WO2023017851A1 - 管の更生方法 - Google Patents

管の更生方法 Download PDF

Info

Publication number
WO2023017851A1
WO2023017851A1 PCT/JP2022/030701 JP2022030701W WO2023017851A1 WO 2023017851 A1 WO2023017851 A1 WO 2023017851A1 JP 2022030701 W JP2022030701 W JP 2022030701W WO 2023017851 A1 WO2023017851 A1 WO 2023017851A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
mass
parts
vinyl ester
Prior art date
Application number
PCT/JP2022/030701
Other languages
English (en)
French (fr)
Inventor
健一 小林
尚人 岡田
悟志 井上
和将 丸茂
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020247004418A priority Critical patent/KR20240029781A/ko
Priority to JP2023541470A priority patent/JPWO2023017851A1/ja
Priority to CN202280055462.6A priority patent/CN117813193A/zh
Publication of WO2023017851A1 publication Critical patent/WO2023017851A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/165Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
    • F16L55/1656Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section materials for flexible liners

Definitions

  • the present invention relates to a pipe rehabilitation method.
  • Patent Document 1 a tubular lining material is brought into close contact with the inner wall surface of an existing pipe buried in the ground, and while compressed air is supplied to the inside of the lining material, air is introduced into the lining material.
  • a method for repairing an existing pipe is disclosed, which includes a curing step of curing the lining material by irradiating the inner surface of the lining material with light using a mobile light irradiation device.
  • an impregnated substrate made of fibers or the like impregnated with a photocurable resin composition can be used as a material for the lining material. It is described that a polymerizable resin dissolved in a solvent such as styrene can be used.
  • the resin composition used as a material for the lining material by impregnating the fiber base material preferably has a low viscosity so that the impregnation can be easily performed.
  • the resin composition should not be unevenly distributed and should have a viscosity that allows it to be uniformly distributed in the fiber base material and maintained. Desired.
  • the lining material has a viscosity that can impart flexibility to the lining material. That is, when the fiber base material is impregnated with the resin composition, the viscosity is low, but the viscosity increases over time, and when the lining material is placed in the existing pipe, the resin composition is maintained. It is desirable to use a resin composition that has a high viscosity to the extent that it can be made flexible and can impart flexibility to the lining material. However, it cannot be said that the thickening speed of the resin composition from the production of the resin composition to the placement of the lining material in the existing pipe is sufficiently controlled. As a result, there are problems such as that the pipes are not repaired uniformly or that they cannot be repaired efficiently.
  • the present invention was made to solve the above problems, and an object of the present invention is to provide a pipe rehabilitation method that can repair pipes uniformly and efficiently.
  • Step (I) of preparing a resin composition step (II) of obtaining a resin composition-impregnated base material by impregnating a fiber base material (F) with the resin composition, and A method for rehabilitating a pipe, comprising a step (III) of obtaining a lining material containing a material, and a step (IV) of arranging the lining material in the pipe and light-curing it, wherein the resin composition is a resin ( A), an ethylenically unsaturated group-containing monomer (B), a thickener (C), and a photopolymerization initiator (D), and the resin composition in the step (II) at 25 ° C.
  • the resin composition is a resin ( A), an ethylenically unsaturated group-containing monomer (B), a thickener (C), and a photopolymerization initiator (D), and the resin composition in the step (II) at 25 ° C.
  • the vinyl ester resin (A1) includes an epoxy compound (a1-1) having two epoxy groups in one molecule, an unsaturated monobasic acid (a1-2) and a polybasic acid anhydride (a1-
  • the total amount of epoxy groups of the epoxy compound (a1-1), which is an addition reaction product of the resin precursor (P2), which is the reaction product of 3), and the polybasic acid anhydride (a1-4), is 100 mol.
  • the total amount of acid groups capable of reacting with epoxy groups derived from the polybasic acid anhydride (a1-3) is 5 to 25 mol.
  • the vinyl ester resin (A1) is a resin precursor (P3) which is a reaction product of an epoxy compound (a1-1) having two epoxy groups in one molecule and a bisphenol compound (a1-5) and the unsaturated monobasic acid (a1-2).
  • the unsaturated polyester resin (A2) is a reaction product of a diol (a2-1) and a dibasic acid (a2-2),
  • the diol (a2-1) contains 43 to 85 mol% of the diol (a2-1-1), which is an alkanediol having a molecular weight of 90 to 500, relative to 100 mol% of the diol (a2-1)
  • the dibasic acid (a2-2) includes an ethylenically unsaturated group-containing dibasic acid (a2-2-1) and an ethylenically unsaturated group-free dibasic acid (a2-2-2), the above [ 2].
  • Rehabilitation method [8]
  • the resin (A) contains the vinyl ester resin (A1), and the resin composition contains , 35 to 90 parts by mass of the vinyl ester resin (A1), 10 to 65 parts by mass of the ethylenically unsaturated group-containing monomer (B), 0.01 to 6 parts by mass of the thickener (C), the The method for rehabilitating a pipe according to any one of [2] to [5] above, which contains 0.01 to 10 parts by mass of the photopolymerization initiator (D).
  • the resin (A) contains the unsaturated polyester resin (A2), and with respect to a total of 100 parts by mass of the unsaturated polyester resin (A2) and the ethylenically unsaturated group-containing monomer (B), the 20 to 80 parts by mass of the unsaturated polyester resin (A2), 20 to 80 parts by mass of the ethylenically unsaturated group-containing monomer (B), 0.01 to 6 parts by mass of the thickener (C), the carboxy
  • the resin (A) contains the vinyl ester resin (A1), and the resin composition contains , 20 to 80 parts by mass of the vinyl ester resin (A1), 20 to 80 parts by mass of the ethylenically unsaturated group-containing monomer (B), 0.01 to 6 parts by mass of the thickener (C), the The method for rehabilitating pipes according to [10] or [11] above, which contains 0.01 to 10 parts by mass of the photopolymerization initiator (D).
  • the resin (A) contains the unsaturated polyester resin (A2), and with respect to a total of 100 parts by mass of the unsaturated polyester resin (A2) and the ethylenically unsaturated group-containing monomer (B), 20 to 80 parts by mass of the unsaturated polyester resin (A2), 20 to 80 parts by mass of the ethylenically unsaturated group-containing monomer (B), and 0.01 to 6 parts by mass of the thickener (C)
  • the carboxy group The pipe rehabilitation method according to the above [10] or [11], which contains 0.01 to 5 parts by mass of the contained compound.
  • (Meth)acrylic acid is a generic term for acrylic acid and methacrylic acid.
  • (meth)acrylate is a generic term for acrylate and methacrylate
  • (meth)acryloyl is a generic term for acryloyl and methacryloyl.
  • the “acid value” of resin (A) is the number of mg of potassium hydroxide required to neutralize 1 g of resin (A), measured by a method conforming to JIS K6901:2008. Specifically, it is measured by the method described in Examples below.
  • the "hydroxyl value" of resin (A) is mg of potassium hydroxide required to neutralize acetic acid generated by acetylation of 1 g of resin (A), measured by a method conforming to JIS K6901:2008. is a number. Specifically, it is measured by the method described in Examples below.
  • Weight average molecular weight Mw (hereinafter also simply referred to as "Mw")
  • number average molecular weight Mn (hereinafter also simply referred to as "Mn”) are obtained by gel permeation chromatography (GPC) measurement. It is the standard polystyrene equivalent molecular weight that is used. Specifically, it is measured by the method described in Examples below.
  • the "viscosity" of the resin (A) is a value obtained by measuring a mixture of the resin (A) and the ethylenically unsaturated group-containing monomer (B) using an E-type viscometer at a temperature of 25°C. be. Specifically, it is measured by the method described in Examples below.
  • the “viscosity” of the resin composition is a value measured at a temperature of 25° C. using a Brookfield viscometer. Specifically, it is measured by the method described in Examples below.
  • the term "acid group derived from a polybasic acid anhydride” means a free acid group generated from a polybasic acid anhydride unless otherwise specified.
  • the method for rehabilitating a pipe of the present embodiment includes the step (I) of preparing a resin composition, and the step (II) of impregnating a fiber base material (F) with the resin composition to obtain a resin composition-impregnated base material. , a step (III) of obtaining a lining material containing the resin composition-impregnated base material, and a step (IV) of arranging the lining material in a pipe and photocuring it.
  • the resin composition contains a resin (A), an ethylenically unsaturated group-containing monomer (B), a thickener (C), and a photopolymerization initiator (D), and ),
  • the viscosity of the resin composition at 25° C. in step (IV) is 0.1 to 3.0 Pa s
  • the viscosity of the resin composition at 25° C. when the lining material is arranged in the pipe in step (IV) It has a viscosity of 400 to 3,500 Pa ⁇ s.
  • the resin composition contains the above components, and the viscosity of the resin composition in step (II) and the lining material in step (IV) are placed in the pipe
  • the viscosity of the resin composition is within a specific range, so that the pipe can be repaired uniformly and efficiently.
  • Step (I) of the present embodiment is a step of preparing a resin composition.
  • Preparing a resin composition means mixing all the components constituting the resin composition to produce the resin composition.
  • the method for preparing the resin composition of the present embodiment is not particularly limited, but resin (A), ethylenically unsaturated group-containing monomer (B), thickener (C), photopolymerization initiation
  • a resin composition can be produced by mixing the agent (D).
  • optional components such as the compound (E) and other components are mixed.
  • the mixing order is not particularly limited, but from the viewpoint of facilitating viscosity control, it is preferable to add the thickener (C) last.
  • the mixing method is not particularly limited, and can be carried out using, for example, a disper, a planetary mixer, a kneader, or the like.
  • the mixing temperature is preferably 10 to 50°C, more preferably 15 to 40°C, and more preferably 20 to 30°C from the viewpoint of ease of mixing.
  • the resin (A), the ethylenically unsaturated group-containing monomer (B), the thickener (C), the photopolymerization initiator (D), and other components are easily mixed uniformly, and the viscosity is adjusted.
  • the resin (A) may be diluted in advance with at least one of a solvent and a reactive diluent.
  • the resin composition of this embodiment contains a resin (A), an ethylenically unsaturated group-containing monomer (B), a thickener (C), and a photopolymerization initiator (D).
  • Resin (A) is not particularly limited, but preferably has an ethylenically unsaturated group.
  • the resin (A) include vinyl ester resin (A1), unsaturated polyester resin (A2), urethane (meth)acrylate resin (A3), polyester (meth)acrylate resin (A4), (meth)acrylate resin ( A5) and the like.
  • the resin (A) is at least one selected from vinyl ester resins (A1) and unsaturated polyester resins (A2). preferably included. These resins may be used singly or in combination of two or more.
  • the vinyl ester resin (A1) is not particularly limited as long as it has an ethylenically unsaturated group, and examples thereof include the following (A1-1) to (A1-5).
  • ⁇ Vinyl ester resin (A1-1) reaction product of epoxy compound (a1-1) having two epoxy groups in one molecule and unsaturated monobasic acid (a1-2)
  • Vinyl ester resin (A1- 2) A resin precursor (P1) which is a reaction product of an epoxy compound (a1-1) having two epoxy groups in one molecule and an unsaturated monobasic acid (a1-2), and a polybasic acid anhydride Addition reaction product with product (a1-4)
  • the acid value of the vinyl ester resin (A1) is preferably 1 mg KOH/g or more, more preferably 5 mg KOH/g or more, still more preferably 8 mg KOH/g or more, from the viewpoint of more efficiently thickening the resin composition.
  • it is 10 KOH mg/g or more.
  • From the viewpoint of controlling the thickening rate of the resin composition it is preferably 100 mg KOH/g or less, more preferably 90 mg KOH/g or less, even more preferably 80 mg KOH/g or less, and even more preferably 85 mg KOH/g or less.
  • the hydroxyl value of the vinyl ester resin (A1) is preferably 10 mg KOH/g or more, more preferably 15 mg KOH/g or more, and still more preferably 20 mg KOH/g or more, from the viewpoint of controlling the thickening rate of the resin composition. Moreover, from the viewpoint of efficiently thickening the resin composition, it is preferably 120 mg KOH/g or less, more preferably 110 mg KOH/g or less, and even more preferably 100 mg KOH/g or less.
  • the vinyl ester resin (A1-1) is a reaction product of an epoxy compound (a1-1) having two or more epoxy groups in one molecule and an unsaturated monobasic acid (a1-2).
  • the vinyl ester resin (A1-1) thickens the resin composition due to the interaction between the hydroxy group formed by the ring-opening of the epoxy group of the epoxy compound (a1-1) and the thickener (C).
  • the resin composition contains the vinyl ester resin (A1-1), it becomes easier to control the thickening speed of the resin composition and to adjust the mechanical strength of the lining material after photocuring.
  • the weight average molecular weight Mw of the vinyl ester resin (A1-1) is preferably 400 or more, more preferably 600 or more, and still more preferably 800 or more, from the viewpoint of efficiently thickening the resin composition. From the viewpoint of controlling the thickening speed, it is preferably 2,000 or less, more preferably 1,500 or less, and still more preferably 1,200 or less.
  • the number average molecular weight Mn of the vinyl ester resin (A1-1) is preferably 400 or more, more preferably 500 or more, and still more preferably 600 or more, from the viewpoint of efficiently thickening the resin composition. From the viewpoint of controlling the thickening speed, it is preferably 1,500 or less, more preferably 1,200 or less, and still more preferably 1,000 or less.
  • the Mw/Mn of the vinyl ester resin (A1-1) is preferably 1.05 or more, more preferably 1.1 or more, from the viewpoint of ease of control of the synthesis conditions. is preferably 2.0 or less, more preferably 1.7 or less, and still more preferably 1.5 or less, from the viewpoint of controlling the thickening rate.
  • Mw/Mn is an index of molecular weight distribution, and when it is 1, it indicates a monodisperse polymer, and the larger this ratio, the wider the molecular weight distribution.
  • the amount of the unsaturated monobasic acid (a1-2) is the unsaturated monobasic acid (a1-
  • the total amount of acid groups in 2) is preferably 80 mol or more, more preferably 90 mol or more, still more preferably 99 mol or more, preferably 120 mol or less, more preferably 110 mol or less, More preferably, it is 105 mol or less.
  • the total amount of acid groups of the unsaturated monobasic acid (a1-2) is 80 mol or more with respect to the total amount of epoxy groups of 100 mol of the epoxy compound (a1-1), vinyl ester resin (A1-1) Since a sufficient amount of ethylenically unsaturated groups are introduced in , the resin composition tends to exhibit good curability. In addition, from the viewpoint of controlling the thickening speed of the resin composition and the viewpoint of production stability, it is preferable that no unreacted epoxy groups remain in the vinyl ester resin (A1-1), and the epoxy compound (a1-1).
  • the total amount of acid groups in the unsaturated monobasic acid (a1-2) is preferably 100 mols per 100 mols of the total amount of epoxy groups in (a1-2).
  • the vinyl ester resin (A1-2) is a resin precursor (P1 ) to which polybasic acid anhydride (a1-4) is further added.
  • P1 polybasic acid anhydride
  • the resin composition contains the vinyl ester resin (A1-2), it becomes easier to control the thickening speed of the resin composition.
  • the vinyl ester resin (A1-2) is a vinyl ester resin (A1 Compared to -1), the total amount of hydroxy groups is reduced. Therefore, the use of the vinyl ester resin (A1-2) lowers the viscosity of the resin composition in step (II) compared to the use of the vinyl ester resin (A1-1). As a result, when the vinyl ester resin (A1-2) is used, the impregnation of the fiber base material (F) is better than when the vinyl ester resin (A1-1) is used.
  • a carboxy group is introduced into the vinyl ester resin (A1-2) by addition of the polybasic acid anhydride (a1-4). Therefore, when the vinyl ester resin (A1-2) is used, the interaction with the thickener (C) is improved compared to when the vinyl ester resin (A1-1) is used, and the thickening rate of the resin composition improves.
  • the vinyl ester resin (A1-2) has a wider molecular weight distribution and a higher molecular weight than the vinyl ester resin (A1-1). Therefore, when the vinyl ester resin (A1-2) is used, the thickening speed is improved compared to when the vinyl ester resin (A1-1) is used. The viscosity of the resin composition in the lining material is also high. As a result, the resin composition can be maintained in a more evenly distributed state and the pipe can be rehabilitated more uniformly and more efficiently.
  • the weight average molecular weight of the vinyl ester resin (A1-2) is preferably 800 or more, more preferably 900 or more, still more preferably 1,000 or more, from the viewpoint of more efficiently thickening the resin composition. From the viewpoint of further reducing the viscosity of the resin composition in (II) and from the viewpoint of appropriately controlling the thickening speed of the resin composition, it is preferably 2,000 or less, more preferably 1,800 or less, and still more preferably 1. , 600 or less.
  • the number average molecular weight (Mn) of the vinyl ester resin (A1-2) is preferably 400 or more, more preferably 500 or more, and still more preferably 600 or more, from the viewpoint of efficiently thickening the resin composition. From the viewpoint of further reducing the viscosity of the resin composition in (II) and from the viewpoint of appropriately controlling the thickening speed of the resin composition, it is preferably 1,300 or less, more preferably 1,200 or less, and still more preferably 1. , 100 or less.
  • Mw/Mn of the vinyl ester resin (A1-2) is preferably 0.6 or more, more preferably 1.0 or more, and still more preferably 1.2 or more, from the viewpoint of ease of control of the synthesis conditions. , from the viewpoint of further lowering the viscosity of the resin composition in the step (II), and from the viewpoint of suppressing variations in the physical properties of the resin composition and controlling the thickening speed, it is preferably 5.0 or less, more preferably 3.0. It is 0 or less, more preferably 2.0 or less.
  • the vinyl ester resin (A1-2) first, a resin precursor which is a reaction product of an epoxy compound (a1-1) having two epoxy groups in one molecule and an unsaturated monobasic acid (a1-2) We obtain a body (P1).
  • the amount of the unsaturated monobasic acid (a1-2) is the unsaturated monobasic acid (a1-
  • the total amount of acid groups in 2) is preferably 80 mol or more, more preferably 90 mol or more, still more preferably 99 mol or more, preferably 120 mol or less, more preferably 110 mol or less, More preferably, it is 105 mol or less.
  • the total amount of acid groups of the unsaturated monobasic acid (a1-2) is 80 mol or more with respect to the total amount of epoxy groups of 100 mol of the epoxy compound (a1-1), the vinyl ester resin (A1-2) Since a sufficient amount of ethylenically unsaturated groups are introduced in , the resin composition tends to exhibit good curability. In addition, from the viewpoint of controlling the thickening speed of the resin composition and the viewpoint of production stability, it is preferable that no unreacted epoxy groups remain in the vinyl ester resin (A1-2), and the epoxy compound (a1-1).
  • the total amount of acid groups in the unsaturated monobasic acid (a1-2) is preferably 100 mols per 100 mols of the total amount of epoxy groups in (a1-2).
  • the epoxy compound (a1-1) is crosslinked or the resin precursor ( It plays a role such as introducing a carboxy group to P1). That is, the polybasic acid anhydride (a1-4) is added to the hydroxy group produced by the ring-opening of the epoxy group of the epoxy compound (a1-1) and produces a carboxy group.
  • This carboxy group reacts with the unreacted epoxy group of the epoxy compound (a1-1) to proceed with crosslinking, and after all the epoxy groups have reacted, the carboxy group derived from the polybasic acid anhydride (a1-4) is A carboxy group is introduced into the vinyl ester resin (A1-2) while remaining as it is.
  • the polybasic acid anhydride (a1-4) is the polybasic acid anhydride (a1-4) with respect to the total amount of 100 mol of the epoxy groups of the epoxy compound (a1-1).
  • the amount is preferably 3 to 60 mol, more preferably 5 to 50 mol, still more preferably 7 to 45 mol. If the polybasic acid anhydride (a1-4) is 3 mol or more with respect to 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1), the amount necessary for increasing the viscosity thickening rate of the resin composition.
  • step (II) an increase in the viscosity of the resin composition in step (II) can be suppressed. Further, when the amount of the polybasic acid anhydride (a1-4) is 60 mol or less, it becomes easy to control the thickening speed of the resin composition.
  • the vinyl ester resin (A1-3) of the present embodiment includes an epoxy compound (a1-1) having two epoxy groups in one molecule, an unsaturated monobasic acid (a1-2) and a polybasic acid anhydride ( It is an addition reaction product between the resin precursor (P2), which is the reaction product of a1-3), and the polybasic acid anhydride (a1-4).
  • an increase in the viscosity of the resin composition in step (II) can be suppressed.
  • the polybasic acid anhydrides (a1-3) and (a1-4) are added to the hydroxy groups formed by ring-opening the epoxy group of the epoxy compound (a1-1). , the total amount of hydroxy groups is reduced compared to the vinyl ester resins (A1-1) and (A1-2).
  • the resin composition in step (II) is higher than when the resin composition contains the vinyl ester resin (A1-1) or the vinyl ester resin (A1-2).
  • the viscosity of the product is lowered, and the impregnation of the fiber base material (F) in step (II) is improved.
  • the vinyl ester resin (A1-3) has a carboxyl group introduced by the addition of the polybasic acid anhydrides (a1-3) and (a1-4), so that the resin composition is a vinyl ester resin (A1- 3), the interaction with the thickener (C) is further improved compared to the case of containing the vinyl ester resin (A1-1) or the vinyl ester resin (A1-2), and the resin composition increases. Viscosity speed is further improved.
  • the vinyl ester resin (A1-3) is obtained by reacting the epoxy group of the epoxy compound (a1-1) with the carboxy group of the unsaturated monobasic acid (a1-2) to form the epoxy compound (a1-1).
  • the epoxy group is ring-opened to generate a hydroxy group
  • the polybasic acid anhydride (a1-3) is ring-opening added to the hydroxy group
  • the vinyl ester resin (A1-3) has a higher molecular weight and a wider molecular weight distribution than the vinyl ester resins (A1-1) and (A1-2). Therefore, when the resin composition contains the vinyl ester resin (A1-3), the thickening speed of the resin composition is higher than when the resin composition contains the vinyl ester resin (A1-1) or the vinyl ester resin (A1-2).
  • the viscosity of the resin composition in the lining material is also high when the lining material is placed inside the pipe in step (IV). As a result, the resin composition can be maintained in a more evenly distributed state and the pipe can be rehabilitated more uniformly and more efficiently.
  • the weight average molecular weight Mw of the vinyl ester resin (A1-3) is preferably 1,500 or more, more preferably 2,000 or more, and still more preferably 4,000 or more, from the viewpoint of efficiently thickening the resin composition. , More preferably 6,000 or more, preferably 35,000 or less, more preferably 25,000 from the viewpoint of suppressing the increase in the viscosity of the resin composition in step (II) and controlling the thickening speed 15,000 or less, more preferably 15,000 or less.
  • the vinyl ester resin (A1-3) preferably has a high molecular weight, preferably 5,000 or more, more preferably 7,000 or more, and further preferably 7,000 or more. Preferably it is 9,000 or more.
  • the number average molecular weight Mn of the vinyl ester resin (A1-3) is preferably 500 or more, more preferably 700 or more, and still more preferably 900 or more, from the viewpoint of efficiently thickening the resin composition. ), it is preferably 2,500 or less, more preferably 1,800 or less, and still more preferably 1,600 or less from the viewpoint of controlling the viscosity increase rate of the resin composition.
  • the vinyl ester resin (A1-3) preferably has a high molecular weight, preferably 900 or more, more preferably 1,000 or more, and still more preferably 1,200 or more.
  • Mw/Mn of the vinyl ester resin (A1-3) is preferably 2.5 or more, more preferably 3.0 or more, and still more preferably 4.0 or more from the viewpoint of easy control of the synthesis conditions, and the resin composition From the viewpoint of suppressing variation in the physical properties of the product, suppressing an increase in the viscosity of the resin composition in step (II), and controlling the thickening rate, it is preferably 18 or less, more preferably 12 or less, and still more preferably 10 It is below.
  • it is preferably 4.0 or higher, more preferably 5.0 or higher, and even more preferably 6.0 or higher.
  • the amount of the unsaturated monobasic acid (a1-2) is the unsaturated monobasic acid (a1-2) with respect to 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1).
  • the total amount of acid groups in is preferably 75 to 95 mol, more preferably 77 to 93 mol, and still more preferably 79 to 91 mol.
  • the resin composition tends to exhibit good curability. Further, when the total amount of acid groups of the unsaturated monobasic acid (a1-2) is 95 mol or less, the reaction product of the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) The basic acid anhydride (a1-3) is sufficiently crosslinked to easily obtain a resin composition having good thickening properties.
  • the amount of the polybasic acid anhydride (a1-3) is 100 moles of the total amount of epoxy groups of the epoxy compound (a1-1).
  • the total amount of derived acid groups capable of reacting with epoxy groups is preferably 5 to 25 mol, more preferably 7 to 23 mol, and still more preferably 9 to 21 mol.
  • the total amount of acid groups capable of reacting with epoxy groups derived from the polybasic acid anhydride (a1-3) is 5 mol or more with respect to 100 mol of the total amount of epoxy groups in the epoxy compound (a1-1),
  • Crosslinking between the epoxy compound (a1-1) and the polybasic anhydride (a1-3) increases the molecular weight and effectively thickens the resin composition.
  • the total amount of acid groups capable of reacting with epoxy groups derived from the polybasic acid anhydride (a1-3) is 25 mol or less, the degree of crosslinking of the epoxy compound (a1-1) can be easily controlled, Gelation during synthesis of the vinyl ester resin (A1-3) is suppressed, and the thickening speed of the resin composition is easily controlled.
  • an acid group derived from the unsaturated monobasic acid (a1-2) and the polybasic acid anhydride (a1-3) (the "acid group” referred to here is the polybasic acid anhydride (a1 -3) is an acid group generated by hydrolysis.
  • the polybasic acid anhydride (a1-3) is a dibasic acid anhydride, the number of acid groups generated from one molecule is 2.
  • the total amount is preferably 105 to 125 mol, more preferably 107 to 123 mol, still more preferably 109 to 121 mol, per 100 mol of the total amount of epoxy groups in the epoxy compound (a1-1). .
  • the total amount of acid groups derived from the unsaturated monobasic acid (a1-2) and the polybasic acid anhydride (a1-3) is 105 mol per 100 mol of the total amount of epoxy groups in the epoxy compound (a1-1). By doing so, the amount of unreacted epoxy groups in the epoxy compound (a1-1) is reduced, making it easier to control the thickening speed of the resin composition.
  • the total amount of acid groups derived from the unsaturated monobasic acid (a1-2) and the polybasic acid anhydride (a1-3) is 125 mol or less, so that the gel during synthesis of the vinyl ester resin (A1-3) conversion is suppressed, and the residual unreacted unsaturated monobasic acid (a1-2) and polybasic acid anhydride (a1-3) in the vinyl ester resin (A1-3) is suppressed, and the resin composition It is possible to suppress the influence on the thickening speed.
  • the polybasic acid anhydride (a1-4) by reacting the polybasic acid anhydride (a1-4) with the resin precursor (P2), a reaction mechanism similar to that of the polybasic acid anhydride (a1-3) and plays a role of cross-linking the epoxy compound (a1-1) or introducing a carboxyl group into the resin precursor (P2). That is, the polybasic acid anhydride (a1-4) is added to the hydroxy group produced by the ring-opening of the epoxy group of the epoxy compound (a1-1) and produces a carboxy group.
  • This carboxy group reacts with the unreacted epoxy group of the epoxy compound (a1-1) to proceed with crosslinking, and after all the epoxy groups have reacted, the carboxy group derived from the polybasic acid anhydride (a1-4) is A carboxy group is introduced into the vinyl ester resin (A1-3) while remaining as it is.
  • the polybasic acid anhydride (a1-4) is used in such an amount that the polybasic acid anhydride (a1-4) is 3 to 60 moles per 100 moles of the total epoxy group of the epoxy compound (a1-1). is preferably 5 to 50 mol, more preferably 7 to 45 mol. If the polybasic acid anhydride (a1-4) is 3 mol or more with respect to 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1), the amount necessary for increasing the viscosity thickening rate of the resin composition.
  • the carboxy group of is introduced into the vinyl ester resin (A1-3), and the hydroxy group generated by ring-opening the epoxy group derived from the epoxy compound (a1-1) is the polybasic acid anhydride (a1-4) is consumed by the addition of, and it is possible to suppress the increase in the viscosity of the resin composition in step (II). Further, when the amount of the polybasic acid anhydride (a1-4) is 60 mol or less, it becomes easy to control the thickening speed of the resin composition.
  • the vinyl ester resin (A1-4) of the present embodiment is a resin precursor (a resin precursor ( P3) and the reaction product of unsaturated monobasic acid (a1-2).
  • a resin precursor P3
  • the reaction product of unsaturated monobasic acid a1-2
  • the resin composition thickens due to the interaction between the hydroxy group generated by the ring-opening of the epoxy group of the epoxy compound (a1-1) and the thickener (C).
  • the weight-average molecular weight Mw of the vinyl ester resin (A1-4) is preferably 500 or more, more preferably 600 or more, and still more preferably 800 or more, from the viewpoint of more efficient thickening. is preferably 6,000 or less, more preferably 5,000 or less, and still more preferably 4,500 or less, from the viewpoint of controlling the
  • the number average molecular weight Mn of the vinyl ester resin (A1-4) is preferably 400 or more, more preferably 500 or more, and still more preferably 600 or more, from the viewpoint of efficiently thickening the resin composition. From the viewpoint of controlling the thickening speed, it is preferably 2,500 or less, more preferably 2,200 or less, and still more preferably 2,000 or less.
  • Mw/Mn of the vinyl ester resin (A1-4) is preferably 1.05 or more, more preferably 1.1 or more, and still more preferably 1.3 or more, from the viewpoint of ease of control of synthesis conditions. From the viewpoint of suppressing variations in physical properties of the resin composition and controlling the thickening speed, it is preferably 3.0 or less, more preferably 2.5 or less, and still more preferably 2.3 or less.
  • Mw/Mn is an index of molecular weight distribution, and when it is 1, it indicates a monodisperse polymer, and the larger this ratio, the wider the molecular weight distribution.
  • the amount of the bisphenol compound (a1-5) is the total amount of hydroxyl groups of the bisphenol compound (a1-5) with respect to 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1). is preferably 10 mol or more, more preferably 20 mol or more, still more preferably 25 mol or more, preferably 70 mol or less, more preferably 60 mol or less, further preferably 50 mol or less. be.
  • the total amount of hydroxyl groups in the bisphenol compound (a1-5) is 10 mol or more with respect to the total amount of 100 mol of epoxy groups in the epoxy compound (a1-1), the molecular weight distribution of the vinyl ester resin (A1) is widened. , it becomes easier to control the ultimate viscosity of the resin composition. Further, when the total amount of the bisphenol compound (a1-5) is 70 mol or less per 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1), it becomes easy to control the thickening speed of the resin composition.
  • the amount of the unsaturated monobasic acid (a1-2) is the unsaturated monobasic acid (a1-
  • the total amount of acid groups in 2) is preferably 30 mol or more, more preferably 40 mol or more, still more preferably 50 mol or more, preferably 120 mol or less, more preferably 100 mol or less, More preferably, it is 80 mol or less.
  • the total amount of acid groups of the unsaturated monobasic acid (a1-2) is 30 mol or more with respect to the total amount of epoxy groups of 100 mol of the epoxy compound (a1-1), vinyl ester resin (A1-4) Since a sufficient amount of ethylenically unsaturated groups are introduced in , the resin composition tends to exhibit good curability.
  • the total amount of epoxy groups in the epoxy compound (a1-1) is 100 mol.
  • the total amount of acid groups in the basic acid (a1-2) is preferably 120 mol or less.
  • the vinyl ester resin (A1-5) is a resin precursor (P3) and a resin precursor (P4) which is a reaction product of an unsaturated monobasic acid (a1-2), and an unsaturated polybasic acid (a1- 6), wherein the resin precursor (P3) is a reaction product of an epoxy compound (a1-1) having two epoxy groups in one molecule and a bisphenol compound (a1-5) is.
  • the resin composition thickens due to the interaction between the compound (C) and the hydroxy group generated by ring-opening of the epoxy group of the epoxy compound (a1-1).
  • the resin composition contains the vinyl ester resin (A1-5)
  • the weight-average molecular weight Mw of the vinyl ester resin (A1-5) is preferably 500 or more, more preferably 600 or more, and still more preferably 800 or more, from the viewpoint of more efficient thickening. is preferably 6,000 or less, more preferably 5,000 or less, and still more preferably 4,500 or less, from the viewpoint of controlling the
  • the number average molecular weight Mn of the vinyl ester resin (A1-5) is preferably 400 or more, more preferably 500 or more, and still more preferably 600 or more, from the viewpoint of efficiently thickening the resin composition. From the viewpoint of controlling the thickening speed, it is preferably 2,000 or less, more preferably 1,500 or less, and still more preferably 1,300 or less.
  • Mw/Mn of the vinyl ester resin (A1-5) is preferably 1.05 or more, more preferably 1.1 or more, and still more preferably 1.3 or more, from the viewpoint of ease of control of synthesis conditions. From the viewpoint of suppressing variations in physical properties of the resin composition and controlling the thickening speed, it is preferably 3.0 or less, more preferably 2.5 or less, and still more preferably 2.3 or less.
  • Mw/Mn is an index of molecular weight distribution, and when it is 1, it indicates a monodisperse polymer, and the larger this ratio, the wider the molecular weight distribution.
  • the amount of the bisphenol compound (a1-5) is the total amount of hydroxyl groups of the bisphenol compound (a1-5) with respect to 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1). is preferably 10 mol or more, more preferably 15 mol or more, still more preferably 20 mol or more, preferably 70 mol or less, more preferably 60 mol or less, further preferably 50 mol or less. be.
  • the total amount of hydroxyl groups in the bisphenol compound (a1-5) is 10 mol or more with respect to the total amount of 100 mol of epoxy groups in the epoxy compound (a1-1), the molecular weight distribution of the vinyl ester resin (A1) is widened. , it becomes easier to control the ultimate viscosity of the resin composition. Further, when the total amount of hydroxyl groups in the bisphenol compound (a1-5) is 70 mol or less with respect to the total amount of 100 mol of epoxy groups in the epoxy compound (a1-1), the thickening rate of the resin composition can be easily controlled. Become.
  • the amount of the unsaturated monobasic acid (a1-2) is the unsaturated monobasic acid (a1-
  • the total amount of acid groups in 2) is preferably 30 mol or more, more preferably 40 mol or more, still more preferably 50 mol or more, preferably 120 mol or less, more preferably 100 mol or less, More preferably, it is 80 mol or less.
  • the resin composition tends to exhibit good curability.
  • unreacted epoxy is added to the vinyl ester resin (A1-1). It is preferable that no groups remain, and the total amount of acid groups of the unsaturated monobasic acid (a1-2) is 120 mol or less with respect to 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1). is preferred.
  • the amount of the unsaturated polybasic acid (a1-6) in the vinyl ester resin (A1-5) is the unsaturated polybasic acid (a1- 6) is preferably in an amount of 0.5 mol or more, more preferably 1 mol or more, still more preferably 3 mol or more, preferably 15 mol or less, more preferably 10 mol or less, still more preferably 8 mol or less.
  • the unsaturated polybasic acid (a1-6) is 0.5 mol or more with respect to 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1), the vinyl ester resin (A1-5) is sufficiently Since a certain amount of ethylenically unsaturated groups are introduced, the resin composition tends to exhibit good curability. Further, from the viewpoint of controlling the thickening speed, the unsaturated polybasic acid (a1-6) is preferably 15 mol or less per 100 mol of the total amount of epoxy groups in the epoxy compound (a1-1).
  • Epoxy compound (a1-1) is a compound having two epoxy groups in one molecule, and monomers, oligomers and polymers in general can be used, and the molecular weight and molecular structure are not particularly limited.
  • the epoxy compounds (a1-1) may be used alone or in combination of two or more.
  • Examples of the epoxy compound (a1-1) include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and bisphenol AF type epoxy resin; phenol novolac type epoxy resin; tert -butylcatechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, epoxy resin having a butadiene structure, alicyclic Epoxy resins, heterocyclic epoxy resins, spiro ring-containing epoxy resins, cyclohexanedimethanol-type epoxy resins, naphthylene ether-type epoxy resins, and the like.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and bisphenol AF type epoxy resin
  • phenol novolac type epoxy resin tert -but
  • bisphenol-type epoxy resins and phenol novolak-type epoxy resins are preferable from the viewpoint of suppressing excessive increase in the reaching viscosity of the resin composition and controlling the thickening speed, and bisphenol A-type epoxy resins.
  • bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, bisphenol AF-type epoxy resin, and phenol novolac-type epoxy resin are more preferable, and bisphenol A-type epoxy resin is more preferable.
  • the epoxy equivalent of the epoxy compound (a1-1) is obtained without gelation of the vinyl ester resin (A1-1), and the resin composition when the lining material in step (IV) is placed in the pipe. It is preferably 170 to 1,000, more preferably 170 to 500, still more preferably 170 to 400, still more preferably 170 to 300, from the viewpoint of controlling viscosity and thickening speed.
  • the epoxy compound (a1-1) is preferably liquid at 25° C., and preferably has an epoxy equivalent of 300 or less. .
  • the unsaturated monobasic acid (a1-2) is preferably a monocarboxylic acid having an ethylenically unsaturated group, and may be used alone or in combination of two or more.
  • unsaturated monobasic acids include (meth)acrylic acid, crotonic acid, and cinnamic acid. Among them, at least one selected from (meth)acrylic acid and crotonic acid is preferable from the viewpoint of versatility, reactivity during synthesis of the vinyl ester resin (A), and obtaining a resin composition having good curability. , (meth)acrylic acid is more preferred, and from the viewpoint of chemical resistance, methacrylic acid is even more preferred.
  • the polybasic acid anhydride (a1-3) is a compound having a plurality of carboxy groups in one molecule, and at least two carboxy groups undergo dehydration condensation to form an acid anhydride.
  • dibasic acid anhydride is used from the viewpoint of ease of synthesis of the vinyl ester resin (A1), ease of control of the molecular weight and acid value, and moderate control of the viscosity of the resin composition.
  • Polybasic acid anhydrides (a1-3) may be used alone or in combination of two or more.
  • polybasic acid anhydrides (a1-3) examples include maleic anhydride, phthalic anhydride, succinic anhydride, endomethylenetetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3-methyl-1,2,3, 6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, methyl-3,6-endomethylene -1,2,3,6-tetrahydrophthalic anhydride, trimellitic anhydride and the like.
  • maleic anhydride and phthalic anhydride are preferred, and maleic anhydride is more preferred, from the viewpoints of availability, reactivity, ease of handling during synthesis, and the like.
  • the polybasic acid anhydride (a1-4) is a compound having a plurality of carboxy groups in one molecule, and at least two carboxy groups undergo dehydration condensation to form an acid anhydride. Among them, from the viewpoint of ease of handling during synthesis of the vinyl ester resins (A1-2) and (A1-3), ease of control of molecular weight and acid value, and good viscosity characteristics of the resin composition, Dibasic anhydrides are preferred. Polybasic acid anhydrides (a1-4) may be used alone or in combination of two or more. Specific examples of the polybasic acid anhydride (a1-4) include those similar to the polybasic acid anhydride (a1-3), and maleic anhydride is more preferred. The polybasic acid anhydride (a1-3) and the polybasic acid anhydride (a1-4) may be the same or different.
  • the bisphenol compound (a1-5) is not particularly limited in its molecular weight and molecular structure.
  • the bisphenol compound (a1-5) may be used alone or in combination of two or more.
  • Examples of the bisphenol compound (a1-5) include bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH. , bisphenol TMC, bisphenol Z, and the like.
  • At least one or more selected from bisphenol A, bisphenol E, bisphenol F, and bisphenol S is preferable from the viewpoint of suppressing excessive increase in the reaching viscosity of the resin composition and controlling the thickening speed.
  • bisphenol E, and bisphenol F are more preferred, and bisphenol A is even more preferred from the viewpoint of corrosion resistance, versatility, and cost.
  • the unsaturated polybasic acid (a1-6) is a compound having two or more carboxyl groups and one or more unsaturated groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • the unsaturated polybasic acid (a1-6) may be used alone or in combination of two or more.
  • Examples of the unsaturated polybasic acid (a1-6) include maleic anhydride, fumaric acid, itaconic acid, citraconic acid, chloromaleic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, phthalic acid, itaconic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and the like.
  • maleic anhydride and fumaric acid succinic acid, glutaric acid, and adipic acid are preferred, succinic acid, fumaric acid, and maleic anhydride are more preferred, and fumaric acid is even more preferred, from the viewpoint of production costs.
  • Vinyl ester resins (A1-2) and (A1-3) may be blended in order to reduce the viscosity of the resin composition in step (II). , Vinyl ester resins (A1-1), and (A1-2) may be blended, and if it is desired to improve the thickening speed, vinyl ester resin (A1-3) may be blended. If it is desired to increase the viscosity of the lining material (IV) when it is placed inside the pipe, a vinyl ester resin (A1-3) may be added. In this way, resins suitable for desired viscosity behavior may be used singly or in combination.
  • the vinyl ester resin (A1) is preferably a vinyl ester resin (A1-3), that is, the vinyl ester resin (A1) is an epoxy resin having two epoxy groups in one molecule.
  • Compound (a1-1), resin precursor (P2) which is a reaction product of unsaturated monobasic acid (a1-2) and polybasic acid anhydride (a1-3), and polybasic acid anhydride (a1- 4) is preferably an addition reaction product.
  • the total amount of acid groups capable of reacting with epoxy groups derived from the polybasic acid anhydride (a1-3) is 5 to 25 mols per 100 mols of the total amount of epoxy groups in the epoxy compound (a1-1). is preferably
  • Unsaturated polyester resin (A2)> As the unsaturated polyester resin, one obtained by subjecting an unsaturated dibasic acid, and optionally a dibasic acid component containing a saturated dibasic acid, to an esterification reaction with a polyhydric alcohol can be used. Examples of the unsaturated dibasic acid and the saturated dibasic acid include those described in WO2016/171151, and these may be used alone or in combination of two or more. Although the polyhydric alcohol is not particularly limited, examples thereof include those described in WO2016/171151, as in the case of the urethane (meth)acrylate resin.
  • the unsaturated polyester resin (A2) in the present embodiment contains diol (a2-1-1), which is an alkanediol having a molecular weight of 90 to 500, in an amount of 43 to 85 mol% with respect to 100 mol% of diol (a2-1).
  • the diol (a2-1) containing an ethylenically unsaturated group-containing dibasic acid (a2-2-1) and a dibasic acid containing an ethylenically unsaturated group-free dibasic acid (a2-2-2) ( It is preferably a reaction product with a2-2).
  • the acid value of the unsaturated polyester resin (A2) is such that in the step (IV), when the lining material is arranged in the pipe, the viscosity is high enough to maintain a uniform distribution in the fiber base material. It is preferably 3 KOH mg/g or more, more preferably 5 KOH mg/g or more, and still more preferably 8 KOH mg/g or more, and from the viewpoint of promoting the thickening of the resin composition, preferably 25 KOH mg/g or less, more preferably 20 KOH mg/g. 16 KOH mg/g or less, more preferably 16 KOH mg/g or less.
  • the weight-average molecular weight (Mw) of the unsaturated polyester resin (A2) promotes the thickening speed of the resin composition, and can maintain a uniformly distributed state in the fiber base material when the lining material is arranged in the pipe. From the viewpoint of achieving a high viscosity, it is preferably 5,000 or more, more preferably 7,000 or more, and still more preferably 9,000 or more. From the viewpoint of obtaining a resin composition having excellent viscosity stability, it is preferably 20,000 or less, more preferably 17,000 or less, and even more preferably 15,000 or less.
  • the number average molecular weight (Mn) of the unsaturated polyester resin (A2) promotes the thickening speed of the resin composition, and can maintain a uniformly distributed state in the fiber base material when the lining material is arranged in the pipe. From the viewpoint of achieving a high viscosity, it is preferably 1,000 or more, more preferably 1,500 or more, and still more preferably 2,000 or more. From the viewpoint of obtaining a resin composition having excellent viscosity stability, it is preferably 7,000 or less, more preferably 5,000 or less, and even more preferably 4,000 or less.
  • the ratio Mw/Mn of the weight-average molecular weight Mw and the number-average molecular weight Mn of the unsaturated polyester resin (A2) is not particularly limited, but it accelerates the thickening speed and when the lining material is arranged in the pipe, the fiber base It is preferably 15 or less, more preferably 10 or less, and still more preferably 5 or less from the viewpoint of achieving a high viscosity that can maintain a uniformly distributed state in the material, and preferably 1 or more from the viewpoint of productivity. It is more preferably 1.5 or more, and still more preferably 2 or more.
  • the content ratio (molar ratio) of the structural unit derived from the diol (a2-1) contained in the unsaturated polyester resin (A2) and the structural unit derived from the dibasic acid (a2-2) is determined by dehydration condensation polymerization. It is preferably 40:60 to 60:40, more preferably 45:55 to 55:45, still more preferably 50:50, from the viewpoint of controlling the thickening speed by obtaining an unsaturated polyester having the desired molecular weight. .
  • the content of the unsaturated polyester resin (A2) in the resin composition is the unsaturated polyester resin (A2) and the ethylenically unsaturated group-containing monomer ( It is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 65 parts by mass, based on 100 parts by mass of B).
  • the content of the unsaturated polyester resin (A2) is 20 parts by mass or more, it is easy to control the thickening speed of the resin composition.
  • the content of the unsaturated polyester resin (A2) is 80 parts by mass or less, the viscosity of the resin composition in step (II) can be more easily reduced by the ethylenically unsaturated group-containing monomer (B).
  • the content of the unsaturated polyester resin (A2) in the resin composition is preferably 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the resin composition. parts, more preferably 30 to 70 parts by mass, and even more preferably 40 to 65 parts by mass.
  • the content of the unsaturated polyester resin (A2) is 20 parts by mass or more, it is easy to control the thickening speed of the resin composition.
  • the content of the unsaturated polyester resin (A2) is 80 parts by mass or less, the increase in the initial viscosity of the resin composition can be easily suppressed by the ethylenically unsaturated group-containing monomer (B).
  • Diol (a2-1) is a compound having two hydroxy groups in one molecule.
  • the diol (a2-1) contains 43-85 mol % of an alkanediol (a2-1-1) having a molecular weight of 90-500.
  • the diol (a2-1) includes, in addition to the alkanediol (a2-1-1), an alkanediol (a2-1-2) different from the alkanediol (a2-1-1), an alkanediol (a2-1- 1) and other diols different from the alkanediol (a2-1-2).
  • alkanediol (a2-1-1) is an alkanediol having a molecular weight of 90 to 500, and is a compound in which hydrogen atoms bonded to two carbon atoms of a hydrocarbon are each substituted with a hydroxy group.
  • the alkanediol (a2-1-1) may be used alone or in combination of two or more. Since alkanediol (a2-1-1) does not contain polar groups other than hydroxy groups or atoms with high electronegativity in the molecule, compared to polyoxyalkylene polyols with ether bonds, interaction is small.
  • the resin composition contains an unsaturated polyester resin (A2) which is a reaction product of the alkanediol (a2-1-1) and the dibasic acid (a2-2), thereby reducing the hygroscopicity of the resin composition. This suppresses the change in viscosity after the resin composition is thickened, resulting in excellent viscosity stability.
  • A2 unsaturated polyester resin
  • the molecular weight of the alkanediol (a2-1-1) is from the viewpoint of further reducing the hygroscopicity of the resin composition, suppressing the viscosity change after thickening the resin composition, and obtaining a resin composition having excellent viscosity stability. , preferably 95 or more, more preferably 100 or more, still more preferably 103 or more, and preferably 400 or less, more preferably 300 or less, still more preferably 250 or less from the viewpoint of ease of production and production cost.
  • alkanediol (a2-1-1) examples include 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,2-butanediol, 1,3-butane Diol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl -1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-octanediol, 1,2- nonanediol, 1,4-cyclohexanediol, 1,8-octanediol, 1,9-nonane
  • 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, bisphenol A hydrides are used from the viewpoint of obtaining a resin composition having excellent viscosity stability after thickening. is more preferred, and 2,2-dimethyl-1,3-propanediol is preferred from the viewpoint of availability and production cost.
  • the content of the alkanediol (a2-1-1) in the diol (a2-1) reduces the hygroscopicity of the resin composition more than 100 mol % of the diol (a2-1), and increases the resin composition.
  • the amount is 43 mol% or more, preferably 45 mol% or more, and more preferably 48 mol% or more.
  • the precipitation of crystals such as low molecular weight substances and unreacted raw materials is suppressed, and the impregnation of the resin composition into the fiber base material is further improved. Therefore, it is preferably 85 mol % or less, more preferably 80 mol % or less, and still more preferably 75 mol % or less.
  • the total content of the alkanediol (a2-1-1) in the diol (a2-1) and the later-described alkanediol (a2-1-2) is based on 100 mol% of the total amount of the diol (a2-1).
  • it is preferably 70 mol% or more, More preferably 80 mol % or more, still more preferably 90 mol % or more, and even more preferably 100 mol %.
  • the alkanediol (a2-1-2) is an alkanediol different from the alkanediol (a2-1-1) and does not contain alkanediols with a molecular weight of 90-500.
  • the molecular weight of the alkanediol (a1-2) is preferably 60 or more, more preferably 65 or more, and still more preferably 70 or more, from the viewpoint of viscosity stability after thickening the resin composition. From the viewpoint of cost, it is preferably 85 or less, more preferably 80 or less, and even more preferably 78 or less.
  • Examples of the alkanediol (a2-1-2) include ethylene glycol and propylene glycol.
  • propylene glycol is more preferable from the viewpoint of viscosity stability after thickening the resin composition.
  • the content of the alkanediol (a2-1-2) in the diol (a2-1) is determined based on 100 mol % of the diol (a2-1) when synthesizing the unsaturated polyester resin (A2). 15 mol% or more, preferably 20 mol% or more, and more preferably 25 mol% or more. Further, from the viewpoint of further reducing the hygroscopicity of the resin composition, suppressing the change in viscosity after thickening the resin composition, and obtaining a resin composition having excellent viscosity stability after thickening, it is preferably 57 mol% or less. is 55 mol % or less, more preferably 52 mol % or less.
  • Other diols are diols different from alkanediol (a2-1-1) and alkanediol (a2-1-2).
  • the molecular weight of the other diol is preferably 70 or more, more preferably 85 or more, and still more preferably 100 or more from the viewpoint of production cost and good toughness of the cured product. , preferably 500 or less, more preferably 300 or less, still more preferably 150 or less.
  • Other diols include, for example, polyoxyalkylene polyols such as diethylene glycol, dipropylene glycol, polyethylene glycol and polypropylene glycol. Among these, diethylene glycol and dipropylene glycol are more preferable from the viewpoint of production cost and toughness of the cured product.
  • the dibasic acid (a2-2) includes an ethylenically unsaturated group-containing dibasic acid (a2-2-1) and an ethylenically unsaturated group-free dibasic acid (a2-2-2).
  • the dibasic acid (a2-2) may be used alone or in combination of two or more.
  • the ethylenically unsaturated group-containing dibasic acid (a2-2-1) is a compound having two carboxy groups and one or more ethylenically unsaturated groups in one molecule, and its molecular weight and molecular structure are particularly Not limited.
  • the ethylenically unsaturated group-containing dibasic acid (a2-2-1) may be used alone or in combination of two or more.
  • the content of the ethylenically unsaturated group-containing dibasic acid (a2-2-1) in the dibasic acid (a2-2) is From the viewpoint of the mechanical strength of the cured product, it is preferably 20 mol% or more, more preferably 30 mol% or more, still more preferably 40 mol% or more, even more preferably 45 mol% or more, and preferably 80 mol% or less. , more preferably 75 mol % or less, still more preferably 70 mol % or less, and even more preferably 65 mol % or less.
  • Examples of the ethylenically unsaturated group-containing dibasic acid (a2-2-1) include maleic anhydride, fumaric acid, itaconic acid, citraconic acid, and chloromaleic acid. Among them, maleic anhydride and fumaric acid are preferred, and maleic anhydride is more preferred, from the viewpoint of production cost.
  • Ethylenically unsaturated group-free dibasic acid (a2-2-2) is a compound having two carboxy groups in one molecule and no ethylenically unsaturated group, and its molecular weight and molecular structure is not particularly limited.
  • the ethylenically unsaturated group-free dibasic acid (a2-2-2) may be used alone or in combination of two or more.
  • the content of the ethylenically unsaturated group-free dibasic acid (a2-2-2) in the dibasic acid (a2-2) is 100 mol% of the dibasic acid (a2-2), the resin composition From the viewpoint of the mechanical strength of the cured product, it is preferably 20 mol% or more, more preferably 25 mol% or more, still more preferably 30 mol% or more, still more preferably 35 mol% or more, and preferably 80 mol% or less. , more preferably 70 mol % or less, still more preferably 60 mol % or less, and even more preferably 55 mol % or less.
  • Ethylenically unsaturated group-free dibasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, sebacic acid, tetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, hexa Hydrophthalic acid (1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid), naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, chlorendic acid (het acid), tetrabromo Phthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, succinic anhydride, chlorendic anhydride, trimellitic anhydride, pyromellitic anhydride, dimethyl
  • the dibasic acid (a2-2) is 20 to 80 mol% of the ethylenically unsaturated group-containing dibasic acid (a2-1), and the ethylenically unsaturated group-free dibasic acid (a2- 2-2) is preferably contained in an amount of 20 to 80 mol %.
  • a urethane (meth)acrylate resin is a polyurethane having a (meth)acryloyloxy group. Specifically, after reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, a hydroxy group-containing (meth)acrylic compound and optionally a hydroxy group-containing allyl ether compound are further added to the unreacted isocyanato groups. Obtained by reaction.
  • the polyester (meth)acrylate resin is polyester having a (meth)acryloyloxy group.
  • a polyester (meth)acrylate resin can be obtained, for example, by the method (1) or (2) shown below.
  • (1) A method of reacting an epoxy group-containing (meth)acrylate or a hydroxy group-containing (meth)acrylate with a carboxy-terminated polyester (2)
  • a method of reacting (meth)acrylate with a carboxyl-terminated polyester used as a raw material in the above method (1) is obtained from an excess amount of saturated polybasic acid and/or unsaturated polybasic acid and polyhydric alcohol. What can be obtained.
  • the hydroxy-terminated polyester used as a raw material in the above method (2) includes those obtained from a saturated polybasic acid and/or an unsaturated polybasic acid and an excess amount of a polyhydric alcohol.
  • the (meth)acrylate resin (A5) is a polymer of acrylic acid ester or methacrylic acid ester. Specific examples of the constituent monomers include those similar to the (meth)acrylates exemplified for the ethylenically unsaturated group-containing monomer (B).
  • the viscosity of a mixture of 65% by mass of resin (A) and 35% by mass of phenoxyethyl methacrylate is preferably 0.3 to 300 Pa s, more preferably 0.5 to 200 Pa s, from the viewpoint of ease of handling. More preferably, it is 0.8 to 150 Pa ⁇ s.
  • the ethylenically unsaturated group-containing monomer (B) is not particularly limited as long as it does not have a carboxy group and has an ethylenically unsaturated group, but preferably has a (meth)acryloyl group or a vinyl group. .
  • the ethylenically unsaturated group-containing monomer (B) may be used alone or in combination of two or more.
  • the hardness, strength, chemical resistance, water resistance, etc. of the lining material after photocuring can be improved.
  • those having a (meth)acryloyl group include, for example, (meth)acrylates.
  • (Meth)acrylates may be monofunctional or polyfunctional.
  • Monofunctional (meth)acrylates include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl , Lauryl (meth)acrylate, Cyclohexyl (meth)acrylate, Benzyl (meth)acrylate, Stearyl (meth)acrylate, Tridecyl (meth)acrylate, Phenoxyethyl (meth)acrylate, Dicyclopentenyloxyethyl (meth)acrylate, Ethylene glycol Monomethyl ether (meth) acrylate, ethylene glycol monoethyl ether (meth) acrylate, ethylene glycol monobutyl ether (meth) acrylate, ethylene glycol monohexyl ether (meth) acrylate, ethylene glycol mono-2-eth
  • polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, 1,2-propylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, (meth)acrylates, alkanediol di(meth)acrylates such as neopentyl glycol di(meth)acrylate and 1,6-hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate , polyoxyalkylene glycol di(meth)acrylates such as triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate and polytetramethylene glycol di(meth)acrylate; Trimethylolpropane di(meth)acrylate, glycerin di(meth)acrylate,
  • those having a (meth)acryloyl group include acryloylmorpholine, 2-hydroxyethyl (meth)acrylamide, 2-hydroxyethyl-N -methyl (meth)acrylamide, 3-hydroxypropyl (meth)acrylamide and the like.
  • examples of those having an ethylenically unsaturated group other than those having a (meth)acryloyl group include styrene, p-chlorostyrene, vinyltoluene, ⁇ -methylstyrene, dichlorostyrene, divinylbenzene, and t-butyl.
  • Styrene compounds such as styrene, vinyl benzyl butyl ether, vinyl benzyl hexyl ether and divinyl benzyl ether, vinyl acetate, diallyl fumarate, diallyl phthalate, triallyl isocyanurate and the like.
  • the ethylenically unsaturated group-containing monomer (B) is suitable for controlling the thickening speed of the resin composition, curability, production cost, mechanical strength and heat resistance of the lining material after photocuring. , and chemical resistance, styrene compounds and (meth)acrylates are preferred.
  • styrene methyl (meth)acrylate, phenoxyethyl (meth)acrylate, benzyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, diethylene glycol di(meth)
  • acrylate triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and neopentyl glycol (meth)acrylate is preferred.
  • At least one selected from phenoxyethyl (meth)acrylate, benzyl (meth)acrylate, diethylene glycol di(meth)acrylate, and neopentyl glycol (meth)acrylate is more preferable, and the lining after photocuring At least one selected from phenoxyethyl methacrylate, benzyl methacrylate, diethylene glycol dimethacrylate, and neopentyl glycol (meth)acrylate is more preferable from the viewpoint of chemical resistance of the material.
  • the thickener (C) is not particularly limited, it is preferably at least one selected from group 2 element oxides and hydroxides.
  • the thickener (C) is at least one selected from oxides and hydroxides of Group 2 elements, the carboxyl group and hydroxyl group possessed by the resin (A), and the carboxyl groups of other component compounds It has the effect of increasing the viscosity of the resin composition over time by interacting with groups and hydroxyl groups.
  • the thickener (C) may be used alone or in combination of two or more.
  • oxides of Group 2 elements include magnesium oxide, calcium oxide, and barium oxide.
  • hydroxides of Group 2 elements include magnesium hydroxide, calcium hydroxide, barium hydroxide and the like. Among these, magnesium oxide is preferable from the viewpoints of thickening effect, versatility, cost, and the like.
  • the photopolymerization initiator is not particularly limited as long as it generates radicals upon irradiation with light.
  • benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether; -methylethyl)acetophenone; ⁇ -hydroxyalkylphenones such as 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one; 2-methylanthraquinone, 2- Anthraquinones such as amyl anthraquinone, 2-t-butyl anthraquinone and 1-chloroanthraquinone; Thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; Acetophenone dimethyl ketal, benz
  • the photopolymerization initiator is preferably an intramolecular cleavage type photopolymerization initiator that does not require a hydrogen donor.
  • active species are generated by absorbing light with a wavelength of 315 to 460 nm, 2,2-dimethoxy-2-phenylacetophenone, phenylbis(2,4, 6-trimethylbenzoyl)phosphine oxide and 1-hydroxycyclohexylphenyl ketone, 1-hydroxycyclohexylphenyl ketone are preferred.
  • At least one compound (E) selected from water and a hydroxy group-containing compound may be used in the resin composition of the present embodiment. Including the compound (E) in the resin composition makes it easier to control the thickening speed.
  • hydroxy group-containing compounds include alcohols having a boiling point of 50° C. or higher, such as benzyl alcohol, stearyl alcohol, and isostearyl alcohol.
  • Other examples include hydroxycarboxylic acids such as lactic acid, glycerin, polyols, and (meth)acrylates containing a hydroxy group. These may be used singly or in combination of two or more. Among these, water and alcohol are preferred, and water is more preferred, from the viewpoint of availability, cost, and the like.
  • the resin composition of this embodiment may contain a compound having at least one carboxyl group.
  • the carboxy group-containing compound include maleic acid, phthalic acid, isophthalic acid, terephthalic acid, succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, fumaric acid, endomethylenetetrahydrophthalic acid, and methyltetrahydrophthalic acid.
  • Haridimer 250 (manufactured by Harima Kasei Co., Ltd.) can be mentioned as a commercially available product.
  • the carboxy group-containing compounds may be used singly or in combination of two or more.
  • the thickening rate is controlled to prevent the resin composition from excessively thickening immediately after production of the resin composition (within 5 hours after production).
  • the carboxy group-containing compound is preferably 3-dodecenylsuccinic acid, methacrylic acid, or acrylic acid, and more preferably 3-dodecenylsuccinic acid. preferable.
  • the viscosity increase rate is controlled immediately after the resin composition is produced (after production to From the viewpoint of suppressing excessive thickening of the resin composition within 5 hours) and further suppressing excessive increase in the attained viscosity of the resin composition, the vinyl ester resin (A1) and ethylenically unsaturated It is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and still more preferably 0.1 parts by mass or more with respect to a total of 100 parts by mass of the group-containing monomer (B).
  • the hygroscopicity of the resin composition increases. It is preferably 3 parts by mass or less, more preferably 1 part by mass or less, and even more preferably 0.5 parts by mass or less.
  • the carboxy group-containing compound has a lower molecular weight than the unsaturated polyester molecule. Therefore, an interaction occurs between the carboxy group or hydroxy group of the unsaturated polyester resin (A2) and the thickening agent (C), and before the resin composition thickens over time, the carboxy group-containing compound and the thickener (C) can suppress the increase in initial viscosity (within 5 hours after preparation of the resin composition). Moreover, water is produced by the interaction between the carboxy group-containing compound and the thickener (C).
  • the generated water accelerates the thickening of the resin composition 24 to 48 hours after the resin composition is prepared, so that the target viscosity can be reached quickly. Furthermore, when the carboxy group-containing compound is contained in the resin composition, the apparent molecular weight formed by the interaction of the unsaturated polyester resin (A2), the carboxy group-containing compound, and the thickener (C) becomes low. , it is possible to suppress the attained viscosity of the resin composition from becoming excessively high.
  • the carboxy group-containing compounds may be used singly or in combination of two or more.
  • the molecular weight and molecular structure of the carboxy group-containing compound are not particularly limited, but the unsaturated polyester resin (A2) and the thickener (C)
  • the molecular weight is preferably 90 or more from the viewpoint of generating an appropriate interaction, and is preferably 500 or less, more preferably 400 or less, and still more preferably 300 or less from the viewpoint of controlling the thickening property.
  • the molecular weight of the carboxyl group-containing compound is 90 or more, it suppresses the decrease in the ultimate viscosity due to the inclusion of the low molecular weight compound, and the mobility is not too high, so it quickly interacts with the thickener (C) and immediately Consumption is suppressed, and an increase in initial viscosity can be suppressed.
  • the molecular mobility of the carboxy group-containing compound is 500 or less, the molecular mobility is significantly greater than that of the unsaturated polyester resin (A2), so immediately after step (I) (immediately after preparation of the resin composition (after adjustment to It is possible to further prevent the resin composition from excessively thickening within 5 hours)), and further prevent the attained viscosity of the resin composition from becoming excessively high.
  • the carboxyl group-containing compound controls the thickening rate, immediately after step (I) (immediately after resin composition adjustment (after preparation to 5 From the viewpoint of suppressing the excessive increase in the viscosity of the resin composition within a period of time)) and further suppressing the excessive increase in the reached viscosity of the resin composition, one molecule has two carboxy groups.
  • Dicarboxylic acids are preferred, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, 3-dodecenylsuccinic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, and Halidimer 250 are more preferred, 3-dodecenylsuccinic acid, and Halidimer 250 is more preferred.
  • the content of the carboxy group-containing compound in the resin composition is immediately after the step (I) (immediately after the resin composition is adjusted (after preparation to 5 From the viewpoint of further suppressing the excessive increase in the viscosity of the resin composition within the time)) and further suppressing the excessive increase in the reached viscosity of the resin composition, the unsaturated polyester resin (A2) and It is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more, relative to a total of 100 parts by mass of the ethylenically unsaturated group-containing monomer (B).
  • the hygroscopicity of the resin composition increases. It is preferably 3.5 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1 part by mass or less.
  • the content of the carboxy group-containing compound in the resin composition is immediately after the step (I) (immediately after the resin composition is adjusted (after preparation to 5
  • the total amount of the resin composition is 100 parts by mass from the viewpoint that it is possible to further suppress the excessive increase in the viscosity of the resin composition within the time)) and to further suppress the excessive increase in the reached viscosity of the resin composition.
  • the hygroscopicity of the resin composition increases as the content of the carboxy group-containing compound in the resin composition increases. It is preferably 3.5 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1 part by mass or less.
  • resin composition of the present embodiment include, for example, other resins, polymerization inhibitors, thixotropic agents, curing accelerators, catalysts, thickening aids, curing retardants, surfactants, surface modifiers, Additives such as wetting and dispersing agents, antifoaming agents, leveling agents, coupling agents, light stabilizers, waxes, flame retardants and plasticizers can be included.
  • the content of the additive is not particularly limited as long as it does not impair the effects of the present invention.
  • a polymerization inhibitor can be used to suppress the progress of the polymerization reaction of the resin composition.
  • the resin composition of the present embodiment preferably contains a polymerization inhibitor.
  • a known polymerization inhibitor can be used, and examples thereof include hydroquinone, methylhydroquinone, trimethylhydroquinone, phenothiazine, catechol, 4-t-butylcatechol, and copper naphthenate. These may be used individually by 1 type, and 2 or more types may be used together.
  • the resin composition in the present embodiment contains the vinyl ester resin (A1) as the resin (A), it preferably contains a thixotropic agent.
  • a thixotropic agent is used to adjust the mixability and fluidity of the resin composition.
  • the thixotropic agents include organic thixotropic agents and inorganic thixotropic agents. These can be used singly or in combination of two or more.
  • the content thereof is preferably 0 with respect to a total of 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • organic thixotropic agents examples include hydrogenated castor oil-based, amide-based, polyethylene oxide-based, vegetable oil polymerized oil-based, surfactant-based, and composite systems using these together. Specific examples include “Floron (registered trademark) SP-1000AF” (manufactured by Kyoeisha Chemical Co., Ltd.), “Disparon (registered trademark) 6900-20X” (Kusumoto Kasei Co., Ltd.), and the like. Inorganic thixotropic agents include, for example, hydrophobically or hydrophilically treated silica and bentonite.
  • hydrophobic inorganic thixotropic agents include “Rheolosil (registered trademark) PM-20L” (manufactured by Tokuyama Corporation), “Aerosil (registered trademark) R-106" (Nippon Aerosil Co., Ltd.), “CAB-O-SIL (registered trademark)” (manufactured by Cabot Corporation) and the like.
  • hydrophilic inorganic thixotropic agents include “Aerosil (registered trademark)-200” (manufactured by Nippon Aerosil Co., Ltd.).
  • the content of the resin (A) in the resin composition according to the first embodiment is, when the resin (A) contains the vinyl ester resin (A1), the resin (A) and the ethylenically unsaturated group-containing monomer (B ) is preferably 35 to 90 parts by mass, more preferably 40 to 80 parts by mass, and even more preferably 45 to 70 parts by mass, and the resin (A) is an unsaturated polyester resin (A2) When containing, with respect to a total of 100 parts by weight of the resin (A) and the ethylenically unsaturated group-containing monomer (B), preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, more preferably 40 to 65 parts by mass.
  • the resin (A) contains the vinyl ester resin (A1), if the content of the resin (A) is 35 parts by mass or more, the resin (A) tends to moderately increase the thickening speed of the resin composition. . Further, when the resin (A) is 90 parts by mass or less, the viscosity of the resin composition in the step (II) can be easily reduced, and the fiber base material (F) can be easily impregnated with the resin composition. When the resin (A) contains the unsaturated polyester resin (A2), if the content of the resin (A) is 20 parts by mass or more, it is easy to control the thickening speed of the resin composition. Moreover, when the content of the resin (A) is 80 parts by mass or less, the viscosity of the resin composition in step (II) can be easily reduced, and the fiber base material (F) can be easily impregnated with the resin composition.
  • the content of the resin (A) in the resin composition according to the first embodiment is preferably 35 to 90 parts by mass, more preferably 40 to 80 parts by mass, more preferably 45 to 70 parts by mass, and when the resin (A) contains the unsaturated polyester resin (A2), the total amount of the resin composition is 100 parts by mass. , preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and even more preferably 40 to 65 parts by mass.
  • the resin (A) contains the vinyl ester resin (A1)
  • the content of the resin (A) is 35 parts by mass or more, the resin (A) tends to moderately increase the thickening speed of the resin composition. .
  • the viscosity of the resin composition in the step (II) can be easily reduced, and the fiber base material (F) can be easily impregnated with the resin composition.
  • the resin (A) contains the unsaturated polyester resin (A2), if the content of the resin (A) is 20 parts by mass or more, it is easy to control the thickening speed of the resin composition.
  • the content of the resin (A) is 80 parts by mass or less, the viscosity of the resin composition in step (II) can be easily reduced, and the fiber base material (F) can be easily impregnated with the resin composition.
  • the content of the ethylenically unsaturated group-containing monomer (B) in the resin composition according to the first embodiment is It is preferably 10 to 65 parts by mass, more preferably 20 to 60 parts by mass, and still more preferably 30 to 55 parts by mass with respect to a total of 100 parts by mass of the saturated group-containing monomer (B).
  • the saturated polyester resin (A2) is included, it is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, relative to the total 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). , more preferably 35 to 60 parts by mass.
  • the resin (A) contains the vinyl ester resin (A1)
  • the ethylenically unsaturated group-containing monomer (B) is 10 parts by mass or more
  • the viscosity of the resin composition in step (II) can be easily reduced, and the fiber It becomes easier to impregnate the base material (F).
  • the ethylenically unsaturated group-containing monomer (B) is 65 parts by mass or less
  • the resin composition has better thickening properties.
  • the resin (A) contains the unsaturated polyester resin (A2)
  • the ethylenically unsaturated group-containing monomer (B) is 20 parts by mass or more
  • the viscosity of the resin composition in step (II) can be easily reduced. , making it easier to impregnate the fiber base material (F).
  • the ethylenically unsaturated group-containing monomer (B) is 80 parts by mass or less, the resin composition has better thickening properties.
  • the content of the ethylenically unsaturated group-containing monomer (B) in the resin composition according to the first embodiment is, when the resin (A) contains the vinyl ester resin (A1), the total amount of the resin composition is 100 parts by mass. For, preferably 10 to 65 parts by mass, more preferably 20 to 60 parts by mass, still more preferably 30 to 55 parts by mass, and the resin (A) is an unsaturated polyester resin (A2), when the resin composition It is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, still more preferably 35 to 60 parts by mass, relative to 100 parts by mass of the total amount of the product.
  • the resin (A) contains the vinyl ester resin (A1)
  • the ethylenically unsaturated group-containing monomer (B) is 10 parts by mass or more
  • the viscosity of the resin composition in step (II) can be easily reduced, and the fiber It becomes easier to impregnate the base material (F).
  • the amount of the ethylenically unsaturated group-containing monomer (B) is 65 parts by mass or less
  • the resin composition has better thickening properties.
  • the resin (A) contains the unsaturated polyester resin (A2)
  • the ethylenically unsaturated group-containing monomer (B) is 20 parts by mass or more
  • the viscosity of the resin composition in step (II) can be easily reduced. , making it easier to impregnate the fiber base material (F).
  • the ethylenically unsaturated group-containing monomer (B) is 80 parts by mass or less, the resin composition has better thickening properties.
  • the content of the thickener (C) in the resin composition according to the first embodiment is preferably 0.5 parts per 100 parts by mass in total of the resin (A) and the ethylenically unsaturated group-containing monomer (B). 01 to 6 parts by mass, more preferably 0.05 to 5 parts by mass, still more preferably 0.1 to 4 parts by mass.
  • the thickener (C) is 0.1 parts by mass or more, the resin composition has better thickening properties. If the thickener (C) is 6 parts by mass or less, it becomes easier to suppress excessive thickening of the resin composition, and it becomes easier to moderately control the thickening speed.
  • the content of the thickener (C) in the resin composition according to the first embodiment is preferably 0.01 to 6 parts by mass, more preferably 0.05 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition. to 5 parts by mass, more preferably 0.1 to 4 parts by mass.
  • the thickener (C) is 0.1 parts by mass or more, the resin composition has better thickening properties. If the thickener (C) is 6 parts by mass or less, it becomes easier to suppress excessive thickening of the resin composition, and it becomes easier to moderately control the thickening speed.
  • the content of the photopolymerization initiator (D) in the resin composition according to the first embodiment is preferably 0 with respect to a total of 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, still more preferably 0.1 to 3 parts by mass.
  • the content of the photopolymerization initiator (D) is 0.01 parts by mass or more, a resin composition with better curability can be obtained.
  • the content of the photopolymerization initiator is 10 parts by mass or less, a rapid curing reaction and heat generation are less likely to occur during curing of the resin composition, cracks are more likely to be suppressed, and strength, toughness, heat resistance, and resistance are improved.
  • An excellent lining material can be easily obtained due to the balance of physical properties such as chemical properties.
  • the content of the photopolymerization initiator (D) in the resin composition according to the first embodiment is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 10 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition. 05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the content of the photopolymerization initiator (D) is 0.01 parts by mass or more, a resin composition with better curability can be obtained. If the content of the photopolymerization initiator is 10 parts by mass or less, a rapid curing reaction and heat generation are unlikely to occur during curing of the resin composition, cracks are easily suppressed, and strength, toughness, heat resistance, and resistance are improved. An excellent lining material can be easily obtained due to the balance of physical properties such as chemical properties.
  • the content of the compound (E) in the resin composition is With respect to a total of 100 parts by mass of (A) and ethylenically unsaturated group-containing monomer (B), preferably 0.05 to 3 parts by mass, more preferably 0.1 to 2 parts by mass, still more preferably 0.3 to 1 part by mass.
  • the compound (E) is 0.05 parts by mass or more, it becomes easy to control the thickening speed of the resin composition and suppress excessive thickening.
  • the compound (E) is 3 parts by mass or less, it is easy to obtain a lining material with excellent balance of physical properties such as strength, toughness, heat resistance and chemical resistance.
  • the content of the compound (E) in the resin composition is It is preferably 0.05 to 3 parts by mass, more preferably 0.1 to 2 parts by mass, still more preferably 0.3 to 1 part by mass, relative to 100 parts by mass of the total amount of the composition.
  • the compound (E) is 0.05 parts by mass or more, it becomes easy to control the thickening speed of the resin composition and suppress excessive thickening.
  • the compound (E) is 3 parts by mass or less, it is easy to obtain a lining material with excellent balance of physical properties such as strength, toughness, heat resistance and chemical resistance.
  • the resin composition contains 35 to 90 parts by mass of the vinyl ester resin (A1) with respect to a total of 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). Parts by mass, 10 to 65 parts by mass of the ethylenically unsaturated group-containing monomer (B), 0.01 to 6 parts by mass of the thickener (C), and 0.01 to 0.01 of the photopolymerization initiator (D) It is preferable to include 10 parts by mass.
  • the resin composition contains 20 parts by mass of the unsaturated polyester resin (A2) with respect to a total of 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). ⁇ 80 parts by mass, 20 to 80 parts by mass of the ethylenically unsaturated group-containing monomer (B), 0.01 to 6 parts by mass of the thickener (C), and 0.01 to 5 parts by mass of the carboxy group-containing compound It is preferable to include parts by mass.
  • the content of the resin (A) in the resin composition according to the second embodiment is, when the resin (A) contains the vinyl ester resin (A1), the resin (A) and the ethylenically unsaturated group-containing monomer (B ) is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 60 parts by mass, and the resin (A) is an unsaturated polyester resin (A2) When containing, with respect to a total of 100 parts by weight of the resin (A) and the ethylenically unsaturated group-containing monomer (B), preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, more preferably 40 to 65 parts by mass.
  • the resin (A) contains the vinyl ester resin (A1)
  • the resin (A) tends to moderately increase the thickening rate of the resin composition.
  • the resin (A) is 80 parts by mass or less
  • the ethylenically unsaturated group-containing monomer (B) can easily reduce the viscosity of the resin composition in the step (II) and easily impregnate the fiber base material (F).
  • the resin (A) contains the unsaturated polyester resin (A2)
  • the content of the resin (A) is 20 parts by mass or more, it is easy to control the thickening speed of the resin composition.
  • the viscosity of the resin composition in step (II) can be easily reduced, and the fiber base material (F) can be easily impregnated with the resin composition.
  • the content of the resin (A) in the resin composition according to the second embodiment is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, more preferably 40 to 60 parts by mass, and when the resin (A) contains the unsaturated polyester resin (A2), the total amount of the resin composition is 100 parts by mass. , preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and even more preferably 40 to 65 parts by mass.
  • the resin (A) contains the vinyl ester resin (A1), if the resin (A) is 20 parts by mass or more, the resin (A) tends to moderately increase the thickening speed of the resin composition.
  • the ethylenically unsaturated group-containing monomer (B) can easily reduce the viscosity of the resin composition in the step (II) and easily impregnate the fiber base material (F).
  • the resin (A) contains the unsaturated polyester resin (A2)
  • the content of the resin (A) is 20 parts by mass or more, it is easy to control the thickening speed of the resin composition.
  • the viscosity of the resin composition in step (II) can be easily reduced, and the fiber base material (F) can be easily impregnated with the resin composition.
  • the content of the ethylenically unsaturated group-containing monomer (B) in the resin composition according to the second embodiment is It is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 60 parts by mass with respect to a total of 100 parts by mass of the saturated group-containing monomer (B).
  • the saturated polyester resin (A2) is included, it is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, relative to the total 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). , more preferably 35 to 60 parts by mass.
  • the resin (A) contains the vinyl ester resin (A1)
  • the ethylenically unsaturated group-containing monomer (B) is 20 parts by mass or more, the viscosity of the resin composition in step (II) can be easily reduced, and the fiber It becomes easier to impregnate the base material (F).
  • the amount of the ethylenically unsaturated group-containing monomer (B) is 80 parts by mass or less, the resin composition has better thickening properties.
  • the resin (A) contains the unsaturated polyester resin (A2)
  • the ethylenically unsaturated group-containing monomer (B) is 20 parts by mass or more, the viscosity of the resin composition in step (II) can be easily reduced, It becomes easier to impregnate the fiber base material (F).
  • the amount of the ethylenically unsaturated group-containing monomer (B) is 80 parts by mass or less, the resin composition has better thickening properties.
  • the content of the ethylenically unsaturated group-containing monomer (B) in the resin composition according to the second embodiment is, when the resin (A) contains the vinyl ester resin (A1), the total amount of the resin composition is 100 parts by mass. For, preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, still more preferably 40 to 60 parts by mass, when the resin (A) contains an unsaturated polyester resin (A2), the resin composition It is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, still more preferably 35 to 60 parts by mass, relative to 100 parts by mass of the total amount of the product.
  • the resin (A) contains the vinyl ester resin (A1)
  • the ethylenically unsaturated group-containing monomer (B) is 20 parts by mass or more, the viscosity of the resin composition in step (II) can be easily reduced, and the fiber It becomes easier to impregnate the base material (F).
  • the amount of the ethylenically unsaturated group-containing monomer (B) is 80 parts by mass or less, the resin composition has better thickening properties.
  • the resin (A) contains the unsaturated polyester resin (A2)
  • the ethylenically unsaturated group-containing monomer (B) is 20 parts by mass or more, the viscosity of the resin composition in step (II) can be easily reduced, It becomes easier to impregnate the fiber base material (F).
  • the amount of the ethylenically unsaturated group-containing monomer (B) is 80 parts by mass or less, the resin composition has better thickening properties.
  • the content of the thickener (C) in the resin composition according to the second embodiment is preferably 0.5 parts per 100 parts by mass in total of the resin (A) and the ethylenically unsaturated group-containing monomer (B). 1 to 6 parts by mass, more preferably 0.5 to 5 parts by mass, still more preferably 1 to 4 parts by mass.
  • the thickener (C) is 0.1 parts by mass or more, the resin composition has better thickening properties. If the thickener (C) is 6 parts by mass or less, it becomes easier to suppress excessive thickening of the resin composition, and it becomes easier to moderately control the thickening speed.
  • the content of the thickener (C) in the resin composition according to the second embodiment is preferably 0.1 to 6 parts by mass, more preferably 0.5 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition. to 5 parts by mass, more preferably 1 to 4 parts by mass.
  • the thickener (C) is 0.1 parts by mass or more, the resin composition has better thickening properties. If the thickener (C) is 6 parts by mass or less, it becomes easier to suppress excessive thickening of the resin composition, and it becomes easier to moderately control the thickening speed.
  • the content of the photopolymerization initiator (D) in the resin composition according to the second embodiment is preferably 0 with respect to a total of 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, still more preferably 0.1 to 3 parts by mass.
  • the content of the photopolymerization initiator (D) is 0.01 parts by mass or more, a resin composition with better curability can be obtained.
  • the content of the photopolymerization initiator is 10 parts by mass or less, a rapid curing reaction and heat generation are less likely to occur during curing of the resin composition, cracks are more likely to be suppressed, and strength, toughness, heat resistance, and resistance are improved.
  • An excellent lining material can be easily obtained due to the balance of physical properties such as chemical properties.
  • the content of the photopolymerization initiator (D) in the resin composition according to the second embodiment is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 10 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition. 05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the content of the photopolymerization initiator (D) is 0.01 parts by mass or more, a resin composition with better curability can be obtained. If the content of the photopolymerization initiator is 10 parts by mass or less, a rapid curing reaction and heat generation are less likely to occur during curing of the resin composition, cracks are more likely to be suppressed, and strength, toughness, heat resistance, and resistance are improved. An excellent lining material can be easily obtained due to the balance of physical properties such as chemical properties.
  • the content of the compound (E) in the resin composition is A) and the ethylenically unsaturated group-containing monomer (B), relative to a total of 100 parts by mass, preferably 0.01 to 2 parts by mass, more preferably 0.05 to 1.5 parts by mass, still more preferably 0.1 ⁇ 1 part by mass.
  • the compound (E) is 0.05 parts by mass or more, it becomes easier to control the thickening rate of the resin composition and suppress excessive thickening.
  • the compound (E) is 3 parts by mass or less, it is easy to obtain a lining material having excellent balance of physical properties such as strength, toughness, heat resistance and chemical resistance.
  • the content of the compound (E) in the resin composition is It is preferably 0.01 to 2 parts by mass, more preferably 0.05 to 1.5 parts by mass, and still more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the total amount of the product.
  • the compound (E) is 0.05 parts by mass or more, it becomes easier to control the thickening rate of the resin composition and suppress excessive thickening.
  • the compound (E) is 3 parts by mass or less, it is easy to obtain a lining material having excellent balance of physical properties such as strength, toughness, heat resistance and chemical resistance.
  • the resin composition contains 20 to 20 parts of the vinyl ester resin (A1) with respect to a total of 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). 80 parts by mass, 20 to 80 parts by mass of the ethylenically unsaturated group-containing monomer (B), 0.01 to 6 parts by mass of the thickener (C), and 0.01 of the photopolymerization initiator (D) It is preferable to contain up to 10 parts by mass.
  • the resin composition contains 20 parts by mass of the unsaturated polyester resin (A2) with respect to a total of 100 parts by mass of the resin (A) and the ethylenically unsaturated group-containing monomer (B). ⁇ 80 parts by mass, 20 to 80 parts by mass of the ethylenically unsaturated group-containing monomer (B), 0.01 to 6 parts by mass of the thickener (C), and 0.01 to 5 parts by mass of the dicarboxylic acid preferably included.
  • Vinyl ester resin (A1-1) can be produced by reacting epoxy compound (a1-1) with unsaturated monobasic acid (a1-2). For example, in a reaction vessel capable of being heated and stirred, the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) are optionally mixed with at least one of a solvent and a reactive diluent, and the ester It can be produced by heating with mixing at a temperature of preferably 70 to 150° C., more preferably 80 to 140° C., still more preferably 90 to 130° C., in the presence of a curing catalyst for 1 to 8 hours.
  • the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) are added to the total amount of 100 mol of the epoxy groups of the epoxy compound (a1-1), and the unsaturated monobasic acid
  • the total amount of acid groups of (a1-2) is preferably 80 mol or more, more preferably 90 mol or more, still more preferably 99 mol or more.
  • Esterification catalysts include, for example, triethylamine, triethylenediamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, 2,4,6-tris(dimethylaminomethyl)phenol and diazabicyclooctane.
  • phosphorus compounds and quaternary ammonium salts from the viewpoint of moderately promoting the synthesis reaction rate of vinyl ester resins, suppressing gelation, and facilitating moderate control of the molecular weight distribution. At least one is preferred, and at least one selected from quaternary ammonium salts is more preferred.
  • the amount of the esterification catalyst used is the amount of the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) from the viewpoint of suppressing the thickening of the vinyl ester resin (A1-1) while promoting the reaction. It is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and still more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass in total.
  • At least one of a solvent and a reactive diluent is optionally used from the viewpoint of facilitating uniform mixing of the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2).
  • the mixing method is not particularly limited, and can be performed by a known method.
  • the solvent is not particularly limited as long as it is inert to the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2). Examples thereof include known solvents having a boiling point of 70 to 150° C. at 1 atm, such as methyl isobutyl ketone.
  • a solvent may be used individually by 1 type, and may use 2 or more types together.
  • As the reactive diluent an ethylenically unsaturated group-containing monomer (B) inert to the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) is preferred.
  • a polymerization inhibitor may be added from the viewpoint of suppressing the progress of the polymerization reaction of the vinyl ester resin (A1-1).
  • the polymerization inhibitor those described in the section ⁇ other components>> above are preferably used.
  • the amount added is, for example, 0.0001 to 10 parts by mass with respect to a total of 100 parts by mass of the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2). preferably 0.001 to 1 part by mass.
  • the vinyl ester resin (A1-2) is a resin precursor (P1) which is a reaction product of an epoxy compound (a1-1) and an unsaturated monobasic acid (a1-2), and a polybasic acid anhydride (a1- It can be produced by further adding 4).
  • the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) are optionally mixed with at least one of a solvent and a reactive diluent, and the ester A resin precursor (P1) is produced by heating with mixing at preferably 70 to 150° C., more preferably 80 to 140° C., still more preferably 90 to 130° C.
  • the polybasic acid anhydride (a1-4) is added to the reaction vessel in which the resin precursor (P1) was synthesized, and the temperature is maintained at 70 to 150°C, preferably 80 to 140°C, in the presence of an esterification catalyst. More preferably, the vinyl ester resin (A1-2) is obtained by reacting at 90 to 130° C. for 30 minutes to 4 hours.
  • the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) are added to the total amount of 100 mol of the epoxy groups of the epoxy compound (a1-1), and the unsaturated monobasic acid
  • the total amount of acid groups of (a1-2) is preferably 80 mol or more, more preferably 90 mol or more, still more preferably 99 mol or more.
  • the polybasic acid anhydride (a1-4) is 3 to 60 moles per 100 moles of the total epoxy group of the epoxy compound (a1-1). more preferably 5 to 50 mol, still more preferably 7 to 45 mol.
  • Examples of the esterification catalyst used for producing the vinyl ester resin (A1-2) include those similar to the esterification catalysts used for producing the vinyl ester resin (A1-1).
  • the amount of the esterification catalyst used is 100 in total for the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2) from the viewpoint of suppressing thickening of the resin precursor (P1) while promoting the reaction. It is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, still more preferably 0.1 to 3 parts by mass.
  • At least one of the solvent and reactive diluent used in the production of the vinyl ester resin (A1-2) is the same as the solvent and reactive diluent used in the production of the vinyl ester resin (A1-1). mentioned. The same applies to preferred embodiments.
  • a polymerization inhibitor may be added from the viewpoint of suppressing the progress of the polymerization reaction of the vinyl ester resin (A1-2).
  • the polymerization inhibitor those described in the section ⁇ other components>> above are preferably used.
  • the amount added is, for example, 0.0001 to 10 parts by mass with respect to a total of 100 parts by mass of the epoxy compound (a1-1) and the unsaturated monobasic acid (a1-2). preferably 0.001 to 1 part by mass.
  • Vinyl ester resin (A1-3) is an epoxy compound (a1-1) having two epoxy groups in one molecule, unsaturated monobasic acid (a1-2), and polybasic acid anhydride (a1-3 ) can be produced by further adding polybasic acid anhydride (a1-4) to resin precursor (P2), which is the reaction product of ).
  • an epoxy compound (a1-1), an unsaturated monobasic acid (a1-2), and a polybasic acid anhydride (a1-3) are added, if necessary, a solvent and At least one of the reactive diluents is mixed, and in the presence of an esterification catalyst, preferably at 70 to 150°C, more preferably 80 to 140°C, still more preferably 90 to 130°C, while mixing for 1 to 8 hours.
  • a resin precursor (P2) is produced by heating.
  • the polybasic acid anhydride (a1-4) is added to the reaction vessel in which the resin precursor (P2) was synthesized, and the temperature is maintained at 70 to 150°C, preferably 80 to 140°C, in the presence of an esterification catalyst. More preferably, the vinyl ester resin (A1-3) is obtained by reacting at 90 to 130° C. for 30 minutes to 4 hours.
  • the total amount of acid groups of the unsaturated monobasic acid (a1-2) is It is preferable to react so as to obtain 75 to 95 mol, more preferably 77 to 93 mol, still more preferably 79 to 91 mol.
  • the epoxy groups derived from the polybasic acid anhydride (a1-3) are reacted with the total amount of 100 mol of the epoxy groups of the epoxy compound (a1-1).
  • the total amount of acid groups to be obtained is preferably 5 to 25 mol, more preferably 7 to 23 mol, still more preferably 9 to 21 mol.
  • the acid group derived from the unsaturated monobasic acid (a1-2) and the polybasic acid anhydride (a1-3) (here, the "acid group” is Acid groups produced by hydrolysis of polybasic acid anhydride (a1-3)
  • the polybasic acid anhydride (a1-3) is a dibasic acid anhydride
  • the number of acid groups produced from one molecule is 2.
  • the polybasic acid anhydride (a1-4) is 3- It is preferable to carry out the reaction so as to obtain 60 mol, more preferably 5 to 50 mol, still more preferably 7 to 45 mol.
  • esterification catalyst used for producing the vinyl ester resin (A1-3) examples include those similar to the esterification catalysts used for producing the vinyl ester resin (A1-1). Further, the esterification catalyst used in producing the resin precursor (P2) and the esterification catalyst used in producing the vinyl ester resin (A1-3) from the resin precursor (P2) may be the same or different. good.
  • the amount of the esterification catalyst used is, from the viewpoint of suppressing the thickening of the resin precursor (P2) while promoting the reaction, the epoxy compound (a1-1), the unsaturated monobasic acid (a1-2) and the polybasic It is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, still more preferably 0.1 to 3 parts by mass, relative to the total 100 parts by mass of the acid anhydride (a1-3). .
  • At least one of the solvent and reactive diluent used in the production of the vinyl ester resin (A1-3) is the same as the solvent and reactive diluent used in the production of the vinyl ester resin (A1-1). mentioned. The same applies to preferred embodiments.
  • a polymerization inhibitor may be added from the viewpoint of suppressing the progress of the polymerization reaction of the vinyl ester resin (A1-3).
  • the polymerization inhibitor those described in the section ⁇ other components>> above are preferably used.
