定する、としてもよい。
上記の制御方法であって、前記蓄電器の蓄電量が所定の上限値よりも大きく、かつ車速が所定の下限値よりも低い場合には、前記第1の走行モードを設定し、前記蓄電器の蓄電量が前記所定の上限値よりも小さく、又は車速が前記所定の下限値よりも高い場合には、前記第2の走行モードを設定する、としてもよい。
上記の制御方法であって、前記車両系建設機械は、前記エンジンの出力軸と接続され、減速時のエンジンブレーキを増強させるエンジンブレーキ増強機構をさらに備えており、 減速要求を受けた場合には、前記第1の走行モードから前記第2の走行モードに切り替える、としてもよい。
上記の制御方法であって、前記第1の走行モードにおいて、アクセル操作量及び前記蓄電器の蓄電量に基づいて、前記エンジンの回転数を制御し、アクセル操作量、前記電動発電機の動作状態、及び前記蓄電器の蓄電量に基づいて、前記変速機の変速段を制御し、かつアクセル操作量、車速、及び前記変速機の変速段に基づいて、前記エンジン及び前記電動発電機に発生させるトルクを制御する、ようにしてもよい。
本発明によれば、蓄電器が接続されている電動発電機とエンジンとが直結クラッチを有した遊星歯車機構を介して接続されている車両系建設機械において、走行時の蓄電器の充放電を適切に制御することが可能な車両系建設機械及びその制御方法を提供することができる。
本発明の実施の形態1に係る車両系建設機械の主要部の構成を示すブロック図である。 本発明の実施の形態1に係るM/G単独走行モードを説明するための図である。 本発明の実施の形態1に係る車両系建設機械が備える制御装置の構成を示すブロック図である。 エンジン設定回転数計算の処理手順の一例を示すフローチャートである。 電動発電機トルク指令及びエンジントルク指令の算出処理の手順の一例を示すフローチャートである。 変速段計算の処理手順の一例を示すフローチャートである。 加速状態における遊星歯車機構の速度線図である。 加速状態における遊星歯車機構の速度線図である。 加速状態における遊星歯車機構の速度線図である。 本発明の実施の形態1に係る走行モード設定処理の手順の一例を示すフローチャートである。 本発明の実施の形態1に係るM/G単独走行モード時の速度線図である。 本発明の実施の形態2に係る車両系建設機械の主要部の構成を示すブロック図である。 本発明の実施の形態2に係る車両系建設機械が備える制御装置の構成を示すブロック図である。 本発明の実施の形態2に係るエンブレ増強指令の算出処理の一例を示すフローチャートである。 本発明の実施の形態2に係る走行モード設定処理の手順の一例を示すフローチャートである。 本発明の実施の形態2に係るM/G単独走行モード時の速度線図である。 V字作業を説明するための平面図である。 従来の車両系建設機械の主要部の構成を示すブロック図である。 発進時又はストール時における遊星歯車機構の速度線図である。 発進後又は高牽引時における遊星歯車機構の速度線図である。 電動発電機の回転数がゼロとなる状態における遊星歯車機構の速度線図である。 電動発電機が力行となる状態における遊星歯車機構の速度線図である。
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
(実施の形態1)
[車両系建設機械の主要部の構成]
図1は、本発明の実施の形態1に係る車両系建設機械の主要部の構成を示すブロック図である。なお、図1に示す車両系建設機械300は、図18に示す車両系建設機械1と構成上相違する点は、エンジン110とサンギヤ116aとの間にエンジン切離クラッチ121を配置した点である。
車両系建設機械300は、エンジン110と電動発電機111とを備えている。エンジン110の出力軸は、エンジン切離クラッチ121を介して遊星歯車機構50のサンギヤ116aと接続される。エンジン切離クラッチ121は、エンジン110の出力軸と遊星歯車機構50のサンギヤ116aとを結合又は切り離すクラッチである。エンジン切離クラッチ121によりエンジン110の出力軸とサンギヤ116aとの結合を切り離す場合には、エンジン110が、遊星歯車機構50の出力側の走行駆動機構と完全に切り離された状態となり、エンジン110のトルクがその方向に依らずに(正トルクであっても負トルクであっても)当該走行駆動機構に全く伝達されなくなる。
電動発電機111の出力軸は、遊星歯車機構50のリングギヤ116bとかみ合う接ギヤ117と接続されている。また、遊星歯車機構50のキャリア軸(出力軸)118は、複数の変速段を自動的に切替可能な電子制御の変速機112と接続されている。
遊星歯車機構50には、例えば、サンギヤ116a、リングギヤ116b及びキャリア軸118のうちのいずれか2つを直結(結合)させて、エンジン110の出力軸回転数と電動発電機111の回転数と遊星歯車機構50のキャリア軸118の回転数とを同一の回転数とさせる直結クラッチ115が設けられている。つまり、直結クラッチ115は、所謂ロックアップクラッチのように機能するものであり、蓄電器114の蓄電量が少なくなった場合には、サンギヤ116a、リングギヤ116b及びキャリア軸118のうちのいずれか2つを直結(結合)させることによって、車両系建設機械300をエンジン110のトルクのみで走行可能とさせる。なお、図1では、エンジン切離クラッチ121によりエンジン110の出力軸とサンギヤ116aとが結合されており、かつ直結クラッチ115がエンジン110(サンギヤ116a)と変速機112(キャリア軸118)とが直結されている状態を示している。
変速機112は、デファレンシャルギヤ119を介して、駆動輪120と接続されている。なお、デファレンシャルギヤ119を介さずに、変速機112と駆動輪120とが直接接続されてもよい。また、エンジン110と変速機112とは直結クラッチ115を介して接続されている。
電動発電機111は、インバータ113を介して蓄電器114と接続されている。蓄電器114は、電力を貯蔵できる機器であり、例えばキャパシタや二次電池などを採用することができる。電動発電機111は、回生制動による発電源又は力行による動力源として機能する。
なお、図1には示されていないが、後述するように、車両系建設機械300は、機械式ブレーキを電子制御するためのブレーキ回路を備えている。また、車両系建設機械300は、エンジン110、電動発電機111及び変速機112の動作を制御するための制御装置200を備えている。制御装置200は、例えば、マイクロコンピュータによって構成される。
上記の構成により、図2に示すように、エンジン切離クラッチ121によりエンジン110を遊星歯車機構50の出力側の走行駆動機構と切り離し、直結クラッチ115により遊星歯車機構50のリングギヤ116b(電動発電機111)とキャリア軸118(変速機112)とを結合させることができる。また、この結果、遊星歯車機構50の出力側の走行駆動機構は、エンジン110とは無関係に、電動発電機111単独で駆動することができる。以下の説明では、エンジン110が切り離されて、かつ遊星歯車機構50の出力側の走行駆動機構が電動発電機111単独で駆動されるモードのことを「M/G(Motor/Generator)単独走行モード」と呼ぶ。
[制御装置の構成]
図3は、本発明の実施の形態1に係る制御装置200の構成を示す機能ブロック図である。
制御装置200には、蓄電器114の蓄電量、アクセル及びブレーキ操作量、車速、電動発電機回転数及びトルク(蓄電器114の充放電量に相当)、エンジン回転数、並びに前後進レバーのレバー位置が入力されている。
エンジン回転数設定手段201は、蓄電器114の蓄電量及びアクセル操作量の入力に基づいて、エンジン回転数の設定を行う。また、エンジン回転数制御手段202は、エンジン回転数設定手段201によって定められたエンジン設定回転数及びエンジン110の実回転数、並びに電動発電機111の実回転数の入力を受け、これらの入力からエンジン110及び電動発電機111に必要なトルクを算出する。そして、その算出した結果を示すエンジントルク増減指令及び電動発電機トルク増減指令を出力する。
計算手段203が備える走行トルク計算手段203aは、アクセル及びブレーキ操作量などから、走行に必要とされる走行トルクを計算して、その計算した結果を走行トルク指令として出力する。この結果、ブレーキを効かした状態で駆動力をかけることによりエネルギーを無駄に消費したり、ブレーキに過度な負担をかけるような動作を起こさせないようにすることができる。
出力トルク制限手段204は、走行トルク計算手段203aから走行トルク指令を受け、その走行トルク指令を、蓄電器114の蓄電量が少ない場合や過剰な場合に電動発電機111の出力を制限するように、電動発電機・エンジントルク配分手段205へ出力する。なお、出力トルク制限手段204が省略されて、走行トルク計算手段203aから電動発電機・エンジントルク配分手段205へ走行トルク指令が直接出力されてもよい。
電動発電機・エンジントルク配分手段205は、走行トルク指令に基づいて、電動発電機111及びエンジン110へのトルク配分を計算し、その結果として電動発電機トルク指令及びエンジントルク指令を電動発電機111及びエンジン110へそれぞれ出力する。なお、この電動発電機トルク指令に対し、エンジン回転数制御手段202によって出力された電動発電機トルク増減指令が加えられた信号が、電動発電機111に入力される。他方、エンジン110には、このエンジントルク指令に対し、同じく出力されたエンジントルク増減指令が加えられた信号が入力される。
計算手段203が備える変速段計算手段203bは、アクセル操作量、蓄電器114の蓄電量、及び電動発電機111の動作状態(回生制動又は力行)から変速段を計算し、その計算した結果に基づいてシフトアップ又はシフトダウンが必要であるか否かについての変速指令を変速機112へ出力する。
なお、計算手段203は、減速中に変速段を切り替える場合に、クラッチが切れた状態となって減速が一旦弱まる(トルク抜け)ことに伴う操縦フィーリングの低下を防止するために、機械式ブレーキ(図示せず)を制御する電子制御ブレーキ回路21に対して、機械式ブレーキ指令を出力する。この結果、機械式ブレーキが補助的に用いられ、前後進を切り替える際(スイッチバック)の減速段階においてトルク抜けが発生した場合であっても、操縦フィーリングを良好に保つことができる。
走行モード設定手段206は、蓄電器114の蓄電量及び車速の入力を受けて、これらの入力に基づいて、エンジン110及び電動発電機111の双方のトルクによって走行させる「通常走行モード(本願請求項に係る第1の走行モード)」又は電動発電機111のみのトルクで走行させる「M/G単独走行モード(本願請求項に係る第2の走行モード)」を設定する。
通常走行モードは、エンジン切離クラッチ121によりエンジン110の出力軸とサンギヤ116aとを結合させるとともに、直結クラッチ115によりサンギヤ116aとキャリア軸118との結合を切り離すことにより設定される。なお、以下では、通常走行モード時において、エンジン切離クラッチ121の上記の状態のことを結合状態と呼び、直結クラッチ115の上記の状態のことを切離状態と呼ぶこととする。
M/G単独走行モードは、エンジン切離クラッチ121によりエンジン110の出力軸とサンギヤ116aとの結合を切り離してエンジン110を遊星歯車機構50の出力側の走行駆動機構と切り離すとともに、直結クラッチ115により遊星歯車機構50のリングギヤ116bとキャリア軸118とを結合させることにより設定される。なお、以下では、M/G単独走行モード時において、エンジン切離クラッチ121の上記の状態のことを切離状態と呼び、直結クラッチ115の上記の状態のことを結合状態と呼ぶこととする。
[通常走行モード時の基本的な動作]
本発明における基本的な制御は、アクセル操作量及び車速から必要とする駆動力を走行トルク計算機能手段によって計算し、それに応じて、電動発電機111とエンジン110とのトルク配分(遊星歯車機構50のギヤ比により一意に決まる)を電動発電機・エンジントルク配分手段205が行い、その結果を電動発電機111及びエンジン110に出力することにより行われる。
車両系建設機械300の運転が停止している状態において、アクセルが離された場合には、通常エンジン回転数はアイドリング回転数となる。しかし、本発明では基本的にエンジン回転数はアクセル操作量とは独立しており、主に蓄電器114の蓄電量により設定される。これは次の理由による。
まず、エンジン回転数が低い場合には同一ギヤでの電動発電機111の回生制動(発電)による上限速度(即ち、回生制動から力行への移行時の速度)が低くなり、エンジン回転数が高い場合にはそれに応じて上限速度が高くなる。そして、車速が回生制動(発電)による上限速度を上回る場合には電動発電機111が力行状態となるが、蓄電器114の容量上の制限がある。このため、電動発電機111の力行状態を長時間継続することは不可能である。そこで、エンジン回転数を蓄電器114の蓄電量に応じて設定することによって、電動発電機111の回生制動領域及び力行領域において蓄電器114の蓄電量が最適化されるような制御が可能となる。
エンジン回転数に関する制御は、操縦フィーリングに影響を与えないように、エンジン回転数のみを変化させる必要がある。すなわち、アクセル操作量に対応した駆動力を電動発電機111及びエンジン110により発生した状態で、エンジン回転数のみを変化させる必要がある。そのために、本発明においては、遊星歯車機構50の出力軸であるキャリア軸118のトルクを一定に保ったままで、電動発電機111とエンジン110とのトルク配分を変えることによって、エンジン回転数の増速及び減速を行うようにした。なお、上述した回生制動による上限速度はエンジン回転数により変化するが、さらに加速する場合は変速段を上げる(シフトアップ)ことにより、回生制動の上限速度は高くなる。本発明においては、加速により車速を上げる場合、蓄電器114の蓄電量が最適化されるように、エンジン回転数及び変速段を制御することとする。
