WO2023017579A1 - 演算装置および射出成形システム - Google Patents

演算装置および射出成形システム Download PDF

Info

Publication number
WO2023017579A1
WO2023017579A1 PCT/JP2021/029623 JP2021029623W WO2023017579A1 WO 2023017579 A1 WO2023017579 A1 WO 2023017579A1 JP 2021029623 W JP2021029623 W JP 2021029623W WO 2023017579 A1 WO2023017579 A1 WO 2023017579A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
speed
load
injection molding
speed ratio
Prior art date
Application number
PCT/JP2021/029623
Other languages
English (en)
French (fr)
Inventor
関直朗
山脇拓人
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202180101244.7A priority Critical patent/CN117794716A/zh
Priority to PCT/JP2021/029623 priority patent/WO2023017579A1/ja
Priority to JP2023541165A priority patent/JPWO2023017579A1/ja
Priority to DE112021007786.4T priority patent/DE112021007786T5/de
Publication of WO2023017579A1 publication Critical patent/WO2023017579A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/42Removing or ejecting moulded articles using means movable from outside the mould between mould parts, e.g. robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7626Measuring, controlling or regulating the ejection or removal of moulded articles

Definitions

  • the present invention relates to calculation of parameters used in injection molding machines.
  • Japanese Patent Application Laid-Open No. 2001-150496 discloses a method of removing a molded product from a mold.
  • the ejector pin accommodated inside the moving mold is moved forward in synchronism with the retraction speed of the moving mold.
  • the molded product is taken out by a gripping device (conveyor) that grips the molded product in parallel with the retraction of the moving mold. be able to. As a result, it is possible to shorten the working time required for taking out the molded product.
  • the modulus of elasticity (modulus of elasticity) of the molded product is relatively small, the relative position between the molded product and the tip of the ejector pin changes. In such a case, even if the ejector pins are advanced in synchronism with the retraction speed of the moving mold, the molded product will not remain in the same position on the base of the apparatus. Therefore, there is concern that an excessive load may be applied to the gripping device that grips the molded product.
  • An object of the present invention is to solve the above-described problems.
  • a first aspect of the present invention includes a mold-opening operation that opens the movable mold in the mold-opening direction of the movable mold, or a pulling operation that pulls a gripping device that grips a molded product in the mold-closing direction of the movable mold.
  • an arithmetic unit for calculating parameters used in an injection molding machine that executes a synchronous operation for synchronizing an ejection operation for ejecting an ejector pin from the movable mold, wherein the load received by the gripping device from the molded product is obtained.
  • a second aspect of the present invention is an injection molding system comprising the computing device described above, the injection molding machine, and a take-out device having the gripping device.
  • FIG. 1 is a schematic diagram showing the configuration of an injection molding system.
  • FIG. 2 is a schematic diagram showing the configuration of the projection device.
  • FIG. 3 is a diagram showing how the ejector pin protrudes.
  • FIG. 4 is a diagram showing how the molded product is projected.
  • FIG. 5 is a block diagram showing the configuration of part of the injection molding machine.
  • FIG. 6 is a conceptual diagram showing loads that act when the forward speed is higher than the reverse speed.
  • FIG. 7 is a conceptual diagram showing loads that act when the reverse speed is higher than the forward speed.
  • FIG. 8 is a flow chart showing the flow of arithmetic processing of the arithmetic device.
  • FIG. 9 is a block diagram showing an arithmetic device of Modification 3. As shown in FIG. FIG. FIG.
  • FIG. 10 is a block diagram showing the configuration of part of an injection molding machine of Modification 4.
  • FIG. 11 is a block diagram showing an injection molding system of modification 5.
  • FIG. 12 is a block diagram showing an injection molding system of Modification 6. As shown in FIG.
  • FIG. 1 is a schematic diagram showing the configuration of an injection molding system 10. As shown in FIG. Injection molding system 10 includes an injection molding machine 12 and an ejection device 14 .
  • the injection molding machine 12 is a device that molds molded products.
  • the injection molding machine 12 may be a horizontal injection molding machine that can be installed on an installation surface extending in the horizontal direction, or a vertical injection molding machine that can be installed on an installation surface that intersects the horizontal direction. machine.
  • FIG. 1 shows an example in which the injection molding machine 12 is a horizontal injection molding machine.
  • the injection molding machine 12 repeatedly molds molded products in each cycle. In one cycle, the injection molding machine 12 performs a mold closing operation, an injection operation, a holding pressure operation, a metering operation, a mold opening operation and an ejecting operation.
  • the mold closing operation is an operation to close the mold 16.
  • the injection operation is an operation of injecting molding material into the cavity of the mold 16 .
  • the holding pressure operation is an operation of applying pressure to the molding material injected into the cavity of the mold 16 .
  • the metering action is the action of metering molding material in preparation for the next molding cycle.
  • the mold opening operation is an operation for opening the mold 16 .
  • the ejection operation is an operation of ejecting the molded product from the mold 16 .
  • the take-out device 14 is a device that grips a molded product and takes out the gripped molded product.
  • the take-out device 14 performs a gripping operation and a take-out operation.
  • a gripping operation is an operation of gripping a molded product.
  • the gripping operation is generally performed after the projecting operation of the injection molding machine 12, but is performed before the projecting operation of the injection molding machine 12 in this embodiment.
  • the take-out operation is an operation of taking out the molded product from the mold 16 .
  • the take-out operation is performed after the ejection operation of the injection molding machine 12 .
  • the removal device 14 has a gripping device 18 that performs a gripping operation.
  • Grasping device 18 is also referred to as an end effector.
  • the gripping device 18 may be a device that chucks a molded product using fingers, nails, or the like, or may be a device that attracts a molded product using negative pressure, magnetic force, or the like.
  • the injection molding machine 12 has a mold 16, a mold clamping device 20, an injection device 22, an ejection device 24, and a control device 26.
  • the mold 16 is a mold for molding a molded product.
  • the mold 16 has a fixed mold 28 and a movable mold 30 .
  • a stationary mold 28 and a movable mold 30 are arranged between a stationary platen 32 and a movable platen 34 of the mold clamping device 20 .
  • a stationary mold 28 is provided on the surface of the stationary platen 32 facing the movable platen 34 .
  • a movable mold 30 is provided on the surface of a movable platen 34 facing a stationary platen 32 .
  • the mold clamping device 20 is a device that executes a mold closing operation and a mold opening operation.
  • the mold clamping device 20 has a stationary platen 32 , a movable platen 34 , a rear platen 36 and a plurality of tie bars 38 .
  • the fixed platen 32 and the rear platen 36 are installed on the machine base 40 of the injection molding machine 12 with a gap therebetween.
  • a plurality of tie bars 38 are arranged between the stationary platen 32 and the rear platen 36 .
  • a plurality of tie bars 38 are arranged substantially parallel to each other at intervals.
  • One end of each of the plurality of tie bars 38 is attached to the fixed platen 32 and the other end of each of the plurality of tie bars 38 is attached to the rear platen 36 .
  • Each of the plurality of tie bars 38 extends through the movable platen 34 .
  • the movable platen 34 is arranged between the fixed platen 32 and the rear platen 36 .
  • the movable platen 34 is installed on a slide portion 44 that can slide on the guide rails 42 .
  • the guide rails 42 are installed on the machine base 40 of the injection molding machine 12 so as to be substantially parallel to the tie bars 38 .
  • the movable platen 34 can move in both the mold closing direction DA and the mold opening direction DB according to the sliding of the slide portion 44 .
  • the second drive source may be a motor or a compressor.
  • the compressor may be a hydraulic compressor or a pneumatic compressor. In this embodiment, a case where the second drive source is a motor will be described.
  • the injection device 22 is a device that executes an injection operation, a holding pressure operation, and a metering operation.
  • the injection device 22 may be an in-line screw type injection device or a plunger type injection device.
  • FIG. 1 shows an example in which the injection device 22 is an in-line screw type injection device.
  • the injection device 22 has a nozzle 46 , a cylinder 48 , a screw 50 and a hopper 52 .
  • a nozzle 46 is attached to the end of the cylinder 48 facing the mold 16 .
  • Nozzle 46 communicates with the interior of cylinder 48 .
  • a screw 50 is inserted through the inside of the cylinder 48 .
  • a hopper 52 is connected to the cylinder 48 .
  • a molding material is supplied from the hopper 52 to the inside of the cylinder 48 .
  • Screw 50 extend toward the mold 16.
  • Screw 50 is rotatable.
  • the screw 50 is also advanceable toward and retractable from the nozzle 46 .
  • the injection device 22 performs an injection operation, the screw 50 advances in the cylinder 48 in a non-rotating manner.
  • Back pressure is applied to the screw 50 when the injection unit 22 performs a pressure holding operation.
  • screw 50 may be stationary.
  • the screw 50 rotates back within the cylinder 48 . Note that the screw 50 may be retracted in a non-rotating state.
  • the projecting device 24 is a device that executes a projecting operation.
  • FIG. 2 is a schematic diagram showing the configuration of the projecting device 24.
  • the ejection device 24 has an ejector rod 54 , an ejector plate 56 and an ejector pin 58 .
  • the number of ejector rods 54 may be one, or two or more.
  • the number of ejector pins 58 may be one, or two or more.
  • FIG. 2 shows an example in which the number of ejector rods 54 is one and the number of ejector pins 58 is two. Since the two ejector pins 58 have the same configuration, only one ejector pin 58 will be described below.
  • the ejector rod 54 and ejector plate 56 are arranged in a space formed inside the movable mold 30 .
  • the ejector rod 54 and the ejector plate 56 are movable in both the mold closing direction DA and the mold opening direction DB.
  • the ejector pin 58 extends from the surface of the ejector plate 56 facing the stationary mold 28 in the mold closing direction DA.
  • the ejector pin 58 is inserted through a pin hole 60 formed along the mold closing direction DA of the movable mold 30 .
  • the ejector pin 58 is fixed to the ejector plate 56 and is movable together with the ejector plate 56 in the mold closing direction DA or the mold opening direction DB (see FIGS. 2 and 3).
  • the tip of the ejector pin 58 at the start of the ejection operation is positioned in the pin hole 60 of the movable mold 30 (see FIG. 2).
  • the tip of the ejector pin 58 projects from the movable mold 30 when the ejection operation is completed.
  • the tip of the ejector pin 58 protrudes from the cavity surface 61 of the movable mold 30 toward the fixed mold 28 from the start of the ejecting operation to the completion thereof (see FIG. 3).
  • the cavity surface 61 of the movable mold 30 refers to the surface of the movable mold 30 that forms the cavity of the mold 16 .
  • the first drive source may be a motor or a compressor.
  • the compressor may be a hydraulic compressor or a pneumatic compressor. In this embodiment, a case where the first drive source is a motor will be described.
  • the ejector rod 54 moves in the mold opening direction DB by the driving force transmitted from the first driving source.
  • the ejector plate 56 moves in the mold opening direction DB due to the elastic force of a spring (not shown).
  • the ejector pin 58 fixed to the ejector plate 56 is retracted into the pin hole 60 of the movable mold 30 .
  • the control device 26 is a device that controls the injection molding machine 12 .
  • the control device 26 controls the mold clamping device 20 to cause the mold clamping device 20 to perform a mold closing operation or a mold opening operation. Further, the control device 26 controls the injection device 22 to cause the injection device 22 to perform an injection operation, a pressure holding operation, or a metering operation. Further, the control device 26 controls the projection device 24 to cause the projection device 24 to perform the projection operation.
  • the mold opening operation and the projecting operation are executed synchronously. That is, the control device 26 first causes the mold clamping device 20 to perform a primary mold opening operation to secure a space for arranging the gripping device 18 between the fixed mold 28 and the movable mold 30. do. After the primary mold opening operation is completed, a gripping operation is performed by the take-out device 14 and the molded product is gripped by the gripping device 18 . After that, the control device 26 causes the mold clamping device 20 and the ejection device 24 to perform synchronous operation. That is, the control device 26 causes the ejection device 24 to perform the ejection operation while causing the mold clamping device 20 to perform the secondary mold opening operation. The molded product is held by the holding device 18 while the projecting operation is being performed. In the synchronous operation, the completion timing of the secondary mold opening operation and the completion timing of the projecting operation may be the same or different.
  • the molded product is gripped by the gripping device 18 while the projecting operation is being performed.
  • the position of the gripping device 18 during this period may be in a stationary state or in a floating state.
  • the immovable state is a state in which the position of the grasping device 18 is maintained without being changed even if an external force is applied.
  • the floating state is a state in which the position of the gripping device 18 can change according to external force.
  • FIG. 5 is a block diagram showing the configuration of part of the injection molding machine 12.
  • the controller 26 has a motor controller 62 .
  • the motor control section 62 controls a motor provided in the injection molding machine 12 .
  • the motor control section 62 includes a first motor control section 64 and a second motor control section 66 .
  • the first motor control unit 64 controls the pin driving motor 68 provided in the projecting device 24 to cause the projecting device 24 to perform the projecting operation.
  • the pin drive motor 68 is a first drive source for driving the ejector rod 54 that pushes the ejector pin 58 in the mold closing direction DA.
  • a motor driving force generated by driving the pin driving motor 68 is transmitted to the ejector rod 54 .
  • the ejector rod 54 pushes the ejector plate 56 by the motor driving force transmitted to the ejector rod 54 .
  • the ejector pin 58 fixed to the ejector plate 56 moves in the mold closing direction DA. That is, the first motor control unit 64 controls the pin driving motor 68 to drive the ejector rod 54 and move the ejector pin 58 in the mold closing direction DA via the ejector plate 56 .
  • the second motor control unit 66 controls the mold drive motor 70 provided in the mold clamping device 20 to cause the mold clamping device 20 to perform a mold opening operation or a mold closing operation.
  • the mold drive motor 70 is a second drive source for driving the movable platen 34 to which the movable mold 30 is attached.
  • a motor driving force generated by driving the mold driving motor 70 is transmitted to the movable platen 34 .
  • the motor driving force transmitted to the movable platen 34 causes the movable mold 30 provided on the movable platen 34 to move in the mold closing direction DA or the mold opening direction DB. That is, the second motor control unit 66 drives the movable platen 34 by controlling the mold driving motor 70, and moves the movable mold 30 attached to the movable platen 34 in the mold closing direction DA or the mold opening direction DB. move.
  • a computing device 72 is further provided in the control device 26 of the present embodiment.
  • the computing device 72 computes the parameters used for the projecting motion.
  • the computing device 72 has an information processing section 74 and a storage section 76 .
  • the information processing unit 74 is configured by, for example, a processor such as a CPU or GPU.
  • the storage unit 76 includes volatile memory such as RAM, and nonvolatile memory such as ROM, flash memory, and hard disk. At least part of the storage unit 76 may be provided in the processor.
  • the information processing section 74 has a load acquiring section 80 , an adjusting section 82 and a setting changing section 84 .
  • the load acquisition unit 80 , the adjustment unit 82 and the setting change unit 84 may be implemented by the information processing unit 74 processing a program stored in the storage unit 76 .
  • At least one of the load acquisition unit 80, the adjustment unit 82, and the setting change unit 84 may be realized by an integrated circuit such as ASIC, FPGA, or the like.
  • at least one of the load acquisition unit 80, the adjustment unit 82, and the setting change unit 84 may be configured by an electronic circuit including a discrete device.
  • the load acquisition unit 80 Based on the signal output from the load acquisition sensor 90, the load acquisition unit 80 acquires the load received from the molded product by the gripping device 18 that grips the molded product during the synchronous operation. The load acquisition unit 80 also stores load information indicating the acquired load in the storage unit 76 .
  • a load acquisition sensor 90 is provided in the take-out device 14 . The load acquisition sensor 90 may be provided in the gripping device 18 of the take-out device 14 .
  • the load acquisition sensor 90 may be a torque sensor that detects the torque of the extraction motor used to execute the extraction operation.
  • the load acquisition unit 80 acquires the torque of the extraction motor during the synchronous operation based on the signal output from the torque sensor.
  • the load acquisition sensor 90 may be a current sensor that detects the current (driving current) output to the extraction motor used to execute the extraction operation.
  • the load acquisition unit 80 acquires the current of the extraction motor during the synchronous operation based on the signal output from the current sensor.
  • the load acquisition unit 80 may compute and acquire the torque or voltage (driving voltage) of the extraction motor during the synchronous operation based on the signal output from the current sensor.
  • the load acquisition sensor 90 may be a position sensor that detects the position of the extraction motor used to execute the extraction operation.
  • the load acquiring section 80 acquires the position of the extraction motor during the synchronous operation based on the signal output from the position sensor.
  • the load acquiring unit 80 easily recognizes the position of the extraction motor during the projecting operation as the load that the gripping device 18 receives from the molded product. .
  • the load acquisition sensor 90 may be a force sensor that detects the take-out load generated during the take-out operation.
  • the load acquisition section 80 acquires the extraction load during the synchronous operation based on the signal output from the force sensor.
  • the load acquisition sensor 90 may be a strain sensor that detects the strain of the molded product.
  • the load acquiring section 80 acquires the strain of the molded product during the synchronous operation based on the signal output from the strain sensor.
  • the load acquisition sensor 90 may be a pressure sensor that detects fluid pressure, such as oil pressure or air pressure, that is applied to perform the extraction operation.
  • the load acquiring section 80 acquires the fluid pressure during the synchronous operation based on the signal output from the pressure sensor.
  • the load acquiring unit 80 acquires at least one of the above-described torque, current, voltage, phase, take-out load, distortion of the molded product, and fluid pressure when the gripping device 18 grips the molded product during synchronous operation. It can be obtained as the load received from the product.
  • the load acquisition unit 80 uses physical quantities other than torque, current, voltage, phase, ejection load, distortion of the molded product, and fluid pressure as the load received from the molded product by the gripping device 18 that grips the molded product during the synchronous operation. can get.
  • the load acquisition unit 80 can acquire one or more physical quantities as the load that the gripping device 18 that grips the molded product receives from the molded product during the synchronous operation.
  • the load acquired by the load acquisition unit 80 changes according to the speed ratio of the synchronous operation.
  • the speed ratio of the synchronous operation is the ratio between the first movement speed and the second movement speed.
  • the first moving speed is the moving speed of the ejector rod 54 and the second moving speed is the moving speed of the movable platen 34 .
  • the synchronous operation speed ratio is defined as the ratio of the second movement speed to the first movement speed. That is, the speed ratio of the synchronous operation in this embodiment is a ratio (second moving speed/first moving speed) in which the first moving speed is the denominator and the second moving speed is the numerator.
  • the adjustment unit 82 adjusts the speed ratio of the second movement speed to the first movement speed so that the magnitude of the load acquired by the load acquisition unit 80 during the synchronous operation falls within a predetermined range.
  • the upper limit of the predetermined range indicates the upper limit of the load in the direction corresponding to the mold opening direction DB.
  • the direction corresponding to the mold opening direction DB is defined as the positive direction.
  • the lower limit of the predetermined range indicates the lower limit of the load in the direction corresponding to the mold closing direction DA.
  • the direction corresponding to the mold closing direction DA is defined as the negative direction.
  • the adjusting unit 82 increases the speed ratio of the second moving speed to the first moving speed. As a result, the load acting in the direction (mold closing direction DA) pushing the molded product is suppressed.
  • the adjusting unit 82 reduces the speed ratio of the second moving speed to the first moving speed. As a result, the load acting in the direction of pulling the molded product (mold opening direction DB) is suppressed.
  • the setting changer 84 changes the setting of at least one of the first drive source and the second drive source so as to achieve the speed ratio adjusted by the adjuster 82 .
  • the setting changing unit 84 changes the set speed set in the first motor control unit 64 that controls the pin driving motor 68 (first driving source). change.
  • the setting change unit 84 changes the set speed set in the second motor control unit 66 that controls the mold drive motor 70 (second drive source). to change
  • the setting change unit 84 calculates at least one of the first target speed and the second target speed and calculates the first target speed for obtaining the speed ratio adjusted by the adjustment unit 82
  • the setting change unit 84 outputs a command to the first motor control section 64 to set the first target speed as the first movement speed.
  • the setting change unit 84 outputs a command to set the second target speed as the second movement speed to the second motor control unit 66 .
  • FIG. 8 is a flow chart showing the flow of arithmetic processing of the arithmetic unit 72. As shown in FIG. The arithmetic processing of the arithmetic device 72 may be executed for each cycle repeated in the injection molding machine 12, may be executed from the first cycle to a designated cycle, or may be executed for one or more designated cycles. May only be executed in cycles. The flowchart of FIG. 8 shows arithmetic processing executed in one cycle.
  • Arithmetic processing of the arithmetic device 72 is started after the molded product adhering to the cavity surface 61 of the movable mold 30 is gripped by the gripping device 18 arranged between the fixed mold 28 and the movable mold 30. be.
  • step S1 the setting changer 84 sets the first driving source and the second driving source such that the first moving speed of the ejector rod 54 and the second moving speed of the movable platen 34 are the same.
  • the setting change unit 84 changes the set speed set in the first motor control unit 64 that controls the pin drive motor 68 (first drive source) and the mold drive motor 70 (second drive source).
  • the set speed is set to the same speed as that set in the second motor control unit 66 that controls the power source).
  • the arithmetic processing proceeds to step S2. Note that the first moving speed and the second moving speed may be set to different speeds.
  • step S ⁇ b>2 the load acquisition unit 80 starts acquiring the load that the gripping device 18 receives from the molded product gripped by the gripping device 18 .
  • load acquisition is started, the arithmetic processing proceeds to step S3.
  • step S3 the adjustment unit 82 compares the load acquired in step S1 with the lower limit value within a predetermined range.
  • the arithmetic processing proceeds to step S4.
  • the arithmetic processing proceeds to step S5.
  • step S4 the adjusting unit 82 increases the speed ratio of the second moving speed to the first moving speed.
  • a setting changer 84 changes at least one of the first drive source and the second drive source so as to achieve the speed ratio adjusted by the adjuster 82 .
  • the arithmetic processing proceeds to step S7.
  • step S5 the adjustment unit 82 compares the load acquired in step S2 with the upper limit value within a predetermined range.
  • the arithmetic processing proceeds to step S6.
  • step S5: NO the magnitude of the load acquired by the load acquisition unit 80 during the synchronous operation is smaller than the upper limit value of the predetermined range.
  • step S6 the adjusting unit 82 reduces the speed ratio of the second moving speed to the first moving speed.
  • a setting changer 84 changes at least one of the first drive source and the second drive source so as to achieve the speed ratio adjusted by the adjuster 82 .
  • the arithmetic processing proceeds to step S7.
  • step S7 the computing device 72 determines whether or not the synchronous operation has been completed. Here, if the synchronous operation has not been completed, the arithmetic processing returns to step S3. On the other hand, if the synchronous operation has been completed, the arithmetic processing ends.
  • the computing device 72 adjusts the speed ratio of the second moving speed to the first moving speed so that the magnitude of the load that the gripping device 18 receives from the molded product during the synchronous operation falls within a predetermined range. do.
  • the computing device 72 adjusts the speed ratio of the second moving speed to the first moving speed so that the magnitude of the load that the gripping device 18 receives from the molded product during the synchronous operation falls within a predetermined range. do.
  • the free running section of the ejector pin 58 until the ejector rod 54 contacts the ejector plate 56 can be reduced.
  • the computing device 72 of this embodiment changes the setting of at least one of the first drive source and the second drive source so as to achieve the speed ratio adjusted by the adjuster 82 .
  • the computing device 72 of this embodiment changes the setting of at least one of the first drive source and the second drive source so as to achieve the speed ratio adjusted by the adjuster 82 .
  • a speed ratio of the synchronous motion may be defined as the ratio of the first movement speed to the second movement speed. That is, the speed ratio of the synchronous operation in this modified example is a ratio (first moving speed/second moving speed) in which the second moving speed is the denominator and the first moving speed is the numerator.
  • the adjusting unit 82 adjusts the speed ratio of the first moving speed to the second moving speed. Make smaller. As a result, the load acting in the direction (mold closing direction DA) pushing the molded product is suppressed. Conversely, when the magnitude of the load acquired by the load acquisition unit 80 during the synchronous operation exceeds the upper limit value of the predetermined range, the adjustment unit 82 increases the speed ratio of the first movement speed to the second movement speed. . As a result, the load acting in the direction of pulling the molded product (mold opening direction DB) is suppressed.
  • the adjuster 82 may vary the speed ratio of the synchronous operation per unit time. For example, the adjustment unit 82 reduces the speed ratio of the synchronous operation as the elapsed time from the start of the synchronous operation increases. As a specific example, the adjustment unit 82 decreases the speed ratio of the synchronous operation in order of "0.7", “0.5", and “0.3” as the cycle progresses. Alternatively, the adjustment unit 82 decreases the speed ratio of the synchronous operation in order of "0.7", “0.5", and "0.3” each time the unit time elapses in one cycle.
  • the adjustment unit 82 varies the speed ratio of the synchronous operation per unit time. As a result, compared to the case where the speed ratio is constant, the speed ratio of the synchronous operation can be adjusted fluidly.
  • FIG. 9 is a block diagram showing an arithmetic unit 72 of Modification 3. As shown in FIG. 9, the same reference numerals are assigned to the same configurations as those described in the embodiment. In addition, in this modified example, description overlapping with the embodiment will be omitted.
  • the computing device 72 of this modified example further has a changing unit 92 .
  • the changing unit 92 changes the upper limit value or the lower limit value of the predetermined range used by the adjusting unit 82 according to user's operation.
  • An operation unit 94 is connected to the change unit 92 .
  • the operation unit 94 outputs the value input according to the user's operation to the change unit 92 .
  • the operation unit 94 include a mouse, keyboard, and the like.
  • the operation unit 94 may be configured by a touch panel or the like arranged on the display screen.
  • the changing unit 92 can change the upper limit value or the lower limit value of the predetermined range used by the adjusting unit 82 according to user's operation. This makes it possible to adjust the allowable load amount for the gripping device 18 according to the types of the injection molding machine 12, the mold 16, the take-out device 14, and the like.
  • a pulling operation may be performed instead of the mold opening operation. That is, in this modified example, a synchronous operation for synchronizing the pulling operation and the projecting operation is performed.
  • the pulling operation is an operation of pulling the molded article gripped by the gripping device 18 in the mold closing direction DA.
  • the second moving speed is the moving speed of the gripping device 18 .
  • FIG. 10 is a block diagram showing the configuration of part of the injection molding machine 12 of Modification 4. As shown in FIG. In FIG. 10, the same reference numerals are assigned to the same configurations as those described in the embodiment. In addition, in this modified example, description overlapping with the embodiment will be omitted.
  • the control device 26 of this modified example has a third motor control section 67 instead of the second motor control section 66 .
  • the third motor control unit 67 controls the grip driving motor 71 provided in the take-out device 14 to cause the take-out device 14 to perform a pulling operation.
  • the gripping drive motor 71 is a third drive source for driving the gripping device 18 in the mold closing direction DA.
  • the gripping device 18 moves in the mold closing direction DA by the motor drive force generated by driving the gripping driving motor 71 . That is, the third motor control unit 67 controls the gripping drive motor 71 to move the gripping device 18 in the mold closing direction DA.
  • the third drive source is the motor (gripping drive motor 71) in FIG. 10, it may be a compressor.
  • the compressor may be a hydraulic compressor or a pneumatic compressor.
  • the setting changer 841 of this modified example changes the setting of at least one of the first drive source and the third drive source so as to achieve the speed ratio adjusted by the adjuster 82 .
  • the setting change unit 841 changes the set speed set in the third motor control unit 67 that controls the grip drive motor 71 (first drive source). change.
  • FIG. 11 is a block diagram showing an injection molding system 10 of Modification 5. As shown in FIG. In FIG. 11, the same reference numerals are assigned to the same configurations as those described in the embodiment. In addition, in this modified example, description overlapping with the embodiment will be omitted.
  • the injection molding machine 12 and the take-out device 14 are connected to the communication line 96 .
  • the communication line 96 may be wired or wireless.
  • the control device 26 of the injection molding machine 12 and the control device 98 of the take-out device 14 exchange various information with each other via the communication line 96 .
  • the arithmetic device 72 is provided in the control device 98 of the take-out device 14 instead of being provided in the control device 26 of the injection molding machine 12 .
  • the load acquisition unit 80 (see FIG. 5) of the computing device 72 receives the signal output from the load acquisition sensor 90 via the communication line 96 . Based on this signal, the load acquisition unit 80 can acquire the load received from the molded product by the gripping device 18 that grips the molded product during the synchronous operation, as in the embodiment.
  • the setting changer 84 (see FIG. 5) of the arithmetic device 72 calculates at least one of the first target speed and the second target speed so that the speed ratio adjusted by the adjuster 82 is obtained. After calculating the first target speed, the setting change unit 84 outputs a command to set the first target speed as the first movement speed to the first motor control unit 64 via the communication line 96 . When the second target speed is calculated, the setting change unit 84 outputs a command to set the second target speed as the second movement speed to the second motor control unit 66 via the communication line 96 . Accordingly, the setting change unit 84 sets the first moving speed set in the first motor control unit 64 and the speed set in the second motor control unit 66 so that the speed ratio adjusted by the adjustment unit 82 is achieved. at least one of a second movement speed and a second movement speed.
  • FIG. 12 is a block diagram showing an injection molding system 10 of Modification 6. As shown in FIG. In FIG. 12, the same reference numerals are assigned to the same configurations as those described in Modification 5. In FIG. In addition, in this modified example, the description overlapping with that of the embodiment and modified example 5 will be omitted.
  • the injection molding system 10 of this modified example further includes an external device 100 such as a personal computer that is different from the injection molding machine 12 and the take-out device 14 .
  • External device 100 is connected to communication line 96 .
  • the control device 102 of the external device 100 transmits and receives various information to and from the control device 26 of the injection molding machine 12 and the control device 98 of the take-out device 14 via the communication line 96 .
  • the communication line 96 may be connected to other injection molding machines and other ejection devices in an injection molding system different from the injection molding system 10 .
  • the number of other injection molding machines and other take-out devices may be one or more.
  • controller 102 may manage the parameters used by injection molding machine 12 and one or more other injection molding machines.
  • the arithmetic device 72 provided in the control device 102 may adjust the speed ratio of the synchronous operation in the injection molding machine 12 and the speed ratio of the synchronous operation in one or more other injection molding machines.
  • the first invention is a mold opening operation that opens the movable mold in the mold opening direction (DB) of the movable mold (30), or moves the gripping device (18) that grips the molded product in the mold closing direction of the movable mold (
  • a load acquisition unit (80) for acquiring the load received by the gripping device from the molded product; and an adjusting part (82) for adjusting the speed ratio between the first moving speed of the ejector rod (54) and the second moving speed of the movable platen (34) or the gripping device to which the movable mold is attached.
  • the adjusting unit increases the speed ratio of the second moving speed to the first moving speed or increases the speed ratio of the first moving speed to the second moving speed when the magnitude of the load is below the lower limit value of the range. You can make it smaller. As a result, it is possible to suppress the load acting in the direction of pushing the molded product (mold closing direction).
  • the adjustment unit reduces the speed ratio of the second movement speed to the first movement speed or reduces the speed ratio of the first movement speed to the second movement speed when the magnitude of the load exceeds the upper limit value of the range. You can make it bigger. As a result, the load acting in the direction of pulling the molded product (mold opening direction) can be suppressed.
  • the adjustment unit may adjust the speed ratio for each cycle repeatedly executed by the injection molding machine. As a result, even if the relative position between the ejector pin and the molded product changes on a cycle-by-cycle basis, it is possible to prevent an excessive load from being applied to the gripping device that grips the molded product.
  • the computing device has a first driving source for driving the ejector rod and a second driving source for driving the movable platen or a second driving source for driving the gripping device so as to achieve the speed ratio adjusted by the adjusting section.
  • a setting changer (84) for changing at least one of the three drive sources may be provided.
  • the computing device may include a changing unit (92) that changes at least one of the upper limit value and the lower limit value of the range according to user's operation. This makes it possible to adjust the amount of load that can be tolerated on the gripping device.
  • the adjustment unit may vary the speed ratio per unit time. As a result, compared to the case where the speed ratio is constant, the speed ratio of the synchronous operation can be adjusted fluidly.
  • the computing device may be provided in the control device (26) of the injection molding machine.
  • the computing device may be provided in the control device (98) of the removal device (14) having the gripping device.
  • the computing device may be provided in the control device (102) of the external device (100) connected to the injection molding machine and the take-out device having the gripping device.
  • a second aspect of the invention is an injection molding system (10) comprising the arithmetic device, the injection molding machine, and a take-out device having a gripping device. Since the above arithmetic unit is provided, even if the relative position between the ejector pin and the molded product changes during synchronous operation, it is possible to suppress excessive load from being applied to the gripping device that grips the molded product.
  • Injection molding system 12 Injection molding machine 14: Take-out device 16: Mold 18: Gripping device 20: Mold clamping device 22: Injection device 24: Ejection device 26, 98, 102: Control device 28: Fixed mold 30: Movable mold 32: Fixed platen 34: Movable platen 36: Rear platen 38: Tie bar 54: Ejector rod 56: Ejector plate 58: Ejector pin 62: Motor control unit 64: First motor control unit 66: Second motor control unit 72: Arithmetic device 74: information processing unit 76: storage unit 80: load acquisition unit 82: adjustment unit 84: setting change unit 100: external device

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

一実施形態の演算装置(72)は、同期動作中に把持装置(18)が成形品から受ける負荷の大きさが所定の範囲に収まるように、エジェクタロッド(54)の第1移動速度と、可動プラテン(34)または把持装置(18)の第2移動速度との速度比を調整する。

Description

演算装置および射出成形システム
 本発明は、射出成形機に用いられるパラメータの演算に関する。
 射出成形機は、金型から成形品を突出させて金型から成形品を取り出す。特開2001-150496号公報には、成形品を金型から取り出す方法が開示されている。この方法では、移動側金型を後退させる工程の途中に、移動側金型の内部に収容されている押出ピンを移動側金型の後退速度に同期させて前進させる。この方法によれば、成形品が装置のベース上の同一の位置にとどまるため、移動側金型の後退動作と並行して成形品を把持する把持装置(搬送機)によって成形品の取り出しを行うことができる。その結果、成形品取り出しに要する作業時間を短縮し得る。
 しかし、例えば、成形品の弾性係数(弾性率)が相対的に小さい場合等では、成形品と押出ピンの先端との相対位置が変化する。このような場合、押出ピンを移動側金型の後退速度に同期させて前進させても、成形品が装置のベース上の同一の位置にとどまらない。したがって、成形品を把持する把持装置に過大な負荷が加わることが懸念される。
 本発明は、上述した課題を解決することを目的とする。
 本発明の第1の態様は、可動金型の型開き方向に前記可動金型を開く型開き動作、または、成形品を把持した把持装置を前記可動金型の型閉じ方向に引く引き動作と、エジェクタピンを前記可動金型から突出する突出動作とを同期させる同期動作を実行する射出成形機に用いられるパラメータを演算する演算装置であって、前記把持装置が前記成形品から受ける負荷を取得する負荷取得部と、前記同期動作中に取得される前記負荷の大きさが所定の範囲に収まるように、前記エジェクタピンを前記型閉じ方向に駆動するエジェクタロッドの第1移動速度と、前記可動金型が取り付けられる可動プラテンまたは前記把持装置の第2移動速度との速度比を調整する調整部と、を備える。
 本発明の第2の態様は、上記の演算装置と、前記射出成形機と、前記把持装置を有する取出装置と、を備える射出成形システムである。
 本発明の態様によれば、同期動作中にエジェクタピンと成形品との相対位置が変化しても、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
図1は、射出成形システムの構成を示す模式図である。 図2は、突出装置の構成を示す模式図である。 図3は、エジェクタピンが突き出ている様子を示す図である。 図4は、成形品が突出される様子を示す図である。 図5は、射出成形機の一部の構成を示すブロック図である。 図6は、前進速度が後退速度よりも大きい場合に働く負荷を示す概念図である。 図7は、後退速度が前進速度よりも大きい場合に働く負荷を示す概念図である。 図8は、演算装置の演算処理の流れを示すフローチャートである。 図9は、変形例3の演算装置を示すブロック図である。 図10は、変形例4の射出成形機の一部の構成を示すブロック図である。 図11は、変形例5の射出成形システムを示すブロック図である。 図12は、変形例6の射出成形システムを示すブロック図である。
 〔実施形態〕
 図1は、射出成形システム10の構成を示す模式図である。射出成形システム10は、射出成形機12と、取出装置14とを備える。
 射出成形機12は、成形品を成形する機器である。射出成形機12は、水平方向に延在する設置面上に設置可能な横型射出成形機であってもよいし、水平と交差する方向に延在する設置面上に設置可能な縦型射出成形機であってもよい。図1は、射出成形機12が横型射出成形機である場合の例を示している。
 射出成形機12は、サイクルごとに成形品を繰り返し成形する。1つのサイクルにおいて、射出成形機12は、型閉じ動作、射出動作、保圧動作、計量動作、型開き動作および突出動作を実行する。
 型閉じ動作は、金型16を閉じる動作である。射出動作は、金型16のキャビティに成形材料を射出する動作である。保圧動作は、金型16のキャビティに射出された成形材料に圧力を付与する動作である。計量動作は、次の成形サイクルの準備として成形材料を計量する動作である。型開き動作は、金型16を開く動作である。突出動作は、金型16から成形品を突出する動作である。
 取出装置14は、成形品を把持し、把持した成形品を取り出す装置である。取出装置14は、把持動作と、取出動作とを実行する。把持動作は、成形品を把持する動作である。把持動作は、一般的には射出成形機12の突出動作よりも後に実行されるが、本実施形態では射出成形機12の突出動作よりも前に実行される。取出動作は、金型16から成形品を取り出す動作である。取出動作は、射出成形機12の突出動作よりも後に実行される。
 本実施形態では、取出装置14として、ロボットを用いるが、ロボットに限定されない。取出装置14は、把持動作を実行する把持装置18を有する。把持装置18は、エンドエフェクタとも称される。把持装置18は、指または爪等を用いて成形品をチャックする装置であってもよいし、負圧または磁力等を用いて成形品を吸着する装置であってもよい。
 射出成形機12は、金型16と、型締装置20と、射出装置22と、突出装置24と、制御装置26とを有する。
 金型16は、成形品を成形するための型枠である。金型16は、固定金型28と可動金型30とを有する。固定金型28および可動金型30は、型締装置20の固定プラテン32と可動プラテン34との間に配置される。固定金型28は、可動プラテン34に向く固定プラテン32の面上に設けられる。可動金型30は、固定プラテン32に向く可動プラテン34の面上に設けられる。
 型締装置20は、型閉じ動作および型開き動作を実行する装置である。型締装置20は、固定プラテン32と、可動プラテン34と、リアプラテン36と、複数のタイバー38とを有する。
 固定プラテン32とリアプラテン36とは、射出成形機12の機台40に間隔をあけて設置される。固定プラテン32とリアプラテン36との間には、複数のタイバー38が配置される。複数のタイバー38は、互いに間隔をあけて略平行に配置される。複数のタイバー38の各々の一端部は固定プラテン32に取り付けられ、複数のタイバー38の各々の他端部はリアプラテン36に取り付けられる。複数のタイバー38の各々は、可動プラテン34を貫通する。
 可動プラテン34は、固定プラテン32とリアプラテン36との間に配置される。可動プラテン34は、ガイドレール42をスライド可能なスライド部44に設置される。ガイドレール42は、タイバー38と略平行な状態で、射出成形機12の機台40に設置される。可動プラテン34は、スライド部44のスライドに応じて、型閉じ方向DAおよび型開き方向DBの双方向へ移動可能である。
 型締装置20が型閉じ動作を実行すると、可動プラテン34は、第2駆動源から伝達される駆動力によって型閉じ方向DAに移動する。可動プラテン34の移動に応じて、可動金型30は、固定金型28に押し付けられることで金型16に型締力が付与される。一方、型締装置20が型開き動作を実行すると、可動プラテン34は、第2駆動源から伝達される駆動力によって型開き方向DBに移動する。この可動プラテン34の移動に応じて、可動金型30は、固定金型28から離間する。第2駆動源は、モータであってもよいし、コンプレッサーであってもよい。コンプレッサーは、油圧式コンプレッサーであってもよいし、空圧式コンプレッサーであってもよい。本実施形態では、第2駆動源がモータである場合について説明する。
 射出装置22は、射出動作、保圧動作および計量動作を実行する装置である。射出装置22は、インラインスクリュ式の射出装置であってもよいし、プランジャ式の射出装置であってもよい。図1は、射出装置22がインラインスクリュ式の射出装置である場合の例を示している。
 射出装置22は、ノズル46と、シリンダ48と、スクリュー50と、ホッパ52と、を有する。ノズル46は、金型16に向くシリンダ48の端部に取り付けられる。ノズル46は、シリンダ48の内部と連通する。シリンダ48の内部には、スクリュー50が挿通される。シリンダ48には、ホッパ52が接続される。ホッパ52からシリンダ48の内部に成形材料が供給される。
 シリンダ48およびスクリュー50は、金型16に向かって延びている。スクリュー50は、回転可能である。また、スクリュー50は、ノズル46に向かって前進し、かつ、ノズル46から後退可能である。射出装置22が射出動作を実行すると、スクリュー50は、シリンダ48内を非回転の状態で前進する。射出装置22が保圧動作を実行すると、スクリュー50に背圧が付与される。この場合、スクリュー50は、静止していてもよい。射出装置22が計量動作を実行すると、スクリュー50は、シリンダ48内を回転しながら後退する。なお、スクリュー50は、非回転の状態で後退してもよい。
 突出装置24は、突出動作を実行する装置である。図2は、突出装置24の構成を示す模式図である。突出装置24は、エジェクタロッド54と、エジェクタプレート56と、エジェクタピン58とを有する。エジェクタロッド54の数は1つであってもよいし、2つ以上であってもよい。エジェクタピン58の数は1つであってもよいし、2つ以上であってもよい。図2は、エジェクタロッド54の数が1つであり、エジェクタピン58の数が2つである場合の例を示している。2つのエジェクタピン58は同じ構成であるため、以下、1つのエジェクタピン58のみに関して説明する。
 エジェクタロッド54およびエジェクタプレート56は、可動金型30の内部に形成された空間に配置される。エジェクタロッド54およびエジェクタプレート56は、型閉じ方向DAおよび型開き方向DBの双方向へ移動可能である。
 エジェクタピン58は、固定金型28に向くエジェクタプレート56の面から型閉じ方向DAに向かって延びている。エジェクタピン58は、可動金型30の型閉じ方向DAに沿って形成されたピン孔60に挿通される。エジェクタピン58は、エジェクタプレート56に固定されており、エジェクタプレート56と一緒に型閉じ方向DAまたは型開き方向DBに移動可能である(図2および図3参照)。