  • the amount added is, for example, the epoxy compound (a1-1), the unsaturated monobasic acid (a1-2) and the polybasic acid anhydride (a1-3) with respect to a total of 100 parts by mass. 0.0001 to 10 parts by mass, preferably 0.001 to 1 part by mass.
  • a method for producing a vinyl ester resin (A1-4) comprises reacting an epoxy compound (a1-1) having two epoxy groups in one molecule and a bisphenol compound (a1-5) to obtain a resin precursor (P3). and a step of reacting the resin precursor (P3) and the unsaturated monobasic acid (a1-2) to obtain a vinyl ester resin (A1-4).
  • the step of obtaining a resin precursor (P3) includes reacting an epoxy compound (a1-1) having two epoxy groups in one molecule and a bisphenol compound (a1-5) to obtain a resin precursor (P3). It is a process of obtaining In the step of obtaining the resin precursor (P3), from the viewpoint of widening the molecular weight distribution of the vinyl ester resin (A1-4) and controlling the ultimate viscosity of the resin composition, an epoxy compound having two epoxy groups per molecule is used.
  • (a1-1) and the bisphenol compound (a1-5) are preferably combined so that the total amount of hydroxyl groups of the bisphenol compound (a1-5) is It is preferable to carry out the reaction so as to obtain 10 to 70 mol, more preferably 20 to 60 mol, still more preferably 25 to 50 mol.
  • the step of obtaining the resin precursor (P3) includes, for example, adding a solvent and a reactive diluent to the epoxy compound (a1-1) and the bisphenol compound (a1-5) in a reaction vessel capable of being heated and stirred. Mixing with at least one of the resin precursors and heating in the presence of an esterification catalyst at a temperature of preferably 70 to 160° C., more preferably 80 to 155° C., still more preferably 90 to 150° C. for 1 to 3 hours while mixing. body (P3) can be obtained.
  • esterification catalysts include triethylamine, triethylenediamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, 2,4,6-tris(dimethylaminomethyl)phenol, and cyazabicyclooctane.
  • Phosphorus compounds such as primary amines, triphenylphosphine and benzyltriphenylphosphonium chloride, diethylamine hydrochloride, trimethylbenzylammonium chloride, lithium chloride and the like. These can be used singly or in combination of two or more. Among these, from the viewpoints of slowing the reaction rate, preventing gelation of the resin, and facilitating control of the molecular weight distribution, phosphorus-based and ammonium salt-based catalysts are preferred, and ammonium salts are more preferred.
  • the amount of the esterification catalyst used is, from the viewpoint of suppressing the thickening of the vinyl ester resin (A1-4) while promoting the reaction, the epoxy compound (a1-1), the bisphenol compound (a1-5), and the unsaturated It is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, still more preferably 0.1 to 3 parts by mass, relative to the total 100 parts by mass of the monobasic acid (a1-2). .
  • a solvent and a reactive diluent are used as necessary from the viewpoint of facilitating uniform mixing of the epoxy compound (a1-1), the bisphenol compound (a1-5) and the unsaturated monobasic acid (a1-2).
  • the mixing method is not particularly limited, and can be performed by a known method.
  • the solvent is not particularly limited as long as it is inert to the epoxy compound (a1-1), bisphenol compound (a1-5) and unsaturated monobasic acid (a1-2). Examples thereof include known solvents having a boiling point of 70 to 150° C. at 1 atm, such as methyl isobutyl ketone.
  • a solvent may be used individually by 1 type, and may use 2 or more types together.
  • Preferred reactive diluents include epoxy compounds (a1-1), bisphenol compounds (a1-5), and ethylenically unsaturated group-containing monomers (B) inert to unsaturated monobasic acids (a1-2). .
  • a polymerization inhibitor may be added from the viewpoint of suppressing the progress of the polymerization reaction of the resin precursor (P3).
  • the polymerization inhibitor those described in the section ⁇ Other components> above are preferably used.
  • the amount added is, for example, the epoxy compound (a1-1), the bisphenol compound (a1-5) and the unsaturated monobasic acid (a1-2) with respect to a total of 100 parts by mass, 0 0.0001 to 10 parts by weight, preferably 0.001 to 1 part by weight.
  • the step of obtaining the vinyl ester resin (A1-4) is a step of reacting the resin precursor (P3) and the unsaturated monobasic acid (a1-2) to obtain the vinyl ester resin (A1-4).
  • the epoxy of the epoxy compound (a1-1) is preferably 30 to 120 mol, more preferably 40 to 100 mol, and still more preferably 50 to 80 mol with respect to 100 mol of the total amount of groups. It is preferable to react as follows.
  • the step of obtaining the vinyl ester resin (A1-4) includes, for example, adding an unsaturated monobasic acid (a1-2) in the presence of an esterification catalyst into the reaction vessel in which the resin precursor (P3) was synthesized,
  • the vinyl ester resin (A1-4) can be produced by heating with mixing at 70 to 150°C, preferably 80 to 140°C, more preferably 90 to 130°C for 30 minutes to 4 hours.
  • Examples of the esterification catalyst used in the step of obtaining the vinyl ester resin (A1-4) include those similar to those used in the step of obtaining the resin precursor (P3). Further, the esterification catalyst used in producing the resin precursor (P3) and the esterification catalyst used in producing the vinyl ester resin (A1-4) from the resin precursor (P3) may be the same or different. good. In the step of obtaining the vinyl ester resin (A1-4), as in the step of obtaining the resin precursor (P3), if necessary, at least one of a solvent, a reactive diluent, and a polymerization inhibitor is added. good too. The mixing method can also be performed by a known method similarly to the step of obtaining the resin precursor (P3). The same applies to preferred embodiments.
  • the reactive diluent When adding a reactive diluent to the vinyl ester resin (A1-4) for the purpose of lowering the viscosity of the vinyl ester resin (A1-4), the reactive diluent is added after synthesis of the vinyl ester resin (A1-4). It is preferable to mix in addition, and when a reactive diluent is added for the purpose of facilitating the synthesis of the vinyl ester resin (A1-4), the reactive diluent is added during the synthesis of the vinyl ester resin (A1-4). It is preferable to add and mix the reactive diluent and other components after the synthesis of the vinyl ester resin (A1-4).
  • a polymerization inhibitor may be added from the viewpoint of suppressing the progress of the polymerization reaction of the vinyl ester resin (A1-4).
  • the polymerization inhibitor those described in the section ⁇ other components>> above are preferably used.
  • the amount of the polymerization inhibitor added is, for example, the epoxy compound (a1-1), the bisphenol compound (a1-5), and the unsaturated monobasic acid (a1-2) with respect to a total of 100 parts by mass, It can be 0.0001 to 10 parts by mass, preferably 0.001 to 1 part by mass.
  • a method for producing a vinyl ester resin (A1-5) includes reacting an epoxy compound (a1-1) having two epoxy groups in one molecule and a bisphenol compound (a1-5) to obtain a resin precursor (P3 ), reacting the resin precursor (P3) and the unsaturated monobasic acid (a1-2) to obtain the resin precursor (P4), the resin precursor (P4) and the unsaturated polybasic It has a step of reacting the acid (a1-6) to obtain a vinyl ester resin (A1-5).
  • the step of obtaining a resin precursor (P3) includes reacting an epoxy compound (a1-1) having two epoxy groups in one molecule and a bisphenol compound (a1-5) to obtain a resin precursor (P1). is the process of obtaining
  • the step of obtaining the resin precursor (P3) includes the same method as the step of obtaining the resin precursor (P3) in the method for producing the vinyl ester resin (A1-4), and preferred embodiments are also the same.
  • an epoxy compound (a1-1) having two epoxy groups in one molecule and a bisphenol compound (a1-5 ) the total amount of hydroxyl groups of the bisphenol compound (a1-5) is preferably 10 to 70 mol, more preferably 15 to 60 mol, per 100 mol of the total amount of epoxy groups of the epoxy compound (a1-1), More preferably, the reaction is carried out so that the amount becomes 20 to 50 mol.
  • the step of obtaining the resin precursor (P4) is a step of reacting the resin precursor (P3) and the unsaturated monobasic acid (a1-2) to obtain the resin precursor (P4).
  • the step of obtaining the resin precursor (P4) includes the same method as the step of obtaining the vinyl ester resin (A1-4) in the method for producing the vinyl ester resin (A1-4), and preferred embodiments are also the same.
  • the epoxy group of the epoxy compound (a1-1) is controlled from the viewpoint of controlling the viscosity increase rate, the viewpoint of suppressing uneven distribution of the resin composition after curing, and the viewpoint of production stability.
  • the total amount of acid groups of the unsaturated monobasic acid (a1-2) is preferably 40 to 120 mol, more preferably 50 to 100 mol, still more preferably 60 to 80 mol, relative to the total amount of 100 mol. It is preferable to react.
  • the step of obtaining the vinyl ester resin (A1-5) is a step of reacting the resin precursor (P4) and the unsaturated polybasic acid (a1-6) to obtain the vinyl ester resin (A1-5).
  • the step of obtaining the vinyl ester resin (A1-5) includes, for example, adding an unsaturated polybasic acid (a1-6) in the presence of an esterification catalyst into the reaction vessel in which the resin precursor (P4) was synthesized,
  • the vinyl ester resin (A1-5) can be produced by heating with mixing at 70 to 150°C, preferably 80 to 140°C, more preferably 90 to 130°C for 30 minutes to 4 hours.
  • the unsaturated polybasic acid (a1-6) is added to the total amount of 100 mol of the epoxy groups of the epoxy compound (a1-1). is preferably 0.5 to 15 mol, more preferably 1 to 10 mol, still more preferably 3 to 8 mol.
  • Examples of the esterification catalyst used in the step of obtaining the vinyl ester resin (A1-5) include those similar to those used in the step of obtaining the resin precursor (P3). Further, the esterification catalyst used in producing the resin precursor (P4) and the esterification catalyst used in producing the vinyl ester resin (A1-5) from the resin precursor (P4) may be the same or different. good.
  • the step of obtaining the vinyl ester resin (A1-5) similarly to the step of obtaining the resin precursors (P3) and (P4), if necessary, at least one of a solvent, a reactive diluent, and a polymerization inhibitor. may be added.
  • the mixing method can also be performed by a known method similarly to the step of obtaining the resin precursor (P3).
  • the reactive diluent is added after synthesis of the vinyl ester resin (A1-5). It is preferable to mix in addition, and when a reactive diluent is added for the purpose of facilitating the synthesis of the vinyl ester resin (A1-5), the reactive diluent is added during the synthesis of the vinyl ester resin (A1-5). It is preferable to add and mix the reactive diluent and other components after the synthesis of the vinyl ester resin (A1-5).
  • the unsaturated polyester resin (A2) includes a diol (a2-1), an ethylenically unsaturated group-containing dibasic acid (a2-2-1), and an ethylenically unsaturated group-free dibasic acid (a2-2- 2) can be produced by dehydration condensation polymerization.
  • a diol (a2-1), an ethylenically unsaturated group-containing dibasic acid (a2-2-1) and an ethylenically unsaturated group-free dibasic acid (a2-2- 2) at 150 to 250° C., preferably 170 to 240° C., more preferably 180 to 230° C., for 8 to 15 hours.
  • the molar ratio of the diol (a2-1) and the ethylenically unsaturated group-free dibasic acid (a2-2-2) is preferably reacted at 50:50 to 85:15, more preferably 55:45 to 80: 20, more preferably 60:40 to 75:25.
  • timing of mixing each of the diol (a2-1), the ethylenically unsaturated group-containing dibasic acid (a2-2-1), and the ethylenically unsaturated group-free dibasic acid (a2-2-2) is , It can be carried out by a known method without any particular limitation.
  • the step (II) of the present embodiment is a step of impregnating the fiber base material (F) with the resin composition to obtain a resin composition-impregnated base material.
  • the viscosity of the resin composition at 25° C. in step (II) (hereinafter also referred to as the viscosity of the resin composition in step (II)) is 0.1 to 3 Pa ⁇ s.
  • the viscosity of the resin composition in step (II) refers to the viscosity of the resin composition at 25° C. from when impregnation of the fiber base material (F) with the resin composition is started until impregnation is completed. That is, the viscosity of the resin composition at 25° C.
  • step (II) is 0.1 to 3 Pa ⁇ s from when the impregnation of the fiber base material (F) with the resin composition is started until the impregnation is completed.
  • the viscosity of the resin composition in step (II) is 0.1 to 3 Pa s, the resin composition is applied to the fiber base material (F) in a homogeneous state without a portion not impregnated with the resin composition. Efficient and sufficient impregnation can be achieved.
  • the viscosity of the resin composition in step (II) is preferably 0.2 to 2.8 Pa s, more preferably 0.3 to 2.5 Pa, from the viewpoint of more efficient and sufficient impregnation with the resin composition. ⁇ s, more preferably 0.4 to 2.3 Pa ⁇ s.
  • the time for impregnating the fiber base material (F) with the resin composition is not particularly limited, but from the viewpoint of efficiently and sufficiently impregnating the resin composition, it is preferably 0.5 to 24 hours, more preferably. is 1 to 10 hours, more preferably 1.5 to 5 hours.
  • the time from the start of step (I) to the completion of step (II) is preferably 1 to 30 hours, more preferably 2 to 24 hours, still more preferably 5 to 10 hours.
  • the lining material preferably contains an inner film and an outer film described later, and the inner film described later is laminated on one side of the fiber base material (F) impregnated with the resin composition, and the outer film described later is laminated on the other side.
  • the fiber base material (F) may be impregnated with the resin composition in a state in which an inner film described later is laminated on one side of the fiber base material (F) and an outer film described later is laminated on the other side of the fiber base material (F).
  • the resin composition may be impregnated in a state in which either one of the outer films is laminated, or the fiber base material (F) may be directly impregnated.
  • the resin composition is applied to the fiber base material (F) through at least one of the inner film and the outer film. ).
  • the impregnation method is not particularly limited, but includes a method of impregnation by a dipping method, a method of dripping or injecting a resin composition under atmospheric pressure, and a method of dripping or injecting a resin composition under reduced pressure. Examples include a method of impregnation and a method of impregnating by dripping or injecting the resin composition under pressure. In this embodiment, it is preferable to impregnate according to the first embodiment and the second embodiment in the following step (II).
  • the first embodiment in step (II) uses the resin composition according to the first embodiment described above and a cylindrical fiber base material (F), and an inner layer is attached to one surface of the fiber base material (F).
  • the film is impregnated with the resin composition while the outer film is laminated on the other surface to obtain the resin composition-impregnated base material.
  • step (iii) of impregnating by dropping or injecting the resin composition from one end of the fiber base material (F) and applying pressure from the end where the resin composition is dropped or injected toward the other end ( Method using both i) and (ii) Among these, it is preferable to impregnate the resin composition by (iii) from the viewpoint of productivity.
  • the first embodiment in step (II) is advantageous in that the time required for steps (I) to (IV) can be shortened and pipe rehabilitation can be performed efficiently.
  • the lining material is obtained when the step (II) is completed. That is, when step (II) is completed, step (III) is also completed.
  • the resin composition according to the second embodiment described above and a sheet-like or tape-like fiber base material (F) are used, and the fiber base material (F) is coated with the resin composition
  • the material is directly impregnated to obtain a resin composition-impregnated base material.
  • a method of impregnating by a dipping method and a method of impregnating while dripping the resin composition are preferable.
  • the first embodiment in step (II) has the advantage of being easily adaptable to tubes of various sizes.
  • synthetic fibers such as amide, nylon, aramid, vinylon, polyester and phenolic resin, carbon fiber, glass fiber, metal fiber, ceramic fiber and so-called reinforcing fibers, and composite fibers thereof. These may be used singly or in combination of two or more.
  • aramid fiber, carbon fiber, and glass fiber are preferred, and glass fiber is more preferred from the viewpoints of strength, hardness, availability, price, and the like.
  • light-transmitting glass fibers and polyester fibers are preferable.
  • the commonly used filament diameter is preferably 1-15 ⁇ m, more preferably 3-10 ⁇ m.
  • Examples of the form of the fiber base material (F) include sheet, chopped strand, chop, milled fiber and the like.
  • the sheet for example, a sheet formed by arranging a plurality of reinforcing fibers in one direction, bidirectional fabrics such as plain weaves and twill weaves, multiaxial fabrics, non-crimp fabrics, nonwoven fabrics, mats, knits, braids, reinforcing fibers, etc. and the like.
  • the fiber base material (F) may be used singly or in combination of two or more types, and may be a single layer or a laminate of multiple layers.
  • the thickness of the sheet is preferably 0.01 to 5 mm in the case of a single layer, and preferably the total thickness in the case of a multilayer lamination. 1 to 20 mm, more preferably 1 to 15 mm.
  • the shape of the fiber base material (F) examples include cylindrical shape, sheet shape, tape shape and the like.
  • the fiber base material (F) may be in a form in which it is seamlessly woven into a cylindrical shape, or in which a sheet-like or tape-like base material is partially overlapped to form a cylindrical shape, and the overlapped parts are adhered with an adhesive. , stitched together with thread, or stitched together with a needle punch.
  • the diameter of the fiber base material (F) is preferably the same as the inner diameter of the pipe to be rehabilitated.
  • the length of the short side of the sheet is slightly larger than the inner circumference of the pipe to be rehabilitated, taking into consideration the overlap of the sheets (overlap margin) during the production of the lining material.
  • the width is preferably 1 ⁇ 8 to 1 ⁇ 3 of the inner circumference of the pipe to be rehabilitated, although it is not particularly limited.
  • the resin composition-impregnated base material is obtained by impregnating the fiber base material (F) with the resin composition described above.
  • the pipe is rehabilitated by irradiating the lining material with ultraviolet light, visible light, or the like to cure the resin composition in the lining material, that is, the resin composition in the resin composition-impregnated base material contained in the lining material. Therefore, the lining material obtained by curing the resin composition is required to have mechanical strength to the extent that the pipe can be repaired.
  • the bending strength of the cured resin composition-impregnated base material (FRP) is preferably 100 to 1000 MPa, more preferably 120 to 900 MPa, further preferably 150 to 150 MPa. 800 MPa.
  • the bending elastic modulus of FRP is preferably 5 to 40 GPa, more preferably 7 to 35 GPa, still more preferably 8 to 30 GPa.
  • the bending strength and bending elastic modulus values are measured values according to JIS K7171:2016.
  • the content of the resin composition in the base material impregnated with the resin composition is preferably 20-95% by mass, more preferably 25-85% by mass, and even more preferably 25-75% by mass. If the content of the resin composition is 20% by mass or more, the lining material can be imparted with appropriate flexibility, and workability in step (IV) is improved. When the content of the resin composition is 85% by mass or less, sufficient strength can be imparted to the lining material after photocuring.
  • the content of the fiber base material (F) in the resin composition-impregnated base material is preferably 5 to 80% by mass, more preferably 15 to 75% by mass, and even more preferably 25 to 75% by mass.
  • the content of the fiber base material (F) is 5% by mass or more, sufficient strength can be imparted to the lining material after photocuring.
  • the content of the fiber base material (F) is 80% by mass or less, the lining material can be imparted with appropriate flexibility, and workability in step (IV) is improved.
  • Step (III) of the present embodiment is a step of obtaining a lining material containing the resin composition-impregnated base material.
  • the lining material used for pipe rehabilitation must be cylindrical, and the step (III) is also a step of obtaining a cylindrical lining material.
  • a conventionally known method can be used to obtain the lining material, but it is preferable to obtain the lining material by the first embodiment and the second embodiment in the following step (III).
  • the first embodiment in the step (III) uses the resin composition according to the first embodiment described above and a cylindrical fiber base material (F), and an inner A lining material containing a resin composition-impregnated substrate obtained by impregnating a film with an outer film laminated on the other surface with a resin composition is obtained. That is, this is a step of obtaining a lining material containing the resin composition-impregnated base material obtained in the first embodiment of step (II).
  • a cylindrical fiber base material Since the resin composition is impregnated with (F), it already has a cylindrical shape and also has a configuration as a lining material when the first embodiment in step (II) is completed. Therefore, in the first embodiment in step (III), step (III) is also completed when step (II) is completed.
  • a second embodiment in the step (III) uses the resin composition according to the second embodiment described above and a sheet-like or tape-like fiber base material (F), and the fiber base material (F) is coated with the resin composition
  • a lining material containing a base material impregnated with a resin composition obtained by directly impregnating a material is obtained. That is, it is a step of obtaining a lining material containing the resin composition-impregnated base material obtained according to the second embodiment in the step (II). This is the process of obtaining the lining material.
  • the resin composition-impregnated base material obtained in the second embodiment of step (II) is placed on a mandrel having a diameter substantially equal to the inner diameter of the pipe to be refurbished.
  • a mandrel having a diameter substantially equal to the inner diameter of the pipe to be refurbished.
  • the resin composition contained in the resin composition-impregnated base material it is processed into a cylindrical shape, and if necessary, an outer film is laminated to obtain a lining material.
  • the resin composition-impregnated base material is in the form of a sheet
  • the resin composition contained in the resin composition-impregnated base material is obtained by overlapping two sides in the longitudinal direction of about 1 to 10 cm after winding it around a mandrel. Tie with.
  • the resin composition-impregnated base material is tape-shaped, the resin composition-impregnated base material is spirally wound while being overlapped by about 1 to 10 cm, and the overlapping portion is the resin composition contained in the resin composition-impregnated base material. Tie with.
  • the viscosity of the resin composition contained in the resin composition-impregnated base material may be a viscosity with moderate stickiness. It is preferably from 30 to 1,500 Pa ⁇ s, more preferably from 40 to 1,000 Pa ⁇ s, still more preferably from 50 to 500 Pa ⁇ s. If the viscosity of the resin composition contained in the resin composition-impregnated base material is 40 Pa s or more, the resin composition has appropriate adhesiveness and is uniform without being unevenly distributed in the resin composition-impregnated base material. can remain contained in Moreover, if the viscosity of the resin composition is 1,500 Pa ⁇ s or less, it is easy to process into a cylindrical shape.
  • a lining material is used for rehabilitation of pipes such as existing pipes.
  • the lining material has a cylindrical shape and contains a resin composition-impregnated base material in which a fiber base material (F) is impregnated with a resin composition. Then, the lining material is placed in the pipe, and the resin composition in the base material impregnated with the resin composition contained in the lining material is cured by light, thereby curing the lining material and rehabilitating the pipe.
  • the lining material consists of an inner film as the innermost layer on the inner surface, an outer film as the outermost layer on the outer surface, and a composite material layer containing a base material impregnated with a resin composition between the inner film and the outer film.
  • the lining material having an outer film as the innermost layer on the inner surface, an inner film as the outermost layer on the outer surface, and a composite material layer containing a resin composition-impregnated base material between the inner film and the outer film is placed inside the pipe while turning the lining material. It is preferable to use the reversal construction method to draw in the surface.
  • the lining material may have other layers as desired. Moreover, each layer may be a single layer, or a plurality of layers may be laminated.
  • the lining material preferably has approximately the same diameter as the inner diameter of the pipe to be rehabilitated. This improves the strength of the pipe after rehabilitation.
  • the inner diameter of the lining material is not particularly limited, but is preferably 100 to 1500 mm, more preferably 130 to 1200 mm, still more preferably 150 to 1000 mm. When the inner diameter of the lining material is 100 mm or more, light curing is easy.
  • inner film for example, a resin film such as polyethylene film, polypropylene film, polyethylene terephthalate film can be used.
  • the inner film is photocured in step (IV), it must be transparent to the light emitted from the light irradiation device. As a result, the lining material can be cured efficiently, and the pipe can be properly rehabilitated.
  • the inner film may be peeled off after curing the lining material.
  • the thickness of the inner film is not particularly limited, it is preferably 50-200 ⁇ m, more preferably 80-170 ⁇ m. If the thickness of the inner film is 50 ⁇ m or more, it is possible to prevent the inner film from being damaged or wrinkled in step (IV) or before it, and to impart sufficient strength to the pipe. If the thickness of the inner film is 200 ⁇ m or less, the lining material can be easily manufactured, and pipe rehabilitation workability is good.
  • the inner film may be laminated before the fiber base material (F) is impregnated with the resin composition, or may be laminated on the fiber base material (F) impregnated with the resin composition (resin composition-impregnated base material). good.
  • the method for laminating the inner film is not particularly limited, but for example, a method in which a liquid film composition is applied to the fiber base material (F), cured and laminated, a film is laminated via an adhesive layer to the fiber base material (F) Alternatively, a method of laminating on a resin composition-impregnated base material, a method of laminating a film on a fiber base material (F) or a resin composition-impregnated base material, and the like can be mentioned.
  • the inner film and the outer film may be laminated using different methods, or may be laminated using the same method.
  • a resin film can be used like the inner film.
  • the outer film preferably has light shielding properties.
  • the step (IV) it is possible to prevent the irradiated light from penetrating the lining material, so that the resin composition can be efficiently photocured.
  • the light-shielding outer film for example, a laminated film having a yellow or other colored film layer between two transparent polyethylene films can be used.
  • the thickness of the outer film is not particularly limited, it is preferably 5 to 100 ⁇ m, more preferably 10 to 90 ⁇ m. If the thickness of the outer film is 5 ⁇ m or more, sufficient strength can be imparted to the tube without the outer film being damaged or wrinkled prior to photocuring in step (IV). If the thickness of the outer film is 100 ⁇ m or less, the lining material can be easily manufactured, and the workability of the step (IV) is improved.
  • the outer film may be laminated before the fiber base material (F) is impregnated with the resin composition, or may be laminated on the fiber base material (F) impregnated with the resin composition (resin composition-impregnated base material). good.
  • the method for laminating the outer film on the fiber base material (F) is not particularly limited, but the same method as the method for laminating the inner film can be used.
  • the present embodiment may include a curing step for appropriately increasing the viscosity of the resin composition until it reaches a desired viscosity. It is preferably provided after the step (II) is completed and before the step (III) is performed, or after the step (III) is completed and before the step (VI) is performed.
  • the curing temperature in the curing step is preferably 10 to 40°C, more preferably 15 to 30°C, still more preferably 20 to 30°C.
  • the curing temperature can be appropriately adjusted according to the target viscosity of the resin composition, the curing time, and the like.
  • the curing step is preferably carried out according to the following first and second embodiments.
  • a first embodiment of the curing step is a curing step for the lining material obtained by the first embodiment of step (III). That is, it is a curing step for a lining material containing a resin-impregnated base material in which a resin composition is impregnated into a cylindrical fiber base material (F). It is preferable to provide a curing step.
  • the curing time is preferably 6 hours to 3.5 days, more preferably 12 hours to 3 days, still more preferably 1 to 2 days.
  • the storage period of the lining material that has completed the curing step and the viscosity of the resin composition has reached 400 to 3,500 Pa s is preferably 1 to 6 months, more preferably 2 to 5 months, from the viewpoint of quality stability. for months.
  • the number of days from the completion of step (I) to the completion of step (III) or the curing step is preferably 1 day or more and 4 days or less. It is preferably 1 day or more and 3 days or less, more preferably 1 day or more and 2 days or less.
  • resin (A) ethylenically unsaturated group-containing monomer
  • thickener It can be controlled by selecting the types of (C) and the photopolymerization initiator (D) and adjusting their blending amounts, selecting the type of the fiber base material (F), setting the temperature in the curing step, and the like.
  • a second embodiment of the curing step is a curing step for the lining material obtained by the second embodiment of step (III). That is, there is a step of curing a lining material containing a resin-impregnated substrate obtained by impregnating a sheet or tape-shaped fiber substrate (F) with a resin composition.
  • the curing step is preferably provided immediately after the step (III) is completed. Also, it is preferable to provide a curing step after the step (III) is completed and before the step (IV) is carried out.
  • the curing time is preferably 12 hours to 3 days, more preferably 1 day to 2.5 days, and even more preferably 1.5 days to 2 days.
  • the resin composition exhibits appropriate adhesiveness, and the overlapping portions of the resin composition-impregnated base material can be held together with sufficient strength.
  • the curing time is preferably 6 hours to 3.5 days, more preferably 12 hours to 3 days, and still more preferably 1 ⁇ 2 days.
  • the storage period of the lining material that has completed the curing step and the viscosity of the resin composition has reached 400 to 3,500 Pa s is preferably 1 to 6 months, more preferably 2 to 5 months, from the viewpoint of quality stability. for months.
  • the number of days from the completion of step (I) to the completion of step (III) or the curing step is preferably 2 days or more and 7 days or less. It is preferably 3 to 6 days, more preferably 4 to 5 days.
  • resin (A) ethylenically unsaturated group-containing monomer (B), thickener It can be controlled by selecting the types of (C) and the photopolymerization initiator (D) and adjusting their blending amounts, selecting the type of the fiber base material (F), setting the temperature in the curing step, and the like.
  • Step IV The step (IV) of this embodiment is a step of arranging the lining material in the pipe and photocuring it. Then, in step (IV), the viscosity of the resin composition at 25° C. when the lining material is arranged in the pipe is 400 to 3,500 Pa ⁇ s.
  • the pipe is rehabilitated by placing the lining material obtained in step (III) inside the pipe and light curing the lining material.
  • the lining material is preferably arranged along the inner circumference of the inner surface of the pipe. is preferred.
  • the lining material is generally folded in order to facilitate transportation, and is transported to the place where the pipe rehabilitation is to be performed (where it is light-cured). Let At this time, it is preferable that the resin composition in the lining material does not leak and hang down or is unevenly distributed in the lining material, and that the lining material has appropriate flexibility. From such a point of view, in step (IV), the viscosity of the resin composition at a temperature of 25° C.
  • the viscosity at a temperature of 25° C. is 400 to 3,500 Pa ⁇ s, preferably 450 to 2,500 Pa ⁇ s, more preferably 500 to 2,000 Pa ⁇ s.
  • both ends of the lining material have end packers for sealing the lining material.
  • the diameter-expanded lining material is, for example, irradiated with ultraviolet light, visible light, or the like on the inner surface of the lining material by a mobile light irradiation device, thereby curing the resin composition contained in the lining material and removing the existing pipe.
  • the inner surface is covered with a lining material in which the resin composition is cured.
  • the radiation intensity of the light irradiation device is not particularly limited, it is preferably 0.0008 to 0.03 W/mm 2 .
  • the radiation intensity is 0.0008 W/mm 2 or more, work efficiency is good and sufficient strength can be imparted to the pipe. Further, if the radiation intensity is 0.03 W/mm 2 or less, local excessive irradiation of the inner surface layer of the lining material can be suppressed, and deterioration and reduction in strength of the lining material can be suppressed.
  • a light source that emits light in the ultraviolet to visible region can be used.
  • light sources include metal halide lamps such as gallium lamps, mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, carbon arc lamps, incandescent lamps, laser beams, and LEDs.
  • metal halide lamps such as gallium lamps, mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, carbon arc lamps, incandescent lamps, laser beams, and LEDs.
  • at least one of ultraviolet rays and visible light irradiation devices having a peak wavelength in the wavelength range of 350 to 450 nm is preferable, and from the viewpoint of efficiently curing the resin composition, a gallium lamp, and LEDs are more preferred, and gallium lamps are even more preferred.
  • the light irradiation device is not particularly limited as long as it has one or more irradiation units, but it preferably has a lamp assembly configured by connecting a plurality of light irradiation lamps in series. By having a lamp assembly, photocuring can be efficiently performed.
  • Epoxy compound (1) bisphenol A type epoxy resin; "Epomic (registered trademark) R140P” manufactured by Mitsui Chemicals, Inc., epoxy equivalent 188 - Epoxy compound (2): bisphenol A type epoxy resin; “jER (registered trademark) 834", manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 245
  • Epoxy compound (3) phenolic novolac type epoxy resin; "EPICLON (registered trademark) N-740", manufactured by DIC Corporation, epoxy equivalent 172
  • an epoxy equivalent is the value measured based on JISK7236:2001.
  • Vinyl ester resins (A1-2b) to (A1-2d) were obtained in the same manner as in Synthesis Example 2, except that the raw materials and compounding ratios shown in Table 3 were used. Table 3 shows the blending amount of each component.
  • Vinyl ester resins (A1-3b) to (A1-3d) were obtained in the same manner as in Synthesis Example 6, except that the raw materials and compounding ratios shown in Table 3 were used. Table 3 shows the blending amount of each component.
  • Synthesis was performed in the same manner as in Synthesis Example 6, except that the raw materials and blending ratios shown in Table 4 were used. As a result, the resin precursor gelled, making it impossible to proceed with subsequent synthetic operations, and no resin was obtained. Table 4 shows the blending amount of each component.
  • This reaction product was cooled to 90° C., and 0.13 g of hydroquinone as a polymerization inhibitor (0.003 parts by mass with respect to a total of 100 parts by mass of all ingredients), a reactive diluent (ethylenically unsaturated group-containing monomer As (B)), 1546 g of styrene (36% by mass based on the total mass of compounding components) was added to obtain a mixture of 54% by mass of vinyl ester resin (based on the total mass of compounding components) and 46% by mass of styrene.
  • Table 5 shows the blending amount of each component.
  • the vinyl ester resin (A1-1c) After cooling to 90 ° C., 1222 g of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (B)), and 70% by mass of the vinyl ester resin (compound component A mixture of 30% by weight of styrene and 30% by weight of styrene was obtained.
  • Synthesis was carried out in the same manner as in Synthesis Example 17 except that the raw materials and compounding ratios shown in Table 6 were used to obtain unsaturated polyester resins (A2-b) to (A2-i). Table 6 shows the blending amount of each component.
  • the acid value of resin (A) is vinyl ester resin (A1-1a) ⁇ (A1-1f), (A1-2a) ⁇ ( A1-2d), (A1-3a) to (A1-3d), (A1-4a), and (A1-5a), and acids contained in unsaturated polyester resins (A2-a) to (A2-i)
  • the mass of potassium hydroxide required to neutralize the components was measured to determine the acid value.
  • the vinyl ester resin (A1) is a mixture obtained by diluting the vinyl ester resin (A1) with phenoxyethyl methacrylate (manufactured by Showa Denko Materials Co., Ltd.) or styrene, which is an ethylenically unsaturated group-containing monomer (B).
  • phenoxyethyl methacrylate manufactured by Showa Denko Materials Co., Ltd.
  • styrene which is an ethylenically unsaturated group-containing monomer (B).
  • Vinyl ester resin (A1) 54 to 70% by mass
  • the unsaturated polyester resin (A2) is diluted with styrene, which is an ethylenically unsaturated group-containing monomer (B).
  • the resulting mixture unsaturated polyester resin (A2) 57-65% by mass
  • the acid value of resin (A) was obtained from the measured value of the measurement sample.
  • "Autoburette UCB-2000" manufactured by Hiranuma Sangyo Co., Ltd.
  • a mixed indicator of bromothymol blue and phenol red was used as the indicator.
  • Table 1 shows details of the mixture (measurement sample) containing the vinyl ester resin (A1) obtained in each synthesis example and the mixture (measurement sample) containing the unsaturated polyester resin (A2).
  • the hydroxyl value of the resin (A) is vinyl ester resin (A1-1b) ⁇ (A1-1d), (A1-2b), (A1-2b), ( A1-2d), (A1-4a) and (A1-5a) were measured for the mass of potassium hydroxide required to neutralize the acetic acid generated by the acetylation of 1 g, and the hydroxyl value was determined.
  • the vinyl ester resin (A1) a mixture (vinyl Ester resin (A1) 65% by mass) and two mixtures obtained by diluting vinyl ester resin (A1) with styrene (vinyl ester resin (A1) 70% by mass and 54% by mass) were used as measurement samples.
  • the hydroxyl value of resin (A) was obtained from the measured value of the measurement sample. Neutralization titration was performed manually using 1% phenolphthalein (ethanol solution) as an indicator. Table 1 shows the details of the mixture (measurement sample) containing the vinyl ester resin (A1) obtained in each synthesis example.
  • ⁇ Weight average molecular weight Mw, number average molecular weight Mn and molecular weight distribution Mw/Mn> The weight-average molecular weight Mw and number-average molecular weight Mn of the resin (A) were measured by gel permeation chromatography (GPC) under the following conditions and determined as standard polystyrene equivalent molecular weights. Mw/Mn was calculated from the values of Mn and Mw.
  • ⁇ Viscosity> In vinyl ester resin (A1), a mixture of 65% by mass of vinyl ester resin (A1) and 35% by mass of phenoxyethyl methacrylate, a mixture of 70% by mass of vinyl ester resin (A1) and 30% by mass of styrene, or a vinyl ester resin (A1)
  • the viscosity of a mixture of 54% by mass and 46% by mass of styrene was measured using an E-type viscometer (“RE-85U” (manufactured by Toki Sangyo Co., Ltd.), cone plate type, cone rotor 1°34′ ⁇ R24, Rotational speed: 50 rpm to 0.5 rpm), and measured at a temperature of 25°C.
  • the mixture (measurement sample) containing the vinyl ester resin (A1) obtained in each Synthesis Example was the same as the mixture used in the hydroxyl value measurement.
  • the rotational speed of the cone rotor according to the measured viscosity was set as follows. When the viscosity of the mixture was more than 0 Pa ⁇ s and 1.0 Pa ⁇ s or less, the measurement was performed at a rotation speed of 50 rpm. When the viscosity of the mixture was more than 1.0 Pa ⁇ s and 2.0 Pa ⁇ s or less, the measurement was performed at a rotation speed of 20 rpm. When the viscosity of the mixture was over 2.0 Pa ⁇ s and 4.0 Pa ⁇ s or less, the measurement was performed at a rotation speed of 10 rpm. When the viscosity of the mixture was more than 4.0 Pa ⁇ s and 8.0 Pa ⁇ s or less, the measurement was performed at a rotation speed of 5 rpm.
  • the measurement was performed at a rotation speed of 2.5 rpm.
  • the viscosity of the mixture was greater than 18.0 Pa ⁇ s and less than or equal to 45.0 Pa ⁇ s, the measurement was performed at a rotation speed of 1.0 rpm.
  • the viscosity of the mixture was more than 45.0 Pa ⁇ s and less than or equal to 100.0 Pa ⁇ s, the measurement was performed at a rotational speed of 0.5 rpm.
  • Table 2 below shows the rotation speed of the cone rotor according to the measured viscosity.
  • thixotropic agent (1) Organic thixotropic agent; “Floronon SP-1000AF”, manufactured by Kyoeisha Chemical Co., Ltd.
  • Thixotropic agent (2) Hydrophobic silica; “Reolosil PM-20L”, manufactured by Tokuyama Corporation
  • Example 1 A mixture (1) of 26 parts by mass of a vinyl ester resin (A1-1a) and 14 parts by mass of phenoxyethyl methacrylate as an ethylenically unsaturated group-containing monomer (B), and 26 parts by mass of a vinyl ester resin (A1-3c) and 14 parts by mass of phenoxyethyl methacrylate as an ethylenically unsaturated group-containing monomer (B) to prepare a mixture (2).
  • Example 2 Comparative Examples 1 to 8>
  • resin compositions (X-2) to (X-16) and (X'-1) to ( X'-8) was obtained.
  • Example 17 A mixture of 54 parts by mass of a vinyl ester resin (A1-4a) and 46 parts by mass of styrene as an ethylenically unsaturated group-containing monomer (B) was added with 2,2-dimethoxy-2-phenyl as a photopolymerization initiator (D).
  • a mixture of 54 parts by mass of a vinyl ester resin (A1-4a) and 46 parts by mass of styrene as an ethylenically unsaturated group-containing monomer (B) was added with 2,2-dimethoxy-2-phenyl as a photopolymerization initiator (D).
  • thixotropic Agent (1) "Furnon SP-1000AF", manufactured by Kyoeisha Chemical Co., Ltd.
  • disper high-speed dispersing group "Homodisper 2.5 type” manufactured by Primix Co., Ltd.
  • magnesium oxide (“Magmicron MD-4AM-2”, manufactured by Mikuni-Color Co., Ltd., magnesium oxide content 30% by mass (estimated); hereinafter the same.) 1.2 parts by mass ( Magnesium oxide content of 0.36 parts by mass) was added and further mixed for about 1 minute to obtain a resin composition (X-17).
  • Example 17 resin compositions (X-18), (X-19), (X-21) to (X -27), (X-29), (X-30) and (X-33) to (X-38).
  • Example 17 the mixture of the resin (A) and styrene as the ethylenically unsaturated group-containing monomer (B) was further added with 3-dodecenylsuccinic acid as the carboxy group-containing compound at the compounding ratio shown in Tables 8 and 9. Others were prepared in the same manner except that the raw materials and blending ratios shown in Tables 12 and 13 were used, and resin compositions (X-20), (X-28), (X-31) and (X -32) was obtained.
  • a mixture (1) was prepared by dissolving 54.74 parts by mass of the unsaturated polyester resin (A2-a) as the ethylenically unsaturated group-containing monomer (B) in 44.63 parts by mass of styrene. Further, as a carboxy group-containing compound, 0.63 parts by mass of 3-dodecenylsuccinic acid was dissolved in 0.63 parts by mass of styrene to prepare a mixture (2).
  • magnesium oxide Magnetic MD-4AM-2, manufactured by Mikuni-Color Co., Ltd., estimated content of magnesium oxide 30% by mass 0.96 parts by mass (0.29 parts by mass in terms of magnesium oxide ) was added and mixed for about 1 minute at 2000 to 3000 rpm using a disper to obtain a resin composition (X-39).
  • Example 39 resin compositions (X-40) to (X-66) and (X'-9) to ( X'-14) was obtained.
  • the resin It corresponds to the viscosity of the composition at 25°C.
  • the viscosity at 25 ° C. viscosity of the resin composition in step (II) 1 hour after the resin composition is prepared, 2 after the resin composition is prepared
  • the viscosity at 25° C. after a day and the viscosity at 25° C. after 5 days from the preparation of the resin composition were measured.
  • the viscosity at 25°C after 2 days and 5 days after the preparation of the resin composition means that the lining material in step (IV) is placed in the pipe on the 2nd day and 5th day after the preparation of the resin composition. It corresponds to the viscosity at 25° C. of the resin composition in the lining material when For viscosity measurement, the following two types of equipment were appropriately selected according to the viscosity range.
  • T-bar spindle TA was used when the viscosity of the resin composition was more than 100.0 Pa ⁇ s and 800.0 Pa ⁇ s or less.
  • T-bar spindle TB was used when the viscosity of the resin composition was more than 800.0 Pa ⁇ s and 1600.0 Pa ⁇ s or less.
  • a T-bar spindle TC was used when the viscosity of the resin composition was more than 1600.0 Pa ⁇ s and 4000.0 Pa ⁇ s or less.
  • T-bar spindle TD was used when the viscosity of the resin composition was more than 4000.0 Pa ⁇ s and 10000.0 Pa ⁇ s or less.
  • Table 8 The T-bar spindles used according to the measured viscosity are shown in Table 8 below.
  • the lining material can be suitably used without the resin composition leaking and dripping or being unevenly distributed in the lining material when placed in the pipe in step (IV). .
  • a glass fiber chopped strand mat (“MC 450A”, manufactured by Nitto Boseki Co., Ltd.) with a length of 800 mm, which is the fiber base material (F), is wound, and at the same time as it is wound, a defoaming roller is used to make the resin composition.
  • a substrate impregnated with a resin composition (four layers: thickness 3.0 mm, glass fiber content 40%) was obtained. Further, the resin composition-impregnated substrate was covered with a polyethylene film of 1400 mm length ⁇ 100 ⁇ m thickness as an outer film, and the wrap portion was adhered and fixed with a masking tape of 50 mm width (manufactured by 3M Japan Ltd.).
  • the aluminum plate was pulled out to obtain a lining material.
  • the lining material After curing the lining material at 25° C. and normal humidity for 2 days, it was pulled into an acrylic pipe, which is a simulated pipe with an inner diameter of 150 mm and a length of 1000 mm. Both ends of the lining material were bound with binding bands to seal, and air was injected from one end at 4 L/sec to expand the diameter of the lining material and press it against the inner surface of the acrylic pipe.
  • both ends of the lining material are fixed to the acrylic pipe, one end is installed with a cap with an air injection hole, and the other end is an ultraviolet LED fluorescent lamp type light "NS365-FTL-C30" (manufactured by Nitride Semiconductor) was installed.
  • the thickness of the hardened layer of the lining material was measured at 4 points on the cross section of the pipe, 12 points in total, at 3 points, 200 mm from the center and both ends of the simulated pipe.
  • the lower limit of the thickness is 3.0 mm or more and the upper limit is within 3.0 mm + 20% (within 3.6 mm)
  • uneven distribution of the resin composition in the lining material is well suppressed, and the appearance is good. I judged.
  • " ⁇ " indicates that the lining material can be expanded and the thickness of the hardened layer of the lining material is 3.0 to 3.6 mm, and the lining material is expanded.
  • the thickness of the cured layer of the lining material was not within the range of 3.0 to 3.6 mm, or both of them, it was evaluated as "x".
  • the viscosity after 1 hour from the preparation of the resin composition is 0.1 to 3 Pa s
  • the viscosity of the resin composition two days after preparation is 400 to 3,500 Pa s. s, it can be seen that a resin composition having a moderately controlled thickening rate was obtained.
  • the viscosity at 1 hour after the preparation of the resin composition is 0.1 to 3 Pa s
  • the viscosity after 5 days from the preparation of the resin composition is 400 to 400 Pa s. Since it is 3500 Pa ⁇ s, it can be seen that a resin composition having a moderately controlled thickening rate was obtained.
  • Example 2 In addition, about 51 g of the resin composition (X-1) obtained in Example 1 was impregnated into a glass fiber chopped strand mat (“MC 450A”, manufactured by Nitto Boseki Co., Ltd.), and three sheets were stacked and heated at 25 ° C. After curing for 5 days, a base material impregnated with the resin composition was obtained. The resin composition-impregnated base material is irradiated with light for 30 minutes using a 250 W metal halide lamp (peak wavelength 420 nm, illuminance 25 mW/cm 2 ), and a cured product (FRP: glass fiber content of 31% by mass). Subsequently, each cured product was cut to a length of 80 mm and a width of 10 mm, and cured for 24 hours under an environment of a temperature of 23° C. and a relative humidity of 50% to obtain test pieces for measurement evaluation.
  • MC 450A glass fiber chopped strand mat
  • FRP glass fiber content of 31% by mass
  • the cured product (cast product) of the resin composition (X-1) has a bending strength of 101 MPa and a bending elastic modulus of 3.3 GPa, and the cured product (FRP) has a bending strength of 162 MPa and a bending elastic modulus of 8.5 GPa. Met.
  • ⁇ Barcol hardness> Regarding the cured product (cast product) and cured product (FRP), in accordance with JIS K7060: 1995, using a Barcol hardness tester ("GYZJ 934-1", manufactured by Barber-Coleman), each test piece for measurement evaluation The back surface of 10 light-irradiated surfaces was measured, and the average value was taken as the Barcol hardness of the cured product.
  • the cured product (FRP) of the resin composition (X-1) had a Barcol hardness of 46.
  • the lining material containing the resin-impregnated base material impregnated with the resin composition of the present embodiment can impart sufficient strength to the pipe.
  • a resin composition used as a lining material for pipe rehabilitation which has a low viscosity one hour after the resin composition is prepared and a moderately controlled thickening rate.
  • a lining material using the resin composition according to the present embodiment has good workability and excellent strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

樹脂組成物を調製する工程(I)と、繊維基材(F)に前記樹脂組成物を含浸して樹脂組成物含浸基材を得る工程(II)と、前記樹脂組成物含浸基材を含有するライニング材を得る工程(III)と、前記ライニング材を管内に配置し、光硬化させる工程(IV)と、を含む管の更生方法であって、前記樹脂組成物は、樹脂(A)と、エチレン性不飽和基含有モノマー(B)と、増粘剤(C)と、光重合開始剤(D)とを含有し、 前記工程(II)における前記樹脂組成物の25℃での粘度が0.1~3Pa・sであり、工程(IV)において、前記ライニング材を管内に配置するときの前記樹脂組成物の25℃での粘度が400~3,500Pa・sである、管の更生方法。

Description

管の更生方法
 本発明は、管の更生方法に関する。
 近年、上水管、下水管や電力管等、地中に埋設された既設管の老朽化が深刻化しており、これらを更生するための種々の方法が提案されている。
 例えば、特許文献1には、地中に埋設された既設管の内壁面に管状のライニング材を密着させ、前記ライニング材の内部に圧縮空気を供給しつつ、前記ライニング材の内部に導入された移動式の光照射装置により、前記ライニング材の内面に光を照射して前記ライニング材を硬化させる硬化工程を含む既設管の補修方法が開示されている。また、ライニング材の材料として、繊維等からなる含浸基材に光硬化性樹脂組成物を含浸したものを使用できることや、前記光硬化性樹脂組成物として、不飽和ポリエステル樹脂やビニルエステル樹脂等の重合性樹脂をスチレン等の溶媒に溶かしたものを使用できることが記載されている。
特開2020-82408号公報
 近年、既設管の更生には、管の高強度化、管更生用のライニング材の薄型化、ライニング材を既設管内面に配置して硬化する際の高効率化等が求められている。
 これに伴って、ライニング材を構成する繊維基材は、薄型化、高密度化する傾向にある。このため、ライニング材の材料として、繊維基材に含浸させて用いられる樹脂組成物は、含浸する際には含浸し易いよう低粘度のものが好まれる。一方、ライニング材を既設管内に配置して硬化する際には、樹脂組成物は、偏在せず、繊維基材中に均一に分布して保持された状態を維持できる程度の粘度を有することが求められる。また、ライニング材を既設管内に配置する際の作業性の観点から、ライニング材に柔軟性を付与できる程度の粘度を有することも求められる。すなわち、繊維基材に樹脂組成物を含浸させる際には低粘度でありながら、時間の経過と共に増粘し、ライニング材を既設管内に配置する際には樹脂組成物が保持された状態を維持でき、かつライニング材に柔軟性を付与できる程度に高粘度となる樹脂組成物が望ましい。しかしながら、樹脂組成物の製造から、ライニング材を既設管内に配置するまでの樹脂組成物の増粘速度は、十分にコントロールされているとは言えないものであった。その結果、管が均一に補修されない場合や、効率的に補修することができない場合がある等の問題を有していた。
 本発明は、上記のような課題を解決するためになされたものであり、管を均一にかつ効率的に補修することができる管の更生方法を提供することを目的とする。
 すなわち、本発明は、以下の手段を提供するものである。
[1] 樹脂組成物を調製する工程(I)と、繊維基材(F)に前記樹脂組成物を含浸して樹脂組成物含浸基材を得る工程(II)と、前記樹脂組成物含浸基材を含有するライニング材を得る工程(III)と、前記ライニング材を管内に配置し、光硬化させる工程(IV)と、を含む管の更生方法であって、前記樹脂組成物は、樹脂(A)と、エチレン性不飽和基含有モノマー(B)と、増粘剤(C)と、光重合開始剤(D)とを含有し、前記工程(II)における前記樹脂組成物の25℃での粘度が0.1~3Pa・sであり、工程(IV)において、前記ライニング材を管内に配置するときの前記樹脂組成物の25℃での粘度が400~3,500Pa・sである、管の更生方法。
[2] 前記樹脂(A)が、ビニルエステル樹脂(A1)及び不飽和ポリエステル樹脂(A2)から選択される少なくとも1種を含む、上記[1]に記載の管の更生方法。
[3] 前記ビニルエステル樹脂(A1)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の反応生成物である樹脂前駆体(P2)と、多塩基酸無水物(a1-4)との付加反応生成物であり、前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、前記多塩基酸無水物(a1-3)由来の、エポキシ基と反応し得る酸基の総量が5~25モルである、上記[2]に記載の管の更生方法。
[4] 前記ビニルエステル樹脂(A1)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物である樹脂前駆体(P3)と、不飽和一塩基酸(a1-2)との反応生成物である、上記[2]に記載の管の更生方法。
[5] 前記ビニルエステル樹脂(A1)が、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物である樹脂前駆体(P3)、並びに不飽和一塩基酸(a1-2)の反応生成物である樹脂前駆体(P4)と、不飽和多塩基酸(a1-6)との反応生成物である、上記[2]に記載の管の更生方法。
[6] 前記不飽和ポリエステル樹脂(A2)は、ジオール(a2-1)及び二塩基酸(a2-2)の反応生成物であり、
 前記ジオール(a2-1)は、分子量が90~500のアルカンジオールである、ジオール(a2-1-1)を、前記ジオール(a2-1)100モル%に対して43~85モル%含み、
 前記二塩基酸(a2-2)は、エチレン性不飽和基含有二塩基酸(a2-2-1)及びエチレン性不飽和基非含有二塩基酸(a2-2-2)を含む、上記[2]に記載の管の更生方法。
[7] 前記工程(I)完了後から工程(III)又は養生工程完了までの日数が、1日以上かつ4日以内である上記[1]~[6]のいずれか1項に記載の管の更生方法。
[8] 前記樹脂(A)が前記ビニルエステル樹脂(A1)を含み、前記樹脂組成物は、前記樹脂(A)と前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記ビニルエステル樹脂(A1)を35~90質量部、前記エチレン性不飽和基含有モノマー(B)を10~65質量部、前記増粘剤(C)を0.01~6質量部、前記光重合開始剤(D)を0.01~10質量部含む、上記[2]~[5]のいずれか1項に記載の管の更生方法。
[9] 前記樹脂(A)が前記不飽和ポリエステル樹脂(A2)を含み、前記不飽和ポリエステル樹脂(A2)及び前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記不飽和ポリエステル樹脂(A2)を20~80質量部、前記エチレン性不飽和基含有モノマー(B)を20~80質量部、前記増粘剤(C)を0.01~6質量部、前記カルボキシ基含有化合物を0.01~5質量部含む、上記[2]又は[6]に記載の管の更生方法。
[10] 前記工程(III)における前記樹脂組成物の25℃での粘度が30~1,500Pa・sである、上記[1]又は[2]に記載の管の更生方法。
[11] 前記工程(I)完了後から工程(III)又は養生工程完了までの日数が、3日以上かつ6日以内である、上記[10]に記載の管の更生方法。
[12] 前記樹脂(A)が前記ビニルエステル樹脂(A1)を含み、前記樹脂組成物は、前記樹脂(A)と前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記ビニルエステル樹脂(A1)を20~80質量部、前記エチレン性不飽和基含有モノマー(B)を20~80質量部、前記増粘剤(C)を0.01~6質量部、前記光重合開始剤(D)を0.01~10質量部含む、上記[10]又は[11]に記載の管の更生方法。
[13] 前記樹脂(A)が前記不飽和ポリエステル樹脂(A2)を含み、前記不飽和ポリエステル樹脂(A2)及び前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記不飽和ポリエステル樹脂(A2)を20~80質量部、前記エチレン性不飽和基含有モノマー(B)を20~80質量部、前記増粘剤(C)を0.01~6質量部前記カルボキシ基含有化合物を0.01~5質量部含む、上記[10]又は[11]に記載の管の更生方法。
[14] 前記増粘剤(C)が、第2族元素の酸化物及び水酸化物から選択される少なくとも1種である、上記[1]~[13]のいずれか1項に記載の管の更生方法。
[15] 前記樹脂組成物が、水及びヒドロキシ基含有化合物から選択される少なくとも1種である化合物(E)をさらに含有する、上記[1]~[14]のいずれか1項に記載の管の更生方法。
[16] 前記樹脂組成物が、揺変剤をさらに含有する、上記[1]~[5]のいずれか1項に記載の管の更生方法。
[17] 前記ビニルエステル樹脂(A1)の水酸基価が10~120KOHmg/gである、請求項2~5のいずれか1項に記載の管の更生方法。
 本発明によれば、管を均一にかつ効率的に補修することができる管の更生方法を提供することができる。
 まず、本明細書における用語及び表記についての定義及び意義を以下に示す。
 「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸の総称である。同様に、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称であり、「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの総称である。
 樹脂(A)の「酸価」とは、JIS K6901:2008に準拠した方法で測定される、樹脂(A)1gを中和するのに必要な水酸化カリウムのmg数である。具体的には、後述する実施例に記載の方法で測定される。
 樹脂(A)の「水酸基価」とは、JIS K6901:2008に準拠した方法で測定される、樹脂(A)1gのアセチル化で発生する酢酸を中和するのに必要な水酸化カリウムのmg数である。具体的には、後述する実施例に記載の方法で測定される。
 「重量平均分子量Mw」(以下、単に「Mw」とも表記する。)及び「数平均分子量Mn」(以下、単に「Mn」とも表記する。)は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求められる標準ポリスチレン換算分子量である。具体的には、後述する実施例に記載の方法で測定される。
 樹脂(A)の「粘度」とは、樹脂(A)とエチレン性不飽和基含有モノマー(B)との混合物をE型粘度計を用いて、温度25℃で測定した値を換算した値である。具体的には、後述する実施例に記載の方法で測定される。
 樹脂組成物の「粘度」とは、B型粘度計を用いて、温度25℃で測定した値である。具体的には、後述する実施例に記載の方法で測定される。
 「多塩基酸無水物由来の酸基」とは、特に断りのある場合以外は、多塩基酸無水物から生じた遊離酸基を意味する。
[管の更生方法]
 本実施形態の管の更生方法は、樹脂組成物を調製する工程(I)と、繊維基材(F)に前記樹脂組成物を含浸して樹脂組成物含浸基材を得る工程(II)と、前記樹脂組成物含浸基材を含有するライニング材を得る工程(III)と、前記ライニング材を管内に配置し、光硬化させる工程(IV)と、を含む。そして、前記樹脂組成物は、樹脂(A)と、エチレン性不飽和基含有モノマー(B)と、増粘剤(C)と、光重合開始剤(D)とを含有し、前記工程(II)における前記樹脂組成物の25℃での粘度が0.1~3.0Pa・sであり、工程(IV)において、前記ライニング材を管内に配置するときの前記樹脂組成物の25℃での粘度が400~3,500Pa・sである。
 このように、工程(I)~(IV)を含み、樹脂組成物が上記成分を含有し、工程(II)における樹脂組成物の粘度と、工程(IV)におけるライニング材を管内に配置するときの樹脂組成物粘度が特定の範囲であることで、管を均一にかつ効率的に補修することができる。
〔工程(I)〕
 本実施形態の工程(I)は、樹脂組成物を調製する工程である。
 樹脂組成物を調製するとは、樹脂組成物を構成する総ての成分を混合して樹脂組成物を製造することを意味する。
 本実施形態の樹脂組成物の調製方法は、特に限定されるものではないが、樹脂(A)と、エチレン性不飽和基含有モノマー(B)と、増粘剤(C)と、光重合開始剤(D)とを混合することにより樹脂組成物を製造することができる。また、樹脂(A)、エチレン性不飽和基含有モノマー(B)、増粘剤(C)、光重合開始剤(D)以外に、化合物(E)及びその他の成分等の任意成分を混合してもよい。
 混合順序は特に限定されないが、粘度のコントロールを容易にする観点から、増粘剤(C)は最後に添加することが好ましい。
 混合方法は、特に限定されるものではなく、例えば、ディスパー、プラネタリーミキサー、ニーダー等を用いて行うことができる。混合温度は、好ましくは10~50℃、より好ましくは15~40℃であり、混合容易性等の観点から、さらに好ましくは20~30℃である。
 また、樹脂(A)、エチレン性不飽和基含有モノマー(B)、増粘剤(C)、光重合開始剤(D)、及びその他の成分を均一に混合し易くし、また粘度を調整する観点から、樹脂(A)を予め溶剤及び反応性希釈剤の少なくともいずれかで希釈してもよい。
<樹脂組成物>
 本実施形態の樹脂組成物は、樹脂(A)と、エチレン性不飽和基含有モノマー(B)と、増粘剤(C)と、光重合開始剤(D)とを含有する。
≪樹脂(A)≫
 樹脂(A)は、特に限定されるものではないが、エチレン性不飽和基を有するものが好ましい。樹脂(A)としては、例えば、ビニルエステル樹脂(A1)、不飽和ポリエステル樹脂(A2)、ウレタン(メタ)アクリレート樹脂(A3)、ポリエステル(メタ)アクリレート樹脂(A4)、(メタ)アクリレート樹脂(A5)等が挙げられる。増粘速度を適度にコントロールする観点、及び工程(IV)の作業性の観点から、樹脂(A)が、ビニルエステル樹脂(A1)及び不飽和ポリエステル樹脂(A2)から選択される少なくとも1種を含むことが好ましい。これらの樹脂は1種単独であっても、2種以上が併用されていてもよい。
〈ビニルエステル樹脂(A1)〉
 ビニルエステル樹脂(A1)は、エチレン性不飽和基を有するものであれば、特に限定されるものではないが、下記(A1-1)~(A1-5)等が挙げられる。
・ビニルエステル樹脂(A1-1):1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の反応生成物
・ビニルエステル樹脂(A1-2):1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の反応生成物である樹脂前駆体(P1)と、多塩基酸無水物(a1-4)との付加反応生成物
・ビニルエステル樹脂(A1-3):1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)、及び多塩基酸無水物(a1-3)の反応生成物である樹脂前駆体(P2)と、多塩基酸無水物(a1-4)との付加反応生成物
・ビニルエステル樹脂(A1-4):1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物である樹脂前駆体(P3)と、不飽和一塩基酸(a1-2)との反応生成物
・ビニルエステル樹脂(A1-5): 樹脂前駆体(P3)及び不飽和一塩基酸(a1-2)との反応生成物である樹脂前駆体(P4)と、不飽和多塩基酸(a1-6)との反応生成物であって、前記樹脂前駆体(P3)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物
 これらの樹脂は1種単独であっても、2種以上が併用されていてもよい。
 ビニルエステル樹脂(A1)の酸価は、樹脂組成物をより効率的に増粘させる観点から、好ましくは1KOHmg/g以上、より好ましくは5KOHmg/g以上、さらに好ましくは8KOHmg/g以上、よりさらに好ましくは10KOHmg/g以上である。また、樹脂組成物の増粘速度をよりコントロールする観点から、好ましくは100KOHmg/g以下、より好ましくは90KOHmg/g以下、さらに好ましくは80KOHmg/g以下、よりさらに好ましくは85KOHmg/g以下である。
 ビニルエステル樹脂(A1)の水酸基価は、樹脂組成物の増粘速度をコントロールする観点から、好ましくは10KOHmg/g以上、より好ましくは15KOHmg/g以上、さらに好ましくは20KOHmg/g以上である。また、樹脂組成物を効率的に増粘させる観点から、好ましくは120KOHmg/g以下、より好ましくは110KOHmg/g以下、さらに好ましくは100KOHmg/g以下である。
(ビニルエステル樹脂(A1-1))
 ビニルエステル樹脂(A1-1)は、1分子中に2個以上のエポキシ基を有するエポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の反応生成物である。
 ビニルエステル樹脂(A1-1)は、エポキシ化合物(a1-1)のエポキシ基が開環して生じたヒドロキシ基と、増粘剤(C)との相互作用により樹脂組成物が増粘する。
 樹脂組成物が、ビニルエステル樹脂(A1-1)を含むと、樹脂組成物の増粘速度をコントロールし易くなり、また、光硬化後のライニング材の機械的強度を調整し易くなる。
 ビニルエステル樹脂(A1-1)の重量平均分子量Mwは、樹脂組成物を効率よく増粘させる観点から、好ましくは400以上、より好ましくは600以上、さらに好ましくは800以上であり、樹脂組成物の増粘速度をコントロールする観点から、好ましくは2,000以下、より好ましくは1,500以下、さらに好ましくは1,200以下である。
 ビニルエステル樹脂(A1-1)の数平均分子量Mnは、樹脂組成物を効率よく増粘させる観点から、好ましくは400以上、より好ましくは500以上、さらに好ましくは600以上であり、樹脂組成物の増粘速度をコントロールする観点から、好ましくは1,500以下、より好ましくは1,200以下、さらに好ましくは1,000以下である。
 ビニルエステル樹脂(A1-1)のMw/Mnは、合成条件の制御のしやすさの観点から、好ましくは1.05以上、より好ましくは1.1以上であり、樹脂組成物の物性のばらつきを抑制し、増粘速度をコントロールする観点から、好ましくは2.0以下、より好ましくは1.7以下、さらに好ましくは1.5以下である。
 なお、Mw/Mnは、分子量分布の指標であり、1であるとき単分散ポリマーであることを表し、この比が大きいほど分子量分布が広いことを意味する。
 ビニルエステル樹脂(A1-1)において、不飽和一塩基酸(a1-2)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、80モル以上となる量であることが好ましく、より好ましくは90モル以上、さらに好ましくは99モル以上であり、好ましくは120モル以下、より好ましくは110モル以下、さらに好ましくは105モル以下である。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が80モル以上であれば、ビニルエステル樹脂(A1-1)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現し易い。また、樹脂組成物の増粘速度をコントロールする観点、製造安定性の観点から、ビニルエステル樹脂(A1-1)に未反応のエポキシ基が残存していないことが好ましく、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が100モルであることが好ましい。
(ビニルエステル樹脂(A1-2))
 ビニルエステル樹脂(A1-2)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の反応生成物である樹脂前駆体(P1)に、多塩基酸無水物(a1-4)をさらに付加させた反応生成物である。
 樹脂組成物が、ビニルエステル樹脂(A1-2)を含むと、樹脂組成物の増粘速度をよりコントロールし易くなる。
 ビニルエステル樹脂(A1-2)は、エポキシ化合物(a1-1)のエポキシ基が開環して生じたヒドロキシ基に多塩基酸無水物(a1-4)が付加するため、ビニルエステル樹脂(A1-1)に比べ、ヒドロキシ基の総量が減少する。よって、ビニルエステル樹脂(A1-2)を用いると、ビニルエステル樹脂(A1-1)を用いたときに比べ、工程(II)における樹脂組成物の粘度は低下する。その結果、ビニルエステル樹脂(A1-2)を用いると、ビニルエステル樹脂(A1-1)を用いたときに比べ、繊維基材(F)への含浸性が良好である。
 また、ビニルエステル樹脂(A1-2)は、多塩基酸無水物(a1-4)の付加によりカルボキシ基が導入される。よって、ビニルエステル樹脂(A1-2)を用いると、ビニルエステル樹脂(A1-1)を用いたときに比べ、増粘剤(C)との相互作用が向上し、樹脂組成物の増粘速度が向上する。
 また、ビニルエステル樹脂(A1-2)は、ビニルエステル樹脂(A1-1)に比べ、分子量分布が広くかつ高分子量である。よって、ビニルエステル樹脂(A1-2)用いると、ビニルエステル樹脂(A1-1)を用いたときに比べ、増粘速度が向上し、工程(IV)において、ライニング材を管内に配置するときのライニング材中の樹脂組成物の粘度も高い。その結果、樹脂組成物はより均一に分布して保持された状態を維持することができ、より均一に、またより効率的に管を更生することができる。
 ビニルエステル樹脂(A1-2)の重量平均分子量は、樹脂組成物をより効率的に増粘させる観点から、好ましくは800以上、より好ましくは900以上、さらに好ましくは1,000以上であり、工程(II)における樹脂組成物の粘度をより低下させる観点、及び樹脂組成物の増粘速度を適切にコントロールする観点から、好ましくは2,000以下、より好ましくは1,800以下、さらに好ましくは1,600以下である。
 ビニルエステル樹脂(A1-2)の数平均分子量(Mn)は、樹脂組成物を効率的に増粘させる観点から、好ましくは400以上、より好ましくは500以上、さらに好ましくは600以上であり、工程(II)における樹脂組成物の粘度をより低下させる観点、及び樹脂組成物の増粘速度を適切にコントロールする観点から、好ましくは1,300以下、より好ましくは1,200以下、さらに好ましくは1,100以下である。
 ビニルエステル樹脂(A1-2)のMw/Mnは、合成条件の制御のし易さの観点から、好ましくは0.6以上、より好ましくは1.0以上、さらに好ましくは1.2以上であり、工程(II)における樹脂組成物の粘度をより低下させる観点、及び樹脂組成物の物性のばらつきを抑制し、増粘速度をコントロールする観点から、好ましくは5.0以下、より好ましくは3.0以下、さらに好ましくは2.0以下である。
 ビニルエステル樹脂(A1-2)においては、まず、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の反応生成物である樹脂前駆体(P1)を得る。
 樹脂前駆体(P1)において、において、不飽和一塩基酸(a1-2)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、80モル以上となる量であることが好ましく、より好ましくは90モル以上、さらに好ましくは99モル以上であり、好ましくは120モル以下、より好ましくは110モル以下、さらに好ましくは105モル以下である。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が80モル以上であれば、ビニルエステル樹脂(A1-2)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現し易い。また、樹脂組成物の増粘速度をコントロールする観点、製造安定性の観点から、ビニルエステル樹脂(A1-2)に未反応のエポキシ基が残存していないことが好ましく、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が100モルであることが好ましい。
 ビニルエステル樹脂(A1-2)においては、多塩基酸無水物(a1-4)と樹脂前駆体(P1)を反応させることにより、エポキシ化合物(a1-1)を架橋したり、樹脂前駆体(P1)にカルボキシ基を導入したりする等の役割を果たす。すなわち、多塩基酸無水物(a1-4)は、エポキシ化合物(a1-1)のエポキシ基が開環して生じたヒドロキシ基に付加するとともにカルボキシ基を生じる。このカルボキシ基がエポキシ化合物(a1-1)の未反応のエポキシ基と反応して架橋が進行し、エポキシ基がすべて反応した後は、多塩基酸無水物(a1-4)由来のカルボキシ基はそのまま残存し、ビニルエステル樹脂(A1-2)にカルボキシ基が導入される。
 ビニルエステル樹脂(A1-2)において、多塩基酸無水物(a1-4)は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、多塩基酸無水物(a1-4)が、好ましくは3~60モルとなる量とすることが好ましく、より好ましくは5~50モル、さらに好ましくは7~45モルである。
 多塩基酸無水物(a1-4)が、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、3モル以上であれば、樹脂組成物の増粘速度の増大に必要な量のカルボキシ基がビニルエステル樹脂(A1-2)に十分に導入され、また、エポキシ化合物(a1-1)由来のエポキシ基が開環して生じたヒドロキシ基が、多塩基酸無水物(a1-4)の付加によって消費される。その結果、工程(II)における樹脂組成物の粘度の上昇を抑制することができる。また、多塩基酸無水物(a1-4)が60モル以下であることにより、樹脂組成物の増粘速度をコントロールし易くなる。
(ビニルエステル樹脂(A1-3))
 本実施形態のビニルエステル樹脂(A1-3)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の反応生成物である樹脂前駆体(P2)と、多塩基酸無水物(a1-4)との付加反応生成物である。
 樹脂組成物が、ビニルエステル樹脂(A1-3)を含むことで、工程(II)における樹脂組成物の粘度の上昇を抑制することができる。また、増粘速度を向上させ、工程(IV)において、ライニング材を管内に配置するときのライニング材中の樹脂組成物の粘度を増大させることができる。
 ビニルエステル樹脂(A1-3)は、エポキシ化合物(a1-1)のエポキシ基が開環して生じたヒドロキシ基に多塩基酸無水物(a1-3)及び(a1-4)が付加するため、ビニルエステル樹脂(A1-1)及び(A1-2)に比べ、ヒドロキシ基の総量が減少する。その結果、樹脂組成物がビニルエステル樹脂(A1-3)を含むと、ビニルエステル樹脂(A1-1)や、ビニルエステル樹脂(A1-2)を含む場合に比べ、工程(II)における樹脂組成物の粘度が低下し、工程(II)における繊維基材(F)への含浸性が良好となる。
 また、ビニルエステル樹脂(A1-3)は、多塩基酸無水物(a1-3)及び(a1-4)の付加により、カルボキシ基が導入されるため、樹脂組成物がビニルエステル樹脂(A1-3)を含むと、ビニルエステル樹脂(A1-1)や、ビニルエステル樹脂(A1-2)を含む場合に比べ、増粘剤(C)との相互作用がさらに向上し、樹脂組成物の増粘速度がさらに向上する。
 また、ビニルエステル樹脂(A1-3)は、エポキシ化合物(a1-1)のエポキシ基が、不飽和一塩基酸(a1-2)のカルボキシ基との反応により、エポキシ化合物(a1-1)のエポキシ基が開環してヒドロキシ基が生じ、該ヒドロキシ基に対して多塩基酸無水物(a1-3)が開環付加し、そして、多塩基酸無水物(a1-3)の開環付加によって生じたカルボキシ基が、エポキシ化合物(a1-1)の未反応エポキシ基とさらに反応することにより架橋し、高分子化する。そのため、ビニルエステル樹脂(A1-3)は、ビニルエステル樹脂(A1-1)及び(A1-2)に比べ、より高分子量となり、分子量分布の幅も広がる。よって、樹脂組成物がビニルエステル樹脂(A1-3)を含むと、ビニルエステル樹脂(A1-1)や、ビニルエステル樹脂(A1-2)を含む場合に比べ、樹脂組成物の増粘速度が向上し、工程(IV)において、ライニング材を管内に配置するときのライニング材中の樹脂組成物の粘度も高い。その結果、樹脂組成物はより均一に分布して保持された状態を維持することができ、より均一に、またより効率的に管を更生することができる。
 ビニルエステル樹脂(A1-3)の重量平均分子量Mwは、樹脂組成物を効率的に増粘させる観点から、好ましくは1,500以上、より好ましくは2,000以上、さらに好ましくは4,000以上、よりさらに好ましくは6,000以上であり、工程(II)における樹脂組成物の粘度の上昇を抑制し、増粘速度をコントロールする観点から、好ましくは35,000以下、より好ましくは25,000以下、さらに好ましくは15,000以下である。特に、後述の第1の実施形態に係る樹脂組成物の場合、ビニルエステル樹脂(A1-3)は高分子量であることが好ましく、好ましくは5,000以上、より好ましくは7,000以上、さらに好ましくは9,000以上である。
 ビニルエステル樹脂(A1-3)の数平均分子量Mnは、樹脂組成物を効率的に増粘させる観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは900以上であり、工程(II)における樹脂組成物の粘度の上昇を抑制し、増粘速度をコントロールする観点から、好ましくは2,500以下、より好ましくは1,800以下、さらに好ましくは1,600以下である。特に、後述の第1の実施形態に係る樹脂組成物の場合、ビニルエステル樹脂(A1-3)は高分子量であることが好ましく、好ましくは900以上、より好ましくは1,000以上、さらに好ましくは1,200以上である。
 ビニルエステル樹脂(A1-3)のMw/Mnは、合成条件を制御し易い観点から、好ましくは2.5以上、より好ましくは3.0以上、さらに好ましくは4.0以上であり、樹脂組成物の物性のばらつきを抑制し、工程(II)における樹脂組成物の粘度の上昇を抑制するとともに、増粘速度をコントロールする観点から、好ましくは18以下、より好ましくは12以下、さらに好ましくは10以下である。特に、後述の第1の実施形態に係る樹脂組成物の場合、好ましくは4.0以上、より好ましくは5.0以上、さらに好ましくは6.0以上である。
 ビニルエステル樹脂(A1-3)においては、まず、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の反応生成物である樹脂前駆体(P2)を得る。
 樹脂前駆体(P2)において、不飽和一塩基酸(a1-2)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、75~95モルとなる量であることが好ましく、より好ましくは77~93モル、さらに好ましくは79~91モルである。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が75モル以上であれば、ビニルエステル樹脂(A1-3)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現し易い。また、不飽和一塩基酸(a1-2)の酸基の総量が95モル以下であれば、エポキシ化合物(a1-1)と不飽和一塩基酸(a1-2)との反応生成物と多塩基酸無水物(a1-3)が十分に架橋され、良好な増粘性を有する樹脂組成物が得られ易い。
 樹脂前駆体(P2)において、多塩基酸無水物(a1-3)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、多塩基酸無水物(a1-3)由来の、エポキシ基と反応し得る酸基の総量が、5~25モルであること好ましく、より好ましくは7~23モル、さらに好ましくは9~21モルである。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、多塩基酸無水物(a1-3)由来の、エポキシ基と反応し得る酸基の総量が5モル以上であることにより、エポキシ化合物(a1-1)と多塩基酸無水物(a1-3)との架橋により、分子量が増大し、樹脂組成物を効率的に増粘させることができる。また、多塩基酸無水物(a1-3)由来の、エポキシ基と反応し得る酸基の総量が25モル以下であることにより、エポキシ化合物(a1-1)の架橋の程度を制御しやすく、ビニルエステル樹脂(A1-3)の合成時のゲル化が抑制され、また、樹脂組成物の増粘速度をコントロールし易くなる。
 樹脂前駆体(P2)において、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)由来の酸基(ここで言う「酸基」は、多塩基酸無水物(a1-3)が加水分解して生じる酸基とする。例えば、多塩基酸無水物(a1-3)が二塩基酸無水物の場合、1分子から生じる酸基の数は2である。)の総量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、105~125モルとなる量であること好ましく、より好ましくは107~123モル、さらに好ましくは109~121モルである。
 不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)由来の酸基の総量が、前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、105モル以上であることにより、エポキシ化合物(a1-1)の未反応のエポキシ基の量が低減し、樹脂組成物の増粘速度をコントロールし易くなる。また、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)由来の酸基の総量が125モル以下であることにより、ビニルエステル樹脂(A1-3)合成時のゲル化が抑制され、またビニルエステル樹脂(A1-3)中の未反応の不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の残存が抑制され、樹脂組成物の増粘速度への影響を抑制できる。
 ビニルエステル樹脂(A1-3)においては、多塩基酸無水物(a1-4)と樹脂前駆体(P2)を反応させることにより、前記多塩基酸無水物(a1-3)と同様の反応機構で、エポキシ化合物(a1-1)を架橋したり、樹脂前駆体(P2)にカルボキシ基を導入したりする等の役割を果たす。すなわち、多塩基酸無水物(a1-4)は、エポキシ化合物(a1-1)のエポキシ基が開環して生じたヒドロキシ基に付加するとともにカルボキシ基を生じる。このカルボキシ基がエポキシ化合物(a1-1)の未反応のエポキシ基と反応して架橋が進行し、エポキシ基がすべて反応した後は、多塩基酸無水物(a1-4)由来のカルボキシ基はそのまま残存し、ビニルエステル樹脂(A1-3)にカルボキシ基が導入される。
 多塩基酸無水物(a1-4)は、前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、多塩基酸無水物(a1-4)が、3~60モルとなる量とすることが好ましく、より好ましくは5~50モル、さらに好ましくは7~45モルである。
 多塩基酸無水物(a1-4)が、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、3モル以上であれば、樹脂組成物の増粘速度の増大に必要な量のカルボキシ基がビニルエステル樹脂(A1-3)に導入され、また、エポキシ化合物(a1-1)由来のエポキシ基が開環して生じたヒドロキシ基が、多塩基酸無水物(a1-4)の付加によって消費され、工程(II)における前記樹脂組成物の粘度の上昇を抑制することができる。また、多塩基酸無水物(a1-4)が60モル以下であることにより、樹脂組成物の増粘速度をコントロールし易くなる。
(ビニルエステル樹脂(A1-4))
 本実施形態のビニルエステル樹脂(A1-4)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物である樹脂前駆体(P3)と、不飽和一塩基酸(a1-2)との反応生成物である。
 樹脂組成物が、ビニルエステル樹脂(A1-4)を含むことで、樹脂組成物の増粘速度をコントロールし易くなり、また、樹脂組成物の硬化物の物性を調整し易くなる。
 ビニルエステル樹脂(A1-4)は、エポキシ化合物(a1-1)のエポキシ基が開環して生じたヒドロキシ基と、増粘剤(C)との相互作用により樹脂組成物が増粘する。
 ビニルエステル樹脂(A1-4)の重量平均分子量Mwは、より効率よく増粘させる観点から、好ましくは500以上、より好ましくは600以上、さらに好ましくは800以上であり、樹脂組成物の増粘速度をコントロールする観点から、好ましくは6,000以下、より好ましくは5,000以下、さらに好ましくは4,500以下である。
 ビニルエステル樹脂(A1-4)の数平均分子量Mnは、樹脂組成物を効率よく増粘させる観点から、好ましくは400以上、より好ましくは500以上、さらに好ましくは600以上であり、樹脂組成物の増粘速度をコントロールする観点から、好ましくは2,500以下、より好ましくは2,200以下、さらに好ましくは2,000以下である。
 ビニルエステル樹脂(A1-4)のMw/Mnは、合成条件の制御のしやすさの観点から、好ましくは1.05以上、より好ましくは1.1以上であり、さらに好ましくは1.3以上であり、樹脂組成物の物性のばらつきを抑制し、増粘速度をコントロールする観点から、好ましくは3.0以下、より好ましくは2.5以下であり、さらに好ましくは2.3以下である。
 なお、Mw/Mnは、分子量分布の指標であり、1であるとき単分散ポリマーであることを表し、この比が大きいほど分子量分布が広いことを意味する。
 ビニルエステル樹脂(A1-4)において、ビスフェノール化合物(a1-5)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(a1-5)の水酸基の総量が、10モル以上となる量であることが好ましく、より好ましくは20モル以上、さらに好ましくは25モル以上であり、好ましくは70モル以下、より好ましくは60モル以下、さらに好ましくは50モル以下である。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(a1-5)の水酸基の総量が10モル以上であれば、ビニルエステル樹脂(A1)の分子量分布が広がることにより、樹脂組成物の到達粘度をコントロールし易くなる。また、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(a1-5)の総量が70モル以下であれば、樹脂組成物の増粘速度をコントロールし易くなる。
 ビニルエステル樹脂(A1-4)において、不飽和一塩基酸(a1-2)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、30モル以上となる量であることが好ましく、より好ましくは40モル以上、さらに好ましくは50モル以上であり、好ましくは120モル以下、より好ましくは100モル以下、さらに好ましくは80モル以下である。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が30モル以上であれば、ビニルエステル樹脂(A1-4)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現し易い。また、増粘速度をコントロールし、硬化後の樹脂組成物の偏在を抑制する観点及び製造安定性の観点から、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が120モル以下であることが好ましい。
(ビニルエステル樹脂(A1-5))
 ビニルエステル樹脂(A1-5)は、樹脂前駆体(P3)及び不飽和一塩基酸(a1-2)との反応生成物である樹脂前駆体(P4)と、不飽和多塩基酸(a1-6)との反応生成物であって、前記樹脂前駆体(P3)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物である。
 ビニルエステル樹脂(A1-5)は、エポキシ化合物(a1-1)のエポキシ基が開環して生じたヒドロキシ基と、化合物(C)との相互作用により樹脂組成物が増粘する。
 樹脂組成物が、ビニルエステル樹脂(A1-5)を含むと、樹脂組成物の増粘速度をコントロールし易くなり、また、樹脂組成物の硬化物の物性を調整し易くなる。
 ビニルエステル樹脂(A1-5)の重量平均分子量Mwは、より効率よく増粘させる観点から、好ましくは500以上、より好ましくは600以上、さらに好ましくは800以上であり、樹脂組成物の増粘速度をコントロールする観点から、好ましくは6,000以下、より好ましくは5,000以下、さらに好ましくは4,500以下である。
 ビニルエステル樹脂(A1-5)の数平均分子量Mnは、樹脂組成物を効率よく増粘させる観点から、好ましくは400以上、より好ましくは500以上、さらに好ましくは600以上であり、樹脂組成物の増粘速度をコントロールする観点から、好ましくは2,000以下、より好ましくは1,500以下、さらに好ましくは1,300以下である。
 ビニルエステル樹脂(A1-5)のMw/Mnは、合成条件の制御のしやすさの観点から、好ましくは1.05以上、より好ましくは1.1以上であり、さらに好ましくは1.3以上であり、樹脂組成物の物性のばらつきを抑制し、増粘速度をコントロールする観点から、好ましくは3.0以下、より好ましくは2.5以下であり、さらに好ましくは2.3以下である。
 なお、Mw/Mnは、分子量分布の指標であり、1であるとき単分散ポリマーであることを表し、この比が大きいほど分子量分布が広いことを意味する。
 ビニルエステル樹脂(A1-5)において、ビスフェノール化合物(a1-5)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(a1-5)の水酸基の総量が、10モル以上となる量であることが好ましく、より好ましくは15モル以上、さらに好ましくは20モル以上であり、好ましくは70モル以下、より好ましくは60モル以下、さらに好ましくは50モル以下である。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(a1-5)の水酸基の総量が10モル以上であれば、ビニルエステル樹脂(A1)の分子量分布が広がることにより、樹脂組成物の到達粘度をコントロールし易くなる。また、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(a1-5)の水酸基の総量が70モル以下であれば、樹脂組成物の増粘速度をコントロールし易くなる。
 ビニルエステル樹脂(A1-5)において、不飽和一塩基酸(a1-2)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、30モル以上となる量であることが好ましく、より好ましくは40モル以上、さらに好ましくは50モル以上であり、好ましくは120モル以下、より好ましくは100モル以下、さらに好ましくは80モル以下である。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が30モル以上であれば、ビニルエステル樹脂(A1-5)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現し易い。また、増粘速度をコントロールし、硬化後の樹脂組成物の偏在を抑制し、管を均一に補修する観点、及び製造安定性の観点から、ビニルエステル樹脂(A1-1)に未反応のエポキシ基がより残存していないことが好ましく、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が120モル以下であることが好ましい。
 ビニルエステル樹脂(A1-5)中の不飽和多塩基酸(a1-6)の量は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和多塩基酸(a1-6)が、0.5モル以上となる量であることが好ましく、より好ましくは1モル以上、さらに好ましくは3モル以上であり、好ましくは15モル以下、より好ましくは10モル以下、さらに好ましくは8モル以下である。
 エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和多塩基酸(a1-6)が0.5モル以上であれば、ビニルエステル樹脂(A1-5)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現し易い。また、増粘速度をコントロールする観点から、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和多塩基酸(a1-6)が15モル以下であることが好ましい。
(エポキシ化合物(a1-1))
 エポキシ化合物(a1-1)は、1分子中に2個のエポキシ基を有する化合物であり、モノマー、オリゴマー、ポリマー全般を用いることができ、その分子量及び分子構造は特に限定されない。エポキシ化合物(a1-1)は、1種単独であっても、2種以上が併用されていてもよい。
 エポキシ化合物(a1-1)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、及びビスフェノールAF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;tert-ブチルカテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等が挙げられる。中でも、樹脂組成物到達粘度を過度に高くなることを抑制し、増粘速度をコントロールする観点から、ビスフェノール型エポキシ樹脂及びフェノールノボラック型エポキシ樹脂から選択される一種以上が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂から選択される一種以上がより好ましく、ビスフェノールA型エポキシ樹脂がさらに好ましい。
 エポキシ化合物(a1-1)のエポキシ当量は、ビニルエステル樹脂(A1-1)がゲル化することなく得られ、また、工程(IV)におけるライニング材を管内に配置するときの前記樹脂組成物の粘度、及び増粘速度をコントロールする観点から、好ましくは170~1,000、より好ましくは170~500、さらに好ましくは170~400、よりさらに好ましくは170~300である。
 ビニルエステル樹脂(A1)の合成容易性及び効率の観点から、エポキシ化合物(a1-1)は、25℃条件下で液状のものが好ましく、また、エポキシ当量が300以下のものが好適に用いられる。
(不飽和一塩基酸(a1-2))
 不飽和一塩基酸(a1-2)は、エチレン性不飽和基を有するモノカルボン酸が好ましく、1種単独であっても、2種以上が併用されていてもよい。
 不飽和一塩基酸としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸等が挙げられる。中でも、汎用性やビニルエステル樹脂(A)の合成時の反応性、及び良好な硬化性を有する樹脂組成物を得る観点から、(メタ)アクリル酸、クロトン酸から選択される少なくとも1種が好ましく、(メタ)アクリル酸がより好ましく、耐薬品性の観点から、メタクリル酸がさらに好ましい。
(多塩基酸無水物(a1-3))
 多塩基酸無水物(a1-3)は、カルボキシ基を1分子内に複数個有する化合物が、少なくとも2個のカルボキシ基が脱水縮合して酸無水物を形成している。これらの中でも、ビニルエステル樹脂(A1)の合成のしやすさ、分子量や酸価の制御のしやすさ、及び樹脂組成物の粘度を適度に制御する等の観点から、二塩基酸無水物が好ましい。多塩基酸無水物(a1-3)は、1種単独であっても、2種以上が併用されてもよい。
 多塩基酸無水物(a1-3)としては、例えば、無水マレイン酸、無水フタル酸、無水コハク酸、エンドメチレンテトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3-メチル-1,2,3,6-テトラヒドロ無水フタル酸、4-メチル-1,2,3,6-テトラヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸、無水トリメリット酸等が挙げられる。これらの中でも、入手容易性や反応性、合成の際の取り扱い容易性等の観点から、無水マレイン酸、及び無水フタル酸が好ましく、無水マレイン酸がより好ましい。
(多塩基酸無水物(a1-4))
 多塩基酸無水物(a1-4)は、カルボキシ基を一分子内に複数個有する化合物であり、少なくとも2個のカルボキシ基が脱水縮合して酸無水物を形成している。中でも、ビニルエステル樹脂(A1-2)及び(A1-3)の合成の際の取り扱い容易性、分子量や酸価のコントロールのし易さ、及び樹脂組成物の良好な粘度特性等の観点から、二塩基酸無水物が好ましい。多塩基酸無水物(a1-4)は、1種単独であっても、2種以上が併用されていてもよい。
 多塩基酸無水物(a1-4)の具体例としては、多塩基酸無水物(a1-3)と同様のものが挙げられ、無水マレイン酸がより好ましい。多塩基酸無水物(a1-3)と多塩基酸無水物(a1-4)とは、同じものであっても、異なるものであってもよい。
(ビスフェノール化合物(a1-5))
 ビスフェノール化合物(a1-5)は、その分子量及び分子構造は特に限定されるものではない。ビスフェノール化合物(a1-5)は、1種単独であっても、2種以上が併用されていてもよい。
 ビスフェノール化合物(a1-5)としては、例えば、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZ等が挙げられる。中でも、樹脂組成物到達粘度が過度に高くなることを抑制し、増粘速度をコントロールする観点から、ビスフェノールA、ビスフェノールE、ビスフェノールF、ビスフェノールSから選択される少なくとも1種以上が好ましく、ビスフェノールA、ビスフェノールE、ビスフェノールFがより好ましく、耐食性、汎用性及びコストの観点からビスフェノールAがさらに好ましい。
(不飽和多塩基酸(a1-6))
 不飽和多塩基酸(a1-6)は、1分子内に2個以上のカルボキシ基と、不飽和基を1個以上有する化合物であり、その分子量及び分子構造は特に限定されない。不飽和多塩基酸(a1-6)は1種単独であっても、2種以上が併用されていてもよい。
 不飽和多塩基酸(a1-6)としては、例えば、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロロマレイン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、フタル酸、イタコン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸等が挙げられる。中でも、製造コストの観点から、無水マレイン酸及びフマル酸、コハク酸、グルタル酸、アジピン酸が好ましく、コハク酸、フマル酸、無水マレイン酸がより好ましく、フマル酸がさらに好ましい。
 工程(II)における前記樹脂組成物の粘度を低下させたい場合は、ビニルエステル樹脂(A1-2)及び(A1-3)を配合してもよく、増粘速度を適度に制御したい場合には、ビニルエステル樹脂(A1-1)、及び(A1-2)を配合してもよく、増粘速度を向上させたい場合には、ビニルエステル樹脂(A1-3)を配合してもよく、工程(IV)におけるライニング材を管内に配置するときの粘度を増大させたい場合には、ビニルエステル樹脂(A1-3)を配合してもよい。このように、適宜目的の粘度挙動に応じた樹脂を、単独で、または組み合わせて用いてもよい。
 本実施形態においては、ビニルエステル樹脂(A1)は、ビニルエステル樹脂(A1-3)であることが好ましく、すなわち、ビニルエステル樹脂(A1)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の反応生成物である樹脂前駆体(P2)と、多塩基酸無水物(a1-4)との付加反応生成物であることが好ましい。そして、前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、前記多塩基酸無水物(a1-3)由来の、エポキシ基と反応し得る酸基の総量が5~25モルであることが好ましい。
〈不飽和ポリエステル樹脂(A2)〉
 不飽和ポリエステル樹脂は、不飽和二塩基酸、及び、必要に応じて飽和二塩基酸を含む二塩基酸成分と、多価アルコールとをエステル化反応させて得られたものを用いることができる。
 前記不飽和二塩基酸や前記飽和二塩基酸としては、例えば、WO2016/171151号公報に記載のものなどを挙げることができ、これらは単独でも、2種以上を組み合わせて用いてもよい。
 前記多価アルコールに特に制限はないが、例えば、ウレタン(メタ)アクリレート樹脂の場合と同様、WO2016/171151号公報に記載のものを挙げることができる。
 本実施形態における不飽和ポリエステル樹脂(A2)は、分子量が90~500のアルカンジオールであるジオール(a2-1-1)を、ジオール(a2-1)100モル%に対して43~85モル%含む前記ジオール(a2-1)と、エチレン性不飽和基含有二塩基酸(a2-2-1)及びエチレン性不飽和基非含有二塩基酸(a2-2-2)を含む二塩基酸(a2-2)との反応生成物であることが好ましい。
 不飽和ポリエステル樹脂(A2)の酸価は、工程(IV)において、ライニング材を管内に配置するときに、繊維基材中で均一に分布した状態を保持できる程度の高粘度とする観点から、好ましくは3KOHmg/g以上、より好ましくは5KOHmg/g以上、さらに好ましくは8KOHmg/g以上であり、樹脂組成物の増粘を促進させる観点から、好ましくは25KOHmg/g以下、より好ましくは20KOHmg/g以下、さらに好ましくは16KOHmg/g以下である。
 不飽和ポリエステル樹脂(A2)の重量平均分子量(Mw)は、樹脂組成物の増粘速度を促進させ、ライニング材を管内に配置するときに、繊維基材中で均一に分布した状態を保持できる程度の高粘度とする観点から、好ましくは5,000以上、より好ましくは7,000以上、さらに好ましくは9,000以上であり、樹脂組成物の吸湿による粘度低下を抑制し、増粘後の粘度安定性に優れる樹脂組成物を得る観点から、好ましくは20,000以下、より好ましくは17,000以下、さらに好ましくは15,000以下である。
 不飽和ポリエステル樹脂(A2)の数平均分子量(Mn)は、樹脂組成物の増粘速度を促進させ、ライニング材を管内に配置するときに、繊維基材中で均一に分布した状態を保持できる程度の高粘度とする観点から、好ましくは1,000以上、より好ましくは1,500以上、さらに好ましくは2,000以上であり、樹脂組成物の吸湿による粘度低下を抑制し、増粘後の粘度安定性に優れる樹脂組成物を得る観点から、好ましくは7,000以下、より好ましくは5,000以下、さらに好ましくは4,000以下である。
 不飽和ポリエステル樹脂(A2)の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnは、特に限定はされないが、増粘速度を促進させ、ライニング材を管内に配置するときに、繊維基材中で均一に分布した状態を保持できる程度の高粘度とする観点から、好ましくは15以下、より好ましくは10以下、さらに好ましくは5以下であり、生産性の観点から、好ましくは1以上、より好ましくは1.5以上、さらに好ましくは2以上である。
 不飽和ポリエステル樹脂(A2)に含まれるジオール(a2-1)に由来する構造単位と、二塩基酸(a2-2)に由来する構造単位との含有割合(モル比)は、脱水縮合重合により目的とする分子量の不飽和ポリエステルを得ることにより増粘速度を制御する観点から、好ましくは40:60~60:40、より好ましくは45:55~55:45、さらに好ましくは50:50である。
 樹脂組成物が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物中の不飽和ポリエステル樹脂(A2)の含有量は、前記不飽和ポリエステル樹脂(A2)及び前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~65質量部である。
 不飽和ポリエステル樹脂(A2)の含有量が20質量部以上であれば、樹脂組成物の増粘速度をコントロールし易い。また、不飽和ポリエステル樹脂(A2)の含有量が80質量部以下であれば、エチレン性不飽和基含有モノマー(B)によって、工程(II)における樹脂組成物の粘度をより低下させ易い。
 樹脂組成物が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物中の不飽和ポリエステル樹脂(A2)の含有量は、樹脂組成物の総量100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~65質量部である。
 不飽和ポリエステル樹脂(A2)の含有量が20質量部以上であれば、樹脂組成物の増粘速度をコントロールし易い。また、不飽和ポリエステル樹脂(A2)の含有量が80質量部以下であれば、エチレン性不飽和基含有モノマー(B)によって、樹脂組成物の初期粘度の上昇を抑制し易い。
<ジオール(a2-1)>
 ジオール(a2-1)は、1分子中に2個のヒドロキシ基を有する化合物である。そして、ジオール(a2-1)は、分子量が90~500である、アルカンジオール(a2-1-1)を、43~85モル%含む。
 ジオール(a2-1)は、アルカンジオール(a2-1-1)以外に、アルカンジオール(a2-1-1)とは異なるアルカンジオール(a2-1-2)や、アルカンジオール(a2-1-1)及びアルカンジオール(a2-1-2)とは異なるその他のジオールを含んでもよい。
(アルカンジオール(a2-1-1))
 アルカンジオール(a2-1-1)は、分子量が90~500のアルカンジオールであり、炭化水素の2つの炭素原子に結合した水素原子が1つずつヒドロキシ基に置換された化合物である。アルカンジオール(a2-1-1)は、1種単独であっても、2種以上が併用されていてもよい。
 アルカンジオール(a2-1-1)は、分子内にヒドロキシ基以外の極性基や電気陰性度の大きな原子を含まないため、エーテル結合をもつポリオキシアレキレンポリオール等と比較して、水分子との相互作用が小さい。よって、樹脂組成物がアルカンジオール(a2-1-1)と二塩基酸(a2-2)の反応生成物である不飽和ポリエステル樹脂(A2)を含むことで、樹脂組成物の吸湿性を低下させ、樹脂組成物増粘後の粘度変化を抑制して、粘度安定性に優れるものとなる。
 アルカンジオール(a2-1-1)の分子量は、90以上であることで樹脂組成物の吸湿性を低下することができ、また、500未満であることで、製造容易性及び生産性が良好となる。アルカンジオール(a2-1-1)の分子量は、より樹脂組成物の吸湿性を低下させ、樹脂組成物増粘後の粘度変化を抑制して、粘度安定性に優れる樹脂組成物を得る観点から、好ましくは95以上、より好ましくは100以上、さらに好ましくは103以上であり、より製造容易性及び製造コストの観点から、好ましくは400以下、より好ましくは300以下、さらに好ましくは250以下である。
 アルカンジオール(a2-1-1)としては、例えば、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-オクタンジオール、1,2-ノナンジオール、1,4-シクロヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ジ(4-ヒドロキシシクロヘキシル)プロパン、並びにビスフェノールA、ビスフェノールF、及びビスフェノールSの水素化物等が挙げられる。
 これらの中でも、増粘後の粘度安定性に優れる樹脂組成物を得る観点から、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、ビスフェノールAの水素化物がより好ましく、入手性や製造コストの観点から、2,2-ジメチル-1,3-プロパンジオールが好ましい。
 ジオール(a2-1)中のアルカンジオール(a2-1-1)の含有量は、ジオール(a2-1)100モル%に対して、より樹脂組成物の吸湿性を低下させ、樹脂組成物増粘後の粘度変化を抑制して、増粘後の粘度安定性に優れる樹脂組成物を得る観点から、43モル%以上、好ましくは45モル%以上、より好ましくは48モル%以上である。また、不飽和ポリエステル樹脂(A)を合成する際に、低分子量体や未反応原料等の結晶物等が析出することを抑制し、より樹脂組成物の繊維基材に対する含浸性を向上させる観点から、好ましくは85モル%以下、より好ましくは80モル%以下、さらに好ましくは75モル%以下である。
 ジオール(a2-1)中のアルカンジオール(a2-1-1)と後述のアルカンジオール(a2-1-2)との合計含有量は、ジオール(a2-1)の総量100モル%に対して、より樹脂組成物の吸湿性を低下させ、樹脂組成物増粘後の粘度変化を抑制して、増粘後の粘度安定性に優れる樹脂組成物を得る観点から、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、よりさらに好ましくは100モル%である。
(アルカンジオール(a2-1-2))
 アルカンジオール(a2-1-2)は、アルカンジオール(a2-1-1)とは異なるアルカンジオールであり、分子量が90~500のアルカンジオールを含まない。
 アルカンジオール(a1-2)の分子量は、樹脂組成物の増粘後の粘度安定性の観点から、好ましくは60以上、より好ましくは65以上、さらに好ましくは70以上であり、製造容易性及び製造コストの観点から、好ましくは85以下、より好ましくは80以下、さらに好ましくは78以下である。
 アルカンジオール(a2-1-2)としては、例えば、エチレングリコール、プロピレングリコール等が挙げられる。
 これらの中でも、樹脂組成物の増粘後の粘度安定性の観点から、プロピレングリコールがより好ましい。
 ジオール(a2-1)中のアルカンジオール(a2-1-2)の含有量は、ジオール(a2-1)100モル%に対し、不飽和ポリエステル樹脂(A2)を合成する際に、低分子量体や未反応原料等の結晶物等が析出することを抑制し、より樹脂組成物の繊維基材に対する含浸性を向上させる観点から、15モル%以上、好ましくは20モル%以上、より好ましくは25モル%以上である。また、より樹脂組成物の吸湿性を低下させ、樹脂組成物増粘後の粘度変化を抑制して、増粘後の粘度安定性に優れる樹脂組成物を得る観点から、57モル%以下、好ましくは55モル%以下、より好ましくは52モル%以下である。
(その他のジオール)
 その他のジオールは、アルカンジオール(a2-1-1)及びアルカンジオール(a2-1-2)とは異なるジオールである。
 その他のジオールの分子量は、製造コスト及び、硬化物の靭性が良好になる観点から、好ましくは70以上、より好ましくは85以上、さらに好ましくは100以上であり、製造容易性及び製造コストの観点から、好ましくは500以下、より好ましくは300以下、さらに好ましくは150以下である。
 その他のジオールとしては、例えば、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリオキシアルキレンポリオールが挙げられる。
 これらの中でも、製造コスト及び、硬化物の靭性が良好になる観点から、ジエチレングリコール及び、ジプロピレングリコールがより好ましい。
<二塩基酸(a2-2)>
 二塩基酸(a2-2)は、エチレン性不飽和基含有二塩基酸(a2-2-1)及びエチレン性不飽和基非含有二塩基酸(a2-2-2)を含む。
 二塩基酸(a2-2)は1種単独であっても、2種以上が併用されていてもよい。
(エチレン性不飽和基含有二塩基酸(a2-2-1))
 エチレン性不飽和基含有二塩基酸(a2-2-1)は、1分子内に2個のカルボキシ基と、エチレン性不飽和基を1個以上有する化合物であり、その分子量及び分子構造は特に限定されない。エチレン性不飽和基含有二塩基酸(a2-2-1)は1種単独であっても、2種以上が併用されていてもよい。
 二塩基酸(a2-2)中のエチレン性不飽和基含有二塩基酸(a2-2-1)の含有量は、二塩基酸(a2-2)100モル%に対して、樹脂組成物の硬化物の機械的強度の観点から、好ましくは20モル%以上、より好ましくは30モル%以上、さらに好ましくは40モル%以上、よりさらに好ましくは45モル%以上であり、好ましくは80モル%以下、より好ましくは75モル%以下、さらに好ましくは70モル%以下、よりさらに好ましくは65モル%以下である。
 エチレン性不飽和基含有二塩基酸(a2-2-1)としては、例えば、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロロマレイン酸等が挙げられる。中でも、製造コストの観点から、無水マレイン酸及びフマル酸が好ましく、無水マレイン酸がより好ましい。
(エチレン性不飽和基非含有二塩基酸(a2-2-2))
 エチレン性不飽和基非含有二塩基酸(a2-2-2)は、1分子内に2個のカルボキシ基を有し、エチレン性不飽和基を有さない化合物であり、その分子量及び分子構造は特に限定されない。エチレン性不飽和基非含有二塩基酸(a2-2-2)は1種単独であっても、2種以上が併用されていてもよい。
 二塩基酸(a2-2)中のエチレン性不飽和基非含有二塩基酸(a2-2-2)の含有量は、二塩基酸(a2-2)100モル%に対して、樹脂組成物の硬化物の機械的強度の観点から、好ましくは20モル%以上、より好ましくは25モル%以上、さらに好ましくは30モル以上、よりさらに好ましくは35モル%以上であり、好ましくは80モル%以下、より好ましくは70モル%以下、さらに好ましくは60モル%以下、よりさらに好ましくは55モル%以下である。
 エチレン性不飽和基非含有二塩基酸(a2-2-2)としては、無水フタル酸、イソフタル酸、テレフタル酸、琥珀酸、アジピン酸、セバシン酸、テトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、ヘキサヒドロフタル酸(1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸)、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸、クロレンディク酸(ヘット酸)、テトラブロモフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、無水琥珀酸、無水クロレンディク酸、無水トリメリット酸、無水ピロメリット酸、ジメチルオルソフタレート、ジメチルイソフタレート、ジメチルテレフタレート等が挙げられる。これらの中でも、製造コストの観点から、イソフタル酸及びテレフタル酸が好ましい。
 本実施形態において、二塩基酸(a2-2)は、エチレン性不飽和基含有二塩基酸(a2-1)を20~80モル%、前記エチレン性不飽和基非含有二塩基酸(a2-2-2)を20~80モル%含むことが好ましい。
〈ウレタン(メタ)アクリレート樹脂(A3)〉
 ウレタン(メタ)アクリレート樹脂とは、(メタ)アクリロイルオキシ基を有するポリウレタンである。具体的には、ポリイソシアネートとポリヒドロキシ化合物または多価アルコール類とを反応させた後、未反応のイソシアナト基にさらにヒドロキシ基含有(メタ)アクリル化合物及び必要に応じてヒドロキシ基含有アリルエーテル化合物を反応させて得られる。
〈ポリエステル(メタ)アクリレート樹脂(A4)〉
 前記ポリエステル(メタ)アクリレート樹脂とは、(メタ)アクリロイルオキシ基を有するポリエステルである。ポリエステル(メタ)アクリレート樹脂は、例えば、以下に示す(1)または(2)の方法により得られる。
(1)末端がカルボキシ基のポリエステルに、エポキシ基含有(メタ)アクリレートまたはヒドロキシ基含有(メタ)アクリレートを反応させる方法
(2)末端がヒドロキシ基のポリエステルに、(メタ)アクリル酸またはイソシアナト基含有(メタ)アクリレートを反応させる方法
 上記(1)の方法において原料として用いられる、末端がカルボキシ基のポリエステルとしては、過剰量の飽和多塩基酸及び/または不飽和多塩基酸と多価アルコールとから得られるものが挙げられる。
 上記(2)の方法において原料として用いられる、末端がヒドロキシ基のポリエステルとしては、飽和多塩基酸及び/または不飽和多塩基酸と過剰量の多価アルコールとから得られるものが挙げられる。
〈(メタ)アクリレート樹脂(A5)〉
 (メタ)アクリレート樹脂(A5)とは、アクリル酸エステル又はメタクリル酸エステルの重合体である。構成モノマーの具体例としては、エチレン性不飽和基含有モノマー(B)で例示する(メタ)アクリレートと同様のものが挙げられる。
 樹脂(A)65質量%とフェノキシエチルメタクリレート35質量%との混合物についての粘度は、取り扱い易さの観点から、好ましくは0.3~300Pa・s、より好ましくは0.5~200Pa・s、さらに好ましくは0.8~150Pa・sである。
≪エチレン性不飽和基含有モノマー(B)≫
 エチレン性不飽和基含有モノマー(B)は、カルボキシ基を有さず、エチレン性不飽和基を有していれば特に制限はないが、(メタ)アクリロイル基、またはビニル基を有するものが好ましい。エチレン性不飽和基含有モノマー(B)は、1種単独であっても、2種以上が併用されてもよい。
 エチレン性不飽和基含有モノマー(B)の含有量が多いほど、工程(II)における樹脂組成物の粘度、増粘速度、及び工程(IV)におけるライニング材を管内に配置するときの樹脂組成物の粘度の上昇が抑制される傾向にある。また、光硬化後のライニング材の硬度、強度、耐薬品性、耐水性等を向上させることができる。
 エチレン性不飽和基含有モノマー(B)のうち、(メタ)アクリロイル基を有するものとしては、例えば、(メタ)アクリレート等が挙げられる。(メタ)アクリレートは、単官能であっても、多官能であってもよい。
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル、ラウリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エチレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールモノエチルエーテル(メタ)アクリレート、エチレングリコールモノブチルエーテル(メタ)アクリレート、エチレングリコールモノヘキシルエーテル(メタ)アクリレート、エチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ジエチレングリコールモノヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、カプロラクトン変性ヒドロキシエチル(メタ)アクリレート、アリル(メタ)アクリレート等が挙げられる。
 多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート及び1,6-ヘキサンジオールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート及びポリテトラメチレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート、また、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールジアクリレートモノステアレート、1,3-ビス((メタ)アクリロイルオキシ)-2-ヒドロキシプロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート等が挙げられる。
 エチレン性不飽和基含有モノマー(B)のうち、(メタ)アクリレート以外で、(メタ)アクリロイル基を有するものとして、アクルロイルモルフォリン、2-ヒドロキシエチル(メタ)アクリルアミド、2-ヒドロキシエチル-N-メチル(メタ)アクリルアミド、3-ヒドロキシプロピル(メタ)アクリルアミド等が挙げられる。また、(メタ)アクリロイル基を有するもの以外で、エチレン性不飽和基を有するものとしては、例えば、スチレン、p-クロロスチレン、ビニルトルエン、α-メチルスチレン、ジクロロスチレン、ジビニルベンゼン、t-ブチルスチレン、ビニルベンジルブチルエーテル、ビニルベンジルヘキシルエーテル、及びジビニルベンジルエーテル等のスチレン化合物、酢酸ビニル、ジアリルフマレート、ジアリルフタレート、トリアリルイソシアヌレート等が挙げられる。
 これらの中でも、エチレン性不飽和基含有モノマー(B)としては、樹脂組成物の増粘速度の適度な制御や硬化性、製造コスト、また、光硬化後のライニング材の機械的強度、耐熱性、耐薬品性等の観点から、スチレン化合物及び(メタ)アクリレートが好ましい。より具体的には、スチレン、メチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート及びテトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレートから選ばれる少なくとも1種が好ましい。さらに、臭気抑制の観点から、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート及びジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレートから選ばれる少なくとも1種がより好ましく、光硬化後のライニング材の耐薬品性の観点から、フェノキシエチルメタクリレート、ベンジルメタクリレート及びジエチレングリコールジメタクリレート、ネオペンチルグリコール(メタ)アクリレートから選ばれる少なくとも1種がさらに好ましい。
≪増粘剤(C)≫
 増粘剤(C)は、特に限定されないが、第2族元素の酸化物及び水酸化物から選択される少なくとも1種であることが好ましい。増粘剤(C)が、第2族元素の酸化物及び水酸化物から選択される少なくとも1種である場合、樹脂(A)が有するカルボキシ基及び水酸基、また、その他の成分の化合物のカルボキシル基及び水酸基との相互作用により、樹脂組成物を経時的に増粘させる効果を有する。
 増粘剤(C)は、1種単独であっても、2種以上が併用されていてもよい。
 第2族元素の酸化物としては、例えば、酸化マグネシウム、酸化カルシウム、酸化バリウム等が挙げられる。
 第2族元素の水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等が挙げられる。
 これらの中でも、増粘効果、汎用性及びコスト等の観点から、酸化マグネシウムが好ましい。
≪光重合開始剤(D)≫
 光重合開始剤としては、光照射によりラジカルを発生するものであれば特に限定されない。例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)アセトフェノン等のアセトフェノン類;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のα-ヒドロキシアルキルフェノン類;2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)ベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルジオキシカルボニル)ベンゾフェノン等のベンゾフェノン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン等のモルホリン類;フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド等のアシルホスフィンオキサイド類;キサントン類等が挙げられる。これらは、1種単独であっても、2種以上が併用されてもよい。
 光重合開始剤は、反応性の観点から、水素供与体を必要としない分子内開裂型の光重合開始剤を用いることが好ましい。また、波長315~460nmの光を吸収して活性種を発生することから、前記波長範囲で効率よく活性種を発生する、2,2-ジメトキシ-2-フェニルアセトフェノン、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、及び1-ヒドロキシシクロヘキシルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトンが好ましい。
≪化合物(E)≫
 本実施形態の樹脂組成物は、水及びヒドロキシ基含有化合物から選択される少なくとも1種である化合物(E)を用いても良い。樹脂組成物が化合物(E)を含むことで、増粘速度をよりコントロールし易くなる。ヒドロキシ基含有化合物としては、例えば、ベンジルアルコール、ステアリルアルコール、イソステアリルアルコール等の沸点50℃以上のアルコールが挙げられる。また、その他、乳酸等のヒドロキシカルボン酸、グリセリン、ポリオール、ヒドロキシ基を含む(メタ)アクリレート等が挙げられる。これらは、1種単独であっても、2種以上が併用されていてもよい。これらの中でも、入手性、コスト等の観点から、好ましくは水及びアルコールであり、より好ましくは水である。
≪カルボキシ基含有化合物≫
 本実施形態の樹脂組成物は、少なくとも1個のカルボキシ基を有する化合物を含んでもよい。
 前記カルボキシ基含有化合物としては、例えば、マレイン酸、フタル酸、イソフタル酸、テレフタル酸、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、フマル酸、エンドメチレンテトラヒドロフタル酸、メチルテトラヒドロフタル酸、3-メチル-1,2,3,6-テトラヒドロフタル酸、4-メチル-1,2,3,6-テトラヒドロフタル酸、3-メチル-ヘキサヒドロフタル酸、4-メチル-ヘキサヒドロフタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロフタル酸、トリメリット酸、3-ドデセニルコハク酸、(メタ)アクリル酸等が挙げられる。
 市販品としては、ハリダイマー250(ハリマ化成株式会社製)が挙げられる。
 カルボキシ基含有化合物は、1種単独であっても、2種以上が併用されていてもよい。
 本実施形態の樹脂(A)がビニルエステル樹脂(A1)を含む場合、増粘速度をコントロールし、樹脂組成物製造直後(製造後~5時間以内)に樹脂組成物が過度に増粘することを抑制して、樹脂組成物の到達粘度が過度に高くなることをより抑制する観点から、カルボキシ基含有化合物としては、3-ドデセニルコハク酸、メタクリル酸、アクリル酸が好ましく、3-ドデセニルコハク酸がより好ましい。
 本実施形態の樹脂(A)がビニルエステル樹脂(A1)を含み、本実施形態の樹脂組成物がカルボキシ基含有化合物を含む場合、増粘速度をコントロールし、樹脂組成物製造直後(製造後~5時間以内)に樹脂組成物が過度に増粘することを抑制して、樹脂組成物の到達粘度が過度に高くなることをより抑制する観点から、ビニルエステル樹脂(A1)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。また、樹脂組成物中のカルボキシ基含有化合物の含有量が増えるにしたがって、樹脂組成物の吸湿性が増大するため、樹脂組成物の吸湿性を抑制する観点から、好ましくは5質量部以下、より好ましくは3質量部以下、さらに好ましくは1質量部以下、よりさらに好ましくは0.5質量部以下である。
 本実施形態の樹脂(A)が不飽和ポリエステル樹脂(A2)を含み、本実施形態の樹脂組成物がカルボキシ基含有化合物を含む場合、カルボキシ基含有化合物は、不飽和ポリエステル分子よりも低分子量であるため、不飽和ポリエステル樹脂(A2)が有するカルボキシ基やヒドロキシ基と増粘剤(C)との間で相互作用が生じ、樹脂組成物が経時的に増粘する前に、カルボキシ基含有化合物と増粘剤(C)との間で相互作用が生じ、初期粘度(樹脂組成物の調製後5時間以内)の上昇を抑制することができる。
 また、カルボキシ基含有化合物と増粘剤(C)との相互作用が生じることにより、水が生成する。この生成した水により、樹脂組成物調製後24~48時間の樹脂組成物の増粘が促進され、目的粘度に早く到達させることができる。さらに、カルボキシ基含有化合物が樹脂組成物に含まれると、不飽和ポリエステル樹脂(A2)と、カルボキシ基含有化合物と、増粘剤(C)との相互作用で形成される見かけの分子量が低くなり、樹脂組成物の到達粘度が過度に高くなることを抑制することができる。
 前記カルボキシ基含有化合物は、1種単独であっても、2種以上が併用されていてもよい。
 本実施形態の樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、カルボキシ基含有化合物の分子量及び分子構造は特に限定されないが、不飽和ポリエステル樹脂(A2)と、増粘剤(C)が適度に相互作用を生じる観点から、分子量は好ましくは90以上であり、増粘性を制御する観点から、好ましくは500以下、より好ましくは400以下、さらに好ましくは300以下である。カルボキシ基含有化合物の分子量が90以上であると、低分子量化合物を含むことによる到達粘度の低下を抑制し、運動性が高すぎないため、増粘剤(C)と素早く相互作用してすぐに消費されることが抑制され、初期粘度の上昇を抑制することができる。また、カルボキシ基含有化合物の分子量が500以下であると、不飽和ポリエステル樹脂(A2)よりも顕著に分子の運動性が大きいことから、工程(I)直後(樹脂組成物調製直後(調整後~5時間以内))に樹脂組成物が過度に増粘することをより抑制することができ、樹脂組成物の到達粘度が過度に高くなることをより抑制することができる。
 本実施形態の樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、カルボキシ基含有化合物としては、増粘速度をコントロールし、工程(I)直後(樹脂組成物調整直後(調製後~5時間以内))に樹脂組成物が過度に増粘することを抑制して、樹脂組成物の到達粘度が過度に高くなることをより抑制する観点から、1分子内に2個のカルボキシ基を有するジカルボン酸が好ましく、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、3-ドデセニルコハク酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、及びハリダイマー250がより好ましく、3-ドデセニルコハク酸、及びハリダイマー250がさらに好ましい。
 本実施形態の樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物中のカルボキシ基含有化合物の含有量は、工程(I)直後(樹脂組成物調整直後(調製後~5時間以内))に樹脂組成物が過度に増粘することをより抑制することができ、樹脂組成物の到達粘度が過度に高くなることをより抑制する観点から、不飽和ポリエステル樹脂(A2)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。また、樹脂組成物中のカルボキシ基含有化合物の含有量が増えるにしたがって、樹脂組成物の吸湿性が増大するため、樹脂組成物の吸湿性を抑制する観点から、好ましくは5質量部以下、より好ましくは3.5質量部以下、さらに好ましくは2質量部以下、よりさらに好ましくは1質量部以下である。
 本実施形態の樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物中のカルボキシ基含有化合物の含有量は、工程(I)直後(樹脂組成物調整直後(調製後~5時間以内))に樹脂組成物が過度に増粘することをより抑制することができ、樹脂組成物の到達粘度が過度に高くなることをより抑制する観点から、樹脂組成物の総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。また、樹脂組成物中のカルボキシ基含有化合物の含有量が増えるにしたがって、樹脂組成物の吸湿性が増大するため、樹脂組成物の吸湿性を抑制する観点から、好ましくは5質量部以下、より好ましくは3.5質量部以下、さらに好ましくは2質量部以下、よりさらに好ましくは1質量部以下である。
≪その他の成分≫
 本実施形態の樹脂組成物は、その他成分として、例えば、その他の樹脂、重合禁止剤、揺変剤、硬化促進剤、触媒、増粘助剤、硬化遅延剤、界面活性剤、界面調整剤、湿潤分散剤、消泡剤、レベリング剤、カップリング剤、光安定剤、ワックス、難燃剤、可塑剤等の添加剤を含有することが可能である。前記添加剤の含有量は、本発明の効果を阻害しない範囲であれば特に限定されない。
〈重合禁止剤〉
 重合禁止剤は、樹脂組成物の重合反応の進行を抑制するために用いることができる。本実施形態の樹脂組成物は、重合禁止剤を含むことが好ましい。
 重合禁止剤としては、公知なものを使用することができ、例えば、ハイドロキノン、メチルハイドロキノン、トリメチルハイドロキノン、フェノチアジン、カテコール、4-t-ブチルカテコール、ナフテン酸銅等が挙げられる。これらは、1種単独で用いてもよく、2種以上が併用してもよい。
〈揺変剤〉
 本実施形態における樹脂組成物が、樹脂(A)としてビニルエステル樹脂(A1)を含む場合、揺変剤を含有することが好ましい。揺変剤は、樹脂組成物の混合性や流動性を調整するために用いる。揺変剤としては、有機系揺変剤及び無機系揺変剤が挙げられる。これらは、1種単独または2種以上を併用して用いることが可能である。
 本実施形態の樹脂組成物が、揺変剤を含有する場合、その含有量は、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~5質量部である。
 有機系揺変剤としては、例えば、水素添加ひまし油系、アマイド系、酸化ポリエチレン系、植物油重合油系、界面活性剤系、及びこれらを併用した複合系等が挙げられる。具体的には、「フローノン(登録商標)SP-1000AF」(共栄社化学株式会社製)、「ディスパロン(登録商標)6900-20X」(楠本化成株式会社)等が挙げられる。
 無機系揺変剤としては、例えば、疎水性処理又は親水性処理したシリカ及びベントナイト等が挙げられる。疎水性の無機系揺変剤としては、具体的には、「レオロシール(登録商標)PM-20L」(株式会社トクヤマ製)、「アエロジル(登録商標)R-106」(日本アエロジル株式会社)、「CAB-O-SIL(登録商標)」(キャボット社製)等が挙げられる。親水性の無機系揺変剤としては、具体的には、「アエロジル(登録商標)-200」(日本アエロジル株式会社製)等が挙げられる。なお、親水性の焼成シリカを用いる場合は、揺変性改質剤「BYK(登録商標)-R605」、「BYK(登録商標)-R606」(いずれもBYK社製)の併用が、増粘速度の適度な制御に効果的である。
<樹脂組成物中の各成分の含有量>
 本実施形態の樹脂組成物を構成する各成分の含有量は、限定されるものではないが、下記第1の実施形態、及び第2の実施形態であることが好ましい。
〔第1の実施形態に係る樹脂組成物〕
 第1の実施形態に係る樹脂組成物中の樹脂(A)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは35~90質量部、より好ましくは40~80質量部、さらに好ましくは45~70質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~65質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)の含有量が35質量部以上であれば、樹脂(A)によって、樹脂組成物の増粘速度を適度に増大し易い。また、樹脂(A)が90質量部以下であれば、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)の含有量が20質量部以上であれば、樹脂組成物の増粘速度をコントロールし易い。また、樹脂(A)の含有量が80質量部以下であれば、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 第1の実施形態に係る樹脂組成物中の樹脂(A)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは35~90質量部、より好ましくは40~80質量部、さらに好ましくは45~70質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~65質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)の含有量が35質量部以上であれば、樹脂(A)によって、樹脂組成物の増粘速度を適度に増大し易い。また、樹脂(A)が90質量部以下であれば、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)の含有量が20質量部以上であれば、樹脂組成物の増粘速度をコントロールし易い。また、樹脂(A)の含有量が80質量部以下であれば、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 第1の実施形態に係る樹脂組成物中のエチレン性不飽和基含有モノマー(B)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは10~65質量部、より好ましくは20~60質量部、さらに好ましくは30~55質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは35~60質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、エチレン性不飽和基含有モノマー(B)が10質量部以上であれば、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が65質量部以下であれば、増粘性がより良好な樹脂組成物となる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、エチレン性不飽和基含有モノマー(B)が20質量部以上であると、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が80質量部以下であると、増粘性がより良好な樹脂組成物となる。
 第1の実施形態に係る樹脂組成物中のエチレン性不飽和基含有モノマー(B)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは10~65質量部、より好ましくは20~60質量部、さらに好ましくは30~55質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは35~60質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、エチレン性不飽和基含有モノマー(B)が10質量部以上であれば、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が65質量部以下であれば、増粘性がより良好な樹脂組成物となる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、エチレン性不飽和基含有モノマー(B)が20質量部以上であると、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が80質量部以下であると、増粘性がより良好な樹脂組成物となる。
 第1の実施形態に係る樹脂組成物中の増粘剤(C)の含有量は、樹脂(A)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対し、好ましくは0.01~6質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~4質量部である。
 増粘剤(C)が0.1質量部以上であれば、樹脂組成物の増粘性がより良好となる。増粘剤(C)が6質量部以下であれば、樹脂組成物の過剰な増粘を抑制し易くなり、また、増粘速度を適度に制御し易くなる。
 第1の実施形態に係る樹脂組成物中の増粘剤(C)の含有量は、樹脂組成物の総量100質量部に対し、好ましくは0.01~6質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~4質量部である。
 増粘剤(C)が0.1質量部以上であれば、樹脂組成物の増粘性がより良好となる。増粘剤(C)が6質量部以下であれば、樹脂組成物の過剰な増粘を抑制し易くなり、また、増粘速度を適度に制御し易くなる。
 第1の実施形態に係る樹脂組成物中の光重合開始剤(D)の含有量は、樹脂(A)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対し、好ましくは0.01~10質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
 光重合開始剤(D)の含有量が0.01質量部以上であれば、硬化性がより良好な樹脂組成物が得られる。光重合開始剤の含有量が10質量部以下であれば、樹脂組成物の硬化時に急激な硬化反応及び発熱が生じ難く、クラックが抑制され易くなり、また、強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 第1の実施形態に係る樹脂組成物中の光重合開始剤(D)の含有量は、樹脂組成物の総量100質量部に対し、好ましくは0.01~10質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
 光重合開始剤(D)の含有量が0.01質量部以上であれば、硬化性がより良好な樹脂組成物が得られる。光重合開始剤の含有量が10質量部以下であれば、樹脂組成物の硬化時に急激な硬化反応及び発熱が生じ難く、クラックが抑制され易くなり、また、強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 第1の実施形態に係る樹脂組成物が、水及びヒドロキシ基含有化合物から選択される少なくとも1種である化合物(E)を含む場合、樹脂組成物中の化合物(E)の含有量は、樹脂(A)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対し、好ましくは0.05~3質量部、より好ましくは0.1~2質量部、さらに好ましくは0.3~1質量部である。
 化合物(E)が0.05質量部以上であれば、樹脂組成物の増粘速度をコントロールし過剰な増粘を抑制し易くなる。化合物(E)が3質量部以下であると強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 第1の実施形態に係る樹脂組成物が、水及びヒドロキシ基含有化合物から選択される少なくとも1種である化合物(E)を含む場合、樹脂組成物中の化合物(E)の含有量は、樹脂組成物の総量100質量部に対し、好ましくは0.05~3質量部、より好ましくは0.1~2質量部、さらに好ましくは0.3~1質量部である。
 化合物(E)が0.05質量部以上であれば、樹脂組成物の増粘速度をコントロールし過剰な増粘を抑制し易くなる。化合物(E)が3質量部以下であると強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 本実施形態の一態様において、樹脂組成物は、前記樹脂(A)と前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記ビニルエステル樹脂(A1)を35~90質量部、前記エチレン性不飽和基含有モノマー(B)を10~65質量部、前記増粘剤(C)を0.01~6質量部、前記光重合開始剤(D)を0.01~10質量部含むことが好ましい。
 本実施形態の他の態様において、樹脂組成物は、前記樹脂(A)及び前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記不飽和ポリエステル樹脂(A2)を20~80質量部、前記エチレン性不飽和基含有モノマー(B)を20~80質量部、前記増粘剤(C)を0.01~6質量部、前記カルボキシ基含有化合物を0.01~5質量部含むことが好ましい。
〔第2の実施形態に係る樹脂組成物〕
 第2の実施形態に係る樹脂組成物中の樹脂(A)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~60質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~65質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)が20質量部以上であれば、樹脂(A)によって、樹脂組成物の増粘速度を適度に増大し易い。樹脂(A)が80質量部以下であれば、エチレン性不飽和基含有モノマー(B)によって、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)の含有量が20質量部以上であれば、樹脂組成物の増粘速度をコントロールし易い。また、樹脂(A)の含有量が80質量部以下であれば、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 第2の実施形態に係る樹脂組成物中の樹脂(A)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~60質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~65質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)が20質量部以上であれば、樹脂(A)によって、樹脂組成物の増粘速度を適度に増大し易い。樹脂(A)が80質量部以下であれば、エチレン性不飽和基含有モノマー(B)によって、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)の含有量が20質量部以上であれば、樹脂組成物の増粘速度をコントロールし易い。また、樹脂(A)の含有量が80質量部以下であれば、工程(II)における前記樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。
 第2の実施形態に係る樹脂組成物中のエチレン性不飽和基含有モノマー(B)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~60質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂(A)とエチレン性不飽和基含有モノマー(B)の合計100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは35~60質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、エチレン性不飽和基含有モノマー(B)が20質量部以上であれば、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が80質量部以下であれば、増粘性がより良好な樹脂組成物となる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、エチレン性不飽和基含有モノマー(B)が20質量部以上であれば、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が80質量部以下であれば、増粘性がより良好な樹脂組成物となる。
 第2の実施形態に係る樹脂組成物中のエチレン性不飽和基含有モノマー(B)の含有量は、樹脂(A)がビニルエステル樹脂(A1)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは40~60質量部であり、樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、樹脂組成物の総量100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、さらに好ましくは35~60質量部である。
 樹脂(A)がビニルエステル樹脂(A1)を含む場合、エチレン性不飽和基含有モノマー(B)が20質量部以上であれば、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が80質量部以下であれば、増粘性がより良好な樹脂組成物となる。
 樹脂(A)が不飽和ポリエステル樹脂(A2)を含む場合、エチレン性不飽和基含有モノマー(B)が20質量部以上であれば、工程(II)における樹脂組成物の粘度を低減させ易く、繊維基材(F)に含浸させ易くなる。エチレン性不飽和基含有モノマー(B)が80質量部以下であれば、増粘性がより良好な樹脂組成物となる。
 第2の実施形態に係る樹脂組成物中の増粘剤(C)の含有量は、樹脂(A)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対し、好ましくは0.1~6質量部、より好ましくは0.5~5質量部、さらに好ましくは1~4質量部である。
 増粘剤(C)が0.1質量部以上であれば、樹脂組成物の増粘性がより良好となる。増粘剤(C)が6質量部以下であれば、樹脂組成物の過剰な増粘を抑制し易くなり、また、増粘速度を適度に制御し易くなる。
 第2の実施形態に係る樹脂組成物中の増粘剤(C)の含有量は、樹脂組成物の総量100質量部に対し、好ましくは0.1~6質量部、より好ましくは0.5~5質量部、さらに好ましくは1~4質量部である。
 増粘剤(C)が0.1質量部以上であれば、樹脂組成物の増粘性がより良好となる。増粘剤(C)が6質量部以下であれば、樹脂組成物の過剰な増粘を抑制し易くなり、また、増粘速度を適度に制御し易くなる。
 第2の実施形態に係る樹脂組成物中の光重合開始剤(D)の含有量は、樹脂(A)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対し、好ましくは0.01~10質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
 光重合開始剤(D)の含有量が0.01質量部以上であれば、硬化性がより良好な樹脂組成物が得られる。光重合開始剤の含有量が10質量部以下であれば、樹脂組成物の硬化時に急激な硬化反応及び発熱が生じ難く、クラックが抑制され易くなり、また、強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 第2の実施形態に係る樹脂組成物中の光重合開始剤(D)の含有量は、樹脂組成物の総量100質量部に対し、好ましくは0.01~10質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
 光重合開始剤(D)の含有量が0.01質量部以上であれば、硬化性がより良好な樹脂組成物が得られる。光重合開始剤の含有量が10質量部以下であれば、樹脂組成物の硬化時に急激な硬化反応及び発熱が生じ難く、クラックが抑制され易くなり、また、強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 第2の実施形態に係る樹脂組成物が水及びヒドロキシ基含有化合物から選択される少なくとも1種である化合物(E)を含む場合、樹脂組成物中の化合物(E)の含有量は、樹脂(A)及びエチレン性不飽和基含有モノマー(B)の合計100質量部に対し、好ましくは0.01~2質量部、より好ましくは0.05~1.5質量部、さらに好ましくは0.1~1質量部である。
 化合物(E)が0.05質量部以上であれば、樹脂組成物の増粘速度をコントロールし過剰な増粘を抑制し易くなる。化合物(E)が3質量部以下であると強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 第2の実施形態に係る樹脂組成物が水及びヒドロキシ基含有化合物から選択される少なくとも1種である化合物(E)を含む場合、樹脂組成物中の化合物(E)の含有量は、樹脂組成物の総量100質量部に対し、好ましくは0.01~2質量部、より好ましくは0.05~1.5質量部、さらに好ましくは0.1~1質量部である。
 化合物(E)が0.05質量部以上であれば、樹脂組成物の増粘速度をコントロールし過剰な増粘を抑制し易くなる。化合物(E)が3質量部以下であると強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れたライニング材が得られ易い。
 本実施形態の他の態様において、樹脂組成物は、前記樹脂(A)と前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記ビニルエステル樹脂(A1)を20~80質量部、前記エチレン性不飽和基含有モノマー(B)を20~80質量部、前記増粘剤(C)を0.01~6質量部、前記光重合開始剤(D)を0.01~10質量部含むことが好ましい。
 本実施形態の他の態様において、樹脂組成物は、前記樹脂(A)及び前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、前記不飽和ポリエステル樹脂(A2)を20~80質量部、前記エチレン性不飽和基含有モノマー(B)を20~80質量部、前記増粘剤(C)を0.01~6質量部、前記ジカルボン酸を0.01~5質量部含むことが好ましい。
≪樹脂(A)の製造方法≫
〈ビニルエステル樹脂(A1-1)の製造方法〉
 ビニルエステル樹脂(A1-1)は、エポキシ化合物(a1-1)と不飽和一塩基酸(a1-2)とを反応させることにより製造することができる。
 例えば、加熱撹拌可能な反応容器内で、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)に、必要に応じて、溶剤及び反応性希釈剤の少なくともいずれかと混合し、エステル化触媒存在下、好ましくは70~150℃、より好ましくは80~140℃、さらに好ましくは90~130℃で、1~8時間、混合しながら加熱することにより製造することができる。
 本実施形態においては、エポキシ化合物(a1-1)と不飽和一塩基酸(a1-2)とを、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、80モル以上となるように反応させることが好ましく、より好ましくは90モル以上、さらに好ましくは99モル以上である。
 エステル化触媒としては、例えば、トリエチルアミン、トリエチレンジアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、2,4,6-トリス(ジメチルアミノメチル)フェノール及びジアザビシクロオクタン等の第三級アミン;トリフェニルホスフィン、及びベンジルトリフェニルホスホニウムクロライド等のリン化合物;ジエチルアミン塩酸塩;トリメチルベンジルアンモニウムクロライド、テトラデシルジメチルベンジルアンモニウムクロライド等の第四級アンモニウム塩;塩化リチウム、臭化リチウム及び硝酸リチウム等のリチウム塩等が挙げられる。これらは、1種単独であっても、2種以上が併用されてもよい。これらの中でも、ビニルエステル樹脂の合成反応速度を緩やかに促進し、ゲル化を抑制するとともに、分子量分布を適度に制御しやすい等の観点から、リン化合物及び第四級アンモニウム塩のうちから選ばれる少なくとも1種が好ましく、第四級アンモニウム塩のうちから選ばれる少なくとも1種がより好ましい。
 エステル化触媒の使用量は、反応を促進しつつ、ビニルエステル樹脂(A1-1)の増粘を抑制する観点から、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。
 溶剤及び反応性希釈剤の少なくともいずれかは、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)を均一に混合しやすくする観点から、必要に応じて用いられる。混合方法は、特に限定されることなく、公知の方法で行うことができる。
 溶剤としては、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)に不活性な溶剤であれば、特に限定されない。例えば、メチルイソブチルケトン等の1気圧における沸点が70~150℃である公知の溶剤が挙げられる。溶剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 反応性希釈剤としては、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)に不活性なエチレン性不飽和基含有モノマー(B)が好ましい。
 ビニルエステル樹脂(A1-1)の重合反応の進行を抑制する観点から、重合禁止剤を添加してもよい。重合禁止剤は、上記の≪その他の成分≫の項で説明したものが好適に用いられる。重合禁止剤を添加する場合の添加量は、例えば、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の合計100質量部に対して、0.0001~10質量部とすることができ、好ましくは0.001~1質量部である。
〈ビニルエステル樹脂(A1-2)の製造方法〉
 ビニルエステル樹脂(A1-2)は、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の反応生成物である樹脂前駆体(P1)に、多塩基酸無水物(a1-4)をさらに付加させることにより製造することができる。
 例えば、加熱撹拌可能な反応容器内で、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)に、必要に応じて、溶剤及び反応性希釈剤の少なくともいずれかと混合し、エステル化触媒存在下、好ましくは70~150℃、より好ましくは80~140℃、さらに好ましくは90~130℃で、1~8時間、混合しながら加熱することにより樹脂前駆体(P1)を製造する。続いて、樹脂前駆体(P1)を合成した反応容器内に、多塩基酸無水物(a1-4)を添加し、エステル化触媒の存在下、70~150℃、好ましくは80~140℃、さらに好ましくは90~130℃で、30分間~4時間反応させることにより、ビニルエステル樹脂(A1-2)が得られる。
 本実施形態においては、エポキシ化合物(a1-1)と不飽和一塩基酸(a1-2)とを、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、80モル以上となるように反応させることが好ましく、より好ましくは90モル以上、さらに好ましくは99モル以上である。
 また、多塩基酸無水物(a1-4)は、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、多塩基酸無水物(a1-4)が、3~60モルとなるように反応させることが好ましく、より好ましくは5~50モル、さらに好ましくは7~45モルである。
 ビニルエステル樹脂(A1-2)の製造に用いられるエステル化触媒としては、ビニルエステル樹脂(A1-1)の製造に用いられるエステル化触媒と同様のものが挙げられる。
 エステル化触媒の使用量は、反応を促進しつつ、樹脂前駆体(P1)の増粘を抑制する観点から、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。
 ビニルエステル樹脂(A1-2)の製造に用いられる溶剤及び反応性希釈剤の少なくともいずれかとしては、ビニルエステル樹脂(A1-1)の製造に用いられる溶剤及び反応性希釈剤と同様のものが挙げられる。また、好ましい態様も同様である。
 ビニルエステル樹脂(A1-2)の重合反応の進行を抑制する観点から、重合禁止剤を添加してもよい。重合禁止剤は、上記の≪その他の成分≫の項で説明したものが好適に用いられる。重合禁止剤を添加する場合の添加量は、例えば、エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の合計100質量部に対して、0.0001~10質量部とすることができ、好ましくは0.001~1質量部である。
〈ビニルエステル樹脂(A1-3)の製造方法〉
 ビニルエステル樹脂(A1-3)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)、及び多塩基酸無水物(a1-3)の反応生成物である樹脂前駆体(P2)に、多塩基酸無水物(a1-4)をさらに付加させることにより製造することができる。
 例えば、加熱撹拌可能な反応容器内で、エポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)、及び多塩基酸無水物(a1-3)に、必要に応じて、溶剤及び反応性希釈剤の少なくともいずれかを混合し、エステル化触媒存在下、好ましくは70~150℃、より好ましくは80~140℃、さらに好ましくは90~130℃で、1~8時間、混合しながら加熱することにより樹脂前駆体(P2)を製造する。続いて、樹脂前駆体(P2)を合成した反応容器内に、多塩基酸無水物(a1-4)を添加し、エステル化触媒の存在下、70~150℃、好ましくは80~140℃、さらに好ましくは90~130℃で、30分間~4時間反応させることにより、ビニルエステル樹脂(A1-3)が得られる。
 本実施形態に係る樹脂前駆体(P2)の製造において、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、75~95モルとなるように反応させることが好ましく、より好ましくは77~93モル、さらに好ましくは79~91モルである。
 本実施形態に係る樹脂前駆体(P2)の製造において、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、多塩基酸無水物(a1-3)由来のエポキシ基と反応し得る酸基の総量が、5~25モルとなるように反応させることが好ましく、より好ましくは7~23モル、さらに好ましくは9~21モルである。
 本実施形態に係る樹脂前駆体(P2)の製造において、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)由来の酸基(ここで言う「酸基」は、多塩基酸無水物(a1-3)が加水分解して生じる酸基とする。例えば、多塩基酸無水物(a1-3)が二塩基酸無水物の場合、1分子から生じる酸基の数は2である。)の総量が、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、105~125モルとなるように反応させること好ましく、より好ましくは107~123モル、さらに好ましくは109~121モルである。
 本実施形態に係るビニルエステル樹脂(A1-3)の製造において、前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、多塩基酸無水物(a1-4)が、3~60モルとなるように反応させることが好ましく、より好ましくは5~50モル、さらに好ましくは7~45モルである。
 ビニルエステル樹脂(A1-3)の製造に用いられるエステル化触媒としては、ビニルエステル樹脂(A1-1)の製造に用いられるエステル化触媒と同様のものが挙げられる。また、樹脂前駆体(P2)を製造する際に用いるエステル化触媒と、樹脂前駆体(P2)からビニルエステル樹脂(A1-3)を製造する際に用いるエステル化触媒は同じでも異なっていてもよい。
 エステル化触媒の使用量は、反応を促進しつつ、樹脂前駆体(P2)の増粘を抑制する観点から、エポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。
 ビニルエステル樹脂(A1-3)の製造に用いられる溶剤及び反応性希釈剤の少なくともいずれかとしては、ビニルエステル樹脂(A1-1)の製造に用いられる溶剤及び反応性希釈剤と同様のものが挙げられる。また、好ましい態様も同様である。
 ビニルエステル樹脂(A1-3)の重合反応の進行を抑制する観点から、重合禁止剤を添加してもよい。重合禁止剤は、上記の≪その他の成分≫の項で説明したものが好適に用いられる。重合禁止剤を添加する場合の添加量は、例えば、エポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の合計100質量部に対して、0.0001~10質量部とすることができ、好ましくは0.001~1質量部である。
〈ビニルエステル樹脂(A1-4)の製造方法〉
 ビニルエステル樹脂(A1-4)の製造方法は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)を反応させて、樹脂前駆体(P3)を得る工程と、樹脂前駆体(P3)、及び不飽和一塩基酸(a1-2)を反応させて、ビニルエステル樹脂(A1-4)を得る工程とを有する。
 樹脂前駆体(P3)を得る工程は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、及びビスフェノール化合物(a1-5)を反応させて、樹脂前駆体(P3)を得る工程である。
 樹脂前駆体(P3)を得る工程は、ビニルエステル樹脂(A1-4)の分子量分布を広げ、樹脂組成物の到達粘度をコントロールする観点から、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)と、ビスフェノール化合物(a1-5)を、前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、前記ビスフェノール化合物(a1-5)の水酸基の総量が好ましくは10~70モル、より好ましくは20~60モル、さらに好ましくは25~50モルとなるように反応させることが好ましい。
 樹脂前駆体(P3)を得る工程は、例えば、加熱攪拌可能な反応容器内で、エポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)に、必要に応じて溶剤及び反応性希釈剤の少なくともいずれかと混合し、エステル化触媒存在下、好ましくは70~160℃、より好ましくは80~155℃、さらに好ましくは90~150℃で、1~3時間、混合しながら加熱することにより樹脂前駆体(P3)を得ることができる。
 エステル化触媒としては、例えば、トリエチルアミン、トリエチレンジアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、2,4,6-トリス(ジメチルアミノメチル)フェノール、及びシアザビシクロオクタン等の三級アミン、トリフェニルホスフィン、及びベンジルトリフェニルホスホニウムクロライド等のリン化合物またはジエチルアミン塩酸塩、トリメチルベンジルアンモニウムクロライド、塩化リチウム等が挙げられる。これらは、1種単独でまたは2種以上を併用して使用することが可能である。これらの中でも、反応速度を緩やかにして樹脂のゲル化を防止し、また、分子量分布のコントロールを容易にする観点から、リン系、アンモニウム塩系等の触媒が好ましく、アンモニウム塩がより好ましい。
 エステル化触媒の使用量は、反応を促進しつつ、ビニルエステル樹脂(A1-4)の増粘を抑制する観点から、エポキシ化合物(a1-1)、ビスフェノール化合物(a1-5)、及び不飽和一塩基酸(a1-2)の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。
 溶剤及び反応性希釈剤は、エポキシ化合物(a1-1)、ビスフェノール化合物(a1-5)及び不飽和一塩基酸(a1-2)を均一に混合しやすくする観点から、必要に応じて用いられる。混合方法は、特に限定されることなく、公知の方法で行うことができる。
 溶剤としては、エポキシ化合物(a1-1)、ビスフェノール化合物(a1-5)及び不飽和一塩基酸(a1-2)に不活性な溶剤であれば、特に限定されない。例えば、メチルイソブチルケトン等の1気圧における沸点が70~150℃である公知の溶剤が挙げられる。溶剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 反応性希釈剤としては、エポキシ化合物(a1-1)、ビスフェノール化合物(a1-5)、及び不飽和一塩基酸(a1-2)に不活性なエチレン性不飽和基含有モノマー(B)が好ましい。
 樹脂前駆体(P3)の重合反応の進行を抑制する観点から、重合禁止剤を添加してもよい。重合禁止剤は、上記の<その他の成分>の項で説明したものが好適に用いられる。重合禁止剤を添加する場合の添加量は、例えば、エポキシ化合物(a1-1)、ビスフェノール化合物(a1-5)及び不飽和一塩基酸(a1-2)の合計100質量部に対して、0.0001~10質量部とすることができ、好ましくは0.001~1質量部である。
 ビニルエステル樹脂(A1-4)を得る工程は、樹脂前駆体(P3)及び不飽和一塩基酸(a1-2)を反応させて、ビニルエステル樹脂(A1-4)を得る工程である。
 ビニルエステル樹脂(A1-4)を得る工程は、増粘速度をコントロールする観点、硬化後の樹脂組成物の偏在を抑制する観点及び製造安定性の観点から、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、好ましくは30~120モル、より好ましくは40~100モル、さらに好ましくは50~80モルとなるように反応させることが好ましい。
 ビニルエステル樹脂(A1-4)を得る工程は、例えば、樹脂前駆体(P3)を合成した反応容器内に、エステル化触媒の存在下、不飽和一塩基酸(a1-2)を添加し、70~150℃、好ましくは80~140℃、さらに好ましくは90~130℃で、30分~4時間混合しながら加熱することによりビニルエステル樹脂(A1-4)を製造することができる。
 ビニルエステル樹脂(A1-4)を得る工程で用いられるエステル化触媒は、樹脂前駆体(P3)を得る工程で用いられるエステル化触媒と同様のものが挙げられる。また、樹脂前駆体(P3)を製造する際に用いるエステル化触媒と、樹脂前駆体(P3)からビニルエステル樹脂(A1-4)を製造する際に用いるエステル化触媒は同じでも異なっていてもよい。
 ビニルエステル樹脂(A1-4)を得る工程においても、樹脂前駆体(P3)を得る工程と同様に、必要に応じて、溶剤及び反応性希釈剤、重合禁止剤の少なくともいずれかを添加してもよい。混合方法も、樹脂前駆体(P3)を得る工程と同様に、公知の方法で行うことができる。また、好ましい態様も同様である。
 ビニルエステル樹脂(A1-4)を低粘度化する目的でビニルエステル樹脂(A1-4)に反応性希釈剤を加える場合には、ビニルエステル樹脂(A1-4)の合成後に反応性希釈剤を加えて混合することが好ましく、ビニルエステル樹脂(A1-4)の合成を容易にする目的で反応性希釈剤を加える場合には、ビニルエステル樹脂(A1-4)の合成時に反応性希釈剤を添加し、ビニルエステル樹脂(A1-4)の合成後にさらに反応性希釈剤とその他成分を加えて混合することが好ましい。
 ビニルエステル樹脂(A1-4)の重合反応の進行を抑制する観点から、重合禁止剤を添加してもよい。重合禁止剤は、上記の≪その他の成分≫の項で説明したものが好適に用いられる。重合禁止剤を添加する場合の添加量は、例えば、エポキシ化合物(a1-1)、ビスフェノール化合物(a1-5)、及び不飽和一塩基酸(a1-2)の合計100質量部に対して、0.0001~10質量部とすることができ、好ましくは0.001~1質量部である。
〈ビニルエステル樹脂(A1-5)の製造方法〉
 ビニルエステル樹脂(A1-5)の製造方法は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)とを反応させて、樹脂前駆体(P3)を得る工程と、樹脂前駆体(P3)及び不飽和一塩基酸(a1-2)を反応させて、樹脂前駆体(P4)を得る工程と、樹脂前駆体(P4)及び不飽和多塩基酸(a1-6)を反応させて、ビニルエステル樹脂(A1-5)を得る工程を有する。
 樹脂前駆体(P3)を得る工程は、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、及びビスフェノール化合物(a1-5)とを反応させて、樹脂前駆体(P1)を得る工程である。
 樹脂前駆体(P3)を得る工程は、上記ビニルエステル樹脂(A1-4)の製造方法の樹脂前駆体(P3)を得る工程と同様の方法が挙げられ、好ましい態様も同様である。
 樹脂前駆体(P3)を得る工程は、樹脂組成物の増粘速度をコントロールする観点から、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)と、ビスフェノール化合物(a1-5)を、前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、前記ビスフェノール化合物(a1-5)の水酸基の総量が好ましくは10~70モル、より好ましくは15~60モル、さらに好ましくは20~50モルとなるように反応させることが好ましい。
 樹脂前駆体(P4)を得る工程は、樹脂前駆体(P3)及び不飽和一塩基酸(a1-2)を反応させて、樹脂前駆体(P4)を得る工程である。
 樹脂前駆体(P4)を得る工程は、上記ビニルエステル樹脂(A1-4)の製造方法のビニルエステル樹脂(A1-4)を得る工程と同様の方法が挙げられ、好ましい態様も同様である。
 樹脂前駆体(P4)を得る工程は、増粘速度をコントロールする観点、硬化後の樹脂組成物の偏在を抑制する観点及び製造安定性の観点から、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(a1-2)の酸基の総量が、好ましくは40~120モル、より好ましくは50~100モル、さらに好ましくは60~80モルとなるように反応させることが好ましい。
 ビニルエステル樹脂(A1-5)を得る工程は、樹脂前駆体(P4)及び不飽和多塩基酸(a1-6)を反応させて、ビニルエステル樹脂(A1-5)を得る工程である。
 ビニルエステル樹脂(A1-5)を得る工程は、例えば、樹脂前駆体(P4)を合成した反応容器内に、エステル化触媒の存在下、不飽和多塩基酸(a1-6)を添加し、70~150℃、好ましくは80~140℃、さらに好ましくは90~130℃で、30分~4時間混合しながら加熱することによりビニルエステル樹脂(A1-5)を製造することができる。
 ビニルエステル樹脂(A1-5)を得る工程は、増粘速度をコントロールする観点から、エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、不飽和多塩基酸(a1-6)が、好ましくは0.5~15モル、より好ましくは1~10モル、さらに好ましくは3~8モルとなるように反応させることが好ましい。
 ビニルエステル樹脂(A1-5)を得る工程で用いられるエステル化触媒は、樹脂前駆体(P3)を得る工程で用いられるエステル化触媒と同様のものが挙げられる。また、樹脂前駆体(P4)を製造する際に用いるエステル化触媒と、樹脂前駆体(P4)からビニルエステル樹脂(A1-5)を製造する際に用いるエステル化触媒は同じでも異なっていてもよい。
 ビニルエステル樹脂(A1-5)を得る工程においても、樹脂前駆体(P3)及び(P4)を得る工程と同様に、必要に応じて、溶剤及び反応性希釈剤、重合禁止剤の少なくともいずれかを添加してもよい。混合方法も、樹脂前駆体(P3)を得る工程と同様に、公知の方法で行うことができる。また、好ましい態様も同様である。
 ビニルエステル樹脂(A1-5)を低粘度化する目的でビニルエステル樹脂(A1-5)に反応性希釈剤を加える場合には、ビニルエステル樹脂(A1-5)の合成後に反応性希釈剤を加えて混合することが好ましく、ビニルエステル樹脂(A1-5)の合成を容易にする目的で反応性希釈剤を加える場合には、ビニルエステル樹脂(A1-5)の合成時に反応性希釈剤を添加し、ビニルエステル樹脂(A1-5)の合成後にさらに反応性希釈剤とその他成分を加えて混合することが好ましい。
〈不飽和ポリエステル樹脂(A2)の製造方法〉
 不飽和ポリエステル樹脂(A2)は、ジオール(a2-1)と、エチレン性不飽和基含有二塩基酸(a2-2-1)と、エチレン性不飽和基非含有二塩基酸(a2-2-2)とを脱水縮合重合させることにより製造することができる。
 例えば、加熱攪拌可能な反応容器内において、ジオール(a2-1)、エチレン性不飽和基含有二塩基酸(a2-2-1)及びエチレン性不飽和基非含有二塩基酸(a2-2-2)を、150~250℃、好ましくは170~240℃、さらに好ましくは180~230℃で、8~15時間反応させることにより製造することができる。
 本実施形態においては、樹脂組成物の硬化物の機械的強度の観点から、ジオール(a2-1)とエチレン性不飽和基非含有二塩基酸(a2-2-2)のモル比(ジオール(a2-1):エチレン性不飽和基非含有二塩基酸(a2-2-2))が、50:50~85:15となるよう反応させることが好ましく、より好ましくは55:45~80:20、さらに好ましくは60:40~75:25である。
 ジオール(a2-1)と、エチレン性不飽和基含有二塩基酸(a2-2-1)と、エチレン性不飽和基非含有二塩基酸(a2-2-2)のそれぞれの混合のタイミングは、特に限定されることなく、公知の方法で行うことができる。
〔工程(II)〕
 本実施形態の工程(II)は、繊維基材(F)に樹脂組成物を含浸して樹脂組成物含浸基材を得る工程である。そして、工程(II)における前記樹脂組成物の25℃での粘度(以後、工程(II)における樹脂組成物の粘度とも言う。)が0.1~3Pa・sである。
 工程(II)における樹脂組成物の粘度とは、繊維基材(F)に樹脂組成物の含浸を開始したときから、含浸が完了するまでの樹脂組成物の25℃における粘度を指す。すなわち、繊維基材(F)に対して樹脂組成物の含浸を開始したときから、含浸が完了するまで、樹脂組成物の25℃での粘度は、0.1~3Pa・sである。
 工程(II)における樹脂組成物の粘度が、0.1~3Pa・sであることで、樹脂組成物が含浸していない部分のない均質状態で、樹脂組成物を繊維基材(F)に効率的かつ十分に含浸することができる。
 工程(II)における樹脂組成物の粘度は、樹脂組成物をより効率的かつより十分に含浸させる観点から、好ましくは0.2~2.8Pa・s、より好ましくは0.3~2.5Pa・s、さらに好ましくは0.4~2.3Pa・sである。
 繊維基材(F)に樹脂組成物を含浸する時間は、特に限定されるものではないが、樹脂組成物を効率的かつ十分に含浸する観点から、好ましくは0.5~24時間、より好ましくは1~10時間、さらに好ましくは1.5~5時間である。
 また、工程(I)の開始から工程(II)が完了するまでの時間は、好ましくは1~30時間、より好ましくは2~24時間、さらに好ましくは5~10時間である。
 ライニング材は、後述のインナーフィルム及びアウターフィルムを含むことが好ましく、樹脂組成物が含浸した繊維基材(F)の一方の面に後述のインナーフィルムが、他方の面に後述のアウターフィルムが積層されていることが好ましい。
 工程(II)においては、繊維基材(F)の一方の面に後述のインナーフィルムを、他方の面に後述のアウターフィルムを積層した状態で樹脂組成物を含浸してもよく、インナーフィルム及びアウターフィルムのうちどちらか一方を積層した状態で樹脂組成物を含浸してもよく、繊維基材(F)に直接含浸してもよい。
 なお、インナーフィルム及びアウターフィルムの少なくともいずれかが表面に積層された繊維基材(F)を用いた場合、樹脂組成物は、インナーフィルム及びアウターフィルムの少なくともいずれかを介して繊維基材(F)に含浸する。
 含浸方法については、特に限定されるものではないが、ディッピング法により含浸させる方法、大気圧下で樹脂組成物を滴下又は注入して含浸させる方法、減圧下で樹脂組成物を滴下又は注入して含浸させる方法、加圧下で樹脂組成物を滴下又は注入して含浸させる方法等が挙げられる。
 本実施形態においては、下記工程(II)における第1の実施形態及び第2の実施形態により含浸することが好ましい。
<工程(II):第1の実施形態>
 工程(II)における第1の実施形態は、前述の第1の実施形態に係る樹脂組成物と、円筒形状の繊維基材(F)を用い、繊維基材(F)の一方の面にインナーフィルムを、他方の面にアウターフィルムを積層した状態で樹脂組成物を含浸して樹脂組成物含浸基材を得る。
 工程(II)における第1の実施形態においては、下記(i)~(iii)から選択される1種により、樹脂組成物を含浸することが好ましい。
 
(i)繊維基材(F)の一方の端部から樹脂組成物を滴下又は注入し、他方の端部から減圧して、繊維基材(F)に樹脂組成物を含浸する方法
(ii)繊維基材(F)の一方の端部から樹脂組成物を滴下又は注入し、樹脂組成物を滴下又は注入した端部から他方の端部へ向かって加圧して、含浸する方法
(iii)(i)と(ii)を併用した方法
 
 これらの中でも、生産性の観点から、(iii)により樹脂組成物を含浸することが好ましい。
 工程(II)における第1の実施形態は、工程(I)~(IV)に要する時間を短縮することができ、効率よく管更生を行うことができるという利点がある。
 なお、工程(II)における第1の実施形態では、工程(II)が完了した時点で、ライニング材が得られる。すなわち、工程(II)が完了した時点で、工程(III)も完了する。
<工程(II):第2の実施形態>
 工程(II)における第2の実施形態は、前述の第2の実施形態に係る樹脂組成物と、シート状又はテープ状の繊維基材(F)を用い、繊維基材(F)に樹脂組成物を直接含浸して、樹脂組成物含浸基材を得る。
 工程(II)における第2の実施形態においては、ディッピング法により含浸する方法、及び樹脂組成物を滴下しながら含浸する方法が好ましい。
 工程(II)における第1の実施形態は、様々な大きさの管に適用し易いという利点がある。
≪繊維基材(F)≫
 繊維基材(F)の繊維材料としては、機械的強度等の観点から、例えば、アミド、ナイロン、アラミド、ビニロン、ポリエステル及びフェノール樹脂等の合成繊維、炭素繊維、ガラス繊維、金属繊維、セラミックス繊維等の、いわゆる強化繊維、また、これらの複合繊維が挙げられる。これらは、1種単独であっても、2種以上が併用されてもよい。これらの中でも、アラミド繊維、炭素繊維及びガラス繊維が好ましく、強度や硬度、入手容易性、価格等の観点から、ガラス繊維がより好ましい。特に、繊維基材(F)に含浸させた樹脂組成物を光硬化させる観点から、光透過性を有するガラス繊維やポリエステル繊維が好ましい。
 例えば、ガラス繊維の場合、一般的に使用されるフィラメント径は、好ましくは1~15μm、より好ましくは3~10μmである。
 繊維基材(F)の形態としては、例えば、シート、チョップドストランド、チョップ、ミルドファイバー等が挙げられる。シートとしては、例えば、複数の強化繊維を一方向に引き揃えて形成したもの、平織や綾織等の二方向織物、多軸織物、ノンクリンプ織物、不織布、マット、ニット、組紐、強化繊維等を抄紙した紙等が挙げられる。繊維基材(F)は、1種単独で用いても、2種以上を併用してもよく、また、単層であっても、複数層積層されていてもよい。
 シートの厚さは、樹脂組成物の含浸性の観点から、例えば、単層の場合、好ましくは0.01~5mm、また、複数層積層されている場合は、合計の厚さが、好ましくは1~20mm、より好ましくは1~15mmである。
 繊維基材(F)の形状としては、円筒形状、シート状、テープ状等が挙げられる。
 繊維基材(F)が円筒形状の場合、円筒形状に継ぎ目なく編み込まれた形態や、シート状、テープ状の基材を一部重ね合わせて円筒形状とし、重ね合わせた部分を接着剤で接着したり、糸で縫い合わせたり、ニードルパンチでつなぎ合わせたりした形態が挙げられる。
 円筒形状の繊維基材(F)を用いる場合、繊維基材(F)の直径は、更生する管の内径と同じであることが好ましい。
 シート状の基材を用いる場合、ライニング材製造時のシートの重ね合わせ(のりしろ)を加味して、更生する管の内側の円周より、シートの短辺の長さが若干大きいことが好ましい。
 テープ状の基材を用いる場合には、特に限定されないが、更生する管の内側の円周の1/8~1/3の幅であることが好ましい。
<樹脂組成物含浸基材>
 樹脂組成物含浸基材は、繊維基材(F)に上述の樹脂組成物を含浸することによって得られる。
 ライニング材に紫外線又は可視光線等を照射し、ライニング材中の樹脂組成物、すなわちライニング材に含有される樹脂組成物含浸基材中の樹脂組成物を硬化させることにより、管は更生される。よって、樹脂組成物が硬化したライニング材は、管が補修できる程度の機械的強度が求められる。
 例えば、繊維基材(F)としてガラス繊維を用いる場合、樹脂組成物含浸基材の硬化物(FRP)の曲げ強度は、好ましくは100~1000MPa、より好ましくは120~900MPa、さらに好ましくは150~800MPaである。また、FRPの曲げ弾性率としては、好ましくは5~40GPa、より好ましくは7~35GPa、さらに好ましくは8~30GPaである。
 なお、前記曲げ強度及び曲げ弾性率の値は、JIS K7171:2016に準拠した測定値である。
 樹脂組成物含浸基材中の樹脂組成物の含有量は、好ましくは20~95質量%、より好ましくは25~85質量%、さらに好ましくは25~75質量%である。樹脂組成物の含有量が20質量%以上であれば、ライニング材に適度な柔軟性を付与することができ、工程(IV)における施工性が良好となる。樹脂組成物の含有量が85質量%以下であると、光硬化後のライニング材に十分な強度を付与することができる。
 樹脂組成物含浸基材中の繊維基材(F)の含有量は、好ましくは5~80質量%、より好ましくは15~75質量%、さらに好ましくは25~75質量%である。繊維基材(F)の含有量が5質量%以上であると、光硬化後のライニング材に十分な強度を付与することができる。繊維基材(F)の含有量が80質量%以下であると、ライニング材に適度な柔軟性を付与することができ、工程(IV)における施工性が良好となる。
〔工程(III)〕
 本実施形態の工程(III)は、前記樹脂組成物含浸基材を含有するライニング材を得る工程である。
 なお、管更生に用いられるライニング材は円筒形状である必要があり、工程(III)は円筒形状のライニング材を得る工程でもある。
 ライニング材を得る方法は、従来公知の方法を用いることができるが、下記工程(III)における第1の実施形態及び第2の実施形態により、ライニング材を得ることが好ましい。
<工程(III):第1の実施形態>
 工程(III)における第1の実施形態は、前述の第1の実施形態に係る樹脂組成物と、円筒形状の繊維基材(F)を用い、繊維基材(F)の一方の面にインナーフィルムを、他方の面にアウターフィルムを積層した状態で樹脂組成物を含浸して得られた樹脂組成物含浸基材を含むライニング材を得る。すなわち、工程(II)の第1の実施形態により得た樹脂組成物含浸基材を含むライニング材を得る工程であるが、工程(II)の第1の実施形態では、円筒形状の繊維基材(F)を用いて樹脂組成物を含浸することから、工程(II)における第1の実施形態が完了した時点で、既に円筒形状であり、ライニング材としての構成も有している。よって、工程(III)における第1の実施形態は、工程(II)が完了した時点で、工程(III)も完了したこととなる。
<工程(III):第2の実施形態>
 工程(III)における第2の実施形態は、前述の第2の実施形態に係る樹脂組成物と、シート状又はテープ状の繊維基材(F)を用い、繊維基材(F)に樹脂組成物を直接含浸して得た樹脂組成物含浸基材を含むライニング材を得る。すなわち、工程(II)における第2の実施形態により得た樹脂組成物含浸基材を含むライニング材を得る工程であり、シート状又はテープ状の樹脂組成物含浸基材を用いて、円筒形状のライニング材を得る工程である。
 工程(III)における第2の実施形態においては、工程(II)の第2の実施形態により得た樹脂組成物含浸基材を、管更生を行う管の内径と略同一の直径を有するマンドレルに巻き付け、樹脂組成物含浸基材に含まれる樹脂組成物でつなぎとめることによって、円筒形状に加工し、必要に応じてアウターフィルムを積層して、ライニング材を得る。
 具体的には、樹脂組成物含浸基材がシート状である場合は、マンドレルに巻き付けた後長手方向の二辺を1~10cm程度重ね合わせて、樹脂組成物含浸基材に含まれる樹脂組成物でつなぎとめる。また、樹脂組成物含浸基材がテープ状である場合は、1~10cm程度重ね合わせながら樹脂組成物含浸基材をらせん状に巻き付け、重なり部分を樹脂組成物含浸基材に含まれる樹脂組成物でつなぎとめる。
 インナーフィルムが積層されたライニング材を得る場合は、マンドレルに予めインナーフィルムを配置した状態で樹脂組成物含浸基材を巻き付けることが好ましい。マンドレルに予めインナーフィルムを配置しておくことで、樹脂組成物含浸基材を巻き付けた後のマンドレルの取り外しも容易になり、また、別途インナーフィルムを積層する必要もなく、生産性が向上する。
 また、生産性の観点から、円筒形状に加工した後に、アウターフィルムを積層することが好ましい。
 工程(III)では、上記のとおり、樹脂組成物含浸基材の重なり部分を、樹脂組成物でつなぎとめる。したがって、樹脂含浸基材に含まれる繊維基材(F)が、シート形状である場合、樹脂組成物含浸基材に含まれる樹脂組成物の粘度は、適度な粘着性を有する粘度であることが好ましく、好ましくは30~1,500Pa・s、より好ましくは40~1,000Pa・s、さらに好ましくは50~500Pa・sである。
 樹脂組成物含浸基材に含まれる樹脂組成物の粘度が、40Pa・s以上であれば、樹脂組成物が適度な粘着性を有し、樹脂組成物含浸基材中で偏在することなく、均一に含まれた状態を維持できる。また、樹脂組成物の粘度が1,500Pa・s以下であれば、円筒形状に加工し易い。
≪ライニング材≫
 ライニング材とは、既設管等の管の更生のために用いられるものである。
 ライニング材は、円筒形状であり、繊維基材(F)に樹脂組成物が含浸した樹脂組成物含浸基材を含有する。
 そして、ライニング材を管内に配置し、ライニング材に含まれる樹脂組成物含浸基材中の樹脂組成物を光硬化することにより、ライニング材が硬化し、管が更生される。
 ライニング材は、管更生の施工の容易性の観点から、内面の最内層にインナーフィルム、外面の最外層にアウターフィルム、インナーフィルムとアウターフィルムの間に樹脂組成物含浸基材を含む複合材料層を有するか、または、内面の最内層にアウターフィルム、外面の最外層にインナーフィルム、インナーフィルムとアウターフィルムの間に樹脂組成物含浸基材を含む複合材料層を有することが好ましい。また、内面の最内層にアウターフィルム、外面の最外層にインナーフィルム、インナーフィルムとアウターフィルムの間に樹脂組成物含浸基材を含む複合材料層を有するライニング材は、ライニング材を反転させながら管内面に引き込む反転工法に用いることが好ましい。
 ライニング材は必要に応じてその他の層を有していてもよい。また、各層は単層でもよく、複数層が積層されていてもよい。
 ライニング材は、更生を行う管の内径と、略同一の直径を有することが好ましい。これにより、更生後の管の強度が向上する。
 ライニング材の内径は、特に限定されないが、好ましくは100~1500mm、より好ましくは130~1200mm、さらに好ましくは150~1000mmである。
ライニング材の内径が100mm以上であると光硬化の施工が容易であり、ライニング材の内径が1500mm以下であると管更生の施工時の作業性が良好である。
〔インナーフィルム〕
 インナーフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム等の樹脂フィルムを用いることができる。インナーフィルムは、工程(IV)において光硬化させる際、光照射装置から照射される光に対して透過性を有する必要がある。これにより、効率的にライニング材を硬化させることができ、管更生を適切に行うことができる。なお、インナーフィルムはライニング材を硬化させた後に剥離してもよい。
 インナーフィルムの厚さは、特に限定されないが、好ましくは50~200μm、より好ましくは80~170μmである。インナーフィルムの厚さが50μm以上であれば、工程(IV)やその前に、インナーフィルムが破損したり、しわが寄ることを抑制でき、管に十分な強度を付与することができる。インナーフィルムの厚さが200μm以下であれば、ライニング材の製造が容易となり、また、管更生の施工性が良好である。
 インナーフィルムは、繊維基材(F)に樹脂組成物を含浸する前に積層してもよく、樹脂組成物が含浸した繊維基材(F)(樹脂組成物含浸基材)に積層してもよい。
 インナーフィルムを積層する方法は、特に限定されないが、例えば、液状のフィルム組成物を繊維基材(F)に塗布、硬化させて積層する方法、フィルムを接着層を介して繊維基材(F)又は樹脂組成物含浸基材に積層する方法、フィルムを繊維基材(F)又は樹脂組成物含浸基材にラミネートして積層する方法等が挙げられる。インナーフィルム及びアウターフィルムは、それぞれ別の方法を用いて積層してもよく、同じ方法を用いて積層してもよい。
〔アウターフィルム〕
 アウターフィルムとしては、インナーフィルムと同様に樹脂フィルムを用いることができる。アウターフィルムは、遮光性を有することが好ましい。これにより、工程(IV)の前に、外部からの光により、ライニング材に含まれる樹脂組成物含浸基材中の樹脂組成物の硬化が進むことを抑制できる。すなわち、工程(IV)の前に、ライニング材が硬化することを抑制できる。
 また、工程(IV)において、照射された光がライニング材を透過することを抑制でき、樹脂組成物を効率よく光硬化させることができる。遮光性を有するアウターフィルムとしては、例えば、2枚の透明ポリエチレンフィルムの間に黄色等の着色皮膜層を有する積層フィルムを用いることができる。
 アウターフィルムの厚さは、特に限定されないが、好ましくは5~100μm、より好ましくは10~90μmである。アウターフィルムの厚さが5μm以上であれば、工程(IV)の光硬化より前に、アウターフィルムが破損したり、しわが寄ることもなく、管に十分な強度を付与することができる。アウターフィルムの厚さが100μm以下であれば、ライニング材の製造が容易となり、また、工程(IV)の施工性が良好となる。
 アウターフィルムは、繊維基材(F)に樹脂組成物を含浸する前に積層してもよく、樹脂組成物が含浸した繊維基材(F)(樹脂組成物含浸基材)に積層してもよい。
 アウターフィルムを繊維基材(F)に積層する方法は、特に限定されないが、インナーフィルムを積層する方法と同様の方法が挙げられる。
〔養生工程〕
 本実施形態においては、樹脂組成物を所望の粘度に達するまで適宜増粘させる養生工程を含んでもよい。工程(II)完了後から工程(III)を実施する前や、工程(III)完了後から工程(VI)を実施する前に設けることが好ましい。
 養生工程における養生温度は、好ましくは10~40℃、より好ましくは15~30℃、さらに好ましくは20~30℃である。養生温度は、樹脂組成物の目標粘度、養生時間等に応じて、適宜調整することができる。
 本実施形態において、養生工程は、下記第1の実施形態及び第2の実施形態により実施することが好ましい。
<養生工程:第1の実施形態>
 養生工程における第1の実施形態は、工程(III)の第1の実施形態により得るライニング材の養生工程である。すなわち、円筒形状の繊維基材(F)に樹脂組成物が含浸した樹脂含浸基材を含むライニング材の養生工程であり、この場合、工程(III)完了後から工程(VI)を実施する前に養生工程を設けることが好ましい。養生時間は、好ましくは6時間~3.5日間、より好ましくは12時間~3日間、さらに好ましくは1~2日間である。
 養生工程が完了し、樹脂組成物の粘度が400~3,500Pa・sに達したライニング材の保存期間は、品質安定性の観点から、好ましくは1~6か月間、より好ましくは2~5か月間である。
 工程(III)の第1の実施形態によりライニング材を得た場合、工程(I)完了後から、工程(III)又は養生工程完了までの日数は、好ましくは1日以上かつ4日以内、より好ましくは1日以上かつ3日以内、さらに好ましくは1日以上かつ2日以内である。
 工程(I)完了後から、工程(III)又は養生工程完了までの日数を上記範囲に制御する方法としては、例えば、樹脂(A)、エチレン性不飽和基含有モノマー(B)、増粘剤(C)、及び光重合開始剤(D)の種類の選択とそれぞれの配合量の調節、繊維基材(F)の種類の選択、養生工程における温度設定等により、制御することができる。
<養生工程:第2の実施形態>
 養生工程における第2の実施形態は、工程(III)の第2の実施形態により得るライニング材の養生工程である。すなわち、シート又はテープ状の繊維基材(F)に樹脂組成物が含浸した樹脂含浸基材を含むライニング材の養生工程あり、この場合、工程(III)完了直後に養生工程を設けることが好ましく、また、工程(III)を完了後から工程(IV)を実施する前に、養生工程を設けることが好ましい。
 工程(III)完了直後に養生工程を設ける場合、養生時間は、好ましくは12時間~3日間、より好ましくは1日間~2.5日間、さらに好ましくは1.5日間~2日間である。養生時間が上記範囲であれば、樹脂組成物が適度な粘着性を発現して樹脂組成物含浸基材の重なり部分を十分な強さでつなぎ留めることができる。
 工程(III)を完了後から工程(IV)を実施する前に養生工程を設ける場合、養生時間は、好ましくは6時間~3.5日間、より好ましくは12時間~3日間、さらに好ましくは1~2日間である。
 養生工程が完了し、樹脂組成物の粘度が400~3,500Pa・sに達したライニング材の保存期間は、品質安定性の観点から、好ましくは1~6か月間、より好ましくは2~5か月間である。
 工程(III)の第2の実施形態によりライニング材を得た場合、工程(I)完了後から、工程(III)又は養生工程完了までの日数は、好ましくは2日以上かつ7日以内、より好ましくは3日以上6日以内、さらに好ましくは4日以上5日以内である。
 工程(I)完了後から、工程(III)又は養生工程完了までの日数を上記範囲に制御する方法としては、例えば、樹脂(A)、エチレン性不飽和基含有モノマー(B)、増粘剤(C)、及び光重合開始剤(D)の種類の選択とそれぞれの配合量の調節、繊維基材(F)の種類の選択、養生工程における温度設定等により、制御することができる。
〔工程IV〕
 本実施形態の工程(IV)は、ライニング材を管内に配置し、光硬化させる工程である。そして、工程(IV)において、ライニング材を管内に配置するときの樹脂組成物の25℃での粘度が400~3,500Pa・sである。
 工程(III)で得られたライニング材を管内に配置し、ライニング材を光硬化させることによって、管は更生される。管に優れた強度を付与する観点から、ライニング材は、管内面の内周に沿って配置することが好ましく、また、ライニング材を管内面に圧着させた後、紫外線又は可視光線等を照射することが好ましい。
 また、ライニング材は、一般的に、運送を容易にするため折り畳まれた状態で、管更生を実施する場所(光硬化させる場所)まで運ばれ、折り畳まれたライニング材を既設管内に引き込み、拡張させる。この際、ライニング材中の樹脂組成物は、漏出して垂れたり、ライニング材中で偏在せず、またライニング材は適度な柔軟性があることが好ましい。そのような観点から、工程(IV)において、ライニング材を管内に配置するときの樹脂組成物の温度25℃における粘度、すなわちライニング材に含有される樹脂組成物含浸基材中の樹脂組成物の温度25℃における粘度は、400~3,500Pa・sであり、好ましくは450~2,500Pa・s、より好ましくは500~2,000Pa・sである。
 ライニング材の既設管への導入作業は、マンホール等からライニング材をそのまま引き込むことも可能であるが、ライニング材を先端側から反転させつつ既設管に押し込んでいく反転工法等も好適に用いられる。
 ライニング材の拡径作業は、一般的に、ライニング材の内腔に空気を吹き込むことによって行われるため、ライニング材の両端部には、ライニング材を密閉するためのエンドパッカーを有することが好ましい。エンドパッカーを有することで、一方の端部のエンドパッカー側から空気が吹き込まれると、ライニング材内腔の圧力が上昇し、ライニング材を既設管の内周面に密着するように拡径することができる。
 拡径されたライニング材は、例えば、移動式の光照射装置によって、ライニング材の内面に紫外線又は可視光線等を照射されることにより、ライニング材に含まれる樹脂組成物が硬化し、既設管の内面は、樹脂組成物が硬化したライニング材で被覆される。前記光照射装置による放射強度は、特に限定されないが、好ましくは0.0008~0.03W/mm2である。
 放射強度が0.0008W/mm以上であれば、作業効率が良好であり、また、管に十分な強度を付与することができる。また、放射強度が0.03W/mm以下であれば、ライニング材の内表層が局所的に過度に照射されることが抑制され、ライニング材の劣化や強度低下を抑制できる。
 光照射装置としては、光源として紫外~可視光領域(通常、波長200~800nm)に発光するものが採用できる。光源としては、例えば、ガリウムランプ等のメタルハライドランプ、水銀ランプ、ケミカルランプ、キセノンランプ、ハロゲンランプ、マーキュリーハロゲンランプ、カーボンアーク灯、白熱灯、レーザ光、LED等が挙げられる。
 工程(IV)の作業効率の観点から、350~450nmの波長域にピーク波長を有する紫外線及び可視光照射装置の少なくともいずれかが好ましく、樹脂組成物を効率的に硬化する観点から、ガリウムランプ、及びLEDがより好ましく、ガリウムランプがさらに好ましい。
 光照射装置は、照射部を1つ以上有するものであれば特に制限はないが、複数の光照射ランプが直列に連結されて構成されたランプ連結体を有することが好ましい。ランプ連結体を有することで、光硬化を効率的に実施することができる。
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[樹脂(A)の合成]
 まず、樹脂組成物の調製のための樹脂を、下記合成例及び比較合成例により合成した。
 下記合成例及び比較合成例において樹脂(A)の合成に用いたエポキシ化合物の詳細を以下に示す。
 ・エポキシ化合物(1):ビスフェノールA型エポキシ樹脂;「エポミック(登録商標)R140P」、三井化学株式会社製、エポキシ当量188
 ・エポキシ化合物(2):ビスフェノールA型エポキシ樹脂;「jER(登録商標)834」、三菱ケミカル株式会社製、エポキシ当量245
 ・エポキシ化合物(3):フェノールノボラック型エポキシ樹脂;「EPICLON(登録商標)N-740」、DIC株式会社製、エポキシ当量172
 なお、エポキシ当量は、JIS K7236:2001に準拠して測定した値である。
〔ビニルエステル樹脂(A1)の合成〕
<合成例1>
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(1)2068g、重合禁止剤としてメチルハイドロキノン1.2g(エポキシ化合物(1)、及び後述のメタクリル酸の合計100質量部に対して0.04質量部)、及びエステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)9.0g(エポキシ化合物、及び後述のメタクリル酸の合計100質量部に対して0.3質量部)を入れて、110℃まで加熱した。そして、不飽和一塩基酸(a1-2)としてメタクリル酸946g(エポキシ化合物(1)のエポキシ基の総量100モルに対して酸基が100モル)を約30分間かけて滴下した後、120℃に加熱し、約3時間反応させて、ビニルエステル樹脂(A1-1a)を製造した。
 表3に、それぞれの成分の配合量を示す。
<合成例2>
 攪拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(1)1260g、重合禁止剤としてメチルハイドロキノン0.74g(エポキシ化合物(1)及び後述のメタクリル酸の合計100質量部に対して0.04質量部)、触媒としてテトラデシルジメチルベンジル-アンモニウムクロライド(「ニッサンカチオン(登録商標)M-100R」(日油株式会社製)、純度90質量%超)5.6g(エポキシ化合物(1)及び後述のメタクリル酸の合計100質量部に対して0.3質量部)を添加して110℃まで加熱し、不飽和一塩基酸(a1-2)としてメタクリル酸577g(エポキシ化合物(1)のエポキシ基の総量100モルに対して酸基が100モル)を約30分かけて滴下した後、約4時間反応させて、樹脂前駆体(P1-1)を合成した。次いで、多塩基酸無水物(a1-4)として無水マレイン酸132g(エポキシ化合物(1)のエポキシ基の総量100モルに対して、無水マレイン酸が20モル)を添加し、約2時間反応させてビニルエステル樹脂(A1-2a)を得た。
 表3に、それぞれの成分の配合量を示す。
<合成例3~5>
 合成例2において、表3に記載の原料と配合比としたこと以外は同様にして合成を行い、ビニルエステル樹脂(A1-2b)~(A1-2d)を得た。
 表3に、それぞれの成分の配合量を示す。
<合成例6>
 攪拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(1)1260g、重合禁止剤としてメチルハイドロキノン0.74g(エポキシ化合物(1)、後述のメタクリル酸、及び後述の多塩基酸無水物(a1-3)である無水マレイン酸の合計100質量部に対して0.04質量部)、触媒としてテトラデシルジメチルベンジルアンモニウムクロライド(「ニッサンカチオン(登録商標)M-100R」(日油株式会社製)、純度90質量%超)5.6g(エポキシ化合物(1)、後述のメタクリル酸、及び後述の多塩基酸無水物(a1-3)である無水マレイン酸の合計100質量部に対して0.3質量部)を添加して110℃まで加熱し、不飽和一塩基酸(a1-2)としてメタクリル酸519g(エポキシ化合物(1)のエポキシ基の総量100モルに対して酸基が90モル)、及び多塩基酸無水物(a1-3)として無水マレイン酸66g(エポキシ化合物(1)のエポキシ基の総量100モルに対して、無水マレイン酸由来の酸基の総量が10モル)を約30分かけて滴下した後、約4時間反応させて、樹脂前駆体(P1-1)を合成した。次いで、多塩基酸無水物(a1-4)として無水マレイン酸263g(エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、無水マレイン酸が40モル)を添加し、約2時間反応させてビニルエステル樹脂(A1-3a)を得た。
 表3に、それぞれの成分の配合量を示す。
<合成例7~9>
 合成例6において、表3に記載の原料と配合比としたこと以外は同様にして合成を行い、ビニルエステル樹脂(A1-3b)~(A1-3d)を得た。
 表3に、それぞれの成分の配合量を示す。
<比較合成例1~4>
 合成例6において、表4に記載の原料と配合比としたこと以外は同様にして合成を行った。その結果、樹脂前駆体がゲル化し、続く合成操作を進めることができず、樹脂を得られなかった。
 表4に、それぞれの成分の配合量を示す。
<合成例10>
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(1)1512g、ビスフェノールA429g(エポキシ化合物(1)のエポキシ基の総量100モルに対してビスフェノールAの水酸基の総量が47モル)を入れて80℃に加熱した。次いで触媒としてトリエチルアミン(株式会社ダイセル製)を3.9g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)、及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.2質量部)を入れて、145℃まで加熱し、1時間反応させて樹脂前駆体(P3)を合成した。次いで、110℃まで冷却後、反応性希釈剤としてスチレン429g(配合成分合計質量基準で10質量%)、重合禁止剤として5%ナフテン酸銅0.04g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.0019質量部)、トリメチルハイドロキノン1.3g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.056質量部)及びエステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)6.9g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.3質量部)を入れて、110℃まで加熱した。そして、不飽和一塩基酸(a1-2)としてメタクリル酸365g(エポキシ化合物(1)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が53モル)を約30分間かけて滴下した後、130℃に加熱し、約2時間反応させて、ビニルエステル樹脂(A1-4a)を製造した。
 この反応生成物を90℃まで冷却し、重合禁止剤としてハイドロキノン0.13g(全配合成分の合計100質量部に対して0.003質量部)、反応性希釈剤(エチレン性不飽和基含有モノマー(B))としてスチレン1546g(配合成分合計質量基準で36質量%)を添加し、ビニルエステル樹脂54質量%(配合成分合計質量基準)とスチレン46質量%との混合物を得た。
 表5に、それぞれの成分の配合量を示す。
<合成例11>
 攪拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(1)1795g、ビスフェノールA271g(エポキシ化合物(1)のエポキシ基の総量100モルに対してビスフェノールAの水酸基の総量が25モル)を入れて80℃に加熱した。次いで触媒としてトリエチルアミン(株式会社ダイセル製)を3.1g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)の合計100質量部に対して0.15質量部)を入れて、145℃まで加熱し、1時間反応させて樹脂前駆体(P3)を合成した。次いで、110℃まで冷却後、反応性希釈剤としてスチレン496g(配合成分合計質量基準で10質量%)、重合禁止剤として5%ナフテン酸銅0.05g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.0019質量部)、メチルハイドロキノン1.0g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)、及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.04質量部)、トリメチルハイドロキノン1.5g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.057質量部)、エステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)8.0g(エポキシ化合物(a1-1)、ビスフェノール(a1-5)及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.3質量部)を添加して110℃まで加熱し、不飽和一塩基酸(a1-2)としてメタクリル酸564g(エポキシ化合物(1)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が69モル)を約30分かけて滴下した後、約2時間反応させて、樹脂前駆体(P4)を合成した。次いで、不飽和多塩基酸(a1-6)としてフマル酸33g(エポキシ化合物(1)のエポキシ基の総量100モルに対して、フマル酸が6モル)を添加し、約1時間反応させてビニルエステル樹脂(A1-5a)を得た。
 この反応生成物を90℃まで冷却し、反応性希釈剤(エチレン性不飽和基含有モノマー(B))としてスチレン1784g(配合成分合計質量基準で36質量%)を添加し、ビニルエステル樹脂54質量%(配合成分合計質量基準)とスチレン46質量%との混合物を得た。
 表5に、それぞれの成分の配合量を示す。
<合成例12>
 攪拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(1)1950gを80℃に加熱し、反応性希釈剤としてスチレン407g(配合成分合計質量基準で10質量%)、重合禁止剤として5%ナフテン酸銅0.04g(エポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)の合計100質量部に対して0.0014質量部)、メチルハイドロキノン0.9g(エポキシ化合物(a1-1)及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.03質量部)、トリメチルハイドロキノン1.6g(エポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)の合計100質量部に対して0.057質量部)、エステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)8.5g(エポキシ化合物(a1-1)、及び不飽和一塩基酸(a1-2)の合計100質量部に対して0.3質量部)を添加して100℃まで加熱し、不飽和一塩基酸(a1-2)としてメタクリル酸891g(エポキシ化合物(1)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が100モル)を約30分かけて滴下した後、約2時間反応させてビニルエステル樹脂(A1-1b)を得た。
 この反応生成物を90℃まで冷却し、反応性希釈剤(エチレン性不飽和基含有モノマー(B))としてスチレン815g(配合成分合計質量基準で20質量%)を添加し、ビニルエステル樹脂70質量%(配合成分合計質量基準)とスチレン30質量%との混合物を得た。
 表5に、それぞれの成分の配合量を示す。
<合成例13及び14>
 合成例10において、表5に示す配合組成としたこと以外は同様にして合成を行い、ビニルエステル樹脂(A1-1c)及び(A1-1d)を得た。なお、合成例15においては、触媒として、「ニッサンカチオン(登録商標)M-100R」(日油株式会社製、純度90質量%超)を用いた。
 ビニルエステル樹脂(A1-1c)については、90℃まで冷却した後、反応性希釈剤(エチレン性不飽和基含有モノマー(B))としてスチレン1222gを添加し、ビニルエステル樹脂70質量%(配合成分合計質量基準)とスチレン30質量%との混合物を得た。
 ビニルエステル樹脂(A1-1d)については、90℃まで冷却した後、反応性希釈剤(エチレン性不飽和基含有モノマー(B))としてフェノキシエチルメタクリレート1543gを添加し、ビニルエステル樹脂65質量%(配合成分合計質量基準)とスチレン35質量%との混合物を得た。
 表5に、それぞれの成分の配合量を示す。
〔不飽和ポリエステル樹脂(A2)の合成〕
<合成例15>
 温度計、攪拌機、不活性ガス吹込管および還流冷却管を備えた3L4つ口セパラブルフラスコに、ジオール(a2-1)として、プロピレングリコール224.6g(ジオール(a2-1)100モル%に対して、27.5モル%)及び2,2-ジメチル-1,3-プロパンジオール810.5g(ジオール(a2-1)100モル%に対して、72.5モル%)、エチレン性不飽和基非含有二塩基酸(a2-2-2)として、イソフタル酸472.6g(ジオール(a2-1)100モル%に対して、26.5モル%)及びテレフタル酸356.6g(ジオール(a2-1)100モル%に対して、20.0モル%)を仕込み、3L4つ口セパラブルフラスコに窒素ガスを吹き込みながら、215℃で10時間重合反応を行った。その後、反応液が150℃となるまで冷却した。
 冷却した反応液に、エチレン性不飽和基含有二塩基酸(a2-2-1)として、無水マレイン酸563.1g(ジオール(a2-1)100モル%に対して、53.5モル%)を添加し、215℃で10時間縮合反応を行い、不飽和ポリエステル樹脂(A2-a)を得た。
 表6に、それぞれの成分の配合量を示す。
<合成例16~23>
 合成例17において、表6に記載の原料と配合比としたこと以外は同様にして合成を行い、不飽和ポリエステル樹脂(A2-b)~(A2-i)を得た。
 表6に、それぞれの成分の配合量を示す。
[樹脂(A)の測定評価]
 上記合成例で得られたビニルエステル樹脂(A1-1a)~(A1-1f)、(A1-2a)~(A1-2d)及び(A1-3a)~(A1-3d)、(A1-4a)、及び(A1-5a)、並びに不飽和ポリエステル樹脂(A2-a)~(A2-i)について、以下に示す項目の測定評価を行った。これらの測定評価結果を、下記表3、5及び6にまとめて示す。
<酸価>
 樹脂(A)の酸価は、JIS K6901:2008「部分酸価(指示薬滴定法)」に準拠して、ビニルエステル樹脂(A1-1a)~(A1-1f)、(A1-2a)~(A1-2d)、(A1-3a)~(A1-3d)、(A1-4a)、及び(A1-5a)、並びに不飽和ポリエステル樹脂(A2-a)~(A2-i)に含まれる酸成分を中和するために要する水酸化カリウムの質量を測定し、酸価を求めた。
 なお、ビニルエステル樹脂(A1)においては、ビニルエステル樹脂(A1)をエチレン性不飽和基含有モノマー(B)であるフェノキシエチルメタクリレート(昭和電工マテリアルズ株式会社製)又はスチレンを用いて希釈した混合物(ビニルエステル樹脂(A1)54~70質量%)を、不飽和ポリエステル樹脂(A2)においては、不飽和ポリエステル樹脂(A2)をエチレン性不飽和基含有モノマー(B)であるスチレンを用いて希釈した混合物(不飽和ポリエステル樹脂(A2)57~65質量%)を測定試料とした。その測定試料の測定値から、樹脂(A)の酸価を求めた。滴定装置として「オートビュレット UCB-2000」(平沼産業株式会社製)、指示薬としてブロモチモールブルーとフェノールレッドの混合指示薬を用いた。
 表1に、各合成例で得られたビニルエステル樹脂(A1)を含む混合物(測定試料)と、不飽和ポリエステル樹脂(A2)を含む混合物(測定試料)の詳細を示す。
<水酸基価>
 樹脂(A)の水酸基価は、JIS K6901:2008「水酸基価(中和滴定法)」に準拠して、ビニルエステル樹脂(A1-1b)~(A1-1d)、(A1-2b)、(A1-2d)、(A1-4a)及び(A1-5a)1gのアセチル化で発生する酢酸を中和するために要する水酸化カリウムの質量を測定し、水酸基価を求めた。
 なお、ビニルエステル樹脂(A1)においては、ビニルエステル樹脂(A1)をエチレン性不飽和基含有モノマー(B)であるフェノキシエチルメタクリレート(昭和電工マテリアルズ株式会社製)を用いて希釈した混合物(ビニルエステル樹脂(A1)65質量%)、ビニルエステル樹脂(A1)をスチレンを用いて希釈した混合物2種(ビニルエステル樹脂(A1)70質量%及び54質量%)を測定試料とした。その測定試料の測定値から、樹脂(A)の水酸基価を求めた。中和滴定は手動にて行い、指示薬として1%フェノールフタレイン(エタノール溶液)を用いた。
 表1に、各合成例で得られたビニルエステル樹脂(A1)を含む混合物(測定試料)の詳細を示す。
Figure JPOXMLDOC01-appb-T000001
<重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mn>
 樹脂(A)の重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)により以下の条件にて測定し、標準ポリスチレン換算分子量として求めた。Mw/Mnは、MnとMwの値から算出した。
 ・装置:「ショウデックス(登録商標)GPC-101」(昭和電工株式会社製)
 ・カラム:「ショウデックス(登録商標)LF-804」(昭和電工株式会社製)
 ・検出器:示差屈折計「ショウデックス(登録商標)RI-71S」(昭和電工株式会社製)
 ・カラム温度:40℃
 ・試料:樹脂(A)の0.2質量%テトラヒドロフラン溶液
 ・展開溶媒:テトラヒドロフラン
 ・流速:1.0mL/分
<粘度>
 ビニルエステル樹脂(A1)においては、ビニルエステル樹脂(A1)65質量%とフェノキシエチルメタクリレート35質量%との混合物、ビニルエステル樹脂(A1)70質量%とスチレン30質量%との混合物又はビニルエステル樹脂(A1)54質量%とスチレン46質量%との混合物の粘度をE型粘度計(「RE-85U」(東機産業株式会社社製)、コーンプレート型、コーンロータ1°34’×R24、回転数:50rpm~0.5rpm)を用いて、温度25℃で測定した。
 なお、各合成例で得られたビニルエステル樹脂(A1)を含む混合物(測定試料)は、上記水酸基価測定時に使用した混合物と同じものを用いた。
 また、測定粘度に応じたコーンローターの回転数は以下の通り設定した。
 混合物の粘度が0Pa・s超1.0Pa・s以下であるとき、回転数50rpmで測定した。
 混合物の粘度が1.0Pa・s超2.0Pa・s以下であるとき、回転数20rpmで測定した。
 混合物の粘度が2.0Pa・s超4.0Pa・s以下であるとき、回転数10rpmで測定した。
 混合物の粘度が4.0Pa・s超8.0Pa・s以下であるとき、回転数5rpmで測定した。
 混合物の粘度が8.0Pa・s超18.0Pa・s以下であるとき、回転数2.5rpmで測定した。
 混合物の粘度が18.0Pa・s超45.0Pa・sで以下あるとき、回転数1.0rpmで測定した。
 混合物の粘度が45.0Pa・s超100.0Pa・s以下であるとき、回転数0.5rpmで測定した。
 測定粘度に応じたコーンローターの回転数を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[樹脂組成物の製造]
 下記実施例及び比較例において樹脂組成物の製造に用いた揺変剤の詳細を以下に示す。
 ・揺変剤(1):有機揺変剤;「フローノンSP-1000AF」、共栄社化学株式会社製
 ・揺変剤(2):疎水性シリカ;「レオロシールPM-20L」、株式会社トクヤマ製
<実施例1>
 ビニルエステル樹脂(A1-1a)26質量部と、エチレン性不飽和基含有モノマー(B)としてフェノキシエチルメタクリレート14質量部との混合物(1)、及びビニルエステル樹脂(A1-3c)26質量部と、エチレン性不飽和基含有モノマー(B)としてフェノキシエチルメタクリレート14質量部との混合物(2)を作製した。
 続いて、前記混合物(1)40質量部、前記混合物(2)40質量部、ベンジルメタクリレート12質量部、ジエチレングリコールジメタクリレート8質量部、水0.2質量部、揺変剤(1)1.7質量部、並びに重合開始剤(D)として2,2-ジメトキシ-2-フェニルアセトフェノン0.2質量部及びフェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.2質量部を添加し、ディスパー(高速分散基「ホモディスパー2.5型」プライミクス株式会社製)を用いて2000~3000rpmにて20分間混合した。これに、化合物(C)として酸化マグネシウム(「マグミクロン MD-4AM-2」、御国色素社製、酸化マグネシウム含有量30質量%(推定);以下、同様。)1.5質量部を添加し、さらに1分程度混合して調製し、樹脂組成物(X-1)を得た。
<実施例2~16、比較例1~8>
 実施例1において、表9~11に記載の原料と配合比としたこと以外は同様にして調製し、樹脂組成物(X-2)~(X-16)及び(X’-1)~(X’-8)を得た。
<実施例17>
 ビニルエステル樹脂(A1-4a)54質量部と、エチレン性不飽和基含有モノマー(B)としてスチレン46質量部との混合物に、光重合開始剤(D)として2,2-ジメトキシ-2-フェニルアセトフェノン0.2質量部及びフェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.2質量部、化合物(E)として水0.1質量部、揺変剤として有機揺変剤(揺変剤(1)、「フローノンSP-1000AF」、共栄社化学株式会社製)1.0質量部を添加し、ディスパー(高速分散基「ホモディスパー2.5型」プライミクス株式会社製)を用いて2000~3000rpmにて20分間混合した。これに、増粘剤(C)として酸化マグネシウム(「マグミクロン MD-4AM-2」、御国色素社製、酸化マグネシウム含有量30質量%(推定);以下、同様。)1.2質量部(酸化マグネシウム含有量0.36質量部)を添加し、さらに1分程度混合して調製し、樹脂組成物(X-17)を得た。
<実施例18、19、21~27、29、30、33~38>
 実施例17において、表12及び13に記載の原料と配合比としたこと以外は同様にして調製し、樹脂組成物(X-18)、(X-19)、(X-21)~(X-27)、(X-29)、(X-30)及び(X-33)~(X-38)を得た。
<実施例20、28、31及び32>
 実施例17において、樹脂(A)と、エチレン性不飽和基含有モノマー(B)としてスチレンとの混合物に、さらにカルボキシ基含有化合物として3-ドデセニルコハク酸を表8及び9に記載の配合比として添加し、その他については表12及び13に記載の原料と配合比としたこと以外は同様にして調製し、樹脂組成物(X-20)、(X-28)、(X-31)及び(X-32)を得た。
<実施例39>
 不飽和ポリエステル樹脂(A2-a)54.74質量部を、エチレン性不飽和基含有モノマー(B)として、スチレン44.63質量部に溶解させ、混合物(1)を作製した。また、カルボキシ基含有化合物として、3-ドデセニルコハク酸0.63質量部を、スチレン0.63質量部に溶解させ混合物(2)を作製した。混合物(1)99.37質量部に、混合物(2)1.26質量部と、化合物(E)として、水0.20質量部と、光重合開始剤(D)として、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.11質量部、及び2,2-ジメトキシ-2-フェニルアセトフェノン0.11質量部を添加し、ディスパー(高速分散基「ホモディスパー2.5型」プライミクス株式会社製)を用いて2000~3000rpmにて約10分間混合した。さらに、増粘剤(C)として、酸化マグネシウム(マグミクロン MD-4AM-2、御国色素社製、酸化マグネシウム推定含有量30質量%)0.96質量部(酸化マグネシウム換算で0.29質量部)を添加し、ディスパーをもちいて2000~3000rpmにて約1分間混合し、樹脂組成物(X-39)を得た。
<実施例40~66、比較例9~14>
 実施例39において、表14~17に記載の原料と配合比としたこと以外は同様にして調製し、樹脂組成物(X-40)~(X-66)及び(X’-9)~(X’-14)を得た。
[樹脂組成物の測定評価]
 上記実施例及び比較例で得られた樹脂組成物(X-1)~(X-66)及び(X’-1)~(X’-14)について、粘度、含浸性、タック性、染み出し性、折り曲げ、及び模擬管管更生の測定及び評価を行った。これらの測定評価結果を、下記表9~17に示す。
<粘度>
 樹脂組成物(X-1)~(X-38)については、調製直後にそれぞれ300mlの容器に280g入れ、密閉した状態で、25℃、常湿下に静置、保管した。
 樹脂組成物(X-39)~(X-66)、(X’-9)、(X’-10)、(X’-13)及び(X’-14)については、調整直後にそれぞれ500mLのポリプロピレン製容器に500g入れ、アルミホイルで蓋をした。これを、袋(410mm×280mm、材質:ポリエチレン、膜厚:30μm)に入れ、熱圧着することで密閉し、25℃、50%RHの環境下、または25℃、80%RH環境下に静置、保管した。
 樹脂組成物(X’-11)及び(X’-12)については調整直後にそれぞれ500mLの金属製の丸缶に入れ、金属製の蓋をし、23℃、50%RHの環境下に静置した。
 静置した樹脂組成物(X-1)~(X-4)、(X-17)~(X-27)及び(X-39)~(X-51)については、樹脂組成物調整後1時間経過時の25℃での粘度(工程(II)における樹脂組成物の25℃での粘度)、及び樹脂組成物調製後2日経過時の25℃での粘度を測定した。なお、樹脂組成物は、繊維基材(F)に含浸した状態であっても、含浸させず樹脂組成物のみで静置した場合であっても、増粘速度は同様であり、また、樹脂組成物調製後2日経過時の25℃での粘度も同様である。したがって、樹脂組成物調製後2日経過時の25℃での粘度とは、樹脂組成物調製後2日目に、工程(IV)におけるライニング材を管内に配置した際の、ライニング材中の樹脂組成物の25℃での粘度に相当する。
 静置した樹脂組成物(X-5)~(X-16)、(X-28)~(X-38)及び(X-52)~(X-66)については、樹脂組成物調整後1時間経過時の25℃での粘度(工程(II)における樹脂組成物の粘度)、樹脂組成物調製後2日の25℃での粘度、及び樹脂組成物調製後5日経過時の25℃での粘度を測定した。なお、上述のとおり、樹脂組成物は、繊維基材(F)に含浸した状態であっても、含浸させず樹脂組成物のみで静置した場合であっても、増粘速度は同様であり、また、樹脂組成物調製後5日経過時の25℃での粘度も同様である。したがって、樹脂組成物調製後5日経過時の25℃での粘度とは、樹脂組成物調製後5日目に、工程(IV)におけるライニング材を管内に配置した際の、ライニング材中の樹脂組成物の25℃での粘度に相当する。
 (X’-1)~(X’-14)については、樹脂組成物調整後1時間経過時の25℃での粘度(工程(II)における樹脂組成物の粘度)、樹脂組成物調製後2日経過時の25℃での粘度、及び樹脂組成物調製後5日経過時の25℃での粘度を測定した。なお、樹脂組成物調製後2日経過時及び5日経過時の25℃での粘度とは、樹脂組成物調製後2日目及び5日目に、工程(IV)におけるライニング材を管内に配置した際の、ライニング材中の樹脂組成物の25℃での粘度に相当する。
 粘度の測定は、粘度範囲に応じて、以下の2種類の機器を適宜選択した。
(1)「RB80形粘度計」(東機産業株式会社製;ローターNo.3~4)
 樹脂組成物の粘度が0Pa・s超1.0Pa・s以下であるとき、ローターNo.3を用い、回転数60rpmで測定した。
 樹脂組成物の粘度が1.0Pa・s超5.0Pa・s以下であるとき、ローターNo.4を用い、回転数60rpmで測定した。
 樹脂組成物の粘度が5.0Pa・s超25.0Pa・s以下であるとき、ローターNo.4を用い、回転数12rpmで測定した。
 樹脂組成物の粘度が25.0Pa・s超50.0Pa・s以下であるとき、ローターNo.4を用い、回転数6rpmで測定した。
 樹脂組成物の粘度が50.0Pa・s超100.0Pa・s以下であるとき、ローターNo.4を用い、回転数3rpmで測定した。
 測定粘度に応じた使用ローター及び回転数を下記表7に示す。
Figure JPOXMLDOC01-appb-T000007
(2)「HBDVE型粘度計」(英弘精機株式会社製;TバースピンドルT-A~T-D、、回転数:1rpm)
 樹脂組成物の粘度が100.0Pa・s超800.0Pa・s以下であるとき、TバースピンドルT-Aを用いた。
 樹脂組成物の粘度が800.0Pa・s超1600.0Pa・s以下であるとき、TバースピンドルT-Bを用いた。
 樹脂組成物の粘度が1600.0Pa・s超4000.0Pa・s以下であるとき、TバースピンドルT-Cを用いた。
 樹脂組成物の粘度が4000.0Pa・s超10000.0Pa・s以下であるとき、TバースピンドルT-Dを用いた。
 測定粘度に応じて使用したTバースピンドルを下記表8に示す。
Figure JPOXMLDOC01-appb-T000008
<含浸性>
 ガラス繊維のチョップドストランドマット(「MC 450A」、日東紡績株式会社製)を、100mm×100mmの正方形に3枚切り出し、3枚を重ね合わせた上に内径50mm、高さ20mmのステンレス製リングを載せた後、実施例及び比較例で調製した、調整後1時間経過時の樹脂組成物10gをステンレス製リング内に流し入れ、最下層のガラス繊維まで樹脂組成物が浸透する時間を計測した。
 流し入れた樹脂組成物が、5分未満で最下層のガラス繊維まで浸透した場合、含浸性が良好であると判定した。表9~17の含浸性の欄には、含浸性が良好な場合を「〇」、それ以外の場合を「×」として示した。
<タック性>
 300mlディスポカップに樹脂組成物を280g入れ、室温、常湿下(暗所)で2日間静置、保管した後、その樹脂組成物表面を指触した。その際、べとつきがあり、指に樹脂組成物が付着した場合、タック性が良好であると判定した。表9~17のタック性の欄には、タック性が良好な場合を「〇」、べとつきが無く、指に樹脂組成物が付着しない場合を「×」として示した。
 なお、シート状又はテープ状の繊維基材(F)を用いてライニング材を製造する場合、本評価においてタック性が良好である樹脂組成物は、好適に用いることができる。
<染み出し性>
 ガラス繊維のチョップドストランドマット(「MC 450A」、日東紡績株式会社製)を、200mm×200mmの正方形に3枚切り出し、その3枚を重ね合わせ、約51gの樹脂組成物を脱泡ローラーで含浸させ、積層体(ガラス含有率約50%)を得た。その積層体を、250mm×250mmに切り出したポリエチレンテレフタレートフィルムで挟み込み、室温、常湿下(暗所)で静置して養生し、樹脂組成物含浸基材を得た。なお、樹脂組成物(X-1)~(X-4)、(X-17)~(X-27)及び(X-39)~(X-51)を用いた場合は、2日間養生し、樹脂組成物(X-5)~(X-16)、(X-28)~(X-38)、(X-52)~(X-66)及び(X’-1)~(X’-14)を用いた場合は、5日間養生した。養生後、ハサミで約50mmの切り込みを入れ、断面から樹脂組成物の染み出し(樹脂垂れ)の有無を確認し、断面から樹脂組成物の染み出しがない場合は、良好な状態であると判定した。表5~13の染み出し性の欄には、染み出しが無い場合を「〇」、染み出しがあった場合を「×」として示した。
 樹脂組成物の染み出しがない場合、ライニング材は、工程(IV)において管内に配置するとき、樹脂組成物が漏出して垂れたり、ライニング材中で偏在することなく、好適に用いることができる。
<折り曲げ評価>
 染み出し性の評価と同様にして、ライニング材用材料を得た。なお、樹脂組成物(X-1)~(X-4)、(X-17)~(X-27)及び(X-39)~(X-51)を用いた場合は、2日間養生し、樹脂組成物(X-5)~(X-16)、(X-28)~(X-38)、(X-52)~(X-66)及び(X’-1)~(X’-14)を用いた場合は、5日間養生した。養生後、積層体を180°折り曲げ、戻した後に折り曲げ跡の有無と、樹脂と繊維の剥離有無を確認し、折り曲げ跡、樹脂と繊維の剥離のいずれもない場合は、良好な状態であると判定した。表9~17の折り曲げ評価の欄には、折り曲げ跡の有無と、樹脂と繊維の剥離のいずれもない場合を「○」、折り曲げ跡の有無と、樹脂と繊維の剥離のいずれか一方がある場合を「△」、折り曲げ跡の有無と、樹脂と繊維の剥離のいずれもある場合を「×」として示した。
<模擬管管更生評価>
 端部を曲線状にR2で処理した、幅220mm×長さ1000mm×厚さ4mmのアルミ製の板に、インナーフィルムとして長さ1400mm×厚さ100μmのポリエチレンフィルム(イセ化成工業株式会社製)を巻き付け、ラップ部でビニレイド(白光株式会社製)を使用してヒートシールした。次いでインナーフィルムの上から、繊維基材(F)である長さ800mmのガラス繊維チョップドストランドマット(「MC 450A」、日東紡績株式会社製)を巻き付け、巻き付けると同時に脱泡ローラーを用いて樹脂組成物を含浸させ、樹脂組成物含浸基材(4枚重ね:厚さ3.0mm、ガラス繊維含有率40%)を得た。
 さらに樹脂組成物含浸基材の上から、アウターフィルムとして長さ1400mm×厚さ100μmのポリエチレンフィルムを被覆し、ラップ部を幅50mmのマスキングテープ(スリーエムジャパン株式会社製)で接着し固定した。続いて、アルミ板を引き抜き、ライニング材を得た。
 前記ライニング材を25℃、常湿下で2日間養生した後、内径150mm×長さ1000mmの模擬管であるアクリルパイプに引き込んだ。ライニング材の両端を結束バンドで縛って密閉し、一端から4L/secで空気を注入し、ライニング材を拡径してアクリルパイプ内面に圧着させた。その後、ライニング材の両端をアクリルパイプに固定し、一方の端部は空気注入孔付きのキャップを設置し、もう一方の端部には、紫外線LED蛍光灯型ライト「NS365-FTL-C30」(ナイトライド・セミコンダクター製)を配置したキャップを設置した。空気注入孔付きのキャップから4L/secで空気を注入しつつ、紫外線照度計「UIT-201」(ウシオ電機株式会社)を用いて、照度10mW/cm、感度波長域330~490nm、照射時間60分にて前記ライニング材を光硬化することにより、模擬管の管更生を行った。
 ライニング材に空気を吹き込み、問題なく拡径できた場合は、拡径可能と判定した。
 さらにライニング材を硬化後、インナーフィルムを取り除き、ライニング材硬化層の厚さを確認した。ライニング材硬化層の厚みは模擬管の中央部、両端からそれぞれ200mmの位置の3か所において、管の断面に対し上下左右の4点、併せて12点の測定を行った。厚さの下限値が3.0mm以上であり上限値が3.0mm+20%以内(3.6mm以内)である場合はライニング材中の樹脂組成物の偏在が良好に抑制され、外観が良好であると判定した。表5~12の模擬管管更生評価の欄には、ライニング材が拡径可能でライニング材硬化層の厚さが3.0~3.6mmである場合を「○」、ライニング材が拡径できない場合、またはライニング材硬化層の厚さが3.0~3.6mmの範囲外である場合、もしくはその両方である場合を「×」とした。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表9、12及び14に記載の通り、実施例1~4、17~27及び39~51においては、樹脂組成物調製後1時間経過時の粘度(工程(II)における樹脂組成物の粘度)が0.1~3Pa・sであり、樹脂組成物調製後2日経過時の粘度(工程(IV)におけるライニング材を管内に配置するときの樹脂組成物の粘度)が400~3,500Pa・sであることから、増粘速度が適度にコントロールされた樹脂組成物が得られたことが分かる。
 また、表10、13、15及び16に記載の通り、実施例5~16、28~38及び52~66においては、樹脂組成物調製後1時間経過時の粘度(工程(II)における樹脂組成物の粘度)が0.1~3Pa・sであり、樹脂組成物調製後5日経過時(工程(IV)におけるライニング材を管内に配置するときの樹脂組成物の粘度)の粘度が400~3500Pa・sであることから、増粘速度が適度にコントロールされた樹脂組成物が得られたことが分かる。
 一方、比較例1~4及び10においては、樹脂組成物調製後1時間経過時の粘度(工程(II)における樹脂組成物の粘度)が大きいため、含浸性が低いことが分かる。また、比較例5、9及び11~14においては、樹脂組成物調製後1時間経過時の粘度(工程(II)における樹脂組成物の粘度)は適正ではあるものの、増粘速度が小さく、5日間養生しても粘度は低く、樹脂組成物の染み出しが見られる。また、比較例6~8においては、樹脂組成物調製後1時間経過時の粘度(工程(II)における樹脂組成物の粘度)は適正ではあるものの、樹脂組成物調製後5日経過時の粘度が非常に高く樹脂組成物の染み出しは見られないが、折り曲げ跡や樹脂と繊維の剥離が見られた。
[硬化物(注型品、FRP)の評価]
 実施例1で得られた樹脂組成物(X-1)に対し、250Wのメタルハライドランプ(ピーク波長420nm、照度20mW/cm)を用いて、60分間光照射し、170mm×170mm、厚さ4mmの注型品の硬化物(注型品)を得た。なお、上記照度は、照度計「IL1400A」(インターナショナルライトテクノロジーズ社製、受光器型式SEL005、測定波長域:380~450nm、中央値:415nm)を用いて測定した。
 また、ガラス繊維のチョップドストランドマット(「MC 450A」、日東紡績株式会社製)に、実施例1で得られた樹脂組成物(X-1)を約51g含浸させ、3枚重ねて25℃で5日間養生し、樹脂組成物含浸基材を得た。その樹脂組成物含浸基材に、250Wのメタルハライドランプ(ピーク波長420nm、照度25mW/cm)用いて、30分間光照射し、170mm×170mm、厚さ3.1mmの硬化物(FRP:ガラス繊維含有量31質量%)を得た。
 続いて、各硬化物を、それぞれ長さ80mm、幅10mmに切断加工し、温度23℃、相対湿度50%の環境下で、24時間養生し、測定評価用試験片を得た。
<曲げ強度及び曲げ弾性率>
 JIS K7171:2016に準拠し、万能材料試験機(「テンシロンUCT-1T」、株式会社オリエンテック製;支点間距離48mm、試験速度1.3mm/分)を用いて、温度23℃、湿度50%の環境下にて曲げ強度及び曲げ弾性率を測定した。
 硬化物(注型品)については試験片5枚の測定値(N=5)、硬化物(FRP)については試験片3枚の測定値(N=3)の各平均値を、各硬化物の曲げ強度及び曲げ弾性率とした。
 樹脂組成物(X-1)の硬化物(注型品)の曲げ強度は101MPa、曲げ弾性率は3.3GPaであり、硬化物(FRP)の曲げ強度は162MPa、曲げ弾性率は8.5GPaであった。
<荷重たわみ温度>
 硬化物(注型品)について、JIS K7191-1:2015及びJIS K7191-1:2015に準拠し、荷重たわみ温度(HDT)測定装置(「HDTテスターS-3M」、株式会社東洋精機製作所製)を用いて荷重たわみ温度を測定し、試験片3枚の測定値(N=3)の平均値を、硬化物の荷重たわみ温度とした。
 樹脂組成物(X-1)の硬化物(注型品)の荷重たわみ温度は90℃であった。
<バーコル硬さ>
 硬化物(注型品)及び硬化物(FRP)について、JIS K7060:1995に準拠し、バーコル硬度計(「GYZJ 934-1」、バーバー・コールマン社製)を用いて、それぞれ測定評価用試験片10枚の光照射面の裏面を測定し、その平均値を硬化物のバーコル硬さとした。
 樹脂組成物(X-1)の硬化物(FRP)のバーコル硬さは46であった。
 樹脂組成物の硬化物の曲げ強度、曲げ弾性率、及び荷重たわみ温度の測定評価結果から、得られた硬化物は、十分な機械的強度を有することが分かった。よって、本実施形態の樹脂組成物を含浸した樹脂含浸基材を含有するライニング材は、管に十分な強度を付与できる。
 本実施形態によれば、樹脂組成物調製後1時間経過時の粘度が低く、増粘速度が適度にコントロールされた、管更生用ライニング材に用いられる樹脂組成物が提供される。本実施形態に係る樹脂組成物を用いたライニング材は、施工性が良好であり、強度に優れる。

Claims (17)

  1.  樹脂組成物を調製する工程(I)と、
     繊維基材(F)に前記樹脂組成物を含浸して樹脂組成物含浸基材を得る工程(II)と、
     前記樹脂組成物含浸基材を含有するライニング材を得る工程(III)と、
     前記ライニング材を管内に配置し、光硬化させる工程(IV)と、
    を含む管の更生方法であって、
     前記樹脂組成物は、
     樹脂(A)と、
     エチレン性不飽和基含有モノマー(B)と、
     増粘剤(C)と、
     光重合開始剤(D)とを含有し、
     前記工程(II)における前記樹脂組成物の25℃での粘度が0.1~3Pa・sであり、
     工程(IV)において、前記ライニング材を管内に配置するときの前記樹脂組成物の25℃での粘度が400~3,500Pa・sである、管の更生方法。
  2.  前記樹脂(A)が、ビニルエステル樹脂(A1)及び不飽和ポリエステル樹脂(A2)から選択される少なくとも1種を含む、請求項1に記載の管の更生方法。
  3.  前記ビニルエステル樹脂(A1)が、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)、不飽和一塩基酸(a1-2)及び多塩基酸無水物(a1-3)の反応生成物である樹脂前駆体(P2)と、多塩基酸無水物(a1-4)との付加反応生成物であり、
     前記エポキシ化合物(a1-1)のエポキシ基の総量100モルに対して、前記多塩基酸無水物(a1-3)由来の、エポキシ基と反応し得る酸基の総量が5~25モルである、請求項2に記載の管の更生方法。
  4.  前記ビニルエステル樹脂(A1)が、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物である樹脂前駆体(P3)と、不飽和一塩基酸(a1-2)との反応生成物である、請求項2に記載の管の更生方法。
  5.  前記ビニルエステル樹脂(A1)が、1分子中に2個のエポキシ基を有するエポキシ化合物(a1-1)及びビスフェノール化合物(a1-5)の反応生成物である樹脂前駆体(P3)、並びに不飽和一塩基酸(a1-2)の反応生成物である樹脂前駆体(P4)と、不飽和多塩基酸(a1-6)との反応生成物である、請求項2に記載の管の更生方法。
  6.  前記不飽和ポリエステル樹脂(A2)は、ジオール(a2-1)及び二塩基酸(a2-2)の反応生成物であり、
     前記ジオール(a2-1)は、分子量が90~500のアルカンジオールである、ジオール(a2-1-1)を、前記ジオール(a2-1)100モル%に対して43~85モル%含み、
     前記二塩基酸(a2-2)は、エチレン性不飽和基含有二塩基酸(a2-2-1)及びエチレン性不飽和基非含有二塩基酸(a2-2-2)を含む、請求項2に記載の管の更生方法。
  7.  前記工程(I)完了後から工程(III)又は養生工程完了までの日数が、1日以上かつ4日以内である請求項1又は2のいずれか1項に記載の管の更生方法。
  8.  前記樹脂(A)が前記ビニルエステル樹脂(A1)を含み、
     前記樹脂組成物は、前記樹脂(A)と前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、
     前記ビニルエステル樹脂(A1)を35~90質量部、
     前記エチレン性不飽和基含有モノマー(B)を10~65質量部、
     前記増粘剤(C)を0.01~6質量部、
     前記光重合開始剤(D)を0.01~10質量部含む、請求項2に記載の管の更生方法。
  9.  前記樹脂(A)が前記不飽和ポリエステル樹脂(A2)を含み、
     前記不飽和ポリエステル樹脂(A2)及び前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、
     前記不飽和ポリエステル樹脂(A2)を20~80質量部、
     前記エチレン性不飽和基含有モノマー(B)を20~80質量部、
     前記増粘剤(C)を0.01~6質量部、
     前記カルボキシ基含有化合物を0.01~5質量部含む、請求項2に記載の管の更生方法。
  10.  前記工程(III)における前記樹脂組成物の25℃での粘度が30~1,500Pa・sである、請求項1又は2に記載の管の更生方法。
  11.  前記工程(I)完了後から工程(III)又は養生工程完了までの日数が、3日以上かつ6日以内である、請求項10に記載の管の更生方法。
  12.  前記樹脂(A)が前記ビニルエステル樹脂(A1)を含み、
     前記樹脂組成物は、前記樹脂(A)と前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、
     前記ビニルエステル樹脂(A1)を20~80質量部、
     前記エチレン性不飽和基含有モノマー(B)を20~80質量部、
     前記増粘剤(C)を0.01~6質量部、
     前記光重合開始剤(D)を0.01~10質量部含む、請求項10に記載の管の更生方法。
  13.  前記樹脂(A)が前記不飽和ポリエステル樹脂(A2)を含み、
     前記不飽和ポリエステル樹脂(A2)及び前記エチレン性不飽和基含有モノマー(B)の合計100質量部に対して、
     前記不飽和ポリエステル樹脂(A2)を20~80質量部、
     前記エチレン性不飽和基含有モノマー(B)を20~80質量部、
     前記増粘剤(C)を0.01~6質量部
     前記カルボキシ基含有化合物を0.01~5質量部含む、請求項10に記載の管の更生方法。
  14.  前記増粘剤(C)が、第2族元素の酸化物及び水酸化物から選択される少なくとも1種である、請求項1又は2に記載の管の更生方法。
  15.  前記樹脂組成物が、水及びヒドロキシ基含有化合物から選択される少なくとも1種である化合物(E)をさらに含有する、請求項1又は2に記載の管の更生方法。
  16.  前記樹脂組成物が、揺変剤をさらに含有する、請求項1又は2に記載の管の更生方法。
  17.  前記ビニルエステル樹脂(A1)の水酸基価が10~120KOHmg/gである、請求項2に記載の管の更生方法。
PCT/JP2022/030701 2021-08-13 2022-08-12 管の更生方法 WO2023017851A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247004418A KR20240029781A (ko) 2021-08-13 2022-08-12 관의 갱생 방법
JP2023541470A JPWO2023017851A1 (ja) 2021-08-13 2022-08-12
CN202280055462.6A CN117813193A (zh) 2021-08-13 2022-08-12 管的再生方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021132027 2021-08-13
JP2021-132027 2021-08-13
JP2021-166371 2021-10-08
JP2021166371 2021-10-08
JP2021-211285 2021-12-24
JP2021211285 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023017851A1 true WO2023017851A1 (ja) 2023-02-16

Family

ID=85200693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030701 WO2023017851A1 (ja) 2021-08-13 2022-08-12 管の更生方法

Country Status (3)

Country Link
JP (1) JPWO2023017851A1 (ja)
KR (1) KR20240029781A (ja)
WO (1) WO2023017851A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291179A (ja) * 2006-04-21 2007-11-08 Toa Grout Kogyo Co Ltd 硬化性樹脂組成物、ライニング材及び管状ライニング材
JP2008522866A (ja) * 2004-12-10 2008-07-03 ブランデンブルガー パテントフェアヴェルトゥング ゲゼルシャフト デス ビュルガーリッヒェン レヒツ 通路および管路を内側ライニングするための樹脂含浸させられた繊維チューブの製作
JP2011042164A (ja) * 2009-07-24 2011-03-03 Sekisui Chem Co Ltd 既設管の更生工法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217506B2 (ja) 2018-11-19 2023-02-03 吉佳エンジニアリング株式会社 既設管の補修方法及び既設管の補修システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522866A (ja) * 2004-12-10 2008-07-03 ブランデンブルガー パテントフェアヴェルトゥング ゲゼルシャフト デス ビュルガーリッヒェン レヒツ 通路および管路を内側ライニングするための樹脂含浸させられた繊維チューブの製作
JP2007291179A (ja) * 2006-04-21 2007-11-08 Toa Grout Kogyo Co Ltd 硬化性樹脂組成物、ライニング材及び管状ライニング材
JP2011042164A (ja) * 2009-07-24 2011-03-03 Sekisui Chem Co Ltd 既設管の更生工法

Also Published As

Publication number Publication date
TW202317368A (zh) 2023-05-01
JPWO2023017851A1 (ja) 2023-02-16
KR20240029781A (ko) 2024-03-06

Similar Documents

Publication Publication Date Title
CN100454142C (zh) 光固化性和热固化性树脂组合物、其感光性干薄膜及使用其的图案形成方法
WO2006129669A1 (ja) 接着剤パターン形成用組成物、それを用いて得られる積層構造物及びその製造方法
JP4538076B1 (ja) 多官能エポキシ(メタ)アクリレート化合物及び該化合物を含有する感光性熱硬化性樹脂組成物並びにその硬化物
US7666955B2 (en) Methods for producing branched-polyether resin composition and acid pendant branched-polyether resin composition
JPWO2006025236A1 (ja) 活性光線硬化型ハイパーブランチポリマーおよびそれを用いた活性光線硬化型樹脂組成物
JP2007041502A (ja) 感光性樹脂組成物
JPS6211006B2 (ja)
WO2023017851A1 (ja) 管の更生方法
WO2023017852A1 (ja) 樹脂組成物及びライニング材用材料
WO2023017853A1 (ja) ライニング材
TWI834245B (zh) 管材的修補方法
WO2017013950A1 (ja) ライニング用組成物
TWI843178B (zh) 樹脂組成物及襯材用材料
JP2006199942A (ja) 分岐ポリエーテル樹脂組成物の製造方法および酸ペンダント型分岐ポリエーテル樹脂組成物の製造方法
TWI837768B (zh) 襯材
JPWO2013141117A1 (ja) 活性エネルギー線硬化性組成物、それを用いた活性エネルギー線硬化性塗料及び活性エネルギー線硬化性印刷インキ
JP2007031576A (ja) 分岐ポリエーテル樹脂組成物の製造方法および酸ペンダント型分岐ポリエーテル樹脂組成物の製造方法
CN117813193A (zh) 管的再生方法
WO2023058323A1 (ja) 樹脂組成物及び管更生用ライニング材
JP7153991B2 (ja) 不飽和基含有ポリカルボン酸樹脂、それを含有する感光性樹脂組成物及びその硬化物
KR101999596B1 (ko) 광경화시트 제조용 수지 조성물 및 이의 제조방법
CN117836338A (zh) 树脂组合物及衬里件用材料
WO2023017854A1 (ja) 樹脂組成物及びその製造方法、並びに複合材料
JP2006321947A (ja) エポキシ(メタ)アクリレート化合物及び該化合物を含有する光硬化性及び/又は熱硬化性樹脂組成物並びにその硬化物
JP7288167B2 (ja) エチレン性不飽和基、酸基および二級水酸基含有ポリアミドイミド樹脂、エチレン性不飽和基および酸基含有ポリアミドイミド樹脂並びに製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541470

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247004418

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004418

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280055462.6

Country of ref document: CN