[通常走行モード時のエンジン設定回転数の計算処理]
図4は、通常走行モード時のエンジン回転数設定手段201におけるエンジン設定回転数計算の処理手順を示すフローチャートである。なお、以下の処理は、直結クラッチ115の切離状態における低速域での走行、すなわち加速及び減速を繰り返したり、スイッチバックを繰り返したりするV字作業における走行中の処理を対象としている。
まず、エンジン回転数設定手段201は、蓄電器114の蓄電量が予め設定された蓄電量の設定下限値より少ないか否かを判定する(S101)。ここで、蓄電量が設定下限値よりも少ない(蓄電量が不足している)と判定した場合(S101でYES)には、エンジン回転数設定手段201は、アクセルがオン(アクセルが踏み込まれている)であるか否かを判定する(S102)。アクセルがオンでないと判定した場合(S102:NO)には処理を終了し、アクセルがオンであると判定した場合(S102:YES)には、エンジン設定回転数を増加する(S103)。
他方、ステップS101で蓄電量が設定下限値以上である(蓄電量が十分である)と判定した場合(S101:NO)には、エンジン回転数設定手段201は、蓄電器114の蓄電量が、予め設定された蓄電量の上限値(設定上限値)より多いか否かを判定する(S104)。ここで、蓄電量が設定上限値以下である(蓄電量は適切である)と判定した場合(S104:NO)には処理を終了し、蓄電量が設定上限値より多い(蓄電量が過剰である)と判定した場合(S104:YES)には、アクセルがオンであるか否かを判定する(S105)。そして、アクセルがオンでないと判定した場合(S105:NO)には処理を終了し、アクセルがオンであると判定した場合(S105:YES)には、エンジン設定回転数を減少する(S103)。
なお、蓄電量が設定上限値より多いと判定した場合(S104:YES)には、後述の走行モード設定処理が併行して行われる。
このような処理を行うことによって、蓄電器114の蓄電量に応じた適切なエンジン回転数の設定を行うことが可能となる。
[通常走行モード時のトルク指令算出処理]
図5は、通常走行モード時の電動発電機・エンジントルク配分手段205における電動発電機トルク指令及びエンジントルク指令の算出処理の一例の手順を示す説明図である。なお、以下の処理は、直結クラッチ115の切離状態における低速域での走行、すなわち例えば加速及び減速を繰り返したりスイッチバックを繰り返したりするV字作業における走行中の処理である。また、以下では、図2に示す出力トルク制限手段204が省略されており、走行トルク計算手段203aと電動発電機・エンジントルク配分手段205とが直接接続されている場合を例にとって説明する。
まず、電動発電機トルク指令及びエンジントルク指令の算出処理の前提となる遊星歯車機構50の基本式を以下に示す。
aE・ωE+aM・ωM+aout・ωout=0 …(式1:回転数の関係)
TE/aE=TM/aM=Tout/aout …(式2:トルクの関係)
aE+aM+aout=0 …(式3:係数の関係)
以上の式において、ωE、ωM、ωoutは、エンジン110(サンギヤ116a)、電動発電機111(リングギヤ116b)、遊星歯車機構50の出力軸(キャリア軸118)の回転数をそれぞれ表しており、TE、TM、Toutは、エンジン110(サンギヤ116a)、電動発電機111(リングギヤ116b)、遊星歯車機構50の出力軸(キャリア軸118)のトルクをそれぞれ表している。また、aE、aM、aoutは、遊星歯車機構50のパラメータを表している。
図5に示すとおり、走行トルク計算手段203aは、アクセル操作量、車速、及び変速段に基づいて、走行に必要なトルクを算出し、その算出した結果として走行トルク指令(Tout)を電動発電機・エンジントルク配分手段205へ出力する。
電動発電機・エンジントルク配分手段205は、走行トルク指令(Tout)の入力を受けて、TM(=Tout・aM/aout)及びTE(=Tout・aM/aout)を計算して、その計算結果として電動発電機トルク指令(TM)及びエンジントルク指令(TE)を電動発電機111及びエンジン110へそれぞれ出力する。
なお、走行に必要な牽引力以外の牽引力を必要としない通常の走行の場合、走行トルクは、アクセル操作量及び車速(車速の変化率も含む)により一意に決定される。この走行トルクの計算においては、変速段によらず同じ加速となるように、変速段の段数も考慮されている。これにより、蓄電量により変速段が異なっている場合であっても、同じ速度で同じアクセル操作量であれば同じ走行トルク指令が出力されることになり、同じ加速力が得られる。したがって、操縦者はその時点での変速段を意識する必要はない。
また、重量物の牽引及び土砂のすくいこみなどの高牽引力が必要となる走行においては、走行トルク指令を出力しても車速が上昇しないため、必要に応じて走行トルク指令を増加する必要が生じる。この場合、走行トルク計算処理に組み込まれた積分制御の積分器上限をアクセル操作量で設定すればよい。この機能により、重量物の牽引や土砂のすくいこみ時に、アクセルを踏み込んでも車速が上昇しない場合には牽引力を増加させていき、その上限値がアクセル操作量で設定されることにより、必要な牽引力がアクセル操作で得られる。
このような高牽引力が必要とされる走行状況においては、回生制動による走行が多くなり、発電状態が持続することとなるため、後述する変速段計算手段203bにおける処理の結果シフトダウンが行われ、その結果牽引力も増すこととなる。また、土砂のすくいこみ作業などの際に操縦者が事前に牽引力の増加が必要であると判断した場合は、手動でシフトダウンを行うことによって、円滑に作業を行うことができる。
[通常走行モード時の変数段数の計算処理]
図6は、通常走行モード時の変速段計算手段203bにおける変速段計算の処理手順を示すフローチャートである。なお、以下の処理は、直結クラッチ115の切離状態における通常走行モード時の低速域での走行、すなわち加速及び減速を繰り返したり、スイッチバックを繰り返したりするV字作業における走行中の処理を対象としている。
変速段計算手段203bは、アクセルがオンである(アクセルが踏み込まれて加速している)か否かを判定する(S201)。ここで、アクセルがオンであると判定した場合(S201:YES)には、変速段計算手段203bは、電動発電機111が回生制動状態にあるのか若しくは力行状態にあるのかを判定する(S202)。
ステップS202において、電動発電機111が力行状態にある(電動発電機111が正転している)と判定した場合(S202:「力行」)には、変速段計算手段203bは、蓄電量が設定下限値より少ないか否かを判定し(S203)、蓄電量が設定下限値以上である(蓄電量が十分である)と判定した場合(S203:NO)には処理を終了する。他方、蓄電量が設定下限値より少ない(蓄電量が不足している)と判定した場合(S203:YES)には、変速段計算手段203bは、シフトアップするように変速指令を変速機112へ出力する(S204)。
また、ステップS202において、電動発電機111が回生制動状態にある(電動発電機111が逆転している)と判定した場合(S202:「回生制動」)には、変速段計算手段203bは、蓄電量が設定上限値より多いか否かを判定し(S205)、蓄電量が設定上限値以下である(蓄電量が適切である)と判定した場合(S205:NO)には処理を終了する。他方、蓄電量が設定上限値より多い(蓄電量が過剰である)と判定した場合(S205:YES)には、変速段計算手段203bは、シフトダウンするように変速指令を変速機112へ出力する(S206)。
ステップS201において、アクセルがオンでない(エンジンブレーキが作動中である)と判定した場合(S201:NO)には、変速段計算手段203bは、電動発電機111が回生制動状態にあるか力行状態にあるかを判定する(S207)。
ステップS207において、電動発電機111が力行状態にあると判定した場合(S207:「力行」)には、変速段計算手段203bは、蓄電量が設定下限値より少ないか否かを判定し(S208)、蓄電量が設定下限値以上である(蓄電量が十分である)と判定した場合(S208:NO)には、処理を終了する。他方、蓄電量が設定下限値より少ない(蓄電量が不足している)と判定した場合(S208:YES)には、変速段計算手段203bは、シフトダウンするように変速指令を変速機112へ出力する(S209)。
また、ステップS207において、電動発電機111が回生制動状態にあると判定した場合(S207:「回生制動」)には、変速段計算手段203bは、蓄電量が設定上限値より多いか否かを判定し(S210)、蓄電量が設定上限値以下である(蓄電量が適切である)と判定した場合(S210:NO)には、処理を終了する。他方、蓄電量が設定上限値より多い(蓄電量が過剰である)と判定した場合(S210:YES)には、変速段計算手段203bは、シフトアップするように変速指令を変速機112へ出力する(S211)。
なお、上記の処理の中で、蓄電器114の蓄電量が設定上限値よりも多いと判定した場合(S205:YES、S210:YES)には、後述の走行モード設定処理が併行して行われる。
このように処理することにより、電動発電機11の状態及び蓄電器114の蓄電量に応じた適切な変速段の切替を行うことが可能となる。
[通常走行モード時のトルクバランス制御]
エンジン110及び電動発電機111の発生トルクのバランスを変えることにより、エンジン回転数及び電動発電機回転数を制御する点について説明する。
遊星歯車機構50においては、遊星歯車機構50の上述の基本式に示すように、各軸のトルクバランスが一致することとなる。そのため、エンジン110及び電動発電機111のトルクがバランスしていると、エンジン110及び電動発電機111はともに回転数を上げながら車体を加速させる(遊星歯車機構50の出力軸の回転数を上昇させる)。ここで、エンジン110及び電動発電機111のトルクバランスを変えるべく、例えばエンジントルクを大きくすると、エンジン回転数が上昇する一方で電動発電機回転数は低下する。このように、エンジン110及び電動発電機111のトルクバランスを変えてエンジン110及び電動発電機回転数を制御することにより、蓄電器114の充放電を繰り返しながら車両系建設機械300の走行を続けることが可能になる。以下、図7乃至図9を参照しながら具体的に説明する。
図7乃至図9は、加速状態における遊星歯車機構50の速度線図である。図7乃至図9に示すいずれかの場合においても、遊星歯車機構50の出力軸の回転数は同一となっている。図8に示すように、電動発電機111が回生制動と力行との間の遷移点の状態にある場合には、蓄電器114の充放電は行われない。ここで、エンジン110及び電動発電機111のトルクバランスを変えて、エンジントルクを小さくすると、エンジン回転数が低下する一方で、電動発電機回転数は上昇することとなる。その結果、電動発電機111は、図7に示すように、力行状態となり、蓄電器114に蓄電された電力を消費する。これに対し、エンジントルクを大きくすると、エンジン回転数が上昇する一方で、電動発電機回転数は低下する。その結果、電動発電機111は、図9に示すように、回生制動状態となり、蓄電器114が充電されることとなる。
このように、同一の車速であっても、エンジン回転数に応じて電動発電機111は力行及び回生制動のいずれかの状態をとりうるため、電動発電機111による蓄電器114の充放電をエンジン回転数によって制御することが可能となる。
[エンジン切離クラッチ及び直結クラッチ結合時の走行動作]
以上では、エンジン切離クラッチ121の結合状態及び直結クラッチ115の切離状態(通常走行モード)における走行動作について説明したが、エンジン切離クラッチ121の結合状態及び直結クラッチ115の結合状態における走行動作について以下に説明する。
エンジン切離クラッチ121及び直結クラッチ115が結合状態の場合、遊星歯車機構50のキャリア軸118に電動発電機111が接続されたことと同じ状態になる。そのため、減速の場合には、電動発電機111の回生制動により発電して蓄電器114には電力が蓄えられ、また機械ブレーキの負担を減らすことができる。加速の場合には、蓄電器114に蓄電されている余剰電力を利用して、電動発電機111の力行によりエンジン110をアシストすることができる。
また、変速機112の変速段をニュートラルにすることによって、エンジン110と電動発電機111とが直結されることとなる。電動発電機111は、通常のスタータと比べると十分に強力なものであるため、このように、エンジン110と電動発電機111とを直結させることによって、電動発電機111をスタータの代わりとして使用することができる。この場合、ニュートラルから前進段への切り替えは、操縦者からのレバー操作信号を受けた制御装置200が変速機112に対して指令を出力することにより行われる。ここで、制御装置200は、前進段に切り替える前に、スタータの代わりとなる電動発電機111によってエンジン110を始動し、その後変速段を前進に切り替えるように変速機112に指令を出力すればよい。
[走行モード設定処理]
図10は、走行モード設定手段206の走行モード設定処理の手順を示すフローチャートである。
まず、走行モード設定手段206は、デフォルトの設定として通常走行モードを選択しており、エンジン切離クラッチ121によりエンジン110の出力軸とサンギヤ116aとを結合させるとともに、直結クラッチ115によりサンギヤ116aとキャリア軸118との結合を切り離す(S300)。この結果、通常走行モードが設定される。
つぎに、走行モード設定手段206は、蓄電器114の蓄電量及び車速の入力を受けて、蓄電器114の蓄電量が設定上限値αを上回る(蓄電量が過剰である)か否かを判定するとともに、車速が設定下限値βを下回る(車速が極低速である)か否かを判定する(S301)。蓄電器114の蓄電量が設定上限値αを下回る場合及び/又は車速が設定下限値βを上回る場合(S301:NO)には、走行モード設定手段206は通常走行モードの設定を維持するように動作する。
一方、蓄電器114の蓄電量が設定上限値αを上回る場合及び車速が設定下限値βを下回る場合(S301:YES)には、走行モード設定手段206は、通常走行モードからM/G単独走行モードに切り替えるように動作する。具体的には、エンジン切離クラッチ121によりエンジン110を遊星歯車機構50の出力側の走行駆動機構と切り離すとともに、直結クラッチ115により遊星歯車機構50のリングギヤ116bとキャリア軸118とを結合させる(S302)。
その後、走行モード設定手段206は、M/G単独走行モード中に蓄電器114の蓄電量が設定下限値γを下回る(蓄電量が不足している)か否かを判定する(S303)。蓄電器114の蓄電量が設定下限値γを上回っていれば(S303:NO)、M/G単独走行モードの設定を維持するように動作する。一方、蓄電器114の蓄電量が設定下限値γを下回れば(S303:YES)、ステップS300に戻り、M/G単独走行モードを通常走行モードに切り替えるように動作する。つまり、エンジン切離クラッチ121によりエンジン110の出力軸とサンギヤ116aとを結合させるとともに、直結クラッチ115によりサンギヤ116aとキャリア軸118との結合を切り離す。
ところで、通常走行モードからM/G単独走行モードに切り替わる場合とは、例えば、車両系建設機械300の通常走行モードによる運転中に、土砂をすくいこむときに極低速の車速で高牽引力となるストール状態や坂道登坂時や重量物を牽引している場合である。この場合、電動発電機11の回生制動が頻繁に行われることにより、蓄電器114が満充電となるおそれがある。そこで、蓄電量が過剰であり、かつ車速が極低速の場合には、ストール状態や高牽引の状態であるものとみなし、通常走行モードからM/G単独走行モードに切り替える。この結果、蓄電器114に蓄電されている蓄電量を消費(放電)することができ、車両系建設機械300の走行を継続させることができる。
なお、M/G単独走行モード時の遊星歯車機構50の速度線図は、例えば図11に示される状態となる。図11の速度線図に示すように、M/G単独走行モードの場合には、電動発電機回転数と遊星歯車機構50の出力軸(キャリア軸118)の回転数とは同一の回転数となっている。また、エンジン切離クラッチ121の切離状態によりエンジン110はフリーの運転状態となっている。さらに、遊星歯車機構50の出力軸にはアクセル操作量に応じた正のトルクを発生しており、電動発電機111は力行の方向にトルクを発生している。このとき、電動発電機111は、蓄電器114に蓄電されている電力を消費することとなる。
(実施の形態2)
[車両系建設機械の構成]
図12は、本発明の実施の形態2に係る車両系建設機械の主要部の構成を示すブロック図である。図12に車両系建設機械300は、図1に示す車両系建設機械300と構成上相違する点は、エンジン110とエンジン切離クラッチ121との間に配設されるギヤ122と、ギヤ122と噛合させるギヤ123と、ギヤ123の軸と接続されるエンジンブレーキ力増強装置(以下、エンブレ増強装置と呼ぶ)124と、を設けた点である。なお、エンブレ増強装置124は、減速時のエンジンブレーキ力を増強させる際に自身を抵抗として機能させる装置であり、例えば油圧ポンプ及びその周辺の油圧回路によって構成される。なお、その他の構成については、実施の形態1の場合と同様であるので、同一符号を付して説明を省略する。
[制御装置の構成]
図13は、本発明の実施の形態2に係る車両系建設機械が備える制御装置200の構成を示す機能ブロック図である。図13に示すとおり、計算手段203は、エンブレ増強値計算手段203cを備えている。このエンブレ増強値計算手段203cは、必要となるエンジンブレーキ値を計算し、その計算した結果を示すエンブレ増強指令をエンブレ増強装置124へ出力する。エンブレ増強装置124は、入力されたエンブレ増強指令に基づいて、減速エネルギーを消費する。また、走行モード設定手段206は、蓄電器114の蓄電量及び車速の他にブレーキの状態が入力される。なお、制御装置200のその他の構成については、実施の形態1の場合と同様であるので、同一符合を付して説明を省略する。
[エンブレ増強指令の算出処理]
図14は、エンブレ増強値計算手段203cにおけるエンブレ増強指令の算出処理の一例の手順を示す説明図である。図14に示すとおり、走行トルク計算手段203aは、アクセル操作量、車速、及び変速段に基づいて、走行に必要なトルクを算出し、その算出した結果として走行トルク指令(Tout)を電動発電機・エンジントルク配分手段205へ出力する。
電動発電機・エンジントルク配分手段205は、走行トルク指令(Tout)の入力を受けて、TM(=Tout・aM/aout)及びTE(=Tout・aE/aout)を計算して、その計算結果として電動発電機トルク指令(TM)及びエンジントルク指令(TE)を電動発電機111及びエンジン110へそれぞれ出力する。
また、エンブレ増強値計算手段203cは、減速の場合に、エンジン回転数からエンブレ値(TEB)を計算し、電動発電機・エンジントルク配分手段205から出力されたエンジントルク(TE)からそのエンブレ値(TEB)を減算することにより、エンブレ増強値(TEBcmd)を算出する。これにより、エンジン110自身の抵抗、すなわちエンブレ値(TEB)と、エンブレ増強装置124により発生させられる抵抗(TEBcmd)とが、エンジン110の出力軸に発生する負トルクとなり、エンジン110の出力軸にTE(=TEB−TEBcmd)の負トルクを発生させることができる。
ところで、減速する場合にはエンジン110及び電動発電機111において通常負トルクを発生させる必要がある。この場合、エンジン110は実際に負トルクを発生させることはできないので、エンジン自身の抵抗(エンジンブレーキ)の範囲内で減速させることとなる。このため、更なる減速力が必要であるとき(急勾配な坂を下る場合又はスイッチバックを行う場合等)には、エンブレ増強装置124によってエンジン110の出力軸に負トルクを発生させる必要がある。これにより、減速エネルギーを電動発電機111の発電により回収することができ、また機械ブレーキの負担を減らすことができる。
[通常走行モード時の動作]
本発明の実施の形態2に係る車両系建設機械300の通常走行モード時の動作、例えば、エンジン設定回転数の計算処理、トルク指令算出処理、変数段数の計算処理、トルクバランス制御については本発明の実施の形態1と同様であるため説明を省略する。また、エンジン切離クラッチ121が結合されるとともに直結クラッチ115が結合された状態における走行動作についても本発明の実施の形態1と同様であるため説明を省略する。
[走行モード設定処理]
図15は、走行モード設定手段206の走行モード設定処理の手順を示すフローチャートである。
まず、走行モード設定手段206は、デフォルトの設定として通常走行モードを選択しており、エンジン切離クラッチ121を結合させるとともに、直結クラッチ115を切り離す(S400)。この結果、通常走行モードが設定される。
つぎに、走行モード設定手段206は、ブレーキが踏み込まれているか否か、すなわち車両系建設機械300が減速要求を受けているか否かを判定する(S401)。なお、車両系建設機械300は、減速要求を受けた場合、電動発電機111の回生制動により発電しながら減速することとなる。さらに、強い減速力が必要である場合には、上記のとおりエンブレ増強装置124を稼動することになる。
減速要求を受けていないことを判定した場合(S401:NO)には、通常走行モードの設定を維持するように動作する。一方、減速要求を受けていることを判定した場合(S401:YES)には、走行モード設定手段206は、通常走行モードからM/G単独走行モードに切り替えるように動作する。具体的には、エンジン切離クラッチ121によりエンジン110を遊星歯車機構50の出力側の走行駆動機構と切り離すとともに、直結クラッチ115により遊星歯車機構50のリングギヤ116bとキャリア軸118とを結合させる(S402)。
その後、走行モード設定手段206は、M/G単独走行モード中に蓄電器114の蓄電量が設定上限値αを上回る(蓄電量が過剰である)か否か、若しくは車速が設定下限値βを下回る(車速が極低速である)か否かを判定する(S403)。蓄電器114の蓄電量が設定上限値αを下回り、かつ車速が下限設定値βを上回る(S403:NO)場合には、M/G単独走行モードの設定を維持するように動作する。一方、蓄電器114の蓄電量が設定上限値αを上回るか、若しくは車速が下限設定値βを下回る(S303:YES)場合には、ステップS400に戻り、M/G単独走行モードを通常走行モードに切り替えるように動作する。つまり、エンジン切離クラッチ121によりエンジン110の出力軸とサンギヤ116aとを結合させるとともに、直結クラッチ115によりサンギヤ116aとキャリア軸118との結合を切り離す。
なお、M/G単独走行モード時の車両系建設機械300の速度線図は、例えば図16に示される状態となる。図16の速度線図に示すように、M/G単独走行モードの場合には、電動発電機回転数と遊星歯車機構50の出力軸(キャリア軸118)の回転数とは同一の回転数となっている。また、エンジン切離クラッチ121の切離状態により、エンジン110はフリーの運転状態となっている。さらに、遊星歯車機構50の出力軸には減速要求に応じた負のトルクが発生しており、電動発電機111は回生制動の方向に減速トルクを発生して発電を行っている。
以上のように、車両系建設機械300が減速要求を受けておりエンブレ増強装置124を稼動させる場合には、通常走行モードからM/G単独走行モードに切り替えることによって、エンジン110は遊星歯車機構50のサンギヤ116aと切り離される。このため、エンブレ増強装置124によって減速エネルギーの一部をエンジンブレーキとして消費することがなくなる。このため、減速時における電動発電機111の回生効率が向上することとなり、減速後に必要となる蓄電器114の蓄電量を十分に確保することが可能となる。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
本発明は、極低速で高牽引力を必要とし、また加減速運転の多い車両系建設機械、特に、ホイールローダにとって有用である。
50 遊星歯車機構
110 エンジン
111 電動発電機
112 変速機
113 インバータ
114 蓄電器
115 直結クラッチ
116a サンギヤ
116b リングギヤ
117 ギヤ
118 キャリア軸
119 デファレンシャルギヤ
120 駆動輪
121 エンジン切離クラッチ
122 ギヤ
123 ギヤ
124 エンブレ増強装置
200 制御装置
201 エンジン回転数設定手段
202 エンジン回転数制御手段
203 計算手段
203a 走行トルク計算手段
203b 変速段計算手段
203c エンブレ増強値計算手段、
204 出力トルク制限手段、
205 電動発電機・エンジントルク配分手段
206 走行モード設定手段
300、310 車両系建設機械

Claims (10)

  1. エンジンと、
    電動発電機と、
    前記電動発電機と接続された蓄電器と、
    前記エンジンの出力軸と接続されたサンギヤと、前記電動発電機の出力軸と接続されたリングギヤと、キャリア軸とを有する遊星歯車機構と、
    前記キャリア軸から駆動輪へのトルク伝達経路に設けられた変速機と、
    前記サンギヤと前記キャリア軸とを直結させ又は切り離す直結クラッチと、
    を備え、前記電動発電機及び/又は前記エンジンによって発生したトルクを前記駆動輪に伝達することにより走行するよう構成された車両系建設機械であって、
    前記エンジンの出力軸と前記サンギヤとの間に設けられ、前記エンジンの出力軸と前記サンギヤとを結合させ又は切り離すエンジン切離クラッチと、
    前記直結クラッチにより前記サンギヤと前記キャリア軸とを切り離すとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを結合させて前記エンジン及び前記電動発電機によって発生したトルクによって走行させる第1の走行モード、又は前記直結クラッチにより前記サンギヤと前記キャリア軸とを直結させるとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを切り離して前記電動発電機のみで走行させる第2の走行モードを少なくとも前記蓄電器の蓄電量に基づき選択して設定する走行モード設定器と、
    を備える、車両系建設機械。
  2. 前記走行モード設定器は、前記第1の走行モード又は前記第2の走行モードを前記蓄電器の蓄電量と車速とに基づき選択して設定する、請求項1に記載の車両系建設機械。
  3. 前記走行モード設定器は、前記蓄電器の蓄電量が所定の上限値よりも大きく、かつ車速が所定の下限値よりも低い場合には、前記第2の走行モードを設定し、前記蓄電器の蓄電量が前記所定の上限値よりも小さく、又は車速が前記所定の下限値よりも高い場合には、前記第1の走行モードを設定するように構成されている、請求項2に記載の車両系建設機械。
  4. 前記エンジンの出力軸と接続され、減速時のエンジンブレーキを増強させるエンジンブレーキ増強機構をさらに備え、
    前記走行モード設定器は、減速要求を受けた場合には、前記第1の走行モードから前記第2の走行モードに切り替えるように構成されている、請求項1に記載の車両系建設機械。
  5. 前記第1の走行モードにおいて、アクセル操作量及び前記蓄電器の蓄電量に基づいて、前記エンジンの回転数を制御するエンジン回転数制御器と、
    前記第1の走行モードにおいて、アクセル操作量、前記電動発電機の動作状態、及び前記蓄電器の蓄電量に基づいて、前記変速機の変速段を制御する変速段制御器と、
    前記第1の走行モードにおいて、アクセル操作量、車速、及び前記変速機の変速段に基づいて、前記エンジン及び前記電動発電機に発生させるトルクを制御するトルク制御器と、
    をさらに有する、請求項1に記載の車両系建設機械。
  6. エンジンと、
    電動発電機と、
    前記電動発電機と接続された蓄電器と、
    前記エンジンの出力軸と接続されたサンギヤと、前記電動発電機の出力軸と接続されたリングギヤと、キャリア軸とを有する遊星歯車機構と、
    前記キャリア軸から駆動輪へのトルク伝達経路に設けられた変速機と、
    前記サンギヤと前記キャリア軸とを直結させ又は切り離す直結クラッチと、
    を備え、前記電動発電機及び/又は前記エンジンによって発生したトルクを前記駆動輪に伝達することにより走行するよう構成された車両系建設機械の制御方法であって、
    少なくとも前記蓄電器の蓄電量に基づいて、前記直結クラッチにより前記サンギヤと前記キャリア軸とを切り離すとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを結合させて前記エンジン及び前記電動発電機によって発生したトルクによって走行させる第1の走行モード、又は前記直結クラッチにより前記サンギヤと前記キャリア軸とを結合させるとともに前記エンジン切離クラッチにより前記エンジンの出力軸と前記サンギヤとを切り離して前記電動発電機のみで走行させる第2の走行モードを選択して設定する、車両系建設機械の制御方法。
  7. 前記第1の走行モード又は前記第2の走行モードを前記蓄電器の蓄電量と車速とに基づき選択して設定する、請求項6に記載の車両系建設機械の制御方法。
  8. 前記蓄電器の蓄電量が所定の上限値よりも大きく、かつ車速が所定の下限値よりも低い場合には、前記第2の走行モードを設定し、前記蓄電器の蓄電量が前記所定の上限値よりも小さく、又は車速が前記所定の下限値よりも高い場合には、前記第1の走行モードを設定する、請求項7に記載の車両系建設機械の制御方法。
  9. 前記車両系建設機械は、前記エンジンの出力軸と接続され、減速時のエンジンブレーキを増強させるエンジンブレーキ増強機構をさらに備えており、
    減速要求を受けた場合には、前記第1の走行モードから前記第2の走行モードに切り替える、請求項6に記載の車両系建設機械の制御方法。
  10. 前記第1の走行モードにおいて、アクセル操作量及び前記蓄電器の蓄電量に基づいて、前記エンジンの回転数を制御し、アクセル操作量、前記電動発電機の動作状態、及び前記蓄電器の蓄電量に基づいて、前記変速機の変速段を制御し、かつアクセル操作量、車速、及び前記変速機の変速段に基づいて、前記エンジン及び前記電動発電機に発生させるトルクを制御する、請求項6に記載の車両系建設機械の制御方法。
JP2009246637A 2009-10-27 2009-10-27 車両系建設機械及びその制御方法 Pending JP2011093345A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246637A JP2011093345A (ja) 2009-10-27 2009-10-27 車両系建設機械及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246637A JP2011093345A (ja) 2009-10-27 2009-10-27 車両系建設機械及びその制御方法

Publications (1)

Publication Number Publication Date
JP2011093345A true JP2011093345A (ja) 2011-05-12

Family

ID=44110778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246637A Pending JP2011093345A (ja) 2009-10-27 2009-10-27 車両系建設機械及びその制御方法

Country Status (1)

Country Link
JP (1) JP2011093345A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619627A (zh) * 2011-06-27 2014-03-05 斯堪尼亚商用车有限公司 用于车辆的传动系统和控制传动系统的方法
KR101508335B1 (ko) * 2013-08-23 2015-04-08 한양대학교 산학협력단 전기굴삭기용 동력분배 시스템 및 동력분배 제어방법
JP2015129395A (ja) * 2014-01-07 2015-07-16 日立建機株式会社 ハイブリッド式ホイールローダ
CN105346538A (zh) * 2015-09-30 2016-02-24 奇瑞汽车股份有限公司 一种混合动力汽车的起步控制方法和装置
JP2017077884A (ja) * 2015-10-20 2017-04-27 株式会社エクセディ ハイブリッド駆動装置
WO2017069042A1 (ja) * 2015-10-20 2017-04-27 株式会社エクセディ ハイブリッド駆動装置
CN108215761A (zh) * 2016-12-12 2018-06-29 郑州宇通客车股份有限公司 车辆、混联式混合动力系统及混合动力系统控制方法
CN112046302A (zh) * 2020-09-22 2020-12-08 吉林大学 一种安全冗余的电动汽车双电机轮边驱动系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142139A (ja) * 1998-09-12 2000-05-23 Daimlerchrysler Ag 混成駆動装置
JP2001246949A (ja) * 2000-03-06 2001-09-11 Nissan Motor Co Ltd ハイブリッド車両の自動変速機
JP2006275009A (ja) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp ハイブリッド車両のモータ制御装置
JP2007261423A (ja) * 2006-03-28 2007-10-11 Aisin Seiki Co Ltd 車両駆動システムの制御装置
JP2007314097A (ja) * 2006-05-29 2007-12-06 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
WO2008069026A1 (ja) * 2006-12-04 2008-06-12 Toyota Jidosha Kabushiki Kaisha 車両およびその制御方法
JP2008247269A (ja) * 2007-03-30 2008-10-16 Kawasaki Heavy Ind Ltd 建設機械及びその制御方法
JP2009107502A (ja) * 2007-10-31 2009-05-21 Hitachi Ltd ハイブリッド車両の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142139A (ja) * 1998-09-12 2000-05-23 Daimlerchrysler Ag 混成駆動装置
JP2001246949A (ja) * 2000-03-06 2001-09-11 Nissan Motor Co Ltd ハイブリッド車両の自動変速機
JP2006275009A (ja) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp ハイブリッド車両のモータ制御装置
JP2007261423A (ja) * 2006-03-28 2007-10-11 Aisin Seiki Co Ltd 車両駆動システムの制御装置
JP2007314097A (ja) * 2006-05-29 2007-12-06 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
WO2008069026A1 (ja) * 2006-12-04 2008-06-12 Toyota Jidosha Kabushiki Kaisha 車両およびその制御方法
JP2008247269A (ja) * 2007-03-30 2008-10-16 Kawasaki Heavy Ind Ltd 建設機械及びその制御方法
JP2009107502A (ja) * 2007-10-31 2009-05-21 Hitachi Ltd ハイブリッド車両の制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619627A (zh) * 2011-06-27 2014-03-05 斯堪尼亚商用车有限公司 用于车辆的传动系统和控制传动系统的方法
EP2723595A1 (en) * 2011-06-27 2014-04-30 Scania CV AB Powertrain for a vehicle and method for controlling a powertrain
JP2014520705A (ja) * 2011-06-27 2014-08-25 スカニア シーブイ アクチボラグ 車両用のパワートレインおよびパワートレインを制御するための方法
KR101508335B1 (ko) * 2013-08-23 2015-04-08 한양대학교 산학협력단 전기굴삭기용 동력분배 시스템 및 동력분배 제어방법
JP2015129395A (ja) * 2014-01-07 2015-07-16 日立建機株式会社 ハイブリッド式ホイールローダ
CN105346538A (zh) * 2015-09-30 2016-02-24 奇瑞汽车股份有限公司 一种混合动力汽车的起步控制方法和装置
JP2017077884A (ja) * 2015-10-20 2017-04-27 株式会社エクセディ ハイブリッド駆動装置
WO2017069042A1 (ja) * 2015-10-20 2017-04-27 株式会社エクセディ ハイブリッド駆動装置
US10788110B2 (en) 2015-10-20 2020-09-29 Exedy Corporation Hybrid driving apparatus
CN108215761A (zh) * 2016-12-12 2018-06-29 郑州宇通客车股份有限公司 车辆、混联式混合动力系统及混合动力系统控制方法
CN112046302A (zh) * 2020-09-22 2020-12-08 吉林大学 一种安全冗余的电动汽车双电机轮边驱动系统及其控制方法

Similar Documents

Publication Publication Date Title
JP5427110B2 (ja) 建設機械及びその制御方法
JP5095252B2 (ja) 建設機械及びその制御方法
US10525968B2 (en) Method for controlling a drive device of a hybrid vehicle and hybrid vehicle
US8348806B2 (en) Construction machine and control method thereof
KR100450551B1 (ko) 보조 구동 장치 및 이를 탑재한 자동차
CN104070983B (zh) 混合动力驱动系统以及用于控制混合动力驱动系统的方法
US9028362B2 (en) Powertrain and method for a kinetic hybrid vehicle
JP2011093345A (ja) 車両系建設機械及びその制御方法
JP5855487B2 (ja) 電動駆動式作業車両
JP5700120B2 (ja) 車両の駆動制御装置
JP5387343B2 (ja) 作業車両の走行駆動装置
JP2014104846A (ja) ハイブリッド車両の制御装置
JP2019032004A (ja) 車両の制御装置
JP2009241830A (ja) 走行作業車両
JP4258513B2 (ja) 駆動装置の制御装置
JP2010524774A (ja) バッテリを再充電するためのハイブリッド推進装置の制御システム
CN105358362A (zh) 用于混合动力车辆的控制系统
KR100802779B1 (ko) 하이브리드 전기차용 듀얼모드 파워트레인 및 그 작동방법
CN103192823B (zh) 混合动力系统中电机助力与换挡协调控制的方法和装置
US10605359B2 (en) Shift control system for vehicle
KR100802780B1 (ko) 하이브리드 전기차용 듀얼모드 파워트레인 및 그 작동방법
KR100802821B1 (ko) 하이브리드 전기차용 듀얼모드 파워트레인 및 그 작동방법
JP2009241829A (ja) 走行作業車両
JP2016007934A (ja) 電動車両の制御装置
CN112384397B (zh) 四轮驱动式混合动力机动车辆的储能装置的充电管理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140414

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140502