WO2023019886A1 - 一种含锂材料 - Google Patents

一种含锂材料 Download PDF

Info

Publication number
WO2023019886A1
WO2023019886A1 PCT/CN2022/074866 CN2022074866W WO2023019886A1 WO 2023019886 A1 WO2023019886 A1 WO 2023019886A1 CN 2022074866 W CN2022074866 W CN 2022074866W WO 2023019886 A1 WO2023019886 A1 WO 2023019886A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
content
containing material
battery
positive electrode
Prior art date
Application number
PCT/CN2022/074866
Other languages
English (en)
French (fr)
Inventor
吴俊洁
张新华
翁启东
周永
Original Assignee
湖州南木纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖州南木纳米科技有限公司 filed Critical 湖州南木纳米科技有限公司
Priority to EP22857208.7A priority Critical patent/EP4391115A1/en
Priority to KR1020247006730A priority patent/KR20240034856A/ko
Publication of WO2023019886A1 publication Critical patent/WO2023019886A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of materials, in particular to a lithium-containing material.
  • lithium-ion batteries With the wide application and rapid development of lithium batteries, people have higher and higher performance requirements for lithium-ion batteries, which not only require lithium batteries to have a higher capacity, but also require better capacity retention during repeated charging and discharging. rate, showing good cycle performance, long service life and high safety performance, etc.
  • Improving the service life of the battery is usually considered from the following two factors: one is to improve the structural stability of the positive electrode, negative electrode, separator and electrolyte material so that the structure does not change during multiple cycles; The external and use conditions are considered.
  • the improvement of battery service life from the outside of the battery and the conditions of use is limited. Only by improving the material properties of the battery that determines the "battery gene" inside the battery can the battery cycle performance be fundamentally improved. In order to improve the service life of lithium batteries, the use of new lithium-containing materials can improve the cycle performance of lithium batteries, thereby increasing the service life of batteries.
  • the embodiment of the present invention provides a lithium-containing material, which has good electrolyte wettability, good lithium ion conductivity, can well suppress lithium dendrites, and can improve the service life and cycle performance of lithium batteries.
  • the embodiment of the present invention provides a lithium-containing material, which is in the form of white powder.
  • the components of the lithium-containing material contain lithium (Li), aluminum (Al), phosphorus (P), fluorine (F), oxygen (O ) elements, wherein, according to the mass ratio, the proportion of each element content is as follows: the content of lithium element is greater than 0% and less than or equal to 12%, the content of aluminum element is 5%-40%, the content of phosphorus element is 1%-35%, fluorine The element content is 0.4%-22%, and the oxygen element content is 2%-34%;
  • the lithium-containing material is used for lithium-ion battery electrode additive materials or separator coating materials.
  • the X-ray diffraction XRD pattern of the lithium-containing material has characteristic diffraction peaks at 2 ⁇ angles of 28°, 30° and 19°.
  • the tap density of the lithium-containing material is 0.60-1.48 g/cm 3 .
  • the solubility of the lithium-containing material in water, ethanol, and N-methylpyrrolidone NMP is all less than 1 g/100 g.
  • the total content of magnetic impurities in the lithium-containing material is less than 1.5 ppm; the magnetic impurities include: one or more of Cr, Fe, Ni, Zn, Co.
  • the Cr content ⁇ 0.15ppm
  • the Fe content ⁇ 1.35ppm
  • the Ni content ⁇ 0.04ppm
  • the Zn content ⁇ 0.01ppm
  • the Co content ⁇ 0.01ppm.
  • the lithium-containing material also contains M element doping, and in the lithium-containing material, the content of the M element is 0%-30%; the M is selected from H, K, Cl or Na any kind.
  • the general chemical formula of the lithium-containing material is Li 1+x M 1-x Al(PO 4 )O 1-y F 2y ; wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.1.
  • the lithium-containing material proposed in the embodiments of the present invention has good electrolyte wettability and good lithium ion conductivity, can well suppress lithium dendrites, and can improve the service life and cycle performance of lithium batteries.
  • Fig. 1 is the X-ray diffraction (XRD) figure of the lithium-containing material of the embodiment of the present invention
  • Fig. 2 is a schematic diagram of the contact angle principle described in the embodiment of the present invention.
  • the lithium-containing material provided by the embodiments of the present invention is in the form of white powder, and the components of the lithium-containing material contain lithium (Li), aluminum (Al), phosphorus (P), fluorine (F), and oxygen (O) elements, Among them, according to the mass ratio, the content of each element is as follows: the content of lithium element is greater than 0% and less than or equal to 12%, the content of aluminum element is 5%-40%, the content of phosphorus element is 1%-35%, and the content of fluorine element is 0.4%-22%, the oxygen element content is 2%-34%.
  • the lithium-containing material further includes M element doping, and the content of M element in the lithium-containing material is 0%-30%; M is selected from any one of H, K, Cl or Na.
  • the general chemical formula of the lithium-containing material is preferably Li 1+x M 1-x Al(PO 4 )O 1-y F 2y ; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.1.
  • the X-ray diffraction pattern of the lithium-containing material proposed by the present invention has relatively obvious characteristic diffraction peaks at 2 ⁇ angles of 28°, 30° and 19°.
  • the tap density of the lithium-containing material proposed by the present invention is 0.60-1.48 g/cm 3 .
  • the solubility of the lithium-containing material proposed by the invention in water, ethanol and N-methylpyrrolidone (NMP) is all less than 1g/100g.
  • the total content of magnetic impurities in the lithium-containing material proposed by the present invention is less than 1.5ppm; the magnetic impurities include: one or more of Cr, Fe, Ni, Zn, and Co. Specifically, the Cr content ⁇ 0.15ppm, the Fe content ⁇ 1.35ppm, the Ni content ⁇ 0.04ppm, the Zn content ⁇ 0.01ppm, and the Co content ⁇ 0.01ppm.
  • the lithium-containing material proposed by the present invention can be used as an electrode additive material or a diaphragm coating material for lithium-ion batteries.
  • the material has good electrolyte wettability, and has good lithium ion conductivity, and can well inhibit lithium dendrites , can improve the service life and cycle performance of lithium batteries.
  • the lithium-containing material in this example can be seen from the appearance as a white powder, and the general chemical formula of the lithium-containing material satisfies Li 1+x M 1-x Al(PO 4 )O 1-y F 2y ; it does not contain M element , the chemical formula is Li 2 Al(PO 4 )O 0.94 F 0.12 ; its elemental composition and content are as follows by mass ratio: lithium content is about 8.6%, aluminum content is 35%, phosphorus content is 28%, and fluorine content is about 16%. , the oxygen content is about 12.4%.
  • the XRD diffraction pattern of this material is shown in Figure 1, and it can be seen that there are obvious characteristic diffraction peaks at 2 ⁇ angles of 28°, 30° and 19°. After testing, the tap density of the material is 1.08g/cm 3 .
  • the ICP elemental analysis of this material shows that the content of lithium element is 8.45%, the content of aluminum element is 34.7%, the content of Cr is 0.1298ppm, the content of Fe is 1.2052ppm, the content of Ni is 0.0276ppm, the content of Zr is 0ppm, the content of Co is 0.0006ppm, and the total magnetic substance content is 1.3632ppm.
  • the ternary positive electrode material NCM622, carbon black, polyvinylidene fluoride, and the above lithium-containing materials are mixed evenly in a mass ratio of 8:1:0.5:0.5, and coated on the aluminum foil current collector to make the positive electrode of the battery, and the graphite is used as the negative electrode , with a single-layer polyethylene film as the separator, 1M LiClO 4 ethyl acetate solution as the electrolyte, and assembled into a button cell in a glove box filled with argon.
  • the ternary positive electrode material NCM622, carbon black, and polyvinylidene fluoride were mixed evenly at a mass ratio of 8:1:1, and coated on an aluminum foil current collector to make a battery positive electrode.
  • the graphite and the lithium-containing material in Example 1 were mixed by mass Mix evenly at a ratio of 9:1, coat it on copper foil to make the negative electrode of the battery, use a single-layer polyethylene film as the separator, and use 1M LiClO 4 ethyl acetate solution as the electrolyte, and assemble it in a glove box filled with argon. Button batteries.
  • Example 1 Coated on a single-layer polyethylene film as a separator, 1M LiClO 4 ethyl acetate solution as an electrolyte, and assembled into a button battery in a glove box filled with argon.
  • the lithium-containing material in this embodiment can be seen from the appearance as a white powder, and the general chemical formula of the lithium-containing material satisfies Li 1+x M 1-x Al(PO 4 )O 1-y F 2y ; it does not contain M element , the chemical formula is Li 2 Al(PO 4 )O 0.95 F 0.1 ; its elemental composition and content are as follows by mass ratio: lithium content is about 10%, aluminum content is 38%, phosphorus content is 26%, and fluorine content is about 20%. , the oxygen content is about 6%.
  • the tap density of the material is 0.84g/cm 3 .
  • the ICP elemental analysis of this material showed that the content of lithium element was 10.1%, the content of aluminum element was 37.6%, the content of Cr was 0.0326ppm, the content of Fe was 0.3957ppm, the content of Ni was 0.0306ppm, the content of Zr was 0.0053ppm, and the content of Co is 0.0002ppm, and the total magnetic substance content is 0.4644ppm.
  • the ternary positive electrode material NCM622, carbon black, polyvinylidene fluoride, and the above lithium-containing materials are mixed evenly in a mass ratio of 8:1:0.5:0.5, and coated on the aluminum foil current collector to make the positive electrode of the battery, and the graphite is used as the negative electrode , with a single-layer polyethylene film as the separator, 1M LiClO 4 ethyl acetate solution as the electrolyte, and assembled into a button cell in a glove box filled with argon.
  • the ternary positive electrode material NCM622, carbon black, and polyvinylidene fluoride were mixed uniformly at a mass ratio of 8:1:1, and coated on an aluminum foil current collector to make a battery positive electrode.
  • the graphite and the lithium-containing material in Example 4 were mixed by mass Mixed evenly at a ratio of 9:1, coated on copper foil to make the negative electrode of the battery, with a single-layer polyethylene film as the separator, 1M LiClO 4 ethyl acetate solution as the electrolyte, and assembled in a glove box filled with argon. Button batteries.
  • Example 4 Coated on a single-layer polyethylene film as a separator, 1M LiClO 4 ethyl acetate solution as an electrolyte, and assembled into a button battery in a glove box filled with argon.
  • the lithium-containing material of this embodiment it can be seen from the appearance that the material is a white powder, and the general chemical formula of the lithium-containing material satisfies Li 1+x M 1-x Al(PO 4 )O 1-y F 2y ; wherein M is preferably hydrogen (H) element, the chemical formula is LiHAl(PO 4 )O 0.96 F 0.08 ; its elemental composition and content are as follows by mass ratio: lithium content is about 4.7%, aluminum content is 35.6%, phosphorus content is 24.7%, and fluorine content is about 18.5%, the oxygen content is about 5.3%, and the hydrogen content is about 1.68%.
  • the XRD diffraction pattern of this material is shown in Figure 1, and it can be seen that there are obvious characteristic diffraction peaks at 2 ⁇ angles of 28°, 30° and 19°.
  • the tap density of the material is 1.08g/cm 3 .
  • the ICP elemental analysis of this material shows that the content of lithium element is 8.45%, the content of aluminum element is 34.7%, the content of Cr is 0.1298ppm, the content of Fe is 1.2052ppm, the content of Ni is 0.0276ppm, the content of Zr is 0ppm, the content of Co is 0.0006ppm, and the total magnetic substance content is 1.3632ppm.
  • the ternary positive electrode material NCM622, carbon black, polyvinylidene fluoride, and the above lithium-containing materials are mixed evenly in a mass ratio of 8:1:0.5:0.5, and coated on the aluminum foil current collector to make the positive electrode of the battery, and the graphite is used as the negative electrode , with a single-layer polyethylene film as the separator, 1M LiClO 4 ethyl acetate solution as the electrolyte, and assembled into a button cell in a glove box filled with argon.
  • the ternary positive electrode material NCM622, carbon black, and polyvinylidene fluoride were evenly mixed in a mass ratio of 8:1:1, and coated on an aluminum foil current collector to make a battery positive electrode.
  • the graphite and the lithium-containing material in Example 7 were mixed by mass Mix evenly at a ratio of 9:1, coat it on copper foil to make the negative electrode of the battery, use a single-layer polyethylene film as the separator, and use 1M LiClO 4 ethyl acetate solution as the electrolyte, and assemble it in a glove box filled with argon. Button batteries.
  • Example 7 Coated on a single-layer polyethylene film as a separator, 1M LiClO 4 ethyl acetate solution as an electrolyte, and assembled into a button battery in a glove box filled with argon.
  • Battery performance test The button cells prepared in Examples 1-9 and Comparative Example were tested, the discharge specific capacity in the charging and discharging voltage window of 1V-2.5V, 1C-10C at different rates, and the self-loading of 7 days and 15 days on hold.
  • Discharge performance K value test the temperature rise of the center point of the battery surface when discharging at different rates.
  • the initial specific capacity and after 100 cycles of charging and discharging were also tested, and the test results are shown in Table 1.
  • Lithium-ion batteries will dissolve into lithium ions during the discharge process, and the lithium ions will be reduced to metallic lithium during the charging process. During this reduction process, due to thermodynamic reasons, the deposition of lithium will be uneven during the reduction process. Dendrite-like lithium is produced.
  • Existing studies have shown that on the one hand, lithium dendrites may become "dead lithium", causing irreversible loss of capacity, thereby affecting discharge efficiency; on the other hand, lithium dendrites can also cause serious safety hazards. , such as separator penetration, short circuit and battery explosion.
  • the rate discharge capacity of the prepared button battery is significantly higher than that of the comparative example, whether it is a positive electrode or a negative electrode or a separator added with a lithium-containing material; and the capacity retention rate after 100 cycles It is also relatively high, reaching more than 85%.
  • the capacity retention rate is as low as 75% or less.
  • the test data results show that the lithium-containing material provided by the present invention is used as an electrode material made after adding an additive; it is speculated that a uniform and stable solid-liquid phase interface is formed between it and the electrolyte to induce uniform deposition of lithium metal, and the interface may Related to the reduction of lithium in lithium-containing materials. Thereby inhibiting the generation of lithium dendrites; reducing the generation of "dead lithium", thereby reducing the loss of battery capacity, and finally achieving a high battery rate discharge capacity.
  • the temperature rise of the battery added with the lithium-containing material of the present invention is more than half lower than that of the comparative example at the same rate ;
  • the reduction of operating temperature also greatly improves the safety of battery use and avoids the harm caused by high temperature.
  • the wettability between the electrolyte and the positive and negative electrodes and the separator will affect the shuttle of lithium ions between the positive and negative electrodes and the interface resistance of the battery, which in turn will affect the discharge rate, discharge capacity and operating voltage of the battery. Therefore, good wettability of electrode materials is beneficial to the improvement of battery performance.
  • the diaphragm prepared in Example 6 and Comparative Example was tested, the negative electrode prepared by mixing graphite and lithium-containing materials in Example 5 was tested with the graphite in Comparative Example as negative electrode, the ternary positive electrode material NCM622 in Example 4, carbon black, poly Vinylidene fluoride, a positive electrode mixed with a lithium-containing material and a positive electrode without a lithium-containing material in the comparative example were tested.
  • Figure 2 shows the principle measurement diagram of the contact angle.
  • the same electrolyte solution was dropped on the separator, positive electrode, and negative electrode prepared by adding lithium-containing materials, and the separator, positive electrode, and negative electrode without lithium-containing materials;
  • the contact angle of the negative electrode was used to compare the effect of the addition of lithium-containing materials on the wettability of battery materials.
  • the lithium-containing material involved in the present invention can improve the rate performance of the battery as an additive material for the lithium battery, improve the service life and cycle performance of the lithium battery, greatly improve the safety performance of the lithium battery, and keep the battery in good condition. Energy Density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种含锂材料,所述含锂材料为白色粉末,所述含锂材料的组分中含有锂(Li)、铝(Al)、磷(P)、氟(F)、氧(O)元素,其中,按质量比,各元素含量占比为:锂元素含量为大于0%且小于等于12%,铝元素含量为5%-40%,磷元素含量为1%-35%,氟元素含量为0.4%-22%,氧元素含量为2%-34%;所述含锂材料用于锂离子电池电极添加材料或隔膜涂层材料。

Description

一种含锂材料
本申请要求于2021年08月19日提交中国专利局、申请号为202110956905.6、发明名称为“一种含锂材料”的中国专利申请的优先权。
技术领域
本发明涉及材料技术领域,尤其涉及一种含锂材料。
背景技术
随着锂电池的广泛应用和快速发展,人们对锂离子电池的性能要求也越来越高,不仅要求锂电池具有较高的容量,而且要求在反复的充放电过程中具有较好的容量保持率,表现出良好的循环性能,具有较长的使用寿命以及较高的安全性能等。
提高电池的使用寿命,通常从以下两方面的影响因素考虑:一是提高正极、负极、隔膜和电解液材料的结构稳定性,使其在多次循环过程中结构不发生改变;二是从电池的外部及使用条件方面考虑。
但是从电池外部及使用条件方面对电池使用寿命的提高有限,改善电池内部决定“电池基因”的材料性能,才能更好地从根本上提高电池循环性能。为了提高锂电池的使用寿命,使用新型的含锂材料可提高锂电池的循环性能,从而提高电池的使用寿命。
发明内容
本发明实施例提供了一种含锂材料,具有良好的电解液的浸润性,并且具有良好的锂离子电导率,可以很好的抑制锂枝晶,能够提高锂电池的使用寿命和循环性能。
本发明实施例提供了一种含锂材料,呈白色粉末状,所述含锂材料的组分中含有锂(Li)、铝(Al)、磷(P)、氟(F)、氧(O)元素,其中,按质量比,各元素含量占比为:锂元素含量为大于0%且小于等于12%、铝元素含量为5%-40%、磷元素含量为1%-35%、氟元素含量为0.4%-22%、氧元素含量为2%-34%;
所述含锂材料用于锂离子电池电极添加材料或隔膜涂层材料。
优选的,所述含锂材料的X射线衍射XRD图形在2θ角为28°、30°和19°处具有特征衍射峰。
优选的,所述含锂材料的振实密度为0.60-1.48g/cm 3
优选的,所述含锂材料在水、乙醇、N-甲基吡咯烷酮NMP中的溶解度都小于1g/100g。
优选的,所述含锂材料中磁性杂质的总含量小于1.5ppm;所述磁性杂质包括:Cr、Fe、Ni、Zn、Co中的一种或多种。
进一步优选的,含锂材料中,Cr的含量≤0.15ppm,Fe的含量≤1.35ppm,Ni的含量≤0.04ppm,Zn的含量≤0.01ppm,Co的含量≤0.01ppm。
优选的,所述含锂材料还包含M元素的掺杂,所述含锂材料中,所述M元素的含量为0%-30%;所述M选自H、K、Cl或Na中的任意一种。
优选的,所述含锂材料的化学通式为Li 1+xM 1-xAl(PO 4)O 1-yF 2y;其中0≤x≤1,0<y<0.1。
本发明实施例提出的含锂材料,具有良好的电解液的浸润性,并且具有良好的锂离子电导率,可以很好的抑制锂枝晶,能够提高锂电池的使用寿命和循环性能。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1是本发明实施例的含锂材料的X射线衍射(XRD)图;
图2是本发明实施例中所述的接触角原理示意图。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明的实施例提供的含锂材料,呈白色粉末状,含锂材料的组分中含有锂(Li)、铝(Al)、磷(P)、氟(F)、氧(O)元素,其中,按质量比,各元素含量占比为:锂元素含量为大于0%且小于等于12%,铝元素含量为5%-40%,磷元素含量为1%-35%,氟元素含量为0.4%-22%,氧元素含量为2%-34%。
在优选的方案中,含锂材料还包含M元素的掺杂,含锂材料中,M元素的含量为0%-30%;M选自H、K、Cl或Na中的任意一种。
含锂材料的化学通式优选为Li 1+xM 1-xAl(PO 4)O 1-yF 2y;0≤x≤1,0<y<0.1。
本发明提出的含锂材料的X射线衍射图形在2θ角为28°、30°和19°处具有较为明显的特征衍射峰。
本发明提出的含锂材料的振实密度为0.60-1.48g/cm 3
本发明提出的含锂材料在水、乙醇、N-甲基吡咯烷酮(NMP)中的溶解度都小于1g/100g。
本发明提出的含锂材料中磁性杂质的总含量小于1.5ppm;磁性杂质包括:Cr、Fe、Ni、Zn、Co中的一种或多种。具体的,Cr的含量≤0.15ppm,Fe的含量≤1.35ppm,Ni的含量≤0.04ppm,Zn的含量≤0.01ppm,Co的含量≤0.01ppm。
本发明提出的含锂材料能够用于锂离子电池电极添加材料或隔膜涂层材料,该材料具有良好的电解液的浸润性,并且具有良好的锂离子电导率,可以很好的抑制锂枝晶,能够提高锂电池的使用寿命和循环性能。
实施例1
本实施例的含锂材料,从外观可看出材料为白色粉末,含锂材料化学通式满足Li 1+xM 1-xAl(PO 4)O 1-yF 2y;其中不含M元素,化学式为Li 2Al(PO 4)O 0.94F 0.12;其元素组成及含量按质量比分别为:锂含量约为8.6%、铝含量为35%、磷含量28%、氟含量约为16%,氧含量约为12.4%。
该材料XRD衍射图形如图1所示,可以看到在2θ角为28°、30°和19°处具有明显的特征衍射峰。经测试,该材料的振实密度为1.08g/cm 3
对该材料进行ICP元素分析,其结果为:锂元素含量8.45%,铝元素含量为34.7%,Cr含量为0.1298ppm、Fe含量为1.2052ppm、Ni含量为0.0276ppm、Zr含量为0ppm、Co含量为0.0006ppm,总磁性物质含量为1.3632ppm。
将三元正极材料NCM622,炭黑,聚偏二氟乙烯,与上述含锂材料按质量比8:1:0.5:0.5混合均匀,涂布于铝箔集流体上,制成电池正极,石墨做负极,以单层聚乙烯薄膜做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例2
将三元正极材料NCM622,炭黑,聚偏二氟乙烯按质量比8:1:1混合均匀,涂布于铝箔集流体上,制成电池正极,石墨与实施例1中含锂材料按质量比9:1混合均匀,涂布于铜箔上制成电池负极,以单层聚乙烯薄膜做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例3
将三元正极材料NCM622,炭黑,聚偏二氟乙烯按质量比8:1:1混合均匀,涂布于铝箔集流体上,制成电池正极,石墨做负极,实施例1中含锂材料涂布于单层聚乙烯薄膜上做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例4
本实施例的含锂材料,从外观可看出材料为白色粉末,含锂材料化学通式满足Li 1+xM 1-xAl(PO 4)O 1-yF 2y;其中不含M元素,化学式为Li 2Al(PO 4)O 0.95F 0.1;其元素组成及含量按质量比分别为:锂含量约为10%、铝含量为38%、磷含量26%、氟含量约为20%,氧含量约为6%。
经测试,该材料的振实密度为0.84g/cm 3
对该材料进行ICP元素分析,其结果为锂元素含量10.1%,铝元素含量为37.6%,Cr含量为0.0326ppm、Fe含量为0.3957ppm、Ni含量为0.0306ppm、Zr含量为0.0053ppm、Co含量为0.0002ppm,总磁性物质含量为0.4644ppm。
将三元正极材料NCM622,炭黑,聚偏二氟乙烯,与上述含锂材料按质量比8:1:0.5:0.5混合均匀,涂布于铝箔集流体上,制成电池正极,石墨做负极,以单层聚乙烯薄膜做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例5
将三元正极材料NCM622,炭黑,聚偏二氟乙烯按质量比8:1:1混合均匀,涂布于铝箔集流体上,制成电池正极,石墨与实施例4中含锂材料按质量比9:1混合均匀,涂布于铜箔上制成电池负极,以单层聚乙烯薄膜做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例6
将三元正极材料NCM622,炭黑,聚偏二氟乙烯按质量比8:1:1混合均匀,涂布于铝箔集流体上,制成电池正极,石墨做负极,实施例4中含锂材料涂布于单层聚乙烯薄膜上做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例7
本实施例的含锂材料,从外观可看出材料为白色粉末,含锂材料化学通式满足Li 1+xM 1-xAl(PO 4)O 1-yF 2y;其中M优选为氢(H)元素,化学式为LiHAl(PO 4)O 0.96F 0.08;其元素组成及含量按质量比分别为:锂含量约为4.7%、铝含量为35.6%、磷含量24.7%、氟含量约为18.5%,氧含量约为5.3%,氢含量约为1.68%。该材料XRD衍射图形如图1所示,可以看到在2θ角为28°、30°和19°处具有明显的特征衍射峰。
经测试,该材料的振实密度为1.08g/cm 3
对该材料进行ICP元素分析,其结果为:锂元素含量8.45%,铝元素含量为34.7%,Cr含量为0.1298ppm、Fe含量为1.2052ppm、Ni含量为0.0276ppm、Zr含量为0ppm、Co含量为0.0006ppm,总磁性物质含量为1.3632ppm。
将三元正极材料NCM622,炭黑,聚偏二氟乙烯,与上述含锂材料按质量比8:1:0.5:0.5混合均匀,涂布于铝箔集流体上,制成电池正极,石墨做负极,以单层聚乙烯薄膜做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例8
将三元正极材料NCM622,炭黑,聚偏二氟乙烯按质量比8:1:1混合均匀,涂布于铝箔集流体上,制成电池正极,石墨与实施例7中含锂材料按质量比9:1混合均匀,涂布于铜箔上制成电池负极,以单层聚乙烯薄膜做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
实施例9
将三元正极材料NCM622,炭黑,聚偏二氟乙烯按质量比8:1:1混合均匀,涂布于铝箔集流体上,制成电池正极,石墨做负极,实施例7中含锂材料涂布于单层聚乙烯薄膜上做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
比较例
将三元正极材料NCM622,炭黑,聚偏二氟乙烯按质量比8:1:1混合均匀,涂布于铝箔上制成电池正极,石墨做负极,以单层聚乙烯薄膜做隔膜,1M LiClO 4的乙酸乙酯溶液做电解液,并在充满氩气的手套箱内组装成扣式电池。
电池性能测试:对实施例1-9与比较例制备的扣式电池进行测试,在充放电电压窗口1V-2.5V,1C-10C不同倍率下的放电比容量,搁置7天和15天的自放电性能K值测试,不同倍率下放电时电池表面中心点的温升。同时也测试了初始和循环充放电100次后的比容量,测试结果如表1所示。
Figure PCTCN2022074866-appb-000001
表1
根据表1中的数值,计算出5C/1C,10C/1C,循环100次的容量保持率列于下表2。
Figure PCTCN2022074866-appb-000002
表2
通过数据可以得出,实施例1-9的5C/1C倍率性能以及10C/1C倍率性能均高于对比例;在循环100次后容量保持率也明显高于对比例;不同倍率放电时,温升随放电倍率的增大而增大,相同倍率下,对比例的温升高于实施例1-9。同时,搁置时间相同的情况下,实施例的自放电K值也明显小于对比例。
由表1中的数据可以看出,本申请实施例1-实施例9中通过添加含锂材料制备的扣式电池的比容量及初始循环性能明显优于对比例,可能是含锂材料的添加提高了充放电过程中锂离子的数量,能够为形成SEI膜提供充足的锂离子,进而提高初始循环性能及比容量。
锂离子电池在放电的过程中锂片会溶解成锂离子,充电过程中锂离子又会还原成金属锂,在这个还原的过程中由于热力学的原因会导致锂在还原的过程中沉积不均匀而有枝晶状的锂的产生,现有研究表明一方面锂枝晶可能会成为“死锂”,造成容量的不可逆损失,从而影响放电效率;另一方面锂枝晶还会造成严重的安全隐患,比如隔膜穿透、短路和电池爆炸。根据表1和表2的数据可以看出,添加有含锂材料的不论是正极还是负极或隔膜,制备的扣式电池的倍率放电容量明显高于对比例;并且在循环100 次后容量保持率也相对较高达到85%以上。而作为比较例中未添加含锂材料制备的电池,在相同的循环放电次数后,容量保持率较低为75%以下。该测试数据结果表明,本发明提供的含锂材料作为添加剂添加后制得的电极材料;推测其与电解液之间形成均匀稳定的固液相界面,诱导金属锂的均匀沉积,并且该界面可能与含锂材料中锂的还原有关。从而抑制锂枝晶的产生;减少了“死锂”的产生,进而降低电池容量的损失,最终实现高的电池倍率放电容量。另外,根据表1中所测得的不同倍率下放电时电池表面中心点的温升数据显示,添加有本发明的含锂材料的电池的温升在相同倍率下要比对比例的低一半以上;使用温度的降低也极大的提高了电池使用的安全性,避免由于高温而带来的危害。
此外,电解液与正、负极以及隔膜之间的浸润性好坏会影响锂离子在正负极之间的穿梭及电池的界面电阻,进而影响电池的放电倍率、放电容量和工作电压。因此,电极材料具有良好的浸润性有益于电池性能的改善。对实施例6与比较例制备的隔膜进行测试、实施例5中石墨与含锂材料混合制备的负极与比较例中石墨作负极进行测试、实施例4中三元正极材料NCM622,炭黑,聚偏二氟乙烯,与含锂材料混合制作的正极与比较例中未添加含锂材料的正极进行测试。如图2所示为接触角原理测量图。本实施例中将相同电解液分别滴在含锂材料添加制备的隔膜、正极、负极与未添加含锂材料的隔膜、正极、负极上;利用接触角测量仪分别测量电解液与隔膜、正极、负极的接触角,来比较含锂材料的添加对电池材料浸润性的影响。
  接触角θ
实施例6隔膜 25°6′
对比例隔膜 27°2′
实施例5负极 24°3′
对比例负极 27°6′
实施例4正极 25°5′
对比例正极 26°4′
表3
通过比较所测接触角大小,发现添加含锂材料制备的极片或隔膜与电解液的接触角要小一些;接触角越小,则材料的浸润性越好。测试结果表明在制备的相同电解液中,含锂材料的添加提高了材料的浸润性。所以含锂材料具有良好的浸润性。
为了检测含锂材料对正负极极片电阻率的影响,分别取实施例4中的正极极片和实施例5中的负极极片;与对比例中的正极极片和负极极片,采用电阻率测试仪测试极片的电阻率,测试结果如表4所示
组别 极片电阻率(mΩ)
实施例4 15.6
对比例正极 167.5
实施例5 16.8
对比例负极 178.5
表4
从表4中测得的数据可以看出,采用含锂材料添加制备的正极和负极的电阻率明显低于对比例中未添加含锂材料的正、负极的电阻率;可能原因为含锂材料具有良好的锂离子电导率,进而降低极片的电阻率。
综上,本发明涉及的含锂材料作为锂电池添加材料可以改善电池的倍率性能,能提高锂电池的使用寿命和循环性能,极大的提高了锂电池的安全性能,并使电池保持良好的能量密度。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种含锂材料,其特征在于,所述含锂材料呈白色粉末状,所述含锂材料的组分中含有锂(Li)、铝(Al)、磷(P)、氟(F)、氧(O)元素,其中,按质量比,各元素含量占比为:锂元素含量为大于0%且小于等于12%,铝元素含量为5%-40%,磷元素含量为1%-35%,氟元素含量为0.4%-22%,氧元素含量为2%-34%;
    所述含锂材料用于锂离子电池电极添加材料或隔膜涂层材料。
  2. 根据权利要求1所述的含锂材料,其特征在于,所述含锂材料的X射线衍射XRD图形在2θ角为28°、30°和19°处具有特征衍射峰。
  3. 根据权利要求1所述的含锂材料,其特征在于,所述含锂材料的振实密度为0.60-1.48g/cm 3
  4. 根据权利要求1所述的含锂材料,其特征在于,所述含锂材料在水、乙醇、N-甲基吡咯烷酮NMP中的溶解度都小于1g/100g。
  5. 根据权利要求1所述的含锂材料,其特征在于,所述含锂材料中磁性杂质的总含量小于1.5ppm;所述磁性杂质包括:Cr、Fe、Ni、Zn、Co中的一种或多种。
  6. 根据权利要求5所述的含锂材料,其特征在于,含锂材料中,Cr的含量≤0.15ppm,Fe的含量≤1.35ppm,Ni的含量≤0.04ppm,Zn的含量≤0.01ppm,Co的含量≤0.01ppm。
  7. 根据权利要求1所述的含锂材料,其特征在于,所述含锂材料还包含M元素的掺杂,所述含锂材料中,所述M元素的含量为0%-30%;所述M选自H、K、Cl或Na中的任意一种。
  8. 根据权利要求1或7所述的含锂材料,其特征在于,所述含锂材料的化学通式为Li 1+xM 1-xAl(PO 4)O 1-yF 2y;其中0≤x≤1,0<y<0.1。
PCT/CN2022/074866 2021-08-19 2022-01-29 一种含锂材料 WO2023019886A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22857208.7A EP4391115A1 (en) 2021-08-19 2022-01-29 Lithium-containing material
KR1020247006730A KR20240034856A (ko) 2021-08-19 2022-01-29 리튬 함유 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110956905.6A CN113745515A (zh) 2021-08-19 2021-08-19 一种含锂材料
CN202110956905.6 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023019886A1 true WO2023019886A1 (zh) 2023-02-23

Family

ID=78731838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074866 WO2023019886A1 (zh) 2021-08-19 2022-01-29 一种含锂材料

Country Status (4)

Country Link
EP (1) EP4391115A1 (zh)
KR (1) KR20240034856A (zh)
CN (1) CN113745515A (zh)
WO (1) WO2023019886A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745515A (zh) * 2021-08-19 2021-12-03 湖州南木纳米科技有限公司 一种含锂材料
CN115832622A (zh) * 2022-01-30 2023-03-21 北京卫蓝新能源科技有限公司 一种高功率、长循环、高安全锂电池复合隔膜及其制备方法和应用
CN114583255B (zh) * 2022-03-14 2024-06-14 北京卫蓝新能源科技有限公司 一种锂电池无机固态电解质层、锂电池用复合负极片及其制备方法和应用
CN114620704B (zh) * 2022-03-14 2023-06-06 湖州南木纳米科技有限公司 一种提高电池安全性的材料及其制备方法和应用
CN114639868B (zh) * 2022-03-14 2024-06-11 北京卫蓝新能源科技有限公司 一种锂电池用负极片及其制备方法和应用
CN114614094A (zh) * 2022-03-28 2022-06-10 杭州瀛拓科技有限公司 一种电解质及锂离子电池电解液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298324A1 (en) * 2005-02-14 2007-12-27 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
CN102372275A (zh) * 2010-08-16 2012-03-14 中国科学院大连化学物理研究所 一种无机磷酸盐晶体材料的制备方法
US20170092940A1 (en) * 2015-09-25 2017-03-30 Samsung Electronics Co., Ltd. Composite negative active material, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
CN106920947A (zh) * 2017-04-20 2017-07-04 哈尔滨工业大学 一种氟磷酸盐类锂离子‑电子混合导体改性钴酸锂复合材料及其制备方法
CN110660959A (zh) * 2018-06-29 2020-01-07 宁德时代新能源科技股份有限公司 正极极片及钠离子电池
CN113745515A (zh) * 2021-08-19 2021-12-03 湖州南木纳米科技有限公司 一种含锂材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151480B (zh) * 2013-01-05 2016-02-17 邓丽娟 一种peo-锂盐复合锂离子导电膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298324A1 (en) * 2005-02-14 2007-12-27 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
CN102372275A (zh) * 2010-08-16 2012-03-14 中国科学院大连化学物理研究所 一种无机磷酸盐晶体材料的制备方法
US20170092940A1 (en) * 2015-09-25 2017-03-30 Samsung Electronics Co., Ltd. Composite negative active material, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
CN106920947A (zh) * 2017-04-20 2017-07-04 哈尔滨工业大学 一种氟磷酸盐类锂离子‑电子混合导体改性钴酸锂复合材料及其制备方法
CN110660959A (zh) * 2018-06-29 2020-01-07 宁德时代新能源科技股份有限公司 正极极片及钠离子电池
CN113745515A (zh) * 2021-08-19 2021-12-03 湖州南木纳米科技有限公司 一种含锂材料

Also Published As

Publication number Publication date
KR20240034856A (ko) 2024-03-14
CN113745515A (zh) 2021-12-03
EP4391115A1 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
WO2023019886A1 (zh) 一种含锂材料
JP4837614B2 (ja) リチウム二次電池
WO2018006563A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
WO2020258996A1 (zh) 一种低产气高容量的三元正极材料
CA2792747C (en) Lithium secondary battery using ionic liquid
WO2020258997A1 (zh) 一种正极材料及其制备方法和用途
JP2004342500A (ja) 非水電解質二次電池および電池充放電システム
WO2020108014A1 (zh) 锂离子二次电池
WO2007007636A1 (ja) 非水電解液二次電池
KR102217574B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN114023965A (zh) 固态锂电池
WO2024011702A1 (zh) 一种锂离子电池
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
CN108281645A (zh) 锂二次电池
CN112054190A (zh) 锂二次电池的正极材料和使用该正极材料的锂二次电池
CN115275181A (zh) 一种锂离子电池及电池组
JP2018181413A (ja) リチウムイオン二次電池およびその製造方法
CN109119599B (zh) 一种二次电池及其制备方法
WO2024055730A1 (zh) 正极片、电芯和电池
JPH1131508A (ja) 非水電解液二次電池
WO2023109259A1 (zh) 电解液添加剂、电解液以及包含其的锂离子二次电池
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
WO2007086264A1 (ja) 非水電解液二次電池
JP5890715B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247006730

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006730

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022857208

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022857208

Country of ref document: EP

Effective date: 20240319