 突出動作の開始時におけるエジェクタピン58の先端は、可動金型30のピン孔60に位置する(図2参照)。突出動作完了時におけるエジェクタピン58の先端は、可動金型30から突出する。つまり、突出動作の開始時から完了時までの間に、エジェクタピン58の先端は、可動金型30のキャビティ面61から固定金型28に向けて突出する(図3参照)。なお、可動金型30のキャビティ面61とは、金型16のキャビティを構成する可動金型30の面のことをいう。
 突出装置24が突出動作を実行すると、エジェクタロッド54は、第1駆動源から伝達される駆動力によって型閉じ方向DAに移動し、エジェクタプレート56を押す。エジェクタプレート56は、エジェクタロッド54に押されて型閉じ方向DAに移動する。これにより、エジェクタプレート56に固定されるエジェクタピン58が可動金型30から突出し、成形品が可動金型30から離れる(図4参照)。第1駆動源は、モータであってもよいし、コンプレッサーであってもよい。コンプレッサーは、油圧式コンプレッサーであってもよいし、空圧式コンプレッサーであってもよい。本実施形態では、第1駆動源がモータである場合について説明する。
 突出動作が完了した後、エジェクタロッド54は、第1駆動源から伝達される駆動力によって型開き方向DBに移動する。この場合、エジェクタプレート56は、バネ(図示せず)の弾性力によって型開き方向DBに移動する。これにより、エジェクタプレート56に固定されるエジェクタピン58は可動金型30のピン孔60に引っ込む。
 制御装置26は、射出成形機12を制御する装置である。制御装置26は、型締装置20を制御することで、型締装置20に型閉じ動作または型開き動作を実行させる。また、制御装置26は、射出装置22を制御することで、射出装置22に射出動作、保圧動作または計量動作を実行させる。さらに、制御装置26は、突出装置24を制御することで、突出装置24に突出動作を実行させる。
 型開き動作と突出動作とは同期して実行される。すなわち、制御装置26は、まず、型締装置20に1次の型開き動作を実行させて、固定金型28と可動金型30との間に、把持装置18を配置するための空間を確保する。1次の型開き動作の完了後、取出装置14による把持動作が実行され、成形品が把持装置18に把持される。その後、制御装置26は、型締装置20および突出装置24に同期動作を実行させる。すなわち、制御装置26は、型締装置20に2次の型開き動作を実行させながら、突出装置24に突出動作を実行させる。突出動作が実行されている期間は、成形品は把持装置18に把持された状態にある。なお、同期動作では、2次の型開き動作の完了タイミングと、突出動作の完了タイミングとは、同じであってもよいし、異なってもよい。
 突出動作が実行されている期間、成形品は把持装置18に把持されている。この期間における把持装置18の位置は、不動の状態であってもよいし、フローティングの状態であってもよい。不動の状態とは、外力を受けても把持装置18の位置が変化せずに維持される状態である。一方、フローティングの状態とは、外力に応じて把持装置18の位置が変化し得る状態である。
 図5は、射出成形機12の一部の構成を示すブロック図である。制御装置26は、モータ制御部62を有する。モータ制御部62は、射出成形機12に備えられるモータを制御する。このモータ制御部62は、第1モータ制御部64と、第2モータ制御部66とを含む。
 第1モータ制御部64は、突出装置24に備えられたピン駆動用モータ68を制御することで、突出装置24に突出動作を実行させる。ピン駆動用モータ68は、エジェクタピン58を型閉じ方向DAに押すエジェクタロッド54を駆動するための第1駆動源である。ピン駆動用モータ68の駆動によって発生するモータ駆動力は、エジェクタロッド54に伝達される。エジェクタロッド54に伝達されるモータ駆動力によって、エジェクタロッド54がエジェクタプレート56を押す。これにより、エジェクタプレート56に固定されるエジェクタピン58が型閉じ方向DAに移動する。つまり、第1モータ制御部64は、ピン駆動用モータ68を制御することで、エジェクタロッド54を駆動し、エジェクタプレート56を介して、エジェクタピン58を型閉じ方向DAに移動させる。
 第2モータ制御部66は、型締装置20に備えられた金型駆動用モータ70を制御することで、型締装置20に型開き動作または型閉め動作を実行させる。金型駆動用モータ70は、可動金型30が取り付けられる可動プラテン34を駆動するための第2駆動源である。金型駆動用モータ70の駆動によって発生するモータ駆動力は、可動プラテン34に伝達される。可動プラテン34に伝達されるモータ駆動力によって、可動プラテン34に設けられる可動金型30が型閉じ方向DAまたは型開き方向DBに移動する。つまり、第2モータ制御部66は、金型駆動用モータ70を制御することで、可動プラテン34を駆動し、可動プラテン34に取り付けられる可動金型30を型閉じ方向DAまたは型開き方向DBに移動させる。
 本実施形態の制御装置26には、演算装置72がさらに備えられる。演算装置72は、突出動作に用いられるパラメータを演算する。演算装置72は、情報処理部74と、記憶部76とを有する。情報処理部74は、例えば、CPU、GPU等のプロセッサによって構成される。記憶部76は、RAM等の揮発性メモリと、ROM、フラッシュメモリ、ハードディスク等の不揮発性メモリとを含む。記憶部76の少なくとも一部が、プロセッサに備えられていてもよい。
 情報処理部74は、負荷取得部80と、調整部82と、設定変更部84とを有する。負荷取得部80、調整部82および設定変更部84は、記憶部76に記憶されているプログラムを情報処理部74が処理することで実現されてもよい。また、負荷取得部80、調整部82および設定変更部84の少なくとも1つが、ASIC、FPGA等の集積回路によって実現されてもよい。また、負荷取得部80、調整部82および設定変更部84の少なくとも1つが、ディスクリートデバイスを含む電子回路によって構成されてもよい。
 負荷取得部80は、負荷取得用センサ90から出力される信号に基づいて、同期動作中に成形品を把持する把持装置18が成形品から受ける負荷を取得する。また、負荷取得部80は、取得した負荷を示す負荷情報を記憶部76に記憶する。負荷取得用センサ90は、取出装置14に備えられる。負荷取得用センサ90は、取出装置14が有する把持装置18に備えられてもよい。
 負荷取得用センサ90は、取出動作を実行するために用いられる取出用モータのトルクを検出するトルクセンサであってもよい。この場合、負荷取得部80は、トルクセンサから出力される信号に基づいて、同期動作中における取出用モータのトルクを取得する。
 負荷取得用センサ90は、取出動作を実行するために用いられる取出用モータに出力される電流(駆動電流)を検出する電流センサであってもよい。この場合、負荷取得部80は、電流センサから出力される信号に基づいて、同期動作中における取出用モータの電流を取得する。負荷取得部80は、電流センサから出力される信号に基づいて、同期動作中における取出用モータのトルクまたは電圧(駆動電圧)を演算して取得してもよい。
 負荷取得用センサ90は、取出動作を実行するために用いられる取出用モータの位置を検出する位置センサであってもよい。この場合、負荷取得部80は、位置センサから出力される信号に基づいて、同期動作中における取出用モータの位置を取得する。突出動作時に成形品を把持する把持装置18の位置がフローティングの状態である場合、負荷取得部80は、突出動作中における取出用モータの位置を、把持装置18が成形品から受ける負荷として捉え易い。
 負荷取得用センサ90は、取出動作時に発生する取出荷重を検出する力センサであってもよい。この場合、負荷取得部80は、力センサから出力される信号に基づいて、同期動作中における取出荷重を取得する。
 負荷取得用センサ90は、成形品の歪みを検出する歪センサであってもよい。この場合、負荷取得部80は、歪センサから出力される信号に基づいて、同期動作中における成形品の歪みを取得する。
 負荷取得用センサ90は、取出動作を実行するために付与される油圧、空圧等の流体圧を検出する圧力センサであってもよい。この場合、負荷取得部80は、圧力センサから出力される信号に基づいて、同期動作中における流体圧を取得する。
 負荷取得部80は、以上で述べたトルク、電流、電圧、位相、取出荷重、成形品の歪みおよび流体圧のうちの少なくとも1つを、同期動作中に成形品を把持する把持装置18が成形品から受ける負荷として取得し得る。また、負荷取得部80は、トルク、電流、電圧、位相、取出荷重、成形品の歪みおよび流体圧以外の物理量を、同期動作中に成形品を把持する把持装置18が成形品から受ける負荷として取得し得る。要するに、負荷取得部80は、同期動作中に成形品を把持する把持装置18が成形品から受ける負荷として、1種類以上の物理量を取得し得る。
 負荷取得部80が取得する負荷は、同期動作の速度比に応じて変化する。同期動作の速度比は、第1移動速度と第2移動速度との比率である。第1移動速度は、エジェクタロッド54の移動速度であり、第2移動速度は、可動プラテン34の移動速度である。本実施形態では、同期動作の速度比は、第1移動速度に対する、第2移動速度の比率と定義する。つまり、本実施形態における同期動作の速度比は、第1移動速度を分母、第2移動速度を分子とする比率(第2移動速度/第1移動速度)である。
 同期動作の速度比が「1」よりも小さい場合、エジェクタピン58を型閉じ方向DAに押すエジェクタロッド54の前進速度が、型開き方向DBに移動する可動プラテン34の後退速度よりも速い(図6参照)。この場合、エジェクタピン58の位置(絶対位置)が型閉じ方向DAに移動する。このため、把持装置18に把持される成形品を押す方向に負荷が働く。つまり、同期動作の速度比が「1」よりも小さくなればなるほど、負荷取得部80が取得する負荷は、型閉じ方向DAに対応する方向に大きくなる。
 逆に、同期動作の速度比が「1」よりも大きい場合、エジェクタロッド54の前進速度が、可動プラテン34の後退速度よりも遅い(図7参照)。この場合、エジェクタピン58の位置(絶対位置)が型開き方向DBに移動する。このため、把持装置18に把持される成形品を引っ張る方向に負荷が働く。つまり、同期動作の速度比が「1」よりも大きくなればなるほど、負荷取得部80が取得する負荷は、型開き方向DBに対応する方向に大きくなる。
 調整部82は、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲に収まるように、第1移動速度に対する第2移動速度の速度比を調整する。所定の範囲の上限値は、型開き方向DBに対応する方向の負荷の上限を示す。以下、型開き方向DBに対応する方向は正方向とする。所定の範囲の下限値は、型閉じ方向DAに対応する方向の負荷の下限を示す。以下、型閉じ方向DAに対応する方向は負方向とする。
 同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の下限値を下回る場合、負荷取得部80で取得された負荷の方向は負方向を示し、かつ、その負荷の絶対値は下限値より大きい値を示す。この場合、調整部82は、第1移動速度に対する第2移動速度の速度比を大きくする。これにより、成形品を押す方向(型閉じ方向DA)に働く負荷が抑制される。
 逆に、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の上限値を上回る場合、負荷取得部80で取得された負荷の方向は正方向を示し、かつ、その負荷の絶対値は上限値より大きい値を示す。この場合、調整部82は、第1移動速度に対する第2移動速度の速度比を小さくする。これにより、成形品を引っ張る方向(型開き方向DB)に働く負荷が抑制される。
 設定変更部84は、調整部82で調整された速度比になるように、第1駆動源および第2駆動源のうちの少なくとも1つの設定を変更する。第1駆動源の設定を変更する場合、本実施形態では、設定変更部84は、ピン駆動用モータ68(第1駆動源)を制御する第1モータ制御部64に設定されている設定速度を変更する。第2駆動源の設定を変更する場合、本実施形態では、設定変更部84は、金型駆動用モータ70(第2駆動源)を制御する第2モータ制御部66に設定されている設定速度を変更する。
 例えば、設定変更部84は、第1目標速度および第2目標速度の少なくとも1つを算出して、調整部82で調整された速度比を得る第1目標速度を算出する場合、設定変更部84は第1移動速度として第1目標速度を設定すべき命令を第1モータ制御部64に出力する。設定変更部84は、第2目標速度を算出する場合、第2移動速度として第2目標速度を設定すべき命令を第2モータ制御部66に出力する。
 次に、第1実施形態による演算装置72の演算方法を説明する。図8は、演算装置72の演算処理の流れを示すフローチャートである。演算装置72の演算処理は、射出成形機12で繰り返されるサイクルごとに実行されてもよいし、1番目のサイクルから指定されたサイクルまで実行されてもよいし、1または2以上の指定されたサイクルでのみ実行されてもよい。図8のフローチャートでは、1つのサイクルで実行される演算処理が示されている。
 演算装置72の演算処理は、固定金型28と可動金型30との間に配置された把持装置18によって可動金型30のキャビティ面61に付着する成形品が把持された以後に、開始される。
 ステップS1において、設定変更部84は、エジェクタロッド54の第1移動速度と、可動プラテン34の第2移動速度とが互いに同じ速度になるように、第1駆動源および第2駆動源を設定する。本実施形態では、設定変更部84は、ピン駆動用モータ68(第1駆動源)を制御する第1モータ制御部64に設定されている設定速度と、金型駆動用モータ70(第2駆動源)を制御する第2モータ制御部66に設定されている設定速度とを同じ速度に設定する。第1移動速度および第2移動速度が互いに同じ速度に設定されると、演算処理はステップS2に進む。なお、第1移動速度と第2移動速度とが互いに異なる速度に設定されてもよい。
 ステップS2において、負荷取得部80は、把持装置18によって把持される成形品から把持装置18が受ける負荷の取得を開始する。負荷の取得が開始されると、演算処理はステップS3に進む。
 ステップS3において、調整部82は、ステップS1で取得された負荷を所定の範囲の下限値と比較する。ここで、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の下限値を下回る場合(ステップS3:YES)、演算処理はステップS4に進む。一方、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の下限値よりも大きい場合(ステップS3:NO)、演算処理はステップS5に進む。
 ステップS4において、調整部82は、第1移動速度に対する第2移動速度の速度比を大きくする。設定変更部84は、調整部82で調整された速度比になるように、第1駆動源と第2駆動源の少なくとも1つを変更する。第1駆動源と第2駆動源の少なくとも1つが変更されると、演算処理はステップS7に進む。
 ステップS5において、調整部82は、ステップS2で取得された負荷を所定の範囲の上限値と比較する。ここで、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の上限値を上回る場合(ステップS5:YES)、演算処理はステップS6に進む。一方、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の上限値よりも小さい場合(ステップS5:NO)、演算処理はステップS7に進む。
 ステップS6において、調整部82は、第1移動速度に対する第2移動速度の速度比を小さくする。設定変更部84は、調整部82で調整された速度比になるように、第1駆動源と第2駆動源の少なくとも1つを変更する。第1駆動源と第2駆動源の少なくとも1つが変更されると、演算処理はステップS7に進む。
 ステップS7において、演算装置72は、同期動作が完了したか否かを判定する。ここで、同期動作が完了していない場合、演算処理はステップS3に戻る。一方、同期動作が完了している場合、演算処理は終了する。
 以上説明したように、演算装置72は、同期動作中に把持装置18が成形品から受ける負荷の大きさが所定の範囲に収まるように、第1移動速度に対する第2移動速度の速度比を調整する。これにより、同期動作中にエジェクタピン58と成形品との相対位置が変化しても、成形品を把持する把持装置18に過大な負荷が加わることを抑制することができる。また、エジェクタピン58と成形品との相対位置を作業者に確認させることなく、成形品を把持する把持装置18に過大な負荷が加わることを抑制することができる。
 さらに、第1移動速度に対する第2移動速度の速度比が極めて小さい場合、エジェクタロッド54がエジェクタプレート56に接触するまでのエジェクタピン58の空走区間を低減することができる。
 本実施形態の演算装置72は、調整部82で調整された速度比になるように、第1駆動源および第2駆動源のうちの少なくとも1つの設定を変更する。これにより、作業者に設定変更作業を行わせることなく、成形品を把持する把持装置18に過大な負荷が加わることを抑制することができる。
 〔変形例〕
  上記の実施形態は、下記のように変形してもよい。
 (変形例1)
 同期動作の速度比は、第2移動速度に対する、第1移動速度の比率と定義されてもよい。つまり、本変形例における同期動作の速度比は、第2移動速度を分母、第1移動速度を分子とする比率(第1移動速度/第2移動速度)である。
 本変形例では、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の下限値を下回る場合、調整部82は、第2移動速度に対する第1移動速度の速度比を小さくする。これにより、成形品を押す方向(型閉じ方向DA)に働く負荷が抑制される。逆に、同期動作中に負荷取得部80で取得された負荷の大きさが所定の範囲の上限値を上回る場合、調整部82は、第2移動速度に対する第1移動速度の速度比を大きくする。これにより、成形品を引っ張る方向(型開き方向DB)に働く負荷が抑制される。
 これにより、実施形態と同様に、同期動作中にエジェクタピン58と成形品との相対位置が変化しても、成形品を把持する把持装置18に過大な負荷が加わることを抑制することができる。
 (変形例2)
 調整部82は、単位時間あたりの同期動作の速度比を可変してもよい。例えば、調整部82は、同期動作の開始からの経過時間が長くなるほど、同期動作の速度比を小さくする。具体例として、調整部82は、サイクルが進むにつれて、同期動作の速度比を、「0.7」、「0.5」、「0.3」の順に小さくしていく。或いは、調整部82は、1サイクルのなかで単位時間が経過するたびに同期動作の速度比を、「0.7」、「0.5」、「0.3」の順に小さくしていく。
 このように、調整部82は、単位時間あたりの同期動作の速度比を可変する。これにより、速度比が一定の場合に比べ、同期動作の速度比を流動的に調整することができる。
 (変形例3)
 図9は、変形例3の演算装置72を示すブロック図である。図9では、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は省略する。
 本変形例の演算装置72は、変更部92をさらに有する。変更部92は、ユーザ操作に応じて、調整部82で用いられる所定の範囲の上限値または下限値を変更する。この変更部92には操作部94が接続される。
 操作部94は、ユーザ操作に応じて入力された値を変更部92に出力する。操作部94の具体例として、マウス、キーボード等が挙げられる。表示画面上に配置されるタッチパネル等によって、操作部94が構成されてもよい。ユーザ操作に応じて操作部94から上限値が入力された場合、変更部92は、調整部82で現在設定されている所定の範囲の上限値を、ユーザ操作に応じて入力された上限値に変更する。逆に、ユーザ操作に応じて操作部94から下限値が入力された場合、変更部92は、調整部82で現在設定されている所定の範囲の下限値を、ユーザ操作に応じて入力された下限値に変更する。
 このように、変更部92は、ユーザ操作に応じて、調整部82で用いられる所定の範囲の上限値または下限値を変更し得る。これにより、射出成形機12、金型16、取出装置14等の種類に応じて、把持装置18に許容し得る負荷量を調整することができる。
 (変形例4)
 型開き動作に代えて、引き動作が実行されてもよい。つまり、本変形例では、引き動作と突出動作とを同期させる同期動作が実行される。引き動作は、把持装置18に把持される成形品を型閉じ方向DAに引く動作である。本変形例の場合、第2移動速度は、把持装置18の移動速度である。
 図10は、変形例4の射出成形機12の一部の構成を示すブロック図である。図10では、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は省略する。
 本変形例の制御装置26は、第2モータ制御部66に代えて、第3モータ制御部67を有する。第3モータ制御部67は、取出装置14に備えられた把持駆動用モータ71を制御することで、取出装置14に引き動作を実行させる。把持駆動用モータ71は、把持装置18を型閉じ方向DAに駆動するための第3駆動源である。把持駆動用モータ71の駆動によって発生するモータ駆動力によって、把持装置18が型閉じ方向DAに移動する。つまり、第3モータ制御部67は、把持駆動用モータ71を制御することで、把持装置18を型閉じ方向DAに移動させる。なお、第3駆動源は、図10ではモータ(把持駆動用モータ71)であるが、コンプレッサーであってもよい。コンプレッサーは、油圧式コンプレッサーであってもよいし、空圧式コンプレッサーであってもよい。
 本変形例の設定変更部841は、調整部82で調整された速度比になるように、第1駆動源および第3駆動源のうちの少なくとも1つの設定を変更する。第3駆動源の設定を変更する場合、本変形例では、設定変更部841は、把持駆動用モータ71(第1駆動源)を制御する第3モータ制御部67に設定されている設定速度を変更する。
 したがって、引き動作と突出動作とを同期させる同期動作が実行されても実施形態と同様の効果が得られる。
(変形例5)
 図11は、変形例5の射出成形システム10を示すブロック図である。図11では、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は省略する。
 本変形例の射出成形システム10では、射出成形機12と取出装置14とが通信線96に接続される。通信線96は、有線であってもよいし、無線であってもよい。射出成形機12の制御装置26と取出装置14の制御装置98とは通信線96を介して各種の情報を相互に送受信する。
 本変形例では、演算装置72は、射出成形機12の制御装置26に備えられる実施形態に代えて、取出装置14の制御装置98に備えられる。
 演算装置72の負荷取得部80(図5参照)は、通信線96を介して負荷取得用センサ90から出力される信号を受信する。負荷取得部80は、この信号に基づいて、実施形態と同様に、同期動作中に成形品を把持する把持装置18が成形品から受ける負荷を取得し得る。
 演算装置72の設定変更部84(図5参照)は、調整部82で調整された速度比が得られるように第1目標速度および第2目標速度の少なくとも1つを算出する。設定変更部84は、第1目標速度を算出した場合、通信線96を介して、第1移動速度として第1目標速度を設定すべき命令を第1モータ制御部64に出力する。設定変更部84は、第2目標速度を算出した場合、通信線96を介して、第2移動速度として第2目標速度を設定すべき命令を第2モータ制御部66に出力する。これにより、設定変更部84は、調整部82で調整された速度比になるように、第1モータ制御部64に設定されている第1移動速度と、第2モータ制御部66に設定されている第2移動速度とのうちの少なくとも1つを変更し得る。
 したがって、演算装置72が取出装置14に備えられても実施形態と同様の効果が得られる。
(変形例6)
 図12は、変形例6の射出成形システム10を示すブロック図である。図12では、変形例5において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態および変形例5と重複する説明は省略する。
 本変形例の射出成形システム10は、射出成形機12および取出装置14とは異なるパーソナルコンピュータ等の外部装置100をさらに備える。外部装置100は、通信線96に接続される。外部装置100の制御装置102は、通信線96を介して、射出成形機12の制御装置26および取出装置14の制御装置98と各種の情報を送受信する。
 本変形例では、演算装置72は、外部装置100の制御装置102に備えられても、取出装置14の制御装置98に備えられる変形例5の場合と同様にして演算処理を実行し得る。したがって、演算装置72が外部装置100に備えられても実施形態と同様の効果が得られる。
 ところで、通信線96には、射出成形システム10とは異なる射出成形システムにおける他の射出成形機および他の取出装置が接続されていてもよい。他の射出成形機および他の取出装置の数は1つであってもよいし、複数であってもよい。この場合、制御装置102は、射出成形機12と、1または複数の他の射出成形機とに用いられるパラメータを管理してもよい。また、制御装置102に備えられた演算装置72は、射出成形機12における同期動作の速度比と、1または複数の他の射出成形機における同期動作の速度比とを調整してもよい。
(変形例7)
 上記の実施形態および変形例は、矛盾の生じない範囲で任意に組み合わされてもよい。
〔発明〕
 上記の実施形態および変形例から把握しうる発明として、以下、第1の発明および第2の発明を記載する。
(第1の発明)
 第1の発明は、可動金型(30)の型開き方向(DB)に可動金型を開く型開き動作、または、成形品を把持した把持装置(18)を可動金型の型閉じ方向(DA)に引く引き動作と、エジェクタピン(58)を可動金型から突出する突出動作とを同期させる同期動作を実行する射出成形機(12)に用いられるパラメータを演算する演算装置(72)であって、把持装置が成形品から受ける負荷を取得する負荷取得部(80)と、同期動作中に取得される負荷の大きさが所定の範囲に収まるように、エジェクタピンを型閉じ方向に駆動するエジェクタロッド(54)の第1移動速度と、可動金型が取り付けられる可動プラテン(34)または把持装置の第2移動速度との速度比を調整する調整部(82)と、を備える。
 これにより、同期動作中にエジェクタピンと成形品との相対位置が変化しても、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
 調整部は、前記負荷の大きさが範囲の下限値を下回る場合には、第1移動速度に対する第2移動速度の速度比を大きく、または、第2移動速度に対する第1移動速度の速度比を小さくしてもよい。これにより、成形品を押す方向(型閉じ方向)に働く負荷を抑制することができる。
 調整部は、前記負荷の大きさが範囲の上限値を上回る場合には、第1移動速度に対する第2移動速度の速度比を小さく、または、第2移動速度に対する第1移動速度の速度比を大きくしてもよい。これにより、成形品を引っ張る方向(型開き方向)に働く負荷を抑制することができる。
 調整部は、射出成形機で繰り返し実行されるサイクルごとに、速度比を調整してもよい。これにより、サイクル単位でエジェクタピンと成形品との相対位置が変化しても、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
 演算装置は、調整部で調整された速度比になるように、エジェクタロッドを駆動するための第1駆動源と、可動プラテンを駆動するための第2駆動源または把持装置を駆動するための第3駆動源とのうちの少なくとも1つを変更する設定変更部(84)を備えてもよい。これにより、作業者に設定変更作業を行わせることなく、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
 演算装置は、ユーザ操作に応じて、範囲の上限値または下限値の少なくとも1つを変更する変更部(92)を備えてもよい。これにより、把持装置に許容し得る負荷量を調整することができる。
 調整部は、単位時間あたりの速度比を可変してもよい。これにより、速度比が一定の場合に比べ、同期動作の速度比を流動的に調整することができる。
 演算装置は、射出成形機の制御装置(26)に備えられてもよい。これにより、射出成形機以外に演算装置を備えなくても、同期動作中にエジェクタピンと成形品との相対位置が変化した場合に、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
 演算装置は、把持装置を有する取出装置(14)の制御装置(98)に備えられてもよい。これにより、射出成形機に演算装置を備えなくても、同期動作中にエジェクタピンと成形品との相対位置が変化した場合に、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
 演算装置は、射出成形機および把持装置を有する取出装置に接続された外部機器(100)の制御装置(102)に備えられてもよい。これにより、射出成形機および取出装置に演算装置を備えなくても、同期動作中にエジェクタピンと成形品との相対位置が変化した場合に、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
(第2の発明)
 第2の発明は、射出成形システム(10)であって、上記の演算装置と、射出成形機と、把持装置を有する取出装置と、を備える。上記の演算装置を備えているため、同期動作中にエジェクタピンと成形品との相対位置が変化しても、成形品を把持する把持装置に過大な負荷が加わることを抑制することができる。
10:射出成形システム         12:射出成形機
14:取出装置             16:金型
18:把持装置             20:型締装置
22:射出装置             24:突出装置
26、98、102:制御装置      28:固定金型
30:可動金型             32:固定プラテン
34:可動プラテン           36:リアプラテン
38:タイバー             54:エジェクタロッド
56:エジェクタプレート        58:エジェクタピン
62:モータ制御部           64:第1モータ制御部
66:第2モータ制御部         72:演算装置
74:情報処理部            76:記憶部
80:負荷取得部            82:調整部
84:設定変更部            100:外部装置

Claims (11)

  1.  可動金型(30)の型開き方向(DB)に前記可動金型を開く型開き動作、または、成形品を把持した把持装置(18)を前記可動金型の型閉じ方向(DA)に引く引き動作と、エジェクタピン(58)を前記可動金型から突出する突出動作とを同期させる同期動作を実行する射出成形機(12)に用いられるパラメータを演算する演算装置(72)であって、
     前記把持装置が前記成形品から受ける負荷を取得する負荷取得部(80)と、
     前記同期動作中に取得される前記負荷の大きさが所定の範囲に収まるように、前記エジェクタピンを前記型閉じ方向に駆動するエジェクタロッド(54)の第1移動速度と、前記可動金型が取り付けられる可動プラテン(34)または前記把持装置の第2移動速度との速度比を調整する調整部(82)と、
     を備える演算装置。
  2.  請求項1に記載の演算装置であって、
     前記調整部は、前記負荷の大きさが前記範囲の下限値を下回る場合には、前記第1移動速度に対する前記第2移動速度の前記速度比を大きく、または、前記第2移動速度に対する前記第1移動速度の前記速度比を小さくする、演算装置。
  3.  請求項1または2に記載の演算装置であって、
     前記調整部は、前記負荷の大きさが前記範囲の上限値を上回る場合には、前記第1移動速度に対する前記第2移動速度の前記速度比を小さく、または、前記第2移動速度に対する前記第1移動速度の前記速度比を大きくする、演算装置。
  4.  請求項1~3のいずれか1項に記載の演算装置であって、
     前記調整部は、前記射出成形機で繰り返し実行されるサイクルごとに、前記速度比を調整する、演算装置。
  5.  請求項1~4のいずれか1項に記載の演算装置であって、
     前記調整部で調整された前記速度比になるように、前記エジェクタロッドを駆動するための第1駆動源と、前記可動プラテンを駆動するための第2駆動源または前記把持装置を駆動するための第3駆動源とのうちの少なくとも1つを変更する設定変更部(84)
     を備える、演算装置。
  6.  請求項1~5のいずれか1項に記載の演算装置であって、
     ユーザ操作に応じて、前記範囲の上限値または下限値の少なくとも1つを変更する変更部(92)
     を備える、演算装置。
  7.  請求項1~6のいずれか1項に記載の演算装置であって、
     前記調整部は、単位時間あたりの前記速度比を可変する、演算装置。
  8.  請求項1~7のいずれか1項に記載の演算装置であって、
     前記演算装置は、前記射出成形機の制御装置(26)に備えられる、演算装置。
  9.  請求項1~7のいずれか1項に記載の演算装置であって、
     前記演算装置は、前記把持装置を有する取出装置(14)の制御装置(98)に備えられる、演算装置。
  10.  請求項1~7のいずれか1項に記載の演算装置であって、
     前記演算装置は、前記射出成形機および前記把持装置を有する取出装置に接続された外部機器(100)の制御装置(102)に備えられる、演算装置。
  11.  請求項1~10のいずれか1項に記載の演算装置と、前記射出成形機と、前記把持装置を有する取出装置と、を備える射出成形システム(10)。
PCT/JP2021/029623 2021-08-11 2021-08-11 演算装置および射出成形システム WO2023017579A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180101244.7A CN117794716A (zh) 2021-08-11 2021-08-11 运算装置及注射成型系统
PCT/JP2021/029623 WO2023017579A1 (ja) 2021-08-11 2021-08-11 演算装置および射出成形システム
JP2023541165A JPWO2023017579A1 (ja) 2021-08-11 2021-08-11
DE112021007786.4T DE112021007786T5 (de) 2021-08-11 2021-08-11 Rechenvorrichtung und spritzgiesssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029623 WO2023017579A1 (ja) 2021-08-11 2021-08-11 演算装置および射出成形システム

Publications (1)

Publication Number Publication Date
WO2023017579A1 true WO2023017579A1 (ja) 2023-02-16

Family

ID=85200076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029623 WO2023017579A1 (ja) 2021-08-11 2021-08-11 演算装置および射出成形システム

Country Status (4)

Country Link
JP (1) JPWO2023017579A1 (ja)
CN (1) CN117794716A (ja)
DE (1) DE112021007786T5 (ja)
WO (1) WO2023017579A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150496A (ja) * 1999-11-25 2001-06-05 Toshiba Mach Co Ltd 金型からの製品取り出し方法
JP2009061786A (ja) * 2008-11-17 2009-03-26 Sumitomo Heavy Ind Ltd 金型監視装置、方法及びプログラム
JP2018171826A (ja) * 2017-03-31 2018-11-08 住友重機械工業株式会社 射出成形機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150496A (ja) * 1999-11-25 2001-06-05 Toshiba Mach Co Ltd 金型からの製品取り出し方法
JP2009061786A (ja) * 2008-11-17 2009-03-26 Sumitomo Heavy Ind Ltd 金型監視装置、方法及びプログラム
JP2018171826A (ja) * 2017-03-31 2018-11-08 住友重機械工業株式会社 射出成形機

Also Published As

Publication number Publication date
CN117794716A (zh) 2024-03-29
DE112021007786T5 (de) 2024-04-25
JPWO2023017579A1 (ja) 2023-02-16

Similar Documents

Publication Publication Date Title
KR100854820B1 (ko) 다이캐스팅 머신에서의 제품 취출방법 및 그 장치
WO2006098321A1 (ja) 成形条件設定方法及び射出成形機の制御方法
JP2009202366A (ja) 型締装置の制御方法
WO2023017579A1 (ja) 演算装置および射出成形システム
CN102189649B (zh) 注射成型机及注射成型方法
JP2007021861A (ja) 成形機管理装置及び成形機管理方法
JP6367079B2 (ja) 射出成形機
WO2023026347A1 (ja) 演算装置および射出成形システム
WO2023026324A1 (ja) 演算装置および射出成形システム
CN104972629B (zh) 注射成形机的控制装置
CN108698284B (zh) 注射成型机
KR102277106B1 (ko) 사출성형기의 제어장치 및 방법
JP2013006193A (ja) 成形品離型方法、および成形品離型装置
JP5311504B2 (ja) 射出成形機の制御方法および射出成形機
KR20170038159A (ko) 사출성형기
EP3061588B1 (en) Injection molding machine and operation screen of injection molding machine
KR20200039580A (ko) 사출성형기
JPH06126800A (ja) 成形機における型締力の調整方法
WO2022230133A1 (ja) 射出成形システム、射出成形機及びハンドリング装置
JP3847660B2 (ja) 電動射出成形機のサーボモータ制御方法
WO2022210979A1 (ja) 射出成形機の制御装置、射出成形機、及び制御方法
KR20170026106A (ko) 사출성형기
JPH0534134B2 (ja)
JPS62197261A (ja) ダイカストマシンの製品押出方法
JPH079518A (ja) トグル式型締め機構をもつ射出成形機における射出圧縮成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541165

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180101244.7

Country of ref document: CN

Ref document number: 112021007786

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21953475

Country of ref document: EP

Kind code of ref document: A1