WO2023017712A1 - 窒化物半導体基板及びその製造方法 - Google Patents

窒化物半導体基板及びその製造方法 Download PDF

Info

Publication number
WO2023017712A1
WO2023017712A1 PCT/JP2022/027993 JP2022027993W WO2023017712A1 WO 2023017712 A1 WO2023017712 A1 WO 2023017712A1 JP 2022027993 W JP2022027993 W JP 2022027993W WO 2023017712 A1 WO2023017712 A1 WO 2023017712A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
semiconductor substrate
substrate
silicon oxide
Prior art date
Application number
PCT/JP2022/027993
Other languages
English (en)
French (fr)
Inventor
和徳 萩本
一平 久保埜
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN202280052927.2A priority Critical patent/CN117795137A/zh
Publication of WO2023017712A1 publication Critical patent/WO2023017712A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys

Definitions

  • the present invention relates to a nitride semiconductor substrate and its manufacturing method.
  • Nitride semiconductors such as GaN and AlN can be used to fabricate high electron mobility transistors (HEMTs) using two-dimensional electron gas and high withstand voltage electronic devices.
  • HEMTs high electron mobility transistors
  • nitride wafers by growing these nitride semiconductors on a substrate, and sapphire substrates and SiC substrates are used as substrates.
  • epitaxial growth by vapor phase growth on a silicon substrate is used.
  • Production of an epitaxially grown film on a silicon substrate by vapor phase epitaxy is advantageous in terms of device productivity and heat dissipation because a substrate having a larger diameter can be used than a sapphire substrate or a SiC substrate.
  • warping and plastic deformation are likely to occur due to stress due to differences in lattice constants and thermal expansion coefficients, and stress is reduced by growth conditions and relaxation layers.
  • a large-diameter substrate (hereinafter referred to as a composite substrate) for nitride semiconductor epitaxial film growth, which has a large diameter and a coefficient of thermal expansion close to that of a nitride semiconductor, has been developed.
  • the composite substrate includes a polycrystalline ceramic core, a first adhesive layer generally bonded to the polycrystalline ceramic core, a conductive layer optionally bonded across the first adhesive layer, and the conductive layer.
  • a composite substrate comprising a second adhesive layer bonded over the layers or the first adhesive layer and a barrier layer bonded over the second adhesive layer; and a composite substrate bonded to only one side of the composite substrate. and a monocrystalline silicon layer coupled to the silicon oxide layer (Patent Document 1).
  • a nitride semiconductor epitaxial growth substrate having a large diameter, a thick epitaxial layer, and no cracks can be produced.
  • the difference in thermal expansion coefficient from that of the nitride semiconductor is small, warping is less likely to occur during growth of the nitride semiconductor or during cooling, and the warping of the substrate after film formation can be controlled to be small.
  • the substrate itself is very hard and is resistant to plastic deformation.
  • a growth substrate composed of a silicon oxide layer bonded to only one side of such a composite substrate and a single-crystal silicon layer bonded to the silicon oxide layer is used to epitaxially grow a nitride semiconductor to form a HEMT structure.
  • a nitride semiconductor substrate is manufactured, fogging occurs on the mirror edge surface after epitaxial growth.
  • reaction traces are often generated, which becomes a source of dust generation during the process.
  • residues such as chemicals during the process remain in the clouded portion, which may cause defects during the process.
  • the present invention has been made to solve the above-mentioned problems, and provides a nitride semiconductor substrate and a method for manufacturing the same which are free from fogging on the mirror-finished edge surface after epitaxial growth, therefore free from dust generation and reaction marks, and which have few defects during the process. intended to provide
  • a nitride semiconductor substrate comprising a single crystal silicon layer laminated on the silicon oxide layer or the TEOS layer, and a nitride semiconductor thin film formed on the single crystal silicon layer,
  • a nitride semiconductor substrate is provided in which the entire flat surface of the central portion of the silicon oxide layer or the TEOS layer is covered with the single crystal silicon layer.
  • the silicon oxide layer or TEOS layer is formed.
  • the nitride semiconductor thin film does not grow polycrystalline on the flat surface, so that the nitride semiconductor substrate can be provided with no fogging on the mirror edge surface, dust generation and reaction marks, and few defects during the process.
  • the side surface of the silicon oxide layer or the TEOS layer is covered with a silicon nitride film.
  • the composite substrate includes a polycrystalline ceramic core, a first adhesive layer laminated over the polycrystalline ceramic core, a second adhesive layer laminated over the first adhesive layer, and the second adhesive layer. and a barrier layer laminated over two adhesive layers.
  • the composite substrate may have a conductive layer laminated over the entire first adhesive layer between the first adhesive layer and the second adhesive layer.
  • a nitride semiconductor substrate using such a composite substrate can be a nitride semiconductor substrate in which warpage of the substrate after film formation is suppressed.
  • the conductive layer includes a polysilicon layer.
  • first adhesive layer and the second adhesive layer contain TEOS or silicon oxide
  • barrier layer contain silicon nitride
  • warping of the substrate after film formation can be controlled to be even smaller, and a thick nitride semiconductor thin film can be formed.
  • the polycrystalline ceramic core preferably contains aluminum nitride.
  • a method for manufacturing a nitride semiconductor substrate comprising: (1) preparing a composite substrate having a plurality of layers laminated and a single crystal silicon substrate; (2) bonding the single crystal silicon substrate onto the composite substrate via a silicon oxide layer or a TEOS layer; (3) thinning the bonded single crystal silicon substrate to form a single crystal silicon layer; (4) Edges of the silicon oxide layer or the TEOS layer and the single crystal silicon layer so that the entire flat surface of the central portion of the silicon oxide layer or the TEOS layer is covered with the single crystal silicon layer.
  • a method for manufacturing a semiconductor substrate is provided.
  • the step (4) is a chamfering step.
  • the exposure of the silicon oxide layer or the TEOS layer can be reliably eliminated.
  • the composite substrate includes a polycrystalline ceramic core, a first adhesive layer laminated over the entire polycrystalline ceramic core, a second adhesive layer laminated over the entire first adhesive layer, and the second adhesive layer. and a barrier layer laminated over two adhesive layers.
  • the composite substrate has a conductive layer laminated over the entire first adhesive layer between the first adhesive layer and the second adhesive layer.
  • a nitride semiconductor substrate and a method for manufacturing the same which have no fogging on the mirror edge surface after epitaxial growth, and thus have no dust generation or reaction marks and few defects during the process. can.
  • FIG. 1 is a schematic cross-sectional view showing an example of a film-forming substrate in which a composite substrate, a silicon oxide layer, and a single-crystal silicon layer are laminated in the nitride semiconductor substrate of the present invention
  • FIG. FIG. 2 is a schematic cross-sectional view for explaining in detail the silicon oxide layer in the nitride semiconductor substrate of the present invention
  • FIG. 2 is a schematic cross-sectional view showing an example of a film-forming substrate in which a composite substrate, a silicon oxide layer, and a single crystal silicon layer are laminated in the case where a silicon nitride film is formed on the side surface of a silicon oxide layer in the nitride semiconductor substrate of the present invention; be.
  • FIG. 1 is a schematic cross-sectional view showing an example of a film-forming substrate obtained by laminating a composite substrate, a silicon oxide layer, and a single-crystal silicon layer in a conventional nitride semiconductor substrate;
  • FIG. 1 is a schematic diagram showing an example of an MOCVD apparatus that can be used in the method for manufacturing a nitride semiconductor substrate of the present invention;
  • FIG. 1 is a schematic diagram showing an example of a substrate for film formation of a nitride semiconductor substrate of the present invention;
  • FIG. 1A to 1D are explanatory diagrams of an example of a method for manufacturing a nitride semiconductor substrate of the present invention;
  • FIG. 10 is a cross-sectional view of a conventional nitride semiconductor substrate when a poly layer is grown on the edge of the substrate; 9 is an enlarged view of the boundary between the single crystal layer and the poly layer in FIG. 8;
  • FIG. 10 is a cross-sectional view showing a conventional
  • a HEMT structure is obtained by epitaxially growing a nitride semiconductor using a deposition substrate composed of a silicon oxide layer laminated only on one side of a composite substrate and a single crystal silicon layer laminated on the silicon oxide layer.
  • the nitride semiconductor substrate of is manufactured, the mirror edge surface after epitaxial growth is cloudy. At the interface between the mirror surface and the cloudy portion, reaction traces are often generated, resulting in reduced dust generation during the process.
  • FIG. 8 shows the interface between the single crystal and the poly-grown portion.
  • residues such as chemicals during the process remain on the poly portion, which may cause defects during the process.
  • the edge portion of the substrate is free from fogging. It turned out that it can be done, and the present invention was completed.
  • the present invention provides a composite substrate in which a plurality of layers are laminated, a silicon oxide layer or a TEOS layer laminated on the composite substrate and having a central flat surface and side surfaces around the flat surface;
  • a nitride semiconductor substrate comprising a single crystal silicon layer laminated on a silicon oxide layer or a TEOS layer, and a nitride semiconductor thin film formed on the single crystal silicon layer, said silicon oxide layer or TEOS layer is a nitride semiconductor substrate in which the entire flat surface of the central portion of is covered with the single crystal silicon layer.
  • the present invention also provides a method for manufacturing a nitride semiconductor substrate, comprising the steps of: (1) preparing a composite substrate having a plurality of layers laminated thereon and a single crystal silicon substrate; (3) thinning the bonded single crystal silicon substrate to form a single crystal silicon layer; (4) the silicon oxide layer or TEOS layer; (5) forming the silicon oxide layer or the TEOS layer and the end portions of the monocrystalline silicon layer such that the entire flat surface of the central portion of the layer is covered with the monocrystalline silicon layer;
  • a nitride semiconductor substrate comprising the steps of: growing an AlN film on said single crystal silicon layer; and (6) growing at least one selected from a GaN film, an AlGaN film and an AlN film on said AlN film. is a manufacturing method.
  • the nitride semiconductor substrate of the present invention includes a composite substrate, a bonding layer composed of a silicon oxide layer (SiO 2 layer) or a TEOS (tetraethylorthosilicate) layer, and a film formation substrate containing a single crystal silicon layer, and the film formation substrate. Including the nitride semiconductor thin film formed on the substrate, the entire flat surface of the bonding layer is covered with a single-crystal silicon layer.
  • the bonding layer is a silicon oxide layer will be described as an example, but the same can be applied to the case where the bonding layer is a TEOS layer.
  • FIG. 1 shows an example of a film-forming substrate including a composite substrate, a silicon oxide layer, and a single crystal silicon layer in the nitride semiconductor substrate of the present invention.
  • a single-crystal silicon layer 3 is stacked on a composite substrate 1 with a silicon oxide layer 2 interposed therebetween.
  • the difference from the prior art is that the entire flat surface of the silicon oxide layer 2 in FIG. 1 is covered with the monocrystalline silicon layer 3 . That is, the silicon oxide layer is not exposed at the end portion 4 of the flat surface of the silicon oxide layer. That is, the entire flat surface of the central portion of the silicon oxide layer 2 is covered with the single crystal silicon layer 3 .
  • the end portion 4 of the flat surface of the silicon oxide layer 2 is not covered with the single crystal silicon layer 3 . Therefore, when the nitride semiconductor thin film is grown on the deposition substrate, a poly layer of the nitride semiconductor thin film grows on the exposed silicon oxide layer 2 at the end portion 4 of the flat surface. In contrast, in the present invention, the silicon oxide layer 2 is not exposed at the end portion 4 of the flat surface, so the poly layer of the nitride semiconductor thin film does not grow on the silicon oxide layer 2 .
  • the silicon oxide layer 2 has a flat surface 21 (a surface indicated by a dotted line) in the central portion and a flat surface 21 around the flat surface. and a side surface 22 (the surface indicated by the thick line).
  • the entire planar surface 21 is covered with the monocrystalline silicon layer 3 .
  • the side surface 22 around the flat surface 21 may or may not be covered with the single crystal silicon layer 3, but it is easier to manufacture if it is not covered with the single crystal silicon layer 3. point is preferable.
  • the side surface 22 may be perpendicular to the flat surface 21 as shown in (a), or the side surface 22 may be inclined as shown in (b). Further, although the side surface 22 is drawn as a straight line (flat surface) in the drawing, the side surface 22 may be curved. The side surface 22 may also be a chamfered surface.
  • the nitride semiconductor thin film deposited on the deposition substrate can be an AlN film and a GaN film or an AlGaN film, or both, formed thereon.
  • an AlN film, an AlGaN film, and a GaN film can be epitaxially grown on a film-forming substrate using a rotation-revolution MOCVD reactor as shown in FIG.
  • the film-forming substrate comprises, for example, a polycrystalline ceramic core 6, a first adhesive layer 7 laminated over the entire polycrystalline ceramic core, and a laminate laminated over the first adhesive layer 7, as shown in FIG. a composite substrate including a conductive layer 8 coated with a conductive layer 8, a second adhesive layer 9 laminated over the entire conductive layer 8, and a barrier layer 10 laminated over the second adhesive layer 9; It can be composed of a silicon oxide layer 2 laminated only on one side and a single crystal silicon layer 3 laminated on the silicon oxide layer 2 .
  • the polycrystalline ceramic core 6 can contain aluminum nitride, is sintered at a high temperature of, for example, 1800° C. with a sintering aid, and preferably has a thickness of about 300-1150 ⁇ m. Basically, it is often formed with a thickness of the SEMI standard for a single crystal silicon substrate.
  • the first adhesion layer 7 and the second adhesion layer 9 can be layers comprising tetraethylorthosilicate (TEOS) or silicon oxide (SiO 2 ), deposited for example by LPCVD or CVD processes, and having a thickness of 100 nm. It preferably has a thickness.
  • TEOS tetraethylorthosilicate
  • SiO 2 silicon oxide
  • the conductive layer 8 may comprise a polysilicon layer, deposited eg by an LPCVD process or the like, and preferably having a thickness of about 300 nm. This is a layer for imparting electrical conductivity and can be doped with, for example, boron (B) or phosphorus (P). Also, this conductive layer 8 may not be deposited in some cases.
  • the barrier layer 10 may comprise silicon nitride, is deposited, for example, by an LPCVD process, and preferably has a thickness of 400 nm to 500 nm. This prevents the diffusion and outgassing of elements present in the ceramic core, such as yttrium, yttrium oxide, oxygen, metallic impurities and other trace elements, into the environment of the semiconductor processing chamber during the high temperature epitaxial growth process. It is a layer for elements present in the ceramic core, such as yttrium, yttrium oxide, oxygen, metallic impurities and other trace elements, into the environment of the semiconductor processing chamber during the high temperature epitaxial growth process. It is a layer for
  • the silicon oxide layer 2 is deposited by, for example, an LPCVD process, and preferably has a thickness of about 1.5 ⁇ m.
  • the monocrystalline silicon layer 3 preferably has a thickness of 300-500 nm. This layer is used as a growth surface for epitaxial growth of nitride semiconductors such as AlN and GaN.
  • each layer has a composite substrate with a plurality of laminated layers.
  • the nitride semiconductor substrate of the first embodiment of the present invention can be manufactured, for example, as follows, by the method of manufacturing a nitride semiconductor substrate of the present invention.
  • a composite substrate and a single crystal silicon substrate as described above are prepared (step (1)).
  • the single crystal silicon substrate may have an oxide film (silicon oxide layer) attached.
  • a single crystal silicon substrate is bonded to the composite substrate via a silicon oxide layer (step (2)).
  • a silicon oxide layer is deposited on the composite substrate, for example by an LPCVD process, and preferably has a thickness of the order of 1.5 ⁇ m.
  • the silicon oxide layer may be a combination of a silicon oxide layer deposited on the composite substrate and a silicon oxide layer attached to the single crystal silicon substrate.
  • a single crystal silicon substrate can be laminated and bonded to the silicon oxide layer using, for example, a layer transfer process.
  • the bonded single crystal silicon substrate is thinned to form a single crystal silicon layer (step (3)).
  • the monocrystalline silicon layer preferably has a thickness of 300-500 nm.
  • a method for thinning the single crystal silicon layer is not particularly limited, and a conventional method can be applied.
  • the surface of the single crystal silicon substrate can be thinned by grinding/polishing or etching.
  • a so-called ion implantation delamination method may be used in which an ion implantation layer is formed in advance on a single crystal silicon substrate and the ion implantation layer is delaminated after bonding.
  • the step (4) can be a step of chamfering the outer peripheral portion of the single crystal silicon. At that time, for example, as shown in FIG. 1, chamfering is performed so that the flat portion of the silicon oxide layer is not exposed.
  • a nitride semiconductor thin film is formed on the single crystal silicon layer.
  • This step includes, for example, a step of growing an AlN film on the single-crystal silicon layer (step (5)), and growing any one or more selected from a GaN film, an AlGaN film, and an AlN film on the AlN film. It can be a step (step (6)).
  • FIG. 5 shows a schematic diagram of an example of an MOCVD apparatus that can be used in the method of manufacturing a nitride semiconductor substrate of the present invention.
  • the MOCVD apparatus includes a satellite 52 having a pocket for mounting the film-forming substrate 51, a quartz sealing ring 53 and quartz 54, and a ring-shaped ring mounted so as to cover the inside from the edge of the film-forming substrate 51.
  • a member 55 is provided.
  • 56 is the direction of carrier gas flow and 57 is the direction of opening the lid.
  • a film-forming substrate can be placed in a wafer pocket called a satellite as shown in FIG. 5, for example.
  • trimethylaluminum TMGa as Ga source
  • NH3 N source
  • the carrier gas can be N 2 and/or H 2
  • the process temperature is preferably about 900-1200° C., for example.
  • the film formation substrate is placed on the satellite, and then the lid is closed to perform epitaxial growth.
  • the epitaxial layer for example, an AlN film and an AlGaN film can be formed in order from the substrate side toward the growth direction, and then a GaN film can be epitaxially grown.
  • the structure of the epitaxial layer is not limited to this, and there are cases where the AlGaN film is not formed, and there are cases where the AlN film is formed after forming the AlGaN film.
  • the nitride semiconductor substrate of the present invention may be covered with With such a nitride semiconductor substrate, it is possible to more reliably prevent the poly layer of the nitride semiconductor thin film from growing on the edge of the growth substrate.
  • the silicon nitride film 5 may cover only the side surface of the silicon oxide layer 2, may cover the side surface of the silicon oxide layer 2 and the side surface of the single crystal silicon layer 3, or may cover the side surface of the single crystal silicon layer 3. It may cover up to the edge of the epitaxial growth surface of the layer 3 .
  • the silicon oxide layer is partially exposed by chamfering (that is, the side surface of the silicon oxide layer is exposed), and the exposed silicon oxide layer is coated with a silicon nitride film (step (4')).
  • a CVD-SiN film is deposited on the entire surface of the wafer that was first chamfered ((1) in FIG. 7).
  • the exposed silicon oxide layer is protected with a resist in a photolithography process ((2) in FIG. 7), and then the active layer portion is exposed.
  • This wafer is dry etched by a dry etching apparatus to remove the SiN film on the active layer portion ((3) in FIG. 7). After that, the resist of the protective film is removed and washed.
  • epitaxial growth is performed in the same manner as in the first embodiment ((4) in FIG. 7).
  • Example 1 A 100 nm TEOS layer enclosing a polycrystalline ceramic core of 300 ⁇ m, a 300 nm polysilicon layer enclosing the TEOS layer, a 100 nm TEOS layer enclosing the polysilicon, and a 400 nm silicon nitride layer (barrier layer) enclosing the TEOS layer are coated with a silicon oxide film, and then an oxide film is formed. It was bonded to the attached single crystal silicon substrate, and thinned (400 nm) by polishing from the surface of the single crystal silicon substrate.
  • the edge portion was chamfered, the single crystal silicon layer was not shaved more than necessary so that the flat surface of the silicon oxide layer was not exposed on the wafer surface as shown in FIG.
  • epitaxial growth of a HEMT structure GaN 3 nm/AlGaN 25 nm/GaN 5000 nm/tilted AlGaN 200 nm/AlN 150 nm/n-Si was performed.
  • Example 1 The yield by the manufacturing method of Example 1 was improved by 4% compared to the comparative example described later.
  • Example 2 After attaching a single crystal silicon layer as shown in FIG. 7, the edge portion is chamfered, the side surface of the silicon oxide film is exposed, a CVD-SiN film is deposited over the entire surface of the wafer, and then a photolithography process is performed. The exposed oxide film was protected so as to expose the active layer portion, and the wafer was dry-etched by a dry etching apparatus to remove the SiN film on the active layer portion and remove and wash the resist of the protective film. Through the above steps, a nitride semiconductor substrate in which the side surface of the silicon oxide layer was covered with the silicon nitride film was manufactured.
  • Example 2 The yield by the manufacturing method of Example 2 was improved by 6% compared to the comparative example described later.
  • Example 2 A nitride semiconductor substrate was manufactured under the same conditions as in Example 1, except that the flat surface of the silicon oxide film was partially exposed on the wafer surface as shown in FIG. As a result, the yield was lower than that of Examples 1 and 2.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、複数の層が積層された複合基板、該複合基板上に積層された、中央部の平坦面と、該平坦面の周囲に側面とを有する酸化シリコン層又はTEOS層、該酸化シリコン層又はTEOS層上に積層された単結晶シリコン層、及び該単結晶シリコン層上に成膜された窒化物半導体薄膜を含むものである窒化物半導体基板であって、前記酸化シリコン層又はTEOS層の中央部の平坦面の全体が、前記単結晶シリコン層で覆われたものであることを特徴とする窒化物半導体基板である。これにより、エピタキシャル成長後の鏡面エッジ表面に曇りのない、したがって、発塵や反応痕がなくプロセス中の不良の少ない窒化物半導体基板及びその製造方法が提供される。

Description

窒化物半導体基板及びその製造方法
 本発明は、窒化物半導体基板及びその製造方法に関する。
 GaNやAlNをはじめとする窒化物半導体は、2次元電子ガスを用いた高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)や高耐圧電子デバイスの作製に用いることができる。
 これらの窒化物半導体を基板上に成長させた窒化物ウェーハを製作することは難しく、基板としては、サファイア基板やSiC基板が用いられている。しかし、大口径化や基板のコストを抑えるために、シリコン基板上への気相成長によるエピタキシャル成長が用いられている。シリコン基板上への気相成長によるエピタキシャル成長膜の作製は、サファイア基板やSiC基板に比べて大口径の基板が使用できるのでデバイスの生産性が高く、放熱性の点で有利である。ただし、格子定数差や熱膨張係数差による応力により、反りの増大や塑性変形が起こりやすく、成長条件や緩和層による応力低減が行われている。
 高耐圧電子デバイスでは、高耐圧特性を向上させるため、エピタキシャル層を厚く積む必要がある。その為、エピタキシャル層を厚く積むと、その基板であるシリコン基板がエピタキシャル層との熱膨張係数の違いにより、ウェーハに反りが発生する。
 そのため、大口径で且つ窒化物半導体と熱膨張係数が近い窒化物半導体エピタキシャル膜成長用の大口径基板(以下、複合基板)が開発されている。この複合基板は、多結晶セラミックコアと、前記多結晶セラミックコアに全体に結合された第1の接着層と、前記第1の接着層全体に必要に応じて結合された導電層と、前記導電層全体又は前記第1の接着層全体に結合された第2の接着層と、前記第2の接着層全体に結合されたバリア層とを含む複合基板と、前記複合基板の片面のみに結合された酸化シリコン層と、前記酸化シリコン層に結合された単結晶シリコン層により構成される(特許文献1)。
 この複合基板を用いることで、大口径で且つエピタキシャル層が厚く、且つクラックの発生しない窒化物半導体エピタキシャル成長基板を作製できる。また、窒化物半導体と熱膨張係数差が小さいため、窒化物半導体成長中や冷却中に反りが発生しにくく、成膜後の基板の反りを小さく制御できる。さらに、複合基板は大部分がセラミックスであるため、基板自体が非常に硬く塑性変形しにくいだけでなく、GaN/Siで解決されていないウェーハ割れが発生しない。
 しかし、このような複合基板の片面のみに結合された酸化シリコン層と、前記酸化シリコン層に結合された単結晶シリコン層により構成される成長基板を用いて窒化物半導体をエピタキシャル成長させてHEMT構造の窒化物半導体基板を製造したとき、エピタキシャル成長後の鏡面エッジ表面に曇りが発生する。前記鏡面と曇り部分の界面には、反応痕が発生することが多々あり、プロセス中の発塵源となる。また、曇り部分には、プロセス中の薬液等の残渣が残り、プロセス中に不良を発生させる原因ともなる。
特表2021-502701号公報
 本発明は上記課題を解決するためになされたもので、エピタキシャル成長後の鏡面エッジ表面に曇りのない、したがって、発塵や反応痕がなくプロセス中の不良の少ない窒化物半導体基板及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、
 複数の層が積層された複合基板、
 該複合基板上に積層された、中央部の平坦面と、該平坦面の周囲に側面とを有する酸化シリコン層又はTEOS層、
 該酸化シリコン層又はTEOS層上に積層された単結晶シリコン層、及び
 該単結晶シリコン層上に成膜された窒化物半導体薄膜
を含むものである窒化物半導体基板であって、
 前記酸化シリコン層又はTEOS層の中央部の平坦面の全体が、前記単結晶シリコン層で覆われたものである窒化物半導体基板を提供する。
 このように窒化物半導体薄膜の成長面である前記単結晶シリコン層の端部から酸化シリコン層又はTEOS層の平坦面が露出していない窒化物半導体基板であれば、酸化シリコン層又はTEOS層の平坦面に窒化物半導体薄膜が多結晶成長することがなく、したがって、鏡面エッジ表面に曇りがなく、発塵や反応痕がなくプロセス中の不良の少ない窒化物半導体基板とすることができる。
 また、前記酸化シリコン層又はTEOS層の前記側面が、窒化シリコン膜で覆われたものであることが好ましい。
 このような窒化物半導体基板であればより確実に曇りの発生を抑えることができる。
 また、前記複合基板が、多結晶セラミックコアと、前記多結晶セラミックコア全体に積層された第1の接着層と、前記第1の接着層全体に積層された第2の接着層と、前記第2の接着層全体に積層されたバリア層とを含むものであることが好ましい。
 またこのとき、前記複合基板が、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層全体に積層された導電層を有していてもよい。
 このような複合基板を用いた窒化物半導体基板であれば、成膜後の基板の反りが抑制された窒化物半導体基板とすることができる。
 また、前記導電層がポリシリコン層を含むものであることが好ましい。
 また、前記第1の接着層及び前記第2の接着層がTEOS又は酸化シリコンを含み、かつ、前記バリア層が窒化シリコンを含むものであることが好ましい。
 このような窒化物半導体基板であれば、成膜後の基板の反りを更に小さく制御でき、厚い窒化物半導体薄膜の成膜も可能である。
 また、前記多結晶セラミックコアが、窒化アルミニウムを含むものであることが好ましい。
 このような窒化物半導体基板であれば、成膜後の基板の反りをより小さくすることができる。
 また本発明では、窒化物半導体基板の製造方法であって、
(1)複数の層が積層された複合基板と単結晶シリコン基板を準備する工程、
(2)前記複合基板上に、前記単結晶シリコン基板を、酸化シリコン層又はTEOS層を介して接合する工程、
(3)前記接合した単結晶シリコン基板を薄膜化して、単結晶シリコン層を形成する工程、
(4)前記酸化シリコン層又はTEOS層の中央部の平坦面の全体が前記単結晶シリコン層で覆われたものとなるように、前記酸化シリコン層又はTEOS層、及び前記単結晶シリコン層の端部を形成する工程、
(5)前記単結晶シリコン層上にAlN膜を成長させる工程、及び
(6)前記AlN膜上にGaN膜、AlGaN膜、及びAlN膜から選ばれるいずれか一つ以上を成長させる工程
を含む窒化物半導体基板の製造方法を提供する。
 このような製造方法であれば比較的容易に鏡面エッジ表面に曇りがなく、発塵や反応痕がなくプロセス中の不良の少ない窒化物半導体基板を製造することができる。
 また、前記工程(4)を、面取り工程とすることが好ましい。
 このようにすれば従来の工程の数を増やすことなく製造することができる。
 また、前記工程(4)と前記工程(5)の間に、さらに、(4´)少なくとも前記酸化シリコン層又はTEOS層の側面を、窒化シリコン膜で被覆する工程を含むことが好ましい。
 このようにすれば確実に酸化シリコン層又はTEOS層の露出を無くすことができる。
 また、前記複合基板を、多結晶セラミックコアと、前記多結晶セラミックコア全体に積層された第1の接着層と、前記第1の接着層全体に積層された第2の接着層と、前記第2の接着層全体に積層されたバリア層とを含むものとすることが好ましい。
 またこのとき、前記複合基板を、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層全体に積層された導電層を有するものとすることが好ましい。
 このような製造方法であれば成膜後の基板の反りをより小さくすることができる。
 以上のように、本発明であれば、エピタキシャル成長後の鏡面エッジ表面に曇りのない、したがって、発塵や反応痕がなくプロセス中の不良の少ない窒化物半導体基板及びその製造方法を提供することができる。
本発明の窒化物半導体基板における複合基板、酸化シリコン層、及び単結晶シリコン層を積層した成膜用基板の一例を示す概略断面図である。 本発明の窒化物半導体基板における酸化シリコン層を詳細に説明するための概略断面図である。 本発明の窒化物半導体基板において、酸化シリコン層の側面に窒化シリコン膜を形成した場合の複合基板、酸化シリコン層、及び単結晶シリコン層を積層した成膜用基板の一例を示す概略断面図である。 従来の窒化物半導体基板における複合基板、酸化シリコン層、及び単結晶シリコン層を積層した成膜用基板の一例を示す概略断面図である。 本発明の窒化物半導体基板の製造方法に用いることができる、MOCVD装置の一例を示す概略図である。 本発明の窒化物半導体基板の成膜用基板の一例を示す概略図である。 本発明の窒化物半導体基板の製造方法の一例の説明図である。 従来の窒化物半導体基板において、基板端部にポリ層が成長した場合の断面図である。 図8の単結晶層とポリ層の境界部の拡大図である。
 上述したように複合基板の片面のみに積層された酸化シリコン層と、前記酸化シリコン層に積層された単結晶シリコン層により構成される成膜用基板を用いて窒化物半導体をエピタキシャル成長させてHEMT構造の窒化物半導体基板を製造したとき、エピタキシャル成長後の鏡面エッジ表面が曇っている。前記鏡面と曇り部分の界面には、反応痕が発生することが多々あり、プロセス中の発塵減となる。
 本発明者らが鏡面部と曇った部分を断面SEM観察すると、鏡面部は窒化物半導体薄膜が単結晶成長、曇った部分はポリ成長していることが判った(図8)。そして鏡面部分は、単結晶シリコン層上に成長しているが、曇った部分は酸化シリコン層上に成長していることが判った。また、単結晶とポリ成長した部分の界面を図9に示す。また、ポリ部分には、プロセス中の薬液等の残渣が残り、プロセス中に不良を発生させる原因ともなる。
 そして、複数の層が積層された複合基板上に酸化シリコン層を介して単結晶シリコン層が接合された成膜用基板上に、窒化物半導体薄膜が成膜されている窒化物半導体基板であって、前記窒化物半導体薄膜の成長面である前記単結晶シリコン層の端部から酸化シリコン層の平坦面が露出しない窒化物半導体基板であれば、基板のエッジ部分に曇りのない基板とすることができることが判り、本発明を完成させた。
 即ち、本発明は、複数の層が積層された複合基板、該複合基板上に積層された、中央部の平坦面と、該平坦面の周囲に側面とを有する酸化シリコン層又はTEOS層、該酸化シリコン層又はTEOS層上に積層された単結晶シリコン層、及び該単結晶シリコン層上に成膜された窒化物半導体薄膜を含むものである窒化物半導体基板であって、前記酸化シリコン層又はTEOS層の中央部の平坦面の全体が、前記単結晶シリコン層で覆われたものである窒化物半導体基板である。
 また本発明は、窒化物半導体基板の製造方法であって、(1)複数の層が積層された複合基板と単結晶シリコン基板を準備する工程、(2)前記複合基板上に、前記単結晶シリコン基板を、酸化シリコン層又はTEOS層を介して接合する工程、(3)前記接合した単結晶シリコン基板を薄膜化して、単結晶シリコン層を形成する工程、(4)前記酸化シリコン層又はTEOS層の中央部の平坦面の全体が前記単結晶シリコン層で覆われたものとなるように、前記酸化シリコン層又はTEOS層、及び前記単結晶シリコン層の端部を形成する工程、(5)前記単結晶シリコン層上にAlN膜を成長させる工程、及び(6)前記AlN膜上にGaN膜、AlGaN膜、及びAlN膜から選ばれるいずれか一つ以上を成長させる工程を含む窒化物半導体基板の製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
(第一実施形態)
 本発明の窒化物半導体基板は、複合基板、酸化シリコン層(SiO層)又はTEOS(テトラエチルオルトシリケート)層からなる接合層、及び単結晶シリコン層を含む成膜用基板、及び該成膜用基板上に成膜された窒化物半導体薄膜を含み、接合層の平坦面の全体が単結晶シリコン層で覆われたものである。以下、本明細書中では接合層が酸化シリコン層の場合を例に説明するが、接合層がTEOS層の場合についても同様に適用することができる。
 図1に、本発明の窒化物半導体基板における、複合基板、酸化シリコン層、及び単結晶シリコン層を含む成膜用基板の一例を示す。該成膜用基板では、複合基板1上に、酸化シリコン層2を介して単結晶シリコン層3が積層されている。ここで従来技術との違いは、図1中の酸化シリコン層2の平坦面の全体が単結晶シリコン層3で覆われていることである。すなわち、酸化シリコン層の平坦面の端部4において酸化シリコン層の露出がない。すなわち、酸化シリコン層2の中央部の平坦面の全体が単結晶シリコン層3で覆われたものである。
 図4に示すように、従来の窒化物半導体基板では酸化シリコン層2の平坦面の端部4は単結晶シリコン層3で覆われていない。それゆえに、窒化物半導体薄膜を成膜用基板上に成長させた場合に、平坦面の端部4の、露出した酸化シリコン層2の上に窒化物半導体薄膜のポリ層が成長してしまう。これに対し、本発明では平坦面の端部4で酸化シリコン層2が露出していないから、窒化物半導体薄膜のポリ層が酸化シリコン層2上に成長することはない。
 ここで図2を用いて、本発明における酸化シリコン層の構成についてより詳細に説明する。図2の(a)、(b)に示すように、本発明の窒化物半導体基板では、酸化シリコン層2は中央部の平坦面21(点線で示した面)と、該平坦面の周囲に側面22(太線で示した面)とを有する。本発明では、平坦面21の全体が単結晶シリコン層3によって覆われている。一方、平坦面21の周囲の側面22は、単結晶シリコン層3で覆われていてもいなくてもよいが、単結晶シリコン層3で覆われていないものとする方が、製造が容易である点で好ましい。また、(a)に示すように側面22は平坦面21に対して垂直であってもよいし、(b)に示すように側面22が傾斜していてもよい。また図中では側面22は直線(平面)として描かれているが、側面22は曲面状であってもよい。また側面22は、面取り面であってもよい。
 本発明において、成膜用基板上に成膜されている窒化物半導体薄膜は、AlN膜とその上にGaN膜またはAlGaN膜、又はその両方が形成されているものであることができる。例えば、図5に示したような、自公転型のMOCVD反応炉を用いて、成膜用基板上にAlN膜、AlGaN膜およびGaN膜のエピタキシャル成長を行うことができる。
 前記成膜用基板は、例えば図6に示すように多結晶セラミックコア6と、前記多結晶セラミックコアの全体に積層された第1の接着層7と、前記第1の接着層7全体に積層された導電層8と、前記導電層8全体に積層された第2の接着層9と、前記第2の接着層9全体に積層されたバリア層10とを含む複合基板と、前記複合基板の片面のみに積層された酸化シリコン層2と、前記酸化シリコン層2に積層された単結晶シリコン層3により構成されることができる。
 ここで、多結晶セラミックコア6は窒化アルミニウムを含むことができ、焼結助剤によって例えば1800℃の高温で焼結され、約300~1150μmの厚さを有することが好ましい。基本的には単結晶シリコン基板のSEMI規格の厚さで形成される場合が多い。
 第1の接着層7および第2の接着層9は、テトラエチルオルトシリケート(TEOS)ないしは酸化シリコン(SiO)を含む層であることができ、例えばLPCVDプロセスやCVDプロセス等によって堆積され、100nmの厚さを有することが好ましい。
 導電層8は、ポリシリコン層を含むことができ、例えばLPCVDプロセス等によって堆積され、約300nmの厚さを有することが好ましい。これは導電性を付与するための層であり、例えばホウ素(B)やリン(P)等がドープされることができる。また、この導電層8は場合によっては堆積されないことがある。
 バリア層10は、窒化ケイ素を含むことができ、例えばLPCVDプロセス等によって堆積され、400nm~500nmの厚さを有することが好ましい。これは高温のエピタキシャル成長プロセス中に、例えばイットリウム、酸化イットリウム、酸素、金属不純物、他の微量元素などの、セラミックコア中に存在する元素の、半導体処理チャンバの環境への拡散やガス放出を防止するための層である。
 酸化シリコン層2は、例えばLPCVDプロセス等によって堆積され、厚さは1.5μm程度であることが好ましい。単結晶シリコン層3は、300~500nmの厚さを有することが好ましい。これは、AlNやGaN等の窒化物半導体のエピタキシャル成長のための成長面として利用される層である。
 各層の厚さは、上記の値に限定されず、必ずしもすべての層が存在するという訳ではないが、本発明における成膜用基板は、少なくとも単結晶シリコン層と、酸化シリコン層又はTEOS層と複数の層が積層された複合基板を有する。
 本発明の第一実施形態の窒化物半導体基板は、本発明の窒化物半導体基板の製造方法によって、例えば、以下のように製造することができる。
 まず、上述のような複合基板、及び単結晶シリコン基板を準備する(工程(1))。単結晶シリコン基板は、酸化膜(酸化シリコン層)が付いたものであってもよい。
 次に、複合基板上に、単結晶シリコン基板を、酸化シリコン層を介して接合する(工程(2))。酸化シリコン層は、例えばLPCVDプロセス等によって複合基板上に堆積され、厚さは1.5μm程度とすることが好ましい。もしくは、酸化シリコン層は、複合基板上に堆積した酸化シリコン層と単結晶シリコン基板に付いた酸化シリコン層とを合わせたものとしてもよい。単結晶シリコン基板は、例えば、層転写プロセスを用いて酸化シリコン層に貼り合わせて接合されることができる。
 次に、接合した単結晶シリコン基板を薄膜化して、単結晶シリコン層を形成する(工程(3))。単結晶シリコン層は、300~500nmの厚さを有することが好ましい。単結晶シリコン層の薄膜化の方法は特に限定されず従来法を適用できる。例えば、複合基板と単結晶シリコン基板を酸化シリコン層を介して接合した後、単結晶シリコン基板の表面から、研削・研磨あるいはエッチングすることによって薄膜化することができる。また、単結晶シリコン基板に予めイオン注入層を形成し、接合後イオン注入層で剥離する、いわゆるイオン注入剥離法によってもよい。
 次に、酸化シリコン層の中央部の平坦面の全体が単結晶シリコン層で覆われたものとなるように、酸化シリコン層及び単結晶シリコン層の端部を形成する(工程(4))。工程(4)は、単結晶シリコン外周部の面取りを行う工程とすることができる。その際、例えば、図1に示すように酸化シリコン層の平坦部が露出しないように面取りを行う。
 次に、単結晶シリコン層上に、窒化物半導体薄膜を成膜する。この工程は、例えば、単結晶シリコン層上にAlN膜を成長させる工程(工程(5))、及びAlN膜上にGaN膜、AlGaN膜、及びAlN膜から選ばれるいずれか一つ以上を成長させる工程(工程(6))とすることができる。
 図5に本発明の窒化物半導体基板の製造方法に用いることができる、MOCVD装置の一例の概略図を示す。MOCVD装置は、成膜用基板51を載置するポケットを有するサテライト52、石英製のシーリング53及びクォーツ54、及び成膜用基板51の端部から内方を覆うように載置されるリング状部材55を備える。56はキャリアガス流の方向であり、57は蓋を開ける方向である。
 成膜用基板は、例えば図5のようにサテライトと呼ばれるウェーハポケットに載置することができる。エピタキシャル成長の際、Al源としてトリメチルアルミニウム(TMAl)、Ga源としてTMGa、N源としてNHを用いることができ、これらに限定されない。また、キャリアガスはNおよびH、またはそのいずれかとすることができ、プロセス温度は例えば900~1200℃程度とすることが好ましい。
 この時、サテライトの上に成膜用基板を載置し、その後、蓋を閉めエピタキシャル成長を行う。この際、エピタキシャル層は基板側から成長方向に向かって順に例えばAlN膜、AlGaN膜を成膜し、その後GaN膜をエピタキシャル成長させることができる。エピタキシャル層の構造はこれに限らず、AlGaN膜を成膜しない場合や、AlGaN膜成膜後さらにAlN膜を成膜する場合もある。
(第二実施形態)
 本発明の窒化物半導体基板は、図3に示すように、複合基板1、酸化シリコン層2、及び単結晶シリコン層3を含む成膜用基板を、酸化シリコン層2の側面が窒化シリコン膜5で覆われたものとしてもよい。このような窒化物半導体基板であれば、成長用基板の端部に窒化物半導体薄膜のポリ層が成長することをより確実に防ぐことができる。なお、窒化シリコン膜5は、酸化シリコン層2の側面のみを覆っていてもよいし、酸化シリコン層2の側面と単結晶シリコン層3の側面を覆っていてもよいし、さらには単結晶シリコン層3のエピタキシャル成長面の端部まで被覆していてもよい。
 第二実施形態では面取りで一部酸化シリコン層を露出させ(即ち、酸化シリコン層の側面を露出させ)、露出した酸化シリコン層に窒化シリコン膜を被膜する(工程(4´))。具体的には図7に示すように最初に面取りしたウェーハ全面にCVD-SiN膜を堆積する(図7の(1))。その後、フォトリソ工程にて露出酸化シリコン層を覆うようにレジストで保護をし(図7の(2))、続いて活性層部分は露出させる。このウェーハをドライエッチング装置にてドライエッチングし、活性層部分のSiN膜を除去する(図7の(3))。その後、保護膜のレジストを除去・洗浄する。その後は第一実施形態と同様にエピタキシャル成長を行う(図7の(4))。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 多結晶セラミックコア300μmを包むTEOS層100nm、TEOS層を包むポリシリコン層300nm、ポリシリコンを包むTEOS層100nm、TEOS層を包む窒化シリコン層(バリア層)400nmに酸化シリコン膜を付け、酸化膜を付けた単結晶シリコン基板と貼り合せ、単結晶シリコン基板の表面から、研磨することによって薄膜化(400nm)した。次にエッジ部を面取りする際に、必要以上に面取りで単結晶シリコン層を削らないようにして図1に示すようにウェーハ表面に酸化シリコン層の平坦面を露出させないようにした。その後、HEMT構造(GaN3nm/AlGaN25nm/GaN5000nm/傾斜 AlGaN200nm/AlN150nm/n-Si)のエピタキシャル成長を行った。
 実施例1の製造方法による歩留まりは後述する比較例に比べて4%向上した。
(実施例2)
 図7に示すように単結晶シリコン層を付けたのち、エッジ部の面取りを行い、酸化シリコン膜の側面を露出させて、ウェーハ全面にCVD-SiN膜を堆積して、その後、フォトリソ工程にて露出酸化膜を覆うように保護をし、活性層部分は露出させ、このウェーハをドライエッチング装置にてドライエッチングし、活性層部分のSiN膜を除去し保護膜のレジストを除去・洗浄した。以上の工程により、酸化シリコン層の側面が窒化シリコン膜で覆われた窒化物半導体基板を作製した。
 実施例2の製造方法による歩留まりは後述する比較例に比べて6%向上した。
(比較例)
 図4のようにウェーハ表面に酸化シリコン膜の平坦面を一部露出させたことを除き、実施例1と同様な条件で窒化物半導体基板を製造した。その結果、実施例1、実施例2に比べて歩留まりが低い結果となった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (12)

  1.  複数の層が積層された複合基板、
     該複合基板上に積層された、中央部の平坦面と、該平坦面の周囲に側面とを有する酸化シリコン層又はTEOS層、
     該酸化シリコン層又はTEOS層上に積層された単結晶シリコン層、及び
     該単結晶シリコン層上に成膜された窒化物半導体薄膜
    を含むものである窒化物半導体基板であって、
     前記酸化シリコン層又はTEOS層の中央部の平坦面の全体が、前記単結晶シリコン層で覆われたものであることを特徴とする窒化物半導体基板。
  2.  前記酸化シリコン層又はTEOS層の前記側面が、窒化シリコン膜で覆われたものであることを特徴とする請求項1に記載の窒化物半導体基板。
  3.  前記複合基板が、多結晶セラミックコアと、前記多結晶セラミックコア全体に積層された第1の接着層と、前記第1の接着層全体に積層された第2の接着層と、前記第2の接着層全体に積層されたバリア層とを含むものであることを特徴とする請求項1又は請求項2に記載の窒化物半導体基板。
  4.  前記複合基板が、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層全体に積層された導電層を有するものであることを特徴とする請求項3に記載の窒化物半導体基板。
  5.  前記導電層がポリシリコン層を含むものであることを特徴とする請求項4に記載の窒化物半導体基板。
  6.  前記第1の接着層及び前記第2の接着層がTEOS又は酸化シリコンを含み、かつ、前記バリア層が窒化シリコンを含むものであることを特徴とする請求項3から請求項5のいずれか一項に記載の窒化物半導体基板。
  7.  前記多結晶セラミックコアが、窒化アルミニウムを含むものであることを特徴とする請求項3から請求項6のいずれか一項に記載の窒化物半導体基板。
  8.  窒化物半導体基板の製造方法であって、
    (1)複数の層が積層された複合基板と単結晶シリコン基板を準備する工程、
    (2)前記複合基板上に、前記単結晶シリコン基板を、酸化シリコン層又はTEOS層を介して接合する工程、
    (3)前記接合した単結晶シリコン基板を薄膜化して、単結晶シリコン層を形成する工程、
    (4)前記酸化シリコン層又はTEOS層の中央部の平坦面の全体が前記単結晶シリコン層で覆われたものとなるように、前記酸化シリコン層又はTEOS層、及び前記単結晶シリコン層の端部を形成する工程、
    (5)前記単結晶シリコン層上にAlN膜を成長させる工程、及び
    (6)前記AlN膜上にGaN膜、AlGaN膜、及びAlN膜から選ばれるいずれか一つ以上を成長させる工程
    を含むことを特徴とする窒化物半導体基板の製造方法。
  9.  前記工程(4)を、面取り工程とすることを特徴とする請求項8に記載の窒化物半導体基板の製造方法。
  10.  前記工程(4)と前記工程(5)の間に、さらに、(4´)少なくとも前記酸化シリコン層又はTEOS層の側面を、窒化シリコン膜で被覆する工程を含むことを特徴とする請求項8又は請求項9に記載の窒化物半導体基板の製造方法。
  11.  前記複合基板を、多結晶セラミックコアと、前記多結晶セラミックコア全体に積層された第1の接着層と、前記第1の接着層全体に積層された第2の接着層と、前記第2の接着層全体に積層されたバリア層とを含むものとすることを特徴とする請求項8から請求項10のいずれか一項に記載の窒化物半導体基板の製造方法。
  12.  前記複合基板を、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層全体に積層された導電層を有するものとすることを特徴とする請求項11に記載の窒化物半導体基板の製造方法。
PCT/JP2022/027993 2021-08-10 2022-07-19 窒化物半導体基板及びその製造方法 WO2023017712A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280052927.2A CN117795137A (zh) 2021-08-10 2022-07-19 氮化物半导体基板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021130675A JP2023025432A (ja) 2021-08-10 2021-08-10 窒化物半導体基板及びその製造方法
JP2021-130675 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023017712A1 true WO2023017712A1 (ja) 2023-02-16

Family

ID=85200478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027993 WO2023017712A1 (ja) 2021-08-10 2022-07-19 窒化物半導体基板及びその製造方法

Country Status (4)

Country Link
JP (1) JP2023025432A (ja)
CN (1) CN117795137A (ja)
TW (1) TW202314803A (ja)
WO (1) WO2023017712A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106906A (ja) * 2011-08-11 2012-06-07 Sumitomo Electric Ind Ltd GaN系膜の製造方法
JP2020074399A (ja) * 2016-06-14 2020-05-14 クロミス,インコーポレイテッド 電力およびrf用途用の設計された基板構造
JP2021502701A (ja) 2017-11-06 2021-01-28 クロミス,インコーポレイテッド 加工基板構造物を使用して実現された電力デバイスおよびrfデバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106906A (ja) * 2011-08-11 2012-06-07 Sumitomo Electric Ind Ltd GaN系膜の製造方法
JP2020074399A (ja) * 2016-06-14 2020-05-14 クロミス,インコーポレイテッド 電力およびrf用途用の設計された基板構造
JP2021502701A (ja) 2017-11-06 2021-01-28 クロミス,インコーポレイテッド 加工基板構造物を使用して実現された電力デバイスおよびrfデバイス

Also Published As

Publication number Publication date
TW202314803A (zh) 2023-04-01
JP2023025432A (ja) 2023-02-22
CN117795137A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
KR102458634B1 (ko) 전력 디바이스를 위한 질화 갈륨 에피택셜 구조
JP5371430B2 (ja) 半導体基板並びにハイドライド気相成長法により自立半導体基板を製造するための方法及びそれに使用されるマスク層
US6176925B1 (en) Detached and inverted epitaxial regrowth & methods
JP2006523033A (ja) シリコン上に単結晶GaNを成長させる方法
US11335557B2 (en) Multi-deposition process for high quality gallium nitride device manufacturing
JP6141627B2 (ja) シリコン基板上にGaN層を形成する方法およびGaN基板
TWI754710B (zh) 用於垂直功率元件之方法及系統
TW202141578A (zh) 用於在陶瓷基板上整合元素及複合半導體的方法及系統
US20180174823A1 (en) Manufacturing method of gallium nitride substrate
US20170221705A1 (en) Composite substrate, semiconductor device, and method for manufacturing thereof
WO2023017712A1 (ja) 窒化物半導体基板及びその製造方法
US20220115340A1 (en) Methods and systems for fabrication of mmic and rf devices on engineered substrates
WO2013187078A1 (ja) 半導体基板、半導体基板の製造方法および複合基板の製造方法
JP7290182B2 (ja) 窒化物半導体基板及びその製造方法
US11961765B2 (en) Method for manufacturing a semiconductor substrate and device by bonding an epitaxial substrate to a first support substrate, forming a first and second protective thin film layer, and exposing and bonding a nitride semiconductor layer to a second support substrate
US20220290327A1 (en) Semiconductor wafer and method for manufacturing same
JP7290156B2 (ja) 窒化物半導体基板及びその製造方法
WO2023026847A1 (ja) 窒化物半導体基板及びその製造方法
WO2023063278A1 (ja) 窒化物半導体基板及びその製造方法
WO2023119916A1 (ja) 窒化物半導体基板および窒化物半導体基板の製造方法
TW202401525A (zh) Iii族氮化物半導體晶圓及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855776

Country of ref document: EP

Effective date: 20240311