WO2023016065A1 - 电池包安全监控方法、装置、设备、系统及存储介质 - Google Patents

电池包安全监控方法、装置、设备、系统及存储介质 Download PDF

Info

Publication number
WO2023016065A1
WO2023016065A1 PCT/CN2022/096532 CN2022096532W WO2023016065A1 WO 2023016065 A1 WO2023016065 A1 WO 2023016065A1 CN 2022096532 W CN2022096532 W CN 2022096532W WO 2023016065 A1 WO2023016065 A1 WO 2023016065A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
force
energy
information
data
Prior art date
Application number
PCT/CN2022/096532
Other languages
English (en)
French (fr)
Inventor
冯双诗
邹海
瞿毅
任少滕
贾慧
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22764637.9A priority Critical patent/EP4155704A4/en
Priority to KR1020227032309A priority patent/KR20230024245A/ko
Priority to JP2022556166A priority patent/JP2023543648A/ja
Priority to US17/942,027 priority patent/US20230046146A1/en
Publication of WO2023016065A1 publication Critical patent/WO2023016065A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte

Definitions

  • the present application belongs to the technical field of batteries, and in particular relates to a battery pack safety monitoring method, device, equipment, system and storage medium.
  • batteries can be installed in electric vehicles in the form of battery packs.
  • the battery pack may be hit, scratched, etc., resulting in damage to the structure and performance of the battery pack, making the battery pack a great safety risk.
  • Embodiments of the present application provide a battery pack safety monitoring method, device, device, system, and storage medium, which can improve the safety of the battery pack.
  • the embodiment of the present application provides a battery pack safety monitoring method, including: based on the acquired force data of the battery pack in the electric vehicle, the force energy information of the battery pack is obtained, and the force data is used to characterize the battery pack The force distribution at the bottom of the battery pack, the force energy information is used to characterize the impact energy borne by the bottom of the battery pack; the target level alarm condition is determined according to the force energy information, and the alarm information corresponding to the target level alarm condition is issued.
  • the target level alarm condition is Among the preset N levels of alarm conditions, the force energy information satisfies a level of alarm condition, and the i-th level alarm condition among the N levels of alarm conditions includes that the impact energy represented by the force energy information is within the i-th energy threshold range m i times, N is a positive integer, 0 ⁇ i ⁇ N, wherein, when N is a positive integer greater than 1 and 1 ⁇ i ⁇ N, the i-th energy threshold range corresponding to the i-th level alarm condition The limit value is greater than the upper limit value of the i-1th energy threshold range corresponding to the i-1th level alarm condition, m i ⁇ m i-1 .
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • the target level warning condition is the i-th level warning condition; the target level warning condition is determined according to the force energy information, and the warning information corresponding to the target level warning condition is issued, including: When the impact energy represented by the energy information is within the i-th energy threshold range, the accumulated risk times corresponding to the i-th energy threshold range are accumulated, and the risk-accumulated times corresponding to the i-th energy threshold range are used to indicate the force energy information The number of occurrences of the characterized impact energy within the i-th energy threshold range; when the cumulative number of risks corresponding to the i-th energy threshold range reaches mi , an alarm message corresponding to the i-th level alarm condition is issued.
  • m N 1.
  • m N corresponds to the highest-level alarm condition, which is set for the most severe impact.
  • the impact energy represented by the force energy information reaches the most severe impact standard, a single impact can cause huge damage to the battery pack, and the number of times threshold within the corresponding energy threshold range in the highest level of alarm conditions is set to 1, which can More timely detection of high safety risks brought by severe impacts to battery packs and timely processing.
  • the force energy information of the battery pack is obtained, including: when the force data exceeds the normal change threshold range Next, based on the force data, the force energy information of the battery pack is obtained.
  • the force data exceeds the normal variation threshold range, indicating that the bottom of the battery pack has been hit.
  • the force energy information of the battery pack will be converted to obtain the force energy information necessary for battery pack safety monitoring, without obtaining unnecessary force energy information for battery pack safety monitoring , which can reduce resources occupied by battery safety monitoring, such as storage resources, computing resources, and the like.
  • the first aspect of the present application before obtaining the force energy information of the battery pack based on the acquired force data of the battery pack installed in the electric vehicle, it also includes: acquiring the force data; When the number of force data obtained is less than the predetermined number threshold, cache the force data acquired this time; when the number of cached force data is greater than or equal to the predetermined number threshold, delete the force data with the earliest acquisition time , to cache the force data acquired this time.
  • the force data includes one or more of the following: fluctuation data, pressure data, and acceleration data;
  • the fluctuation data is used to represent the mechanical wave impacted by the bottom of the battery pack
  • the pressure data is used to represent the force on the bottom of the battery pack
  • the acceleration data is used to represent the acceleration of the battery pack in a direction perpendicular to the bottom of the battery pack.
  • the battery pack safety status information is uploaded to the cloud data center, and the battery pack safety status information includes force energy information and/or alarm information corresponding to target level alarm conditions.
  • the cloud data center can grasp the safety status of the battery pack.
  • the cloud data center can further take certain measures according to the safety status of the battery pack to realize the maintenance of the battery pack.
  • the force energy information includes the force energy, and the force energy information further includes the force location.
  • the embodiment of the present application provides a battery pack safety monitoring device, including: a calculation module, used to obtain the force energy information of the battery pack based on the acquired force data of the battery pack in the electric vehicle, and the force data It is used to characterize the force distribution at the bottom of the battery pack, and the force energy information is used to characterize the impact energy borne by the battery pack; the alarm module is used to determine the target level alarm condition according to the force energy information, and issue an alarm corresponding to the target level alarm condition Alarm information, the target level alarm condition is a level of alarm condition that is satisfied by the force energy information among the preset N levels of alarm conditions, and the i-th level alarm condition among the N levels of alarm conditions includes The impact energy is within the i-th energy threshold range and occurs m i times, N is a positive integer, 0 ⁇ i ⁇ N, where, when N is a positive integer greater than 1 and 1 ⁇ i ⁇ N, the i-th level alarm condition corresponds to The lower limit value of the i-th energy threshold range is
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • the embodiment of the present application provides a battery pack safety monitoring system, including: a sensor, arranged at the bottom of the battery pack, for collecting force data of the battery pack, and the force data is used to characterize the force of the bottom of the battery pack Distribution, the battery pack is located in the electric vehicle; the controller is communicated with the sensor to obtain force data from the sensor, based on the force data, the force energy information of the battery pack is obtained, and the force energy information is used to characterize the bottom of the battery pack The impact energy endured; the vehicle controller is connected with the controller in communication, and is used to determine the target level alarm condition according to the force energy information, and send out the alarm information corresponding to the target level alarm condition.
  • the target level alarm condition is preset N Among the alarm conditions of the levels, the force energy information satisfies a level of alarm conditions.
  • the i-th level alarm condition includes the impact energy represented by the force energy information within the i-th energy threshold range and occurs m i times.
  • N is a positive integer, 0 ⁇ i ⁇ N, wherein, when N is a positive integer greater than 1 and 1 ⁇ i ⁇ N, the lower limit of the i-th energy threshold range corresponding to the i-th level alarm condition is greater than the i-th
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • the system further includes: a cloud data center, which communicates with the vehicle controller, and is used to obtain battery pack safety status information from the vehicle controller, and the battery pack safety status information includes force energy information and/or warning information corresponding to the target level warning condition.
  • a cloud data center which communicates with the vehicle controller, and is used to obtain battery pack safety status information from the vehicle controller, and the battery pack safety status information includes force energy information and/or warning information corresponding to the target level warning condition.
  • the embodiment of the present application provides a battery pack safety monitoring device, including: a processor and a memory storing computer program instructions; when the processor executes the computer program instructions, the battery pack safety monitoring method of the first aspect is implemented.
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • the embodiment of the present application provides a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the battery pack safety monitoring method of the second aspect is implemented.
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • the embodiment of the present application provides a battery pack safety monitoring method, device, equipment, system, and storage medium. Based on the force data of the battery pack that can ensure the force distribution of the bottom of the battery pack, a method for ensuring the bottom stress of the battery pack is obtained.
  • the force energy information of the energy produced by the force is obtained, that is, the target level alarm condition, so as to send out the alarm information corresponding to the target level alarm condition.
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt that the battery pack has a safety risk, and the safety risk of the battery pack can be discovered in time, and the safety risk of the battery pack can be improved in time to improve the safety of the battery pack.
  • FIG. 1 is a flowchart of an embodiment of a battery pack safety monitoring method provided by the present application
  • FIG. 2 is a schematic diagram of an example of the distribution of sensors at the bottom of the battery pack provided by the embodiment of the present application;
  • FIG. 3 is a schematic diagram of an example of force data changing over time provided by the embodiment of the present application.
  • FIG. 4 is a flow chart of another embodiment of the battery pack safety monitoring method provided by the present application.
  • FIG. 5 is a flow chart of another embodiment of the battery pack safety monitoring method provided by the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a battery pack safety monitoring device provided by the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the battery pack safety monitoring device provided by the present application.
  • Fig. 8 is a schematic structural diagram of another embodiment of the battery pack safety monitoring device provided by the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a battery pack safety monitoring system provided by the present application.
  • FIG. 10 is a schematic structural diagram of another embodiment of the battery pack safety monitoring system provided by the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a battery pack safety monitoring device provided by the present application.
  • batteries can be installed in electric vehicles in the form of battery packs.
  • the battery pack can be installed on the bottom of the electric vehicle.
  • the battery pack can serve as the chassis of an electric vehicle.
  • the battery pack may be damaged by impacts, scratches, etc., thereby causing damage to the structure and performance of the battery pack, and problems such as fire and explosion of the battery pack may occur, which poses a great safety hazard. risk.
  • the present application provides a battery pack safety monitoring method, device, equipment, system and storage medium, which can determine whether to send an alarm message according to the impact energy borne by the bottom of the battery pack installed in an electric vehicle, so as to indicate that the battery pack is at risk .
  • the battery pack safety monitoring method, device, equipment, system and storage medium provided by the present application will be described in detail below.
  • FIG. 1 is a flowchart of an embodiment of a battery pack safety monitoring method provided by the present application. As shown in FIG. 1 , the battery safety monitoring method may include steps S101 and S102.
  • step S101 force energy information of the battery pack is obtained based on the acquired force data of the battery pack in the electric vehicle.
  • the force data is used to characterize the force distribution at the bottom of the battery pack.
  • the force distribution on the bottom of the battery pack may include the force and force distribution on the bottom of the battery pack.
  • a sensor can be installed in the battery pack, and the force data of the battery pack can be obtained through the sensor.
  • the sensor can collect force data in real time, and the sensor can collect force data when the electric vehicle is driving or parking.
  • the number and types of the sensors and the installation positions in the battery pack are not limited here.
  • the force data may correspond to the type of sensor.
  • the sensor may include one or more of piezoelectric sensors, acceleration sensors and other sensors, which are not limited here.
  • the force data may include pressure data and/or acceleration data, that is, the force data may include one or more of fluctuation data, pressure data, acceleration data, etc., which is not limited herein.
  • the wave data can be used to characterize the mechanical waves that hit the bottom of the battery pack.
  • Pressure data can be used to characterize the forces on the bottom of the battery pack.
  • the acceleration data is used to characterize the acceleration of the battery pack in a direction perpendicular to the bottom of the battery pack. In the case that the bottom of the battery pack is impacted, the force data can reflect the impact force on the bottom of the battery pack. Combined with the position of the sensors, the forces acting on the bottom of the battery pack and the force distribution can be determined.
  • the impact on the battery pack is more from the vertical direction, that is, the direction perpendicular to the bottom of the battery pack.
  • One or more of the force received in the vertical direction and the acceleration in the vertical direction of the bottom of the battery pack can more accurately reflect the impact on the bottom of the battery pack.
  • FIG. 2 is a schematic diagram of an example of the distribution of sensors at the bottom of the battery pack provided by the embodiment of the present application.
  • sensors C1 to C6 there are six sensors C1 to C6 at the bottom of the battery pack, sensors C1 to C4 are set at the four top corners of the bottom of the battery pack, and sensor C5 is set at the bottom edge of the battery pack, between sensors C1 and C2 In between, the sensor C6 is arranged on the bottom edge of the battery pack, between the sensor C3 and the sensor C4.
  • the force energy information is used to characterize the impact energy borne by the bottom of the battery pack.
  • the impact energy borne by the bottom of the battery pack can be obtained through conversion and calculation of the force distribution at the bottom of the battery pack represented by the force data, that is, the force energy information.
  • the force energy information may include force energy.
  • the force energy information may also include a force position, which is not limited here.
  • force data at a certain moment can be used to convert force energy information at that moment.
  • the short-term fluctuation time of the impact may be less than 1 second, so the force data during the continuous impact process can be used to convert and calculate the impact force on the bottom of the battery pack during the impact process.
  • impact energy The stress energy information of the battery pack during this period of time can be converted according to the stress data acquired within a period of time.
  • the acquired force data can be cached first, so that the force data during the impact process can be used to convert and calculate the impact energy borne by the bottom of the battery pack during the impact process.
  • the stress energy information of the battery pack can be obtained in real time based on the stress data of the battery pack.
  • the force energy information of the battery pack can be selectively stored to save storage space.
  • the stored force energy information of the battery pack will participate in the subsequent process of determining the target level alarm condition. For example, it is possible to store the force energy information whose impact energy is greater than the minimum threshold of impact damage, and the minimum impact damage threshold is the minimum value of the impact energy that impacts the battery pack; the force energy information of which the impact energy is greater than the minimum impact damage threshold It can be considered as the force energy information that causes impact on the battery pack and adversely affects the safety of the battery pack.
  • This force energy information is the force energy information necessary for battery pack safety monitoring, thereby eliminating unnecessary battery pack safety monitoring. force energy information.
  • the force energy information of the battery pack in order to avoid the resources occupied by obtaining the force energy information of the battery pack based on the force data of the battery pack, such as storage resources, computing resources, etc., it can be used when the force data exceeds the normal change threshold range Next, based on the force data, the force energy information of the battery pack is obtained. When the bottom of the battery pack is hit, the force data of the battery pack will fluctuate greatly, exceeding the normal change threshold range.
  • the normal change threshold range is the change range of the force data when the bottom of the battery pack is not hit, which can be set according to the scene, demand, experience, etc., and is not limited here.
  • the impact energy represented by the converted force energy information at the upper limit of the normal change threshold range can be the minimum threshold of impact damage, that is, the force data that the impact energy represented by the converted force energy information can be greater than the minimum threshold of impact damage is converted.
  • the force data exceeds the normal variation threshold range, indicating that the bottom of the battery pack has been hit.
  • the force energy information of the battery pack will be converted to obtain the force energy information necessary for battery pack safety monitoring, without obtaining unnecessary force energy information for battery pack safety monitoring .
  • FIG. 3 is a schematic diagram of an example of force data changing over time provided in the embodiment of the present application. As shown in Figure 3, the abscissa represents the time (in seconds), and the ordinate represents the force data. At about 0.2 seconds, the battery pack was hit, and the force data fluctuated greatly, exceeding the normal change threshold range. Correspondingly , the force energy information can be obtained based on the force data collected in about 0.2 seconds.
  • Removing unnecessary stress energy information for battery pack safety monitoring and using the necessary stress energy information for battery pack safety monitoring can reduce the resources occupied by battery safety monitoring, such as storage resources and computing resources.
  • step S102 a target level warning condition is determined according to the force energy information, and warning information corresponding to the target level warning condition is issued.
  • the target level alarm condition is an alarm condition of one level satisfied by the force energy information among the preset N levels of alarm conditions.
  • the i-th level alarm condition among the N levels of alarm conditions includes that the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, N is a positive integer, and 0 ⁇ i ⁇ N. If the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, the i-th level alarm condition is determined as the target level alarm condition.
  • m 1 corresponding to the first-level alarm condition
  • the value of m 1 corresponding to the first-level alarm condition is not limited here, and may be set to 1 or other values.
  • m 1 1 that is, once the impact energy represented by the force energy information is within the first energy threshold range, the first alarm will be issued.
  • Alarm information corresponding to the condition.
  • the alarm information can be implemented in the form of text, image, sound, indicator light, etc., which is not limited here.
  • N is a positive integer greater than 1
  • the lower limit of the i-th energy threshold range corresponding to the i-th level alarm condition is greater than the i-1th energy threshold corresponding to the i-1-th level alarm condition
  • the upper limit value of the range, m i ⁇ m i-1 The higher the level of the alarm condition, the higher the security risk corresponding to the alarm condition.
  • the accumulation of multiple low safety risk impacts will reach a high safety risk to a certain extent. Therefore, the higher the level of the alarm condition, the fewer the number of times the impact energy required to trigger the alarm message is within the corresponding energy threshold range.
  • the security risk corresponding to the i-th level alarm condition is higher than the security risk corresponding to the i-1 level alarm condition.
  • the energy threshold ranges corresponding to the alarm conditions of each level can be set according to scenarios, requirements, experience, etc., and are not limited here.
  • N 2, correspondingly, a first-level alarm condition and a second-level alarm condition are set.
  • the first energy threshold range corresponding to the first-level alarm condition can be set to [100J, 200J)
  • the second energy threshold range corresponding to the second-level alarm condition can be set to [200J, + ⁇ ), where J is the unit joule. That is, the lower limit value of the second energy threshold range corresponding to the second-level alarm condition is greater than the upper limit value of the first energy threshold range corresponding to the first-level alarm condition.
  • the lower limit of the first energy threshold range may be an energy threshold for determining whether the casing of the battery pack is deformed.
  • the impact energy represented by the force energy information is within the first energy threshold range, which means that the battery casing is deformed and there is a safety risk, but the safety risk is low, that is, the failure risk of the battery pack is low, and the battery pack can continue to operate normally.
  • the lower limit of the second energy threshold range may be an energy threshold for determining whether serious damage occurs inside the battery pack.
  • the impact energy represented by the force energy information is within the second energy threshold range, which means that the inside of the battery pack has been severely damaged, and the electric vehicle needs to be suspended for maintenance and replacement of the battery pack.
  • the impact energy represented by the force energy information is within the first energy threshold range, the number of low safety risks has reached 20 times, which increases the safety risk of the battery pack and needs to be alerted through alarm information; while the impact energy represented by the force energy information If the impact energy is within the second energy threshold range, that is, the number of occurrences of a high safety risk is one time, that is, an alarm needs to be issued through an alarm message.
  • N 3, correspondingly, a first-level warning condition, a second-level warning condition, and a third-level warning condition are set.
  • the first energy threshold range corresponding to the first-level alarm condition can be set to [100J, 150J)
  • the second energy threshold range corresponding to the second-level alarm condition is [150J, 200)
  • the third energy threshold corresponding to the third-level alarm condition The threshold range is [200J, + ⁇ ).
  • the lower limit value of the third energy threshold range corresponding to the third-level alarm condition is greater than the upper limit value of the second energy threshold range corresponding to the second-level alarm condition, and the lower limit of the second energy threshold range corresponding to the second-level alarm condition The value is greater than the upper limit of the first energy threshold range corresponding to the first-level alarm condition.
  • the lower limit of the first energy threshold range may be an energy threshold for determining whether the casing of the battery pack is deformed.
  • the impact energy represented by the force energy information is within the first energy threshold range, which means that the battery casing is deformed and there is a low safety risk, that is, the failure risk of the battery pack is low, and the battery pack can continue to operate normally.
  • the lower limit of the second energy threshold range may be an energy threshold used to determine that deformation of the casing of the battery pack will pose a moderate safety risk.
  • the impact energy represented by the force energy information is within the second energy threshold range, which means that the shell of the battery is deformed, and there is a medium safety risk, that is, the failure risk of the battery pack is medium, and the battery pack can continue to operate normally.
  • the lower limit of the third energy threshold range may be an energy threshold for determining whether serious damage occurs inside the battery pack.
  • the impact energy represented by the force energy information is within the third energy threshold range, which means that the inside of the battery pack has been severely damaged, and the electric vehicle needs to be suspended for maintenance and replacement of the battery pack.
  • the impact energy represented by the force energy information is within the first energy threshold range, the number of low safety risks has reached 20 times, making the safety risk of the battery pack reach a high risk, and it is necessary to issue an alarm through the alarm information; If the impact energy is within the second energy threshold range, that is, the number of medium safety risks reaches 15 times, making the safety risk of the battery pack reach a high risk, and the alarm information needs to be alerted; while the impact energy represented by the force energy information is within the third energy Within the threshold range, the number of occurrences of a high security risk is 1 time, that is, an alarm needs to be sent through the alarm information.
  • N, m i , energy threshold range, etc. in the above embodiments can be set according to scenarios, requirements, experience, etc., and are not limited here.
  • the number of times the impact energy represented by the force energy information is within the range of each energy threshold can be counted separately, and the number of times the impact energy represented by the force energy information is within the range of each energy threshold can be updated, that is, the cumulative number of risks corresponding to each level of alarm condition .
  • the accumulated risk times are used to indicate the number of times that the energy represented by the force energy information is within the corresponding energy threshold range.
  • the cumulative number of risks corresponding to the i-th energy threshold range is used to indicate the number of times that the impact energy represented by the force energy information is within the i-th energy threshold range, that is, the risk cumulative number corresponding to the i-th level alarm condition is the force energy information
  • the number of times the energy of the characterization falls within the ith energy threshold range.
  • the accumulated risk times corresponding to the i-th energy threshold range are accumulated.
  • the cumulative number of risks corresponding to the i-th energy threshold range reaches mi , that is, the target level alarm condition is the i-th level alarm condition, and the alarm information corresponding to the i-th level alarm condition is issued.
  • the cumulative step size is 1, that is, once the impact energy represented by the force energy information is within the i-th energy threshold range, the cumulative number of risks corresponding to the i-th energy threshold range is increased by one.
  • the alarm information corresponding to different levels of alarm conditions may be the same or different, which is not limited here.
  • the warning information can be transmitted to the relevant structure in the electric vehicle, and the relevant structure will execute the warning based on the warning information to notify the relevant personnel that the battery pack has a high safety risk.
  • the warning method is not limited here, and it can be realized by means of display and sound.
  • an electric vehicle has a central control display or a central control instrument panel. When the impact energy represented by the force energy information is within the i-th energy threshold range and occurs mi times, the central control display or the central control instrument panel can display Collision failure warning sign.
  • an electric vehicle has a buzzer, and when the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, the buzzer sends out a buzzer alarm.
  • the alarms corresponding to the alarm information of different levels of alarm conditions may be different.
  • the warning is to display a collision fault warning sign
  • the warning information corresponding to different levels of warning conditions may have different fault warning signs.
  • the beeping sounds corresponding to the alarm information of different levels of alarm conditions may be different.
  • the intensity of the alarm corresponding to the alarm information of the i-th level alarm condition may be higher than the intensity of the alarm corresponding to the alarm information of the i-1 level alarm condition.
  • the alarm corresponding to the alarm information of the i-1th level alarm condition is a buzzer
  • the buzzer of the alarm corresponding to the i-th level alarm condition's alarm information can be higher or greater than the i-1th level alarm
  • the buzzer corresponding to the alarm corresponding to the alarm information of the condition when the alarm corresponding to the alarm information of the i-1th level alarm condition is a buzzer, the buzzer of the alarm corresponding to the i-th level alarm condition's alarm information can be higher or greater than the i-1th level alarm The buzzer corresponding to the alarm corresponding to the alarm information of the condition.
  • a prompt message can also be issued.
  • the prompt message is used to prompt that the battery pack has a low safety risk. So that users or staff can get the status of the battery pack in time.
  • the prompt intensity represented by the prompt information is lower than the prompt intensity represented by the alarm information in the foregoing embodiments.
  • the force energy information used to ensure the energy generated by the force on the bottom of the battery pack is obtained.
  • the alarm condition of the level satisfied by the force energy is determined, that is, the target level alarm condition, so as to send out the alarm information corresponding to the target level alarm condition.
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • Fig. 4 is a flow chart of another embodiment of the battery pack safety monitoring method provided by the present application. The difference between FIG. 4 and FIG. 1 is that the battery pack safety monitoring method shown in FIG. 4 may further include steps S103 to S105.
  • step S103 force data is acquired.
  • step S104 if the number of cached force data is less than a predetermined number threshold, the force data acquired this time is cached.
  • the number of cached force data may be compared with a predetermined number threshold.
  • the predetermined number threshold is the number threshold set for limiting the cache resources occupied by cached data, which can be set according to scenarios, requirements, experience, etc., and is not limited here. If the number of cached force data is less than the predetermined number threshold, it indicates that the cache resources set for caching the force data are relatively sufficient, and the force data can be directly continued to be cached.
  • step S105 when the number of cached force data is greater than or equal to a predetermined number threshold, the force data acquired at the earliest time is deleted, and the force data acquired this time is cached.
  • the number of cached force data is greater than or equal to the predetermined number threshold, it means that the cache resources set for caching the force data are not sufficient. If you want to cache the newly acquired force data, you need to cache the force data with the earliest time Delete, and then cache the newly acquired force data to ensure that no other cache resources are occupied except for the cache resources set for caching force data, saving cache resources.
  • the period for the sensor to collect force data is 0.001 second, and for each sensor, the predetermined number threshold is 1000.
  • Table 1 shows the force data cached at 1 second, and Table 2 shows the force data cached at 1.001 seconds.
  • Fig. 5 is a flowchart of another embodiment of the battery pack safety monitoring method provided by the present application. The difference between FIG. 5 and FIG. 1 is that the battery pack safety monitoring method shown in FIG. 5 may further include step S106.
  • step S106 upload the safety state information of the battery pack to the cloud data center.
  • the cloud data center may include a cloud data center of an electric vehicle manufacturer, a cloud data center of a battery pack manufacturer, etc., and is not limited here.
  • the safety status information of the battery pack is used to ensure the safety status of the battery pack, and may include stress energy information and/or alarm information corresponding to target level alarm conditions, etc., which are not limited herein.
  • the safety status information of the battery pack may also include the prompt information in the foregoing embodiments, which is not limited herein.
  • the cloud data center can estimate and check the safety status of the electric vehicle, battery pack, etc. according to the received force energy information and/or the alarm information corresponding to the target level alarm condition.
  • the battery pack safety status information may also include battery pack location information, etc., and the cloud data center may also determine the location of the battery pack based on the battery pack location information after receiving the alarm information in the battery pack safety status information, and send a report to the The terminal device of the maintenance service party whose battery pack is close to sends a notification message to notify the maintenance service party to provide the maintenance service.
  • the cloud data center can grasp the safety status of the battery pack.
  • the cloud data center can further take certain measures according to the safety status of the battery pack to realize the maintenance of the battery pack.
  • FIG. 6 is a schematic structural diagram of an embodiment of a battery pack safety monitoring device provided by the present application.
  • the battery pack safety monitoring device 200 may include a calculation module 201 and an alarm module 202 .
  • the calculation module 201 can be used to obtain force energy information of the battery pack based on the acquired force data of the battery pack in the electric vehicle.
  • the force data is used to characterize the force distribution at the bottom of the battery pack.
  • the force energy information is used to characterize the impact energy borne by the bottom of the battery pack.
  • the force data includes one or more of the following: fluctuation data, pressure data, and acceleration data.
  • the wave data are used to characterize the mechanical waves that hit the bottom of the battery pack.
  • Pressure data is used to characterize the forces experienced by the bottom of the battery pack.
  • the acceleration data is used to characterize the acceleration of the battery pack in a direction perpendicular to the bottom of the battery pack.
  • the force energy information includes force energy. In some other examples, the force energy information may further include a force position.
  • the warning module 202 may be configured to determine a target level warning condition according to the force energy information, and issue warning information corresponding to the target level warning condition.
  • the target level alarm condition is an alarm condition of one level satisfied by the force energy information among the preset N levels of alarm conditions.
  • the i-th level alarm condition among the N levels of alarm conditions includes that the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, N is a positive integer, and 0 ⁇ i ⁇ N.
  • the lower limit of the i-th energy threshold range corresponding to the i-th level alarm condition is greater than the i-1th energy threshold corresponding to the i-1-th level alarm condition
  • the force energy information used to ensure the energy generated by the force on the bottom of the battery pack is obtained.
  • the alarm condition of the level satisfied by the force energy is determined, that is, the target level alarm condition, so as to send out the alarm information corresponding to the target level alarm condition.
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • the target level alarm condition is the i-th level alarm condition.
  • the alarm module 202 may be configured to: in the case that the impact energy represented by the obtained force energy information is within the i-th energy threshold range, accumulate the risk accumulation times corresponding to the i-th energy threshold range, corresponding to the i-th energy threshold range The cumulative number of risks of is used to indicate the number of occurrences of the impact energy represented by the force energy information within the i-th energy threshold range; when the risk cumulative number corresponding to the i-th energy threshold range reaches m i , an alarm corresponding to the i-th level is issued Alarm information corresponding to the condition.
  • m N 1.
  • the calculation module 201 may be configured to obtain force energy information of the battery pack based on the force data when the force data exceeds a normal change threshold range.
  • FIG. 7 is a schematic structural diagram of another embodiment of a battery pack safety monitoring device provided by the present application. The difference between FIG. 7 and FIG. 6 is that the battery pack safety monitoring device 200 shown in FIG. 7 may further include a data acquisition module 203 and a cache module 204 .
  • the data acquisition module 203 can be used to acquire force data.
  • the caching module 204 may be used to: cache the force data acquired this time when the number of cached force data is less than a predetermined number threshold; if the number of cached force data is greater than or equal to a predetermined number threshold , delete the force data with the earliest acquisition time, and cache the force data acquired this time.
  • FIG. 8 is a schematic structural diagram of another embodiment of a battery pack safety monitoring device provided by the present application. The difference between FIG. 8 and FIG. 6 is that the battery pack safety monitoring device 200 shown in FIG. 8 may further include a sending module 205 .
  • the sending module 205 can be used for uploading the safety state information of the battery pack to the cloud data center.
  • the safety state information of the battery pack includes stress energy information and/or warning information corresponding to a target level warning condition.
  • FIG. 9 is a schematic structural diagram of an embodiment of a battery pack safety monitoring system provided by the present application.
  • the battery safety monitoring system may include a sensor 301 , a controller 302 and a vehicle controller 303 .
  • the sensor 301 can be arranged at the bottom of the battery pack 40 for collecting force data of the battery pack 40 .
  • the battery pack is located in the electric vehicle.
  • the force data is used to characterize the force distribution at the bottom of the battery pack 40 .
  • the force data includes one or more of the following: fluctuation data, pressure data, and acceleration data.
  • the wave data is used to characterize the mechanical waves that strike the bottom of the battery pack 40 .
  • the pressure data is used to characterize the forces experienced by the bottom of the battery pack 40 .
  • the acceleration data is used to characterize the acceleration of the battery pack 40 in a direction perpendicular to the bottom of the battery pack 40 .
  • the controller 302 is connected in communication with the sensor 301 , and is used to acquire force data from the sensor, and obtain force energy information of the battery pack 40 based on the force data.
  • the controller 302 may be implemented as a microcontroller (MicroController Unit, MCU), which is not limited here.
  • the force energy information is used to characterize the impact energy borne by the bottom of the battery pack 40 .
  • the force energy information includes force energy.
  • the force energy information may further include a force position.
  • the vehicle controller 303 is connected in communication with the controller 302, and is configured to determine a target level warning condition according to the force energy information, and send out warning information corresponding to the target level warning condition.
  • the target level alarm condition is an alarm condition of one level satisfied by the force energy information among the preset N levels of alarm conditions.
  • the i-th level alarm condition among the N levels of alarm conditions includes that the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, N is a positive integer, and 0 ⁇ i ⁇ N.
  • the lower limit of the i-th energy threshold range corresponding to the i-th level alarm condition is greater than the i-1th energy threshold corresponding to the i-1-th level alarm condition
  • the battery pack safety monitoring system may further include an alarm unit 304 .
  • the alarm unit 304 may be configured to send prompt information in response to the alarm information.
  • the alarm unit 304 may include a central control instrument panel, a central control display screen, a buzzer, etc., which are not limited herein.
  • the alarm unit 304 can send prompt information by displaying an image or making a sound, and the form of the prompt information is not limited here.
  • the force energy information used to ensure the energy generated by the force on the bottom of the battery pack is obtained.
  • the alarm condition of the level satisfied by the force energy is determined, that is, the target level alarm condition, so as to send out the alarm information corresponding to the target level alarm condition.
  • the force energy information satisfies the i-th level condition, that is, the impact energy represented by the force energy information is within the i-th energy threshold range and occurs m i times, indicating that the impact on the battery pack within the i-th energy threshold range has accumulated and caused serious damage to the battery pack
  • the alarm information corresponding to the alarm condition of the level satisfied by the force energy information can prompt the battery pack to have a safety risk, and can detect the safety risk of the battery pack in time, deal with it in time, improve the safety of the battery pack, and prevent the battery pack from catching fire, exploding, etc. Injuries to electric vehicles and drivers.
  • the vehicle controller 303 may be configured to: when the impact energy represented by the obtained force energy information is within the range of the i-th energy threshold, perform cumulative processing on the risk accumulation times corresponding to the i-th energy threshold range, and compare with the i-th energy threshold The cumulative number of risks corresponding to the range is used to indicate the number of occurrences that the impact energy represented by the force energy information is within the i-th energy threshold range; when the cumulative number of risks corresponding to the i-th energy threshold range reaches mi Alarm information corresponding to the level alarm condition.
  • the target level alarm condition is the i-th level alarm condition.
  • m N 1.
  • the controller 302 may be configured to obtain force energy information of the battery pack based on the force data when the force data exceeds a normal change threshold range.
  • the controller 302 can also be used to: acquire force data; if the number of cached force data is less than a predetermined number threshold, cache the force data acquired this time; When the number is greater than or equal to the predetermined number threshold, delete the force data with the earliest acquisition time, and cache the force data acquired this time.
  • FIG. 10 is a schematic structural diagram of another embodiment of the battery pack safety monitoring system provided by the present application. The difference between FIG. 10 and FIG. 9 is that the battery pack safety monitoring system shown in FIG. 10 may further include a cloud data center 305 .
  • the cloud data center 305 is communicatively connected with the vehicle controller 303, and is used to obtain battery pack safety status information from the vehicle controller.
  • the safety state information of the battery pack includes stress energy information and/or warning information corresponding to a target level warning condition.
  • FIG. 11 is a schematic structural diagram of an embodiment of a battery pack safety monitoring device provided by the present application.
  • the battery pack safety monitoring device 400 includes a memory 401 , a processor 402 and a computer program stored in the memory 401 and operable on the processor 402 .
  • the above-mentioned processor 402 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 401 may include read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), disk storage medium device, optical storage medium device, flash memory device, electrical, optical or other physical/tangible Memory storage device.
  • ROM read-only memory
  • RAM random access memory
  • disk storage medium device disk storage medium device
  • optical storage medium device disk storage medium device
  • flash memory device electrical, optical or other physical/tangible Memory storage device.
  • the memory includes one or more tangible (non-transitory) computer-readable storage media encoded with software including computer-executable instructions
  • the software when executed (for example, by one or more processors), it is operable to perform the operations described with reference to the battery pack safety monitoring method according to the present application.
  • the processor 402 runs the computer program corresponding to the executable program code by reading the executable program code stored in the memory 401, so as to realize the battery pack safety monitoring method in the above-mentioned embodiments.
  • the battery pack safety monitoring device 400 may further include a communication interface 403 and a bus 404 .
  • the memory 401 , the processor 402 , and the communication interface 403 are connected through a bus 404 to complete mutual communication.
  • the communication interface 403 is mainly used to implement communication between modules, devices, units and/or devices in the embodiments of the present application. Input devices and/or output devices can also be accessed through the communication interface 403 .
  • the bus 404 includes hardware, software or both, and couples the components of the battery pack safety monitoring device 400 to each other.
  • the bus 404 may include an Accelerated Graphics Port (AGP) or other graphics bus, an Enhanced Industry Standard Architecture (Enhanced Industry Standard Architecture, EISA) bus, a Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) bus, InfiniBand interconnect, Low pin count (Low pin count, LPC) bus, memory bus, MicroChannel Architecture (MicroChannel Architecture, MCA) bus, Peripheral Component Interconnect (PCI) bus, PCI-Express (PCI-E) bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association local (Video Electronics Standards Association Local Bus, VLB) bus or other suitable bus or a combination of two or more of these.
  • Bus 404 may comprise one or more buses, where appropriate. Although the embodiments of this application describe and illustrate a particular bus, this application contemplates any suitable bus or interconnect.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the battery pack safety monitoring method in the above-mentioned embodiments can be implemented, and The same technical effect can be achieved, so in order to avoid repetition, details will not be repeated here.
  • the above-mentioned computer-readable storage medium may include a non-transitory computer-readable storage medium, such as a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk. etc., are not limited here.
  • the embodiment of the present application also provides an electric vehicle, which may include the battery pack safety monitoring device in the above embodiment.
  • an electric vehicle which may include the battery pack safety monitoring device in the above embodiment.
  • the relevant content in the above embodiment please refer to the relevant content in the above embodiment, which will not be repeated here.
  • processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It can also be understood that each block in the block diagrams and/or flowcharts and combinations of blocks in the block diagrams and/or flowcharts can also be realized by dedicated hardware for performing specified functions or actions, or can be implemented by dedicated hardware and Combination of computer instructions to achieve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请公开了一种电池包安全监控方法、装置、设备、系统及存储介质,属于电池技术领域。该方法包括:基于获取的安装在电动汽车中的电池包的受力数据,得到电池包的受力能量信息;根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息,目标等级告警条件为预设的N个等级的告警条件中受力能量信息满足的一个等级的告警条件,第i等级告警条件包括受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N>1且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1

Description

电池包安全监控方法、装置、设备、系统及存储介质
相关申请的交叉引用
本申请要求享有于2021年08月09日提交的名称为“电池包安全监控方法、装置、设备、系统及存储介质”的中国专利申请202110907630.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于电池技术领域,尤其涉及一种电池包安全监控方法、装置、设备、系统及存储介质。
背景技术
随着新能源技术的发展,电池的应用领域越来越广泛,如可作为动力源为电动汽车提供动力,减少不可再生资源的使用。
为了便于安装,可将电池以电池包的形式安装在电动汽车中。在电动汽车行驶过程中,如果遇到恶劣路况,电池包可能会受到撞击、刮蹭等伤害,导致对电池包的结构和性能的破坏,使得电池包存在很大的安全风险。
发明内容
本申请实施例提供一种电池包安全监控方法、装置、设备、系统及存储介质,能够提高电池包的安全性。
第一方面,本申请实施例提供一种电池包安全监控方法,包括:基于获取的电动汽车中的电池包的受力数据,得到电池包的受力能量信息,受力数据用于表征电池包的底部的受力分布,受力能量信息用于表征电池包的底部承受的撞击能量;根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息,目标等级告警条件为预设的N个等级的告警条件中受力能量信息满足的一个等级的告警条件,N个等级的告警条件中的第i等级告警条件包括受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N,其中,在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池 包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
根据本申请第一方面的实施方式,目标等级告警条件为第i等级告警条件;根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息,包括:在得到的受力能量信息表征的撞击能量位于第i能量阈值范围的情况下,对与第i能量阈值范围对应的风险累计次数进行累加处理,与第i能量阈值范围对应的风险累计次数用于指示受力能量信息表征的撞击能量位于第i能量阈值范围出现的次数;在与第i能量阈值范围对应的风险累计次数达到m i的情况下,发出与第i等级告警条件对应的告警信息。
通过对受力能量信息表征的撞击能量位于各能量阈值范围内的风险累计次数的累加处理,便于统计撞击能量位于各能量阈值范围内的次数,从而能够在第i能量阈值范围对应的风险累计次数达到第i等级告警条件中的m i次时,准确、及时地发出告警信息。
根据本申请第一方面前述任一实施方式,m N=1。
m N对应的是最高等级的告警条件,最高等级的告警条件是针对最严重的撞击设置的,告警条件的等级越高,触发发出告警信息的需要撞击能量位于对应的能量阈值范围内的次数越少。在受力能量信息表征的撞击能量达到最严重的撞击标准时,一次撞击即可对电池包造成巨大的损伤,将最高等级的告警条件中位于对应的能量阈值范围内的次数阈值设置为1,能够更加及时发现严重撞击为电池包带来的高安全风险并及时处理。
根据本申请第一方面前述任一实施方式,基于获取的安装在电动汽车中的电池包的受力数据,得到电池包的受力能量信息,包括:在受力数据超出正常变化阈值范围的情况下,基于受力数据,得到电池包的受力能量信息。
受力数据超出正常变化阈值范围,表示电池包的底部受到了撞击。在电池包的底部受到撞击的情况下,才会转换得到电池包的受力能量信息,从而得到电池包安全监控必要的受力能量信息,不需得到电池包安全监控不必要的受力能量信息,能够减少电池安全监控所占用的资源,如存储资源、计算资源等。
根据本申请第一方面前述任一实施方式,在基于获取的安装在电动汽车中的电池包的受力数据,得到电池包的受力能量信息之前,还包括:获取受力数据;在已缓存的受力数据的数目小于预定数目阈值的情况下,缓存本次获取的受力数据;在已缓存的受力数据的数目大于或等于预定数目阈值的情况下,删除获取时间最早的受力数据,缓存本次获取的受力数据。
通过已缓存的受力数据的数目和预定数目阈值的对比,可选择直接缓存新获取的受力数据,或删除获取时间最早的受力数据并缓存新获取的受力数据,以保证除设定用于缓存受力数据的缓存资源外不占用其他缓存资源,节省缓存资源。
根据本申请第一方面前述任一实施方式,受力数据包括以下一项或两项以上:波动数据、压力数据、加速度数据;
其中,波动数据用于表征电池包的底部受到撞击的机械波,压力数据用于表征电池包的底部受到的力,加速度数据用于表征电池包在与电池包的底部垂直的方向上的加速度。
根据本申请第一方面前述任一实施方式,向云数据中心上传电池包安全状态信息,电池包安全状态信息包括受力能量信息和/或与目标等级告警条件对应的告警信息。
通过与云数据中心的数据交互,使得云数据中心可掌握电池包的安全状态。云数据中心还能进一步根据电池包的安全状态采取一定措施,以实现对电池包的检修等。
根据本申请第一方面前述任一实施方式,受力能量信息包括受力能量,受力能量信息还包括受力位置。
第二方面,本申请实施例提供一种电池包安全监控装置,包括:计算模块,用于基于获取的电动汽车中的电池包的受力数据,得到电池包的受力能量信息,受力数据用于表征电池包的底部的受力分布,受力能量信息用于表征电池包承受的撞击能量;告警模块,用于根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息,目标等级告警条件为预设的N个等级的告警条件中受力能量信息满足的一个等级的告警条件,N个等级的告警条件中的第i等级告警条件包括受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N,其中,在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
第三方面,本申请实施例提供一种电池包安全监控系统,包括:传感器,设置于电池包底部,用于采集电池包的受力数据,受力数据用于表征电池包的底部的受力分布,电池包位于电动汽车;控制器,与传感器通信连接,用于从传感器获取受力数据,基于受力数据,得到电池包的受力能量信息,受力能量信息用于表征电池包的底部承受的撞击能量;整车控制器,与控制器通信连接,用于根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息,目标等级告警条件为预设的N个等级的告警条件中受力能量信息满足的一个等级的告警条件,N个等级的告警条件中的第i等级告警条件包括受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N,其中,在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能 量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
根据本申请第三方面的实施方式,该系统还包括:云数据中心,与整车控制器通信连接,用于从整车控制器获取电池包安全状态信息,电池包安全状态信息包括受力能量信息和/或与目标等级告警条件对应的告警信息。
第四方面,本申请实施例提供一种电池包安全监控设备,包括:处理器以及存储有计算机程序指令的存储器;处理器执行计算机程序指令时实现第一方面的电池包安全监控方法。
受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
第五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现第二方面的电池包安全监控方法。
受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
本申请实施例提供一种电池包安全监控方法、装置、设备、系统及存储介质,基于能够保证电池包的底部的受力分布的电池包的受力数据,得到用于保证电池包的底部受力产生的能量的受力能量信息。根据受力能量信息确定受力能量满足的等级的告警条件即目标等级告警条件,从而发出与目标等级告警条件对应的告警信息。受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的电池包安全监控方法的一实施例的流程图;
图2为本申请实施例提供的传感器在电池包底部分布的一示例的示意图;
图3为本申请实施例提供的受力数据随时间变化的一示例的示意图;
图4为本申请提供的电池包安全监控方法的另一实施例的流程图;
图5为本申请提供的电池包安全监控方法的又一实施例的流程图;
图6为本申请提供的电池包安全监控装置的一实施例的结构示意图;
图7为本申请提供的电池包安全监控装置的另一实施例的结构示意图;
图8为本申请提供的电池包安全监控装置的又一实施例的结构示意图;
图9为本申请提供的电池包安全监控系统的一实施例的结构示意图;
图10为本申请提供的电池包安全监控系统的另一实施例的结构示意图;
图11为本申请提供的电池包安全监控设备的一实施例的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
随着新能源技术的发展,电池的应用领域越来越广泛,如可作为动力源为电动汽车提供动力。为了便于安装,电池可以电池包的形式安装在电动汽车中。具体地,电池包可安装于电动汽车底部。在一些示例中,可将电池包作为电动汽车的底盘。电动汽车在一些较为恶劣的路况下行驶,电池包可能会受到撞击、刮蹭等伤害,从而对电池包的结构和性能造成破坏,可能会出现电池包着火、爆炸等问题,存在很大的安全风险。
本申请提供一种电池包安全监控方法、装置、设备、系统及存储介质,能够根据安装在电动汽车中的电池包的底部承受的撞击能量,来确定是否发出告警信息,以提示电池包存在风险。下面详细介绍本申请提供的电池包安全监控方法、装置、设备、系统及存储介质。
本申请提供一种电池包安全监控方法,可由电池包安全监控装置、电池包安全监控设备或控制器等执行。电池包安全监控装置、电池包安全监控设备或控制器等可安装在电动汽车内,在此并不限定。图1为本申请提供的电池包安全监控方法的一实施例的流程图。如图1所示,该电池安全监控方法可包括步骤S101和步骤S102。
在步骤S101中,基于获取的电动汽车中的电池包的受力数据,得到电池包的受力能量信息。
受力数据用于表征电池包的底部的受力分布。电池包的底部的受力分布可包括电池包的底部受到的力和力的分布。可在电池包设置传感器,通过传感器获取到电池包的受力数据。传感器可实时采集受力数据,在电动汽车行驶或停车的情况下, 传感器都可采集受力数据。传感器的数量、种类以及在电池包的设置位置在此并不限定。受力数据可与传感器的类型对应。例如,传感器可包括压电传感器、加速度传感器等传感器中的一种或几种,在此并不限定。对应地,受力数据可包括压力数据和/或加速度数据等,即受力数据可包括波动数据、压力数据、加速度数据等中的一种或几种,在此并不限定。波动数据可用于表征电池包的底部受到撞击的机械波。压力数据可用于表征电池包的底部受到的力。加速度数据用于表征电池包在与电池包的底部垂直的方向上的加速度。在电池包的底部受到撞击的情况下,受力数据可体现电池包的底部受到的撞击力。结合传感器的位置,可确定电池包底部受到的力以及力的分布。由于电池包位于电动汽车底部,电池包受到的撞击更多来自于竖直方向,即与电池包底部垂直的方向,通过电池包的底部在竖直方向上受到的机械波、电池包的底部在竖直方向上受到的力、电池包的底部垂直的方向上的加速度等中的一项或两项以上可更为准确地体现电池包的底部受到撞击的情况。
在一些示例中,可在电池包底部设置多个传感器。为了使受力数据更便于表征电池包的底部的受力分布,传感器可均匀设置在电池包底部。例如,图2为本申请实施例提供的传感器在电池包底部分布的一示例的示意图。如图2所示,电池包底部设置有6个传感器C1至C6,传感器C1至C4设置在电池包底部的四个顶角处,传感器C5设置在电池包底部边缘,位于传感器C1和传感器C2之间,传感器C6设置在电池包底部边缘,位于传感器C3和传感器C4之间。通过传感器C1至C6采集的受力数据,可得知电池包底部的受力分布。
受力能量信息用于表征电池包的底部承受的撞击能量。可通过受力数据表征的电池包的底部的受力分布转换计算,得到电池包的底部承受的撞击能量,即得到受力能量信息。具体地,受力能量信息可包括受力能量。受力能量信息还可包括受力位置,在此并不限定。
在一些示例中,可利用某一时刻的受力数据转换得到该时刻的受力能量信息。
在另一些示例中,由于撞击属于短暂的波动过程,撞击的短暂波动时间可能小于1秒,因此可利用持续的撞击过程中的受力数据来转换计算得到该撞击过程中电池包的底部承受的撞击能量。即可根据一段时间内获取的受力数据转换得到电池包在这一段时间内的受力能量信息。对应地,可将获取的受力数据先缓存起来,以便于利用该撞击过程中的受力数据来转换计算得到该撞击过程中电池包的底部承受的撞击能量。
在一些示例中,可实时基于电池包的受力数据,得到电池包的受力能量信息。可选择性地存储电池包的受力能量信息,以节省存储空间。存储的电池包的受力能量信息会参与后续确定目标等级告警条件的过程。例如,可存储表征的撞击能量大于撞击损伤最小阈值的受力能量信息,撞击损伤最小阈值为对电池包造成撞击的撞击能量的最小值;表征的撞击能量大于撞击损伤最小阈值的受力能量信息可认为是对电池包造成撞击并对电池包的安全性产生不良影响的受力能量信息,这种受力能量信息为电池包安全监控必要的受力能量信息,从而去除电池包安全监控不必要的受力能量 信息。
在另一些示例中,为了避免基于电池包的受力数据得到电池包的受力能量信息所占用的资源,如存储资源、计算资源等过多,可在受力数据超出正常变化阈值范围的情况下,基于受力数据,得到电池包的受力能量信息。在电池包的底部受到撞击的情况下,电池包的受力数据会发生较大幅度的波动,超出正常变化阈值范围。正常变化阈值范围为电池包的底部未受到撞击情况下的受力数据的变化范围,可根据场景、需求、经验等设定,在此并不限定。正常变化阈值范围的上限转换得到的受力能量信息表征的撞击能量可为撞击损伤最小阈值,即转换得到的受力能量信息表征的撞击能量能够大于撞击损伤最小阈值的受力数据才进行转换。受力数据超出正常变化阈值范围,表示电池包的底部受到了撞击。在电池包的底部受到撞击的情况下,才会转换得到电池包的受力能量信息,从而得到电池包安全监控必要的受力能量信息,不需得到电池包安全监控不必要的受力能量信息。例如,图3为本申请实施例提供的受力数据随时间变化的一示例的示意图。如图3所示,横坐标表示时间(单位为秒),纵坐标表示受力数据,在0.2秒左右,电池包受到撞击,受力数据发生了大幅度波动,超出正常变化阈值范围,对应地,可基于0.2秒左右采集的受力数据得到受力能量信息。
去除电池包安全监控不必要的受力能量信息,利用电池包安全监控必要的受力能量信息进行电池安全监控,能够减少电池安全监控所占用的资源如存储资源、计算资源等。
在步骤S102中,根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息。
目标等级告警条件为预设的N个等级的告警条件中受力能量信息满足的一个等级的告警条件。N个等级的告警条件中的第i等级告警条件包括受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N。若受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,将第i等级告警条件确定为目标等级告警条件。
在N=1的情况下,只设置有一个等级的告警条件。第一等级告警条件对应的m 1的值在此并不限定,可设置为1,也可设置为其他值。在第一等级告警条件对应的第一能量阈值范围表征极高安全风险的情况下,m 1=1,即受力能量信息表征的撞击能量一旦位于第一能量阈值范围,就发出与第一告警条件对应的告警信息。告警信息可以文字、图像、声音、指示灯等方式实现,在此并不限定。
在N为大于1的正整数的情况下,设置有两个以上的等级的告警条件。在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1。告警条件的等级越高,表示该告警条件对应的安全风险越高。多次低安全风险的撞击累计到一定程度会达到高安全风险,因此,告警条件的等级越高,触发发出告警信息的需要撞击能量位于对应的能量阈值范围内的次数越少。即第i等级告警条件对应的安全风险要高于第i-1等级告警条件对应的安全风险。各个等级的告警条件对应的能量阈值范围可根据场景、需求、经验等设定,在此并不限定。
例如,N=2,对应地,设置有第一等级告警条件和第二等级告警条件。可设置第一等级告警条件对应的第一能量阈值范围为[100J,200J),第二等级告警条件对应的第二能量阈值范围为[200J,+∞),其中,J为单位焦耳。即第二等级告警条件对应的第二能量阈值范围的下限值大于第一等级告警条件对应的第一能量阈值范围的上限值。第一能量阈值范围的下限值可为用于确定电池包的外壳是否出现变形的能量阈值。受力能量信息表征的撞击能量位于第一能量阈值范围内,表示电池的外壳出现变形,存在安全风险,但安全风险较低,即电池包失效风险较低,电池包还可继续正常运行。第二能量阈值范围的下限值可为用于确定电池包内部是否出现严重损坏的能量阈值。受力能量信息表征的撞击能量位于第二能量阈值范围内,表示电池包内部已经出现严重损坏,需要电动汽车暂停运行,进行电池包的检修、更换等处理。第一等级告警条件对应的m 1大于第二等级告警条件对应的m 2,如m 1=20,m 2=1。即受力能量信息表征的撞击能量位于第一能量阈值范围内即出现低安全风险的次数达到20次,使得电池包的安全风险升高,需要通过告警信息进行告警;而受力能量信息表征的撞击能量位于第二能量阈值范围内即出现高安全风险的次数为1次,即需要通过告警信息进行告警。
又例如,N=3,对应地,设置有第一等级告警条件、第二等级告警条件和第三等级告警条件。可设置第一等级告警条件对应的第一能量阈值范围为[100J,150J),第二等级告警条件对应的第二能量阈值范围为[150J,200),第三等级告警条件对应的第三能量阈值范围为[200J,+∞)。即第三等级告警条件对应的第三能量阈值范围的下限值大于第二等级告警条件对应的第二能量阈值范围的上限值,第二等级告警条件对应的第二能量阈值范围的下限值大于第一等级告警条件对应的第一能量阈值范围的上限值。第一能量阈值范围的下限值可为用于确定电池包的外壳是否出现变形的能量阈值。受力能量信息表征的撞击能量位于第一能量阈值范围内,表示电池的外壳出现变形,存在低安全风险,即电池包失效风险较低,电池包还可继续正常运行。第二能量阈值范围的下限值可为用于确定电池包的外壳出现变形且会带来中等安全风险的能量阈值。受力能量信息表征的撞击能量位于第二能量阈值范围内,表示电池的外壳出现变形,存在中等安全风险,即电池包失效风险为中等,电池包还可继续正常运行。第三能量阈值范围的下限值可为用于确定电池包内部是否出现严重损坏的能量阈值。受力能量信息表征的撞击能量位于第三能量阈值范围内,表示电池包内部已经出现严重损坏,需要电动汽车暂停运行,进行电池包的检修、更换等处理。第一等级告警条件对应的m 1大于第二等级告警条件对应的m 2,第二等级告警条件对应的m 2大于第三等级告警条件对应的m 3,如m 1=20,m 2=15,m 3=1。即受力能量信息表征的撞击能量位于第一能量阈值范围内即出现低安全风险的次数达到20次,使得电池包的安全风险达到高风险,需要通过告警信息进行告警;受力能量信息表征的撞击能量位于第二能量阈值范围内即出现中等安全风险的次数达到15次,使得电池包的安全风险达到高风险,需要通过告警信息进行告警;而受力能量信息表征的撞击能量位于第三能量阈值范围内即出现高安全风险的次数为1次,即需要通过告警信息进行告警。
上述实施例中的N、m i、能量阈值范围等的取值可根据场景、需求、经验 等设定,在此并不限定。在一些示例中,若第N等级告警条件对应的极高的安全风险,可将m N设置为1,即m N=1,以能够更及时地针对电池包的极高的安全风险作出反应和处理,避免电池包出现着火、爆炸等危险情况,降低电池包的安全风险,提高电池包的安全性,避免对电动汽车、驾驶员、乘客等造成伤害。
可对受力能量信息表征的撞击能量位于各能量阈值范围内的次数分别进行统计,更新受力能量信息表征的撞击能量位于各能量阈值范围内的次数即各等级的告警条件对应的风险累计次数。风险累计次数用于指示受力能量信息表征的能量位于对应的能量阈值范围内的次数。例如,与第i能量阈值范围对应的风险累计次数用于指示受力能量信息表征的撞击能量位于第i能量阈值范围出现的次数,即第i等级告警条件对应的风险累计次数为受力能量信息表征的能量位于第i能量阈值范围内的次数。具体地,在得到的受力能量信息表征的撞击能量位于第i能量阈值范围的情况下,对与第i能量阈值范围对应的风险累计次数进行累加处理。在与第i能量阈值范围对应的风险累计次数达到m i的情况下,即目标等级告警条件为第i等级告警条件,发出与第i等级告警条件对应的告警信息。累加的步长为1,即受力能量信息表征的撞击能量位于第i能量阈值范围的情况出现一次,第i能量阈值范围对应的风险累计次数加一。
在一些示例中,不同等级告警条件对应的告警信息可以相同,也可以不同,在此并不限定。告警信息可传输至电动汽车中的相关结构,由相关结构基于告警信息,执行告警,以通知相关人员电池包存在高安全风险。告警方式在此并不限定,可采用显示、发声等方式实现。例如,电动汽车具有中控显示屏或中控仪表盘,在受力能量信息表征的撞击能量位于第i能量阈值范围内出现m i次的情况下,中控显示屏或中控仪表盘可显示撞击故障告警标识。又例如,电动汽车具有蜂鸣器,在受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次的情况下,蜂鸣器发出蜂鸣告警。
在一些示例中,不同等级的告警条件的告警信息对应的告警可不同。例如,在告警为显示撞击故障告警标识的情况下,不同等级的告警条件的告警信息对应的故障告警标识可不同。又例如,在告警为发出蜂鸣的情况下,不同等级的告警条件的告警信息对应的蜂鸣声可不同。
在一些示例中,第i等级告警条件的告警信息对应的告警的强烈程度可高于第i-1等级告警条件的告警信息对应的告警的强烈程度。例如,在第i-1等级告警条件的告警信息对应的告警为发出蜂鸣的情况下,第i等级告警条件的告警信息对应的告警的蜂鸣声可高于或大于第i-1等级告警条件的告警信息对应的告警对应的蜂鸣声。
在一些情况下,在i<N的情况下,当受力能量信息表征的撞击能量位于第i能量阈值范围出现1次,也可发出提示信息,提示信息用于提示电池包存在低安全风险,以便用户或工作人员能够及时得到电池包的状态。提示信息所表征的提示强度低于上述实施例中告警信息所表征的提示强度。
在本申请实施例中,基于能够保证电池包的底部的受力分布的电池包的受力数据,得到用于保证电池包的底部受力产生的能量的受力能量信息。根据受力能量信息确定受力能量满足的等级的告警条件即目标等级告警条件,从而发出与目标等级 告警条件对应的告警信息。受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
在一些实施例中,为了便于对电池包的安全监控,可将传感器采集到的受力数据先进行缓存。由于传感器周期性采集受力数据,受力数据的量较大,为了进一步减少受力数据占据的缓存资源,可只缓存部分受力数据。图4为本申请提供的电池包安全监控方法的另一实施例的流程图。图4与图1的不同之处在于,图4所示的电池包安全监控方法还可包括步骤S103至步骤S105。
在步骤S103中,获取受力数据。
在步骤S104中,在已缓存的受力数据的数目小于预定数目阈值的情况下,缓存本次获取的受力数据。
在获取到受力数据后,可对比已缓存的受力数据的数目和预定数目阈值。预定数目阈值为用于限制缓存受力数据占用的缓存资源所设置的数目阈值,可根据场景、需求、经验等设置,在此并不限定。已缓存的受力数据的数目小于预定数目阈值,表示设定用于缓存受力数据的缓存资源较为充足,可直接继续缓存受力数据。
在步骤S105中,在已缓存的受力数据的数目大于或等于预定数目阈值的情况下,删除获取时间最早的受力数据,缓存本次获取的受力数据。
已缓存的受力数据的数目大于或等于预定数目阈值,表示设定用于缓存受力数据的缓存资源并不充足,若要缓存新获取的受力数据,需要将获取时间最早的受力数据删除,再将新获取的受力数据缓存,以保证除设定用于缓存受力数据的缓存资源外不占用其他缓存资源,节省缓存资源。
例如,传感器采集受力数据的周期为0.001秒,对于每个传感器而言,预定数目阈值为1000。表一示出了1秒时缓存的受力数据,表二示出了1.001秒时缓存的受力数据。
表一
Figure PCTCN2022096532-appb-000001
Figure PCTCN2022096532-appb-000002
表二
Figure PCTCN2022096532-appb-000003
由表一和表二可得,将1.001秒采集的受力数据缓存,并将原0.001秒采集的受力数据删除,通过受力数据的限量缓存以节省受力数据占用的缓存资源。而且,由于删除的是获取时间最早的受力数据,对后续的电池包安全监控并不会产生不良影响。
在一些实施例中,还可将受力能量信息、告警信息等上传云数据中心,以便于对电池包的安全监控情况进行记录。图5为本申请提供的电池包安全监控方法的又一实施例的流程图。图5与图1的不同之处在于,图5所示的电池包安全监控方法还可包括步骤S106。
在步骤S106中,向云数据中心上传电池包安全状态信息。
云数据中心可包括电动汽车厂家的云数据中心、电池包厂家的云数据中心等,在此并不限定。电池包安全状态信息用于保证电池包的安全状态,可包括受力能量信息和/或与目标等级告警条件对应的告警信息等,在此并不限定。在一些示例中,电池包安全状态信息也可包括上述实施例中的提示信息,在此并不限定。
在一些示例中,云数据中心可根据接收到的受力能量信息和/或与目标等级告警条件对应的告警信息,对电动车辆、电池包等的安全状态进行预估和检查等。在一些示例中,电池包安全状态信息还可包括电池包定位信息等,云数据中心接收到电池包安全状态信息中的告警信息,还可根据电池包定位信息,确定电池包的位置,向与电池包的位置接近的检修服务方的终端设备发送通知消息,以通知检修服务方提供检修服务。
通过与云数据中心的数据交互,使得云数据中心可掌握电池包的安全状态。云数据中心还能进一步根据电池包的安全状态采取一定措施,以实现对电池包的检修等。
本申请还提供一种电池包安全监控装置。图6为本申请提供的电池包安全监控装置的一实施例的结构示意图。如图6所示,该电池包安全监控装置200可包括计算模块201和告警模块202。
计算模块201可用于基于获取的电动汽车中的电池包的受力数据,得到电池包的受力能量信息。
受力数据用于表征电池包的底部的受力分布。受力能量信息用于表征电池包的底部承受的撞击能量。
在一些示例中,受力数据包括以下一项或两项以上:波动数据、压力数据、加速度数据。波动数据用于表征电池包的底部受到撞击的机械波。压力数据用于表征电池包的底部受到的力。加速度数据用于表征电池包在与电池包的底部垂直的方向上的加速度。
在一些示例中,受力能量信息包括受力能量。在另一些示例中,受力能量信息还可包括受力位置。
告警模块202可用于根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息。
目标等级告警条件为预设的N个等级的告警条件中受力能量信息满足的一个等级的告警条件。N个等级的告警条件中的第i等级告警条件包括受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N。
在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
在本申请实施例中,基于能够保证电池包的底部的受力分布的电池包的受力数据,得到用于保证电池包的底部受力产生的能量的受力能量信息。根据受力能量信息确定受力能量满足的等级的告警条件即目标等级告警条件,从而发出与目标等级告警条件对应的告警信息。受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
在一些示例中,所述目标等级告警条件为所述第i等级告警条件。
告警模块202可用于:在得到的受力能量信息表征的撞击能量位于第i能量阈值范围的情况下,对与第i能量阈值范围对应的风险累计次数进行累加处理,与第i能量阈值范围对应的风险累计次数用于指示受力能量信息表征的撞击能量位于第i能量阈值范围出现的次数;在与第i能量阈值范围对应的风险累计次数达到m i的情况下,发出与第i等级告警条件对应的告警信息。
在一些示例中,m N=1。
在一些示例中,计算模块201可用于在受力数据超出正常变化阈值范围的情况下,基于受力数据,得到电池包的受力能量信息。
图7为本申请提供的电池包安全监控装置的另一实施例的结构示意图。图7与图6的不同之处在于,图7所示的电池包安全监控装置200还可包括数据获取模块203和缓存模块204。
数据获取模块203可用于获取受力数据。
缓存模块204可用于:在已缓存的受力数据的数目小于预定数目阈值的情况下,缓存本次获取的受力数据;在已缓存的受力数据的数目大于或等于预定数目阈值的情况下,删除获取时间最早的受力数据,缓存本次获取的受力数据。
图8为本申请提供的电池包安全监控装置的又一实施例的结构示意图。图8与图6的不同之处在于,图8所示的电池包安全监控装置200还可包括发送模块205。
发送模块205可用于向云数据中心上传电池包安全状态信息。
电池包安全状态信息包括受力能量信息和/或与目标等级告警条件对应的告警信息。
本申请提供一种电池包安全监控系统。图9为本申请提供的电池包安全监控系统的一实施例的结构示意图。如图9所示,电池安全监控系统可包括传感器301、控制器302和整车控制器303。
传感器301可设置于电池包40底部,用于采集电池包40的受力数据。
电池包位于电动汽车。受力数据用于表征电池包40的底部的受力分布。在一些示例中,受力数据包括以下一项或两项以上:波动数据、压力数据、加速度数据。波动数据用于表征电池包40的底部受到撞击的机械波。压力数据用于表征电池包40的底部受到的力。加速度数据用于表征电池包40在与电池包40的底部垂直的方向上的加速度。传感器201的设置、种类等具体内容可参见上述实施例中的相关说明,在此不再赘述。
控制器302与传感器301通信连接,用于从传感器获取受力数据,基于受力数据,得到电池包40的受力能量信息。在一些示例中,控制器302可具体实现为微控制器(MicroController Unit,MCU),在此并不限定。
受力能量信息用于表征电池包40的底部承受的撞击能量。在一些示例中,受力能量信息包括受力能量。在另一些示例中,受力能量信息还可包括受力位置。
整车控制器303与控制器302通信连接,用于根据受力能量信息确定目标等级告警条件,发出与目标等级告警条件对应的告警信息。
目标等级告警条件为预设的N个等级的告警条件中受力能量信息满足的一个等级的告警条件。N个等级的告警条件中的第i等级告警条件包括受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N。
在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
在一些示例中,如图9所示,电池包安全监控系统还可包括告警单元304。告警单元304可用于响应于告警信息,发出提示信息。具体地,告警单元304可包括中控仪表盘、中控显示屏、蜂鸣器等,在此并不限定。告警单元304可通过显示图像 或发出声音等方式发出提示信息,在此并不限定提示信息的形式。
在本申请实施例中,基于能够保证电池包的底部的受力分布的电池包的受力数据,得到用于保证电池包的底部受力产生的能量的受力能量信息。根据受力能量信息确定受力能量满足的等级的告警条件即目标等级告警条件,从而发出与目标等级告警条件对应的告警信息。受力能量信息满足第i等级条件即受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,表示电池包受到的第i能量阈值范围内的撞击已累计使得电池包出现严重损坏,通过受力能量信息满足的等级的告警条件对应的告警信息可提示电池包存在安全风险,能够及时发现电池包的安全风险,及时处理,提高电池包的安全性,避免电池包着火、爆炸等为电动汽车、驾驶员带来的伤害。
整车控制器303可用于:在得到的受力能量信息表征的撞击能量位于第i能量阈值范围的情况下,对与第i能量阈值范围对应的风险累计次数进行累加处理,与第i能量阈值范围对应的风险累计次数用于指示受力能量信息表征的撞击能量位于第i能量阈值范围出现的次数;在与第i能量阈值范围对应的风险累计次数达到m i的情况下,发出与第i等级告警条件对应的告警信息。目标等级告警条件为第i等级告警条件。
在一些示例中,m N=1。
在一些示例中,控制器302可用于在受力数据超出正常变化阈值范围的情况下,基于受力数据,得到电池包的受力能量信息。
在一些示例中,控制器302还可用于:获取受力数据;在已缓存的受力数据的数目小于预定数目阈值的情况下,缓存本次获取的受力数据;在已缓存的受力数据的数目大于或等于预定数目阈值的情况下,删除获取时间最早的受力数据,缓存本次获取的受力数据。
图10为本申请提供的电池包安全监控系统的另一实施例的结构示意图。图10与图9的不同之处在于,图10所示的电池包安全监控系统还可包括云数据中心305。
云数据中心305与整车控制器303通信连接,用于从整车控制器获取电池包安全状态信息。
电池包安全状态信息包括受力能量信息和/或与目标等级告警条件对应的告警信息。
上述电池包安全监控系统中涉及电池包安全监控方法的具体内容可参见上述实施例中的相关说明,在此不再赘述。
本申请实施例还提供了一种电池包安全监控设备。图11为本申请提供的电池包安全监控设备的一实施例的结构示意图。如图11所示,电池包安全监控设备400包括存储器401、处理器402及存储在存储器401上并可在处理器402上运行的计算机程序。
在一个示例中,上述处理器402可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器401可包括只读存储器(Read-Only Memory,ROM),随机存取存储器(Random Access Memory,RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质
(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本申请电池包安全监控方法所描述的操作。
处理器402通过读取存储器401中存储的可执行程序代码来运行与可执行程序代码对应的计算机程序,以用于实现上述实施例中的电池包安全监控方法。
在一个示例中,电池包安全监控设备400还可包括通信接口403和总线404。其中,如图11所示,存储器401、处理器402、通信接口403通过总线404连接并完成相互间的通信。
通信接口403,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。也可通过通信接口403接入输入设备和/或输出设备。
总线404包括硬件、软件或两者,将电池包安全监控设备400的部件彼此耦接在一起。举例来说而非限制,总线404可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Enhanced Industry Standard Architecture,EISA)总线、前端总线(Front Side Bus,FSB)、超传输(HyperTransport,HT)互连、工业标准架构(Industry Standard Architecture,ISA)总线、无限带宽互连、低引脚数(Low pin count,LPC)总线、存储器总线、微信道架构(MicroChannel Architecture,MCA)总线、外围组件互连(Peripheral Component Interconnect,PCI)总线、PCI-Express(PCI-E)总线、串行高级技术附件(Serial Advanced Technology Attachment,SATA)总线、视频电子标准协会局部(Video Electronics Standards Association Local Bus,VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线404可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令,该计算机程序指令被处理器执行时可实现上述实施例中的电池包安全监控方法,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,上述计算机可读存储介质可包括非暂态计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等,在此并不限定。
本申请实施例还提供一种电动汽车,该电动汽车可包括上述实施例中的电池包安全监控设备,具体内容可参见上述实施例中的相关内容,在此不再赘述。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于装置实施例、系统实施例、设备实施例、计算机可读存储介质实施例、电动汽车实施例而言,相关之处可以参见方法实施例的说明部分。本申请并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本申 请的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。
上面参考根据本申请的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;数量词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (13)

  1. 一种电池包安全监控方法,包括:
    基于获取的电动汽车中的电池包的受力数据,得到所述电池包的受力能量信息,所述受力数据用于表征所述电池包的底部的受力分布,所述受力能量信息用于表征所述电池包的底部承受的撞击能量;
    根据所述受力能量信息确定目标等级告警条件,发出与所述目标等级告警条件对应的告警信息,所述目标等级告警条件为预设的N个等级的告警条件中所述受力能量信息满足的一个等级的告警条件,N个等级的告警条件中的第i等级告警条件包括所述受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N,
    其中,在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
  2. 根据权利要求1所述的方法,其中,所述目标等级告警条件为所述第i等级告警条件,
    所述根据所述受力能量信息确定目标等级告警条件,发出与所述目标等级告警条件对应的告警信息,包括:
    在得到的所述受力能量信息表征的撞击能量位于所述第i能量阈值范围的情况下,对与所述第i能量阈值范围对应的风险累计次数进行累加处理,与所述第i能量阈值范围对应的风险累计次数用于指示所述受力能量信息表征的撞击能量位于所述第i能量阈值范围出现的次数;
    在与所述第i能量阈值范围对应的风险累计次数达到m i的情况下,发出与所述第i等级告警条件对应的告警信息。
  3. 根据权利要求1所述的方法,其中,m N=1。
  4. 根据权利要求1所述的方法,其中,所述基于获取的安装在电动汽车中的电池包的受力数据,得到所述电池包的受力能量信息,包括:
    在所述受力数据超出正常变化阈值范围的情况下,基于所述受力数据,得到所述电池包的所述受力能量信息。
  5. 根据权利要求1所述的方法,其中,在所述基于获取的安装在电动汽车中的电池包的受力数据,得到所述电池包的受力能量信息之前,还包括:
    获取所述受力数据;
    在已缓存的所述受力数据的数目小于预定数目阈值的情况下,缓存本次获取的所述受力数据;
    在已缓存的所述受力数据的数目大于或等于所述预定数目阈值的情况下,删除获取时间最早的所述受力数据,缓存本次获取的所述受力数据。
  6. 根据权利要求1所述的方法,其中,所述受力数据包括以下一项或两项以上:
    波动数据、压力数据、加速度数据;
    其中,所述波动数据用于表征所述电池包的底部受到撞击的机械波,所述压力数据用于表征所述电池包的底部受到的力,所述加速度数据用于表征所述电池包在与所述电池包的底部垂直的方向上的加速度。
  7. 根据权利要求1所述的方法,其中,还包括:
    向云数据中心上传电池包安全状态信息,所述电池包安全状态信息包括所述受力能量信息和/或与所述目标等级告警条件对应的告警信息。
  8. 根据权利要求1至7中任意一项所述的方法,其中,所述受力能量信息包括受力能量,所述受力能量信息还包括受力位置。
  9. 一种电池包安全监控装置,包括:
    计算模块,用于基于获取的电动汽车中的电池包的受力数据,得到所述电池包的受力能量信息,所述受力数据用于表征所述电池包的底部的受力分布,所述受力能量信息用于表征所述电池包承受的撞击能量;
    告警模块,用于根据所述受力能量信息确定目标等级告警条件,发出与所述目标等级告警条件对应的告警信息,所述目标等级告警条件为预设的N个等级的告警条件中所述受力能量信息满足的一个等级的告警条件,N个等级的告警条件中的第i等级告警条件包括所述受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N,
    其中,在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
  10. 一种电池包安全监控系统,包括:
    传感器,设置于电池包底部,用于采集所述电池包的受力数据,所述受力数据用于表征所述电池包的底部的受力分布,所述电池包位于电动汽车;
    控制器,与所述传感器通信连接,用于从所述传感器获取所述受力数据,基于所述受力数据,得到所述电池包的受力能量信息,所述受力能量信息用于表征所述电池包的底部承受的撞击能量;
    整车控制器,与所述控制器通信连接,用于根据所述受力能量信息确定目标等级告警条件,发出与所述目标等级告警条件对应的告警信息,所述目标等级告警条件为预设的N个等级的告警条件中所述受力能量信息满足的一个等级的告警条件,N个等级的告警条件中的第i等级告警条件包括所述受力能量信息表征的撞击能量位于第i能量阈值范围出现m i次,N为正整数,0<i≤N,
    其中,在N为大于1的正整数且1<i≤N的情况下,第i等级告警条件对应的第i能量阈值范围的下限值大于第i-1等级告警条件对应的第i-1能量阈值范围的上限值,m i<m i-1
  11. 根据权利要求10所述的系统,还包括:
    云数据中心,与所述整车控制器通信连接,用于从所述整车控制器获取电池包安全状态信息,所述电池包安全状态信息包括所述受力能量信息和/或与所述目标等级告 警条件对应的告警信息。
  12. 一种电池包安全监控设备,包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时实现如权利要求1至8中任意一项所述的电池包安全监控方法。
  13. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1至8中任意一项所述的电池包安全监控方法。
PCT/CN2022/096532 2021-08-09 2022-06-01 电池包安全监控方法、装置、设备、系统及存储介质 WO2023016065A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22764637.9A EP4155704A4 (en) 2021-08-09 2022-06-01 METHOD, DEVICE, DEVICE AND SYSTEM FOR MONITORING THE SAFETY OF A BATTERY PACK AND STORAGE MEDIUM
KR1020227032309A KR20230024245A (ko) 2021-08-09 2022-06-01 배터리팩 안전 모니터링 방법, 장치, 설비, 시스템 및 저장매체
JP2022556166A JP2023543648A (ja) 2021-08-09 2022-06-01 電池パックの安全監視方法、装置、機器、システム及び記憶媒体
US17/942,027 US20230046146A1 (en) 2021-08-09 2022-09-09 Method, apparatus, device, and system for monitoring battery pack safety and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110907630.7A CN115704724A (zh) 2021-08-09 2021-08-09 电池包安全监控方法、装置、设备、系统及存储介质
CN202110907630.7 2021-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/942,027 Continuation US20230046146A1 (en) 2021-08-09 2022-09-09 Method, apparatus, device, and system for monitoring battery pack safety and storage medium

Publications (1)

Publication Number Publication Date
WO2023016065A1 true WO2023016065A1 (zh) 2023-02-16

Family

ID=84047625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096532 WO2023016065A1 (zh) 2021-08-09 2022-06-01 电池包安全监控方法、装置、设备、系统及存储介质

Country Status (2)

Country Link
CN (1) CN115704724A (zh)
WO (1) WO2023016065A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116424096A (zh) * 2023-03-28 2023-07-14 浙江新富尔电子有限公司 资源动态优化配置的新能源汽车电池采集总成方法及系统
CN117030128A (zh) * 2023-05-18 2023-11-10 贝德凯利电气(苏州)有限公司 一种具备防水监测功能的水泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009042A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Engineering Co Ltd 電池パック
CN105572598A (zh) * 2016-01-29 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种电池膨胀检测方法及终端
CN108631015A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 电池包异常检测装置及电池包异常检测方法
CN110239348A (zh) * 2019-05-24 2019-09-17 北京航空航天大学 一种电动汽车动力电池安全检测系统及方法
CN110926750A (zh) * 2019-12-31 2020-03-27 苏州春分检测技术服务有限公司 电池碰撞试验装置及方法
CN112763136A (zh) * 2021-04-08 2021-05-07 南京英锐创电子科技有限公司 动力电池包压力报警系统及报警方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398489B2 (ja) * 2007-05-29 2010-01-13 レノボ・シンガポール・プライベート・リミテッド 電池パック、機器、および充電制御方法
US8427111B2 (en) * 2009-12-22 2013-04-23 Empire Technology Development Llc Battery, battery system and method for detecting abnormal state of battery
CN108674216A (zh) * 2018-04-23 2018-10-19 爱驰汽车有限公司 一种电动汽车的电池状态监控方法及系统、车载终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009042A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Engineering Co Ltd 電池パック
CN105572598A (zh) * 2016-01-29 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种电池膨胀检测方法及终端
CN108631015A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 电池包异常检测装置及电池包异常检测方法
CN110239348A (zh) * 2019-05-24 2019-09-17 北京航空航天大学 一种电动汽车动力电池安全检测系统及方法
CN110926750A (zh) * 2019-12-31 2020-03-27 苏州春分检测技术服务有限公司 电池碰撞试验装置及方法
CN112763136A (zh) * 2021-04-08 2021-05-07 南京英锐创电子科技有限公司 动力电池包压力报警系统及报警方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116424096A (zh) * 2023-03-28 2023-07-14 浙江新富尔电子有限公司 资源动态优化配置的新能源汽车电池采集总成方法及系统
CN116424096B (zh) * 2023-03-28 2023-09-29 浙江新富尔电子有限公司 资源动态优化配置的新能源汽车电池采集总成方法及系统
CN117030128A (zh) * 2023-05-18 2023-11-10 贝德凯利电气(苏州)有限公司 一种具备防水监测功能的水泵
CN117030128B (zh) * 2023-05-18 2024-06-04 贝德凯利电气(苏州)有限公司 一种具备防水监测功能的水泵

Also Published As

Publication number Publication date
CN115704724A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2023016065A1 (zh) 电池包安全监控方法、装置、设备、系统及存储介质
US20230046146A1 (en) Method, apparatus, device, and system for monitoring battery pack safety and storage medium
EP3561780A1 (en) Driving behavior determination method, device, equipment and storage medium
CN106530831A (zh) 一种高威胁车辆监测预警系统及方法
WO2022068285A1 (zh) 一种数据处理的方法和装置
JP7441878B2 (ja) 警報情報を出力する方法、機器、記憶媒体及びプログラム製品
CN103057502B (zh) 一种检测车辆瞬时加速度提示汽车姿态的装置和方法、及汽车
WO2022068287A1 (zh) 一种数据处理的方法和装置
CN104916151A (zh) 基于互联网的交通报警系统和方法
WO2022111010A1 (zh) 道路安全评估方法、装置、电子设备及可读介质
CN202018744U (zh) 基于单目测距的汽车安全辅助驾驶系统
CN105243862A (zh) 一种车辆弯道防侧翻限速警示系统
WO2022226901A1 (zh) 底盘护板、车载撞击检测系统及撞击检测方法
CN114074577B (zh) 一种新能源车电池包磕底检测方法和装置
CN104842855A (zh) 车辆及其超载报警方法和超载报警系统
CN110705416B (zh) 一种基于驾驶员面部图像建模的安全驾驶预警方法及系统
CN111383454A (zh) 车辆驾驶风险的预警方法、装置、介质及电子设备
WO2023133682A1 (zh) 电池检测方法、装置、设备、存储介质及计算机程序产品
CN116626492A (zh) 电池故障诊断方法、装置及车辆
CN214775477U (zh) 一种热风险信息管理系统与电动汽车充电站信息管理系统
CN114333417A (zh) 一种车辆安全检测方法、装置、电子设备及存储介质
TWI699662B (zh) 偵測系統及其偵測方法
CN105011915A (zh) 一种驾驶员健康监测及车辆安全处理系统
CN203300044U (zh) 超限车辆通行监控装置
CN108924499A (zh) 跟车异常的检测方法及装置、存储介质、终端

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022556166

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022764637

Country of ref document: EP

Effective date: 20220913

NENP Non-entry into the national phase

Ref country code: DE