WO2023017636A1 - X線分析装置 - Google Patents

X線分析装置 Download PDF

Info

Publication number
WO2023017636A1
WO2023017636A1 PCT/JP2022/011513 JP2022011513W WO2023017636A1 WO 2023017636 A1 WO2023017636 A1 WO 2023017636A1 JP 2022011513 W JP2022011513 W JP 2022011513W WO 2023017636 A1 WO2023017636 A1 WO 2023017636A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
degrees
rays
characteristic
wavelength
Prior art date
Application number
PCT/JP2022/011513
Other languages
English (en)
French (fr)
Inventor
哲弥 米田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202280054630.XA priority Critical patent/CN117836615A/zh
Priority to JP2023541212A priority patent/JPWO2023017636A1/ja
Publication of WO2023017636A1 publication Critical patent/WO2023017636A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2209Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using wavelength dispersive spectroscopy [WDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence

Definitions

  • the present disclosure relates to an X-ray analysis device.
  • the characteristic X-rays emitted by a sample irradiated with excitation rays have wavelengths determined by the elements contained in the sample. Therefore, the composition of the sample can be determined by detecting the intensity of the characteristic X-rays for each wavelength.
  • a method of detecting characteristic X-rays by measuring the intensity of each wavelength in this way is called a “wavelength dispersion type”.
  • Patent Document 1 discloses an X-ray analyzer capable of measuring the composition of a sample with high sensitivity by spectroscopy. be.
  • an excitation source irradiates a sample with excitation rays, and the sample irradiated with the excitation rays generates characteristic X-rays.
  • the generated characteristic X-rays pass through the slit and reach the analyzing crystal. By passing the characteristic X-rays through this slit, the angle of incidence of the characteristic X-rays on the analyzing crystal varies depending on the position in the sample where the characteristic X-rays are generated.
  • Characteristic X-rays diffracted by the analyzing crystal reach the detector.
  • the detector is composed of a plurality of detection elements arranged in a predetermined direction. is detected according to the angle of incidence of the characteristic X-rays on the analyzing crystal.
  • the X-ray analyzer generates an X-ray spectrum based on X-ray intensities corresponding to energies detected by each of the plurality of detector elements. Then, the X-ray analyzer analyzes the sample based on this X-ray spectrum.
  • the direction of characteristic X-rays dispersed at the midpoint of the surface of the analyzing crystal and the arrangement of the plurality of detection elements is preferably set to 90 degrees.
  • the angle formed by the direction of the characteristic X-rays dispersed at the midpoint of the surface of the analyzing crystal and the arrangement direction of the plurality of detection elements is set to 80 degrees or more and less than 100 degrees. .
  • This invention was made to solve such problems, and its purpose is to improve the accuracy of sample analysis without downsizing the detection element.
  • the X-ray analysis apparatus of the present disclosure includes an excitation source, an analyzing crystal, and multiple detection elements.
  • the excitation source irradiates the sample with excitation radiation.
  • the analyzing crystal disperses the characteristic X-rays generated by the sample irradiated with the excitation rays for each wavelength.
  • a plurality of detection elements are arranged so that each detects the intensity of each wavelength spectroscopically separated by the analyzing crystal.
  • the angle formed by the direction of the characteristic X-rays dispersed at the midpoint of the effective surface of the analyzing crystal and the arrangement direction of the plurality of detection elements is less than 80 degrees or 100 degrees or more.
  • the effective surface of the analyzing crystal is a portion where the characteristic X-rays incident on the effective region of the detector are dispersed among the characteristic X-rays dispersed by the analyzing crystal.
  • the angle formed by the direction of characteristic X-rays dispersed at the midpoint of the effective surface of the analyzing crystal and the arrangement direction of the plurality of detection elements is less than 80 degrees or 100 degrees. It is configured as described above. Therefore, it is possible to pseudo-shorten the pitch of the plurality of detector elements when the plurality of detector elements are viewed from the midpoint of the surface of the analyzing crystal using the existing detector elements. Therefore, it is possible to pseudo-shorten the pitch of the detection elements using the existing detection elements, and as a result, it is possible to increase the number of measurement points per unit wavelength and improve the analysis accuracy of the sample.
  • FIG. 1 is a schematic configuration diagram of an X-ray analysis apparatus according to an embodiment
  • FIG. 2 is a diagram schematically showing the internal configuration of the device main body 10
  • FIG. FIG. 2 is a diagram showing an analyzing crystal and a detector of an X-ray analysis device
  • Fig. 2 shows the detector and direction P in the analyzer when the angle ⁇ is 90 degrees
  • FIG. 3 shows a portion of an X-ray spectrum
  • 4 is an example of a table showing the relationship between the width of the wavelength range input by the user and the angle ⁇ . It is an example of a table showing the relationship between the mode input by the user and the angle ⁇ .
  • the X-ray analysis apparatus is an X-ray analysis apparatus equipped with a wavelength dispersive spectroscope.
  • a wavelength dispersive X-ray fluorescence spectrometer will be described below as an example of the X-ray spectrometer according to the present embodiment.
  • the "wavelength dispersive type" is a system in which characteristic X-rays are dispersed by a spectroscopic element and the characteristic X-ray intensity is measured for each wavelength of interest to detect a characteristic X-ray spectrum.
  • FIG. 1 is a schematic configuration diagram of an X-ray analysis apparatus (hereinafter also referred to as "analysis apparatus 100") according to this embodiment.
  • analysis device 100 has device body 10 and signal processing device 20 .
  • the device body 10 is configured to irradiate a sample with excitation rays and detect characteristic X-rays generated from the sample.
  • the excitation radiation is typically X-rays.
  • a detection signal corresponding to the characteristic X-rays detected by the device body 10 is transmitted to the signal processing device 20 .
  • the signal processing device 20 has a controller 22 and a display 24 and an operation section 26 connected to the controller 22 .
  • the signal processing device 20 controls the operation of the device body 10 .
  • the signal processing device 20 is configured to analyze the detection signal transmitted from the device main body 10 and display the results based on the analysis on the display 24 .
  • the display 24 is composed of a liquid crystal panel or the like capable of displaying an image.
  • the operation unit 26 receives user's operation input to the analysis device 100 .
  • the operation unit 26 is typically composed of a touch panel, keyboard, mouse, and the like.
  • the controller 22 has a processor 30, a memory 32, a communication interface (I/F) 34, and an input/output I/F 36 as main components. These units are communicably connected to each other via a bus.
  • the processor 30 is typically an arithmetic processing unit such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit).
  • the processor 30 reads out and executes programs stored in the memory 32 to control the operation of each part of the analysis device 100 .
  • the processor 30 realizes analysis processing of the detection signal transmitted from the device body 10 by executing the program.
  • the configuration with a single processor is illustrated, but the controller 22 may have a configuration with a plurality of processors.
  • the memory 32 is realized by nonvolatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), and flash memory.
  • the memory 32 stores programs executed by the processor 30, data used by the processor 30, and the like.
  • the input/output I/F 36 is an interface for exchanging various data between the processor 30 and the display 24 and operation unit 26.
  • the communication I/F 34 is a communication interface for exchanging various data with the device main body 10, and is realized by an adapter, connector, or the like.
  • the communication method may be a wireless communication method using a wireless LAN (Local Area Network) or the like, or may be a wired communication method using a USB (Universal Serial Bus) or the like.
  • FIG. 2 is a diagram schematically showing the internal configuration of the device body 10. As shown in FIG. Referring to FIG. 2 , apparatus main body 10 has sample holder 110 holding sample S, excitation source 120 , slit 130 , analyzing crystal 140 and detector 150 .
  • the excitation source 120 is an X-ray source that irradiates the sample S with X-rays, which are excitation light (excitation rays).
  • An electron beam source may be used instead of the X-ray source.
  • the surface of the sample holder 110 on which the sample S is held is defined as the XY plane, and the irradiation direction of the excitation rays from the excitation source 120 is defined as the Z-axis direction.
  • the sample S may be solid, liquid, or gas, and the sample holder 110 corresponding to the state of the sample S is used.
  • the surface of the sample S is irradiated with excitation light emitted from the excitation source 120 .
  • the sample S emits characteristic X-rays.
  • the excitation light is irradiated perpendicularly to the surface of the sample S, but the excitation light may be irradiated at an angle inclined with respect to the surface of the sample S.
  • the analyzing crystal 140 is made of, for example, a silicon single crystal, a lithium fluoride single crystal, or a germanium single crystal.
  • a specific crystal plane is parallel to the surface of the crystal. Only a specific crystal plane can be used for detecting characteristic X-rays, and erroneous detection of characteristic X-rays Bragg-reflected by other crystal planes can be prevented.
  • the detector 150 has a plurality of detection elements 151 arranged along a predetermined arrangement direction. Although the number of detection elements 151 is nine in FIG. 2 for the sake of convenience, in practice the number is, for example, 1000 or more.
  • the detection element 151 is made of silicon or the like, for example.
  • the sample S When the surface of the sample S is irradiated with excitation rays from the excitation source 120 while the sample S is held by the sample holder 110, the sample S emits characteristic X-rays.
  • the emitted characteristic X-rays have different wavelengths depending on the elements forming the sample S.
  • Characteristic X-rays emitted by irradiating the region from position A1 to position A2 with excitation rays emitted from excitation source 120 pass through slit 130 and reach analyzing crystal 140 .
  • characteristic X-rays generated at positions A1 and A2 are indicated by broken lines.
  • Position A2 is located in the positive direction of the X-axis from position A1. Both the irradiation area at the position A1 and the irradiation area at the position A2 extend in the Y-axis direction.
  • the incident angle of the characteristic X-ray is (90 ⁇ ) degrees. Due to the arrangement angle between the surface of the sample S fixed to the sample holder 110 and the surface of the analyzing crystal 140, the characteristic X-ray emitted at the position A1 hits the analyzing crystal 140 at an incident angle of (90- ⁇ 1 ) degrees. A characteristic X-ray incident and emitted at position A2 enters analyzing crystal 140 at an incident angle of (90 ⁇ 2 ) degrees. That is, by passing through the slit 130 , the incident angle of the characteristic X-rays to the analyzing crystal 140 can be varied according to the position of the characteristic X-rays generated in the sample S.
  • (2d/n) sin ⁇ ( ⁇ is the wavelength of the characteristic X-rays, d is the spectral Only characteristic X-rays having a wavelength that satisfies the crystal plane spacing of the crystal 140 (where n is the order) are diffracted by the analyzing crystal 140 and reach the detector 150 .
  • the slit 130, the analyzing crystal 140, and the detector 150 are fixed, but the characteristic X-ray having a wavelength that satisfies the Bragg condition within the range of ⁇ 2 ⁇ 1 It is configured to be diffracted by crystal 140 and reach detector 150 .
  • the characteristic X-rays diffracted by the analyzing crystal 140 are emitted at the same angle as the incident angle, the characteristic X-rays Bragg-reflected by the analyzing crystal 140 are detected by one of the plurality of detection elements 151 arranged at a position corresponding to the emission angle. 151.
  • characteristic X-rays with wavelengths satisfying the Bragg conditions for different diffraction angles are detected for each of the plurality of detection elements.
  • the analysis apparatus 100 can recognize the wavelengths included in the characteristic X-rays by knowing the detection element that detected the characteristic X-rays.
  • the wavelength of characteristic X-rays differs for each element. Therefore, analysis apparatus 100 can analyze a sample (for example, identify elements contained in the sample) by identifying the detection element from which the characteristic X-ray is detected in detector 150 .
  • the apparatus main body 10 spectroscopically detects the intensity of each wavelength by spectrally dispersing the characteristic X-rays generated by the sample irradiated with the excitation rays.
  • the device body 10 transmits the intensity of each of the plurality of detection elements to the signal processing device 20 .
  • the signal processing device 20 can acquire an X-ray spectrum in which the energy corresponding to the wavelength of the characteristic X-ray detected by each of the plurality of detection elements and the intensity of the characteristic X-ray corresponding to the energy are associated. .
  • the sample By comparing the signal processing device 20, the X-ray spectrum of a known sample, and the acquired X-ray spectrum, the sample can be analyzed (for example, the elements contained in the sample can be specified). Note that the middle point 140M, the middle point 150M, the detection plane 150V, and the angle ⁇ in FIG. 2 will be described with reference to FIG.
  • FIG. 3 is a diagram showing the slit 130, the analyzing crystal 140, and the detector 150 of the analysis device 100 of this embodiment. 3, the directions of the slit 130, the analyzing crystal 140, and the detector 150 are changed from those in FIG. 2 for convenience.
  • the surface of analyzing crystal 140 is hereinafter referred to as "surface 140A" (see also FIG. 2).
  • Surface 140A is a plane perpendicular to arrangement direction S of crystal planes of analyzing crystal 140 .
  • a portion of the surface 140A that is part of the range where characteristic X-rays incident on the effective area of the detector are dispersed is referred to as an "effective surface 140A1”.
  • a point symmetrical to the central portion 130M of the opening of the slit 130 with respect to the extension line Q of the surface 140A is referred to as a "symmetry point 130L".
  • the midpoint (central point) of effective surface 140A1 of analyzing crystal 140 is referred to as “midpoint 140M”.
  • a detection surface where characteristic X-rays diffracted by analyzing crystal 140 are detected that is, a detection effective area of detector 150 is referred to as "detection surface 150V".
  • the midpoint of the detection surface 150V in the arrangement direction T of the plurality of detection elements 151 (the central point of the detection surface 150V) is referred to as the "midpoint 150M”.
  • the midpoint 140M and the midpoint 150M are respectively the midpoint of the effective surface 140A1 and the midpoint of the detection surface 150V when viewed from the extending direction of the surface 140A (the Y-axis direction shown in FIG. 2).
  • the interval between the center lines of the detection elements 151 is referred to as "width L”.
  • the width L is also referred to as the "detector pitch”.
  • the direction from the midpoint 140M to the midpoint 150M is called "direction P".
  • the symmetry point 130L, the midpoint 140M, and the midpoint 150M are configured to be positioned on a straight line along the direction P.
  • the detectors 150 are arranged so that the angle ⁇ between the arrangement direction T and the direction P falls within the range of less than 80 degrees or 100 degrees or more.
  • angle ⁇ and detector 150 are fixed.
  • the angle ⁇ is also the angle formed by the traveling direction (that is, direction P) of the characteristic X-ray diffracted at the midpoint 140M and the arrangement direction T.
  • FIG. The reason why the angle ⁇ is set to less than 80 degrees or 100 degrees or more will be described later. Also, as shown in FIG.
  • the angle formed by the direction (direction P) of characteristic X-rays diffracted (spectroscopically) at the midpoint 140M of the effective surface 140A1 of the analyzing crystal and the arrangement direction T of the plurality of detection elements is the angle ⁇ .
  • the position at which the characteristic X-rays dispersed at the midpoint 140M reaches the midpoint 150M in the plurality of detecting elements 151 is the midpoint 150M.
  • detector 150 is arranged with respect to analyzing crystal 140 so that angle ⁇ described in FIG. 3 is less than 80 degrees or 100 degrees or more.
  • Adopt a configuration that A configuration may be employed in which detector 150 is arranged with respect to analyzing crystal 140 such that the entire straight line connecting surface 140A of analyzing crystal 140 and detection surface 150V is less than 80 degrees or 100 degrees or more.
  • the detection element pitch L with respect to the radiation direction of the diffracted characteristic X-rays can be pseudo-reduced. Therefore, in the X-ray analysis apparatus of the present embodiment, although the energy range to be measured is reduced, the number of measurement points per unit wavelength (or per unit energy) in the characteristic X-ray spectrum while using the existing size detection element can be increased.
  • the unit wavelength indicates a wavelength with a predetermined length.
  • unit energy indicates energy of a predetermined magnitude.
  • FIG. 4 is a diagram showing the detector 150 and the direction P in the analysis device (hereinafter also referred to as “comparative X-ray analysis device”) when the angle ⁇ is ⁇ /2.
  • the pitch of the detection elements 151 is the width L when viewed from the direction P (the direction from the midpoint 140M to the midpoint 150M).
  • FIG. 5 is a diagram showing the detection element 151 and the direction P in the X-ray analysis apparatus of this embodiment. As shown in FIG. 5 (see also FIG.
  • the angle ⁇ is an angle belonging to the range of less than 80 degrees or greater than or equal to 100 degrees.
  • a configuration in which the angle ⁇ falls within the range of less than 70 degrees or 120 degrees or more may be adopted.
  • the angle ⁇ is 30 degrees may be adopted.
  • the number of measurement points can be doubled in the predetermined energy range as compared with the case where the angle ⁇ is 90 degrees.
  • FIG. 6 is a diagram showing part of the X-ray spectrum.
  • the vertical axis indicates the intensity of the characteristic X-rays
  • the horizontal axis indicates the energy of the characteristic X-rays.
  • the detection element pitch seen from the direction P has a width L, and the interval of detected energy corresponding to the width L is Ea.
  • FIG. 6A shows X-ray intensities P1 to P8 in energy ranges E1 to E2.
  • FIG. 6B shows the X-ray intensities P11 to P18 in the energy range E3 to E4. Note that the energy range E3-E4 is smaller than the energy range E1-E2.
  • the pitch of the detection elements 151 seen from the direction P is a pseudo width of L/2. Therefore, although the energy detection range is half that in the case of FIG. 6A, the analyzer 100 can create a characteristic X-ray spectrum with twice the number of measurement points. For example, in FIG. 6A, the number of measurement points in the energy range is 4 points with X-ray intensities P3 to P6, but in FIG. become a point.
  • the range detected by one detection element in FIG. 6(A) is detected by two adjacent detection elements in FIG. 6(B). That is, for example, the X-ray intensity P5 in FIG. 6A is the sum of the X-ray intensity P15 and the X-ray intensity P16 in FIG. 6B.
  • the peak is actually located at the energy of P16 as shown in FIG. 6(B).
  • P5 is shown as a position shifted from P16.
  • the analysis apparatus 100 of the present embodiment can create a characteristic X-ray spectrum at a larger number of measurement points by reducing the pitch of the detection elements 151 when viewed from the direction P (planar view). can. That is, the analysis device 100 of this embodiment can perform analysis with higher accuracy. This makes it possible to accurately specify the peak position.
  • the number of measurement points can be increased by setting the angle ⁇ to be less than 80 degrees or 100 degrees or more. Therefore, the analyzer 100 of the present embodiment can perform more accurate analysis using existing detection elements.
  • the amount of characteristic X-rays incident on one detection element decreases.
  • the intensity of the characteristic X-rays to be emitted is reduced. More specifically, the intensity of characteristic X-rays detected by one detection element when ⁇ is less than 80 degrees or 100 degrees or more is detected by one detection element when the angle ⁇ is ⁇ /2. is sin ⁇ times the intensity of the characteristic X-rays. In other words, the smaller the angle ⁇ , the lower the X-ray intensity detected by one detection element.
  • the angle ⁇ is preferably determined in consideration of the desired number of measurement points, the X-ray intensity detected by one detection element, and cost.
  • FIG. 7 is a configuration example of the device main body 10A in the analyzer of the second embodiment.
  • the device main body 10A includes a driving device 170 that drives the detector 150 (a plurality of detection elements 151).
  • the driving device 170 is controlled by the signal processing device 20 .
  • the signal processing device 20 of the present embodiment can accept input of the wavelength range (or energy range) used in the signal processing device 20 from the user.
  • the signal processing device 20 displays the X-ray spectrum of the energy range corresponding to the input wavelength range, but does not display the X-ray spectrum of the energy range corresponding to wavelength ranges other than the input wavelength range. Therefore, since the analysis apparatus 100 displays only the X-ray spectrum in the wavelength range desired by the user, it is possible not to display the X-ray spectrum unnecessary for the user.
  • the angle ⁇ is 80 degrees or more and less than 100 degrees
  • the detected wavelength range (or energy range) widens
  • the angle ⁇ is less than 80 degrees and 100 degrees or more.
  • the number of measurement points is increased.
  • the angle ⁇ is assumed to be 90 degrees or less.
  • the driver 170 drives the detector 150 so that the larger the wavelength range width ⁇ input by the user, the larger the angle ⁇ .
  • the wavelength range width ⁇ is a difference value between the wavelength of the maximum value and the wavelength of the minimum value in the wavelength range.
  • FIG. 8 is an example of a table showing the relationship between the wavelength range width ⁇ for the wavelength range input by the user and the angle ⁇ . This table is stored in memory 32, for example. In FIG. 8, S1 ⁇ S2 ⁇ S3 ⁇ S4 and ⁇ 1 ⁇ 2 ⁇ 3.
  • the signal processing device 20 controls the driving device 170 so that the angle ⁇ becomes the angle ⁇ 1. do.
  • the signal processing device 20 controls the driving device 170 so that the angle ⁇ becomes the angle ⁇ 2.
  • the signal processing device 20 controls the driving device 170 so that the angle ⁇ becomes the angle ⁇ 3.
  • the signal processing device 20 controls the driving device 170 so that the value (angle) corresponds to the width of the wavelength range input by the user. More specifically, the larger the wavelength range width ⁇ , the larger the angle ⁇ . That is, when the input wavelength range width ⁇ is large, the signal processing device 20 increases the angle ⁇ (angle ⁇ is 90 degrees or a value close to 90 degrees), thereby widening the wavelength range (energy range). It can be increased (see FIG. 6A). On the other hand, when the input wavelength range width ⁇ is small, the signal processing device 20 reduces the angle ⁇ to increase the number of measurement points in this wavelength range and improve the analysis accuracy. Therefore, the analyzer of the present embodiment can perform analysis corresponding to the wavelength range desired by the user.
  • the user can select one of a plurality of modes including the first mode and the second mode by operating the operation unit 26 .
  • Signal processor 20 sets the selected mode.
  • signal processing device 20 causes memory 32 to store a mode flag indicating the mode selected by the user.
  • signal processing device 20 stores a first mode flag in memory 32 when the first mode is selected.
  • the signal processing device 20 stores the second mode flag in the memory 32 when the second mode is selected.
  • FIG. 9 is a diagram showing the first mode and the second mode.
  • the first mode is a mode that extends the energy detection range more than the second mode.
  • the angle ⁇ becomes the angle ⁇ 1.
  • the angle ⁇ 1 is any angle in the range of 80 degrees or more and less than 100 degrees.
  • the angle ⁇ 1 is, for example, 90 degrees.
  • the second mode is a mode in which the number of measurement points can be increased more than in the first mode.
  • the angle ⁇ becomes the angle ⁇ 2.
  • the angle ⁇ 2 is any angle in the range of less than 80 degrees and 100 degrees or more.
  • the angle ⁇ 2 is, for example, 30 degrees.
  • the user can select between the first mode in which the detection range is extended and the second mode in which the number of measurement points is increased. Therefore, user convenience can be improved.
  • the configuration in which the signal processing device 20 controls the driving device 170 so as to automatically change the angle ⁇ has been described.
  • the driving device 170 may be controlled by the user operating the operation unit 26 .
  • the angle ⁇ can be set to the angle desired by the user.
  • An X-ray analysis apparatus includes an excitation source that irradiates an excitation ray onto a sample, and an analyzing crystal that disperses the characteristic X-rays generated by the sample irradiated with the excitation ray for each wavelength. , a plurality of detecting elements each arranged to detect the intensity of each wavelength dispersed by the analyzing crystal, the direction of characteristic X-rays dispersed at the midpoint of the effective surface of the analyzing crystal; The angle formed by the arrangement direction of the plurality of detection elements is less than 80 degrees or 100 degrees or more.
  • the number of measurement points in the characteristic X-ray spectrum can be increased, so the energy resolution of characteristic X-rays can be improved.
  • the number of measurement points in the characteristic X-ray spectrum can be increased, so the energy resolution of characteristic X-rays can be improved.
  • the X-ray analysis device of the fourth term it is possible to prevent the same characteristic X-rays from being detected by a plurality of detection elements.
  • the sample is analyzed based on the intensity of each wavelength detected by the plurality of detection elements, and a signal processing device for controlling the driving device is further provided,
  • the apparatus accepts an input of a wavelength range for analyzing a sample from a user, and analyzes the sample based on the intensity for each wavelength included in the input wavelength range among the intensities for each wavelength detected by the plurality of detection elements. Then, the plurality of detection elements are moved by controlling the driving device so that the angle becomes a value corresponding to the width of the wavelength range input by the user.
  • the excitation source that irradiates the sample with excitation rays, the analyzing crystal that disperses the characteristic X-rays generated by the sample irradiated with the excitation rays for each wavelength, and the wavelengths that are separated by the analyzing crystal
  • a plurality of detector elements arranged to detect the intensity of each element changes the angle formed by the direction of characteristic X-rays dispersed at the midpoint of the effective surface of the analyzing crystal and the arrangement direction of the plurality of detector elements.
  • a control device for setting the first mode and the second mode, and the driving device has an angle of 80 degrees or more when the first mode is set. and moving the plurality of detecting elements so as to belong to a range of less than 100 degrees, and moving the plurality of detecting elements so that the angle belongs to a range of less than 80 degrees and 100 degrees or more when the second mode is set do.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

励起線が照射された試料が発生する特性X線を波長毎に分光する分光結晶(140)と、分光結晶(140)により分光された波長毎の強度を各々が検出するように配列されている複数の検出素子(151)と、を備え、分光結晶(140)の表面(140A)の中点(140M)で分光された特性X線の方向と、複数の検出素子(151)の配列方向とがなす角度φは、80度未満または100度以上である。

Description

X線分析装置
 本開示は、X線分析装置に関する。
 励起線が照射された試料が発する特性X線は、その試料が含有する元素により定まる波長を有している。そのため、特性X線の波長ごとの強度を検出することにより、試料の組成を決定することができる。このように波長ごとの強度を測定して特性X線を検出する方式は「波長分散型」と称される。
 波長分散型のX線分析装置の一例として、特開2017-223638号公報(特許文献1)には、該試料の組成を分光法により高感度で測定することができるX線分析装置が開示される。このX線分析装置は、励起源が試料に対して励起線を照射し、励起線が照射された試料は特性X線を発生する。発生された特性X線はスリットを通過して分光結晶へ到達する。特性X線がこのスリットを通過することによって、試料における特性X線の発生位置に応じて、分光結晶への特性X線の入射角が異なるようになる。分光結晶で回折された特性X線は検出器に到達する。検出器は、所定の方向に配列された複数の検出素子により構成されており、該複数の検出素子の各々は、異なるエネルギーの特性X線の強度(以下、「X線強度」とも称する。)を、分光結晶への特性X線の入射角に応じて検出する。X線分析装置は、複数の検出素子の各々で検出されたエネルギーに対応するX線強度に基づいてX線スペクトルを生成する。そして、X線分析装置は、このX線スペクトルに基づいて試料を分析する。
特開2017-223638号公報
 上述のX線分析装置において、所定の検出素子の個数で、より広いエネルギー範囲を検出するために、分光結晶の表面の中点で分光された特性X線の方向と、複数の検出素子の配列方向とがなす角度は、90度に設定されることが望ましい。また、X線分析装置内に検出素子を配置するスペースの問題、および検出素子のピッチが検出エネルギーに応じて異なることに起因して必ずしも90度に設定できない場合もある。そのような場合であっても、分光結晶の表面の中点で分光された特性X線の方向と、複数の検出素子の配列方向とがなす角度は、80度以上100度未満に設定される。
 また、上述のX線分析装置において、測定点数を増加して、より正確な特性X線スペクトルを取得することが望まれている。これにより、正確に、スペクトル中のピーク位置を特定して、高精度な試料分析を行うことができる。そのためには、検出素子ピッチを小さくする必要があり、例えば、検出素子を小型化することにより、各々の幅が短い複数の検出素子を用いることが考えられる。しかしながら、検出素子の幅が短くなるほど、検出素子の製造段階において、より高い寸法精度の実現が必要となり、製造上の限界および製造コストの観点から、小型化された検出素子の製造が困難になるという問題が生じ得る。
 この発明はこのような課題を解決するためになされたものであって、その目的は、検出素子を小型化しなくても、試料の分析精度を向上することである。
 本開示のX線分析装置は、励起源と、分光結晶と、複数の検出素子とを備える。励起源は、試料に対して励起線を照射する。分光結晶は、励起線が照射された試料が発生する特性X線を波長毎に分光する。複数の検出素子は、分光結晶により分光された波長毎の強度を各々が検出するように配列されている。そして、分光結晶の有効表面の中点で分光された特性X線の方向と、複数の検出素子の配列方向とがなす角度は、80度未満または100度以上である。なお、分光結晶の有効表面とは、分光結晶によって分光される特性X線のうち、検出器の有効領域に入射する特性X線が分光される部分である。
 本開示に係るX線分析装置によれば、分光結晶の有効表面の中点で分光された特性X線の方向と、複数の検出素子の配列方向とがなす角度は、80度未満または100度以上であるように構成されている。したがって、既存の検出素子を用いて、分光結晶の表面の中点から複数の検出素子を見た場合の該複数の検出素子ピッチを擬似的に短くすることができる。よって、既存の検出素子を用いて、検出素子ピッチを擬似的に短くすることができ、結果として、単位波長当たりの測定点数を増加して、試料の分析精度を向上することができる。
本実施の形態に係るX線分析装置の概略構成図である。 装置本体10の内部構成を模式的に示す図である。 X線分析装置の分光結晶と、検出器とを示す図である。 角度φが90度であるときの分析装置における検出器および方向Pを示す図である。 本実施の形態のX線分析装置における検出器および方向Pを示す図である。 X線スペクトルの一部を示す図である。 第2の実施の形態の分析装置における装置本体の構成例である。 ユーザにより入力された波長範囲の幅と、角度φとの関係を示すテーブルの一例である。 ユーザにより入力されたモードと、角度φとの関係を示すテーブルの一例である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分には同一符号を付してその説明は繰り返さない。また、実施の形態および変更例について、明細書内で言及されていない組み合わせを含めて、不都合または矛盾が生じない範囲内で、実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。
 [第1の実施の形態]
 本実施の形態に係るX線分析装置は、波長分散型の分光器を備えたX線分析装置である。以下では、本実施の形態に係るX線分析装置の一例として、波長分散型蛍光X線分析装置を説明する。「波長分散型」は、特性X線を分光素子により分光し、目的の波長ごとの特性X線強度を測定して特性X線スペクトルを検出する方式である。図1は、本実施の形態に係るX線分析装置(以下、「分析装置100」とも称する)の概略構成図である。
 図1を参照して、分析装置100は、装置本体10および信号処理装置20を有する。装置本体10は、試料に励起線を照射し、試料から発生する特性X線を検出するように構成される。励起線は、典型的にはX線である。装置本体10により検出された特性X線に対応する検出信号は、信号処理装置20に送信される。信号処理装置20は、コントローラ22と、コントローラ22に接続されたディスプレイ24および操作部26とを有する。信号処理装置20は、装置本体10の動作を制御する。信号処理装置20は、装置本体10から送信された検出信号を分析し、その分析に基づく結果をディスプレイ24に表示するように構成される。ディスプレイ24は、画像を表示可能な液晶パネルなどで構成される。操作部26は、分析装置100に対するユーザの操作入力を受け付ける。操作部26は、典型的には、タッチパネル、キーボード、マウスなどで構成される。
 コントローラ22は、主な構成要素として、プロセッサ30と、メモリ32と、通信インターフェイス(I/F)34と、入出力I/F36とを有する。これらの各部は、バスを介して互いに通信可能に接続される。
 プロセッサ30は、典型的には、CPU(Central Processing Unit)またはMPU(Micro Processing Unit)などの演算処理部である。プロセッサ30は、メモリ32に記憶されたプログラムを読み出して実行することで、分析装置100の各部の動作を制御する。具体的には、プロセッサ30は、当該プログラムを実行することによって、装置本体10から送信された検出信号の分析処理を実現する。なお、図1の例では、プロセッサが単数である構成を例示しているが、コントローラ22は複数のプロセッサを有する構成であってもよい。
 メモリ32は、RAM(Random Access Memory)、ROM(Read Only Memory)およびフラッシュメモリなどの不揮発性メモリによって実現される。メモリ32は、プロセッサ30によって実行されるプログラム、またはプロセッサ30によって用いられるデータなどを記憶する。
 入出力I/F36は、プロセッサ30と、ディスプレイ24および操作部26との間で各種データをやり取りするためのインターフェイスである。
 通信I/F34は、装置本体10と、各種データをやり取りするための通信インターフェイスであり、アダプタまたはコネクタなどによって実現される。なお、通信方式は、無線LAN(Local Area Network)などによる無線通信方式であってもよいし、USB(Universal Serial Bus)などを利用した有線通信方式であってもよい。
 図2は、装置本体10の内部構成を模式的に示す図である。図2を参照して、装置本体10は、試料Sを保持する試料ホルダ110と、励起源120と、スリット130と、分光結晶140と、検出器150とを有する。
 励起源120は、励起光(励起線)であるX線を試料Sに照射するX線源である。X線源の代わりに、電子線源を用いてもよい。図2において、試料ホルダ110の試料Sが保持される面をX-Y平面とし、励起源120からの励起線の照射方向をZ軸方向とする。試料Sは、固体、液体および気体のいずれであってもよく、試料Sの状態に対応した試料ホルダ110が用いられる。
 励起源120から発せられた励起光は、試料Sの表面に照射される。これによって、試料Sから特性X線が放射される。図2の例では、試料Sの表面に対して垂直に励起光を照射する構成としたが、試料Sの表面に対して傾斜した角度で励起光を照射する構成としてもよい。
 分光結晶140は、たとえば、シリコン単結晶、フッ化リチウム単結晶、ゲルマニウム単結晶からなる。分光結晶140においては、特定の結晶面が、結晶の表面に平行になっている。特定の結晶面のみを特性X線の検出に用いることができ、他の結晶面でブラッグ反射した特性X線が誤って検出されることを防止することができる。検出器150は、所定の配列方向に沿って配列された複数の検出素子151を有する。図2では便宜上、検出素子151の数を9個としているが、実際は、たとえば、1000個以上とされる。検出素子151は、たとえば、シリコンなどにより構成される。
 試料ホルダ110に試料Sを保持させた状態で、励起源120から試料Sの表面に励起線を照射すると、試料Sから特性X線が放出される。放出される特性X線は、試料Sを構成する元素によって異なる波長を有する。励起源120から発せられた励起線が位置A1から位置A2までの領域に照射されることによって放出された特性X線が、スリット130を通過して分光結晶140へ到達する。図2においては、例示的に、位置A1および位置A2において発生している特性X線が破線で示されている。位置A2は、位置A1からX軸の正方向に位置している。また、位置A1での照射領域および位置A2での照射領域はいずれもY軸方向に延在している。
 分光結晶140と入射する特性X線とのなす角をθとすると、特性X線の入射角は(90-θ)度となる。試料ホルダ110に固定された試料Sの面と、分光結晶140の表面との配置角度のために、位置A1において放出された特性X線は入射角(90-θ)度で分光結晶140に入射し、位置A2において放出された特性X線は入射角(90-θ)度で分光結晶140に入射する。すなわち、スリット130を通過させることによって、試料Sにおける特性X線の発生位置に応じて、分光結晶140への特性X線の入射角を異ならせることができる。
 試料Sから分光結晶140に入射角(90-θ)度で入射した特性X線のうち、ブラッグ条件の式であるλ=(2d/n)sinθ(λは特性X線の波長、dは分光結晶140の結晶面間隔、nは次数)を満たす波長を有する特性X線のみが、分光結晶140で回折されて検出器150に到達する。本実施の形態では、スリット130、分光結晶140、および検出器150は固定されているが、θ<θ<θの範囲内でブラッグ条件の式を満たす波長を有する特性X線が、分光結晶140で回折されて検出器150に到達するように構成されている。
 分光結晶140で回折された特性X線は入射角と同じ角度で出射されるので、ブラッグ反射した特性X線は、複数の検出素子151のうちの出射角に対応した位置に配置された検出素子151によって検出される。具体的には、図2の例では、位置A1から放出される特性X線のうち、波長λ=(2d/n)sinθを満たす特性X線が示されている。また、位置A2から放出される特性X線のうち、波長λ=(2d/n)sinθを満たす特性X線が示されている。
 このように、複数の検出素子ごとに、異なる回折角のブラッグ条件を満たす波長の特性X線が検出される。言い換えれば、分析装置100は、特性X線が検出された検出素子を知ることによって、特性X線に含まれる波長を認識することができる。一方で、特性X線の波長は元素ごとに異なる。したがって、分析装置100は、検出器150において特性X線が検出された検出素子を特定することによって、試料の分析(たとえば、試料の含有元素の特定)を行うことができる。
 以上のように、装置本体10は、励起線が照射された試料が発生する特性X線を分光して波長ごとの強度を検出する。装置本体10は、複数の検出素子毎の強度を、信号処理装置20に送信する。信号処理装置20は、該複数の検出素子の各々で検出された特性X線の波長に対応するエネルギーと、該エネルギーに対応する特性X線の強度とが対応付けられたX線スペクトルを取得できる。なお、エネルギーEと、波長λとにおいては、E=hc/λという式が成り立つ(hは、プランク定数であり、cは光の速さである)。そして、信号処理装置20と、既知試料のX線スペクトルと、該取得されたX線スペクトルとを比較することにより、試料の分析(たとえば、試料の含有元素の特定)を行うことができる。なお、図2の中点140M、中点150M、検出面150V、および角度φについては図3で説明する。
 図3は、本実施の形態の分析装置100の、スリット130と、分光結晶140と、検出器150とを示す図である。図3では便宜上、スリット130と、分光結晶140と、検出器150との向きなどを図2とは変更されている。
 図3に示すように、以下では、分光結晶140の表面を「表面140A」と称する(図2も参照)。表面140Aは、分光結晶140の結晶面の配列方向Sに垂直な面である。表面140Aのうち、検出器の有効領域に入射する特性X線が分光される範囲の部分を「有効表面140A1」と称する。表面140Aの延長線Qに対して、スリット130の開口部の中央部130Mと対称となる点を「対称点130L」と称する。また、分光結晶140の有効表面140A1の中点(中央部の点)を「中点140M」と称する。分光結晶140で回折された特性X線が検出される検出面、すなはち、検出器150の検出有効領域を、「検出面150V」と称する。複数の検出素子151の配列方向Tにおける検出面150Vの中点(検出面150Vの中央部の点)を「中点150M」と称する。中点140Mおよび中点150Mの各々は、表面140Aの延伸方向(図2に示すY軸方向)から平面視した場合の有効表面140A1の中点および検出面150Vの中点である。また、検出素子151の中心線の間隔を「幅L」と称する。幅Lは、「検出素子ピッチ」とも称される。
 中点140Mから中点150Mまでの方向を「方向P」と称する。本実施の形態においては、対称点130Lと、中点140Mと、中点150Mとは方向Pに沿った直線上に位置するように構成される。配列方向Tと、方向Pとがなす角度φは80度未満または100度以上の範囲に属するように検出器150が配置されている。本実施の形態では、角度φおよび検出器150は固定である。角度φは、中点140Mで回折された特性X線の進行方向(つまり、方向P)と、配列方向Tとがなす角度でもある。角度φを80度未満または100度以上とする理由は、後述する。また、図2にも示すように、分光結晶の有効表面140A1の中点140Mで回折(分光)された特性X線の方向(方向P)と、複数の検出素子の配列方向Tとがなす角度は、角度φとなる。また、図2の例では、中点140Mで分光された特性X線が、複数の検出素子151において到達する位置は、中点150Mとなっている。
 分析装置100による試料の分析精度を向上させるために、特性X線スペクトルにおける測定点数の増加、つまり、X線強度のピークフィッティングの精度の向上が望まれている。
 特性X線スペクトルにおける測定点数を増加するために、検出素子151の中心線の間隔Lを短くすることが考えられる。しかしながら、検出素子を製造する工程において、検出素子ピッチLを小さくすると、より高い寸法精度が必要となる。高い寸法精度を実現するためには、一般的には製造コストが増加してしまう。さらに、要求される寸法精度によっては、部品の加工精度の限界等の問題によって、検出素子自体の製造ができない場合も生じ得る。
 このような問題を鑑みて、本実施の形態の分析装置100においては、図3で説明した角度φが80度未満または100度以上となるように、分光結晶140に対して検出器150を配置する構成を採用する。分光結晶140の表面140Aと、検出面150Vとを結ぶ直線の全部が80度未満または100度以上となるように、分光結晶140に対して検出器150を配置する構成を採用してもよい。
 これによって、回折した特性X線の放射方向に対する検出素子ピッチLを擬似的に小さくすることができる。したがって、本実施の形態のX線分析装置では、測定するエネルギー範囲は減少するものの、既存のサイズの検出素子を用いながら、特性X線スペクトルにおける、単位波長当たり(または単位エネルギー当たり)の測定点数を増加することができる。なお、単位波長とは、所定の長さの波長を示す。また、単位エネルギーとは、所定の大きさのエネルギーを示す。
 次に、図4および図5を用いて、測定点数が増加する理由について詳述する。図4は、角度φがπ/2であるときの分析装置(以下、「比較例のX線分析装置」とも称する。)における検出器150および方向Pを示す図である。図4に示すように方向P(中点140Mから中点150Mまでの方向)から見た場合の検出素子151のピッチは幅Lである。図5は、本実施の形態のX線分析装置における、検出素子151および方向Pを示す図である。図5に示すように(図2も参照)、方向Pと、複数の検出素子151の検出面150Vとがなす角度φはπ/2とは異なる角度であって、80度未満100度以上である。したがって、方向Pから見た場合の検出素子151の幅はL1(=Lsinφ)となる。よって、検出素子151のピッチを疑似的に短くすることができ、その結果、検出器150全体でみると、検出するエネルギー範囲は減少するものの、所定のエネルギー範囲(後述の図6(B)のエネルギー範囲E3~E4)をより多くの検出素子151で検出することになり、スペクトルにおける測定点数を増加することができる。その結果、分析装置100は、より高精度な分析を行うことができる。
 たとえば、φ=π/6とした場合には、L1=Lsin(π/6)=L/2となる。φ=π/4とした場合には、L1=Lsin(π/4)=L/(√2)となる。φ=π/3とした場合には、L1=Lsin(π/3)=(L√3)/2となる。
 上述のように角度φは、80度未満または100度以上の範囲に属する角度である。特に、角度φが70度未満または120度以上の範囲に属する角度である構成が採用されてもよい。このような構成が採用されることにより、さらに、測定点数を増加させることができる。さらに、角度φは、30度である構成が採用されてもよい。このような構成が採用されることにより、角度φが90度である場合と比較して、上記の所定のエネルギー範囲において測定点数を2倍にすることができる。
 図6は、X線スペクトルの一部を示す図である。図6の例では、縦軸が特性X線の強度を示し、横軸は特性X線のエネルギーを示す。図6(A)は、比較例の分析装置(角度φ=90度である分析装置)のX線スペクトルの一部を示す図である。図6(B)は、角度φ=π/6とした場合の本実施の形態の分析装置100のX線スペクトルの一部を示す図である。
 図6(A)の例では、方向Pから見た検出素子ピッチは幅Lであり、該幅Lに対応する検出エネルギーの間隔はEaとなる。また、図6(A)において、エネルギー範囲E1~E2におけるX線強度P1~P8が示されている。また、図6(B)において、エネルギー範囲E3~E4におけるX線強度P11~P18が示されている。なお、エネルギー範囲E3~E4は、エネルギー範囲E1~E2よりも小さい。
 図6(B)のX線スペクトルにおいては、方向Pから見た検出素子151のピッチが擬似的に幅L/2となっている。したがって、図6(A)の場合に比べて半分のエネルギー検出範囲となるが、分析装置100は、2倍の測定点数で特性X線スペクトルを作成することができる。たとえば、図6(A)では、該エネルギー範囲において、測定点数は、X線強度P3~P6の4点であるが、図6(A)では、測定点数は、X線強度P11~P18の8点となる。
 たとえば、図6(A)において1つの検出素子で検出された範囲は、図6(B)では隣接する2つの検出素子によって検出される。すなわち、たとえば、図6(A)におけるX線強度P5は、図6(B)におけるX線強度P15とX線強度P16の和となる。
 また、図6で示した範囲においては、実際には図6(B)に示されるようにピークはP16のエネルギーに位置する。しかし、図6(A)の場合には、P16とはズレた位置であるP5として示されることになる。このように、本実施の形態の分析装置100は、方向Pから見た(平面視した)検出素子151のピッチを小さくすることによって、より多くの測定点数で特性X線スペクトルを作成することができる。すなわち、本実施の形態の分析装置100は、より高精度な分析を行うことができる。これにより、正確にピーク位置を特定することが可能となる。
 以上のように、本実施の形態の分析装置100においては、角度φを80度未満または100度以上とすることにより測定点数を多くすることができる。したがって、本実施の形態の分析装置100は、既存の検出素子を用いてより高精度な分析を行うことができる。
 なお、φ=80度未満または100度以上とした場合、1つの検出素子に入光する特性X線の量が少なくなるため、φ=π/2の場合に比べて、各検出素子で検出される特性X線の強度は低くなる。より具体的には、φ=80度未満または100度以上とした場合の1つの検出素子で検出される特性X線の強度は、角度φ=π/2である場合の1つの検出素子で検出される特性X線の強度のsinφ倍となる。つまり、角度φが小さいほど、1つの検出素子で検出されるX線強度は低くなるので、角度φを小さくし過ぎると逆にピークを検出しにくくなる場合がある。また、検出器150における全体の検出範囲が狭くなるため、同じ範囲の検出を行なうためには検出素子の数を増加させることが必要となる。すなわち、角度φは、所望の測定点数と、1つの検出素子で検出されるX線強度およびコストとを考慮して決定されることが好ましい。
 [第2の実施の形態]
 第1の実施の形態では、検出器150および角度φが固定されている構成の場合の例を説明した。第2の実施の形態の分析装置100においては、角度φの変更が可能な構成について説明する。
 図7は、第2の実施の形態の分析装置における装置本体10Aの構成例である。図7に示すように、装置本体10Aは、検出器150(複数の検出素子151)を駆動する駆動装置170を備える。駆動装置170は、信号処理装置20により制御される。
 ユーザは、試料Sの元素を把握していることから該試料Sで発生される特性X線の波長範囲を把握している場合がある。このような場合を鑑みて、本実施の形態の信号処理装置20は、該信号処理装置20で用いられる波長範囲(またはエネルギー範囲)の入力をユーザから受付けることができる。信号処理装置20は、入力された波長範囲に対応するエネルギー範囲のX線スペクトルを表示する一方、入力された波長範囲以外の波長範囲に対応するエネルギー範囲のX線スペクトルを表示しない。したがって、分析装置100は、ユーザが所望した波長範囲のX線スペクトルのみを表示することから、ユーザにとって不要なX線スペクトルを表示しないようにすることができる。
 また、図6などで示したように、角度φが80度以上100度未満である場合には、検出される波長範囲(またはエネルギー範囲)が広くなる一方、角度φが80度未満100度以上である場合には、測定点数は増加される。なお、本実施の形態では、角度φは、90度以下の角度であるとする。
 そこで、ユーザにより入力された波長範囲幅Δλが大きいほど、駆動装置170は角度φを大きくするように、検出器150を駆動する。なお、波長範囲幅Δλは、波長範囲における最大値の波長と最小値の波長との差分値である。図8は、ユーザにより入力された波長範囲についての波長範囲幅Δλと、角度φとの関係を示すテーブルの一例である。このテーブルは、たとえば、メモリ32に記憶されている。なお、図8において、S1<S2<S3<S4であり、φ1<φ2<φ3である。
 図8の例では、入力された波長範囲の波長範囲幅ΔλがS1≦波長範囲幅Δλ<S2であるときには、信号処理装置20は、角度φが角度φ1となるように、駆動装置170を制御する。入力された波長範囲の波長範囲幅ΔλがS2≦波長範囲幅Δλ<S3であるときには、信号処理装置20は、角度φが角度φ2となるように、駆動装置170を制御する。入力された波長範囲の波長範囲幅ΔλがS3≦波長範囲幅Δλ<S4であるときには、信号処理装置20は、角度φが角度φ3となるように、駆動装置170を制御する。
 本実施の形態においては、信号処理装置20は、ユーザにより入力された波長範囲の幅に応じた値(角度)となるように駆動装置170を制御する。より特定的には、波長範囲幅Δλが大きいほど角度φは大きくなる。つまり、入力された波長範囲幅Δλが大きい場合に、信号処理装置20は、角度φを大きくする(角度φが90度または90度に近い値にする)ことにより、波長範囲(エネルギー範囲)を大きくすることができる(図6(A)参照)。一方、入力された波長範囲幅Δλが小さい場合に、信号処理装置20は、角度φを小さくすることにより、この波長範囲での測定点数を増加させて分析精度を向上させることができる。よって、本実施の形態の分析装置においては、ユーザが所望する波長範囲に対応した分析を実行することができる。
 [第3の実施の形態]
 上述のように、角度φが80度以上100度未満である場合には、検出される波長範囲(またはエネルギー範囲)が広くなる一方、角度φが80度未満100度以上である場合には、単位波長当たり(または単位エネルギー当たり)の測定点数は増加される(図6参照)。この点を鑑みて、第3の実施の形態では、ユーザが、操作部26を操作することにより、第1モードおよび第2モードを含む複数のモードのうちのいずれかを選択できる。信号処理装置20は、選択されたモードを設定する。たとえば、信号処理装置20は、ユーザにより選択されたモードを示すモードフラグをメモリ32に記憶させる。たとえば、信号処理装置20は、第1モードが選択された場合には、第1モードフラグをメモリ32に記憶させる。また、信号処理装置20は、第2モードが選択された場合には、第2モードフラグをメモリ32に記憶させる。
 図9は、第1モードおよび第2モードを示す図である。図9に示すように、第1モードは、第2モードよりもエネルギーの検出範囲を拡張するモードである。第1モードでは、角度φは角度φ1となる。角度φ1は、80度以上および100度未満の範囲のいずれかの角度となる。角度φ1は、たとえば、90度である。また、第2モードは、第1モードよりも測定点数を増加できるモードである。第2モードでは、角度φは角度φ2となる。角度φ2は、80度未満および100度以上の範囲のいずれかの角度となる。角度φ2は、たとえば、30度である。
 第3の実施の形態によれば、検出範囲が拡張される第1モードと、測定点数が増加される第2モードとをユーザが選択可能である。したがって、ユーザの利便性を向上させることができる。
 なお、第2の実施の形態および第3の実施の形態では、信号処理装置20が自動で角度φを変更するように駆動装置170を制御する構成を説明した。しかしながら、ユーザが操作部26を操作することにより、駆動装置170を制御するようにしてもよい。このような構成であれば、角度φをユーザが所望する角度にすることができる。
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項) 一態様に係るX線分析装置は、試料に対して励起線を照射する励起源と、励起線が照射された試料が発生する特性X線を波長毎に分光する分光結晶と、各々が分光結晶により分光された波長毎の強度を検出するように配列されている複数の検出素子と、を備え、分光結晶の有効表面の中点で分光された特性X線の方向と、複数の検出素子の配列方向とがなす角度は、80度未満または100度以上である。
 第1項のX線分析装置によれば、特性X線スペクトルにおける測定点数の増加させることができることから、特性X線のエネルギー分解能を向上させることができる。
 (第2項) 第1項のX線分析装置において、上述の角度は、70度未満または120度以上である。
 第2項のX線分析装置によれば、特性X線スペクトルにおける測定点数の増加させることができることから、特性X線のエネルギー分解能を向上させることができる。
 (第3項) 第1項のX線分析装置において、上述の角度は、30度である。
 第2項のX線分析装置によれば、上述の角度が90度である特性X線スペクトルと比較して、測定点数を2倍にすることができる。
 (第4項) 第1項~第3項のいずれかに記載のX線分析装置において、角度を変更するように、複数の検出素子を移動する駆動装置をさらに備える。
 第4項のX線分析装置によれば、複数の検出素子において同一の特性X線が検出されることを防止できる。
 (第5項) 第4項のX線分析装置において、複数の検出素子により検出された波長毎の強度に基づいて試料を分析し、かつ駆動装置を制御する信号処理装置をさらに備え、信号処理装置は、試料を分析するための波長範囲の入力をユーザから受付け、複数の検出素子が検出した波長毎の強度のうち、入力された波長範囲に含まれる波長毎の強度に基づいて試料を分析し、角度がユーザにより入力された波長範囲の幅に応じた値となるように駆動装置を制御することにより、複数の検出素子を移動する。
 第5項のX線分析装置によれば、ユーザにより入力された波長範囲に応じた角度に制御することができる。
 (第6項) 試料に対して励起線を照射する励起源と、励起線が照射された試料が発生する特性X線を波長毎に分光する分光結晶と、各々が分光結晶により分光された波長毎の強度を検出するように配列されている複数の検出素子と、分光結晶の有効表面の中点で分光された特性X線の方向と複数の検出素子の配列方向とがなす角度を変更するように、複数の検出素子を移動する駆動装置と、第1モードと第2モードと設定する制御装置とを備え、駆動装置は、第1モードが設定された場合には、角度が80度以上および100度未満の範囲に属するように複数の検出素子を移動し、第2モードが設定された場合には、角度が80度未満および100度以上の範囲に属するように複数の検出素子を移動する。
 第6項のX線分析装置によれば、ユーザにより入力されたモードに応じた角度に制御することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10A 装置本体、20 信号処理装置、22 コントローラ、24 ディスプレイ、26 操作部、30 プロセッサ、32 メモリ、100 分析装置、110 試料ホルダ、120 励起源、130 スリット、130L 対称点、130M 中央部、140 分光結晶、140A 表面、150 検出器、151 検出素子。

Claims (6)

  1.  試料に対して励起線を照射する励起源と、
     前記励起線が照射された試料が発生する特性X線を波長毎に分光する分光結晶と、
     各々が前記分光結晶により分光された波長毎の強度を検出するように配列されている複数の検出素子と、を備え、
     前記分光結晶の有効表面の中点で分光された特性X線の方向と、前記複数の検出素子の配列方向とがなす角度は、80度未満または100度以上である、X線分析装置。
  2.  前記角度は、70度未満または120度以上である、請求項1に記載のX線分析装置。
  3.  前記角度は、30度である、請求項2に記載のX線分析装置。
  4.  前記角度を変更するように、前記複数の検出素子を移動する駆動装置をさらに備える、請求項1~請求項3のいずれか1項に記載のX線分析装置。
  5.  前記複数の検出素子により検出された波長毎の強度に基づいて前記試料を分析し、かつ前記駆動装置を制御する信号処理装置をさらに備え、
     前記信号処理装置は、
      前記試料を分析するための波長範囲の入力をユーザから受付け、
      前記複数の検出素子が検出した波長毎の強度のうち、入力された前記波長範囲に含まれる波長毎の強度に基づいて前記試料を分析し、
      前記角度がユーザにより入力された前記波長範囲の幅に応じた値となるように前記駆動装置を制御することにより、前記複数の検出素子を移動する、請求項4に記載のX線分析装置。
  6.  試料に対して励起線を照射する励起源と、
     前記励起線が照射された試料が発生する特性X線を波長毎に分光する分光結晶と、
     各々が前記分光結晶により分光された波長毎の強度を検出するように配列されている複数の検出素子と、
     前記分光結晶の有効表面の中点で分光された特性X線の方向と前記複数の検出素子の配列方向とがなす角度を変更するように、前記複数の検出素子を移動する駆動装置と、
     第1モードと第2モードとを設定する制御装置とを備え、
     前記駆動装置は、
      前記第1モードが設定された場合には、前記角度が80度以上および100度未満の範囲に属するように前記複数の検出素子を移動し、
      前記第2モードが設定された場合には、前記角度が80度未満および100度以上の範囲に属するように前記複数の検出素子を移動する、X線分析装置。
PCT/JP2022/011513 2021-08-10 2022-03-15 X線分析装置 WO2023017636A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280054630.XA CN117836615A (zh) 2021-08-10 2022-03-15 X射线分析装置
JP2023541212A JPWO2023017636A1 (ja) 2021-08-10 2022-03-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130571 2021-08-10
JP2021130571 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023017636A1 true WO2023017636A1 (ja) 2023-02-16

Family

ID=85200136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011513 WO2023017636A1 (ja) 2021-08-10 2022-03-15 X線分析装置

Country Status (3)

Country Link
JP (1) JPWO2023017636A1 (ja)
CN (1) CN117836615A (ja)
WO (1) WO2023017636A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180439A (ja) * 1988-01-12 1989-07-18 Shimadzu Corp X線分光装置
JPH07239310A (ja) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp 電磁波検出装置及び基板加工装置
JPH10503027A (ja) * 1995-05-04 1998-03-17 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 検出器の移動が簡単化されたx線分析装置
JPH10507532A (ja) * 1995-07-25 1998-07-21 フィリップス エレクトロニクス エヌ ベー 複数の固定測定チャネルを有するx線分光計
JP2010286346A (ja) * 2009-06-11 2010-12-24 Shimadzu Corp 分光器
WO2018211664A1 (ja) * 2017-05-18 2018-11-22 株式会社島津製作所 X線分光分析装置
JP2020514764A (ja) * 2017-03-22 2020-05-21 シグレイ、インコーポレイテッド X線分光を実施するための方法およびx線吸収分光システム
JP2021188961A (ja) * 2020-05-27 2021-12-13 株式会社島津製作所 X線分析装置およびx線分析方法
JP2021189088A (ja) * 2020-06-02 2021-12-13 株式会社島津製作所 分析装置および分析方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180439A (ja) * 1988-01-12 1989-07-18 Shimadzu Corp X線分光装置
JPH07239310A (ja) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp 電磁波検出装置及び基板加工装置
JPH10503027A (ja) * 1995-05-04 1998-03-17 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 検出器の移動が簡単化されたx線分析装置
JPH10507532A (ja) * 1995-07-25 1998-07-21 フィリップス エレクトロニクス エヌ ベー 複数の固定測定チャネルを有するx線分光計
JP2010286346A (ja) * 2009-06-11 2010-12-24 Shimadzu Corp 分光器
JP2020514764A (ja) * 2017-03-22 2020-05-21 シグレイ、インコーポレイテッド X線分光を実施するための方法およびx線吸収分光システム
WO2018211664A1 (ja) * 2017-05-18 2018-11-22 株式会社島津製作所 X線分光分析装置
JP2021188961A (ja) * 2020-05-27 2021-12-13 株式会社島津製作所 X線分析装置およびx線分析方法
JP2021189088A (ja) * 2020-06-02 2021-12-13 株式会社島津製作所 分析装置および分析方法

Also Published As

Publication number Publication date
CN117836615A (zh) 2024-04-05
JPWO2023017636A1 (ja) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2013061676A1 (ja) X線分光検出装置
US11471119B2 (en) Analysis device and analysis method
JPWO2004086018A1 (ja) 蛍光x線分析装置
US20240125717A1 (en) Systems And Methods For Interpreting High Energy Interactions
US9601308B2 (en) Spectroscopic element and charged particle beam device using the same
EP3521813B1 (en) Wavelength dispersive x-ray fluorescence spectrometer
US10746675B2 (en) Image processing device, analysis device, and image processing method for generating an X-ray spectrum
WO2023017636A1 (ja) X線分析装置
JP2002189004A (ja) X線分析装置
JP2001124711A (ja) 蛍光x線分析方法及び試料構造の評価方法
JP2000206061A (ja) 蛍光x線測定装置
JPH1151883A (ja) 蛍光x線分析装置および方法
Mermet Qualities related to spectra acquisition in inductively coupled plasma-atomic emission spectrometry
WO2018100873A1 (ja) 蛍光x線分析装置
WO2021171691A1 (ja) X線分析装置およびx線分析方法
JP6862710B2 (ja) X線回折装置
JP3673849B2 (ja) 全反射蛍光x線分析装置
JP3968452B2 (ja) X線分析装置
JP2561312Y2 (ja) X線分光器
JPH09257726A (ja) X線分析装置および蛍光x線分析用アタッチメント
JP2002365245A (ja) 波長分散型蛍光x線分析装置
JP2001027620A (ja) ソーラスリットを有するx線分析装置
JPH075128A (ja) 蛍光x線分析装置
JP2002093594A (ja) X線管およびx線分析装置
SU486260A1 (ru) Флуоресцентный рентгеновский анализатор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541212

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280054630.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE