WO2023018118A1 - 리튬 이차전지용 음극 및 이의 제조방법 - Google Patents

리튬 이차전지용 음극 및 이의 제조방법 Download PDF

Info

Publication number
WO2023018118A1
WO2023018118A1 PCT/KR2022/011673 KR2022011673W WO2023018118A1 WO 2023018118 A1 WO2023018118 A1 WO 2023018118A1 KR 2022011673 W KR2022011673 W KR 2022011673W WO 2023018118 A1 WO2023018118 A1 WO 2023018118A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
secondary battery
lithium secondary
mixture layer
Prior art date
Application number
PCT/KR2022/011673
Other languages
English (en)
French (fr)
Inventor
장영철
서상진
정재봉
안창범
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22856117.1A priority Critical patent/EP4207352A1/en
Priority to CN202280006715.0A priority patent/CN116406481A/zh
Priority to JP2023520511A priority patent/JP2023544053A/ja
Priority to US18/028,447 priority patent/US20230335750A1/en
Publication of WO2023018118A1 publication Critical patent/WO2023018118A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium secondary battery and a manufacturing method thereof.
  • a lithium secondary battery functions as a battery by repeating insertion and desorption of lithium ions in the positive and negative electrodes. Between these electrodes, a lithium salt-containing electrolyte in which lithium ions move but electrons do not move, and a separator that separates the positive electrode and the negative electrode so that they do not come into contact with each other to prevent short circuit between electrodes due to their contact are provided.
  • an electrode used in a lithium secondary battery is generally manufactured by coating an electrode slurry on a current collector to a certain thickness and drying the mixture layer to form a mixture layer.
  • the liquid binder solvent While drying in the gas phase, it changes to a solid phase, and has adhesive strength while existing as a solid binder between particles and between the current collector and the particles.
  • the adhesive force between the particles and the current collector is reduced, electron transfer from the particles to the current collector is resisted and the electron conduction speed is reduced.
  • the contact angle between the end of the negative electrode mixture layer and the current collector is lowered when the electrode is a negative electrode, so that the N / P ratio between the positive electrode and the negative electrode may be reversed.
  • Safety problems such as internal short circuit and waste of battery capacity may occur. Therefore, there is a demand for the development of a technology capable of improving both the safety and performance of a battery by increasing the adhesion between the electrode mixture layer and the current collector.
  • an object of the present invention is to improve the adhesion between the electrode mixture layer and the electrode current collector, while improving the safety or performance degradation problem of the battery due to the inversion of the N / P ratio between the positive electrode and the negative electrode, particularly for lithium secondary batteries. to provide a cathode.
  • the present invention in one embodiment, the present invention
  • the negative electrode current collector provides a negative electrode for a lithium secondary battery having a static contact angle with respect to water of 60° to 100°.
  • the negative electrode current collector may be surface-treated with an alkyl group having 1 to 6 carbon atoms.
  • the negative electrode composite layer may have an angle formed by an end of the negative electrode current collector of 60° or more, and the peel strength of the negative electrode composite layer with respect to the negative electrode current collector (ASTM D903 standard) is 10 gf/cm to 50 gf/cm.
  • a surface treatment step of treating the negative current collector with atmospheric pressure plasma is
  • the normal pressure plasma treatment is performed under a mixed gas condition of an inert gas and a hydrocarbon gas to provide a method for manufacturing a negative electrode for a lithium secondary battery.
  • atmospheric plasma treatment may be performed for 0.05 seconds to 1 hour using an RF power source of 0.1 MHz to 50 MHz frequency.
  • the normal pressure plasma treatment is performed under a mixed gas condition of an inert gas and a hydrocarbon gas
  • the mixed gas may include a hydrocarbon gas at a partial pressure of 0.1 to 10%.
  • the hydrocarbon gas may include any one or more of methane (CH 4 ) gas and ethane (C 2 H 6 ) gas.
  • the anode current collector may be formed of any one of stainless steel, copper, nickel, carbon, sintered carbon, titanium, or an aluminum-cadmium alloy.
  • the surface of the negative electrode current collector is subjected to atmospheric pressure plasma treatment to specify the static contact angle of the surface of the negative electrode current collector with water and the angle formed by the end of the negative electrode mixture layer with respect to the negative electrode current collector (ie, the contact angle).
  • the contact angle By controlling within the range, not only can the adhesion between the negative electrode current collector and the negative electrode composite layer be improved, but also the inversion of the N/P ratio between the positive electrode and the negative electrode at the end of the electrode assembly is prevented, and unrolling of the negative electrode composite layer occurs. Since this can be prevented, the effect of estimating the safety and performance degradation of the lithium secondary battery including the same is excellent.
  • 1 is an image showing a static water contact angle measurement result of an anode current collector.
  • the term "comprises” or “has” is intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
  • a part such as a layer, film, region, plate, etc. when a part such as a layer, film, region, plate, etc. is described as being “on” another part, this includes not only the case where it is “directly on” the other part, but also the case where another part is present in the middle thereof. . Conversely, when a part such as a layer, film, region, plate, or the like is described as being “under” another part, this includes not only being “directly under” the other part, but also the case where there is another part in the middle. In addition, in the present application, being disposed “on” may include the case of being disposed not only on the upper part but also on the lower part.
  • main component is 50% by weight or more, 60% by weight or more, 70% by weight or more, 80% by weight or more, 90% by weight or more, 95% by weight or more, based on the total weight of the composition or specific component. It may mean 97.5% by weight or more, and in some cases, when constituting the entire composition or specific component, that is, it may mean 100% by weight.
  • solid content of the mixture layer may mean residual components from which the solvent is removed in the negative electrode slurry used in preparing the mixture layer.
  • the present invention in one embodiment, the present invention
  • the negative electrode current collector provides a negative electrode for a lithium secondary battery having a static contact angle with respect to water of 60° to 100°.
  • a negative electrode for a lithium secondary battery according to the present invention has a configuration including a negative electrode mixture layer containing a negative electrode active material on a negative electrode current collector.
  • the anode current collector is not particularly limited as long as it has conductivity without causing chemical change to the battery, but is specifically made of any one of stainless steel, copper, nickel, carbon, fired carbon, titanium, or aluminum-cadmium alloy. formed can be used.
  • a copper current collector may be used as the negative electrode current collector.
  • the negative electrode current collector since the surface of the negative electrode current collector is surface-treated on which the negative electrode mixture layer is formed, the negative electrode current collector may exhibit high adhesion to the negative electrode mixture layer while having low affinity for water.
  • surface treatment methods such as plasma treatment and electrolytic treatment, which are generally applied to electrode current collectors, have been performed for the purpose of improving adhesion to the electrode mixture layer by making the surface of the current collector hydrophilic.
  • the adhesion to the negative electrode mixture layer is improved, but the contact angle of the negative electrode mixture layer end to the negative electrode current collector (eg, the "sliding angle" of the negative electrode mixture layer) is lowered so that the N/P ratio at the ends of the anode and cathode may be reversed.
  • the contact angle of the end of the anode with respect to the anode current collector is low, unrolling may occur at the end of the anode mixture layer, causing separation of the mixture layer.
  • the present invention may include a structure in which an alkyl group having 1 to 6 carbon atoms is introduced into the surface of the anode current collector by treating the surface of the anode current collector with atmospheric plasma in the presence of a mixed gas of an inert gas and a hydrocarbon gas.
  • the alkyl group having 1 to 6 carbon atoms includes a methyl group (CH 3 -), an ethyl group (CH 3 CH 2 -), an n-propyl group (CH 3 CH 2 CH 2 -) and an n-butyl group (CH 3 CH 2 CH 2 CH 2 -).
  • the surface of the anode current collector may be treated with at least one alkyl group selected from among methyl groups (CH 3 -) and ethyl groups (CH 3 CH 2 -).
  • the alkyl group is introduced to the surface of the anode current collector at a certain ratio, and when carbon atoms are mapped through field emission scanning electron microscope (FE-SEM) analysis of the anode current collector, carbon atoms are confirmed to be 1 to 40 atomic% of the total atoms. It may be, specifically, 1 to 30 atomic% of the total number of carbon atoms; 1 to 20 atomic %; 1 to 15 atomic %; 10 to 40 atomic %; 20 to 40 atomic %; 10 to 30 atomic %; 20 to 30 atomic %; 10 to 20 atomic %; or 5 to 15 atomic percent.
  • FE-SEM field emission scanning electron microscope
  • the repulsive force against the solvent contained in the slurry during the manufacture of the negative electrode mixture layer is increased to realize a high contact angle with the end of the negative electrode mixture layer, and at the same time, adhesion to the negative electrode mixture layer is improved. can be given high.
  • the repelling force against the solvent contained in the negative electrode slurry increases, so when the negative electrode slurry is applied on the current collector, the edge of the coated negative electrode slurry An angle between the negative electrode current collector and the negative electrode current collector (ie, a contact angle of the negative electrode current collector and the negative electrode slurry) may be high.
  • the contact angle of the negative electrode slurry with respect to the negative electrode current collector may be the same as the angle formed by removing only the solvent from the negative electrode slurry with the negative electrode current collector (eg, the sliding angle of the negative electrode mixture layer). Therefore, it may have a deviation within ⁇ 5%.
  • the contact angle of the negative electrode slurry with respect to the negative electrode current collector may be 60 ° or more, more specifically 70 ° or more; greater than 80°; greater than 90°; greater than 100°; 60-100°; 60-80°; 60-75°; 65-95°; 60 ⁇ 95°; 70-99°; 65-89°; 65-84°; Or it may be 65-78°.
  • the present invention prevents unrolling of the negative electrode mixture layer by controlling the static water contact angle of the negative electrode current collector and the angle between the end of the negative electrode mixture layer formed on the negative electrode current collector and the negative electrode current collector to satisfy the above-described range, while preventing unrolling of the negative electrode mixture layer at the end. It is possible to prevent the N/P ratio of the positive electrode composite layer and the negative electrode composite layer from being reversed.
  • the surface energy of the negative electrode current collector according to the present invention is increased by introducing a certain amount of alkyl groups to the surface, the static water contact angle of the negative electrode current collector is adjusted to satisfy a specific range as described above, and the negative electrode mixture layer is formed. It is possible to realize high adhesion to the solid content of the mixture layer, such as constituent components, for example, a negative electrode active material, a binder, and a conductive agent.
  • the negative electrode according to the present invention may include a negative electrode current collector having a static water contact angle of 60° to 100°.
  • the negative electrode has a static water contact angle of 60 to 90 °; 60-80°; 65-95°; 65-80°; 60-70°; 70-80°;
  • a negative electrode current collector having an angle of 64 to 79° may be provided.
  • the negative electrode according to the present invention may have a peel strength of the negative electrode mixture layer with respect to the negative electrode current collector of 10 gf / cm to 50 gf / cm according to ASTM D903, specifically, for the negative electrode current collector Peel strength of the negative electrode mixture layer is 10 gf / cm to 40 gf / cm; 10 gf/cm to 30 gf/cm; 10 gf/cm to 20 gf/cm; 20 gf/cm to 50 gf/cm; 30 gf/cm to 50 gf/cm; 20 gf/cm to 40 gf/cm; or 15 gf/cm to 43 gf/cm.
  • the negative electrode mixture layer is a layer that imparts electrical activity to the battery by including the negative electrode active material, and may include a negative electrode active material, a conductive material, a binder, an additive, and the like.
  • the anode active material may include, for example, a carbon material and a silicon material.
  • the carbon material refers to a carbon material containing carbon atoms as a main component, and examples of the carbon material include graphite having a completely layered crystal structure such as natural graphite, a low-crystalline graphene structure; a hexagonal honeycomb plane of carbon soft carbon having this layered structure) and hard carbon in which these structures are mixed with amorphous portions, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, acetylene black, Ketjen black, carbon It may include nanotubes, fullerenes, activated carbon, graphene, carbon nanotubes, and the like, preferably at least one selected from the group consisting of natural graphite, artificial graphite, graphene, and carbon nanotubes.
  • the silicon material is a particle containing silicon (Si) as a main component as a metal component, and may include at least one of a silicon (Si) particle and a silicon oxide (SiO X , 0.8 ⁇ X ⁇ 2.2) particle.
  • the silicon material may include silicon (Si) particles, silicon monoxide (SiO) particles, silicon dioxide (SiO 2 ) particles, or a mixture of these particles.
  • the silicon material may have a mixed form of crystalline particles and amorphous particles, and the ratio of the amorphous particles is 50 to 100 parts by weight, specifically 50 to 90 parts by weight, based on 100 parts by weight of the total silicon material; It may be 60 to 80 parts by weight or 85 to 100 parts by weight.
  • the ratio of amorphous particles included in the silicon material within the above range, it is possible to improve thermal stability and flexibility of the electrode within a range that does not degrade electrical properties.
  • the silicon material includes a carbon material and a silicon material, but may be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the negative electrode mixture layer, specifically, 5 to 20 parts by weight based on 100 parts by weight of the negative electrode mixture layer; 3 to 10 parts by weight; 8 to 15 parts by weight; 13 to 18 parts by weight; or 2 to 7 parts by weight.
  • the present invention by adjusting the contents of the carbon material and the silicon material included in the negative electrode active material within the above ranges, it is possible to improve the charging capacity per unit mass while reducing lithium consumption and irreversible capacity loss during initial charging and discharging of the battery.
  • polyvinyl alcohol PVA
  • carboxymethyl cellulose CMC
  • hydroxypropyl cellulose diacetyl cellulose
  • polyvinyl chloride PVC
  • carboxylated polyvinyl chloride C-PVC
  • Polyvinylfluoride polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane (PU), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyethylene (PE), polypropylene ( PP), styrene-butadiene rubber (SBR), acrylated styrene-butadiene rubber, epoxy resin, nylon, and the like
  • PVA polyvinyl alcohol
  • CMC carboxymethyl cellulose
  • C-PVC carboxylated polyvinyl chloride
  • Polyvinylfluoride polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane (PU), polytetrafluoroethylene (PTFE), polyvin
  • the binder may include 1 to 10 parts by weight, specifically 2 to 8 parts by weight, based on 100 parts by weight of the total of the negative electrode mixture layer; Alternatively, 1 to 5 parts by weight of the conductive material may be included.
  • the negative electrode mixture layer may have an average thickness of 100 ⁇ m to 200 ⁇ m, specifically, 100 ⁇ m to 180 ⁇ m, 100 ⁇ m to 150 ⁇ m, 120 ⁇ m to 200 ⁇ m, 140 ⁇ m to 200 ⁇ m, or 140 ⁇ m to 140 ⁇ m. It may have an average thickness of 160 ⁇ m.
  • the negative electrode for a lithium secondary battery according to the present invention has the above-described configuration, thereby not only increasing the adhesive strength between the negative electrode current collector and the negative electrode composite layer, but also having a trade-off relationship with the adhesive strength, Since the contact angle of the end portion of the composite layer with respect to the negative electrode current collector can be increased, the safety of the battery is more excellent and the effect of excellent performance can be exhibited.
  • a surface treatment step of treating the negative current collector with atmospheric pressure plasma is
  • the normal pressure plasma treatment is performed under a mixed gas condition of an inert gas and a hydrocarbon gas to provide a method for manufacturing a negative electrode for a lithium secondary battery.
  • anode for a lithium secondary battery may be manufactured by performing a step of forming an anode mixture layer by applying and drying a cathode slurry containing an anode active material on the treated region.
  • the surface treatment step may be performed by atmospheric pressure plasma treatment of the entire surface of the negative electrode current collector or only the region where the negative electrode mixture layer is formed.
  • an alkyl group having 1 to 6 carbon atoms may be introduced to the surface of the anode current collector by using a mixed gas containing a hydrocarbon gas together with an inert gas during normal pressure plasma treatment.
  • normal pressure plasma applies an alternating electric field between electrodes facing each other so that electrons are accelerated to high energy inside the reactor by the electric field, and the accelerated electrons are generated by the gas supplied to the reactor (e.g., inert gas and hydrocarbon gas). mixed gas) and is separated into atomic ions.
  • the separated ions combine with surrounding electrons to form radicals, which collide with electrons again and are decomposed into radicals again.
  • Radicals generated by repeating this process are ejected to the surface of the anode current collector, which is an object to be treated, to remove organic matter, and the surface characteristics can be changed by binding an alkyl group to the surface of the current collector.
  • the hydrocarbon gas may be used without particular limitation as long as it is a gas capable of providing an alkyl group having 1 to 6 carbon atoms, but specifically, methane gas (CH 4 ), ethane gas (CH 3 CH 3 ), n-propane gas (CH 3 CH 2 CH 3 ), n-butane gas (CH 3 CH 2 CH 2 CH 3 ), and the like may be used.
  • methane gas CH 4
  • ethane gas CH 3
  • n-propane gas CH 3 CH 2 CH 3
  • n-butane gas CH 3 CH 2 CH 2 CH 3
  • an alkyl group having 1 to 6 carbon atoms may be introduced to the surface of the anode current collector that has been surface-treated accordingly, and the alkyl group having 1 to 6 carbon atoms includes a methyl group (CH 3 -), an ethyl group (CH 3 CH 2 -), It may include at least one of an n-propyl group (CH 3 CH 2 CH 2 -) and an n-butyl group (CH 3 CH 2 CH 2 CH 2 -).
  • the anode current collector uses at least one gas of methane gas (CH 4 ) and ethane gas (CH 3 CH 3 ) during normal pressure plasma treatment to obtain a methyl group (CH 3 -) and an ethyl group (CH 3 CH 2 -) may have a surface treated with one or more alkyl groups.
  • CH 4 methane gas
  • CH 3 CH 3 ethane gas
  • the anode current collector uses at least one gas of methane gas (CH 4 ) and ethane gas (CH 3 CH 3 ) during normal pressure plasma treatment to obtain a methyl group (CH 3 -) and an ethyl group (CH 3 CH 2 -) may have a surface treated with one or more alkyl groups.
  • a certain ratio of alkyl groups may be introduced to the surface of the anode current collector, and for this purpose, when normal pressure plasma is performed, the partial pressure of hydrocarbon gas included in the mixed gas, the flow rate of the mixed gas, and power frequency conditions are set within a specific range. You can control it.
  • the partial pressure of the hydrocarbon gas contained in the mixed gas can be adjusted to 0.1 to 10% during atmospheric plasma treatment, and more specifically, the partial pressure of the hydrocarbon gas to 0.1 to 8 %; 0.1 to 5%; 0.1 to 3%; 0.5 to 5%; 1 to 7%; 5 to 9%; 3 to 7%; 2 to 8%; Or it can be adjusted to 1 to 5%.
  • a mixed gas of an inert gas and a hydrocarbon gas is used as a mixed gas during normal pressure plasma treatment, but the partial pressure of the hydrocarbon gas is 3 to 5 of the total gas. may be %.
  • the above-described mixed gas is projected at a flow rate of 0.1 to 40 L/min, preferably transmitted at a flow rate of 1 to 10 L/min, and when the flow rate is less than 0.1 L/min, the process time is reduced.
  • the flow rate is less than 0.1 L/min, the process time is reduced.
  • the normal pressure plasma treatment may be performed for 0.05 seconds to 1 hour using an RF power source having a frequency of 0.1 MHz to 50 MHz.
  • the normal pressure plasma treatment is 0.1 MHz to 20 MHz; 0.1 MHz to 10 MHz; 1 MHz to 50 MHz; 5 MHz to 30 MHz; 10 MHz to 30 MHz; 20 MHz to 40 MHz; or 1 MHz to 10 MHz frequency using RF power for 0.05 seconds to 30 minutes; 0.05 seconds to 20 minutes; 0.05 seconds to 10 minutes; 0.05 seconds to 5 minutes; 0.05 seconds to 1 minute; 0.05 sec to 10 sec; Alternatively, it may be performed for 0.05 seconds to 2 seconds.
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has conductivity, but is specifically made of stainless steel, copper, nickel, carbon, fired carbon, titanium, or an aluminum-cadmium alloy. formed can be used.
  • a copper current collector may be used as the negative electrode current collector.
  • the front surface of the copper (Cu) collector provided through the transfer path was treated with atmospheric plasma formed using RF power for 0.05 to 1 second.
  • the mixed gas was supplied at a flow rate of 5 ⁇ 0.1 L/min, and the composition and partial pressure of the mixed gas and the frequency of the RF power were adjusted as shown in Table 1 below.
  • a negative electrode slurry (solvent: water) containing 83% by weight of graphite and 15% by weight of silicon oxide (SiO 2 ) and 2% by weight of SBR as a binder is applied to the surface of the copper current collector subjected to atmospheric pressure plasma treatment as a negative electrode active material based on solid content.
  • a negative electrode slurry (solvent: water) containing 83% by weight of graphite and 15% by weight of silicon oxide (SiO 2 ) and 2% by weight of SBR as a binder is applied to the surface of the copper current collector subjected to atmospheric pressure plasma treatment as a negative electrode active material based on solid content.
  • rolling to prepare a negative electrode for a lithium secondary battery after drying at 100 °C.
  • the surface of the anode current collector was treated with atmospheric plasma. After that, 3 drops of the negative electrode slurry were dropped on the surface of each negative electrode current collector subjected to normal pressure plasma treatment, and the angle formed by the negative electrode slurry formed on the surface of the negative electrode current collector (i.e., the contact angle) was measured with a contact angle measuring instrument (model name: SmartDrop, manufacturer: Femtofab Co. Ltd) was used to measure.
  • a contact angle measuring instrument model name: SmartDrop, manufacturer: Femtofab Co. Ltd
  • the negative electrode slurry contains 83% by weight of graphite and 15% by weight of silicon oxide (SiO 2 ) and 2% by weight of SBR as a binder as negative electrode active materials based on solid content, and water as a solvent is 10% by weight based on the total solid weight mixed
  • SiO 2 silicon oxide
  • SBR silicon oxide
  • the negative electrode for a lithium secondary battery according to the present invention has excellent adhesion between the negative electrode current collector and the negative electrode mixture layer, and the contact angle at the end of the negative electrode mixture layer with respect to the negative electrode current collector is excellent. high can be seen.
  • the negative electrode for a lithium secondary battery of Example exhibited a static water contact angle of 66 to 95 °, and the contact angle formed by the end of the negative electrode mixture layer with respect to the negative electrode current collector was found to be 60 to 90 °.
  • an alkyl group is introduced at a certain ratio (specifically, a certain atomic ratio) to the surface of the anode current collector, so that a repulsive force against the solvent, specifically water, contained in the anode slurry is induced during the manufacture of the anode mixture layer, and the anode current collector and the anode This means that the contact angle formed by the end of the mixture layer is high.
  • the negative electrode for a lithium secondary battery of Example had a peel strength of 10 to 40 gf/cm between the negative electrode current collector and the negative electrode mixture layer. This means that the adhesion between the negative electrode current collector and the negative electrode mixture layer is improved together.
  • the negative electrode for a lithium secondary battery treats the surface of the negative electrode current collector with normal pressure plasma, and the static contact angle with water on the surface of the negative electrode current collector and the angle formed by the end of the negative electrode mixture layer with respect to the negative electrode current collector (i.e., contact angle) can be controlled within a specific range, and through this, not only can the adhesion between the negative electrode current collector and the negative electrode mixture layer be improved, but also the inversion of the N / P ratio of the positive electrode and the negative electrode at the end of the electrode assembly is induced, and the negative electrode It can be seen that the occurrence of unrolling of the mixture layer can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 리튬 이차전지용 음극 및 이의 제조방법에 관한 것으로서, 상기 리튬 이차전지용 음극은 음극 집전체의 표면을 상압 플라즈마 처리하여 음극 집전체 표면의 물에 정적 접촉각과 음극 집전체에 대하여 음극 합재층의 단부가 이루는 각도(즉, 접촉 각도)를 특정범위로 제어함으로써 음극 집전체와 음극 합재층 간의 접착력을 향상시킬 수 있을 뿐만 아니라, 전극 조립체 단부에서 양극과 음극의 N/P 비율 역전 등이 유도되는 것을 방지하고, 음극 합재층의 미압연이 발생하는 것을 예방할 수 있으므로, 이를 포함하는 리튬 이차전지의 안전성과 성능 저하를 개산하는 효과가 우수하다.

Description

리튬 이차전지용 음극 및 이의 제조방법
본 발명은 리튬 이차전지용 음극 및 이의 제조방법에 관한 것이다.
본 출원은 2021. 08. 12일자 대한민국 특허 출원 제10-2021-0106413호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개신된 모든 내용은 본 명세서의 일부로서 포함된다.
리튬 이차전지는 양극과 음극에서 리튬 이온의 삽입과 탈리를 반복하면서 전지 작용을 한다. 이들 전극 사이에 리튬 이온은 이동하나 전자는 이동하지 못하는 리튬염 함유 전해질과, 양극과 음극을 맞닿지 않도록 분리하여 이들의 접촉으로 인한 전극간 단락을 방지하는 기능을 수행하는 분리막이 구비된다.
이와 같은, 리튬 이차전지는 고용량화, 고밀도화 측면에서 많은 연구가 진행되었으며, 최근에는 수명과 안전성 향상을 위한 연구가 다각도로 이뤄지고 있다. 구체적으로, 리튬 이차전지에 사용되는 전극은 일반적으로 집전체 상에 전극 슬러리를 일정 두께로 코팅하고 건조하여 합재층을 형성함으로써 제조되는데, 이렇게 형성된 합재층은 슬러리가 건조될 때 액상의 바인더 용제가 기체상으로 건조되면서 고체상으로 변화하게 되고, 입자간, 집전체와 입자간에 고상의 바인더로 존재하면서 접착력을 갖게 된다. 이때, 입자와 집전체간의 접착력이 저감되면, 입자로부터 집전체로의 전자 이동에 저항을 받게 되어 전자전도 속도가 감소되므로, 전지의 충방전 속도 특성 및 사이클 특성이 저하되는 문제가 있다. 또한, 전지에 외력이 가해지는 경우 집전체와 합재층의 분리가 발생되기 용이하므로 안전성이 저하되는 한계도 있다.
이러한 문제를 개선하기 위하여, 전극 합재층과 집전체 간의 접착력을 향상시키기 위하여 합재층의 바인더 함량을 증가시키거나, 집전체의 표면 구조를 개질하거나 또는 접착력을 향상시키기 위한 프라이머층을 형성하는 기술이 개발된 바 있다. 그러나, 전극 합재층의 바인더 함량이 증가하면 합재층 내의 전극활물질 및 도전재의 함유량이 상대적으로 감소되어 전극 저항이 증가하고, 도전성이 낮아져 전지의 성능이 감소하는 한계가 있다. 또한, 집전체의 표면 구조를 개질하거나, 프라이머층 등을 형성하면, 전극이 음극인 경우 음극 합재층 단부가 집전체와 이루는 접촉 각도가 낮아져 양극과 음극의 N/P 비율이 역전될 수 있으므로, 내부 단락 등의 안전성 문제와 전지의 용량 낭비가 발생될 수 있다. 따라서, 전극 합재층과 집전체 간의 접착력을 증가시켜 전지의 안전성과 성능을 모두 향상시킬 수 있는 기술의 개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허공보 제10-2016-0033482호
이에, 본 발명의 목적은 전극 합재층과 전극 집전체 간의 접착력을 향상시키면서, 양극과 음극의 N/P 비율 역전 등으로 인한 전지의 안전성이나 성능 저하 문제를 개선할 수 있는 전극, 특히 리튬 이차전지용 음극을 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
음극 집전체, 및 상기 음극 집전체 상에 형성되고 음극 활물질을 함유하는 음극 합재층을 구비하며;
상기 음극 집전체는 물에 대한 정적 접촉각이 60° 내지 100°인 리튬 이차전지용 음극을 제공한다.
이때, 상기 음극 집전체는 탄소수 1 내지 6의 알킬기로 표면 처리된 것일 수 있다.
또한, 상기 음극 합재층은 음극 집전체를 기준으로 단부가 이루는 각도가 60° 이상일 수 있으며, 음극 집전체에 대한 음극 합재층의 박리 강도(ASTM D903 기준)는 10 gf/㎝ 내지 50 gf/㎝일 수 있다.
또한, 본 발명은 일실시예에서,
음극 집전체를 상압 플라즈마 처리하는 표면 처리 단계; 및
표면 처리된 음극 집전체의 표면에 음극활물질을 함유하는 슬러리를 도포 및 건조하여 음극 합재층을 형성하는 단계를 포함하고,
상기 상압 플라즈마 처리는 불활성 가스 및 탄화수소 가스의 혼합 가스 조건 하에서 수행되는 리튬 이차전지용 음극의 제조방법을 제공한다.
여기서, 상기 표면 처리 단계에 있어서, 상압 플라즈마 처리는 0.1MHz 내지 50MHz 주파수의 RF 전원을 사용하여 0.05초 내지 1시간 동안 수행될 수 있다.
또한, 상기 상압 플라즈마 처리는 불활성 가스 및 탄화수소 가스의 혼합 가스 조건 하에서 수행되되, 상기 혼합 가스는 0.1 내지 10%의 분압으로 탄화수소 가스를 포함할 수 있다.
아울러, 상기 탄화수소 가스는 메탄(CH4) 가스 및 에탄(C2H6) 가스 중 어느 하나 이상을 포함할 수 있다.
또한, 상기 음극 집전체는 스테인레스 스틸, 구리, 니켈, 카본, 소성탄소, 티타늄 또는 알루미늄-카드뮴 합금 중 어느 하나로 형성될 수 있다.
본 발명에 따른 리튬 이차전지용 음극은 음극 집전체의 표면을 상압 플라즈마 처리하여 음극 집전체 표면의 물에 정적 접촉각과 음극 집전체에 대하여 음극 합재층의 단부가 이루는 각도(즉, 접촉 각도)를 특정 범위로 제어함으로써 음극 집전체와 음극 합재층 간의 접착력을 향상시킬 수 있을 뿐만 아니라, 전극 조립체 단부에서 양극과 음극의 N/P 비율 역전 등이 유도되는 것을 방지하고, 음극 합재층의 미압연이 발생하는 것을 예방할 수 있으므로, 이를 포함하는 리튬 이차전지의 안전성과 성능 저하를 개산하는 효과가 우수하다.
도 1은 음극 집전체의 정적 물 접촉각 측정 결과를 나타낸 이미지이다.
도 2는 음극 집전체에 대한 음극 슬러리의 접촉 각도 측정 결과를 나타낸 이미지이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
아울러, 본 발명에서, "주성분"이란, 조성물 또는 특정 성분의 전체 중량에 대하여 50 중량% 이상, 60 중량% 이상, 70 중량% 이상, 80 중량% 이상, 90중량% 이상, 95 중량% 이상 또는 97.5 중량% 이상인 것을 의미할 수 있으며, 경우에 따라서는 조성물 또는 특정 성분 전체를 구성하는 경우, 즉 100 중량%를 의미할 수도 있다.
또한, 본 발명에서, "합재층의 고형분"이란, 합재층 제조 시 사용되는 음극 슬러리에 있어서 용매를 제거한 잔류 성분들을 의미할 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
리튬 이차전지용 음극
본 발명은 일실시예에서,
음극 집전체, 및 상기 음극 집전체 상에 형성되고 음극 활물질을 함유하는 음극 합재층을 구비하며;
상기 음극 집전체는 물에 대한 정적 접촉각이 60° 내지 100°인 리튬 이차전지용 음극을 제공한다.
본 발명에 따른 리튬 이차전지용 음극은 음극 집전체 상에 음극 활물질을 함유하는 음극 합재층을 포함하는 구성을 갖는다.
이때, 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니나, 구체적으로는 스테인레스 스틸, 구리, 니켈, 카본, 소성 탄소, 티타늄 또는 알루미늄-카드뮴 합금 중 어느 하나로 형성된 것을 사용할 수 있다. 하나의 예로서, 상기 음극 집전체는 구리 집전체를 사용할 수 있다.
또한, 상기 음극 집전체는 음극 합재층이 형성되는 표면이 표면처리되어 물에 대한 친화력은 낮으면서도, 음극 합재층에 대한 높은 접착력을 나타낼 수 있다. 종래 일반적으로 전극 집전체에 적용되는 플라즈마 처리, 전해 처리 등의 표면 처리법은 집전체 표면을 친수화하여 전극 합재층에 대한 접착력을 향상시키는 것을 목적으로 수행되었다. 그러나, 이와 같은 방법을 리튬 이차전지의 음극 집전체에 적용하면 음극 합재층에 대한 접착력은 향상되나, 음극 집전체에 대한 음극 합재층 단부의 접촉 각도(예컨대, 음극 합재층의 "슬라이딩 각도")가 낮아져 양극과 음극의 단부에서의 N/P 비율이 역전될 수 있다. 뿐만 아니라, 음극 집전체에 대한 음극 단부의 접촉 각도가 낮으면, 음극 합재층 단부에서의 미압연이 발생하여 합재층의 탈리가 유발될 수 있다.
이에, 본 발명은 음극 집전체의 표면을 불활성 가스와 탄화수소 가스의 혼합 가스 존재 하에서 상압 플라즈마로 처리함으로써 음극 집전체 표면에 탄소수 1 내지 6의 알킬기가 도입된 구조를 포함할 수 있다. 이때, 상기 탄소수 1 내지 6의 알킬기로는 메틸기(CH3-), 에틸기(CH3CH2-), n-프로필기(CH3CH2CH2-) 및 n-부틸기(CH3CH2CH2CH2-) 중 1종 이상을 포함할 수 있다.
하나의 예로서, 상기 음극 집전체는 메틸기(CH3-) 및 에틸기(CH3CH2-) 중 1종 이상의 알킬기로 표면이 처리된 것일 수 있다.
또한, 상기 알킬기는 음극 집전체 표면에 일정 비율로 도입되어 음극 집전체에 대한 전계 방출형 주사전자현미경(FE-SEM) 분석을 통한 탄소 원자 맵핑 시 탄소 원자가 전체 원자의 1 내지 40 원자%로 확인될 수 있으며, 구체적으로는 탄소 원자가 전체 원자의 1 내지 30 원자%; 1 내지 20 원자%; 1 내지 15 원자%; 10 내지 40 원자%; 20 내지 40 원자%; 10 내지 30 원자%; 20 내지 30 원자%; 10 내지 20 원자%; 또는 5 내지 15 원자%로 확인될 수 있다.
아울러, 상기 음극 집전체는 표면에 알킬기가 도입됨으로써 음극 합재층의 제조 시 슬러리에 함유된 용매에 대한 반발력을 높여 음극 합재층 단부와 이루는 접촉 각도를 높게 구현하면서, 동시에 음극 합재층에 대한 접착력을 높게 부여할 수 있다.
구체적으로, 본 발명에 따른 음극 집전체는 표면에 일정량의 알킬기가 도입되어 음극 슬러리에 함유된 용매에 대한 반발력이 증가하므로 음극 슬러리가 집전체 상에 도포되는 경우, 도포된 음극 슬러리의 가장자리 단부가 음극 집전체와 이루는 각도(즉, 음극 집전체의 음극 슬러리에 대한 접촉각)는 높게 구현될 수 있다. 또한, 상기 음극 집전체에 대한 음극 슬러리의 접촉각은 음극 슬러리에서 용매만 제거되어 형성되는 음극 합재층이 음극 집전체와 이루는 각도(예컨대, 음극 합재층의 슬라이딩 각도)와 동일할 수 있으며, 경우에 따라서는 ±5% 이내의 편차를 가질 수 있다.
하나의 예로서, 본 발명에 따른 음극은 음극 집전체에 대한 음극 슬러리의 접촉각은 60° 이상일 수 있으며, 보다 구체적으로는 70° 이상; 80° 이상; 90° 이상; 100° 이상; 60~100°; 60~80°; 60~75°; 65~95°; 60~95°; 70~99°; 65~89°; 65~84°; 또는 65~78°일 수 있다.
본 발명은 음극 집전체의 정적 물 접촉각과 음극 집전체 상에 형성된 음극 합재층 단부가 음극 집전체와 이루는 각도를 상술된 범위를 만족하도록 제어함으로써 음극 합재층의 미압연을 방지하는 한편, 단부에서의 양극 합재층과 음극 합재층의 N/P 비율이 역전되는 것을 예방할 수 있다.
또한, 본 발명에 따른 음극 집전체는 표면에 일정량의 알킬기가 도입되어 표면 에너지가 증가하므로, 상술된 바와 같이 음극 집전체의 정적 물 접촉각이 특정 범위를 만족하도록 조절될 뿐만 아니라, 음극 합재층을 구성하는 성분, 예컨대 음극활물질, 바인더, 도전제 등의 합재층 고형분에 대한 높은 접착력을 구현할 수 있다.
하나의 예로서, 본 발명에 따른 음극은 정적 물 접촉각(static water contact angle)이 60° 내지 100°인 음극 집전체를 포함할 수 있다. 구체적으로, 상기 음극은 정적 물 접촉각이 60~90°; 60~80°; 65~95°; 65~80°; 60~70°; 70~80°; 또는 64~79°인 음극 집전체를 구비할 수 있다.
다른 하나의 예로서, 본 발명에 따른 음극은 ASTM D903에 따른, 음극 집전체에 대한 음극 합재층의 박리 강도가 10 gf/㎝ 내지 50 gf/㎝일 수 있으며, 구체적으로는 음극 집전체에 대한 음극 합재층의 박리 강도가 10 gf/㎝ 내지 40 gf/㎝; 10 gf/㎝ 내지 30 gf/㎝; 10 gf/㎝ 내지 20 gf/㎝; 20 gf/㎝ 내지 50 gf/㎝; 30 gf/㎝ 내지 50 gf/㎝; 20 gf/㎝ 내지 40 gf/㎝; 또는 15 gf/㎝ 내지 43 gf/㎝일 수 있다.
한편, 상기 음극 합재층은 음극활물질을 포함하여 전지에 전기적 활성을 부여하는 층으로서, 음극활물질, 도전재, 바인더, 첨가제 등을 포함할 수 있다.
상기 음극활물질은 예를 들어, 탄소 물질과 실리콘 물질을 포함할 수 있다. 상기 탄소 물질은 탄소 원자를 주성분으로 하는 탄소 물질을 의미하며, 이러한 탄소 물질로는 천연 흑연과 같이 층상 결정구조가 완전히 이루어진 그라파이트, 저결정성 층상 결정 구조(graphene structure; 탄소의 6각형 벌집 모양 평면이 층상으로 배열된 구조)를 갖는 소프트 카본 및 이런 구조들이 비결정성 부분들과 혼합되어 있는 하드 카본, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화 탄소, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 카본나노튜브, 플러렌, 활성탄, 그래핀, 탄소나노튜브 등을 포함할 수 있고, 바람직하게는 천연 흑연, 인조 흑연, 그래핀 및 탄소나노튜브로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 실리콘 물질은 금속 성분으로 규소(Si)를 주성분으로 포함하는 입자로서, 규소(Si) 입자 및 산화규소(SiOX, 0.8≤X≤2.2) 입자 중 1종 이상을 포함할 수 있다. 하나의 예로서, 상기 실리콘 물질은 규소(Si) 입자, 일산화규소(SiO) 입자, 이산화규소(SiO2) 입자, 또는 이들의 입자가 혼합된 것을 포함할 수 있다.
아울러, 상기 실리콘 물질은 결정질 입자와 비결정질 입자가 혼합된 형태를 가질 수 있으며, 상기 비결정질 입자의 비율은 실리콘 물질 전체 100 중량부에 대하여 50 내지 100 중량부, 구체적으로는 50 내지 90 중량부; 60 내지 80 중량부 또는 85 내지 100 중량부일 수 있다. 본 발명은 실리콘 물질에 포함된 비결정질 입자의 비율을 상기와 같은 범위로 제어함으로써 전극의 전기적 물성을 저하시키지 않는 범위에서 열적 안정성과 유연성을 향상시킬 수 있다.
또한, 상기 실리콘 물질은 탄소 물질과 실리콘 물질을 포함하되, 음극 합재층 100 중량부에 대하여 1 내지 20 중량부로 포함될 수 있으며, 구체적으로는 음극 합재층 100 중량부에 대하여 5 내지 20 중량부; 3 내지 10 중량부; 8 내지 15 중량부; 13 내지 18 중량부; 또는 2 내지 7 중량부로 포함될 수 있다.
본 발명은 음극활물질에 포함된 탄소 물질과 실리콘 물질의 함량을 상기와 같은 범위로 조절함으로써 전지의 초기 충방전 시 리튬 소모량과 비가역 용량 손실을 줄이면서 단위 질량당 충전 용량을 향상시킬 수 있다.
이와 더불어, 상기 바인더로는 폴리비닐알콜(PVA), 카르복시메틸셀룰로오스(CMC), 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드(PVC), 카르복실화된 폴리비닐클로라이드(C-PVC), 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄(PU), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVdF), 폴리에틸렌(PE), 폴리프로필렌(PP), 스티렌부타디엔 러버(SBR), 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있다. 하나의 예로서, 상기 바인더는 카르복시메틸셀룰로오스(CMC) 및 스티렌부타디엔 러버(SBR) 중 1종 이상을 사용할 수 있다.
또한, 상기 바인더는 음극 합재층은 전체 100 중량부에 대하여, 1~10 중량부로 포함할 수 있고, 구체적으로는 2~8 중량부; 또는 도전재 1~5 중량부로 포함할 수 있다.
아울러, 상기 음극 합재층은 100㎛ 내지 200㎛의 평균 두께를 가질 수 있고, 구체적으로는 100㎛ 내지 180㎛, 100㎛ 내지 150㎛, 120㎛ 내지 200㎛, 140㎛ 내지 200㎛ 또는 140㎛ 내지 160㎛의 평균 두께를 가질 수 있다.
본 발명에 따른 리튬 이차전지용 음극은 상술된 바와 같은 구성을 가짐으로써, 음극 집전체와 음극 합재층 간의 접착력을 증가시킬 수 있을 뿐만 아니라, 상기 접착력과 트레이드-오프(trade-off) 관계를 갖는, 음극 집전체에 대한 합재층 단부의 접촉 각도를 높게 구현할 수 있으므로, 전지의 안전성이 보다 우수하고, 성능이 뛰어난 효과를 나타낼 수 있다.
리튬 이차전지용 음극의 제조방법
또한, 본 발명은 일실시예에서,
음극 집전체를 상압 플라즈마 처리하는 표면 처리 단계; 및
표면 처리된 음극 집전체의 표면에 음극활물질을 함유하는 슬러리를 도포 및 건조하여 음극 합재층을 형성하는 단계를 포함하고,
상기 상압 플라즈마 처리는 불활성 가스 및 탄화수소 가스의 혼합 가스 조건 하에서 수행되는 리튬 이차전지용 음극의 제조방법을 제공한다.
본 발명에 따른 리튬 이차전지용 음극의 제조방법은 음극 집전체의 표면에 음극 합재층을 위한 슬러리를 도포하기 이전에, 음극 슬러리가 도포되는 영역을 상압 플라즈마로 표면 처리하는 단계를 수행하고, 이후 표면 처리된 영역에 음극활물질을 함유하는 음극 슬러리를 도포 및 건조하여 음극 합재층을 형성하는 단계를 수행함으로써 리튬 이차전지용 음극을 제조할 수 있다.
여기서, 상기 표면 처리 단계는 음극 집전체의 표면을 전체적으로 또는 음극 합재층이 형성되는 영역만 부분적으로 상압 플라즈마 처리하여 수행될 수 있다. 또한, 상기 제조방법은 상압 플라즈마 처리 시 불활성 가스와 함께 탄화수소 가스를 함유하는 혼합 가스를 사용함으로써 음극 집전체 표면에 탄소수 1 내지 6의 알킬기가 도입될 수 있다.
구체적으로, 상압 플라즈마는 서로 대향된 전극 사이에 교류 전기장을 인가하여 전기장에 의해 전자가 반응기 내부에서 높은 에너지로 가속되고, 이렇게 가속화된 전자는 반응기에 공급된 가스(예컨대, 불활성 가스와 탄화수소 가스의 혼합 가스)와 충돌하여 원자이온으로 분리되는데, 이렇게 분리된 이온은 주위의 전자와 결합하여 라디컬을 형성하며, 라디컬은 다시 전자와 충돌하여 라디칼로 다시 분해된다. 이러한 과정이 반복되어 생성된 라디칼을 피처리물인 음극 집전체 표면으로 분출시켜 유기물을 제거하며 집전체 표면에 알킬기가 결합되어 표면의 특성을 바꿀 수 있다.
여기서, 상기 탄화수소 가스는 탄소수 1 내지 6의 알킬기를 제공할 수 있는 가스라면 특별히 제한되지 않고 사용될 수 있으나, 구체적으로는 메탄 가스(CH4), 에탄 가스(CH3CH3), n-프로판 가스(CH3CH2CH3), n-부탄 가스(CH3CH2CH2CH3) 등을 사용할 수 있다.
또한, 이에 따라 표면 처리된 음극 집전체는 표면에 탄소수 1 내지 6의 알킬기가 도입될 수 있으며, 상기 탄소수 1 내지 6의 알킬기로는 메틸기(CH3-), 에틸기(CH3CH2-), n-프로필기(CH3CH2CH2-) 및 n-부틸기(CH3CH2CH2CH2-) 중 1종 이상을 포함할 수 있다.
하나의 예로서, 상기 음극 집전체는 상압 플라즈마 처리 시 메탄 가스(CH4) 및 에탄 가스(CH3CH3) 중 1종 이상의 가스를 사용하여, 메틸기(CH3-) 및 에틸기(CH3CH2-) 중 1종 이상의 알킬기로 표면이 처리된 것일 수 있다.
본 발명은 음극 집전체 표면에 도입되는 알킬기의 종류를 상기와 같이 제한함으로써 탄화수소의 사슬 길이가 길어져 집전체 표면의 소수성이 현저히 증가하는 것을 방지하는 할 수 있다.
또한, 상기 음극 집전체는 표면에 일정 비율의 알킬기가 도입될 수 있으며, 이를 위하여 상압 플라즈마 수행 시, 혼합 가스에 포함된 탄화수소 가스의 분압, 혼합 가스의 유속, 전원의 주파수 조건 등을 특정 범위로 제어할 수 있다.
구체적으로, 본 발명에 따른 리튬 이차전지용 음극의 제조방법은 상압 플라즈마 처리 시 혼합 가스에 함유된 탄화수소 가스의 분압을 0.1 내지 10%로 조절할 수 있고, 보다 구체적으로는 탄화수소 가스의 분압을 0.1 내지 8%; 0.1 내지 5%; 0.1 내지 3%; 0.5 내지 5%; 1 내지 7%; 5 내지 9%; 3 내지 7%; 2 내지 8%; 또는 1 내지 5%로 조절할 수 있다.
하나의 예로서, 본 발명에 따른 리튬 이차전지용 음극의 제조방법은 상압 플라즈마 처리 시 혼합 가스로서, 비활성 가스와 탄화수소 가스를 혼합한 가스를 사용하되, 상기 탄화수소 가스의 분압은 전체 가스의 3~5%일 수 있다.
아울러, 상기 상압 플라즈마 처리는 상술된 혼합 가스를 0.1 내지 40 L/min의 유속으로 투사되고, 바람직하게는 1 내지 10 L/min의 유속으로 투과되며, 유속이 0.1 L/min 미만인 경우 공정시간이 증가하는 문제가 있으며, 40 L/min을 초과하는 경우 안정성이 감소하는 문제가 있다.
또한, 상기 상압 플라즈마 처리는 0.1MHz 내지 50MHz 주파수의 RF 전원을 사용하여 0.05초 내지 1시간 동안 수행될 수 있다. 구체적으로, 상기 상압 플라즈마 처리는 0.1MHz 내지 20MHz; 0.1MHz 내지 10MHz; 1MHz 내지 50MHz; 5MHz 내지 30MHz; 10MHz 내지 30MHz; 20MHz 내지 40MHz; 또는 1MHz 내지 10MHz 주파수를 RF 전원을 사용하여 0.05초 내지 30분; 0.05초 내지 20분; 0.05초 내지 10분; 0.05초 내지 5분; 0.05초 내지 1분; 0.05초 내지 10초; 또는 0.05초 내지 2초 동안 수행될 수 있다.
한편, 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니나, 구체적으로는 스테인레스 스틸, 구리, 니켈, 카본, 소성탄소, 티타늄 또는 알루미늄-카드뮴 합금 중 어느 하나로 형성된 것을 사용할 수 있다. 하나의 예로서, 상기 음극 집전체는 구리 집전체를 사용할 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1~3 및 비교예 1~7. 리튬 이차전지용 음극의 제조
이송로를 통해 제공되는 구리(Cu) 집접체의 전면에, RF 전원을 이용하여 형성된 상압 플라즈마를 0.05~1초간 처리하였다. 이때, 상압 플라즈마 처리 시 혼합 가스는 5±0.1 L/min의 유속으로 공급하되, 상기 혼합 가스의 조성 및 분압과 RF 전원의 주파수는 하기 표 1에 나타낸 바와 같이 조절되었다.
또한, 표면 처리된 각 음극 집전체를 대상으로 전계 방출형 주사전자현미경(FE-SEM) 분석을 통한 탄소 원자 맵핑을 수행하여, 음극 집전체 표면의 전체 원자에 대한 탄소 원자의 비율을 측정하여, 하기 표 1에 나타냈다.
그런 다음, 상압 플라즈마 처리된 구리 집전체 표면에 고형분 기준 음극 활물질로 흑연 83 중량% 및 산화규소(SiO2) 15 중량%와 바인더인 SBR 2 중량%를 포함하는 음극 슬러리(용매: 물)를 도포하고, 100℃에서 건조한 후, 압연하여 리튬 이차전지용 음극을 제조하였다. 여기서, 음극 합재층의 압연 시 음극 합재층 단부가 음극 집전체와 이루는 각도가 낮아 미압연되는지 여부를 확인하였으며, 그 결과는 하기 표 1에 나타냈다.
혼합 가스 RF 전원
주파수 [MHz]
FE-SEM 분석 시,
탄소 원소의 비율
[원자%]
음극 합재층의
압연 여부
조성 분압 [%]
실시예 1 Ar 및 CH4 Ar:CH4=99:1 8±0.5 12±0.5 O
실시예 2 Ar 및 CH4 Ar:CH4=96:4 8±0.5 21±0.5 O
실시예 3 Ar 및 CH4 Ar:CH4=91:9 8±0.5 28±0.5 O
비교예 1 Ar Ar=100 8±0.5 0 X
비교예 2 Ar 및 CF4 Ar:CF4=96:4 8±0.5 21±0.5 O
비교예 3 Ar 및 O2 Ar:O2=96:4 8±0.5 0 X
비교예 4 Ar 및 CH4 Ar:CH4=99.99:0.01 8±0.5 0.8±0.01 O
비교예 5 Ar 및 CH4 Ar:CH4=80:20 8±0.5 63±0.5 O
비교예 6 Ar 및 CH4 Ar:CH4=96:4 0.01 4±0.02 X
비교예 7 Ar 및 CH4 Ar:CH4=96:4 60±0.5 47±0.5 O
실험예.
본 발명에 따른 리튬 이차전지용 음극을 평가하기 위하여 하기와 같은 실험을 수행하였다.
가) 음극 집전체의 정적 물 접촉각 측정
실시예 1~3 및 비교예 1~7에 제시된 방법과 동일하게 수행하여 음극 집전체의 표면을 상압 플라즈마 처리하였다. 상압 플라즈마 처리된 각 음극 집전체를 대상으로, 접촉각 측정기(모델명: SmartDrop, 제조사: Femtofab Co. Ltd)를 이용하여 정적 물 접촉각(static water contact angle, static WCA)을 측정하였다. 이때, 각 측정은 매 측정 시마다 10㎕의 물 또는 오일 한 방울을 표면에 떨어뜨려 수행하였으며, 3회씩 반복 수행하여 그 평균값을 도출하였다 그 결과는 하기 도 1과 표 2에 나타냈다.
나) 음극 집전체에 대한 음극 슬러리의 접촉 각도 측정
실시예 1~3 및 비교예 1~7에 제시된 방법과 동일하게 수행하여 음극 집전체의 표면을 상압 플라즈마 처리하였다. 그 후, 상압 플라즈마 처리된 각 음극 집전체의 표면에 음극 슬러리를 3방울씩 떨어뜨리고, 표면에 액적을 형성한 음극 슬러리가 음극 집전체와 이루는 각도(즉, 접촉 각도)를 접촉각 측정기(모델명: SmartDrop, 제조사: Femtofab Co. Ltd)를 이용하여 측정하였다.
이때, 상기 음극 슬러리는 고형분 기준 음극 활물질로 흑연 83 중량% 및 산화규소(SiO2) 15 중량%와 바인더인 SBR 2 중량%를 포함하고, 용매인 물은 전체 고형분의 중량에 대하여 10 중량%로 혼합되었다. 측정된 결과는 하기 도 2와 표 2에 나타냈다.
다) 음극 집전체와 음극 합재층의 접착력 측정
실시예 1~3 및 비교예 1~7에서 제조된 음극들을 대상으로 음극 합재층에 대한 180° 박리 강도(180° peel strength)를 ASTM D903에 따라 측정하였으며, 그 결과는 하기 표 2에 나타냈다.
정적 물 접촉각
[°]
음극 슬러리의 접촉 각도
[°]
집전체와 합재층의 접착력
[gf/㎝]
실시예 1 69 63 13
실시예 2 76 71 21
실시예 3 83 80 38
비교예 1 35 36 91
비교예 2 141 122 2.7
비교예 3 15 14 73
비교예 4 49 47 61
비교예 5 110 103 9
비교예 6 59 47 56
비교예 7 107 104 5
상기 도 1 및 도 2와 표 2에 나타낸 바와 같이, 본 발명에 따른 리튬 이차전지용 음극은 음극 집전체와 음극 합재층 간의 접착력이 우수하고, 음극 집전체에 대한 음극 합재층 단부에서의 접촉 각도가 높은 것을 알 수 있다.
구체적으로, 실시예의 리튬 이차전지용 음극은 66~95°의 정적 물 접촉각을 나타내고, 음극 집전체에 대하여 음극 합재층 단부가 이루는 접촉 각도가 60~90°인 것으로 나타났다. 이는 음극 집전체의 표면에 알킬기가 일정 비율(구체적으로는, 일정 원자 비율)로 도입되어 음극 합재층 제조 시 음극 슬러리에 함유된 용매, 구체적으로는 물에 대한 반발력이 유도되어 음극 집전체와 음극 합재층 단부가 이루는 접촉 각도가 높게 구현됨을 의미한다.
또한, 실시예의 리튬 이차전지용 음극은 음극 집전체와 음극 합재층의 박리 강도가 10~40 gf/㎝인 것으로 확인되었다. 이는 음극 집전체와 음극 합재층의 접착력이 함께 향상됨을 의미한다.
이러한 결과로부터, 본 발명에 따른 리튬 이차전지용 음극은 음극 집전체의 표면을 상압 플라즈마 처리하여 음극 집전체 표면의 물에 정적 접촉각과 음극 집전체에 대하여 음극 합재층의 단부가 이루는 각도(즉, 접촉 각도)를 특정 범위로 제어할 수 있으며, 이를 통해, 음극 집전체와 음극 합재층 간의 접착력을 향상시킬 수 있을 뿐만 아니라, 전극 조립체 단부에서 양극과 음극의 N/P 비율 역전 등이 유도되고, 음극 합재층의 미압연이 발생하는 것을 방지할 수 있음을 알 수 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.

Claims (10)

  1. 음극 집전체, 및 상기 음극 집전체 상에 형성되고 음극 활물질을 함유하는 음극 합재층을 구비하며;
    상기 음극 집전체는 물에 대한 정적 접촉각이 60° 내지 100°인 리튬 이차전지용 음극.
  2. 제1항에 있어서,
    음극 집전체는 탄소수 1 내지 6의 알킬기로 표면 처리된 것을 특징으로 하는 리튬 이차전지용 음극.
  3. 제1항에 있어서,
    음극 합재층은 음극 집전체를 기준으로 단부가 이루는 각도가 60° 이상인 리튬 이차전지용 음극.
  4. 제1항에 있어서,
    음극은 ASTM D903에 따른 음극 집전체에 대한 음극 합재층의 박리 강도가 10 gf/㎝ 내지 50 gf/㎝인 리튬 이차전지용 음극.
  5. 음극 집전체를 상압 플라즈마 처리하는 표면 처리 단계; 및
    표면 처리된 음극 집전체의 표면에 음극활물질을 함유하는 슬러리를 도포 및 건조하여 음극 합재층을 형성하는 단계를 포함하고,
    상기 상압 플라즈마 처리는 불활성 가스 및 탄화수소 가스의 혼합 가스 조건 하에서 수행되는 리튬 이차전지용 음극의 제조방법.
  6. 제5항에 있어서,
    혼합 가스는 0.1 내지 10%의 분압으로 탄화수소 가스를 포함하는 리튬 이차전지용 음극의 제조방법.
  7. 제5항에 있어서,
    탄화수소 가스는 메탄(CH4) 가스 및 에탄(C2H6) 가스 중 어느 하나 이상을 포함하는 리튬 이차전지용 음극의 제조방법.
  8. 제5항에 있어서,
    상압 플라즈마 처리는 0.1MHz 내지 50MHz 주파수의 RF 전원을 사용하는 리튬 이차전지용 음극의 제조방법.
  9. 제5항에 있어서,
    상압 플라즈마는 0.05초 내지 1시간 동안 수행되는 리튬 이차전지용 음극의 제조방법.
  10. 제5항에 있어서,
    음극 집전체는 스테인레스 스틸, 구리, 니켈, 카본, 소성탄소, 티타늄 또는 알루미늄-카드뮴 합금 중 어느 하나로 형성되는 리튬 이차전지용 음극의 제조방법.
PCT/KR2022/011673 2021-08-12 2022-08-05 리튬 이차전지용 음극 및 이의 제조방법 WO2023018118A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22856117.1A EP4207352A1 (en) 2021-08-12 2022-08-05 Negative electrode for lithium secondary battery and method for manufacturing same
CN202280006715.0A CN116406481A (zh) 2021-08-12 2022-08-05 锂二次电池用负极及其制造方法
JP2023520511A JP2023544053A (ja) 2021-08-12 2022-08-05 リチウム二次電池用負極およびその製造方法
US18/028,447 US20230335750A1 (en) 2021-08-12 2022-08-05 Negative electrode for lithium secondary battery and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210106413A KR20230024521A (ko) 2021-08-12 2021-08-12 리튬 이차전지용 음극 및 이의 제조방법
KR10-2021-0106413 2021-08-12

Publications (1)

Publication Number Publication Date
WO2023018118A1 true WO2023018118A1 (ko) 2023-02-16

Family

ID=85200828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011673 WO2023018118A1 (ko) 2021-08-12 2022-08-05 리튬 이차전지용 음극 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20230335750A1 (ko)
EP (1) EP4207352A1 (ko)
JP (1) JP2023544053A (ko)
KR (1) KR20230024521A (ko)
CN (1) CN116406481A (ko)
WO (1) WO2023018118A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009980A (ja) * 2008-06-27 2010-01-14 Yokohama City Univ リチウムイオン電池用負極材料及びそれを用いた急速充放電型リチウムイオン電池
KR101008750B1 (ko) * 2010-08-10 2011-01-14 엘에스엠트론 주식회사 리튬 이차전지의 집전체용 동박
KR20120136396A (ko) * 2010-03-17 2012-12-18 도요타지도샤가부시키가이샤 전지용 전극의 제조 방법
KR20130060527A (ko) * 2011-11-30 2013-06-10 한국과학기술연구원 개량 플라즈마에 의한 리튬이차전지용 극판의 제조 방법, 상기 방법으로 처리된 극판과 이를 이용한 리튬이차전지
KR20150027022A (ko) * 2012-06-13 2015-03-11 가부시키가이샤 산고 리튬 이차 전지용 부극 및 그의 제조 방법
KR20160033482A (ko) 2014-09-18 2016-03-28 주식회사 엘지화학 전극 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
KR20210106413A (ko) 2018-12-28 2021-08-30 닛샤 가부시키가이샤 접이식 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009980A (ja) * 2008-06-27 2010-01-14 Yokohama City Univ リチウムイオン電池用負極材料及びそれを用いた急速充放電型リチウムイオン電池
KR20120136396A (ko) * 2010-03-17 2012-12-18 도요타지도샤가부시키가이샤 전지용 전극의 제조 방법
KR101008750B1 (ko) * 2010-08-10 2011-01-14 엘에스엠트론 주식회사 리튬 이차전지의 집전체용 동박
KR20130060527A (ko) * 2011-11-30 2013-06-10 한국과학기술연구원 개량 플라즈마에 의한 리튬이차전지용 극판의 제조 방법, 상기 방법으로 처리된 극판과 이를 이용한 리튬이차전지
KR20150027022A (ko) * 2012-06-13 2015-03-11 가부시키가이샤 산고 리튬 이차 전지용 부극 및 그의 제조 방법
KR20160033482A (ko) 2014-09-18 2016-03-28 주식회사 엘지화학 전극 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
KR20210106413A (ko) 2018-12-28 2021-08-30 닛샤 가부시키가이샤 접이식 표시장치

Also Published As

Publication number Publication date
US20230335750A1 (en) 2023-10-19
KR20230024521A (ko) 2023-02-21
JP2023544053A (ja) 2023-10-19
EP4207352A1 (en) 2023-07-05
CN116406481A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2019103465A1 (ko) 리튬 이차전지용 음극 및 이의 제조 방법
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2017135794A1 (ko) 음극활물질 및 이를 포함하는 이차전지
WO2010137889A2 (ko) 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
WO2019151774A1 (ko) 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2021006704A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020046026A1 (ko) 바인더 분포가 최적화된 이차전지용 음극 및 이를 포함하는 이차전지
WO2019098660A9 (ko) 음극 활물질, 그의 제조 방법 및 이러한 음극 활물질을 구비한 비수계 리튬이차전지 및 그의 제조 방법
WO2019013557A2 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2018186559A1 (ko) 이차 전지용 음극 및 이의 제조 방법
WO2019108050A1 (ko) 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법
WO2020122459A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
WO2021033795A1 (ko) 그래핀을 포함하는 2차원소재 코팅 조성물과 이를 이용한 이차전지 분리막 및 그 제조방법
WO2019147093A1 (ko) 도전재, 이를 포함하는 전극 형성용 슬러리, 전극 및 이를 이용하여 제조되는 리튬 이차 전지
WO2023018118A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018182343A1 (ko) 이차전지용 바인더 조성물, 이를 포함하는 이차전지용 전극 및 리튬 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022086103A1 (ko) 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법
WO2019088758A9 (ko) 급속 충전 가능한 리튬 이차전지용 음극 및 그 제조방법
WO2018203731A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
WO2023063799A1 (ko) 음극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520511

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022856117

Country of ref document: EP

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE