WO2023024142A1 - 一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法 - Google Patents

一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法 Download PDF

Info

Publication number
WO2023024142A1
WO2023024142A1 PCT/CN2021/116162 CN2021116162W WO2023024142A1 WO 2023024142 A1 WO2023024142 A1 WO 2023024142A1 CN 2021116162 W CN2021116162 W CN 2021116162W WO 2023024142 A1 WO2023024142 A1 WO 2023024142A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
solution
pipeline reactor
coupling
diazotization
Prior art date
Application number
PCT/CN2021/116162
Other languages
English (en)
French (fr)
Inventor
张淑芬
李雷
唐炳涛
吕荣文
马威
武素丽
牛文斌
具本植
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2023024142A1 publication Critical patent/WO2023024142A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B29/00Monoazo dyes prepared by diazotising and coupling
    • C09B29/0003Monoazo dyes prepared by diazotising and coupling from diazotized anilines
    • C09B29/0007Monoazo dyes prepared by diazotising and coupling from diazotized anilines containing acid groups, e.g. CO2H, SO3H, PO3H2, OSO3H, OPO2H2; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B29/00Monoazo dyes prepared by diazotising and coupling
    • C09B29/34Monoazo dyes prepared by diazotising and coupling from other coupling components
    • C09B29/36Monoazo dyes prepared by diazotising and coupling from other coupling components from heterocyclic compounds
    • C09B29/3695Monoazo dyes prepared by diazotising and coupling from other coupling components from heterocyclic compounds containing other heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B62/00Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves
    • C09B62/44Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring
    • C09B62/503Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring the reactive group being an esterified or non-esterified hydroxyalkyl sulfonyl or mercaptoalkyl sulfonyl group, a quaternised or non-quaternised aminoalkyl sulfonyl group, a heterylmercapto alkyl sulfonyl group, a vinyl sulfonyl or a substituted vinyl sulfonyl group, or a thiophene-dioxide group
    • C09B62/507Azo dyes
    • C09B62/51Monoazo dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B62/00Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves
    • C09B62/44Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring
    • C09B62/503Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring the reactive group being an esterified or non-esterified hydroxyalkyl sulfonyl or mercaptoalkyl sulfonyl group, a quaternised or non-quaternised aminoalkyl sulfonyl group, a heterylmercapto alkyl sulfonyl group, a vinyl sulfonyl or a substituted vinyl sulfonyl group, or a thiophene-dioxide group
    • C09B62/507Azo dyes
    • C09B62/513Disazo or polyazo dyes

Definitions

  • the invention relates to a continuous production method of water-soluble azo dyes, in particular to a method for continuous diazotization and continuous coupling in a pipeline reactor to produce water-soluble azo dyes, belonging to the field of fine chemicals.
  • Diazotization reaction and coupling reaction are two reaction steps that must be passed through to prepare azo dyes.
  • the diazotization reaction of water-soluble primary aromatic amines is carried out in an aqueous solution of aromatic amines, using nitrous acid as a diazotization reagent, and nitrous acid is generated in situ with sodium nitrite and hydrochloric acid in the reaction system; the diazotization reaction Theoretically, sodium nitrite of equimolar equivalent and hydrochloric acid of two molar times are needed. In order to maintain the reaction in acidity, excess hydrochloric acid is usually used.
  • the primary arylamine diazonium salt reacts with an equimolar amount of an aromatic compound containing an amino group or a hydroxyl group in an aqueous solution to form an azo compound, which is a water-soluble azo dye.
  • the diazotization reaction of most primary aryl amines is a fast exothermic reaction, and even some primary aryl amines complete the diazotization reaction in a few seconds when they encounter a diazotization reagent.
  • the coupling reaction speed is also very fast under neutral or slightly alkaline conditions, and some fast coupling reactions can also be completed within a few seconds.
  • the production of traditional azo dyes is carried out in batch reactors. In order to improve production efficiency, the batch reactors are dozens of cubic meters or even hundreds of cubic meters, with only one stirring paddle in the middle.
  • the process of diazotization reaction in the batch reaction kettle is: first add ice to the reaction kettle, then add the heavy nitrogen component aramide and hydrochloric acid, stir well and quickly add 300g/L sodium nitrite when the temperature drops below 5°C Solution, carry out diazotization reaction; Since the mass transfer and heat transfer rate is slower than the diazotization reaction rate, generally the reaction time in hours is required to confirm the completion of the reaction.
  • the generated diazonium salt is easy to quickly transform into a relatively stable trans-diazoic acid, or the locally generated diazonium salt is easy to react with the adjacent, unreacted primary aryl amine in the system Coupling reaction, the occurrence of these two side reactions will seriously affect the subsequent coupling reaction or other reactions, thereby generating by-products and affecting product quality.
  • the coupling components are added thereto, and sodium carbonate is added in batches to neutralize the hydrogen chloride released by the reaction, so as to promote the forward reaction. Since the reaction is only stirred by a stirring anchor, it is also affected by mass transfer, and the coupling reaction rate is still controlled by the mass transfer process; the heat of acid-base neutralization and the heat released by the reaction cannot be removed in time, and the local unreacted diazonium salt remains There is a chance to become trans-diazoic acid or self-coupling to affect the normal coupling reaction and produce reaction impurities.
  • the invention provides a method for continuously producing water-soluble azo dyes in a pipeline reactor.
  • the diazo component, hydrochloric acid and sodium nitrite are fed simultaneously at the bottom of the continuous pipeline reactor in a molar ratio at room temperature, and the diazotization reaction occurs when they meet in the pipeline, leaving the diazotization reaction site in time point, and then meet with the coupling component of the preset solution pH to undergo a coupling reaction; under the agitation of the micro-stirring blade, the material in each flow layer is approximately uniformly mixed and reacted, and the reaction material flows upward under the driving force of the feed, from the continuous The material is discharged from the top of the chemical reactor to produce water-soluble azo dyes.
  • the yield of the main product is over 95%, and the intensity fluctuation of the dye product does not exceed 1%.
  • the production of water-soluble azo dyes by the method of the present invention can adjust the concentration of the reaction solution according to the viscosity state of the diazonium salt solution, the highest mass concentration can reach more than 20%, and can be continuously operated as required until the production output requirement is met.
  • the invention not only solves the problem that a large amount of ice needs to be added to maintain a reaction temperature of about 0°C in the production of azo dyes in batch reactors, and is limited by mass transfer and heat transfer, the yield of dye products is unstable, and the problem of high impurity content is also solved.
  • the problem that the non-homogeneous phase high-concentration diazonium salt solution is not easy to flow in a microchannel reactor.
  • the invention provides a technology for producing water-soluble azo dyes by completing continuous diazotization reaction and continuous coupling reaction in a pipeline reactor in which a plurality of micro-stirring blades are distributed along the axial direction.
  • the material solution participating in the diazotization reaction is fed into the feed port at the bottom of the pipeline reactor with multiple micro-stirring blades distributed along the axial direction.
  • the coupling component solution with a preset solution pH into the feed port adjacent to the upper part of the sampling port.
  • Uniform mixing completes the coupling reaction to generate water-soluble azo dyes, which are discharged from the top of the pipeline reactor.
  • the diazotization reaction is carried out, and it flows upward under the action of the feed force; (b) real-time detection during the reaction process, and the diazotization reaction is detected through the sampling port The position of the pipe-line reactor where the reaction solution is at the time of completion; (c) at room temperature, input the coupling component solution according to the 1:1 molar ratio with the diazo component and the accurately metered preset solution pH When the diazotization reaction is completed, at the upper feeding port next to the sampling port, the diazonium salt and the coupling component carry out the coupling reaction and flow upward under the driving force of the feeding; (d) in the pipeline reactor The water-soluble azo dye solution
  • the mixing of the material solution is completed by a plurality of micro-stirring blades distributed along the axial direction.
  • the diazotization reaction and the coupling reaction in which the concentration of the diazo component solution and the coupling component solution can be higher than 20wt% can be carried out in the pipeline reactor.
  • the material in the continuous diazotization reaction and continuous coupling reaction completed in the pipeline reactor, the material is fed from the bottom and middle of the reactor, and discharged from the top of the reactor.
  • the mixing of the material solution is completed by a plurality of micro-stirring blades distributed along the axial direction.
  • the progress of the diazotization reaction is detected at different sampling ports of the pipeline reactor, and the detection test paper set provided in PCT/CN2020/127451 or ZL202010819724.4 is used to confirm that the diazotization reaction is completed, Input the coupling component solution with the preset solution pH into the feeding port immediately above the sampling port to carry out the coupling reaction.
  • the diazotization reaction and coupling reaction that can carry out diazo component solution and coupling component solution concentration can be higher than 200g/L in pipeline reactor, can be according to the water-soluble coupling reaction of production
  • the viscosity or turbidity of the nitrogen dye diazonium salt solution adjusts the concentration of the reaction solution.
  • all the materials entering the pipeline reactor can enter the reactor at room temperature without condensation or heating.
  • Figure 1 is a pipeline reactor built with multiple micro-stirring blades distributed along the axial direction.
  • Fig. 2 is the infrared spectrogram of yellow monoazo dye.
  • Fig. 3 is the infrared spectrogram of reactive yellow M-5G azo dye.
  • Fig. 4 is the infrared spectrogram of reactive red M-3B azo dye.
  • Fig. 5 is the infrared spectrogram of reactive black KN-B azo dye.
  • Figure 6 is the staining curve.
  • the flow unit used is ml/min.
  • the pipeline reactor is a vertical pipeline reactor, including a pipe body 1, There is a rotating shaft 2 at the inner axis of the pipe body 1, and the top of the rotating shaft 2 is connected to the motor 3. There are a number of micro-stirring blades 4 on the rotating shaft 2.
  • the bottom side of the pipeline reactor is provided with a feed inlet a5, and the top of the pipeline reactor is
  • the top discharge port 6 is provided on the side, the bottom discharge port 7 is provided at the bottom of the pipeline reactor, and several groups of feed ports and sampling ports are provided between the top discharge port 6 and the feed port 5 on the side of the pipeline reactor.
  • Each group of feeding ports and sampling ports is equally spaced, and in each group of feeding ports and sampling ports, the feeding port b8 is located immediately above the sampling port 9 .
  • the material When in use, the material enters the pipeline reactor from the feed port a. Driven by the motor, the rotating shaft drives the micro-stirring blades to rotate. The material flows upwards in the reactor with the driving force of the feed, and at the same time the diazo Real-time detection during the reaction process, through the sampling port to detect the position of the pipeline reactor where the reaction solution is located when the diazotization reaction is completed; at room temperature, input the coupling component into the sampling port where the diazotization reaction is completed.
  • the feed inlet next to the upper part, the diazonium salt and the coupling component complete the coupling reaction and flow upward under the action of the feed force; the water-soluble azo dye solution produced in the pipeline reactor flows from the pipeline discharge from the top of the reactor to obtain the produced dye solution. After the reaction is over, the remaining materials in the reactor can be discharged from the bottom outlet.
  • reaction formula is as follows :
  • the prepared materials are accurately input into the pipeline reactor with multiple micro-stirring blades distributed along the axial direction according to the flow rate of hydrochloric acid solution 282.mL/min, sodium nitrite solution 110.55mL/min, and para-ester solution 500mL/min
  • start the diazotization reaction take a sample at the sampling port after 2 minutes, use the detection test paper set provided in PCT/CN2020/127451 or ZL202010819724.4 to judge whether the diazotization reaction is complete, after the diazotization reaction is completed, according to 529.19mL/min flow rate, accurately input the 1-(4-sulfonic acid benzene)-3-methyl-5-pyrazolone solution with an initial pH of 9 into the inlet immediately above the detection port where the diazotization reaction is completed
  • the feed port feeds into the coupling reaction, and the product solution flows into the storage tank from the top discharge port of the pipeline reactor for sampling and analysis.
  • Example 1 Except that the initial pH of the coupling component solution in Example 1 was 10, all other operations were carried out as in Example 1 to obtain a dye product content of 95.98% in the product solution.
  • Example 1 Except that the initial pH of the coupling component solution in Example 1 was 11, the rest of the operations were carried out as in Example 1 to obtain a dye product content of 96.07% in the product solution.
  • Example 1 Except that the initial pH of the coupling component solution in Example 1 was 12, all other operations were carried out as in Example 1 to obtain a dye product content of 97.04% in the product solution.
  • Example 1 Except that the initial pH of the coupling component solution in Example 1 was 13, all other operations were carried out as in Example 1 to obtain a dye product content of 93.17% in the product solution.
  • the base-5-pyrazolone solution is input from the feed inlet just above the detection port where the diazotization reaction is completed, and the coupling reaction is carried out, and the product solution flows into the storage tank from the top outlet of the pipeline reactor, and sampling analyze.
  • a HP 1260 liquid chromatograph to detect at a wavelength of 430nm, the content of the dye product in the product solution was 95.36%.
  • the prepared materials are accurately input into the At the bottom of the pipeline reactor, start the diazotization reaction, take a sample at the sampling port after 1 minute and 13 seconds, use the detection test paper set provided in PCT/CN2020/127451 or CN202010819724.4 to detect the completion of the diazotization reaction, follow 172.01mL/min flow rate, accurately input the 1-(2,5-dichloro-4-sulfonic acid benzene)-3-methyl-5-pyrazolone solution with an initial pH of 9 from the diazotization reaction.
  • the completed feed port above the detection port feeds in the coupling reaction, and the product solution flows into the storage tank from the top discharge port of the pipeline reactor for sampling and analysis.
  • a HP 1260 liquid chromatograph to detect at a wavelength of 406 nm, the content of the dye product in the product solution was 97.8%.
  • the prepared materials are accurately input to the bottom of the pipeline reactor according to the flow rate of 265.0mL/min of hydrochloric acid solution, 190.38mL/min of sodium nitrite solution, and 1000mL/min of a condensate solution of cyanuric chloride and m-phenylenediamine.
  • sulfonated toast acid 1:2.15 (molar ratio), 300g/L sodium nitrite solution, sulfonated toast acid concentration 123.92g/L solution, initial pH is 8, concentration 239.38g/L trimeric chloride Cyanide and p-ester and H-acid dicondensate solution for use.
  • Embodiment 11 The dye-dyed cotton fiber properties of continuous synthesis
  • the dyeing performance test was carried out with the dyes prepared in Examples 7, 9 and 10 respectively.
  • the dyeing curve is shown in Figure 6, and the color fixing temperature is 60°C.
  • the dye and the fiber are combined by covalent bonds, and the dye exhaustion rate, color fixation rate and reaction rate are calculated by the following formula:
  • E, F, and R are the exhaustion rate, fixation rate, and reaction rate (100%) respectively;
  • a 0 , A 1 , and A 2 are the absorbances of the dyeing stock solution, dyeing residue, and soaping residue, respectively;
  • n 0 , n 1 and n 2 are the corresponding dilution ratios of the dyeing stock solution, dyeing residue and soaping residue, respectively.
  • the color fastness to rubbing is measured by GB/T 3920-2008; the color fastness to washing is measured by GB/T 3921-2008.

Abstract

一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法。室温下重氮组分、盐酸和亚硝酸钠在管路式反应器底部同时进料,在管路中发生重氮化反应、及时离开重氮化反应位点,随后与通入的偶合组分相遇发生偶合反应;在微搅拌叶片搅拌下,每个流动层面物料近似均匀混合反应,反应物料受进料推动力作用向上流动,从连续化反应器顶部出料,生产出水溶性偶氮染料。在室温下连续重氮化和连续偶合反应生产水溶性偶氮染料,既解决了间歇反应釜生产偶氮染料需要加入大量冰以维持0℃左右的反应温度,并受传质传热限制、生产染料产品收率不稳定、杂质含量高的问题,也解决了在微通道反应器中高浓混浊状重氮盐溶液不易流动的问题。

Description

一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法 技术领域
本发明涉及一种水溶性偶氮染料连续化生产方法,具体涉及一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法,属于精细化工领域。
背景技术
重氮化反应和偶合反应是制备偶氮染料必须经过的两个反应步骤。水溶性的芳伯胺进行重氮化反应是在芳胺的水溶液中进行,用亚硝酸作为重氮化试剂,亚硝酸是在反应体系中用亚硝酸钠和盐酸原位生成的;重氮化反应理论上需要等摩尔当量的亚硝酸钠和二摩尔倍量的盐酸,为了维持反应在酸性,通常都采用过量盐酸。芳伯胺重氮盐在水溶液中与等摩尔倍量的含氨基或羟基的芳香族化合物发生偶合反应生成偶氮化合物,即为水溶性偶氮染料。
大多数芳伯胺的重氮化反应是快速放热反应,甚至有些芳伯胺在遇到重氮化试剂时数秒时间就完成了重氮化反应。在中性或弱碱性条件下偶合反应速度也很快,一些快速偶合反应也可以在数秒时间内完成。传统偶氮型染料的生产均在间歇反应釜中进行,为了提高生产效率,间歇反应釜为几十立方米甚至上百立方米,中间只有一个搅拌桨。在间歇反应釜中进行重氮化反应的过程是,首先在反应釜中加冰,然后加重氮组分芳伯胺和盐酸,搅拌均匀并且温度降到5℃以下快速加入300g/L的亚硝酸钠溶液,进行重氮化反应;由于传质传热速度慢于重氮化反应速度,一般需要按小时计的反应时间确认完成反应。当反应体系局部重氮化试剂不足时,生成的重氮盐容易快速转变成比较稳定的反式重氮酸,或者局部已经生成的重氮盐易于和体系中相邻、没有反应的芳伯胺发生偶合反应,这两个副反应的发生都会严重影响后续的偶合反应或其他反 应,进而生成副产物,影响产品质量。
重氮化反应结束后,向其中加入偶合组分,并分批次加入碳酸钠以中和反应放出的氯化氢,以促使反应正向进行。由于仅在一个搅拌锚搅拌下反应,同样受传质影响,偶合反应速度仍受控于传质过程;酸碱中和热以及反应放出的热量不能及时移除,局部未反应的重氮盐仍然有机会变成反式重氮酸或自偶合而影响正常偶合反应的进行,产生反应杂质。绝大多数活性染料生产企业直接将间歇反应釜中生产的高浓度染料水溶液进行喷雾干燥,获得染料干粉,既没有分出间歇反应釜中反应杂质的过程,所以,受反应条件波动的影响,在间歇反应釜中完成的重氮化反应和偶合反应产品质量不稳定,副反应导致产品中杂质含量高。
为了解决间歇反应釜生产偶氮染料中存在的上述问题,从上世纪50年代开始,国内外的科技工作者纷纷寻求解决方案,首先从单独的连续重氮化反应、连续偶合反应开始研究,到近年有文章和专利报导把重氮化反应和偶合反应连续起来生产偶氮染料或颜料。陈华祥采用釜内自循环和管式反应器装置制备分散染料,使重氮化和偶合过程具有更高的传质、传热效率;采用冷却夹套和管内热交换装置,改变了传统工艺偶合反应的降温方式,使母液废水减少20%[陈华祥.偶氮类分散染料自动化连续生产工艺研究[D].华东理工大学,2018.];该反应技术虽然实现了连续进料和连续出料,但是根据反应速度需求,反应物料需要在釜内自循环才能保证出料时完成了偶合反应。徐万福等和贾建洪等采用分别在两个反应器中完成重氮化反应和偶合反应的技术完成了偶氮染料的连续化生产[CN203269846U,2013-11-06、CN103146221A,2013-06-12、CN105363399A,2016-03-02、CN111303653A,2020-06-19、CN110845860A,2020-02-28.],不是在同一个反应器内连续完成的重氮化反应和偶合反应。邹海魁、陈建峰等应用超重力组合装置完成了水溶性染料的连续化制备研究[CN110508231A,2019-11-29;CN109651843-A;CN109651843-B],本质上重氮化反应和偶合反应不是同 时在同一台反应设备内连续实现的。Wang FJ等[CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION,2018,12743-49.]、杨林涛和鄢冬茂等采用微反应器完成偶氮染料的连续化生产[染料与染色,2018,55(02):43-45;CN111378297-A和CN111378297-A],不利于高浓混浊状反应物料连续化反应进行。
发明内容
本发明提供了一种在管路式反应器中连续化生产水溶性偶氮染料的方法。本发明采用室温下重氮组分、盐酸和亚硝酸钠按摩尔比例、在连续化管路式反应器底部同时进料,在管路中相遇发生重氮化反应、及时离开重氮化反应位点,随后与通入的预设溶液pH的偶合组分相遇发生偶合反应;在微搅拌叶片搅拌下,每一个流动层面物料近似均匀混合反应,反应物料受进料推动力作用向上流动,从连续化反应器顶部出料,生产出水溶性偶氮染料,主产品收率95%以上、染料产品强度波动不超过1%。本发明方法生产水溶性偶氮染料可根据重氮盐溶液粘度状态调整反应溶液浓度,最高质量浓度可到20%以上,并可按需要连续运转,直到满足生产产量需求。本发明既解决了间歇反应釜生产偶氮染料需要加入大量冰以维持0℃左右的反应温度,并受传质传热限制、生产染料产品收率不稳定、杂质含量高的问题,也解决了在微通道反应器中非均匀相高浓重氮盐溶液不易流动的问题。
本发明提供了一种在沿轴向分布多个微搅拌叶片的管路式反应器中,完成连续重氮化反应、连续偶合反应生产水溶性偶氮染料技术。在室温下,参加重氮化反应的物料溶液在内置沿轴向分布多个微搅拌叶片的管路式反应器底部进料口进料,当在管路式反应器的某一取样口检测重氮化反应完成生成重氮盐后,在紧邻该取样口的上部的进料口输入预设溶液pH的偶合组分溶液,偶合组分溶液与重氮盐溶液相遇,在微搅拌叶片的搅拌下均匀混合完成偶合反应,生成水溶性偶氮染料,从该管路式反应器的顶部出料。
进一步地,具体包括以下步骤:(a)在室温下,重氮组分、亚硝酸钠和盐酸溶液按1:1.05:2.10~2.30摩尔比例、以流量>50mL/min经计量输入到内置沿轴向分布多个微搅拌叶片的管路式反应器底部,进行重氮化反应,并在进料推动力作用下向上流动;(b)在反应过程中实时检测,通过取样口检测重氮化反应完成时反应溶液所处管路式反应器的位置;(c)在室温下,将偶合组分按照和重氮组分1:1摩尔比、准确计量的预设溶液pH的偶合组分溶液输入到重氮化反应完成时所处取样口紧邻的上部的进料口,重氮盐和偶合组分进行偶合反应并在进料推动力作用下向上流动;(d)在该管路式反应器中生产出的水溶性偶氮染料溶液从该管路式反应器顶部出料,得到生产的染料溶液。
进一步地,在管路式反应器中完成连续重氮化反应和连续偶合反应时,物料溶液的混合由沿轴向分布的多个微搅拌叶片完成。
进一步地,在管路式反应器中可以进行重氮组分溶液和偶合组分溶液浓度可高于20wt%的重氮化反应和偶合反应。
有益效果:
(1)在本发明中,在管路式反应器中完成的连续重氮化反应和连续偶合反应,物料是由反应器底部和中部进料,从反应器顶部出料。
(2)在本发明中,在管路式反应器中完成的连续重氮化反应和连续偶合反应,物料溶液的混合由沿轴向分布的多个微搅拌叶片完成。
(3)在本发明中,在管路式反应器的不同取样口检测重氮化反应进行状况,使用PCT/CN2020/127451或ZL202010819724.4中提供的检测试纸组确认重氮化反应完成后,在紧邻该取样口上方的进料口输入预设溶液pH的偶合组分溶液,进行偶合反应。
(4)在本发明中,在管路式反应器中可以进行重氮组分溶液和偶合组分溶液浓度可高于200g/L的重氮化反应和偶合反应,可根据生产的水溶性偶氮染料重氮盐溶液粘 稠度或浑浊度调节反应溶液的浓度。
(5)在本发明中,所有进行入管路式反应器内的物料均可在室温下进入反应器,无需冷凝或加热。
附图说明
图1为内置沿轴向分布多个微搅拌叶片的管路式反应器。
图中,1、管体;2、转轴;3、马达;4、微搅拌叶片;5、进料口a;6、顶排口;7、底排口;8、进料口b;9、取样口。
图2为黄色单偶氮染料的红外光谱图。
图3为活性黄M-5G偶氮染料的红外光谱图。
图4为活性红M-3B偶氮染料的红外光谱图。
图5为活性黑KN-B偶氮染料的红外光谱图。
图6为染色曲线。
具体实施方式
以下是结合具体实施方法对本发明做进一步的详细说明,但以下实施例仅是本发明内容中的一部分实例,不能作为限制本发明的依据。在本发明基础上进行的非本质的改变仍属于本发明的保护范围。
以下所有实施例中,如无特殊说明,所用流量单位均为毫升/分钟。
本发明实施例所述内置沿轴向分布多个微搅拌叶片的管路式反应器结构如图1所示,所述管路式反应器为竖立式管路式反应器,包括管体1,管体1内部中轴处设有转轴2,转轴2顶部连接马达3,转轴2上设有若干微搅拌叶片4,管路式反应器底部侧面设有进料口a5,管路式反应器顶部侧面设有顶排口6,管路式反应器底部设有底排口7,管路式反应器侧面的顶排口6和进料口5之间设有若干组进料口和取样口, 每组进料口和取样口之间等间距,每组进料口和取样口中,进料口b8位于紧邻取样口9上方的位置。
使用时,物料从进料口a进入管路式反应器,在马达的带动下,转轴带动微搅拌叶片转动,物料在反应器内随着进料推动力作用下向上流动,并同时进行重氮化反应;在反应过程中实时检测,通过取样口检测重氮化反应完成时反应溶液所处管路式反应器的位置;室温下,将偶合组分输入重氮化反应完成时所处取样口紧邻的上部的进料口,重氮盐和偶合组分完成偶合反应并在进料推动力作用下向上流动;在该管路式反应器中生产出的水溶性偶氮染料溶液从该管路式反应器顶部出料,得到生产的染料溶液。反应结束后,可从底排口排出反应器内剩余物料。
实施例1
以对位酯为重氮组分,以1-(4-磺酸基苯)-3-甲基-5-吡唑啉酮为偶合组分,制备单偶氮水溶性黄色染料,反应式如下:
重氮化反应
Figure PCTCN2021116162-appb-000001
偶合反应
Figure PCTCN2021116162-appb-000002
配制257.2g/L对位酯溶液、300g/L亚硝酸钠溶液、125.6g/L盐酸溶液,初始pH为9的219.7g/L 1-(4-磺酸基苯)-3-甲基-5-吡唑啉酮溶液待用。
将配好的物料按照盐酸溶液282.mL/min、亚硝酸钠溶液110.55mL/min、对位酯溶液500mL/min流量准确输入到内置沿轴向分布多个微搅拌叶片的管路式反应器的底部,开始重氮化反应,2分钟后在取样口取样,使用PCT/CN2020/127451或ZL202010819724.4中提供的检测试纸组判断重氮化反应是否完成,待重氮化反应完成后,按照529.19mL/min流量、准确将初始pH为9的1-(4-磺酸基苯)-3-甲基-5-吡唑啉酮溶液输入从紧邻重氮化反应完成的检测口上方的进料口进料进行偶合反应,产物溶液从管路式反应器的顶部出料口流入储料罐,取样分析。使用惠普1260液相色谱仪,在430nm波长下检测,获得产物溶液中染料产品含量95.61%;其红外光谱图见图2,其中3445.01峰是O-H伸缩振动峰,2931.80峰是C-H伸缩振动峰,1667.26峰是C=O伸缩振动峰,1557.46峰和1498.98峰是苯环C=C伸缩振动峰,1036.49峰是磺酸盐S=O对称伸缩振动峰。质谱分析结果为:545.1=[M-H] -,272.1=[M-2H] 2-,567.1=[M-2H+Na] - 283.1=[M-3H+Na] 2+
实施例2
除实施例1中偶合组分溶液初始pH为10外,其余操作均按实施例1进行,获得产物溶液中染料产品含量95.98%。
实施例3
除实施例1中偶合组分溶液初始pH为11外,其余操作均按实施例1进行,获得产物溶液中染料产品含量96.07%。
实施例4
除实施例1中偶合组分溶液初始pH为12外,其余操作均按实施例1进行,获得产物溶液中染料产品含量97.04%。
实施例5
除实施例1中偶合组分溶液初始pH为13外,其余操作均按实施例1进行,获得产物溶液中染料产品含量93.17%。
实施例6
使用实施例1中配制的所有原料溶液,按照盐酸溶液565mL/min、亚硝酸钠溶液221mL/min、对位酯溶液1000mL/min流量准确输入到管路式反应器的底部,开始重氮化反应,1分钟后在取样口取样进行重氮化反应检测,确认重氮化反应完成后,按照1058mL/min流量、准确将初始pH为12的1-(4-磺酸基苯)-3-甲基-5-吡唑啉酮溶液输入从紧邻重氮化反应完成的检测口上方的进料口进料进行偶合反应,产物溶液从管路式反应器的顶部出料口流入储料罐,取样分析。使用惠普1260液相色谱仪,在430nm波长下检测,获得产物溶液中染料产品含量95.36%。
实施例7
活性黄M-5G的连续化合成:以三聚氯氰分别和对位酯、间苯二胺磺酸缩合所得的二缩物为重氮组分,以1-(2,5-二氯-4-磺酸基苯)-3-甲基-5-吡唑啉酮为偶合组分,连续化制备单偶氮水溶性黄色染料,反应式如下:
Figure PCTCN2021116162-appb-000003
Figure PCTCN2021116162-appb-000004
配制80.62g/L三聚氯氰和对位酯以及间苯二胺磺酸二缩物溶液、30.0g/L亚硝酸钠溶液、33.62g/L盐酸溶液,初始pH为9的257.6g/L 1-(2,5-二氯-4-磺酸基苯)-3-甲基-5-吡唑啉酮溶液待用。
将配好的物料按照盐酸溶液按327.41.mL/min、亚硝酸钠溶液335.7mL/min、三聚氯氰和对位酯以及间苯二胺磺酸二缩物溶液1000mL/min流量准确输入到管路式反应器的底部,开始重氮化反应,1分钟13秒后在取样口取样,使用PCT/CN2020/127451或CN202010819724.4中提供的检测试纸组,检测重氮化反应完成后,按照172.01mL/min流量、准确将初始pH为9的1-(2,5-二氯-4-磺酸基苯)-3-甲基-5-吡唑啉酮溶液输入从紧邻重氮化反应完成的检测口上方的进料口进料进行偶合反应,产物溶液从管路式反应器的顶部出料口流入储料罐,取样分析。使用惠普1260液相色谱仪,在406nm波长下检测,获得产物溶液中染料产品含量97.8%。
其红外光谱图见图3,其中3410.74峰是O-H伸缩振动峰,2922.15峰是C-H伸缩振动峰,1671.82峰是C=O伸缩振动峰,1545.98峰是苯环C=C伸缩振动峰,1403.58峰是苯环C=C伸缩振动峰,1230.49峰和1140.87峰是磺酸盐S=O对称伸缩和弯曲振动峰。质谱分析结果为:303.5=[M-3H]/3;455.5=[M-2H]/2;466.5=[M+Na-2H]/2。
实施例8
活性黄M-5G的连续化合成:以三聚氯氰和间苯二胺磺酸一缩物为重氮组分,以1-(2,5-二氯-4-磺酸基苯)-3-甲基-5-吡唑啉酮为偶合组分,连续化制备单偶氮水溶性黄色染料,然后再与对位酯进行二缩反应,反应式如下:
Figure PCTCN2021116162-appb-000005
配制262.4g/L三聚氯氰和间苯二胺一缩物溶液、300g/L亚硝酸钠溶液、221.0g/L盐酸溶液,初始pH为10的257.6g/L 1-(2,5-二氯-4-磺酸基苯)-3-甲基-5-吡唑啉酮溶液待用。
将配好的物料按照盐酸溶液265.0mL/min、亚硝酸钠溶液190.38mL/min、三聚氯氰和间苯二胺一缩物溶液1000mL/min流量准确输入到管路式反应器的底部,开始重氮化反应,1分钟20秒后在取样口取样,使用PCT/CN2020/127451或CN202010819724.4中提供的检测试纸组,检测重氮化反应完成后,按照975mL/min流量、准确将初始pH为10的1-(2,5-二氯-4-磺酸基苯)-3-甲基-5-吡唑啉酮溶液输入从紧邻重氮化反应完成的检测口上方的进料口进料进行偶合反应,产物溶液从管路式反应器的顶部出料口流入储料罐,取样分析。使用惠普1260液相色谱仪,在510nm波长下检测,获得产物溶液中一缩染料产品含量97.0%。
将体积为2300mL、浓度为215.3g/L三聚氯氰和间苯二胺一缩物与将连续重氮化反应连续偶合反应制备的水溶性偶氮染料再与体积为666.7mL、浓度为312.5g/L的对位酯溶液在30℃、pH6-6.5进行二缩反应3小时,取样分析。使用惠普1260液相色谱 仪,在510nm波长下检测,获得产物溶液中一缩染料产品含量93.9%。
实施例9
活性红M-3BE的连续化合成:以磺化吐司酸为重氮组分,以三聚氯氰分别与对位酯和H-酸二缩物为偶合组分,连续化制备单偶氮水溶性红色染料,反应式如下:
Figure PCTCN2021116162-appb-000006
配制盐酸:磺化吐司酸=1:2.15(摩尔比例)、300g/L亚硝酸钠溶液、磺化吐司酸浓度123.92g/L溶液、初始pH为8、浓度239.38g/L三聚氯氰与对位酯和H-酸二缩物溶液待用。
将配好的物料按照亚硝酸钠溶液98.77mL/min、磺化吐司酸酸性溶液1000mL/min流量准确输入到管路式反应器的底部,开始重氮化反应,1分钟48秒后在取样口取样,使用PCT/CN2020/127451或CN202010819724.4中提供的检测试纸组,检测重氮化反应完成后,按照1214.8mL/min流量、准确将初始pH为8的三聚氯氰分别与对位酯和H-酸二缩物溶液输入从紧邻重氮化反应完成的检测口上方的进料口进料进行偶合反应,产物溶液从管路式反应器的顶部出料口流入储料罐,取样分析。使用惠普1260液相色 谱仪,在510nm波长下检测,获得产物溶液中染料产品含量93.4%,其红外光谱图见图4,其中3440.82峰是O-H伸缩振动峰,3100.15峰是C-H伸缩振动峰,1551.51峰是苯环C=C伸缩振动峰,1468.03峰是苯环C=C伸缩振动峰,1207.77峰和1142.10峰是磺酸盐S=O对称伸缩和弯曲振动峰。质谱分析结果为:255.3=[M-4H]/4;260.9=[M+Na-4H]/4;353.4=[M+K-3H]/3。
实施例10
活性黑KN-B的连续化合成:以对位酯为重氮组分,以H-酸为偶合组分,连续化制备H-酸双偶氮染料活性黑KN-B。
Figure PCTCN2021116162-appb-000007
配制394.5g/L对位酯溶液、300g/L亚硝酸钠溶液、221.0g/L盐酸溶液,145.6g/L氨基磺酸、初始pH为中性340.5g/L H-酸溶液待用。
将配好的物料按照盐酸溶液336.17mL/min、亚硝酸钠溶液237.33mL/min、对位酯溶液700mL/min流量准确输入到管路式反应器的底部,开始重氮化反应,1分钟后在取样口取样,使用PCT/CN2020/127451或CN202010819724.4中提供的检测试纸组,检测重氮化反应完成后,按照80mL/min流量将氨基磺酸准确输入到从紧邻重氮化反应完成的检测口上方的进料口进入反应器,破坏过量亚硝酸;1分钟38秒后按照475.7 mL/min流量、准确将初始pH为中性的H-酸溶液输入到氨基磺酸进料口上方的进料口进料进行偶合反应,产物溶液从管路式反应器的顶部出料口流入储料罐。继续搅拌产物溶液1小时后,使用碳酸氢钠在2小时内调节其pH至6.5,pH稳定后,取样分析。使用惠普1260液相色谱仪,在510nm波长下检测,获得产物溶液中染料产品含量96.8%,其红外光谱图见图5,其中3446.96峰是O-H伸缩振动峰,3061.48峰是萘环上C-H伸缩振动峰,2927.06是甲基的C-H伸缩振动峰,1575.45峰是苯环C=C伸缩振动峰,1495.04峰是苯环C=C伸缩振动峰,1225.58峰和11302.43峰是磺酸盐S=O对称伸缩和弯曲振动峰。质谱分析结果为:224.9=[M-4H]/4;300=[M-3H]/3。
实施例11 连续化合成的染料染色棉纤维性能
分别以实施例7、9、10中所制备的染料进行染色性能测试。
染色曲线如图6所示,固色温度60℃。
取适量染料,配制成染料溶液。取准确称量的2g棉纤维在20mL染液中浸染,得布样。染色结束后,布样水洗并收集残液,测定吸光度A 1。将水洗后布样置于0.1%的皂液中,95℃皂煮10min,取出布样再充分水洗,收集残液,测其吸光度A 2。另取原染液1mL稀释至100mL,测其吸光度A 0
染料与纤维通过共价键结合,其竭染率、固色率、反应率通过如下公式计算:
Figure PCTCN2021116162-appb-000008
Figure PCTCN2021116162-appb-000009
Figure PCTCN2021116162-appb-000010
其中E、F、R分别为竭染率、固色率、反应率(100%);A 0、A 1、A 2分别为染色原液、染色残液和皂洗残液的吸光度;n 0、n 1、n 2分别为染色原液、染色残液和皂洗残液相应稀释倍数。
耐摩擦色牢度采用GB/T 3920-2008测定;耐水洗色牢度采用GB/T 3921-2008测定。
按照上述染色条件,3支染料的染色及牢度测试结果见下表。
表1 连续化生产染料染色及牢度测试结果
Figure PCTCN2021116162-appb-000011

Claims (4)

  1. 一种在管路式反应器中连续重氮化反应连续偶合反应生产水溶性偶氮染料的方法,其特征在于,在室温下,参加重氮化反应的物料溶液在内置沿轴向分布多个微搅拌叶片的管路式反应器底部进料口进料,当在管路式反应器的某一取样口检测重氮化反应完成生成重氮盐后,在紧邻该取样口的上部的进料口输入预设溶液pH的偶合组分溶液,偶合组分溶液与重氮盐溶液相遇,在微搅拌叶片的搅拌下均匀混合完成偶合反应,生成水溶性偶氮染料,从该管路式反应器的顶部出料。
  2. 根据权利要求1所述的方法,其特征在于,具体包括以下步骤:
    (a)在室温下,重氮组分、亚硝酸钠和盐酸溶液按1:1.05:2.10~2.30摩尔比例、经计量输入到内置沿轴向分布多个微搅拌叶片的管路式反应器底部,进行重氮化反应,并在进料推动力作用下向上流动;
    (b)在反应过程中实时检测,通过取样口检测重氮化反应完成时反应溶液所处管路式反应器的位置;
    (c)在室温下,将偶合组分按照和重氮组分1:1摩尔比、准确计量的预设溶液pH的偶合组分溶液输入到重氮化反应完成时所处取样口紧邻的上部的进料口,重氮盐和偶合组分完成偶合反应并在进料推动力作用下向上流动;
    (d)在该管路式反应器中生产出的水溶性偶氮染料溶液从该管路式反应器顶部出料,得到生产的染料溶液。
  3. 根据权利要求1或2所述的方法,其特征在于,在管路式反应器中完成连续重氮化反应和连续偶合反应时,物料溶液的混合由沿轴向分布的多个微搅拌叶片完成。
  4. 根据权利要求1或2所述的方法,其特征在于,在管路式反应器中可以进行重氮组分溶液和偶合组分溶液浓度高于200g/L的重氮化反应和偶合反应。
PCT/CN2021/116162 2021-08-26 2021-09-02 一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法 WO2023024142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110989819.5A CN113634216B (zh) 2021-08-26 2021-08-26 一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法
CN202110989819.5 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023024142A1 true WO2023024142A1 (zh) 2023-03-02

Family

ID=78424028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116162 WO2023024142A1 (zh) 2021-08-26 2021-09-02 一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法

Country Status (2)

Country Link
CN (1) CN113634216B (zh)
WO (1) WO2023024142A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410122A (zh) * 2021-12-23 2022-04-29 上海染料研究所有限公司 一种微通道连续流合成柠檬黄的方法及其产物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252718A (en) * 1978-02-14 1981-02-24 Imperial Chemical Industries Limited Continuous azo coupling process
CN105363399A (zh) * 2014-08-29 2016-03-02 浙江迪邦化工有限公司 一种偶氮分散染料连续化生产装置
CN107488361A (zh) * 2017-07-05 2017-12-19 清华大学 一种微反应器内连续化制备偶氮染料的方法
CN109225114A (zh) * 2018-11-01 2019-01-18 葛沁怡 一种带高效混合器的自循环列管反应装置及采用其的反应方法
CN110449103A (zh) * 2019-07-29 2019-11-15 浙江迪邦化工有限公司 一种带预混的一体化制备重氮盐的方法和装置
CN112209793A (zh) * 2020-09-30 2021-01-12 广东石油化工学院 一种傅克烷基化反应产物及其连续合成方法
CN112624946A (zh) * 2020-12-30 2021-04-09 山东尚舜化工有限公司 一种连续法合成促进剂tmtd的方法
WO2021095059A1 (en) * 2019-11-15 2021-05-20 Council Of Scientific And Industrial Research A continuous process for the synthesis of azo dyes involving in-situ generation of diazonium salts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA04008051A (es) * 2002-02-19 2004-11-26 Exxonmobil Chem Patents Inc Proceso de polimerizacion continua en lechada usando un reactor de espira.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252718A (en) * 1978-02-14 1981-02-24 Imperial Chemical Industries Limited Continuous azo coupling process
CN105363399A (zh) * 2014-08-29 2016-03-02 浙江迪邦化工有限公司 一种偶氮分散染料连续化生产装置
CN107488361A (zh) * 2017-07-05 2017-12-19 清华大学 一种微反应器内连续化制备偶氮染料的方法
CN109225114A (zh) * 2018-11-01 2019-01-18 葛沁怡 一种带高效混合器的自循环列管反应装置及采用其的反应方法
CN110449103A (zh) * 2019-07-29 2019-11-15 浙江迪邦化工有限公司 一种带预混的一体化制备重氮盐的方法和装置
WO2021095059A1 (en) * 2019-11-15 2021-05-20 Council Of Scientific And Industrial Research A continuous process for the synthesis of azo dyes involving in-situ generation of diazonium salts
CN112209793A (zh) * 2020-09-30 2021-01-12 广东石油化工学院 一种傅克烷基化反应产物及其连续合成方法
CN112624946A (zh) * 2020-12-30 2021-04-09 山东尚舜化工有限公司 一种连续法合成促进剂tmtd的方法

Also Published As

Publication number Publication date
CN113634216B (zh) 2022-05-31
CN113634216A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
CN107488361B (zh) 一种微反应器内连续化制备偶氮染料的方法
EP0134193B1 (de) Reaktivfarbstoffe, deren Herstellung und Verwendung
WO2023024142A1 (zh) 一种在管路式反应器中连续重氮化连续偶合生产水溶性偶氮染料的方法
US4841028A (en) Reactive dyes comprising a reactive radical bonded to the chromophor by a urea bridge member
JPS5829860A (ja) 不堅牢着色剤およびその製造方法
EP0179019B1 (de) Reaktivfarbstoffe, deren Herstellung und Verwendung
CN108192385A (zh) 一种含有酞菁蓝15:2的颜料组合物及其制备方法
JPH0456832B2 (zh)
US4035350A (en) Process for the preparation of water-soluble azo dyestuffs by reacting an aromatic amine and a coupling component with alkali metal nitrite or alkyl nitrite in the absence of acid
US20060058515A1 (en) Disazo reactive dyestuffs containing the quaternary groups and their use
KR910006715B1 (ko) 아조 화합물의 제조방법
JPS6279272A (ja) 反応染料、その製造方法、およびその使用
WO2021114460A1 (zh) 基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法
EP0141776B1 (de) Reaktivfarbstoffe, deren Herstellung und Verwendung
CN110643195A (zh) 一种直接耐酸大红制备工艺
JPS6162566A (ja) 反応染料とその製造法
CN105348847A (zh) 一种染料的连续偶合工艺
US4785081A (en) Process for the production of reactive dyes by adiabatic reaction of cyanuric chloride with an amino group-containing dye at elevated temperature
CN100374451C (zh) 连续制备胺化物的方法和装置
JPH04506531A (ja) 水溶性アゾ染料、その製法及び用途
JPS621658B2 (zh)
JP2562166B2 (ja) 反応染料,その製造方法およびその使用
JPH02170864A (ja) 反応染料、その製造方法および使用
JPS63196662A (ja) 反応染料とその製造方法及び使用法
CN105367444A (zh) 一种染料的连续重氮化工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18546986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE