WO2023022019A1 - エーテル化合物の製造方法 - Google Patents

エーテル化合物の製造方法 Download PDF

Info

Publication number
WO2023022019A1
WO2023022019A1 PCT/JP2022/030073 JP2022030073W WO2023022019A1 WO 2023022019 A1 WO2023022019 A1 WO 2023022019A1 JP 2022030073 W JP2022030073 W JP 2022030073W WO 2023022019 A1 WO2023022019 A1 WO 2023022019A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
mol
formula
acid
Prior art date
Application number
PCT/JP2022/030073
Other languages
English (en)
French (fr)
Inventor
達也 古川
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023022019A1 publication Critical patent/WO2023022019A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups

Definitions

  • the present invention relates to a method for producing an ether compound, which is an intermediate in the production of liquid crystal compounds.
  • Ether compounds having a phenolic hydroxyl group are used as antireflection films for organic EL display devices, etc., as intermediates for the production of reverse-dispersive liquid crystal compounds, etc.
  • a phenolic hydroxyl group e.g., (6-hydroxyhexyl)oxy-4-phenol: HHOP, etc.
  • HHOP phenolic hydroxyl group
  • Patent Documents 1 and 2 disclose, as a method for producing HHOP, a production method in which hydroquinone (HYQ) and an alcohol compound are etherified under basic conditions in a nitrogen atmosphere.
  • an object of the present invention is to provide a method for producing an ether compound that can obtain a target compound while suppressing the production of by-products (di-etherified products).
  • the inventors of the present invention found that the production method of the present invention can solve the above problems, and completed the present invention. That is, the present invention includes the following preferred aspects.
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom]
  • R 5 represents an optionally substituted alkylene group having 1 to 9 carbon atoms or a group represented by -R 6 - ( OR 7 )n-; , R 7 each represent an optionally substituted alkylene group having 2 to 5 carbon atoms, and R 6 and R 7 may be the same or different.
  • n represents a positive integer of 1-5.
  • Step (1) of performing an etherification reaction in the presence of an aqueous solution containing an alcohol compound (B) represented by and a basic compound (I) and a hydrophobic organic solvent, and the reaction mixture obtained by the etherification reaction After recovering the hydrophobic organic solvent layer from the liquid and further mixing the hydrophobic organic solvent layer with an aqueous solution of the basic compound (II), formula (C-1):
  • R 1 to R 5 are as defined in Formulas (A) and (B) above, and M represents a monovalent metal element] comprising a step (2) of recovering a basic aqueous solution of the compound (C-1) represented by Formula (C-1) or Formula (C-2):
  • R 1 to R 5 are as defined in Formulas (A) and (B) above]
  • a method for producing an ether compound (C) represented by [2] The method according to [1], further comprising a step (3) of adding an acid to the basic aqueous solution of compound (C-1) after step (2).
  • the basic compound (I) contains at least one selected from the group consisting of hydroxides, carbonates and hydrogencarbonates.
  • the basic compound (II) contains at least one selected from the group consisting of hydroxides, carbonates and hydrogen carbonates.
  • the production method of the present invention has the formula (A):
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom]
  • R 5 represents an optionally substituted alkylene group having 1 to 9 carbon atoms or a group represented by -R 6 - ( OR 7 )n-; , R 7 each represent an optionally substituted alkylene group having 2 to 5 carbon atoms, and R 6 and R 7 may be the same or different.
  • n represents a positive integer of 1-5.
  • Step (1) of performing an etherification reaction in the presence of an aqueous solution containing an alcohol compound (B) represented by and a basic compound (I) and a hydrophobic organic solvent, and the reaction mixture obtained by the etherification reaction After recovering the hydrophobic organic solvent layer from the liquid and further mixing the hydrophobic organic solvent layer with an aqueous solution of the basic compound (II), formula (C-1):
  • R 1 to R 5 are as defined in Formulas (A) and (B) above, and M represents a monovalent metal element] comprising a step (2) of recovering a basic aqueous solution of the compound (C-1) represented by Formula (C-1) or Formula (C-2):
  • step (1) in the production method of the present invention, the hydroquinone compound (A) represented by the formula (A), the alcohol compound (B) represented by the formula (B), and the basic compound (I) are The etherification reaction is carried out in the presence of an aqueous solution and a hydrophobic organic solvent.
  • each of R 1 to R 4 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom.
  • Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group and t-butyl group.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy group, ethoxy group, propoxy group and butoxy group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • hydroquinone compound (A) those in which R 1 to R 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms are preferred.
  • specific examples of such hydroquinone compounds (A) include compounds represented by the following formulas (A-1) to (A-7).
  • the compound represented by formula (A-1) in which all of R 1 to R 4 are hydrogen atoms, ie, hydroquinone, is more preferred.
  • R 5 is an optionally substituted alkylene group having 1 to 9 carbon atoms or a group represented by -R 6 -(OR 7 ) n - and R 6 and R 7 each represent an optionally substituted alkylene group having 2 to 5 carbon atoms, and R 6 and R 7 may be the same or different.
  • n represents a positive integer of 1-5.
  • alkylene group having 1 to 9 carbon atoms which may have a substituent examples include methylene group, ethylene group, trimethylene group, 1-methylethylene group, 2-methylethylene group, tetramethylene group, 1-methyl trimethylene group, 2-methyltrimethylene group, 3-methyltrimethylene group, 1-ethylethylene group, 2-ethylethylene group, propylene group, hexamethylene group, octamethylene group and the like.
  • Examples of the alkylene group having 2 to 5 carbon atoms which may be substituted by R 6 and R 7 examples include those having 2 to 5 carbon atoms among the above alkylene groups.
  • the halogen atom examples include those exemplified for the hydroquinone compound (A).
  • the fluoroalkyl group having 1 to 4 carbon atoms includes trifluoromethyl group, trifluoroethyl group, pentafluoroethyl group, trifluoropropyl group, heptafluoropropyl group, nonafluorobutyl group and the like.
  • Examples of the alkyl group having 1 to 4 carbon atoms include those exemplified for the hydroquinone compound (A).
  • the aryl group which may have a substituent, for example, a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2- In a pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, etc., a hydrogen atom is an alkyl group, A group substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a halogen atom, or the like can be mentioned.
  • the cycloalkyl group includes, for example, a cyclohexyl group and a cyclohexylmethyl group, and
  • the alcohol compound (B) those in which R 5 is an optionally substituted alkylene group having 1 to 9 carbon atoms and X is a halogen atom are preferred, and R 5 is a hexamethylene group. and X is a chlorine atom, that is, the alcohol compound (B) is particularly preferably chlorohexanol.
  • the amount of the hydroquinone compound (A) is preferably 1.0 mol or more, more preferably 1.1 mol or more, still more preferably 1.2 mol or more, relative to 1 mol of the alcohol compound (B). It is 2.0 mol or less, more preferably 1.7 mol or less, still more preferably 1.5 mol or less. When the amount of hydroquinone compound (A) is at least the lower limit and at most the upper limit, by-products are less likely to be produced.
  • the basic compound (I) preferably contains at least one selected from the group consisting of hydroxides, carbonates and hydrogencarbonates.
  • hydroxide salts include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, calcium hydroxide and the like.
  • Carbonates include, for example, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, magnesium carbonate and the like.
  • hydrogencarbonates include lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, cesium hydrogencarbonate and the like.
  • hydroxide salts are preferred because by-products are less likely to be produced and compound (C-1) can be obtained in a high yield, and sodium hydroxide or potassium hydroxide is preferred. more preferred.
  • the amount of basic compound (I) in step (1) is preferably 1.0 mol or more, more preferably 1.1 mol or more, still more preferably 1.2 mol, per 1 mol of alcohol compound (B). or more, preferably 2.0 mol or less, more preferably 1.5 mol or less.
  • amount of basic compound (I) is at least the above lower limit and below the above upper limit, by-products are less likely to form, and compound (C-1) can be easily obtained in high yield. Moreover, the neutralization process after reaction is unnecessary.
  • step (1) the reaction (etherification reaction) of hydroquinone compound (A) and alcohol compound (B) is carried out in the presence of an aqueous solution containing basic compound (I) and a hydrophobic organic solvent.
  • an aqueous solution containing the basic compound (I) and a hydrophobic organic solvent By performing the etherification reaction in the presence of an aqueous solution containing the basic compound (I) and a hydrophobic organic solvent, it is easy to suppress the formation of the dietherification product of the hydroquinone compound (A).
  • the acid generated as the etherification reaction proceeds can be neutralized, the reaction proceeds easily.
  • Hydrophobic organic solvents are water immiscible organic solvents such as benzene, toluene, xylene (o-xylene, m-xylene, p-xylene or mixtures thereof), mesitylene, cymene, cumene, durene, chlorobenzene, Aromatic organic solvents such as diphenyl ether, anisole and thioanisole; Hydrocarbon organic solvents such as heptane, octane, nonane, decane, undecane, dodecane, n-hexane, cyclohexane and methylcyclohexane; Ether solvents such as dimethyl ether and diethyl ether Solvents; halogenated hydrocarbon solvents such as carbon tetrachloride and trichlorethylene; higher alcohol solvents such as t-butyl alcohol and cyclohexanol; and ketone solvents such as methyl ethyl ket
  • aromatic organic solvents hydrocarbon organic solvents, and ether solvents are preferred from the viewpoints of reactivity, economy, and handleability.
  • One of the hydrophobic organic solvents may be used alone, or two or more thereof may be used in combination. There is no particular limitation on the mixing ratio when two or more kinds are mixed and used.
  • the amount of the hydrophobic organic solvent is preferably 0.5 parts by mass or more, more preferably 0.8 parts by mass or more, preferably 10 parts by mass or less, and more preferably 1 part by mass of the alcohol compound (B). is 5 parts by mass or less.
  • amount of the hydrophobic organic solvent is not less than the lower limit and not more than the upper limit, by-products are less likely to be produced. Moreover, it tends to be excellent in productivity.
  • the method of mixing the hydroquinone compound (A), the alcohol compound (B), the aqueous solution containing the basic compound (I), and the hydrophobic organic solvent is not particularly limited.
  • (B) a method in which an aqueous solution containing the basic compound (I) and a hydrophobic organic solvent are mixed at once by stirring or the like in random order; A method of mixing a predetermined amount of the containing aqueous solution and a hydrophobic organic solvent, and then further mixing the remaining portion into the reaction system, hydroquinone compound (A) and alcohol compound (B), basic compound (I)
  • a method of continuously dropping a hydrophobic organic solvent into a system mixed with an aqueous solution containing a basic compound (I ) is continuously dropped and mixed.
  • an aqueous solution of basic compound (I) is added to a system in which hydroquinone compound (A) and alcohol compound (B) are mixed in a hydrophobic organic solvent. is preferably dropped continuously.
  • water may be previously added to the system in addition to the hydrophobic organic solvent in order to dissolve the hydroquinone compound (A) and the alcohol compound (B).
  • the amount of water is preferably 2 to 10 parts by mass with respect to 1 part by mass of the alcohol compound.
  • the etherification reaction in step (1) is preferably carried out in the presence of a reducing agent.
  • the reducing agent preferably contains at least one selected from the group consisting of sulfites, hydrogensulfites and thiosulfates.
  • sulfites include sodium sulfite, potassium sulfite, calcium sulfite, magnesium sulfite, and ammonium sulfite.
  • hydrogen sulfite include sodium hydrogen sulfite, potassium hydrogen sulfite, ammonium hydrogen sulfite and the like.
  • Thiosulfates include, for example, sodium thiosulfate, potassium thiosulfate, calcium thiosulfate, magnesium thiosulfate, and ammonium thiosulfate.
  • sulfites are preferable, and sodium sulfite or potassium sulfite is more preferable, since they are more effective in suppressing coloration.
  • the amount of the reducing agent in step (1) is preferably 0.01 mol or more, more preferably 0.1 mol or more, preferably 0.5 mol or less, and more preferably 0.1 mol or more, relative to 1 mol of the alcohol compound (B). Preferably, it is 0.3 mol or less.
  • the amount of the reducing agent is at least the lower limit and at most the upper limit, oxidation of the hydroquinone compound (A), which may cause coloration, is easily suppressed.
  • step (1) compounds other than the above compounds may be included in the reaction system in order to improve reactivity.
  • examples of such compounds include, but are not limited to, N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), dimethylsulfoxide, n-butyl alcohol, ethylene glycol, etc., as long as they do not affect the etherification reaction. are mentioned.
  • the amount of the compound is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and preferably 0.1 parts by mass or less, more preferably with respect to 1 part by mass of the alcohol compound (B). is 0.05 parts by mass or less. When the amount of these compounds is at least the lower limit and at most the upper limit, the reaction tends to proceed smoothly.
  • step (1) is preferably carried out in an inert gas atmosphere.
  • inert gas include nitrogen gas and argon gas.
  • the reaction temperature in step (1) is not particularly limited, but is preferably 15° C. or higher, more preferably 40° C. or higher, still more preferably 70° C. or higher, preferably 200° C. or lower, more preferably 150° C. or lower, and even more preferably. is below 100°C.
  • the reaction temperature is equal to or higher than the lower limit and equal to or lower than the upper limit, by-products are less likely to be produced, and the reaction tends to proceed smoothly.
  • the reaction time is also not particularly limited and may be appropriately adjusted depending on the reaction temperature, but it is usually 1 hour or more and 72 hours or less, preferably 12 hours or more and 60 hours or less.
  • the progress of the reaction can be confirmed by known analytical means (for example, thin layer chromatography, high performance liquid chromatography, gas chromatography, infrared spectroscopic analysis, etc.).
  • the etherification reaction in step (1) can be performed, for example, by the following method.
  • Hydroquinone compound (A), alcohol compound (B), hydrophobic organic solvent and optionally water and a reducing agent are added to a predetermined reaction vessel (for example, a reaction vessel equipped with a stirrer, a cooling device, etc.) under an inert atmosphere.
  • a predetermined amount is added.
  • the order of addition of these is not particularly limited.
  • an aqueous solution containing basic compound (I) is added, and the mixture is stirred at the predetermined temperature for a predetermined time.
  • step (2) in the production method of the present invention, a hydrophobic organic solvent layer is recovered from the reaction mixture obtained by the etherification reaction in step (1), and the hydrophobic organic solvent layer and a basic compound are further recovered. After mixing with the aqueous solution of (II), a basic aqueous solution of compound (C-1) represented by formula (C-1) is recovered.
  • R 1 to R 5 are the same as those exemplified for the hydroquinone compound (A) and the alcohol compound (B).
  • M represents a monovalent metal element.
  • the monovalent metal element include sodium, lithium, potassium, and cesium. Among these, sodium is preferable from the viewpoint of the price of the basic compound.
  • step (2) the method for recovering the hydrophobic organic solvent layer from the reaction mixture is not particularly limited, and methods known to those skilled in the art such as solvent extraction, solid phase extraction, and organic phase solidification can be used.
  • the solvent extraction method is preferable because the operation is simpler.
  • a solvent extraction method for example, after the reaction mixture in step (1) is heated to 30 to 70° C. and left to stand for 1 to 60 minutes, the organic layer is recovered with, for example, a separatory funnel, a countercurrent extraction device, or the like. can do.
  • the operation of collecting the organic layer may be performed multiple times as necessary. For example, when the organic layer is recovered by a solvent extraction method, an aqueous solution of the basic compound (II) or water may optionally be added to the organic layer recovered after the first liquid separation operation, and the above liquid separation operation may be repeated. can further recover the organic layer. When such operations are performed multiple times, the compound (C-1) can be easily obtained in a high yield.
  • the basic compound (II) used for preparing the aqueous solution of the basic compound (II) to be mixed with the recovered hydrophobic organic solvent layer is selected from the group consisting of hydroxide salts, carbonates and hydrogen carbonates. At least one type is preferably included.
  • hydroxide salts include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, calcium hydroxide and the like.
  • Carbonates include, for example, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, magnesium carbonate and the like.
  • Examples of hydrogencarbonates include lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, cesium hydrogencarbonate and the like.
  • hydroxide salts are preferable, and sodium hydroxide or potassium hydroxide is more preferable because they react with the unreacted hydroquinone compound (A) and are easily removed.
  • the basic compound (II) may be the same as or different from the basic compound (I) used in step (I).
  • the amount of basic compound (II) in step (2) is preferably 0.5 mol or more, more preferably 0.7 mol or more, and preferably 2.0 mol or more, relative to 1 mol of alcohol compound (B). mol or less, more preferably 1.5 mol or less.
  • the amount of the basic compound (II) is at least the lower limit and at most the upper limit, it easily reacts with the unreacted hydroquinone compound (A). Moreover, it tends to form a salt with the ether compound (C).
  • the by-product dietherate can be easily transferred to the organic layer and removed from the aqueous layer.
  • the recovered hydrophobic organic solvent layer may contain a compound other than the basic compound (II) in order to improve the solubility of the by-product (di-etherified product).
  • a compound other than the basic compound (II) examples include toluene, xylene, isopropyl alcohol and the like, although they are not limited as long as they do not affect the yields of compounds (C-1) and (C-2).
  • the amount of the compound used is preferably 1 part by mass or more, more preferably 2 parts by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, relative to 1 part by mass of the alcohol compound (B). is. When the amount of these compounds is at least the lower limit and at most the upper limit, the removal of by-products (di-etherification products) can proceed smoothly.
  • the method of mixing the aqueous solution of the basic compound (II) with the hydrophobic organic solvent layer is not particularly limited.
  • a method of stirring, a method of adding a portion of the aqueous solution of the basic compound (II) to the hydrophobic organic solvent layer and stirring, and then adding a portion of the remaining portion to the hydrophobic organic solvent layer, adding a basic compound to the hydrophobic organic solvent layer A method of continuously dropping and mixing an aqueous solution of (II) can be used.
  • a method in which an aqueous solution of basic compound (II) is continuously added dropwise to the hydrophobic organic solvent layer is preferred.
  • step (2) is preferably carried out in an inert gas atmosphere.
  • inert gas include nitrogen gas and argon gas.
  • the reaction temperature in step (2) is not particularly limited, but is preferably 15° C. or higher, more preferably 40° C. or higher, still more preferably 60° C. or higher, preferably 200° C. or lower, more preferably 150° C. or lower, and still more preferably. is below 100°C.
  • the reaction temperature is equal to or higher than the lower limit and equal to or lower than the upper limit, extraction of compound (C-1) from the hydrophobic organic solvent tends to proceed smoothly.
  • the reaction time is also not particularly limited and may be appropriately adjusted depending on the reaction temperature, but is usually 10 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • An aqueous solution containing the compound (C-1) represented by can be obtained.
  • the organic layer and the aqueous layer are separated by the appropriate liquid separation operation described above, and the compound (C-1) can be obtained from the aqueous layer.
  • the method of obtaining the compound (C-1) from the water layer includes, for example, a method of cooling the water layer to precipitate the compound (C-1), and a method of evaporating the aqueous solution of the water layer by heating or the like to evaporate the compound (C-1).
  • a method of cooling the water layer is preferable in order to prevent thermal decomposition.
  • the cooling temperature when cooling the water layer may be appropriately changed according to the amount of the compound (C-1) dissolved in the water layer and the solubility of the compound (C-1), but usually 5 to 25 °C.
  • the atmosphere for obtaining the compound (C-1) from the aqueous layer is preferably an inert gas atmosphere from the viewpoint of suppressing oxidation of side reaction products that may cause coloration.
  • inert gas include nitrogen gas and argon gas.
  • the precipitated compound (C-1) can be separated by a known method such as filtration, washed with water or the like, and then dried.
  • the precipitated compound (C-1) may be further washed with water.
  • the washing time can be adjusted as appropriate, but from the viewpoint of sufficiently removing the remaining basic compound (II), it is preferably 5 minutes or longer, more preferably 10 minutes or longer, and is preferably 10 minutes or longer from the viewpoint of productivity. 60 minutes or less, more preferably 35 minutes or less.
  • the amount of water used for washing is not particularly limited as long as the remaining basic compound (II) can be sufficiently removed, but usually 3 parts by mass or more, preferably 5 parts by mass of the produced compound (C-1). Above, more preferably 10 parts by mass or more.
  • the water temperature for washing with water is preferably 5 to 25° C. from the viewpoints of the efficiency of removing the remaining basic compound (II) and the solubility of the compound (C-1).
  • drying may be performed using a known dryer such as a hot air dryer or a reduced pressure dryer. Drying is preferably carried out at a temperature of 30-80°C. When the drying temperature is within the above range, the compound (C-1) is less likely to be decomposed and the drying proceeds appropriately, which is preferable.
  • the drying time may be appropriately changed depending on the drying temperature, but is usually 1 to 48 hours.
  • an aqueous solution containing compound (C-1) with a low content of by-products and unreacted hydroquinone compound can be obtained by going through the above steps (1) and (2). Therefore, a high-quality ether compound (C) can be obtained by the production method of the present invention.
  • step (2) when the basic compound (II) is added (preferably in an excess amount), not only does the basic compound (II) react with the unreacted hydroquinone compound (A), but the compound Since it is also used for neutralization of (C-2), the ether compound (C-2) is present in the water layer as a water-soluble compound (C-1). Presence of the compound (C-1) in the aqueous layer facilitates separation from the dietherified product dissolved in the organic layer.
  • the above compound (C-1) can be converted to compound (C-2) by an appropriate method.
  • the production method of the present invention preferably includes step (3) of adding an acid to the basic aqueous solution of compound (C-1) after steps (1) and (2).
  • step (3) compound (C-1) can be neutralized to compound (C-2).
  • the yield of compound (C-2) can be improved.
  • by-products di-etherification products, oligomers of hydroquinone compounds that cause coloration, etc.
  • unreacted hydroquinone compounds are removed only in the organic layer. was washed with a weakly basic aqueous solution.
  • the unreacted hydroquinone compound and the by-product oligomer of the hydroquinone compound can be removed more efficiently.
  • the acid in step (3) is preferably water-soluble, and both inorganic acids and organic acids can be used.
  • inorganic acids include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and boric acid.
  • organic acids include formic acid, acetic acid, citric acid, oxalic acid, lactic acid, malic acid, succinic acid, tartaric acid and methanesulfonic acid.
  • the amount of acid in step (3) is preferably 1.0 mol or less, more preferably 0.7 mol or less, relative to 1 mol of alcohol compound (B).
  • the lower limit of the amount of acid is usually 0.05 mol or more per 1 mol of alcohol compound (B).
  • the step of adding acid in step (3) can be carried out by any method.
  • a method of adding a predetermined amount of acid to the basic aqueous solution at once and then stirring, a method of adding a part of the acid to the basic aqueous solution and stirring, and then adding the remaining part to the basic aqueous solution, A method of continuously dropping and mixing the acid can be used.
  • a method of continuously dropping an acid into a basic aqueous solution is preferred.
  • the atmosphere for cleaning is not particularly limited, and may be appropriately selected according to the method used for cleaning. In the present invention, it is usually carried out in an air atmosphere.
  • washing time is preferably 5 minutes or more from the viewpoint of sufficiently removing residual acid, and preferably 60 minutes or less, more preferably 40 minutes or less, and even more preferably 35 minutes or less from the viewpoint of productivity. minutes or less.
  • the amount of water used for washing is not particularly limited as long as the residual acid can be sufficiently removed, but it is usually 3 parts by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass of the compound (C-2) produced. That's it.
  • the water temperature for washing with water is preferably 10 to 30° C. from the viewpoints of removing residual acid and preventing excessive dissolution of compound (C-2).
  • drying may be performed using a known dryer such as a hot air dryer or a reduced pressure dryer. Drying is preferably carried out at a temperature of 30-80°C. When the drying temperature is within the above range, deterioration of the compound (C-2) is unlikely to occur, and drying proceeds appropriately, which is preferable.
  • the drying time may be appropriately changed depending on the drying temperature, but is usually 1 to 48 hours.
  • the compound (C-1) or compound (C-2) thus obtained is preferably used as a raw material for a polymerizable compound, which is an intermediate for producing a reverse-dispersion liquid crystal compound.
  • This production method can obtain the compound (C-1) and / or the compound (C-2) while suppressing the formation of a by-product (di-etherified product). It is suitable as a method for producing the ether compound (C), which is a solid.
  • the yield of (6-hydroxyhexyl)oxy-4-phenol and the mass fraction of its dietherized product were calculated from the area value of the peak area by high performance liquid chromatography (HPLC) analysis.
  • HPLC high performance liquid chromatography
  • High-purity products of (6-hydroxyhexyl)oxy-4-phenol and its dietherized product are used as standard substances, respectively, and the purity of (6-hydroxyhexyl)oxy-4-phenol and its dietherized product is calculated from the calibration curve.
  • the number of moles was calculated, and the yield and the mass fraction were calculated from the ratio with the number of moles of the alcohol compound used in the preparation.
  • the purity of the (6-hydroxyhexyl)oxy-4-phenol salt in Example 1 was determined from the ratio of the molecular weights of the (6-hydroxyhexyl)oxy-4-phenol salt and the (6-hydroxyhexyl)oxy-4-phenol. was corrected to calculate the yield.
  • Step (2) After the temperature was maintained, the mixture was cooled to 65°C, the aqueous layer was removed by liquid separation, and the hydrophobic organic solvent layer (hereinafter also referred to as "organic layer") was recovered. 187 g of a 20% by mass sodium sulfate aqueous solution [4.0 parts by mass with respect to chlorohexanol] was added to the organic layer, and the mixture was kept warm for 30 minutes.
  • the aqueous layer was extracted by a liquid separation operation and then cooled to 25°C. Precipitated crystals were filtered and washed with 467 g of water [10.0 parts by mass with respect to chlorohexanol]. The obtained crystals were dried at 40° C. for 24 hours to obtain a salt of (6-hydroxyhexyl)oxy-4-phenol. Yield was 49.2%.
  • Example 2 After step (1) and step (2) were performed under the same conditions as in Example 1, the aqueous layer was cooled to 25°C after liquid separation. Step 3: 21.5 g of 78% by mass sulfuric acid [0.5 molar equivalent to chlorohexanol] was added dropwise to the aqueous layer. The crystals were filtered and washed with 467 g of water [10.0 parts by mass with respect to chlorohexanol]. The obtained crystals were dried at 40° C. for 24 hours to obtain (6-hydroxyhexyl)oxy-4-phenol. Yield was 65.3%.
  • Example 3 It was carried out under the same conditions as in Example 2, except that 6.5 g of sodium sulfite [0.15 molar equivalent to chlorohexanol] was added at the same time as hydroquinone in step (1). Yield was 54.7%.
  • Comparative example 1 After carrying out the reaction in step (1) for 48 hours under the same conditions as in Example 1, the aqueous layer was removed by liquid separation and cooled to 25°C. The crystals were filtered and washed with 467 g of water [10.0 parts by mass with respect to chlorohexanol]. The obtained crystals were dried at 40° C. for 24 hours to obtain (6-hydroxyhexyl)oxy-4-phenol.
  • the final product contained a large amount of dietherification.
  • the transmittance at 450 nm is low, it is considered that a large amount of by-products (oligomers of hydroquinone compounds, etc.) that cause coloration are contained.
  • the final product contained less dietherification products and had a high transmittance at 450 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

副生成物(ジエーテル化体)の生成を抑制しつつ、目的の化合物を得ることができるエーテル化合物の製造方法を提供すること。

Description

エーテル化合物の製造方法
 本発明は、液晶化合物の製造中間体であるエーテル化合物の製造方法に関する。
 フェノール性水酸基を有するエーテル化合物(例えば(6-ヒドロキシヘキシル)オキシ-4-フェノール:HHOP等)は、有機EL表示装置の反射防止フィルム等に用いられる、逆分散性液晶化合物の製造中間体等として有用である。例えば特許文献1および2では、HHOPを製造する方法として、窒素雰囲気下でハイドロキノン(HYQ)とアルコール化合物とを、塩基性条件でエーテル化反応させる製造方法が開示されている。
Figure JPOXMLDOC01-appb-C000005
特開2015-140302号公報 国際公開第2017/150622号
 しかしながら、特許文献1および2に記載の製法では、最終生成物中に過剰に反応した副生成物(ジエーテル化体)が多く存在することがあるため、有機EL表示装置用フィルムの製造中間体の製造方法としては必ずしも好適なものではなかった。
 したがって、本発明の目的は、副生成物(ジエーテル化体)の生成を抑制しつつ、目的の化合物を得ることができるエーテル化合物の製造方法を提供することである。
 本発明者は、前記課題を解決するために鋭意検討した結果、本発明の製造方法が前記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には以下の好適な態様が含まれる。
[1]式(A):
Figure JPOXMLDOC01-appb-C000006
[式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表す]
で表されるヒドロキノン化合物(A)、式(B):
Figure JPOXMLDOC01-appb-C000007
[式(B)中、Rは置換基を有していてもよい炭素数1~9のアルキレン基、または-R-(O-R)n-で示される基を表し、R、Rはそれぞれ置換基を有してもよい炭素数2~5のアルキレン基を表し、R、Rはそれぞれ同一でもよいし、異なっていてもよい。nは1~5の正の整数を表す。Xはハロゲン原子、-O-S(=O)-Rで示される基、または-O-C(=O)-Rで示される基を表し、Rは炭素数1~4のフルオロアルキル基、炭素数1~4のアルキル基、または置換基を有していてもよいアリール基を表す]
で表されるアルコール化合物(B)、および塩基性化合物(I)を含む水溶液と疎水性有機溶媒の存在下でエーテル化反応を行う工程(1)、および
 前記エーテル化反応により得られた反応混合液から疎水性有機溶媒層を回収し、さらに、前記疎水性有機溶媒層と塩基性化合物(II)の水溶液とを混合した後、式(C-1):
Figure JPOXMLDOC01-appb-C000008
[式(C-1)中、R~Rは、上記式(A)および(B)で定義した通りであり、Mは一価の金属元素を表す]
で表される化合物(C-1)の塩基性水溶液を回収する工程(2)を含む、
式(C-1)または式(C-2):
Figure JPOXMLDOC01-appb-C000009
[式(C-2)中、R~Rは、上記式(A)および(B)で定義した通りである]
で表されるエーテル化合物(C)の製造方法。
[2]前記工程(2)の後にさらに、化合物(C-1)の塩基性水溶液に酸を加える工程(3)を含む、[1]に記載の方法。
[3]前記塩基性化合物(I)は、水酸化物塩、炭酸塩および炭酸水素塩からなる群から選択される少なくとも1種を含む、[1]または[2]に記載の方法。
[4]前記塩基性化合物(II)は、水酸化物塩、炭酸塩および炭酸水素塩からなる群から選択される少なくとも1種を含む、[1]~[3]のいずれかに記載の方法。
[5]前記工程(1)におけるエーテル化反応は、還元剤の存在下で行う、[1]~[4]のいずれかに記載の方法。
[6]前記還元剤は、亜硫酸塩、亜硫酸水素塩およびチオ硫酸塩からなる群から選択される少なくとも1種を含む、[5]に記載の方法。
[7]前記工程(3)における酸は、塩酸、硫酸、リン酸および酢酸からなる群から選択される少なくとも1種を含む、[2]~[6]のいずれかに記載の方法。
[8]前記工程(2)における塩基性化合物(II)の量は、アルコール化合物(B)1モルに対して0.5モル以上2.0モル以下である、[1]~[7]のいずれかに記載の方法。
[9]前記工程(3)における酸の量は、アルコール化合物(B)1モルに対して1.0モル以下である、[2]~[8]のいずれかに記載の方法。
[10]前記工程(1)における還元剤の量は、アルコール化合物(B)1モルに対して0.01モル以上0.5モル以下である、[5]~[9]のいずれかに記載の方法。
 本発明によれば、副生成物(ジエーテル化体)の生成を抑制しつつ、目的の化合物を得ることができるエーテル化合物の製造方法を提供することができる。
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。
 本発明の製造方法は、式(A):
Figure JPOXMLDOC01-appb-C000010
[式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表す]
で表されるヒドロキノン化合物(A)、式(B):
Figure JPOXMLDOC01-appb-C000011
[式(B)中、Rは置換基を有していてもよい炭素数1~9のアルキレン基、または-R-(O-R)n-で示される基を表し、R、Rはそれぞれ置換基を有してもよい炭素数2~5のアルキレン基を表し、R、Rはそれぞれ同一でもよいし、異なっていてもよい。nは1~5の正の整数を表す。Xはハロゲン原子、-O-S(=O)-Rで示される基、または-O-C(=O)-Rで示される基を表し、Rは炭素数1~4のフルオロアルキル基、炭素数1~4のアルキル基、または置換基を有していてもよいアリール基を表す]
で表されるアルコール化合物(B)、および塩基性化合物(I)を含む水溶液と疎水性有機溶媒の存在下でエーテル化反応を行う工程(1)、および
 前記エーテル化反応により得られた反応混合液から疎水性有機溶媒層を回収し、さらに、前記疎水性有機溶媒層と塩基性化合物(II)の水溶液とを混合した後、式(C-1):
Figure JPOXMLDOC01-appb-C000012
[式(C-1)中、R~Rは、上記式(A)および(B)で定義した通りであり、Mは一価の金属元素を表す]
で表される化合物(C-1)の塩基性水溶液を回収する工程(2)を含む、
式(C-1)または式(C-2):
Figure JPOXMLDOC01-appb-C000013
[式(C-2)中、R~Rは、上記式(A)および(B)で定義した通りである]
で表されるエーテル化合物(C)の製造方法である。以下、式(C-2)で表されるエーテル化合物を「化合物(C-2)」と称する。
 本明細書において「エーテル化合物(C)」には、化合物(C-1)および化合物(C-2)が含まれる。したがって本発明の製造方法によれば、化合物(C-1)および/または化合物(C-2)を得ることができる。
[工程(1)]
 本発明の製造方法における工程(1)では、前記式(A)で表されるヒドロキノン化合物(A)、前記式(B)で表されるアルコール化合物(B)、および塩基性化合物(I)を含む水溶液と疎水性有機溶媒の存在下でエーテル化反応を行う。
 本発明に用いる式(A):
Figure JPOXMLDOC01-appb-C000014
で表されるヒドロキノン化合物において、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表す。
 前記炭素数1~4のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。
 前記炭素数1~4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 これらの中でも、ヒドロキノン化合物(A)として、R~Rが、それぞれ独立に、水素原子または炭素数1~4のアルキル基であるものが好ましい。そのようなヒドロキノン化合物(A)の具体例として、以下の式(A-1)~式(A-7)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記の化合物の中でも、R~Rがすべて水素原子である、式(A-1)で表される化合物、すなわちヒドロキノンがより好ましい。
 本発明に用いる式(B):
Figure JPOXMLDOC01-appb-C000016
で表されるアルコール化合物(B)において、Rは置換基を有していてもよい炭素数1~9のアルキレン基、または-R-(O-R-で示される基を表し、R、Rはそれぞれ置換基を有してもよい炭素数2~5のアルキレン基を表し、R、Rはそれぞれ同一でもよいし、異なっていてもよい。nは1~5の正の整数を表す。Xはハロゲン原子、-O-S(=O)-Rで示される基、または-O-C(=O)-Rで示される基を表し、Rは炭素数1~4のフルオロアルキル基、炭素数1~4のアルキル基、または置換基を有していてもよいアリール基を表す。
 前記置換基を有していてもよい炭素数1~9のアルキレン基としては、例えばメチレン基、エチレン基、トリメチレン基、1-メチルエチレン基、2-メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、1-エチルエチレン基、2-エチルエチレン基、プロピレン基、ヘキサメチレン基、オクタメチレン基等が挙げられる。
 また、R、Rが取り得る置換基を有していてもよい炭素数2~5のアルキレン基としては、上述のアルキレン基のうち、炭素数が2~5のものが挙げられる。
 ハロゲン原子としては、前記ヒドロキノン化合物(A)で例示したものと同様のものが挙げられる。
 炭素数1~4のフルオロアルキル基としては、トリフルオロメチル基、トリフルオロエチル基、ペンタフルオロエチル基、トリフルオロプロピル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等が挙げられる。
 炭素数1~4のアルキル基としては、前記ヒドロキノン化合物(A)で例示したものと同様のものが挙げられる。
 置換基を有していてもよいアリール基としては、例えばフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基等において、水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、ハロゲン原子等で置換された基が挙げられる。シクロアルキル基としては、例えばシクロヘキシル基、シクロヘキシルメチル基等が挙げられ、シクロアルコキシ基としては、例えばシクロヘキシルオキシル基等が挙げられる。
 これらの中でも、アルコール化合物(B)として、Rが置換基を有していてもよい炭素数1~9のアルキレン基であり、Xがハロゲン原子のものが好ましく、Rがヘキサメチレン基であり、Xが塩素原子のもの、すなわちアルコール化合物(B)はクロロヘキサノールであることが特に好ましい。
 ヒドロキノン化合物(A)の量は、アルコール化合物(B)1モルに対して、好ましくは1.0モル以上、より好ましくは1.1モル以上、さらに好ましくは1.2モル以上であり、好ましくは2.0モル以下、より好ましくは1.7モル以下、さらに好ましくは1.5モル以下である。ヒドロキノン化合物(A)の量が前記下限以上および前記上限以下であると、副生成物が生成しにくい。
 塩基性化合物(I)は、水酸化物塩、炭酸塩および炭酸水素塩からなる群から選択される少なくとも1種を含むことが好ましい。
 水酸化物塩としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化カルシウム等が挙げられる。
 炭酸塩としては、例えば炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸マグネシウム等が挙げられる。
 炭酸水素塩としては、例えば炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等が挙げられる。
 上記の塩基性化合物(I)の中でも、副生成物が生成しにくく、また高収率で化合物(C-1)を得やすいことから水酸化物塩が好ましく、水酸化ナトリウムまたは水酸化カリウムがより好ましい。
 工程(1)における塩基性化合物(I)の量は、アルコール化合物(B)1モルに対して、好ましくは1.0モル以上、より好ましくは1.1モル以上、さらに好ましくは1.2モル以上であり、好ましくは2.0モル以下、より好ましくは1.5モル以下である。
塩基性化合物(I)の量が前記下限以上および前記上限以下であると、副生成物が生成しにくく、また高収率で化合物(C-1)を得やすい。また、反応後の中和工程が不要である。
 工程(1)において、ヒドロキノン化合物(A)およびアルコール化合物(B)の反応(エーテル化反応)は、塩基性化合物(I)を含有する水溶液および疎水性有機溶媒の存在下で行われる。塩基性化合物(I)を含有する水溶液および疎水性有機溶媒の存在下でエーテル化反応を行うことにより、ヒドロキノン化合物(A)のジエーテル化体の生成を抑制しやすい。また、エーテル化反応の進行に伴って生成する酸を中和できるため、反応が進行しやすい。
 疎水性有機溶媒は、水とは混和しない有機溶媒であり、例えばベンゼン、トルエン、キシレン(o-キシレン、m-キシレン、p-キシレンまたはこれらの混合物)、メシチレン、シメン、クメン、デュレン、クロロベンゼン、ジフェニルエーテル、アニソール、チオアニソール等の芳香族系有機溶媒;ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の炭化水素系有機溶媒;ジメチルエーテル、ジエチルエーテル等のエーテル系溶媒;四塩化炭素、トリクロロエチレン等のハロゲン化炭化水素系溶媒;t-ブチルアルコール、シクロヘキサノール等の高級アルコール系溶媒;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒等が挙げられる。これらの中でも、反応性、経済性、取扱性の観点から、芳香族系有機溶媒、炭化水素系有機溶媒、エーテル系溶媒が好ましい。疎水性有機溶媒は1種を単独で用いてもよく、2種以上を混合して使用してもよい。2種以上を混合して使用する場合の混合割合は特に限定されない。
 疎水性有機溶媒の量は、アルコール化合物(B)1質量部に対して、好ましくは0.5質量部以上、より好ましくは0.8質量部以上であり、好ましくは10質量部以下、より好ましくは5質量部以下である。疎水性有機溶媒の量が前記下限以上および前記上限以下であると、副生成物が生成しにくい。また、生産性に優れる傾向にある。
 ヒドロキノン化合物(A)、アルコール化合物(B)、塩基性化合物(I)を含有する水溶液および疎水性有機溶媒を混合する方法は、特に限定されず、例えば所定量のヒドロキノン化合物(A)、アルコール化合物(B)、塩基性化合物(I)を含有する水溶液および疎水性有機溶媒を順不同で一度に撹拌等で混合する方法、ヒドロキノン化合物(A)、アルコール化合物(B)、塩基性化合物(I)を含有する水溶液および疎水性有機溶媒の所定量の一部を混合後、残りの一部をさらに反応系に混合する方法、ヒドロキノン化合物(A)およびアルコール化合物(B)を、塩基性化合物(I)を含有する水溶液と混合した系に疎水性有機溶媒を連続的に滴下して混合する方法、ヒドロキノン化合物(A)およびアルコール化合物(B)を疎水性有機溶媒と混合した系に塩基性化合物(I)を含有する水溶液を連続的に滴下して混合する方法等が挙げられる。また、塩基性化合物(I)を含有する水溶液は、予め調製したものを使用しても、水と塩基性化合物(I)とを別々に反応系に加え、反応系中で水溶液を調製してもよい。本発明においては、化合物(C-1)の収率を向上させるために、ヒドロキノン化合物(A)およびアルコール化合物(B)を疎水性有機溶媒に混合した系に、塩基性化合物(I)の水溶液を連続的に滴下させる方法が好ましい。この場合、ヒドロキノン化合物(A)およびアルコール化合物(B)を溶解させるために、疎水性有機溶媒に加えて水をあらかじめ系中に加えてもよい。この場合の水の量は、アルコール化合物1質量部に対して2~10質量部が好ましい。
 着色の原因となり得るヒドロキノン化合物(A)の酸化を抑制する観点から、工程(1)におけるエーテル化反応は還元剤の存在下で行うことが好ましい。
 前記還元剤は、亜硫酸塩、亜硫酸水素塩およびチオ硫酸塩からなる群から選択される少なくとも1種を含むことが好ましい。
 亜硫酸塩としては、例えば亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸カルシウム、亜硫酸マグネシウム、亜硫酸アンモニウム等が挙げられる。
 亜硫酸水素塩としては、例えば亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素アンモニウム等が挙げられる。
 チオ硫酸塩としては、例えばチオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸カルシウム、チオ硫酸マグネシウム、チオ硫酸アンモニウム等が挙げられる。
 上記の還元剤の中でも、着色を抑制する効果がより高いことから亜硫酸塩が好ましく、亜硫酸ナトリウムまたは亜硫酸カリウムがより好ましい。
 工程(1)における還元剤の量は、アルコール化合物(B)1モルに対して、好ましくは0.01モル以上、より好ましくは0.1モル以上であり、好ましくは0.5モル以下、より好ましくは0.3モル以下である。還元剤の量が前記下限以上および前記上限以下であると、着色の原因となり得るヒドロキノン化合物(A)の酸化を抑制しやすい。
 工程(1)において、反応性向上のために上記の化合物以外の化合物が反応系に含まれていてもよい。そのような化合物としては、エーテル化反応に影響を及ぼさない限り限定されないが、例えばN-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド、n-ブチルアルコール、エチレングリコール等が挙げられる。前記化合物の量は、アルコール化合物(B)1質量部に対して、好ましくは0.001質量部以上、より好ましくは0.005質量部以上であり、好ましくは0.1質量部以下、より好ましくは0.05質量部以下である。これらの化合物の量が前記下限以上および前記上限以下であると、反応が円滑に進みやすい。
 ヒドロキノン化合物(A)の酸化を抑制し、またエーテル化反応をより進行しやすくするため、工程(1)は不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えば窒素ガス、アルゴンガス等が挙げられる。
 工程(1)における反応温度は特に限定されないが、好ましくは15℃以上、より好ましくは40℃以上、さらに好ましくは70℃以上であり、好ましくは200℃以下、より好ましくは150℃以下、さらに好ましくは100℃以下である。反応温度が前記下限以上および前記上限以下であると、副生成物が生成しにくく、反応が円滑に進みやすい。
 反応時間も特に限定されず、反応温度によって適宜調整してよいが、通常1時間以上72時間以下、好ましくは12時間以上60時間以下である。
 反応の進行状況は公知の分析手段(例えば、薄層クロマトグラフィー、高速液体クロマトグラフィー、ガスクロマトグラフィー、赤外分光分析等)で確認することができる。
 工程(1)におけるエーテル化反応は、具体的には例えば以下の方法により行うことができる。
 所定の反応容器(例えば、撹拌機、冷却装置等を備えた反応容器)に、不活性雰囲気下、ハイドロキノン化合物(A)、アルコール化合物(B)、疎水性有機溶媒および場合により水および還元剤を所定量添加する。これらの添加順序は特に限定されない。その後、塩基性化合物(I)を含む水溶液を添加し、上記の所定温度で所定時間撹拌する。
[工程(2)]
 本発明の製造方法における工程(2)では、前記工程(1)におけるエーテル化反応により得られた反応混合液から疎水性有機溶媒層を回収し、さらに、前記疎水性有機溶媒層と塩基性化合物(II)の水溶液とを混合した後、式(C-1)で表される化合物(C-1)の塩基性水溶液を回収する。
 式(C-1):
Figure JPOXMLDOC01-appb-C000017
で表される化合物において、R~Rは、前記ヒドロキノン化合物(A)およびアルコール化合物(B)で例示したものと同様のものが挙げられる。
 Mは、一価の金属元素を表す。当該一価の金属元素としては、例えばナトリウム、リチウム、カリウム、セシウム等が挙げられる。これらの中でも、塩基性化合物の価格の観点からナトリウムが好ましい。
 工程(2)において、反応混合液から疎水性有機溶媒層を回収する方法は特に限定されず、例えば溶媒抽出法、固相抽出法、有機相固化法等の当業者に既知の方法を用いることができるが、操作がより簡便であることから溶媒抽出法が好ましい。溶媒抽出法で実施する場合、例えば工程(1)における反応混合液を30~70℃とした後、1~60分静置した後に、例えば分液漏斗、向流抽出装置等で有機層を回収することができる。
 有機層を回収する操作は、必要に応じて複数回実施してもよい。例えば溶媒抽出法にて有機層を回収する場合、1回目の分液操作後に回収した有機層に、場合により塩基性化合物(II)の水溶液または水を添加して上記の分液操作を繰り返すことにより、さらに有機層を回収することができる。このような操作を複数回実施すると、化合物(C-1)が高収率で得やすくなる。
 回収した疎水性有機溶媒層に混合する、塩基性化合物(II)の水溶液の調製に用いる塩基性化合物(II)としては、水酸化物塩、炭酸塩および炭酸水素塩からなる群から選択される少なくとも1種を含むことが好ましい。
 水酸化物塩としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化カルシウム等が挙げられる。
 炭酸塩としては、例えば炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸マグネシウム等が挙げられる。
 炭酸水素塩としては、例えば炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等が挙げられる。
 上記の塩基性化合物(II)の中でも、未反応のヒドロキノン化合物(A)と反応して除去しやすいことから、水酸化物塩が好ましく、水酸化ナトリウムまたは水酸化カリウムがより好ましい。また、塩基性化合物(II)は、工程(I)で使用した塩基性化合物(I)と同一であっても異なっていてもよい。
 工程(2)における塩基性化合物(II)の量は、アルコール化合物(B)1モルに対して、好ましくは0.5モル以上、より好ましくは0.7モル以上であり、好ましくは2.0モル以下、より好ましくは1.5モル以下である。塩基性化合物(II)の量が前記下限以上および前記上限以下であると、未反応のヒドロキノン化合物(A)と反応しやすい。またエーテル化合物(C)と塩を形成しやすい。
 工程(2)において、塩基性化合物(II)を上記範囲内に添加することにより、副生成物であるジエーテル化体を容易に有機層に移動させ、水層から除去することができる。
 回収した疎水性有機溶媒層には、副生成物(ジエーテル化体)の溶解度向上のために塩基性化合物(II)以外の化合物が含まれていてもよい。そのような化合物としては、化合物(C-1)および(C-2)の収率に影響を及ばさない限り限定されないが、例えばトルエン、キシレン、イソプロピルアルコール等が挙げられる。前記化合物の使用量は、アルコール化合物(B)1質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、好ましくは20質量部以下、より好ましくは10質量部以下である。
これらの化合物の量が前記下限以上および前記上限以下であると、副生成物(ジエーテル化体)の除去が円滑に進みやすい。
 塩基性化合物(II)の水溶液を疎水性有機溶媒層と混合する方法は、特に限定されず、例えば所定の量の塩基性化合物(II)の水溶液を一度に疎水性有機溶媒層に加えた後に撹拌する方法、塩基性化合物(II)の水溶液の一部を疎水性有機溶媒層に加えて撹拌後、残りの一部を疎水性有機溶媒層に加える方法、疎水性有機溶媒層に塩基性化合物(II)の水溶液を連続的に滴下して混合する方法等が挙げられる。本発明においては、化合物(C-1)の収率を向上させるために、疎水性有機溶媒層に塩基性化合物(II)の水溶液を連続的に滴下させる方法が好ましい
 着色の原因となり得る副反応物の酸化を抑制する観点から、工程(2)は不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えば窒素ガス、アルゴンガス等が挙げられる。
 工程(2)における反応温度は特に限定されないが、好ましくは15℃以上、より好ましくは40℃以上、さらに好ましくは60℃以上であり、好ましくは200℃以下、より好ましくは150℃以下、さらに好ましくは100℃以下である。反応温度が前記下限以上および前記上限以下であると、疎水性有機溶媒からの化合物(C-1)の抽出が円滑に進みやすい。
 反応時間も特に限定されず、反応温度によって適宜調整してよいが、通常10分以上12時間以下、好ましくは30分以上6時間以下である。
 上記工程(2)において、塩基性化合物(II)の水溶液と混合した後、
式(C-1):
Figure JPOXMLDOC01-appb-C000018
で表される化合物(C-1)を含む水溶液を得ることができる。工程(2)を実施した後に、有機層と水層とを上述した適当な分液操作によって分離し、水層から化合物(C-1)を得ることができる。
 水層から化合物(C-1)を得る方法としては、例えば水層を冷却させて化合物(C-1)を析出させる方法、水層の水溶液を加熱等により蒸発させて化合物(C-1)を析出させる方法等が挙げられるが、熱による分解を防ぐため水層を冷却させる方法が好ましい。
 水層を冷却する場合の冷却温度は、水層中に溶解している化合物(C-1)の量および化合物(C-1)の溶解度に応じて適宜変更してよいが、通常5~25℃である。
 水層から化合物(C-1)を得る雰囲気は、着色の原因となり得る副反応物の酸化を抑制する観点から、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えば窒素ガス、アルゴンガス等が挙げられる。
 析出させた化合物(C-1)は、例えばろ過等の既知の方法で分離し、水等で洗浄後、乾燥させることができる。
 析出させた化合物(C-1)は、さらに水で洗浄してよい。洗浄時間は適宜調整することができるが、残留している塩基性化合物(II)を十分に除去する観点から好ましくは5分以上、より好ましくは10分以上であり、生産性の観点から好ましくは60分以下、より好ましくは35分以下である。
 洗浄に使用する水の量は、残留している塩基性化合物(II)が十分に除去できる限り特に限定されないが、通常生成した化合物(C-1)の3質量部以上、好ましくは5質量部以上、さらに好ましくは10質量部以上である。水洗する際の水温としては、残留している塩基性化合物(II)の除去効率および化合物(C-1)の溶解性の観点から、好ましくは5~25℃である。
 水洗後、熱風乾燥機、減圧乾燥機などの公知の乾燥機を用いて乾燥処理を実施してもよい。乾燥は30~80℃の温度で行うのが好ましい。乾燥温度が前記範囲内であると、化合物(C-1)の分解が起こりにくく、また乾燥が適度に進行するため好ましい。乾燥時間は乾燥温度により適宜変更してよいが、通常1~48時間である。
 本発明の製造方法は、上記工程(1)および工程(2)を経ることによって、副生成物および未反応のヒドロキノン化合物含量が少ない、化合物(C-1)を含む水溶液を得ることができる。よって、本願発明の製造方法により、高品質なエーテル化合物(C)を得ることができる。
 さらに、工程(2)において、塩基性化合物(II)を添加(好ましくは過剰量で添加)した場合、塩基性化合物(II)が未反応のヒドロキノン化合物(A)と反応するだけではなく、化合物(C-2)の中和にも使用されるため、エーテル化合物(C-2)は水溶性の化合物(C-1)として水層に存在することになる。化合物(C-1)が水層に存在することによって、有機層に溶解しているジエーテル化体との分離がより容易になる。
 上記化合物(C-1)は、適切な方法によって化合物(C-2)にすることができる。
[工程(3)]
 本発明の製造方法では、上記工程(1)および(2)の後に、化合物(C-1)の塩基性水溶液に酸を加える工程(3)を含むことが好ましい。工程(3)を経ることによって、化合物(C-1)を化合物(C-2)に中和することができる。また、化合物(C-2)の収率を向上させることができる。
 従来、フェノール性水酸基を有するエーテル化合物の製造方法においては、副生成物(ジエーテル化体、着色の原因となるヒドロキノン化合物のオリゴマー等)の除去は行われず、未反応のヒドロキノン化合物の除去は有機層を弱塩基性の水溶液で洗浄することで行われていた。
 本発明において、工程(3)を行うことにより、未反応のヒドロキノン化合物や、副生成物であるヒドロキノン化合物のオリゴマーをより効率よく除去することができる。
 工程(3)における酸としては、水溶性のものが好ましく、無機酸および有機酸のいずれも使用することができる。無機酸としては、例えば塩酸、硫酸、リン酸、硝酸およびホウ酸等を例示することができる。有機酸としては、ギ酸、酢酸、クエン酸、シュウ酸、乳酸、リンゴ酸、コハク酸、酒石酸およびメタンスルホン酸等を例示することができる。これらの酸の中でも化合物(C-2)の収率がより向上しやすいことから、塩酸、硫酸、リン酸および酢酸からなる群から選択される少なくとも1種を含むことが好ましい。
 工程(3)における酸の量は、アルコール化合物(B)1モルに対して、好ましくは1.0モル以下、より好ましくは0.7モル以下である。酸の量の下限は、通常アルコール化合物(B)1モルに対して0.05モル以上である。酸の量が前記上限以下であると、化合物(C-2)の収率が向上しやすく、その後の洗浄による酸の除去が容易となりやすい。
 工程(3)において酸を加える工程は任意の方法で実施することができる。例えば所定の量の酸を一度に塩基性水溶液に加えた後に撹拌する方法、酸の一部を塩基性水溶液に加えて撹拌後、残りの一部を塩基性水溶液に加える方法、塩基性水溶液に酸を連続的に滴下して混合する方法等が挙げられる。本発明においては、化合物(C-2)の収率、ろ過性を向上させるために、塩基性水溶液に酸を連続的に滴下させる方法が好ましい。
 酸を混合後、水溶液中の結晶をろ過等の既知の方法で分離し、水等で洗浄後、乾燥することによって化合物(C-2)を得ることができる。
 洗浄を行う雰囲気は特に限定されず、洗浄に使用する方法に応じて適宜選択してよい。
本発明においては、通常、大気雰囲気中で実施する。
 洗浄時間は適宜調整することができるが、残留酸を十分に除去する観点から好ましくは5分以上であり、生産性の観点から好ましくは60分以下、より好ましくは40分以下、さらに好ましくは35分以下である。
 洗浄に使用する水の量は、残留酸が十分に除去できる限り特に限定されないが、通常生成した化合物(C-2)の3質量部以上、好ましくは5質量部以上、さらに好ましくは10質量部以上である。水洗する際の水温としては、残留酸の除去効率および化合物(C-2)の過度な溶解を防ぐ観点から、好ましくは10~30℃である。
 水洗後、熱風乾燥機、減圧乾燥機などの公知の乾燥機を用いて乾燥処理を実施してもよい。乾燥は30~80℃の温度で行うのが好ましい。乾燥温度が前記範囲内であると化合物(C-2)の変質が起こりにくく、また乾燥が適度に進行するため好ましい。乾燥時間は乾燥温度により適宜変更してよいが、通常1~48時間である。
 このようにして得られた化合物(C-1)または化合物(C-2)は、逆分散性液晶化合物の製造中間体である重合性化合物の原料として好ましくは使用される。本製造方法は、副生成物(ジエーテル化体)の生成を抑制しつつ、化合物(C-1)および/または化合物(C-2)を得ることができるため、液晶化合物の製造に用いられる中間体であるエーテル化合物(C)の製造方法として好適である。
 以下、実施例により本発明をより具体的に説明する。尚、例中の「%」および「部」は、特記ない限り、それぞれ質量%および質量部を意味する。
[収率、ジエーテル化体の質量分率の測定]
 実施例および比較例において、(6-ヒドロキシヘキシル)オキシ-4-フェノールの収率、そのジエーテル化体の質量分率は高速液体クロマトグラフィー(HPLC)分析による、ピーク面積の面積値より算出した。(6-ヒドロキシヘキシル)オキシ-4-フェノールおよびそのジエーテル化体の高純度品をそれぞれ標準物質として使用し、その検量線から(6-ヒドロキシヘキシル)オキシ-4-フェノールおよびそのジエーテル化体の純度、モル数を算出し、仕込みで使用したアルコール化合物のモル数との比率から収率、質量分率を算出した。
 実施例1における(6-ヒドロキシヘキシル)オキシ-4-フェノールの塩は、(6-ヒドロキシヘキシル)オキシ-4-フェノールの塩と(6-ヒドロキシヘキシル)オキシ-4-フェノールの分子量の比率から純度を補正し、収率を算出した。
〔HPLCの測定条件〕
装置:SHIMAZU LC(島津製作所製)
カラム:YMC-Pack C4
カラム温度:40℃
溶離液A:10mMギ酸アンモニウム/水
溶離液B:10mMギ酸アンモニウム/(水/アセトニトリル=1/9)
グラジエント条件:B液;5%→35分→55%→5分→100%(10分)
流量:1.0mL/分
サンプル注入量:5μm
検出波長:220nm
[透過率の測定]
 分光光度計(島津製作所株式会社製 UV-3150)に、得られた(6-ヒドロキシヘキシル)オキシ-4-フェノールのTHF溶液(100mg/10g)をセットし、450nmの時の透過率を測定した。
実施例1
工程(1):
 ヒドロキノン49.0g〔クロロヘキサノールに対して1.3モル当量〕とクロロヘキサノール46.7gを撹拌機、ジムロート冷却管、および温度計を設置した1L-セパラブルフラスコ内に加え、トルエン46.7g〔疎水性有機溶媒;クロロヘキサノールに対して1.0質量部〕、水145g〔クロロヘキサノールに対して3.1質量部〕、N-メチルピロリドン0.5g〔クロロヘキサノールに対して0.01質量部〕を加え、窒素で置換した。次いで、28質量%水酸化ナトリウム水溶液58.6g〔クロロヘキサノールに対して1.2モル当量〕を滴下し、48時間、80℃で保温した。
工程(2):
 上記保温後、65℃に冷却し、分液操作にて水層を抜き取り、疎水性有機溶媒層(以下、「有機層」ともいう)を回収した。有機層に20質量%硫酸ナトリウム水溶液187g〔クロロヘキサノールに対して4.0質量部〕を加え、30分保温後、再度水層を分液操作にて抜き取った。新たに得られた有機層にトルエン187g〔クロロヘキサノールに対して4.0質量部〕、水397g〔クロロヘキサノールに対して8.5質量部〕を加え、その後、28質量%水酸化ナトリウム水溶液48.9g〔クロロヘキサノールに対して1.0モル当量〕を滴下し、30分保温した。その後、水層を分液操作にて抜き取った。
 工程(2)の後、水層を分液操作にて抜き取った後、25℃に冷却した。析出する結晶をろ過し、水467g〔クロロヘキサノールに対して10.0質量部〕で洗浄した。得られた結晶を40℃で24時間乾燥することで(6-ヒドロキシヘキシル)オキシ-4-フェノールの塩を得た。収率は49.2%であった。
実施例2
 実施例1と同条件で工程(1)および工程(2)を行った後、分液後25℃まで水層を冷却した。
工程3:
 水層に78質量%硫酸21.5g〔クロロヘキサノールに対して0.5モル当量〕を滴下した。結晶をろ過し、水467g〔クロロヘキサノールに対して10.0質量部〕で洗浄した。得られた結晶を40℃で24時間乾燥することで(6-ヒドロキシヘキシル)オキシ-4-フェノールを得た。収率は65.3%であった。
実施例3
 工程(1)においてヒドロキノンと同時に亜硫酸ナトリウム6.5g〔クロロヘキサノールに対して0.15モル当量〕を添加したこと以外は、実施例2と同条件で実施した。
収率は54.7%であった。
比較例1
 実施例1と同条件で工程(1)の反応を48時間実施した後、分液操作にて水層を抜き取り、25℃に冷却した。結晶をろ過し、水467g〔クロロヘキサノールに対して10.0質量部〕で洗浄した。得られた結晶を40℃で24時間乾燥することで(6-ヒドロキシヘキシル)オキシ-4-フェノールを得た。
 実施例1~3および比較例1の製造条件を表1に、結果を表2に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 比較例1の製造方法では、最終生成物中にジエーテル化体が多く含まれていた。また、450nmの透過率が低いことから、着色の原因となる副生成物(ヒドロキノン化合物のオリゴマー等)が多く含まれると考えられる。一方、実施例1~3の製造方法では、最終生成物中のジエーテル化体が少なく、450nmの透過率も高いものであった。

Claims (10)

  1.  式(A):
    Figure JPOXMLDOC01-appb-C000001
    [式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表す]
    で表されるヒドロキノン化合物(A)、式(B):
    Figure JPOXMLDOC01-appb-C000002
    [式(B)中、Rは置換基を有していてもよい炭素数1~9のアルキレン基、または-R-(O-R)n-で示される基を表し、R、Rはそれぞれ置換基を有してもよい炭素数2~5のアルキレン基を表し、R、Rはそれぞれ同一でもよいし、異なっていてもよい。nは1~5の正の整数を表す。Xはハロゲン原子、-O-S(=O)-Rで示される基、または-O-C(=O)-Rで示される基を表し、Rは炭素数1~4のフルオロアルキル基、炭素数1~4のアルキル基、または置換基を有していてもよいアリール基を表す]
    で表されるアルコール化合物(B)、および塩基性化合物(I)を含む水溶液と疎水性有機溶媒の存在下でエーテル化反応を行う工程(1)、および
     前記エーテル化反応により得られた反応混合液から疎水性有機溶媒層を回収し、さらに、前記疎水性有機溶媒層と塩基性化合物(II)の水溶液とを混合した後、式(C-1):
    Figure JPOXMLDOC01-appb-C000003
    [式(C-1)中、R~Rは、上記式(A)および(B)で定義した通りであり、Mは一価の金属元素を表す]
    で表される化合物(C-1)の塩基性水溶液を回収する工程(2)を含む、
    式(C-1)または式(C-2):
    Figure JPOXMLDOC01-appb-C000004
    [式(C-2)中、R~Rは、上記式(A)および(B)で定義した通りである]
    で表されるエーテル化合物(C)の製造方法。
  2.  前記工程(2)の後にさらに、化合物(C-1)の塩基性水溶液に酸を加える工程(3)を含む、請求項1に記載の方法。
  3.  前記塩基性化合物(I)は、水酸化物塩、炭酸塩および炭酸水素塩からなる群から選択される少なくとも1種を含む、請求項1または2に記載の方法。
  4.  前記塩基性化合物(II)は、水酸化物塩、炭酸塩および炭酸水素塩からなる群から選択される少なくとも1種を含む、請求項1~3のいずれかに記載の方法。
  5.  前記工程(1)におけるエーテル化反応は、還元剤の存在下で行う、請求項1~4のいずれかに記載の方法。
  6.  前記還元剤は、亜硫酸塩、亜硫酸水素塩およびチオ硫酸塩からなる群から選択される少なくとも1種を含む、請求項5に記載の方法。
  7.  前記工程(3)における酸は、塩酸、硫酸、リン酸および酢酸からなる群から選択される少なくとも1種を含む、請求項2~6のいずれかに記載の方法。
  8.  前記工程(2)における塩基性化合物(II)の量は、アルコール化合物(B)1モルに対して0.5モル以上2.0モル以下である、請求項1~7のいずれかに記載の方法。
  9.  前記工程(3)における酸の量は、アルコール化合物(B)1モルに対して1.0モル以下である、請求項2~8のいずれかに記載の方法。
  10.  前記工程(1)における還元剤の量は、アルコール化合物(B)1モルに対して0.01モル以上0.5モル以下である、請求項5~9のいずれかに記載の方法。
PCT/JP2022/030073 2021-08-17 2022-08-05 エーテル化合物の製造方法 WO2023022019A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132866 2021-08-17
JP2021132866A JP2023027630A (ja) 2021-08-17 2021-08-17 エーテル化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2023022019A1 true WO2023022019A1 (ja) 2023-02-23

Family

ID=85239502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030073 WO2023022019A1 (ja) 2021-08-17 2022-08-05 エーテル化合物の製造方法

Country Status (2)

Country Link
JP (1) JP2023027630A (ja)
WO (1) WO2023022019A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236244A (ja) * 2003-09-30 2011-11-24 Syngenta Ltd 光学的に純粋な2−(4−ヒドロキシフェノキシ)−プロピオン酸化合物の製造方法
JP2015140302A (ja) * 2014-01-27 2015-08-03 日本ゼオン株式会社 エーテル化合物の製造方法、および重合性化合物の製造方法
WO2017150622A1 (ja) * 2016-03-01 2017-09-08 日本ゼオン株式会社 モノエーテル化体を含む溶液組成物の製造方法、溶液組成物、及び重合性化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236244A (ja) * 2003-09-30 2011-11-24 Syngenta Ltd 光学的に純粋な2−(4−ヒドロキシフェノキシ)−プロピオン酸化合物の製造方法
JP2015140302A (ja) * 2014-01-27 2015-08-03 日本ゼオン株式会社 エーテル化合物の製造方法、および重合性化合物の製造方法
WO2017150622A1 (ja) * 2016-03-01 2017-09-08 日本ゼオン株式会社 モノエーテル化体を含む溶液組成物の製造方法、溶液組成物、及び重合性化合物の製造方法

Also Published As

Publication number Publication date
JP2023027630A (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
EP3390371B1 (en) Method for producing 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol
US9073826B2 (en) Process for preparing and purifying salts of acrylamido-2-methylpropanesulfonic acid
JP2020530051A (ja) ポリエーテルケトンケトンを生成するための方法
CN107848933A (zh) 具有芴骨架的醇的晶体及其制造方法
US20220267261A1 (en) Process for producing 4,4'-dichlorodiphenyl sulfone
CN104487418B (zh) 用于制备磺酰亚胺化合物及其盐的方法
WO2023022019A1 (ja) エーテル化合物の製造方法
WO2022255500A1 (ja) エーテル化合物の製造方法
TWI689486B (zh) 氟化烷之製造方法、脒鹼之分離、回收方法、及回收的脒鹼之使用方法
US20080262268A1 (en) Crystallization Method for Benzphetamine
KR102335659B1 (ko) 플루오렌 골격을 갖는 알코올 화합물의 제조 방법
CA2118379C (en) Preparation of acetoacetarylamides
TWI707839B (zh) 具有茀骨架之醇類的製造方法
KR20140099461A (ko) 아크릴아미도-2-메틸프로판술폰산의 염의 제조 및 정제 방법
JPS5949217B2 (ja) 置換ジフェニルエ−テルの製造方法
CN114805094B (zh) 一种双(3-氨基-4-羟基苯基)六氟丙烷的制备方法
FR2719580A1 (fr) Procédé de préparation d'octadiénols.
US20140378709A1 (en) Preparation method of 3,7,11- trimethyldodec -2,4,6,10-tetraene-1-yl-phosphonic salt
JPH08176044A (ja) 2−t−ブチルハイドロキノンの製造方法
JP3570759B2 (ja) 高純度の2−t−ブチルハイドロキノンと2,5−ジ−t−ブチルハイドロキノンとを同時に製造する方法
JP4348803B2 (ja) シトシンの製造法
CN111108085B (zh) 用于制备苯甲酸酯的方法
JP4493805B2 (ja) 高純度安息香酸誘導体の製造方法
TW201823210A (zh) 製備4-胺基-3-氯-5-氟-6-(4-氯-2-氟-3-甲氧基苯基)吡啶甲酸甲酯之方法
JP2017214303A (ja) アルコキシフェノール類の精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE